xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision 9a6b55ac)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #include <linux/mlx5/eq.h>
41 
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 	u32			bytes_committed;
45 	u32			token;
46 	u8			event_subtype;
47 	u8			type;
48 	union {
49 		/* Initiator or send message responder pagefault details. */
50 		struct {
51 			/* Received packet size, only valid for responders. */
52 			u32	packet_size;
53 			/*
54 			 * Number of resource holding WQE, depends on type.
55 			 */
56 			u32	wq_num;
57 			/*
58 			 * WQE index. Refers to either the send queue or
59 			 * receive queue, according to event_subtype.
60 			 */
61 			u16	wqe_index;
62 		} wqe;
63 		/* RDMA responder pagefault details */
64 		struct {
65 			u32	r_key;
66 			/*
67 			 * Received packet size, minimal size page fault
68 			 * resolution required for forward progress.
69 			 */
70 			u32	packet_size;
71 			u32	rdma_op_len;
72 			u64	rdma_va;
73 		} rdma;
74 	};
75 
76 	struct mlx5_ib_pf_eq	*eq;
77 	struct work_struct	work;
78 };
79 
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81 
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85 
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91 
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93 
94 static u64 mlx5_imr_ksm_entries;
95 
96 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
97 			   struct mlx5_ib_mr *imr, int flags)
98 {
99 	struct mlx5_klm *end = pklm + nentries;
100 
101 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
102 		for (; pklm != end; pklm++, idx++) {
103 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
104 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
105 			pklm->va = 0;
106 		}
107 		return;
108 	}
109 
110 	/*
111 	 * The locking here is pretty subtle. Ideally the implicit_children
112 	 * xarray would be protected by the umem_mutex, however that is not
113 	 * possible. Instead this uses a weaker update-then-lock pattern:
114 	 *
115 	 *  srcu_read_lock()
116 	 *    xa_store()
117 	 *    mutex_lock(umem_mutex)
118 	 *     mlx5_ib_update_xlt()
119 	 *    mutex_unlock(umem_mutex)
120 	 *    destroy lkey
121 	 *
122 	 * ie any change the xarray must be followed by the locked update_xlt
123 	 * before destroying.
124 	 *
125 	 * The umem_mutex provides the acquire/release semantic needed to make
126 	 * the xa_store() visible to a racing thread. While SRCU is not
127 	 * technically required, using it gives consistent use of the SRCU
128 	 * locking around the xarray.
129 	 */
130 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131 	lockdep_assert_held(&imr->dev->odp_srcu);
132 
133 	for (; pklm != end; pklm++, idx++) {
134 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
135 
136 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
137 		if (mtt) {
138 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
139 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
140 		} else {
141 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
142 			pklm->va = 0;
143 		}
144 	}
145 }
146 
147 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
148 {
149 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
150 
151 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
152 	mutex_lock(&odp->umem_mutex);
153 	if (odp->npages) {
154 		mlx5_mr_cache_invalidate(mr);
155 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
156 					    ib_umem_end(odp));
157 		WARN_ON(odp->npages);
158 	}
159 	odp->private = NULL;
160 	mutex_unlock(&odp->umem_mutex);
161 
162 	if (!mr->allocated_from_cache) {
163 		mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
164 		WARN_ON(mr->descs);
165 	}
166 }
167 
168 /*
169  * This must be called after the mr has been removed from implicit_children
170  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
171  * empty here, parallel page faults could have raced with the free process and
172  * added pages to it.
173  */
174 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
175 {
176 	struct mlx5_ib_mr *imr = mr->parent;
177 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
178 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
179 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
180 	int srcu_key;
181 
182 	/* implicit_child_mr's are not allowed to have deferred work */
183 	WARN_ON(atomic_read(&mr->num_deferred_work));
184 
185 	if (need_imr_xlt) {
186 		srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
187 		mutex_lock(&odp_imr->umem_mutex);
188 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
189 				   MLX5_IB_UPD_XLT_INDIRECT |
190 				   MLX5_IB_UPD_XLT_ATOMIC);
191 		mutex_unlock(&odp_imr->umem_mutex);
192 		srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
193 	}
194 
195 	dma_fence_odp_mr(mr);
196 
197 	mr->parent = NULL;
198 	mlx5_mr_cache_free(mr->dev, mr);
199 	ib_umem_odp_release(odp);
200 	atomic_dec(&imr->num_deferred_work);
201 }
202 
203 static void free_implicit_child_mr_work(struct work_struct *work)
204 {
205 	struct mlx5_ib_mr *mr =
206 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
207 
208 	free_implicit_child_mr(mr, true);
209 }
210 
211 static void free_implicit_child_mr_rcu(struct rcu_head *head)
212 {
213 	struct mlx5_ib_mr *mr =
214 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
215 
216 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
217 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
218 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
219 }
220 
221 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
222 {
223 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
224 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
225 	struct mlx5_ib_mr *imr = mr->parent;
226 
227 	xa_lock(&imr->implicit_children);
228 	/*
229 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
230 	 * reach the xa lock wins the race and destroys the MR.
231 	 */
232 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
233 	    mr)
234 		goto out_unlock;
235 
236 	atomic_inc(&imr->num_deferred_work);
237 	call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
238 		  free_implicit_child_mr_rcu);
239 
240 out_unlock:
241 	xa_unlock(&imr->implicit_children);
242 }
243 
244 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
245 				     const struct mmu_notifier_range *range,
246 				     unsigned long cur_seq)
247 {
248 	struct ib_umem_odp *umem_odp =
249 		container_of(mni, struct ib_umem_odp, notifier);
250 	struct mlx5_ib_mr *mr;
251 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
252 				    sizeof(struct mlx5_mtt)) - 1;
253 	u64 idx = 0, blk_start_idx = 0;
254 	u64 invalidations = 0;
255 	unsigned long start;
256 	unsigned long end;
257 	int in_block = 0;
258 	u64 addr;
259 
260 	if (!mmu_notifier_range_blockable(range))
261 		return false;
262 
263 	mutex_lock(&umem_odp->umem_mutex);
264 	mmu_interval_set_seq(mni, cur_seq);
265 	/*
266 	 * If npages is zero then umem_odp->private may not be setup yet. This
267 	 * does not complete until after the first page is mapped for DMA.
268 	 */
269 	if (!umem_odp->npages)
270 		goto out;
271 	mr = umem_odp->private;
272 
273 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
274 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
275 
276 	/*
277 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
278 	 * while we are doing the invalidation, no page fault will attempt to
279 	 * overwrite the same MTTs.  Concurent invalidations might race us,
280 	 * but they will write 0s as well, so no difference in the end result.
281 	 */
282 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
283 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
284 		/*
285 		 * Strive to write the MTTs in chunks, but avoid overwriting
286 		 * non-existing MTTs. The huristic here can be improved to
287 		 * estimate the cost of another UMR vs. the cost of bigger
288 		 * UMR.
289 		 */
290 		if (umem_odp->dma_list[idx] &
291 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
292 			if (!in_block) {
293 				blk_start_idx = idx;
294 				in_block = 1;
295 			}
296 
297 			/* Count page invalidations */
298 			invalidations += idx - blk_start_idx + 1;
299 		} else {
300 			u64 umr_offset = idx & umr_block_mask;
301 
302 			if (in_block && umr_offset == 0) {
303 				mlx5_ib_update_xlt(mr, blk_start_idx,
304 						   idx - blk_start_idx, 0,
305 						   MLX5_IB_UPD_XLT_ZAP |
306 						   MLX5_IB_UPD_XLT_ATOMIC);
307 				in_block = 0;
308 			}
309 		}
310 	}
311 	if (in_block)
312 		mlx5_ib_update_xlt(mr, blk_start_idx,
313 				   idx - blk_start_idx + 1, 0,
314 				   MLX5_IB_UPD_XLT_ZAP |
315 				   MLX5_IB_UPD_XLT_ATOMIC);
316 
317 	mlx5_update_odp_stats(mr, invalidations, invalidations);
318 
319 	/*
320 	 * We are now sure that the device will not access the
321 	 * memory. We can safely unmap it, and mark it as dirty if
322 	 * needed.
323 	 */
324 
325 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
326 
327 	if (unlikely(!umem_odp->npages && mr->parent))
328 		destroy_unused_implicit_child_mr(mr);
329 out:
330 	mutex_unlock(&umem_odp->umem_mutex);
331 	return true;
332 }
333 
334 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
335 	.invalidate = mlx5_ib_invalidate_range,
336 };
337 
338 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
339 {
340 	struct ib_odp_caps *caps = &dev->odp_caps;
341 
342 	memset(caps, 0, sizeof(*caps));
343 
344 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
345 	    !mlx5_ib_can_use_umr(dev, true))
346 		return;
347 
348 	caps->general_caps = IB_ODP_SUPPORT;
349 
350 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
351 		dev->odp_max_size = U64_MAX;
352 	else
353 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
354 
355 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
356 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
357 
358 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
359 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
360 
361 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
362 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
363 
364 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
365 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
366 
367 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
368 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
369 
370 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
371 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
372 
373 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
374 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
375 
376 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
377 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
378 
379 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
380 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
381 
382 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
383 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
384 
385 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
386 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
387 
388 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
389 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
390 
391 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
392 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
393 
394 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
395 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
396 
397 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
398 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
399 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
400 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
401 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
402 }
403 
404 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
405 				      struct mlx5_pagefault *pfault,
406 				      int error)
407 {
408 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
409 		     pfault->wqe.wq_num : pfault->token;
410 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
411 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
412 	int err;
413 
414 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
415 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
416 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
417 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
418 	MLX5_SET(page_fault_resume_in, in, error, !!error);
419 
420 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
421 	if (err)
422 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
423 			    wq_num, err);
424 }
425 
426 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
427 						unsigned long idx)
428 {
429 	struct ib_umem_odp *odp;
430 	struct mlx5_ib_mr *mr;
431 	struct mlx5_ib_mr *ret;
432 	int err;
433 
434 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
435 				      idx * MLX5_IMR_MTT_SIZE,
436 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
437 	if (IS_ERR(odp))
438 		return ERR_CAST(odp);
439 
440 	ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
441 	if (IS_ERR(mr))
442 		goto out_umem;
443 
444 	mr->ibmr.pd = imr->ibmr.pd;
445 	mr->access_flags = imr->access_flags;
446 	mr->umem = &odp->umem;
447 	mr->ibmr.lkey = mr->mmkey.key;
448 	mr->ibmr.rkey = mr->mmkey.key;
449 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
450 	mr->parent = imr;
451 	odp->private = mr;
452 
453 	err = mlx5_ib_update_xlt(mr, 0,
454 				 MLX5_IMR_MTT_ENTRIES,
455 				 PAGE_SHIFT,
456 				 MLX5_IB_UPD_XLT_ZAP |
457 				 MLX5_IB_UPD_XLT_ENABLE);
458 	if (err) {
459 		ret = ERR_PTR(err);
460 		goto out_mr;
461 	}
462 
463 	/*
464 	 * Once the store to either xarray completes any error unwind has to
465 	 * use synchronize_srcu(). Avoid this with xa_reserve()
466 	 */
467 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
468 			 GFP_KERNEL);
469 	if (unlikely(ret)) {
470 		if (xa_is_err(ret)) {
471 			ret = ERR_PTR(xa_err(ret));
472 			goto out_mr;
473 		}
474 		/*
475 		 * Another thread beat us to creating the child mr, use
476 		 * theirs.
477 		 */
478 		goto out_mr;
479 	}
480 
481 	mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
482 	return mr;
483 
484 out_mr:
485 	mlx5_mr_cache_free(imr->dev, mr);
486 out_umem:
487 	ib_umem_odp_release(odp);
488 	return ret;
489 }
490 
491 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
492 					     struct ib_udata *udata,
493 					     int access_flags)
494 {
495 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
496 	struct ib_umem_odp *umem_odp;
497 	struct mlx5_ib_mr *imr;
498 	int err;
499 
500 	umem_odp = ib_umem_odp_alloc_implicit(udata, access_flags);
501 	if (IS_ERR(umem_odp))
502 		return ERR_CAST(umem_odp);
503 
504 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
505 	if (IS_ERR(imr)) {
506 		err = PTR_ERR(imr);
507 		goto out_umem;
508 	}
509 
510 	imr->ibmr.pd = &pd->ibpd;
511 	imr->access_flags = access_flags;
512 	imr->mmkey.iova = 0;
513 	imr->umem = &umem_odp->umem;
514 	imr->ibmr.lkey = imr->mmkey.key;
515 	imr->ibmr.rkey = imr->mmkey.key;
516 	imr->umem = &umem_odp->umem;
517 	imr->is_odp_implicit = true;
518 	atomic_set(&imr->num_deferred_work, 0);
519 	xa_init(&imr->implicit_children);
520 
521 	err = mlx5_ib_update_xlt(imr, 0,
522 				 mlx5_imr_ksm_entries,
523 				 MLX5_KSM_PAGE_SHIFT,
524 				 MLX5_IB_UPD_XLT_INDIRECT |
525 				 MLX5_IB_UPD_XLT_ZAP |
526 				 MLX5_IB_UPD_XLT_ENABLE);
527 	if (err)
528 		goto out_mr;
529 
530 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
531 			      &imr->mmkey, GFP_KERNEL));
532 	if (err)
533 		goto out_mr;
534 
535 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
536 	return imr;
537 out_mr:
538 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
539 	mlx5_mr_cache_free(dev, imr);
540 out_umem:
541 	ib_umem_odp_release(umem_odp);
542 	return ERR_PTR(err);
543 }
544 
545 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
546 {
547 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
548 	struct mlx5_ib_dev *dev = imr->dev;
549 	struct list_head destroy_list;
550 	struct mlx5_ib_mr *mtt;
551 	struct mlx5_ib_mr *tmp;
552 	unsigned long idx;
553 
554 	INIT_LIST_HEAD(&destroy_list);
555 
556 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
557 	/*
558 	 * This stops the SRCU protected page fault path from touching either
559 	 * the imr or any children. The page fault path can only reach the
560 	 * children xarray via the imr.
561 	 */
562 	synchronize_srcu(&dev->odp_srcu);
563 
564 	xa_lock(&imr->implicit_children);
565 	xa_for_each (&imr->implicit_children, idx, mtt) {
566 		__xa_erase(&imr->implicit_children, idx);
567 		list_add(&mtt->odp_destroy.elm, &destroy_list);
568 	}
569 	xa_unlock(&imr->implicit_children);
570 
571 	/*
572 	 * num_deferred_work can only be incremented inside the odp_srcu, or
573 	 * under xa_lock while the child is in the xarray. Thus at this point
574 	 * it is only decreasing, and all work holding it is now on the wq.
575 	 */
576 	if (atomic_read(&imr->num_deferred_work)) {
577 		flush_workqueue(system_unbound_wq);
578 		WARN_ON(atomic_read(&imr->num_deferred_work));
579 	}
580 
581 	/*
582 	 * Fence the imr before we destroy the children. This allows us to
583 	 * skip updating the XLT of the imr during destroy of the child mkey
584 	 * the imr points to.
585 	 */
586 	mlx5_mr_cache_invalidate(imr);
587 
588 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
589 		free_implicit_child_mr(mtt, false);
590 
591 	mlx5_mr_cache_free(dev, imr);
592 	ib_umem_odp_release(odp_imr);
593 }
594 
595 /**
596  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
597  * @mr: to fence
598  *
599  * On return no parallel threads will be touching this MR and no DMA will be
600  * active.
601  */
602 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
603 {
604 	/* Prevent new page faults and prefetch requests from succeeding */
605 	xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
606 
607 	/* Wait for all running page-fault handlers to finish. */
608 	synchronize_srcu(&mr->dev->odp_srcu);
609 
610 	if (atomic_read(&mr->num_deferred_work)) {
611 		flush_workqueue(system_unbound_wq);
612 		WARN_ON(atomic_read(&mr->num_deferred_work));
613 	}
614 
615 	dma_fence_odp_mr(mr);
616 }
617 
618 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
619 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
620 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
621 			     u32 flags)
622 {
623 	int page_shift, ret, np;
624 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
625 	unsigned long current_seq;
626 	u64 access_mask;
627 	u64 start_idx, page_mask;
628 
629 	page_shift = odp->page_shift;
630 	page_mask = ~(BIT(page_shift) - 1);
631 	start_idx = (user_va - (mr->mmkey.iova & page_mask)) >> page_shift;
632 	access_mask = ODP_READ_ALLOWED_BIT;
633 
634 	if (odp->umem.writable && !downgrade)
635 		access_mask |= ODP_WRITE_ALLOWED_BIT;
636 
637 	current_seq = mmu_interval_read_begin(&odp->notifier);
638 
639 	np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
640 				       current_seq);
641 	if (np < 0)
642 		return np;
643 
644 	mutex_lock(&odp->umem_mutex);
645 	if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
646 		/*
647 		 * No need to check whether the MTTs really belong to
648 		 * this MR, since ib_umem_odp_map_dma_pages already
649 		 * checks this.
650 		 */
651 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
652 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
653 	} else {
654 		ret = -EAGAIN;
655 	}
656 	mutex_unlock(&odp->umem_mutex);
657 
658 	if (ret < 0) {
659 		if (ret != -EAGAIN)
660 			mlx5_ib_err(mr->dev,
661 				    "Failed to update mkey page tables\n");
662 		goto out;
663 	}
664 
665 	if (bytes_mapped) {
666 		u32 new_mappings = (np << page_shift) -
667 			(user_va - round_down(user_va, 1 << page_shift));
668 
669 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
670 	}
671 
672 	return np << (page_shift - PAGE_SHIFT);
673 
674 out:
675 	return ret;
676 }
677 
678 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
679 				 struct ib_umem_odp *odp_imr, u64 user_va,
680 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
681 {
682 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
683 	unsigned long upd_start_idx = end_idx + 1;
684 	unsigned long upd_len = 0;
685 	unsigned long npages = 0;
686 	int err;
687 	int ret;
688 
689 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
690 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
691 		return -EFAULT;
692 
693 	/* Fault each child mr that intersects with our interval. */
694 	while (bcnt) {
695 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
696 		struct ib_umem_odp *umem_odp;
697 		struct mlx5_ib_mr *mtt;
698 		u64 len;
699 
700 		mtt = xa_load(&imr->implicit_children, idx);
701 		if (unlikely(!mtt)) {
702 			mtt = implicit_get_child_mr(imr, idx);
703 			if (IS_ERR(mtt)) {
704 				ret = PTR_ERR(mtt);
705 				goto out;
706 			}
707 			upd_start_idx = min(upd_start_idx, idx);
708 			upd_len = idx - upd_start_idx + 1;
709 		}
710 
711 		umem_odp = to_ib_umem_odp(mtt->umem);
712 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
713 		      user_va;
714 
715 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
716 					bytes_mapped, flags);
717 		if (ret < 0)
718 			goto out;
719 		user_va += len;
720 		bcnt -= len;
721 		npages += ret;
722 	}
723 
724 	ret = npages;
725 
726 	/*
727 	 * Any time the implicit_children are changed we must perform an
728 	 * update of the xlt before exiting to ensure the HW and the
729 	 * implicit_children remains synchronized.
730 	 */
731 out:
732 	if (likely(!upd_len))
733 		return ret;
734 
735 	/*
736 	 * Notice this is not strictly ordered right, the KSM is updated after
737 	 * the implicit_children is updated, so a parallel page fault could
738 	 * see a MR that is not yet visible in the KSM.  This is similar to a
739 	 * parallel page fault seeing a MR that is being concurrently removed
740 	 * from the KSM. Both of these improbable situations are resolved
741 	 * safely by resuming the HW and then taking another page fault. The
742 	 * next pagefault handler will see the new information.
743 	 */
744 	mutex_lock(&odp_imr->umem_mutex);
745 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
746 				 MLX5_IB_UPD_XLT_INDIRECT |
747 					 MLX5_IB_UPD_XLT_ATOMIC);
748 	mutex_unlock(&odp_imr->umem_mutex);
749 	if (err) {
750 		mlx5_ib_err(imr->dev, "Failed to update PAS\n");
751 		return err;
752 	}
753 	return ret;
754 }
755 
756 /*
757  * Returns:
758  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
759  *           not accessible, or the MR is no longer valid.
760  *  -EAGAIN/-ENOMEM: The operation should be retried
761  *
762  *  -EINVAL/others: General internal malfunction
763  *  >0: Number of pages mapped
764  */
765 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
766 			u32 *bytes_mapped, u32 flags)
767 {
768 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
769 
770 	if (!odp->is_implicit_odp) {
771 		if (unlikely(io_virt < ib_umem_start(odp) ||
772 			     ib_umem_end(odp) - io_virt < bcnt))
773 			return -EFAULT;
774 		return pagefault_real_mr(mr, odp, io_virt, bcnt, bytes_mapped,
775 					 flags);
776 	}
777 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
778 				     flags);
779 }
780 
781 struct pf_frame {
782 	struct pf_frame *next;
783 	u32 key;
784 	u64 io_virt;
785 	size_t bcnt;
786 	int depth;
787 };
788 
789 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
790 {
791 	if (!mmkey)
792 		return false;
793 	if (mmkey->type == MLX5_MKEY_MW)
794 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
795 	return mmkey->key == key;
796 }
797 
798 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
799 {
800 	struct mlx5_ib_mw *mw;
801 	struct mlx5_ib_devx_mr *devx_mr;
802 
803 	if (mmkey->type == MLX5_MKEY_MW) {
804 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
805 		return mw->ndescs;
806 	}
807 
808 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
809 			       mmkey);
810 	return devx_mr->ndescs;
811 }
812 
813 /*
814  * Handle a single data segment in a page-fault WQE or RDMA region.
815  *
816  * Returns number of OS pages retrieved on success. The caller may continue to
817  * the next data segment.
818  * Can return the following error codes:
819  * -EAGAIN to designate a temporary error. The caller will abort handling the
820  *  page fault and resolve it.
821  * -EFAULT when there's an error mapping the requested pages. The caller will
822  *  abort the page fault handling.
823  */
824 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
825 					 struct ib_pd *pd, u32 key,
826 					 u64 io_virt, size_t bcnt,
827 					 u32 *bytes_committed,
828 					 u32 *bytes_mapped)
829 {
830 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
831 	struct pf_frame *head = NULL, *frame;
832 	struct mlx5_core_mkey *mmkey;
833 	struct mlx5_ib_mr *mr;
834 	struct mlx5_klm *pklm;
835 	u32 *out = NULL;
836 	size_t offset;
837 	int ndescs;
838 
839 	srcu_key = srcu_read_lock(&dev->odp_srcu);
840 
841 	io_virt += *bytes_committed;
842 	bcnt -= *bytes_committed;
843 
844 next_mr:
845 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
846 	if (!mmkey) {
847 		mlx5_ib_dbg(
848 			dev,
849 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
850 			key);
851 		if (bytes_mapped)
852 			*bytes_mapped += bcnt;
853 		/*
854 		 * The user could specify a SGL with multiple lkeys and only
855 		 * some of them are ODP. Treat the non-ODP ones as fully
856 		 * faulted.
857 		 */
858 		ret = 0;
859 		goto srcu_unlock;
860 	}
861 	if (!mkey_is_eq(mmkey, key)) {
862 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
863 		ret = -EFAULT;
864 		goto srcu_unlock;
865 	}
866 
867 	switch (mmkey->type) {
868 	case MLX5_MKEY_MR:
869 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
870 
871 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
872 		if (ret < 0)
873 			goto srcu_unlock;
874 
875 		/*
876 		 * When prefetching a page, page fault is generated
877 		 * in order to bring the page to the main memory.
878 		 * In the current flow, page faults are being counted.
879 		 */
880 		mlx5_update_odp_stats(mr, faults, ret);
881 
882 		npages += ret;
883 		ret = 0;
884 		break;
885 
886 	case MLX5_MKEY_MW:
887 	case MLX5_MKEY_INDIRECT_DEVX:
888 		ndescs = get_indirect_num_descs(mmkey);
889 
890 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
891 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
892 			ret = -EFAULT;
893 			goto srcu_unlock;
894 		}
895 
896 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
897 			sizeof(*pklm) * (ndescs - 2);
898 
899 		if (outlen > cur_outlen) {
900 			kfree(out);
901 			out = kzalloc(outlen, GFP_KERNEL);
902 			if (!out) {
903 				ret = -ENOMEM;
904 				goto srcu_unlock;
905 			}
906 			cur_outlen = outlen;
907 		}
908 
909 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
910 						       bsf0_klm0_pas_mtt0_1);
911 
912 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
913 		if (ret)
914 			goto srcu_unlock;
915 
916 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
917 					      memory_key_mkey_entry.start_addr);
918 
919 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
920 			if (offset >= be32_to_cpu(pklm->bcount)) {
921 				offset -= be32_to_cpu(pklm->bcount);
922 				continue;
923 			}
924 
925 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
926 			if (!frame) {
927 				ret = -ENOMEM;
928 				goto srcu_unlock;
929 			}
930 
931 			frame->key = be32_to_cpu(pklm->key);
932 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
933 			frame->bcnt = min_t(size_t, bcnt,
934 					    be32_to_cpu(pklm->bcount) - offset);
935 			frame->depth = depth + 1;
936 			frame->next = head;
937 			head = frame;
938 
939 			bcnt -= frame->bcnt;
940 			offset = 0;
941 		}
942 		break;
943 
944 	default:
945 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
946 		ret = -EFAULT;
947 		goto srcu_unlock;
948 	}
949 
950 	if (head) {
951 		frame = head;
952 		head = frame->next;
953 
954 		key = frame->key;
955 		io_virt = frame->io_virt;
956 		bcnt = frame->bcnt;
957 		depth = frame->depth;
958 		kfree(frame);
959 
960 		goto next_mr;
961 	}
962 
963 srcu_unlock:
964 	while (head) {
965 		frame = head;
966 		head = frame->next;
967 		kfree(frame);
968 	}
969 	kfree(out);
970 
971 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
972 	*bytes_committed = 0;
973 	return ret ? ret : npages;
974 }
975 
976 /**
977  * Parse a series of data segments for page fault handling.
978  *
979  * @pfault contains page fault information.
980  * @wqe points at the first data segment in the WQE.
981  * @wqe_end points after the end of the WQE.
982  * @bytes_mapped receives the number of bytes that the function was able to
983  *               map. This allows the caller to decide intelligently whether
984  *               enough memory was mapped to resolve the page fault
985  *               successfully (e.g. enough for the next MTU, or the entire
986  *               WQE).
987  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
988  *                  the committed bytes).
989  *
990  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
991  * negative error code.
992  */
993 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
994 				   struct mlx5_pagefault *pfault,
995 				   void *wqe,
996 				   void *wqe_end, u32 *bytes_mapped,
997 				   u32 *total_wqe_bytes, bool receive_queue)
998 {
999 	int ret = 0, npages = 0;
1000 	u64 io_virt;
1001 	u32 key;
1002 	u32 byte_count;
1003 	size_t bcnt;
1004 	int inline_segment;
1005 
1006 	if (bytes_mapped)
1007 		*bytes_mapped = 0;
1008 	if (total_wqe_bytes)
1009 		*total_wqe_bytes = 0;
1010 
1011 	while (wqe < wqe_end) {
1012 		struct mlx5_wqe_data_seg *dseg = wqe;
1013 
1014 		io_virt = be64_to_cpu(dseg->addr);
1015 		key = be32_to_cpu(dseg->lkey);
1016 		byte_count = be32_to_cpu(dseg->byte_count);
1017 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1018 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1019 
1020 		if (inline_segment) {
1021 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1022 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1023 				     16);
1024 		} else {
1025 			wqe += sizeof(*dseg);
1026 		}
1027 
1028 		/* receive WQE end of sg list. */
1029 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1030 		    io_virt == 0)
1031 			break;
1032 
1033 		if (!inline_segment && total_wqe_bytes) {
1034 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1035 					pfault->bytes_committed);
1036 		}
1037 
1038 		/* A zero length data segment designates a length of 2GB. */
1039 		if (bcnt == 0)
1040 			bcnt = 1U << 31;
1041 
1042 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1043 			pfault->bytes_committed -=
1044 				min_t(size_t, bcnt,
1045 				      pfault->bytes_committed);
1046 			continue;
1047 		}
1048 
1049 		ret = pagefault_single_data_segment(dev, NULL, key,
1050 						    io_virt, bcnt,
1051 						    &pfault->bytes_committed,
1052 						    bytes_mapped);
1053 		if (ret < 0)
1054 			break;
1055 		npages += ret;
1056 	}
1057 
1058 	return ret < 0 ? ret : npages;
1059 }
1060 
1061 /*
1062  * Parse initiator WQE. Advances the wqe pointer to point at the
1063  * scatter-gather list, and set wqe_end to the end of the WQE.
1064  */
1065 static int mlx5_ib_mr_initiator_pfault_handler(
1066 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1067 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1068 {
1069 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1070 	u16 wqe_index = pfault->wqe.wqe_index;
1071 	struct mlx5_base_av *av;
1072 	unsigned ds, opcode;
1073 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1074 
1075 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1076 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1077 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1078 			    ds, wqe_length);
1079 		return -EFAULT;
1080 	}
1081 
1082 	if (ds == 0) {
1083 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1084 			    wqe_index, qpn);
1085 		return -EFAULT;
1086 	}
1087 
1088 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1089 	*wqe += sizeof(*ctrl);
1090 
1091 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1092 		 MLX5_WQE_CTRL_OPCODE_MASK;
1093 
1094 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1095 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1096 
1097 	if (qp->ibqp.qp_type == IB_QPT_UD ||
1098 	    qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1099 		av = *wqe;
1100 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1101 			*wqe += sizeof(struct mlx5_av);
1102 		else
1103 			*wqe += sizeof(struct mlx5_base_av);
1104 	}
1105 
1106 	switch (opcode) {
1107 	case MLX5_OPCODE_RDMA_WRITE:
1108 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1109 	case MLX5_OPCODE_RDMA_READ:
1110 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1111 		break;
1112 	case MLX5_OPCODE_ATOMIC_CS:
1113 	case MLX5_OPCODE_ATOMIC_FA:
1114 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1115 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1116 		break;
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 /*
1123  * Parse responder WQE and set wqe_end to the end of the WQE.
1124  */
1125 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1126 						   struct mlx5_ib_srq *srq,
1127 						   void **wqe, void **wqe_end,
1128 						   int wqe_length)
1129 {
1130 	int wqe_size = 1 << srq->msrq.wqe_shift;
1131 
1132 	if (wqe_size > wqe_length) {
1133 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1134 		return -EFAULT;
1135 	}
1136 
1137 	*wqe_end = *wqe + wqe_size;
1138 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1139 
1140 	return 0;
1141 }
1142 
1143 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1144 						  struct mlx5_ib_qp *qp,
1145 						  void *wqe, void **wqe_end,
1146 						  int wqe_length)
1147 {
1148 	struct mlx5_ib_wq *wq = &qp->rq;
1149 	int wqe_size = 1 << wq->wqe_shift;
1150 
1151 	if (qp->wq_sig) {
1152 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1153 		return -EFAULT;
1154 	}
1155 
1156 	if (wqe_size > wqe_length) {
1157 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1158 		return -EFAULT;
1159 	}
1160 
1161 	*wqe_end = wqe + wqe_size;
1162 
1163 	return 0;
1164 }
1165 
1166 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1167 						       u32 wq_num, int pf_type)
1168 {
1169 	struct mlx5_core_rsc_common *common = NULL;
1170 	struct mlx5_core_srq *srq;
1171 
1172 	switch (pf_type) {
1173 	case MLX5_WQE_PF_TYPE_RMP:
1174 		srq = mlx5_cmd_get_srq(dev, wq_num);
1175 		if (srq)
1176 			common = &srq->common;
1177 		break;
1178 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1179 	case MLX5_WQE_PF_TYPE_RESP:
1180 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1181 		common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 
1187 	return common;
1188 }
1189 
1190 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1191 {
1192 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1193 
1194 	return to_mibqp(mqp);
1195 }
1196 
1197 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1198 {
1199 	struct mlx5_core_srq *msrq =
1200 		container_of(res, struct mlx5_core_srq, common);
1201 
1202 	return to_mibsrq(msrq);
1203 }
1204 
1205 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1206 					  struct mlx5_pagefault *pfault)
1207 {
1208 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1209 	u16 wqe_index = pfault->wqe.wqe_index;
1210 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1211 	u32 bytes_mapped, total_wqe_bytes;
1212 	struct mlx5_core_rsc_common *res;
1213 	int resume_with_error = 1;
1214 	struct mlx5_ib_qp *qp;
1215 	size_t bytes_copied;
1216 	int ret = 0;
1217 
1218 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1219 	if (!res) {
1220 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1221 		return;
1222 	}
1223 
1224 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1225 	    res->res != MLX5_RES_XSRQ) {
1226 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1227 			    pfault->type);
1228 		goto resolve_page_fault;
1229 	}
1230 
1231 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1232 	if (!wqe_start) {
1233 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1234 		goto resolve_page_fault;
1235 	}
1236 
1237 	wqe = wqe_start;
1238 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1239 	if (qp && sq) {
1240 		ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1241 					       &bytes_copied);
1242 		if (ret)
1243 			goto read_user;
1244 		ret = mlx5_ib_mr_initiator_pfault_handler(
1245 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1246 	} else if (qp && !sq) {
1247 		ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1248 					       &bytes_copied);
1249 		if (ret)
1250 			goto read_user;
1251 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1252 			dev, qp, wqe, &wqe_end, bytes_copied);
1253 	} else if (!qp) {
1254 		struct mlx5_ib_srq *srq = res_to_srq(res);
1255 
1256 		ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1257 						&bytes_copied);
1258 		if (ret)
1259 			goto read_user;
1260 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1261 			dev, srq, &wqe, &wqe_end, bytes_copied);
1262 	}
1263 
1264 	if (ret < 0 || wqe >= wqe_end)
1265 		goto resolve_page_fault;
1266 
1267 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1268 				      &total_wqe_bytes, !sq);
1269 	if (ret == -EAGAIN)
1270 		goto out;
1271 
1272 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1273 		goto resolve_page_fault;
1274 
1275 out:
1276 	ret = 0;
1277 	resume_with_error = 0;
1278 
1279 read_user:
1280 	if (ret)
1281 		mlx5_ib_err(
1282 			dev,
1283 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1284 			ret, wqe_index, pfault->token);
1285 
1286 resolve_page_fault:
1287 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1288 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1289 		    pfault->wqe.wq_num, resume_with_error,
1290 		    pfault->type);
1291 	mlx5_core_res_put(res);
1292 	free_page((unsigned long)wqe_start);
1293 }
1294 
1295 static int pages_in_range(u64 address, u32 length)
1296 {
1297 	return (ALIGN(address + length, PAGE_SIZE) -
1298 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1299 }
1300 
1301 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1302 					   struct mlx5_pagefault *pfault)
1303 {
1304 	u64 address;
1305 	u32 length;
1306 	u32 prefetch_len = pfault->bytes_committed;
1307 	int prefetch_activated = 0;
1308 	u32 rkey = pfault->rdma.r_key;
1309 	int ret;
1310 
1311 	/* The RDMA responder handler handles the page fault in two parts.
1312 	 * First it brings the necessary pages for the current packet
1313 	 * (and uses the pfault context), and then (after resuming the QP)
1314 	 * prefetches more pages. The second operation cannot use the pfault
1315 	 * context and therefore uses the dummy_pfault context allocated on
1316 	 * the stack */
1317 	pfault->rdma.rdma_va += pfault->bytes_committed;
1318 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1319 					 pfault->rdma.rdma_op_len);
1320 	pfault->bytes_committed = 0;
1321 
1322 	address = pfault->rdma.rdma_va;
1323 	length  = pfault->rdma.rdma_op_len;
1324 
1325 	/* For some operations, the hardware cannot tell the exact message
1326 	 * length, and in those cases it reports zero. Use prefetch
1327 	 * logic. */
1328 	if (length == 0) {
1329 		prefetch_activated = 1;
1330 		length = pfault->rdma.packet_size;
1331 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1332 	}
1333 
1334 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1335 					    &pfault->bytes_committed, NULL);
1336 	if (ret == -EAGAIN) {
1337 		/* We're racing with an invalidation, don't prefetch */
1338 		prefetch_activated = 0;
1339 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1340 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1341 		if (ret != -ENOENT)
1342 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1343 				    ret, pfault->token, pfault->type);
1344 		return;
1345 	}
1346 
1347 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1348 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1349 		    pfault->token, pfault->type,
1350 		    prefetch_activated);
1351 
1352 	/* At this point, there might be a new pagefault already arriving in
1353 	 * the eq, switch to the dummy pagefault for the rest of the
1354 	 * processing. We're still OK with the objects being alive as the
1355 	 * work-queue is being fenced. */
1356 
1357 	if (prefetch_activated) {
1358 		u32 bytes_committed = 0;
1359 
1360 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1361 						    prefetch_len,
1362 						    &bytes_committed, NULL);
1363 		if (ret < 0 && ret != -EAGAIN) {
1364 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1365 				    ret, pfault->token, address, prefetch_len);
1366 		}
1367 	}
1368 }
1369 
1370 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1371 {
1372 	u8 event_subtype = pfault->event_subtype;
1373 
1374 	switch (event_subtype) {
1375 	case MLX5_PFAULT_SUBTYPE_WQE:
1376 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1377 		break;
1378 	case MLX5_PFAULT_SUBTYPE_RDMA:
1379 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1380 		break;
1381 	default:
1382 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1383 			    event_subtype);
1384 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1385 	}
1386 }
1387 
1388 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1389 {
1390 	struct mlx5_pagefault *pfault = container_of(work,
1391 						     struct mlx5_pagefault,
1392 						     work);
1393 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1394 
1395 	mlx5_ib_pfault(eq->dev, pfault);
1396 	mempool_free(pfault, eq->pool);
1397 }
1398 
1399 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1400 {
1401 	struct mlx5_eqe_page_fault *pf_eqe;
1402 	struct mlx5_pagefault *pfault;
1403 	struct mlx5_eqe *eqe;
1404 	int cc = 0;
1405 
1406 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1407 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1408 		if (!pfault) {
1409 			schedule_work(&eq->work);
1410 			break;
1411 		}
1412 
1413 		pf_eqe = &eqe->data.page_fault;
1414 		pfault->event_subtype = eqe->sub_type;
1415 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1416 
1417 		mlx5_ib_dbg(eq->dev,
1418 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1419 			    eqe->sub_type, pfault->bytes_committed);
1420 
1421 		switch (eqe->sub_type) {
1422 		case MLX5_PFAULT_SUBTYPE_RDMA:
1423 			/* RDMA based event */
1424 			pfault->type =
1425 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1426 			pfault->token =
1427 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1428 				MLX5_24BIT_MASK;
1429 			pfault->rdma.r_key =
1430 				be32_to_cpu(pf_eqe->rdma.r_key);
1431 			pfault->rdma.packet_size =
1432 				be16_to_cpu(pf_eqe->rdma.packet_length);
1433 			pfault->rdma.rdma_op_len =
1434 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1435 			pfault->rdma.rdma_va =
1436 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1437 			mlx5_ib_dbg(eq->dev,
1438 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1439 				    pfault->type, pfault->token,
1440 				    pfault->rdma.r_key);
1441 			mlx5_ib_dbg(eq->dev,
1442 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1443 				    pfault->rdma.rdma_op_len,
1444 				    pfault->rdma.rdma_va);
1445 			break;
1446 
1447 		case MLX5_PFAULT_SUBTYPE_WQE:
1448 			/* WQE based event */
1449 			pfault->type =
1450 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1451 			pfault->token =
1452 				be32_to_cpu(pf_eqe->wqe.token);
1453 			pfault->wqe.wq_num =
1454 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1455 				MLX5_24BIT_MASK;
1456 			pfault->wqe.wqe_index =
1457 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1458 			pfault->wqe.packet_size =
1459 				be16_to_cpu(pf_eqe->wqe.packet_length);
1460 			mlx5_ib_dbg(eq->dev,
1461 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1462 				    pfault->type, pfault->token,
1463 				    pfault->wqe.wq_num,
1464 				    pfault->wqe.wqe_index);
1465 			break;
1466 
1467 		default:
1468 			mlx5_ib_warn(eq->dev,
1469 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1470 				     eqe->sub_type);
1471 			/* Unsupported page faults should still be
1472 			 * resolved by the page fault handler
1473 			 */
1474 		}
1475 
1476 		pfault->eq = eq;
1477 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1478 		queue_work(eq->wq, &pfault->work);
1479 
1480 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1481 	}
1482 
1483 	mlx5_eq_update_ci(eq->core, cc, 1);
1484 }
1485 
1486 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1487 			     void *data)
1488 {
1489 	struct mlx5_ib_pf_eq *eq =
1490 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1491 	unsigned long flags;
1492 
1493 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1494 		mlx5_ib_eq_pf_process(eq);
1495 		spin_unlock_irqrestore(&eq->lock, flags);
1496 	} else {
1497 		schedule_work(&eq->work);
1498 	}
1499 
1500 	return IRQ_HANDLED;
1501 }
1502 
1503 /* mempool_refill() was proposed but unfortunately wasn't accepted
1504  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1505  * Cheap workaround.
1506  */
1507 static void mempool_refill(mempool_t *pool)
1508 {
1509 	while (pool->curr_nr < pool->min_nr)
1510 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1511 }
1512 
1513 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1514 {
1515 	struct mlx5_ib_pf_eq *eq =
1516 		container_of(work, struct mlx5_ib_pf_eq, work);
1517 
1518 	mempool_refill(eq->pool);
1519 
1520 	spin_lock_irq(&eq->lock);
1521 	mlx5_ib_eq_pf_process(eq);
1522 	spin_unlock_irq(&eq->lock);
1523 }
1524 
1525 enum {
1526 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1527 	MLX5_IB_NUM_PF_DRAIN	= 64,
1528 };
1529 
1530 static int
1531 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1532 {
1533 	struct mlx5_eq_param param = {};
1534 	int err;
1535 
1536 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1537 	spin_lock_init(&eq->lock);
1538 	eq->dev = dev;
1539 
1540 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1541 					       sizeof(struct mlx5_pagefault));
1542 	if (!eq->pool)
1543 		return -ENOMEM;
1544 
1545 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1546 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1547 				 MLX5_NUM_CMD_EQE);
1548 	if (!eq->wq) {
1549 		err = -ENOMEM;
1550 		goto err_mempool;
1551 	}
1552 
1553 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1554 	param = (struct mlx5_eq_param) {
1555 		.irq_index = 0,
1556 		.nent = MLX5_IB_NUM_PF_EQE,
1557 	};
1558 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1559 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1560 	if (IS_ERR(eq->core)) {
1561 		err = PTR_ERR(eq->core);
1562 		goto err_wq;
1563 	}
1564 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1565 	if (err) {
1566 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1567 		goto err_eq;
1568 	}
1569 
1570 	return 0;
1571 err_eq:
1572 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1573 err_wq:
1574 	destroy_workqueue(eq->wq);
1575 err_mempool:
1576 	mempool_destroy(eq->pool);
1577 	return err;
1578 }
1579 
1580 static int
1581 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1582 {
1583 	int err;
1584 
1585 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1586 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1587 	cancel_work_sync(&eq->work);
1588 	destroy_workqueue(eq->wq);
1589 	mempool_destroy(eq->pool);
1590 
1591 	return err;
1592 }
1593 
1594 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1595 {
1596 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1597 		return;
1598 
1599 	switch (ent->order - 2) {
1600 	case MLX5_IMR_MTT_CACHE_ENTRY:
1601 		ent->page = PAGE_SHIFT;
1602 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1603 			   sizeof(struct mlx5_mtt) /
1604 			   MLX5_IB_UMR_OCTOWORD;
1605 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1606 		ent->limit = 0;
1607 		break;
1608 
1609 	case MLX5_IMR_KSM_CACHE_ENTRY:
1610 		ent->page = MLX5_KSM_PAGE_SHIFT;
1611 		ent->xlt = mlx5_imr_ksm_entries *
1612 			   sizeof(struct mlx5_klm) /
1613 			   MLX5_IB_UMR_OCTOWORD;
1614 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1615 		ent->limit = 0;
1616 		break;
1617 	}
1618 }
1619 
1620 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1621 	.advise_mr = mlx5_ib_advise_mr,
1622 };
1623 
1624 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1625 {
1626 	int ret = 0;
1627 
1628 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1629 		return ret;
1630 
1631 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1632 
1633 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1634 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1635 		if (ret) {
1636 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1637 			return ret;
1638 		}
1639 	}
1640 
1641 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1642 
1643 	return ret;
1644 }
1645 
1646 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1647 {
1648 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1649 		return;
1650 
1651 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1652 }
1653 
1654 int mlx5_ib_odp_init(void)
1655 {
1656 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1657 				       MLX5_IMR_MTT_BITS);
1658 
1659 	return 0;
1660 }
1661 
1662 struct prefetch_mr_work {
1663 	struct work_struct work;
1664 	u32 pf_flags;
1665 	u32 num_sge;
1666 	struct {
1667 		u64 io_virt;
1668 		struct mlx5_ib_mr *mr;
1669 		size_t length;
1670 	} frags[];
1671 };
1672 
1673 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1674 {
1675 	u32 i;
1676 
1677 	for (i = 0; i < work->num_sge; ++i)
1678 		atomic_dec(&work->frags[i].mr->num_deferred_work);
1679 	kvfree(work);
1680 }
1681 
1682 static struct mlx5_ib_mr *
1683 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1684 		    u32 lkey)
1685 {
1686 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1687 	struct mlx5_core_mkey *mmkey;
1688 	struct ib_umem_odp *odp;
1689 	struct mlx5_ib_mr *mr;
1690 
1691 	lockdep_assert_held(&dev->odp_srcu);
1692 
1693 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1694 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1695 		return NULL;
1696 
1697 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1698 
1699 	if (mr->ibmr.pd != pd)
1700 		return NULL;
1701 
1702 	odp = to_ib_umem_odp(mr->umem);
1703 
1704 	/* prefetch with write-access must be supported by the MR */
1705 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1706 	    !odp->umem.writable)
1707 		return NULL;
1708 
1709 	return mr;
1710 }
1711 
1712 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1713 {
1714 	struct prefetch_mr_work *work =
1715 		container_of(w, struct prefetch_mr_work, work);
1716 	u32 bytes_mapped = 0;
1717 	u32 i;
1718 
1719 	for (i = 0; i < work->num_sge; ++i)
1720 		pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1721 			     work->frags[i].length, &bytes_mapped,
1722 			     work->pf_flags);
1723 
1724 	destroy_prefetch_work(work);
1725 }
1726 
1727 static bool init_prefetch_work(struct ib_pd *pd,
1728 			       enum ib_uverbs_advise_mr_advice advice,
1729 			       u32 pf_flags, struct prefetch_mr_work *work,
1730 			       struct ib_sge *sg_list, u32 num_sge)
1731 {
1732 	u32 i;
1733 
1734 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1735 	work->pf_flags = pf_flags;
1736 
1737 	for (i = 0; i < num_sge; ++i) {
1738 		work->frags[i].io_virt = sg_list[i].addr;
1739 		work->frags[i].length = sg_list[i].length;
1740 		work->frags[i].mr =
1741 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1742 		if (!work->frags[i].mr) {
1743 			work->num_sge = i - 1;
1744 			if (i)
1745 				destroy_prefetch_work(work);
1746 			return false;
1747 		}
1748 
1749 		/* Keep the MR pointer will valid outside the SRCU */
1750 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1751 	}
1752 	work->num_sge = num_sge;
1753 	return true;
1754 }
1755 
1756 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1757 				    enum ib_uverbs_advise_mr_advice advice,
1758 				    u32 pf_flags, struct ib_sge *sg_list,
1759 				    u32 num_sge)
1760 {
1761 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1762 	u32 bytes_mapped = 0;
1763 	int srcu_key;
1764 	int ret = 0;
1765 	u32 i;
1766 
1767 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1768 	for (i = 0; i < num_sge; ++i) {
1769 		struct mlx5_ib_mr *mr;
1770 
1771 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1772 		if (!mr) {
1773 			ret = -ENOENT;
1774 			goto out;
1775 		}
1776 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1777 				   &bytes_mapped, pf_flags);
1778 		if (ret < 0)
1779 			goto out;
1780 	}
1781 	ret = 0;
1782 
1783 out:
1784 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1785 	return ret;
1786 }
1787 
1788 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1789 			       enum ib_uverbs_advise_mr_advice advice,
1790 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1791 {
1792 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1793 	u32 pf_flags = 0;
1794 	struct prefetch_mr_work *work;
1795 	int srcu_key;
1796 
1797 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1798 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1799 
1800 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1801 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1802 						num_sge);
1803 
1804 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1805 	if (!work)
1806 		return -ENOMEM;
1807 
1808 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1809 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1810 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1811 		return -EINVAL;
1812 	}
1813 	queue_work(system_unbound_wq, &work->work);
1814 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1815 	return 0;
1816 }
1817