xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 9a6b55ac)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 
54 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
55 {
56 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
57 }
58 
59 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
60 {
61 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
62 
63 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
64 }
65 
66 static int order2idx(struct mlx5_ib_dev *dev, int order)
67 {
68 	struct mlx5_mr_cache *cache = &dev->cache;
69 
70 	if (order < cache->ent[0].order)
71 		return 0;
72 	else
73 		return order - cache->ent[0].order;
74 }
75 
76 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
77 {
78 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
79 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
80 }
81 
82 static void reg_mr_callback(int status, struct mlx5_async_work *context)
83 {
84 	struct mlx5_ib_mr *mr =
85 		container_of(context, struct mlx5_ib_mr, cb_work);
86 	struct mlx5_ib_dev *dev = mr->dev;
87 	struct mlx5_mr_cache *cache = &dev->cache;
88 	int c = order2idx(dev, mr->order);
89 	struct mlx5_cache_ent *ent = &cache->ent[c];
90 	u8 key;
91 	unsigned long flags;
92 
93 	spin_lock_irqsave(&ent->lock, flags);
94 	ent->pending--;
95 	spin_unlock_irqrestore(&ent->lock, flags);
96 	if (status) {
97 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
98 		kfree(mr);
99 		dev->fill_delay = 1;
100 		mod_timer(&dev->delay_timer, jiffies + HZ);
101 		return;
102 	}
103 
104 	mr->mmkey.type = MLX5_MKEY_MR;
105 	spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
106 	key = dev->mdev->priv.mkey_key++;
107 	spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
108 	mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
109 
110 	cache->last_add = jiffies;
111 
112 	spin_lock_irqsave(&ent->lock, flags);
113 	list_add_tail(&mr->list, &ent->head);
114 	ent->cur++;
115 	ent->size++;
116 	spin_unlock_irqrestore(&ent->lock, flags);
117 
118 	if (!completion_done(&ent->compl))
119 		complete(&ent->compl);
120 }
121 
122 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
123 {
124 	struct mlx5_mr_cache *cache = &dev->cache;
125 	struct mlx5_cache_ent *ent = &cache->ent[c];
126 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
127 	struct mlx5_ib_mr *mr;
128 	void *mkc;
129 	u32 *in;
130 	int err = 0;
131 	int i;
132 
133 	in = kzalloc(inlen, GFP_KERNEL);
134 	if (!in)
135 		return -ENOMEM;
136 
137 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
138 	for (i = 0; i < num; i++) {
139 		if (ent->pending >= MAX_PENDING_REG_MR) {
140 			err = -EAGAIN;
141 			break;
142 		}
143 
144 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
145 		if (!mr) {
146 			err = -ENOMEM;
147 			break;
148 		}
149 		mr->order = ent->order;
150 		mr->allocated_from_cache = 1;
151 		mr->dev = dev;
152 
153 		MLX5_SET(mkc, mkc, free, 1);
154 		MLX5_SET(mkc, mkc, umr_en, 1);
155 		MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
156 		MLX5_SET(mkc, mkc, access_mode_4_2,
157 			 (ent->access_mode >> 2) & 0x7);
158 
159 		MLX5_SET(mkc, mkc, qpn, 0xffffff);
160 		MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
161 		MLX5_SET(mkc, mkc, log_page_size, ent->page);
162 
163 		spin_lock_irq(&ent->lock);
164 		ent->pending++;
165 		spin_unlock_irq(&ent->lock);
166 		err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
167 					       &dev->async_ctx, in, inlen,
168 					       mr->out, sizeof(mr->out),
169 					       reg_mr_callback, &mr->cb_work);
170 		if (err) {
171 			spin_lock_irq(&ent->lock);
172 			ent->pending--;
173 			spin_unlock_irq(&ent->lock);
174 			mlx5_ib_warn(dev, "create mkey failed %d\n", err);
175 			kfree(mr);
176 			break;
177 		}
178 	}
179 
180 	kfree(in);
181 	return err;
182 }
183 
184 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
185 {
186 	struct mlx5_mr_cache *cache = &dev->cache;
187 	struct mlx5_cache_ent *ent = &cache->ent[c];
188 	struct mlx5_ib_mr *tmp_mr;
189 	struct mlx5_ib_mr *mr;
190 	LIST_HEAD(del_list);
191 	int i;
192 
193 	for (i = 0; i < num; i++) {
194 		spin_lock_irq(&ent->lock);
195 		if (list_empty(&ent->head)) {
196 			spin_unlock_irq(&ent->lock);
197 			break;
198 		}
199 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
200 		list_move(&mr->list, &del_list);
201 		ent->cur--;
202 		ent->size--;
203 		spin_unlock_irq(&ent->lock);
204 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
205 	}
206 
207 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
208 		list_del(&mr->list);
209 		kfree(mr);
210 	}
211 }
212 
213 static ssize_t size_write(struct file *filp, const char __user *buf,
214 			  size_t count, loff_t *pos)
215 {
216 	struct mlx5_cache_ent *ent = filp->private_data;
217 	struct mlx5_ib_dev *dev = ent->dev;
218 	char lbuf[20] = {0};
219 	u32 var;
220 	int err;
221 	int c;
222 
223 	count = min(count, sizeof(lbuf) - 1);
224 	if (copy_from_user(lbuf, buf, count))
225 		return -EFAULT;
226 
227 	c = order2idx(dev, ent->order);
228 
229 	if (sscanf(lbuf, "%u", &var) != 1)
230 		return -EINVAL;
231 
232 	if (var < ent->limit)
233 		return -EINVAL;
234 
235 	if (var > ent->size) {
236 		do {
237 			err = add_keys(dev, c, var - ent->size);
238 			if (err && err != -EAGAIN)
239 				return err;
240 
241 			usleep_range(3000, 5000);
242 		} while (err);
243 	} else if (var < ent->size) {
244 		remove_keys(dev, c, ent->size - var);
245 	}
246 
247 	return count;
248 }
249 
250 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
251 			 loff_t *pos)
252 {
253 	struct mlx5_cache_ent *ent = filp->private_data;
254 	char lbuf[20];
255 	int err;
256 
257 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
258 	if (err < 0)
259 		return err;
260 
261 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
262 }
263 
264 static const struct file_operations size_fops = {
265 	.owner	= THIS_MODULE,
266 	.open	= simple_open,
267 	.write	= size_write,
268 	.read	= size_read,
269 };
270 
271 static ssize_t limit_write(struct file *filp, const char __user *buf,
272 			   size_t count, loff_t *pos)
273 {
274 	struct mlx5_cache_ent *ent = filp->private_data;
275 	struct mlx5_ib_dev *dev = ent->dev;
276 	char lbuf[20] = {0};
277 	u32 var;
278 	int err;
279 	int c;
280 
281 	count = min(count, sizeof(lbuf) - 1);
282 	if (copy_from_user(lbuf, buf, count))
283 		return -EFAULT;
284 
285 	c = order2idx(dev, ent->order);
286 
287 	if (sscanf(lbuf, "%u", &var) != 1)
288 		return -EINVAL;
289 
290 	if (var > ent->size)
291 		return -EINVAL;
292 
293 	ent->limit = var;
294 
295 	if (ent->cur < ent->limit) {
296 		err = add_keys(dev, c, 2 * ent->limit - ent->cur);
297 		if (err)
298 			return err;
299 	}
300 
301 	return count;
302 }
303 
304 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
305 			  loff_t *pos)
306 {
307 	struct mlx5_cache_ent *ent = filp->private_data;
308 	char lbuf[20];
309 	int err;
310 
311 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
312 	if (err < 0)
313 		return err;
314 
315 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
316 }
317 
318 static const struct file_operations limit_fops = {
319 	.owner	= THIS_MODULE,
320 	.open	= simple_open,
321 	.write	= limit_write,
322 	.read	= limit_read,
323 };
324 
325 static int someone_adding(struct mlx5_mr_cache *cache)
326 {
327 	int i;
328 
329 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
330 		if (cache->ent[i].cur < cache->ent[i].limit)
331 			return 1;
332 	}
333 
334 	return 0;
335 }
336 
337 static void __cache_work_func(struct mlx5_cache_ent *ent)
338 {
339 	struct mlx5_ib_dev *dev = ent->dev;
340 	struct mlx5_mr_cache *cache = &dev->cache;
341 	int i = order2idx(dev, ent->order);
342 	int err;
343 
344 	if (cache->stopped)
345 		return;
346 
347 	ent = &dev->cache.ent[i];
348 	if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
349 		err = add_keys(dev, i, 1);
350 		if (ent->cur < 2 * ent->limit) {
351 			if (err == -EAGAIN) {
352 				mlx5_ib_dbg(dev, "returned eagain, order %d\n",
353 					    i + 2);
354 				queue_delayed_work(cache->wq, &ent->dwork,
355 						   msecs_to_jiffies(3));
356 			} else if (err) {
357 				mlx5_ib_warn(dev, "command failed order %d, err %d\n",
358 					     i + 2, err);
359 				queue_delayed_work(cache->wq, &ent->dwork,
360 						   msecs_to_jiffies(1000));
361 			} else {
362 				queue_work(cache->wq, &ent->work);
363 			}
364 		}
365 	} else if (ent->cur > 2 * ent->limit) {
366 		/*
367 		 * The remove_keys() logic is performed as garbage collection
368 		 * task. Such task is intended to be run when no other active
369 		 * processes are running.
370 		 *
371 		 * The need_resched() will return TRUE if there are user tasks
372 		 * to be activated in near future.
373 		 *
374 		 * In such case, we don't execute remove_keys() and postpone
375 		 * the garbage collection work to try to run in next cycle,
376 		 * in order to free CPU resources to other tasks.
377 		 */
378 		if (!need_resched() && !someone_adding(cache) &&
379 		    time_after(jiffies, cache->last_add + 300 * HZ)) {
380 			remove_keys(dev, i, 1);
381 			if (ent->cur > ent->limit)
382 				queue_work(cache->wq, &ent->work);
383 		} else {
384 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
385 		}
386 	}
387 }
388 
389 static void delayed_cache_work_func(struct work_struct *work)
390 {
391 	struct mlx5_cache_ent *ent;
392 
393 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
394 	__cache_work_func(ent);
395 }
396 
397 static void cache_work_func(struct work_struct *work)
398 {
399 	struct mlx5_cache_ent *ent;
400 
401 	ent = container_of(work, struct mlx5_cache_ent, work);
402 	__cache_work_func(ent);
403 }
404 
405 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
406 {
407 	struct mlx5_mr_cache *cache = &dev->cache;
408 	struct mlx5_cache_ent *ent;
409 	struct mlx5_ib_mr *mr;
410 	int err;
411 
412 	if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
413 		mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
414 		return ERR_PTR(-EINVAL);
415 	}
416 
417 	ent = &cache->ent[entry];
418 	while (1) {
419 		spin_lock_irq(&ent->lock);
420 		if (list_empty(&ent->head)) {
421 			spin_unlock_irq(&ent->lock);
422 
423 			err = add_keys(dev, entry, 1);
424 			if (err && err != -EAGAIN)
425 				return ERR_PTR(err);
426 
427 			wait_for_completion(&ent->compl);
428 		} else {
429 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
430 					      list);
431 			list_del(&mr->list);
432 			ent->cur--;
433 			spin_unlock_irq(&ent->lock);
434 			if (ent->cur < ent->limit)
435 				queue_work(cache->wq, &ent->work);
436 			return mr;
437 		}
438 	}
439 }
440 
441 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
442 {
443 	struct mlx5_mr_cache *cache = &dev->cache;
444 	struct mlx5_ib_mr *mr = NULL;
445 	struct mlx5_cache_ent *ent;
446 	int last_umr_cache_entry;
447 	int c;
448 	int i;
449 
450 	c = order2idx(dev, order);
451 	last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
452 	if (c < 0 || c > last_umr_cache_entry) {
453 		mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
454 		return NULL;
455 	}
456 
457 	for (i = c; i <= last_umr_cache_entry; i++) {
458 		ent = &cache->ent[i];
459 
460 		mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
461 
462 		spin_lock_irq(&ent->lock);
463 		if (!list_empty(&ent->head)) {
464 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
465 					      list);
466 			list_del(&mr->list);
467 			ent->cur--;
468 			spin_unlock_irq(&ent->lock);
469 			if (ent->cur < ent->limit)
470 				queue_work(cache->wq, &ent->work);
471 			break;
472 		}
473 		spin_unlock_irq(&ent->lock);
474 
475 		queue_work(cache->wq, &ent->work);
476 	}
477 
478 	if (!mr)
479 		cache->ent[c].miss++;
480 
481 	return mr;
482 }
483 
484 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
485 {
486 	struct mlx5_mr_cache *cache = &dev->cache;
487 	struct mlx5_cache_ent *ent;
488 	int shrink = 0;
489 	int c;
490 
491 	if (!mr->allocated_from_cache)
492 		return;
493 
494 	c = order2idx(dev, mr->order);
495 	WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
496 
497 	if (mlx5_mr_cache_invalidate(mr)) {
498 		mr->allocated_from_cache = false;
499 		destroy_mkey(dev, mr);
500 		ent = &cache->ent[c];
501 		if (ent->cur < ent->limit)
502 			queue_work(cache->wq, &ent->work);
503 		return;
504 	}
505 
506 	ent = &cache->ent[c];
507 	spin_lock_irq(&ent->lock);
508 	list_add_tail(&mr->list, &ent->head);
509 	ent->cur++;
510 	if (ent->cur > 2 * ent->limit)
511 		shrink = 1;
512 	spin_unlock_irq(&ent->lock);
513 
514 	if (shrink)
515 		queue_work(cache->wq, &ent->work);
516 }
517 
518 static void clean_keys(struct mlx5_ib_dev *dev, int c)
519 {
520 	struct mlx5_mr_cache *cache = &dev->cache;
521 	struct mlx5_cache_ent *ent = &cache->ent[c];
522 	struct mlx5_ib_mr *tmp_mr;
523 	struct mlx5_ib_mr *mr;
524 	LIST_HEAD(del_list);
525 
526 	cancel_delayed_work(&ent->dwork);
527 	while (1) {
528 		spin_lock_irq(&ent->lock);
529 		if (list_empty(&ent->head)) {
530 			spin_unlock_irq(&ent->lock);
531 			break;
532 		}
533 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
534 		list_move(&mr->list, &del_list);
535 		ent->cur--;
536 		ent->size--;
537 		spin_unlock_irq(&ent->lock);
538 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
539 	}
540 
541 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
542 		list_del(&mr->list);
543 		kfree(mr);
544 	}
545 }
546 
547 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
548 {
549 	if (!mlx5_debugfs_root || dev->is_rep)
550 		return;
551 
552 	debugfs_remove_recursive(dev->cache.root);
553 	dev->cache.root = NULL;
554 }
555 
556 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
557 {
558 	struct mlx5_mr_cache *cache = &dev->cache;
559 	struct mlx5_cache_ent *ent;
560 	struct dentry *dir;
561 	int i;
562 
563 	if (!mlx5_debugfs_root || dev->is_rep)
564 		return;
565 
566 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
567 
568 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
569 		ent = &cache->ent[i];
570 		sprintf(ent->name, "%d", ent->order);
571 		dir = debugfs_create_dir(ent->name, cache->root);
572 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
573 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
574 		debugfs_create_u32("cur", 0400, dir, &ent->cur);
575 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
576 	}
577 }
578 
579 static void delay_time_func(struct timer_list *t)
580 {
581 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
582 
583 	dev->fill_delay = 0;
584 }
585 
586 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
587 {
588 	struct mlx5_mr_cache *cache = &dev->cache;
589 	struct mlx5_cache_ent *ent;
590 	int i;
591 
592 	mutex_init(&dev->slow_path_mutex);
593 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
594 	if (!cache->wq) {
595 		mlx5_ib_warn(dev, "failed to create work queue\n");
596 		return -ENOMEM;
597 	}
598 
599 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
600 	timer_setup(&dev->delay_timer, delay_time_func, 0);
601 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
602 		ent = &cache->ent[i];
603 		INIT_LIST_HEAD(&ent->head);
604 		spin_lock_init(&ent->lock);
605 		ent->order = i + 2;
606 		ent->dev = dev;
607 		ent->limit = 0;
608 
609 		init_completion(&ent->compl);
610 		INIT_WORK(&ent->work, cache_work_func);
611 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
612 
613 		if (i > MR_CACHE_LAST_STD_ENTRY) {
614 			mlx5_odp_init_mr_cache_entry(ent);
615 			continue;
616 		}
617 
618 		if (ent->order > mr_cache_max_order(dev))
619 			continue;
620 
621 		ent->page = PAGE_SHIFT;
622 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
623 			   MLX5_IB_UMR_OCTOWORD;
624 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
625 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
626 		    !dev->is_rep &&
627 		    mlx5_core_is_pf(dev->mdev))
628 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
629 		else
630 			ent->limit = 0;
631 		queue_work(cache->wq, &ent->work);
632 	}
633 
634 	mlx5_mr_cache_debugfs_init(dev);
635 
636 	return 0;
637 }
638 
639 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
640 {
641 	int i;
642 
643 	if (!dev->cache.wq)
644 		return 0;
645 
646 	dev->cache.stopped = 1;
647 	flush_workqueue(dev->cache.wq);
648 
649 	mlx5_mr_cache_debugfs_cleanup(dev);
650 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
651 
652 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
653 		clean_keys(dev, i);
654 
655 	destroy_workqueue(dev->cache.wq);
656 	del_timer_sync(&dev->delay_timer);
657 
658 	return 0;
659 }
660 
661 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
662 					  struct ib_pd *pd)
663 {
664 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
665 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
666 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
667 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
668 	MLX5_SET(mkc, mkc, lr, 1);
669 
670 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
671 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
672 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
673 }
674 
675 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
676 {
677 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
678 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
679 	struct mlx5_core_dev *mdev = dev->mdev;
680 	struct mlx5_ib_mr *mr;
681 	void *mkc;
682 	u32 *in;
683 	int err;
684 
685 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
686 	if (!mr)
687 		return ERR_PTR(-ENOMEM);
688 
689 	in = kzalloc(inlen, GFP_KERNEL);
690 	if (!in) {
691 		err = -ENOMEM;
692 		goto err_free;
693 	}
694 
695 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
696 
697 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
698 	MLX5_SET(mkc, mkc, length64, 1);
699 	set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
700 
701 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
702 	if (err)
703 		goto err_in;
704 
705 	kfree(in);
706 	mr->mmkey.type = MLX5_MKEY_MR;
707 	mr->ibmr.lkey = mr->mmkey.key;
708 	mr->ibmr.rkey = mr->mmkey.key;
709 	mr->umem = NULL;
710 
711 	return &mr->ibmr;
712 
713 err_in:
714 	kfree(in);
715 
716 err_free:
717 	kfree(mr);
718 
719 	return ERR_PTR(err);
720 }
721 
722 static int get_octo_len(u64 addr, u64 len, int page_shift)
723 {
724 	u64 page_size = 1ULL << page_shift;
725 	u64 offset;
726 	int npages;
727 
728 	offset = addr & (page_size - 1);
729 	npages = ALIGN(len + offset, page_size) >> page_shift;
730 	return (npages + 1) / 2;
731 }
732 
733 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
734 {
735 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
736 		return MR_CACHE_LAST_STD_ENTRY + 2;
737 	return MLX5_MAX_UMR_SHIFT;
738 }
739 
740 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
741 		       u64 start, u64 length, int access_flags,
742 		       struct ib_umem **umem, int *npages, int *page_shift,
743 		       int *ncont, int *order)
744 {
745 	struct ib_umem *u;
746 
747 	*umem = NULL;
748 
749 	if (access_flags & IB_ACCESS_ON_DEMAND) {
750 		struct ib_umem_odp *odp;
751 
752 		odp = ib_umem_odp_get(udata, start, length, access_flags,
753 				      &mlx5_mn_ops);
754 		if (IS_ERR(odp)) {
755 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
756 				    PTR_ERR(odp));
757 			return PTR_ERR(odp);
758 		}
759 
760 		u = &odp->umem;
761 
762 		*page_shift = odp->page_shift;
763 		*ncont = ib_umem_odp_num_pages(odp);
764 		*npages = *ncont << (*page_shift - PAGE_SHIFT);
765 		if (order)
766 			*order = ilog2(roundup_pow_of_two(*ncont));
767 	} else {
768 		u = ib_umem_get(udata, start, length, access_flags);
769 		if (IS_ERR(u)) {
770 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
771 			return PTR_ERR(u);
772 		}
773 
774 		mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
775 				   page_shift, ncont, order);
776 	}
777 
778 	if (!*npages) {
779 		mlx5_ib_warn(dev, "avoid zero region\n");
780 		ib_umem_release(u);
781 		return -EINVAL;
782 	}
783 
784 	*umem = u;
785 
786 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
787 		    *npages, *ncont, *order, *page_shift);
788 
789 	return 0;
790 }
791 
792 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
793 {
794 	struct mlx5_ib_umr_context *context =
795 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
796 
797 	context->status = wc->status;
798 	complete(&context->done);
799 }
800 
801 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
802 {
803 	context->cqe.done = mlx5_ib_umr_done;
804 	context->status = -1;
805 	init_completion(&context->done);
806 }
807 
808 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
809 				  struct mlx5_umr_wr *umrwr)
810 {
811 	struct umr_common *umrc = &dev->umrc;
812 	const struct ib_send_wr *bad;
813 	int err;
814 	struct mlx5_ib_umr_context umr_context;
815 
816 	mlx5_ib_init_umr_context(&umr_context);
817 	umrwr->wr.wr_cqe = &umr_context.cqe;
818 
819 	down(&umrc->sem);
820 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
821 	if (err) {
822 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
823 	} else {
824 		wait_for_completion(&umr_context.done);
825 		if (umr_context.status != IB_WC_SUCCESS) {
826 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
827 				     umr_context.status);
828 			err = -EFAULT;
829 		}
830 	}
831 	up(&umrc->sem);
832 	return err;
833 }
834 
835 static struct mlx5_ib_mr *alloc_mr_from_cache(
836 				  struct ib_pd *pd, struct ib_umem *umem,
837 				  u64 virt_addr, u64 len, int npages,
838 				  int page_shift, int order, int access_flags)
839 {
840 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
841 	struct mlx5_ib_mr *mr;
842 	int err = 0;
843 	int i;
844 
845 	for (i = 0; i < 1; i++) {
846 		mr = alloc_cached_mr(dev, order);
847 		if (mr)
848 			break;
849 
850 		err = add_keys(dev, order2idx(dev, order), 1);
851 		if (err && err != -EAGAIN) {
852 			mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
853 			break;
854 		}
855 	}
856 
857 	if (!mr)
858 		return ERR_PTR(-EAGAIN);
859 
860 	mr->ibmr.pd = pd;
861 	mr->umem = umem;
862 	mr->access_flags = access_flags;
863 	mr->desc_size = sizeof(struct mlx5_mtt);
864 	mr->mmkey.iova = virt_addr;
865 	mr->mmkey.size = len;
866 	mr->mmkey.pd = to_mpd(pd)->pdn;
867 
868 	return mr;
869 }
870 
871 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
872 			       void *xlt, int page_shift, size_t size,
873 			       int flags)
874 {
875 	struct mlx5_ib_dev *dev = mr->dev;
876 	struct ib_umem *umem = mr->umem;
877 
878 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
879 		if (!umr_can_use_indirect_mkey(dev))
880 			return -EPERM;
881 		mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
882 		return npages;
883 	}
884 
885 	npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
886 
887 	if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
888 		__mlx5_ib_populate_pas(dev, umem, page_shift,
889 				       idx, npages, xlt,
890 				       MLX5_IB_MTT_PRESENT);
891 		/* Clear padding after the pages
892 		 * brought from the umem.
893 		 */
894 		memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
895 		       size - npages * sizeof(struct mlx5_mtt));
896 	}
897 
898 	return npages;
899 }
900 
901 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
902 			    MLX5_UMR_MTT_ALIGNMENT)
903 #define MLX5_SPARE_UMR_CHUNK 0x10000
904 
905 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
906 		       int page_shift, int flags)
907 {
908 	struct mlx5_ib_dev *dev = mr->dev;
909 	struct device *ddev = dev->ib_dev.dev.parent;
910 	int size;
911 	void *xlt;
912 	dma_addr_t dma;
913 	struct mlx5_umr_wr wr;
914 	struct ib_sge sg;
915 	int err = 0;
916 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
917 			       ? sizeof(struct mlx5_klm)
918 			       : sizeof(struct mlx5_mtt);
919 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
920 	const int page_mask = page_align - 1;
921 	size_t pages_mapped = 0;
922 	size_t pages_to_map = 0;
923 	size_t pages_iter = 0;
924 	gfp_t gfp;
925 	bool use_emergency_page = false;
926 
927 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
928 	    !umr_can_use_indirect_mkey(dev))
929 		return -EPERM;
930 
931 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
932 	 * so we need to align the offset and length accordingly
933 	 */
934 	if (idx & page_mask) {
935 		npages += idx & page_mask;
936 		idx &= ~page_mask;
937 	}
938 
939 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
940 	gfp |= __GFP_ZERO | __GFP_NOWARN;
941 
942 	pages_to_map = ALIGN(npages, page_align);
943 	size = desc_size * pages_to_map;
944 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
945 
946 	xlt = (void *)__get_free_pages(gfp, get_order(size));
947 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
948 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
949 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
950 
951 		size = MLX5_SPARE_UMR_CHUNK;
952 		xlt = (void *)__get_free_pages(gfp, get_order(size));
953 	}
954 
955 	if (!xlt) {
956 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
957 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
958 		size = PAGE_SIZE;
959 		memset(xlt, 0, size);
960 		use_emergency_page = true;
961 	}
962 	pages_iter = size / desc_size;
963 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
964 	if (dma_mapping_error(ddev, dma)) {
965 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
966 		err = -ENOMEM;
967 		goto free_xlt;
968 	}
969 
970 	sg.addr = dma;
971 	sg.lkey = dev->umrc.pd->local_dma_lkey;
972 
973 	memset(&wr, 0, sizeof(wr));
974 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
975 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
976 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
977 	wr.wr.sg_list = &sg;
978 	wr.wr.num_sge = 1;
979 	wr.wr.opcode = MLX5_IB_WR_UMR;
980 
981 	wr.pd = mr->ibmr.pd;
982 	wr.mkey = mr->mmkey.key;
983 	wr.length = mr->mmkey.size;
984 	wr.virt_addr = mr->mmkey.iova;
985 	wr.access_flags = mr->access_flags;
986 	wr.page_shift = page_shift;
987 
988 	for (pages_mapped = 0;
989 	     pages_mapped < pages_to_map && !err;
990 	     pages_mapped += pages_iter, idx += pages_iter) {
991 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
992 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
993 		npages = populate_xlt(mr, idx, npages, xlt,
994 				      page_shift, size, flags);
995 
996 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
997 
998 		sg.length = ALIGN(npages * desc_size,
999 				  MLX5_UMR_MTT_ALIGNMENT);
1000 
1001 		if (pages_mapped + pages_iter >= pages_to_map) {
1002 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
1003 				wr.wr.send_flags |=
1004 					MLX5_IB_SEND_UMR_ENABLE_MR |
1005 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1006 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1007 			if (flags & MLX5_IB_UPD_XLT_PD ||
1008 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1009 				wr.wr.send_flags |=
1010 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1011 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1012 				wr.wr.send_flags |=
1013 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1014 		}
1015 
1016 		wr.offset = idx * desc_size;
1017 		wr.xlt_size = sg.length;
1018 
1019 		err = mlx5_ib_post_send_wait(dev, &wr);
1020 	}
1021 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1022 
1023 free_xlt:
1024 	if (use_emergency_page)
1025 		mlx5_ib_put_xlt_emergency_page();
1026 	else
1027 		free_pages((unsigned long)xlt, get_order(size));
1028 
1029 	return err;
1030 }
1031 
1032 /*
1033  * If ibmr is NULL it will be allocated by reg_create.
1034  * Else, the given ibmr will be used.
1035  */
1036 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1037 				     u64 virt_addr, u64 length,
1038 				     struct ib_umem *umem, int npages,
1039 				     int page_shift, int access_flags,
1040 				     bool populate)
1041 {
1042 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1043 	struct mlx5_ib_mr *mr;
1044 	__be64 *pas;
1045 	void *mkc;
1046 	int inlen;
1047 	u32 *in;
1048 	int err;
1049 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1050 
1051 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1052 	if (!mr)
1053 		return ERR_PTR(-ENOMEM);
1054 
1055 	mr->ibmr.pd = pd;
1056 	mr->access_flags = access_flags;
1057 
1058 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1059 	if (populate)
1060 		inlen += sizeof(*pas) * roundup(npages, 2);
1061 	in = kvzalloc(inlen, GFP_KERNEL);
1062 	if (!in) {
1063 		err = -ENOMEM;
1064 		goto err_1;
1065 	}
1066 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1067 	if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1068 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1069 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1070 
1071 	/* The pg_access bit allows setting the access flags
1072 	 * in the page list submitted with the command. */
1073 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1074 
1075 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1076 	MLX5_SET(mkc, mkc, free, !populate);
1077 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1078 	MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1079 	MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1080 	MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1081 	MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1082 	MLX5_SET(mkc, mkc, lr, 1);
1083 	MLX5_SET(mkc, mkc, umr_en, 1);
1084 
1085 	MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1086 	MLX5_SET64(mkc, mkc, len, length);
1087 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1088 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1089 	MLX5_SET(mkc, mkc, translations_octword_size,
1090 		 get_octo_len(virt_addr, length, page_shift));
1091 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1092 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1093 	if (populate) {
1094 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1095 			 get_octo_len(virt_addr, length, page_shift));
1096 	}
1097 
1098 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1099 	if (err) {
1100 		mlx5_ib_warn(dev, "create mkey failed\n");
1101 		goto err_2;
1102 	}
1103 	mr->mmkey.type = MLX5_MKEY_MR;
1104 	mr->desc_size = sizeof(struct mlx5_mtt);
1105 	mr->dev = dev;
1106 	kvfree(in);
1107 
1108 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1109 
1110 	return mr;
1111 
1112 err_2:
1113 	kvfree(in);
1114 
1115 err_1:
1116 	if (!ibmr)
1117 		kfree(mr);
1118 
1119 	return ERR_PTR(err);
1120 }
1121 
1122 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1123 			  int npages, u64 length, int access_flags)
1124 {
1125 	mr->npages = npages;
1126 	atomic_add(npages, &dev->mdev->priv.reg_pages);
1127 	mr->ibmr.lkey = mr->mmkey.key;
1128 	mr->ibmr.rkey = mr->mmkey.key;
1129 	mr->ibmr.length = length;
1130 	mr->access_flags = access_flags;
1131 }
1132 
1133 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1134 				       u64 length, int acc, int mode)
1135 {
1136 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1137 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1138 	struct mlx5_core_dev *mdev = dev->mdev;
1139 	struct mlx5_ib_mr *mr;
1140 	void *mkc;
1141 	u32 *in;
1142 	int err;
1143 
1144 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1145 	if (!mr)
1146 		return ERR_PTR(-ENOMEM);
1147 
1148 	in = kzalloc(inlen, GFP_KERNEL);
1149 	if (!in) {
1150 		err = -ENOMEM;
1151 		goto err_free;
1152 	}
1153 
1154 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1155 
1156 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1157 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1158 	MLX5_SET64(mkc, mkc, len, length);
1159 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1160 
1161 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1162 	if (err)
1163 		goto err_in;
1164 
1165 	kfree(in);
1166 
1167 	mr->umem = NULL;
1168 	set_mr_fields(dev, mr, 0, length, acc);
1169 
1170 	return &mr->ibmr;
1171 
1172 err_in:
1173 	kfree(in);
1174 
1175 err_free:
1176 	kfree(mr);
1177 
1178 	return ERR_PTR(err);
1179 }
1180 
1181 int mlx5_ib_advise_mr(struct ib_pd *pd,
1182 		      enum ib_uverbs_advise_mr_advice advice,
1183 		      u32 flags,
1184 		      struct ib_sge *sg_list,
1185 		      u32 num_sge,
1186 		      struct uverbs_attr_bundle *attrs)
1187 {
1188 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1189 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1190 		return -EOPNOTSUPP;
1191 
1192 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1193 					 sg_list, num_sge);
1194 }
1195 
1196 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1197 				struct ib_dm_mr_attr *attr,
1198 				struct uverbs_attr_bundle *attrs)
1199 {
1200 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1201 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1202 	u64 start_addr = mdm->dev_addr + attr->offset;
1203 	int mode;
1204 
1205 	switch (mdm->type) {
1206 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1207 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1208 			return ERR_PTR(-EINVAL);
1209 
1210 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1211 		start_addr -= pci_resource_start(dev->pdev, 0);
1212 		break;
1213 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1214 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1215 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1216 			return ERR_PTR(-EINVAL);
1217 
1218 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1219 		break;
1220 	default:
1221 		return ERR_PTR(-EINVAL);
1222 	}
1223 
1224 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1225 				 attr->access_flags, mode);
1226 }
1227 
1228 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1229 				  u64 virt_addr, int access_flags,
1230 				  struct ib_udata *udata)
1231 {
1232 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1233 	struct mlx5_ib_mr *mr = NULL;
1234 	bool use_umr;
1235 	struct ib_umem *umem;
1236 	int page_shift;
1237 	int npages;
1238 	int ncont;
1239 	int order;
1240 	int err;
1241 
1242 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1243 		return ERR_PTR(-EOPNOTSUPP);
1244 
1245 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1246 		    start, virt_addr, length, access_flags);
1247 
1248 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1249 	    length == U64_MAX) {
1250 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1251 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1252 			return ERR_PTR(-EINVAL);
1253 
1254 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1255 		if (IS_ERR(mr))
1256 			return ERR_CAST(mr);
1257 		return &mr->ibmr;
1258 	}
1259 
1260 	err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1261 			  &npages, &page_shift, &ncont, &order);
1262 
1263 	if (err < 0)
1264 		return ERR_PTR(err);
1265 
1266 	use_umr = mlx5_ib_can_use_umr(dev, true);
1267 
1268 	if (order <= mr_cache_max_order(dev) && use_umr) {
1269 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1270 					 page_shift, order, access_flags);
1271 		if (PTR_ERR(mr) == -EAGAIN) {
1272 			mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1273 			mr = NULL;
1274 		}
1275 	} else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1276 		if (access_flags & IB_ACCESS_ON_DEMAND) {
1277 			err = -EINVAL;
1278 			pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1279 			goto error;
1280 		}
1281 		use_umr = false;
1282 	}
1283 
1284 	if (!mr) {
1285 		mutex_lock(&dev->slow_path_mutex);
1286 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1287 				page_shift, access_flags, !use_umr);
1288 		mutex_unlock(&dev->slow_path_mutex);
1289 	}
1290 
1291 	if (IS_ERR(mr)) {
1292 		err = PTR_ERR(mr);
1293 		goto error;
1294 	}
1295 
1296 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1297 
1298 	mr->umem = umem;
1299 	set_mr_fields(dev, mr, npages, length, access_flags);
1300 
1301 	if (use_umr) {
1302 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1303 
1304 		if (access_flags & IB_ACCESS_ON_DEMAND)
1305 			update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1306 
1307 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1308 					 update_xlt_flags);
1309 
1310 		if (err) {
1311 			dereg_mr(dev, mr);
1312 			return ERR_PTR(err);
1313 		}
1314 	}
1315 
1316 	if (is_odp_mr(mr)) {
1317 		to_ib_umem_odp(mr->umem)->private = mr;
1318 		atomic_set(&mr->num_deferred_work, 0);
1319 		err = xa_err(xa_store(&dev->odp_mkeys,
1320 				      mlx5_base_mkey(mr->mmkey.key), &mr->mmkey,
1321 				      GFP_KERNEL));
1322 		if (err) {
1323 			dereg_mr(dev, mr);
1324 			return ERR_PTR(err);
1325 		}
1326 	}
1327 
1328 	return &mr->ibmr;
1329 error:
1330 	ib_umem_release(umem);
1331 	return ERR_PTR(err);
1332 }
1333 
1334 /**
1335  * mlx5_mr_cache_invalidate - Fence all DMA on the MR
1336  * @mr: The MR to fence
1337  *
1338  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1339  * and any DMA inprogress will be completed. Failure of this function
1340  * indicates the HW has failed catastrophically.
1341  */
1342 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
1343 {
1344 	struct mlx5_umr_wr umrwr = {};
1345 
1346 	if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1347 		return 0;
1348 
1349 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1350 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1351 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1352 	umrwr.pd = mr->dev->umrc.pd;
1353 	umrwr.mkey = mr->mmkey.key;
1354 	umrwr.ignore_free_state = 1;
1355 
1356 	return mlx5_ib_post_send_wait(mr->dev, &umrwr);
1357 }
1358 
1359 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1360 		     int access_flags, int flags)
1361 {
1362 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1363 	struct mlx5_umr_wr umrwr = {};
1364 	int err;
1365 
1366 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1367 
1368 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1369 	umrwr.mkey = mr->mmkey.key;
1370 
1371 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1372 		umrwr.pd = pd;
1373 		umrwr.access_flags = access_flags;
1374 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1375 	}
1376 
1377 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1378 
1379 	return err;
1380 }
1381 
1382 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1383 			  u64 length, u64 virt_addr, int new_access_flags,
1384 			  struct ib_pd *new_pd, struct ib_udata *udata)
1385 {
1386 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1387 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1388 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1389 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1390 			    new_access_flags :
1391 			    mr->access_flags;
1392 	int page_shift = 0;
1393 	int upd_flags = 0;
1394 	int npages = 0;
1395 	int ncont = 0;
1396 	int order = 0;
1397 	u64 addr, len;
1398 	int err;
1399 
1400 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1401 		    start, virt_addr, length, access_flags);
1402 
1403 	atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1404 
1405 	if (!mr->umem)
1406 		return -EINVAL;
1407 
1408 	if (is_odp_mr(mr))
1409 		return -EOPNOTSUPP;
1410 
1411 	if (flags & IB_MR_REREG_TRANS) {
1412 		addr = virt_addr;
1413 		len = length;
1414 	} else {
1415 		addr = mr->umem->address;
1416 		len = mr->umem->length;
1417 	}
1418 
1419 	if (flags != IB_MR_REREG_PD) {
1420 		/*
1421 		 * Replace umem. This needs to be done whether or not UMR is
1422 		 * used.
1423 		 */
1424 		flags |= IB_MR_REREG_TRANS;
1425 		ib_umem_release(mr->umem);
1426 		mr->umem = NULL;
1427 		err = mr_umem_get(dev, udata, addr, len, access_flags,
1428 				  &mr->umem, &npages, &page_shift, &ncont,
1429 				  &order);
1430 		if (err)
1431 			goto err;
1432 	}
1433 
1434 	if (!mlx5_ib_can_use_umr(dev, true) ||
1435 	    (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
1436 		/*
1437 		 * UMR can't be used - MKey needs to be replaced.
1438 		 */
1439 		if (mr->allocated_from_cache)
1440 			err = mlx5_mr_cache_invalidate(mr);
1441 		else
1442 			err = destroy_mkey(dev, mr);
1443 		if (err)
1444 			goto err;
1445 
1446 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1447 				page_shift, access_flags, true);
1448 
1449 		if (IS_ERR(mr)) {
1450 			err = PTR_ERR(mr);
1451 			mr = to_mmr(ib_mr);
1452 			goto err;
1453 		}
1454 
1455 		mr->allocated_from_cache = 0;
1456 	} else {
1457 		/*
1458 		 * Send a UMR WQE
1459 		 */
1460 		mr->ibmr.pd = pd;
1461 		mr->access_flags = access_flags;
1462 		mr->mmkey.iova = addr;
1463 		mr->mmkey.size = len;
1464 		mr->mmkey.pd = to_mpd(pd)->pdn;
1465 
1466 		if (flags & IB_MR_REREG_TRANS) {
1467 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1468 			if (flags & IB_MR_REREG_PD)
1469 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1470 			if (flags & IB_MR_REREG_ACCESS)
1471 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1472 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1473 						 upd_flags);
1474 		} else {
1475 			err = rereg_umr(pd, mr, access_flags, flags);
1476 		}
1477 
1478 		if (err)
1479 			goto err;
1480 	}
1481 
1482 	set_mr_fields(dev, mr, npages, len, access_flags);
1483 
1484 	return 0;
1485 
1486 err:
1487 	ib_umem_release(mr->umem);
1488 	mr->umem = NULL;
1489 
1490 	clean_mr(dev, mr);
1491 	return err;
1492 }
1493 
1494 static int
1495 mlx5_alloc_priv_descs(struct ib_device *device,
1496 		      struct mlx5_ib_mr *mr,
1497 		      int ndescs,
1498 		      int desc_size)
1499 {
1500 	int size = ndescs * desc_size;
1501 	int add_size;
1502 	int ret;
1503 
1504 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1505 
1506 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1507 	if (!mr->descs_alloc)
1508 		return -ENOMEM;
1509 
1510 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1511 
1512 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1513 				      size, DMA_TO_DEVICE);
1514 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1515 		ret = -ENOMEM;
1516 		goto err;
1517 	}
1518 
1519 	return 0;
1520 err:
1521 	kfree(mr->descs_alloc);
1522 
1523 	return ret;
1524 }
1525 
1526 static void
1527 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1528 {
1529 	if (mr->descs) {
1530 		struct ib_device *device = mr->ibmr.device;
1531 		int size = mr->max_descs * mr->desc_size;
1532 
1533 		dma_unmap_single(device->dev.parent, mr->desc_map,
1534 				 size, DMA_TO_DEVICE);
1535 		kfree(mr->descs_alloc);
1536 		mr->descs = NULL;
1537 	}
1538 }
1539 
1540 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1541 {
1542 	int allocated_from_cache = mr->allocated_from_cache;
1543 
1544 	if (mr->sig) {
1545 		if (mlx5_core_destroy_psv(dev->mdev,
1546 					  mr->sig->psv_memory.psv_idx))
1547 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1548 				     mr->sig->psv_memory.psv_idx);
1549 		if (mlx5_core_destroy_psv(dev->mdev,
1550 					  mr->sig->psv_wire.psv_idx))
1551 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1552 				     mr->sig->psv_wire.psv_idx);
1553 		xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
1554 		kfree(mr->sig);
1555 		mr->sig = NULL;
1556 	}
1557 
1558 	if (!allocated_from_cache) {
1559 		destroy_mkey(dev, mr);
1560 		mlx5_free_priv_descs(mr);
1561 	}
1562 }
1563 
1564 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1565 {
1566 	int npages = mr->npages;
1567 	struct ib_umem *umem = mr->umem;
1568 
1569 	/* Stop all DMA */
1570 	if (is_odp_mr(mr))
1571 		mlx5_ib_fence_odp_mr(mr);
1572 	else
1573 		clean_mr(dev, mr);
1574 
1575 	if (mr->allocated_from_cache)
1576 		mlx5_mr_cache_free(dev, mr);
1577 	else
1578 		kfree(mr);
1579 
1580 	ib_umem_release(umem);
1581 	atomic_sub(npages, &dev->mdev->priv.reg_pages);
1582 
1583 }
1584 
1585 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1586 {
1587 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1588 
1589 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1590 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1591 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1592 	}
1593 
1594 	if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
1595 		mlx5_ib_free_implicit_mr(mmr);
1596 		return 0;
1597 	}
1598 
1599 	dereg_mr(to_mdev(ibmr->device), mmr);
1600 
1601 	return 0;
1602 }
1603 
1604 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1605 				   int access_mode, int page_shift)
1606 {
1607 	void *mkc;
1608 
1609 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1610 
1611 	MLX5_SET(mkc, mkc, free, 1);
1612 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1613 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1614 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1615 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1616 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1617 	MLX5_SET(mkc, mkc, umr_en, 1);
1618 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1619 }
1620 
1621 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1622 				  int ndescs, int desc_size, int page_shift,
1623 				  int access_mode, u32 *in, int inlen)
1624 {
1625 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1626 	int err;
1627 
1628 	mr->access_mode = access_mode;
1629 	mr->desc_size = desc_size;
1630 	mr->max_descs = ndescs;
1631 
1632 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1633 	if (err)
1634 		return err;
1635 
1636 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1637 
1638 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1639 	if (err)
1640 		goto err_free_descs;
1641 
1642 	mr->mmkey.type = MLX5_MKEY_MR;
1643 	mr->ibmr.lkey = mr->mmkey.key;
1644 	mr->ibmr.rkey = mr->mmkey.key;
1645 
1646 	return 0;
1647 
1648 err_free_descs:
1649 	mlx5_free_priv_descs(mr);
1650 	return err;
1651 }
1652 
1653 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1654 				u32 max_num_sg, u32 max_num_meta_sg,
1655 				int desc_size, int access_mode)
1656 {
1657 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1658 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1659 	int page_shift = 0;
1660 	struct mlx5_ib_mr *mr;
1661 	u32 *in;
1662 	int err;
1663 
1664 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1665 	if (!mr)
1666 		return ERR_PTR(-ENOMEM);
1667 
1668 	mr->ibmr.pd = pd;
1669 	mr->ibmr.device = pd->device;
1670 
1671 	in = kzalloc(inlen, GFP_KERNEL);
1672 	if (!in) {
1673 		err = -ENOMEM;
1674 		goto err_free;
1675 	}
1676 
1677 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1678 		page_shift = PAGE_SHIFT;
1679 
1680 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1681 				     access_mode, in, inlen);
1682 	if (err)
1683 		goto err_free_in;
1684 
1685 	mr->umem = NULL;
1686 	kfree(in);
1687 
1688 	return mr;
1689 
1690 err_free_in:
1691 	kfree(in);
1692 err_free:
1693 	kfree(mr);
1694 	return ERR_PTR(err);
1695 }
1696 
1697 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1698 				    int ndescs, u32 *in, int inlen)
1699 {
1700 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1701 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1702 				      inlen);
1703 }
1704 
1705 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1706 				    int ndescs, u32 *in, int inlen)
1707 {
1708 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1709 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1710 }
1711 
1712 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1713 				      int max_num_sg, int max_num_meta_sg,
1714 				      u32 *in, int inlen)
1715 {
1716 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1717 	u32 psv_index[2];
1718 	void *mkc;
1719 	int err;
1720 
1721 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1722 	if (!mr->sig)
1723 		return -ENOMEM;
1724 
1725 	/* create mem & wire PSVs */
1726 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1727 	if (err)
1728 		goto err_free_sig;
1729 
1730 	mr->sig->psv_memory.psv_idx = psv_index[0];
1731 	mr->sig->psv_wire.psv_idx = psv_index[1];
1732 
1733 	mr->sig->sig_status_checked = true;
1734 	mr->sig->sig_err_exists = false;
1735 	/* Next UMR, Arm SIGERR */
1736 	++mr->sig->sigerr_count;
1737 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1738 					 sizeof(struct mlx5_klm),
1739 					 MLX5_MKC_ACCESS_MODE_KLMS);
1740 	if (IS_ERR(mr->klm_mr)) {
1741 		err = PTR_ERR(mr->klm_mr);
1742 		goto err_destroy_psv;
1743 	}
1744 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1745 					 sizeof(struct mlx5_mtt),
1746 					 MLX5_MKC_ACCESS_MODE_MTT);
1747 	if (IS_ERR(mr->mtt_mr)) {
1748 		err = PTR_ERR(mr->mtt_mr);
1749 		goto err_free_klm_mr;
1750 	}
1751 
1752 	/* Set bsf descriptors for mkey */
1753 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1754 	MLX5_SET(mkc, mkc, bsf_en, 1);
1755 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1756 
1757 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1758 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1759 	if (err)
1760 		goto err_free_mtt_mr;
1761 
1762 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1763 			      mr->sig, GFP_KERNEL));
1764 	if (err)
1765 		goto err_free_descs;
1766 	return 0;
1767 
1768 err_free_descs:
1769 	destroy_mkey(dev, mr);
1770 	mlx5_free_priv_descs(mr);
1771 err_free_mtt_mr:
1772 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1773 	mr->mtt_mr = NULL;
1774 err_free_klm_mr:
1775 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1776 	mr->klm_mr = NULL;
1777 err_destroy_psv:
1778 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1779 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1780 			     mr->sig->psv_memory.psv_idx);
1781 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1782 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1783 			     mr->sig->psv_wire.psv_idx);
1784 err_free_sig:
1785 	kfree(mr->sig);
1786 
1787 	return err;
1788 }
1789 
1790 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1791 					enum ib_mr_type mr_type, u32 max_num_sg,
1792 					u32 max_num_meta_sg)
1793 {
1794 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1795 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1796 	int ndescs = ALIGN(max_num_sg, 4);
1797 	struct mlx5_ib_mr *mr;
1798 	u32 *in;
1799 	int err;
1800 
1801 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1802 	if (!mr)
1803 		return ERR_PTR(-ENOMEM);
1804 
1805 	in = kzalloc(inlen, GFP_KERNEL);
1806 	if (!in) {
1807 		err = -ENOMEM;
1808 		goto err_free;
1809 	}
1810 
1811 	mr->ibmr.device = pd->device;
1812 	mr->umem = NULL;
1813 
1814 	switch (mr_type) {
1815 	case IB_MR_TYPE_MEM_REG:
1816 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1817 		break;
1818 	case IB_MR_TYPE_SG_GAPS:
1819 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1820 		break;
1821 	case IB_MR_TYPE_INTEGRITY:
1822 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1823 						 max_num_meta_sg, in, inlen);
1824 		break;
1825 	default:
1826 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1827 		err = -EINVAL;
1828 	}
1829 
1830 	if (err)
1831 		goto err_free_in;
1832 
1833 	kfree(in);
1834 
1835 	return &mr->ibmr;
1836 
1837 err_free_in:
1838 	kfree(in);
1839 err_free:
1840 	kfree(mr);
1841 	return ERR_PTR(err);
1842 }
1843 
1844 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1845 			       u32 max_num_sg, struct ib_udata *udata)
1846 {
1847 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1848 }
1849 
1850 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1851 					 u32 max_num_sg, u32 max_num_meta_sg)
1852 {
1853 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1854 				  max_num_meta_sg);
1855 }
1856 
1857 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1858 			       struct ib_udata *udata)
1859 {
1860 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1861 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1862 	struct mlx5_ib_mw *mw = NULL;
1863 	u32 *in = NULL;
1864 	void *mkc;
1865 	int ndescs;
1866 	int err;
1867 	struct mlx5_ib_alloc_mw req = {};
1868 	struct {
1869 		__u32	comp_mask;
1870 		__u32	response_length;
1871 	} resp = {};
1872 
1873 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1874 	if (err)
1875 		return ERR_PTR(err);
1876 
1877 	if (req.comp_mask || req.reserved1 || req.reserved2)
1878 		return ERR_PTR(-EOPNOTSUPP);
1879 
1880 	if (udata->inlen > sizeof(req) &&
1881 	    !ib_is_udata_cleared(udata, sizeof(req),
1882 				 udata->inlen - sizeof(req)))
1883 		return ERR_PTR(-EOPNOTSUPP);
1884 
1885 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1886 
1887 	mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1888 	in = kzalloc(inlen, GFP_KERNEL);
1889 	if (!mw || !in) {
1890 		err = -ENOMEM;
1891 		goto free;
1892 	}
1893 
1894 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1895 
1896 	MLX5_SET(mkc, mkc, free, 1);
1897 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1898 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1899 	MLX5_SET(mkc, mkc, umr_en, 1);
1900 	MLX5_SET(mkc, mkc, lr, 1);
1901 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1902 	MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1903 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1904 
1905 	err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1906 	if (err)
1907 		goto free;
1908 
1909 	mw->mmkey.type = MLX5_MKEY_MW;
1910 	mw->ibmw.rkey = mw->mmkey.key;
1911 	mw->ndescs = ndescs;
1912 
1913 	resp.response_length = min(offsetof(typeof(resp), response_length) +
1914 				   sizeof(resp.response_length), udata->outlen);
1915 	if (resp.response_length) {
1916 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1917 		if (err) {
1918 			mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1919 			goto free;
1920 		}
1921 	}
1922 
1923 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1924 		err = xa_err(xa_store(&dev->odp_mkeys,
1925 				      mlx5_base_mkey(mw->mmkey.key), &mw->mmkey,
1926 				      GFP_KERNEL));
1927 		if (err)
1928 			goto free_mkey;
1929 	}
1930 
1931 	kfree(in);
1932 	return &mw->ibmw;
1933 
1934 free_mkey:
1935 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1936 free:
1937 	kfree(mw);
1938 	kfree(in);
1939 	return ERR_PTR(err);
1940 }
1941 
1942 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1943 {
1944 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
1945 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1946 	int err;
1947 
1948 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1949 		xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key));
1950 		/*
1951 		 * pagefault_single_data_segment() may be accessing mmw under
1952 		 * SRCU if the user bound an ODP MR to this MW.
1953 		 */
1954 		synchronize_srcu(&dev->odp_srcu);
1955 	}
1956 
1957 	err = mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
1958 	if (err)
1959 		return err;
1960 	kfree(mmw);
1961 	return 0;
1962 }
1963 
1964 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1965 			    struct ib_mr_status *mr_status)
1966 {
1967 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1968 	int ret = 0;
1969 
1970 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1971 		pr_err("Invalid status check mask\n");
1972 		ret = -EINVAL;
1973 		goto done;
1974 	}
1975 
1976 	mr_status->fail_status = 0;
1977 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1978 		if (!mmr->sig) {
1979 			ret = -EINVAL;
1980 			pr_err("signature status check requested on a non-signature enabled MR\n");
1981 			goto done;
1982 		}
1983 
1984 		mmr->sig->sig_status_checked = true;
1985 		if (!mmr->sig->sig_err_exists)
1986 			goto done;
1987 
1988 		if (ibmr->lkey == mmr->sig->err_item.key)
1989 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
1990 			       sizeof(mr_status->sig_err));
1991 		else {
1992 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
1993 			mr_status->sig_err.sig_err_offset = 0;
1994 			mr_status->sig_err.key = mmr->sig->err_item.key;
1995 		}
1996 
1997 		mmr->sig->sig_err_exists = false;
1998 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
1999 	}
2000 
2001 done:
2002 	return ret;
2003 }
2004 
2005 static int
2006 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2007 			int data_sg_nents, unsigned int *data_sg_offset,
2008 			struct scatterlist *meta_sg, int meta_sg_nents,
2009 			unsigned int *meta_sg_offset)
2010 {
2011 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2012 	unsigned int sg_offset = 0;
2013 	int n = 0;
2014 
2015 	mr->meta_length = 0;
2016 	if (data_sg_nents == 1) {
2017 		n++;
2018 		mr->ndescs = 1;
2019 		if (data_sg_offset)
2020 			sg_offset = *data_sg_offset;
2021 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2022 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2023 		if (meta_sg_nents == 1) {
2024 			n++;
2025 			mr->meta_ndescs = 1;
2026 			if (meta_sg_offset)
2027 				sg_offset = *meta_sg_offset;
2028 			else
2029 				sg_offset = 0;
2030 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2031 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2032 		}
2033 		ibmr->length = mr->data_length + mr->meta_length;
2034 	}
2035 
2036 	return n;
2037 }
2038 
2039 static int
2040 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2041 		   struct scatterlist *sgl,
2042 		   unsigned short sg_nents,
2043 		   unsigned int *sg_offset_p,
2044 		   struct scatterlist *meta_sgl,
2045 		   unsigned short meta_sg_nents,
2046 		   unsigned int *meta_sg_offset_p)
2047 {
2048 	struct scatterlist *sg = sgl;
2049 	struct mlx5_klm *klms = mr->descs;
2050 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2051 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2052 	int i, j = 0;
2053 
2054 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2055 	mr->ibmr.length = 0;
2056 
2057 	for_each_sg(sgl, sg, sg_nents, i) {
2058 		if (unlikely(i >= mr->max_descs))
2059 			break;
2060 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2061 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2062 		klms[i].key = cpu_to_be32(lkey);
2063 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2064 
2065 		sg_offset = 0;
2066 	}
2067 
2068 	if (sg_offset_p)
2069 		*sg_offset_p = sg_offset;
2070 
2071 	mr->ndescs = i;
2072 	mr->data_length = mr->ibmr.length;
2073 
2074 	if (meta_sg_nents) {
2075 		sg = meta_sgl;
2076 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2077 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2078 			if (unlikely(i + j >= mr->max_descs))
2079 				break;
2080 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2081 						     sg_offset);
2082 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2083 							 sg_offset);
2084 			klms[i + j].key = cpu_to_be32(lkey);
2085 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2086 
2087 			sg_offset = 0;
2088 		}
2089 		if (meta_sg_offset_p)
2090 			*meta_sg_offset_p = sg_offset;
2091 
2092 		mr->meta_ndescs = j;
2093 		mr->meta_length = mr->ibmr.length - mr->data_length;
2094 	}
2095 
2096 	return i + j;
2097 }
2098 
2099 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2100 {
2101 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2102 	__be64 *descs;
2103 
2104 	if (unlikely(mr->ndescs == mr->max_descs))
2105 		return -ENOMEM;
2106 
2107 	descs = mr->descs;
2108 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2109 
2110 	return 0;
2111 }
2112 
2113 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2114 {
2115 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2116 	__be64 *descs;
2117 
2118 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2119 		return -ENOMEM;
2120 
2121 	descs = mr->descs;
2122 	descs[mr->ndescs + mr->meta_ndescs++] =
2123 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2124 
2125 	return 0;
2126 }
2127 
2128 static int
2129 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2130 			 int data_sg_nents, unsigned int *data_sg_offset,
2131 			 struct scatterlist *meta_sg, int meta_sg_nents,
2132 			 unsigned int *meta_sg_offset)
2133 {
2134 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2135 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2136 	int n;
2137 
2138 	pi_mr->ndescs = 0;
2139 	pi_mr->meta_ndescs = 0;
2140 	pi_mr->meta_length = 0;
2141 
2142 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2143 				   pi_mr->desc_size * pi_mr->max_descs,
2144 				   DMA_TO_DEVICE);
2145 
2146 	pi_mr->ibmr.page_size = ibmr->page_size;
2147 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2148 			   mlx5_set_page);
2149 	if (n != data_sg_nents)
2150 		return n;
2151 
2152 	pi_mr->data_iova = pi_mr->ibmr.iova;
2153 	pi_mr->data_length = pi_mr->ibmr.length;
2154 	pi_mr->ibmr.length = pi_mr->data_length;
2155 	ibmr->length = pi_mr->data_length;
2156 
2157 	if (meta_sg_nents) {
2158 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2159 		u64 iova = pi_mr->data_iova;
2160 
2161 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2162 				    meta_sg_offset, mlx5_set_page_pi);
2163 
2164 		pi_mr->meta_length = pi_mr->ibmr.length;
2165 		/*
2166 		 * PI address for the HW is the offset of the metadata address
2167 		 * relative to the first data page address.
2168 		 * It equals to first data page address + size of data pages +
2169 		 * metadata offset at the first metadata page
2170 		 */
2171 		pi_mr->pi_iova = (iova & page_mask) +
2172 				 pi_mr->ndescs * ibmr->page_size +
2173 				 (pi_mr->ibmr.iova & ~page_mask);
2174 		/*
2175 		 * In order to use one MTT MR for data and metadata, we register
2176 		 * also the gaps between the end of the data and the start of
2177 		 * the metadata (the sig MR will verify that the HW will access
2178 		 * to right addresses). This mapping is safe because we use
2179 		 * internal mkey for the registration.
2180 		 */
2181 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2182 		pi_mr->ibmr.iova = iova;
2183 		ibmr->length += pi_mr->meta_length;
2184 	}
2185 
2186 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2187 				      pi_mr->desc_size * pi_mr->max_descs,
2188 				      DMA_TO_DEVICE);
2189 
2190 	return n;
2191 }
2192 
2193 static int
2194 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2195 			 int data_sg_nents, unsigned int *data_sg_offset,
2196 			 struct scatterlist *meta_sg, int meta_sg_nents,
2197 			 unsigned int *meta_sg_offset)
2198 {
2199 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2200 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2201 	int n;
2202 
2203 	pi_mr->ndescs = 0;
2204 	pi_mr->meta_ndescs = 0;
2205 	pi_mr->meta_length = 0;
2206 
2207 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2208 				   pi_mr->desc_size * pi_mr->max_descs,
2209 				   DMA_TO_DEVICE);
2210 
2211 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2212 			       meta_sg, meta_sg_nents, meta_sg_offset);
2213 
2214 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2215 				      pi_mr->desc_size * pi_mr->max_descs,
2216 				      DMA_TO_DEVICE);
2217 
2218 	/* This is zero-based memory region */
2219 	pi_mr->data_iova = 0;
2220 	pi_mr->ibmr.iova = 0;
2221 	pi_mr->pi_iova = pi_mr->data_length;
2222 	ibmr->length = pi_mr->ibmr.length;
2223 
2224 	return n;
2225 }
2226 
2227 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2228 			 int data_sg_nents, unsigned int *data_sg_offset,
2229 			 struct scatterlist *meta_sg, int meta_sg_nents,
2230 			 unsigned int *meta_sg_offset)
2231 {
2232 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2233 	struct mlx5_ib_mr *pi_mr = NULL;
2234 	int n;
2235 
2236 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2237 
2238 	mr->ndescs = 0;
2239 	mr->data_length = 0;
2240 	mr->data_iova = 0;
2241 	mr->meta_ndescs = 0;
2242 	mr->pi_iova = 0;
2243 	/*
2244 	 * As a performance optimization, if possible, there is no need to
2245 	 * perform UMR operation to register the data/metadata buffers.
2246 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2247 	 * Fallback to UMR only in case of a failure.
2248 	 */
2249 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2250 				    data_sg_offset, meta_sg, meta_sg_nents,
2251 				    meta_sg_offset);
2252 	if (n == data_sg_nents + meta_sg_nents)
2253 		goto out;
2254 	/*
2255 	 * As a performance optimization, if possible, there is no need to map
2256 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2257 	 * descriptors and fallback to KLM only in case of a failure.
2258 	 * It's more efficient for the HW to work with MTT descriptors
2259 	 * (especially in high load).
2260 	 * Use KLM (indirect access) only if it's mandatory.
2261 	 */
2262 	pi_mr = mr->mtt_mr;
2263 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2264 				     data_sg_offset, meta_sg, meta_sg_nents,
2265 				     meta_sg_offset);
2266 	if (n == data_sg_nents + meta_sg_nents)
2267 		goto out;
2268 
2269 	pi_mr = mr->klm_mr;
2270 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2271 				     data_sg_offset, meta_sg, meta_sg_nents,
2272 				     meta_sg_offset);
2273 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2274 		return -ENOMEM;
2275 
2276 out:
2277 	/* This is zero-based memory region */
2278 	ibmr->iova = 0;
2279 	mr->pi_mr = pi_mr;
2280 	if (pi_mr)
2281 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2282 	else
2283 		ibmr->sig_attrs->meta_length = mr->meta_length;
2284 
2285 	return 0;
2286 }
2287 
2288 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2289 		      unsigned int *sg_offset)
2290 {
2291 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2292 	int n;
2293 
2294 	mr->ndescs = 0;
2295 
2296 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2297 				   mr->desc_size * mr->max_descs,
2298 				   DMA_TO_DEVICE);
2299 
2300 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2301 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2302 				       NULL);
2303 	else
2304 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2305 				mlx5_set_page);
2306 
2307 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2308 				      mr->desc_size * mr->max_descs,
2309 				      DMA_TO_DEVICE);
2310 
2311 	return n;
2312 }
2313