xref: /linux/drivers/infiniband/hw/hfi1/tid_rdma.h (revision 0be3ff0c)
1 /* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */
2 /*
3  * Copyright(c) 2018 Intel Corporation.
4  *
5  */
6 #ifndef HFI1_TID_RDMA_H
7 #define HFI1_TID_RDMA_H
8 
9 #include <linux/circ_buf.h>
10 #include "common.h"
11 
12 /* Add a convenience helper */
13 #define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1))
14 #define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size)
15 #define CIRC_PREV(val, size) CIRC_ADD(val, -1, size)
16 
17 #define TID_RDMA_MIN_SEGMENT_SIZE       BIT(18)   /* 256 KiB (for now) */
18 #define TID_RDMA_MAX_SEGMENT_SIZE       BIT(18)   /* 256 KiB (for now) */
19 #define TID_RDMA_MAX_PAGES              (BIT(18) >> PAGE_SHIFT)
20 #define TID_RDMA_SEGMENT_SHIFT		18
21 
22 /*
23  * Bit definitions for priv->s_flags.
24  * These bit flags overload the bit flags defined for the QP's s_flags.
25  * Due to the fact that these bit fields are used only for the QP priv
26  * s_flags, there are no collisions.
27  *
28  * HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock
29  * HFI1_R_TID_WAIT_INTERLCK - QP is waiting for responder interlock
30  */
31 #define HFI1_S_TID_BUSY_SET       BIT(0)
32 /* BIT(1) reserved for RVT_S_BUSY. */
33 #define HFI1_R_TID_RSC_TIMER      BIT(2)
34 /* BIT(3) reserved for RVT_S_RESP_PENDING. */
35 /* BIT(4) reserved for RVT_S_ACK_PENDING. */
36 #define HFI1_S_TID_WAIT_INTERLCK  BIT(5)
37 #define HFI1_R_TID_WAIT_INTERLCK  BIT(6)
38 /* BIT(7) - BIT(15) reserved for RVT_S_WAIT_*. */
39 /* BIT(16) reserved for RVT_S_SEND_ONE */
40 #define HFI1_S_TID_RETRY_TIMER    BIT(17)
41 /* BIT(18) reserved for RVT_S_ECN. */
42 #define HFI1_R_TID_SW_PSN         BIT(19)
43 /* BIT(26) reserved for HFI1_S_WAIT_HALT */
44 /* BIT(27) reserved for HFI1_S_WAIT_TID_RESP */
45 /* BIT(28) reserved for HFI1_S_WAIT_TID_SPACE */
46 
47 /*
48  * Unlike regular IB RDMA VERBS, which do not require an entry
49  * in the s_ack_queue, TID RDMA WRITE requests do because they
50  * generate responses.
51  * Therefore, the s_ack_queue needs to be extended by a certain
52  * amount. The key point is that the queue needs to be extended
53  * without letting the "user" know so they user doesn't end up
54  * using these extra entries.
55  */
56 #define HFI1_TID_RDMA_WRITE_CNT 8
57 
58 struct tid_rdma_params {
59 	struct rcu_head rcu_head;
60 	u32 qp;
61 	u32 max_len;
62 	u16 jkey;
63 	u8 max_read;
64 	u8 max_write;
65 	u8 timeout;
66 	u8 urg;
67 	u8 version;
68 };
69 
70 struct tid_rdma_qp_params {
71 	struct work_struct trigger_work;
72 	struct tid_rdma_params local;
73 	struct tid_rdma_params __rcu *remote;
74 };
75 
76 /* Track state for each hardware flow */
77 struct tid_flow_state {
78 	u32 generation;
79 	u32 psn;
80 	u8 index;
81 	u8 last_index;
82 };
83 
84 enum tid_rdma_req_state {
85 	TID_REQUEST_INACTIVE = 0,
86 	TID_REQUEST_INIT,
87 	TID_REQUEST_INIT_RESEND,
88 	TID_REQUEST_ACTIVE,
89 	TID_REQUEST_RESEND,
90 	TID_REQUEST_RESEND_ACTIVE,
91 	TID_REQUEST_QUEUED,
92 	TID_REQUEST_SYNC,
93 	TID_REQUEST_RNR_NAK,
94 	TID_REQUEST_COMPLETE,
95 };
96 
97 struct tid_rdma_request {
98 	struct rvt_qp *qp;
99 	struct hfi1_ctxtdata *rcd;
100 	union {
101 		struct rvt_swqe *swqe;
102 		struct rvt_ack_entry *ack;
103 	} e;
104 
105 	struct tid_rdma_flow *flows;	/* array of tid flows */
106 	struct rvt_sge_state ss; /* SGE state for TID RDMA requests */
107 	u16 n_flows;		/* size of the flow buffer window */
108 	u16 setup_head;		/* flow index we are setting up */
109 	u16 clear_tail;		/* flow index we are clearing */
110 	u16 flow_idx;		/* flow index most recently set up */
111 	u16 acked_tail;
112 
113 	u32 seg_len;
114 	u32 total_len;
115 	u32 r_ack_psn;          /* next expected ack PSN */
116 	u32 r_flow_psn;         /* IB PSN of next segment start */
117 	u32 r_last_acked;       /* IB PSN of last ACK'ed packet */
118 	u32 s_next_psn;		/* IB PSN of next segment start for read */
119 
120 	u32 total_segs;		/* segments required to complete a request */
121 	u32 cur_seg;		/* index of current segment */
122 	u32 comp_seg;           /* index of last completed segment */
123 	u32 ack_seg;            /* index of last ack'ed segment */
124 	u32 alloc_seg;          /* index of next segment to be allocated */
125 	u32 isge;		/* index of "current" sge */
126 	u32 ack_pending;        /* num acks pending for this request */
127 
128 	enum tid_rdma_req_state state;
129 };
130 
131 /*
132  * When header suppression is used, PSNs associated with a "flow" are
133  * relevant (and not the PSNs maintained by verbs). Track per-flow
134  * PSNs here for a TID RDMA segment.
135  *
136  */
137 struct flow_state {
138 	u32 flags;
139 	u32 resp_ib_psn;     /* The IB PSN of the response for this flow */
140 	u32 generation;      /* generation of flow */
141 	u32 spsn;            /* starting PSN in TID space */
142 	u32 lpsn;            /* last PSN in TID space */
143 	u32 r_next_psn;      /* next PSN to be received (in TID space) */
144 
145 	/* For tid rdma read */
146 	u32 ib_spsn;         /* starting PSN in Verbs space */
147 	u32 ib_lpsn;         /* last PSn in Verbs space */
148 };
149 
150 struct tid_rdma_pageset {
151 	dma_addr_t addr : 48; /* Only needed for the first page */
152 	u8 idx: 8;
153 	u8 count : 7;
154 	u8 mapped: 1;
155 };
156 
157 /**
158  * kern_tid_node - used for managing TID's in TID groups
159  *
160  * @grp_idx: rcd relative index to tid_group
161  * @map: grp->map captured prior to programming this TID group in HW
162  * @cnt: Only @cnt of available group entries are actually programmed
163  */
164 struct kern_tid_node {
165 	struct tid_group *grp;
166 	u8 map;
167 	u8 cnt;
168 };
169 
170 /* Overall info for a TID RDMA segment */
171 struct tid_rdma_flow {
172 	/*
173 	 * While a TID RDMA segment is being transferred, it uses a QP number
174 	 * from the "KDETH section of QP numbers" (which is different from the
175 	 * QP number that originated the request). Bits 11-15 of these QP
176 	 * numbers identify the "TID flow" for the segment.
177 	 */
178 	struct flow_state flow_state;
179 	struct tid_rdma_request *req;
180 	u32 tid_qpn;
181 	u32 tid_offset;
182 	u32 length;
183 	u32 sent;
184 	u8 tnode_cnt;
185 	u8 tidcnt;
186 	u8 tid_idx;
187 	u8 idx;
188 	u8 npagesets;
189 	u8 npkts;
190 	u8 pkt;
191 	u8 resync_npkts;
192 	struct kern_tid_node tnode[TID_RDMA_MAX_PAGES];
193 	struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES];
194 	u32 tid_entry[TID_RDMA_MAX_PAGES];
195 };
196 
197 enum tid_rnr_nak_state {
198 	TID_RNR_NAK_INIT = 0,
199 	TID_RNR_NAK_SEND,
200 	TID_RNR_NAK_SENT,
201 };
202 
203 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data);
204 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data);
205 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data);
206 void tid_rdma_conn_error(struct rvt_qp *qp);
207 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p);
208 
209 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit);
210 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
211 			    struct rvt_sge_state *ss, bool *last);
212 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req);
213 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req);
214 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
215 
216 /**
217  * trdma_clean_swqe - clean flows for swqe if large send queue
218  * @qp: the qp
219  * @wqe: the send wqe
220  */
221 static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
222 {
223 	if (!wqe->priv)
224 		return;
225 	__trdma_clean_swqe(qp, wqe);
226 }
227 
228 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp);
229 
230 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
231 		      struct ib_qp_init_attr *init_attr);
232 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp);
233 
234 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp);
235 
236 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
237 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
238 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd);
239 
240 struct cntr_entry;
241 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
242 			    void *context, int vl, int mode, u64 data);
243 
244 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
245 				    struct ib_other_headers *ohdr,
246 				    u32 *bth1, u32 *bth2, u32 *len);
247 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
248 				 struct ib_other_headers *ohdr, u32 *bth1,
249 				 u32 *bth2, u32 *len);
250 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet);
251 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
252 				  struct ib_other_headers *ohdr, u32 *bth0,
253 				  u32 *bth1, u32 *bth2, u32 *len, bool *last);
254 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet);
255 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
256 			      struct hfi1_pportdata *ppd,
257 			      struct hfi1_packet *packet);
258 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
259 			       u32 *bth2);
260 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp);
261 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe);
262 
263 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
264 static inline void hfi1_setup_tid_rdma_wqe(struct rvt_qp *qp,
265 					   struct rvt_swqe *wqe)
266 {
267 	if (wqe->priv &&
268 	    (wqe->wr.opcode == IB_WR_RDMA_READ ||
269 	     wqe->wr.opcode == IB_WR_RDMA_WRITE) &&
270 	    wqe->length >= TID_RDMA_MIN_SEGMENT_SIZE)
271 		setup_tid_rdma_wqe(qp, wqe);
272 }
273 
274 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
275 				  struct ib_other_headers *ohdr,
276 				  u32 *bth1, u32 *bth2, u32 *len);
277 
278 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet);
279 
280 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
281 				   struct ib_other_headers *ohdr, u32 *bth1,
282 				   u32 bth2, u32 *len,
283 				   struct rvt_sge_state **ss);
284 
285 void hfi1_del_tid_reap_timer(struct rvt_qp *qp);
286 
287 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet);
288 
289 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
290 				struct ib_other_headers *ohdr,
291 				u32 *bth1, u32 *bth2, u32 *len);
292 
293 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet);
294 
295 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
296 				  struct ib_other_headers *ohdr, u16 iflow,
297 				  u32 *bth1, u32 *bth2);
298 
299 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet);
300 
301 void hfi1_add_tid_retry_timer(struct rvt_qp *qp);
302 void hfi1_del_tid_retry_timer(struct rvt_qp *qp);
303 
304 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
305 			       struct ib_other_headers *ohdr, u32 *bth1,
306 			       u32 *bth2, u16 fidx);
307 
308 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet);
309 
310 struct hfi1_pkt_state;
311 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps);
312 
313 void _hfi1_do_tid_send(struct work_struct *work);
314 
315 bool hfi1_schedule_tid_send(struct rvt_qp *qp);
316 
317 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e);
318 
319 #endif /* HFI1_TID_RDMA_H */
320