xref: /linux/drivers/infiniband/sw/rdmavt/qp.c (revision 9a6b55ac)
1 /*
2  * Copyright(c) 2016 - 2019 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60 
61 #define RVT_RWQ_COUNT_THRESHOLD 16
62 
63 static void rvt_rc_timeout(struct timer_list *t);
64 
65 /*
66  * Convert the AETH RNR timeout code into the number of microseconds.
67  */
68 static const u32 ib_rvt_rnr_table[32] = {
69 	655360, /* 00: 655.36 */
70 	10,     /* 01:    .01 */
71 	20,     /* 02     .02 */
72 	30,     /* 03:    .03 */
73 	40,     /* 04:    .04 */
74 	60,     /* 05:    .06 */
75 	80,     /* 06:    .08 */
76 	120,    /* 07:    .12 */
77 	160,    /* 08:    .16 */
78 	240,    /* 09:    .24 */
79 	320,    /* 0A:    .32 */
80 	480,    /* 0B:    .48 */
81 	640,    /* 0C:    .64 */
82 	960,    /* 0D:    .96 */
83 	1280,   /* 0E:   1.28 */
84 	1920,   /* 0F:   1.92 */
85 	2560,   /* 10:   2.56 */
86 	3840,   /* 11:   3.84 */
87 	5120,   /* 12:   5.12 */
88 	7680,   /* 13:   7.68 */
89 	10240,  /* 14:  10.24 */
90 	15360,  /* 15:  15.36 */
91 	20480,  /* 16:  20.48 */
92 	30720,  /* 17:  30.72 */
93 	40960,  /* 18:  40.96 */
94 	61440,  /* 19:  61.44 */
95 	81920,  /* 1A:  81.92 */
96 	122880, /* 1B: 122.88 */
97 	163840, /* 1C: 163.84 */
98 	245760, /* 1D: 245.76 */
99 	327680, /* 1E: 327.68 */
100 	491520  /* 1F: 491.52 */
101 };
102 
103 /*
104  * Note that it is OK to post send work requests in the SQE and ERR
105  * states; rvt_do_send() will process them and generate error
106  * completions as per IB 1.2 C10-96.
107  */
108 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
109 	[IB_QPS_RESET] = 0,
110 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
111 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
112 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
114 	    RVT_PROCESS_NEXT_SEND_OK,
115 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
116 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
117 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
119 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
120 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 };
122 EXPORT_SYMBOL(ib_rvt_state_ops);
123 
124 /* platform specific: return the last level cache (llc) size, in KiB */
125 static int rvt_wss_llc_size(void)
126 {
127 	/* assume that the boot CPU value is universal for all CPUs */
128 	return boot_cpu_data.x86_cache_size;
129 }
130 
131 /* platform specific: cacheless copy */
132 static void cacheless_memcpy(void *dst, void *src, size_t n)
133 {
134 	/*
135 	 * Use the only available X64 cacheless copy.  Add a __user cast
136 	 * to quiet sparse.  The src agument is already in the kernel so
137 	 * there are no security issues.  The extra fault recovery machinery
138 	 * is not invoked.
139 	 */
140 	__copy_user_nocache(dst, (void __user *)src, n, 0);
141 }
142 
143 void rvt_wss_exit(struct rvt_dev_info *rdi)
144 {
145 	struct rvt_wss *wss = rdi->wss;
146 
147 	if (!wss)
148 		return;
149 
150 	/* coded to handle partially initialized and repeat callers */
151 	kfree(wss->entries);
152 	wss->entries = NULL;
153 	kfree(rdi->wss);
154 	rdi->wss = NULL;
155 }
156 
157 /**
158  * rvt_wss_init - Init wss data structures
159  *
160  * Return: 0 on success
161  */
162 int rvt_wss_init(struct rvt_dev_info *rdi)
163 {
164 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
165 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
166 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
167 	long llc_size;
168 	long llc_bits;
169 	long table_size;
170 	long table_bits;
171 	struct rvt_wss *wss;
172 	int node = rdi->dparms.node;
173 
174 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
175 		rdi->wss = NULL;
176 		return 0;
177 	}
178 
179 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
180 	if (!rdi->wss)
181 		return -ENOMEM;
182 	wss = rdi->wss;
183 
184 	/* check for a valid percent range - default to 80 if none or invalid */
185 	if (wss_threshold < 1 || wss_threshold > 100)
186 		wss_threshold = 80;
187 
188 	/* reject a wildly large period */
189 	if (wss_clean_period > 1000000)
190 		wss_clean_period = 256;
191 
192 	/* reject a zero period */
193 	if (wss_clean_period == 0)
194 		wss_clean_period = 1;
195 
196 	/*
197 	 * Calculate the table size - the next power of 2 larger than the
198 	 * LLC size.  LLC size is in KiB.
199 	 */
200 	llc_size = rvt_wss_llc_size() * 1024;
201 	table_size = roundup_pow_of_two(llc_size);
202 
203 	/* one bit per page in rounded up table */
204 	llc_bits = llc_size / PAGE_SIZE;
205 	table_bits = table_size / PAGE_SIZE;
206 	wss->pages_mask = table_bits - 1;
207 	wss->num_entries = table_bits / BITS_PER_LONG;
208 
209 	wss->threshold = (llc_bits * wss_threshold) / 100;
210 	if (wss->threshold == 0)
211 		wss->threshold = 1;
212 
213 	wss->clean_period = wss_clean_period;
214 	atomic_set(&wss->clean_counter, wss_clean_period);
215 
216 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
217 				    GFP_KERNEL, node);
218 	if (!wss->entries) {
219 		rvt_wss_exit(rdi);
220 		return -ENOMEM;
221 	}
222 
223 	return 0;
224 }
225 
226 /*
227  * Advance the clean counter.  When the clean period has expired,
228  * clean an entry.
229  *
230  * This is implemented in atomics to avoid locking.  Because multiple
231  * variables are involved, it can be racy which can lead to slightly
232  * inaccurate information.  Since this is only a heuristic, this is
233  * OK.  Any innaccuracies will clean themselves out as the counter
234  * advances.  That said, it is unlikely the entry clean operation will
235  * race - the next possible racer will not start until the next clean
236  * period.
237  *
238  * The clean counter is implemented as a decrement to zero.  When zero
239  * is reached an entry is cleaned.
240  */
241 static void wss_advance_clean_counter(struct rvt_wss *wss)
242 {
243 	int entry;
244 	int weight;
245 	unsigned long bits;
246 
247 	/* become the cleaner if we decrement the counter to zero */
248 	if (atomic_dec_and_test(&wss->clean_counter)) {
249 		/*
250 		 * Set, not add, the clean period.  This avoids an issue
251 		 * where the counter could decrement below the clean period.
252 		 * Doing a set can result in lost decrements, slowing the
253 		 * clean advance.  Since this a heuristic, this possible
254 		 * slowdown is OK.
255 		 *
256 		 * An alternative is to loop, advancing the counter by a
257 		 * clean period until the result is > 0. However, this could
258 		 * lead to several threads keeping another in the clean loop.
259 		 * This could be mitigated by limiting the number of times
260 		 * we stay in the loop.
261 		 */
262 		atomic_set(&wss->clean_counter, wss->clean_period);
263 
264 		/*
265 		 * Uniquely grab the entry to clean and move to next.
266 		 * The current entry is always the lower bits of
267 		 * wss.clean_entry.  The table size, wss.num_entries,
268 		 * is always a power-of-2.
269 		 */
270 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
271 			& (wss->num_entries - 1);
272 
273 		/* clear the entry and count the bits */
274 		bits = xchg(&wss->entries[entry], 0);
275 		weight = hweight64((u64)bits);
276 		/* only adjust the contended total count if needed */
277 		if (weight)
278 			atomic_sub(weight, &wss->total_count);
279 	}
280 }
281 
282 /*
283  * Insert the given address into the working set array.
284  */
285 static void wss_insert(struct rvt_wss *wss, void *address)
286 {
287 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
288 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
289 	u32 nr = page & (BITS_PER_LONG - 1);
290 
291 	if (!test_and_set_bit(nr, &wss->entries[entry]))
292 		atomic_inc(&wss->total_count);
293 
294 	wss_advance_clean_counter(wss);
295 }
296 
297 /*
298  * Is the working set larger than the threshold?
299  */
300 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
301 {
302 	return atomic_read(&wss->total_count) >= wss->threshold;
303 }
304 
305 static void get_map_page(struct rvt_qpn_table *qpt,
306 			 struct rvt_qpn_map *map)
307 {
308 	unsigned long page = get_zeroed_page(GFP_KERNEL);
309 
310 	/*
311 	 * Free the page if someone raced with us installing it.
312 	 */
313 
314 	spin_lock(&qpt->lock);
315 	if (map->page)
316 		free_page(page);
317 	else
318 		map->page = (void *)page;
319 	spin_unlock(&qpt->lock);
320 }
321 
322 /**
323  * init_qpn_table - initialize the QP number table for a device
324  * @qpt: the QPN table
325  */
326 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
327 {
328 	u32 offset, i;
329 	struct rvt_qpn_map *map;
330 	int ret = 0;
331 
332 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
333 		return -EINVAL;
334 
335 	spin_lock_init(&qpt->lock);
336 
337 	qpt->last = rdi->dparms.qpn_start;
338 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
339 
340 	/*
341 	 * Drivers may want some QPs beyond what we need for verbs let them use
342 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
343 	 * for those. The reserved range must be *after* the range which verbs
344 	 * will pick from.
345 	 */
346 
347 	/* Figure out number of bit maps needed before reserved range */
348 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
349 
350 	/* This should always be zero */
351 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
352 
353 	/* Starting with the first reserved bit map */
354 	map = &qpt->map[qpt->nmaps];
355 
356 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
357 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
358 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
359 		if (!map->page) {
360 			get_map_page(qpt, map);
361 			if (!map->page) {
362 				ret = -ENOMEM;
363 				break;
364 			}
365 		}
366 		set_bit(offset, map->page);
367 		offset++;
368 		if (offset == RVT_BITS_PER_PAGE) {
369 			/* next page */
370 			qpt->nmaps++;
371 			map++;
372 			offset = 0;
373 		}
374 	}
375 	return ret;
376 }
377 
378 /**
379  * free_qpn_table - free the QP number table for a device
380  * @qpt: the QPN table
381  */
382 static void free_qpn_table(struct rvt_qpn_table *qpt)
383 {
384 	int i;
385 
386 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
387 		free_page((unsigned long)qpt->map[i].page);
388 }
389 
390 /**
391  * rvt_driver_qp_init - Init driver qp resources
392  * @rdi: rvt dev strucutre
393  *
394  * Return: 0 on success
395  */
396 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
397 {
398 	int i;
399 	int ret = -ENOMEM;
400 
401 	if (!rdi->dparms.qp_table_size)
402 		return -EINVAL;
403 
404 	/*
405 	 * If driver is not doing any QP allocation then make sure it is
406 	 * providing the necessary QP functions.
407 	 */
408 	if (!rdi->driver_f.free_all_qps ||
409 	    !rdi->driver_f.qp_priv_alloc ||
410 	    !rdi->driver_f.qp_priv_free ||
411 	    !rdi->driver_f.notify_qp_reset ||
412 	    !rdi->driver_f.notify_restart_rc)
413 		return -EINVAL;
414 
415 	/* allocate parent object */
416 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
417 				   rdi->dparms.node);
418 	if (!rdi->qp_dev)
419 		return -ENOMEM;
420 
421 	/* allocate hash table */
422 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
423 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
424 	rdi->qp_dev->qp_table =
425 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
426 			     sizeof(*rdi->qp_dev->qp_table),
427 			     GFP_KERNEL, rdi->dparms.node);
428 	if (!rdi->qp_dev->qp_table)
429 		goto no_qp_table;
430 
431 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
432 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
433 
434 	spin_lock_init(&rdi->qp_dev->qpt_lock);
435 
436 	/* initialize qpn map */
437 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
438 		goto fail_table;
439 
440 	spin_lock_init(&rdi->n_qps_lock);
441 
442 	return 0;
443 
444 fail_table:
445 	kfree(rdi->qp_dev->qp_table);
446 	free_qpn_table(&rdi->qp_dev->qpn_table);
447 
448 no_qp_table:
449 	kfree(rdi->qp_dev);
450 
451 	return ret;
452 }
453 
454 /**
455  * free_all_qps - check for QPs still in use
456  * @rdi: rvt device info structure
457  *
458  * There should not be any QPs still in use.
459  * Free memory for table.
460  */
461 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
462 {
463 	unsigned long flags;
464 	struct rvt_qp *qp;
465 	unsigned n, qp_inuse = 0;
466 	spinlock_t *ql; /* work around too long line below */
467 
468 	if (rdi->driver_f.free_all_qps)
469 		qp_inuse = rdi->driver_f.free_all_qps(rdi);
470 
471 	qp_inuse += rvt_mcast_tree_empty(rdi);
472 
473 	if (!rdi->qp_dev)
474 		return qp_inuse;
475 
476 	ql = &rdi->qp_dev->qpt_lock;
477 	spin_lock_irqsave(ql, flags);
478 	for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
479 		qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
480 					       lockdep_is_held(ql));
481 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
482 
483 		for (; qp; qp = rcu_dereference_protected(qp->next,
484 							  lockdep_is_held(ql)))
485 			qp_inuse++;
486 	}
487 	spin_unlock_irqrestore(ql, flags);
488 	synchronize_rcu();
489 	return qp_inuse;
490 }
491 
492 /**
493  * rvt_qp_exit - clean up qps on device exit
494  * @rdi: rvt dev structure
495  *
496  * Check for qp leaks and free resources.
497  */
498 void rvt_qp_exit(struct rvt_dev_info *rdi)
499 {
500 	u32 qps_inuse = rvt_free_all_qps(rdi);
501 
502 	if (qps_inuse)
503 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
504 			   qps_inuse);
505 	if (!rdi->qp_dev)
506 		return;
507 
508 	kfree(rdi->qp_dev->qp_table);
509 	free_qpn_table(&rdi->qp_dev->qpn_table);
510 	kfree(rdi->qp_dev);
511 }
512 
513 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
514 			      struct rvt_qpn_map *map, unsigned off)
515 {
516 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
517 }
518 
519 /**
520  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
521  *	       IB_QPT_SMI/IB_QPT_GSI
522  * @rdi: rvt device info structure
523  * @qpt: queue pair number table pointer
524  * @port_num: IB port number, 1 based, comes from core
525  *
526  * Return: The queue pair number
527  */
528 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
529 		     enum ib_qp_type type, u8 port_num)
530 {
531 	u32 i, offset, max_scan, qpn;
532 	struct rvt_qpn_map *map;
533 	u32 ret;
534 
535 	if (rdi->driver_f.alloc_qpn)
536 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
537 
538 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
539 		unsigned n;
540 
541 		ret = type == IB_QPT_GSI;
542 		n = 1 << (ret + 2 * (port_num - 1));
543 		spin_lock(&qpt->lock);
544 		if (qpt->flags & n)
545 			ret = -EINVAL;
546 		else
547 			qpt->flags |= n;
548 		spin_unlock(&qpt->lock);
549 		goto bail;
550 	}
551 
552 	qpn = qpt->last + qpt->incr;
553 	if (qpn >= RVT_QPN_MAX)
554 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
555 	/* offset carries bit 0 */
556 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
557 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
558 	max_scan = qpt->nmaps - !offset;
559 	for (i = 0;;) {
560 		if (unlikely(!map->page)) {
561 			get_map_page(qpt, map);
562 			if (unlikely(!map->page))
563 				break;
564 		}
565 		do {
566 			if (!test_and_set_bit(offset, map->page)) {
567 				qpt->last = qpn;
568 				ret = qpn;
569 				goto bail;
570 			}
571 			offset += qpt->incr;
572 			/*
573 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
574 			 * That is OK.   It gets re-assigned below
575 			 */
576 			qpn = mk_qpn(qpt, map, offset);
577 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
578 		/*
579 		 * In order to keep the number of pages allocated to a
580 		 * minimum, we scan the all existing pages before increasing
581 		 * the size of the bitmap table.
582 		 */
583 		if (++i > max_scan) {
584 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
585 				break;
586 			map = &qpt->map[qpt->nmaps++];
587 			/* start at incr with current bit 0 */
588 			offset = qpt->incr | (offset & 1);
589 		} else if (map < &qpt->map[qpt->nmaps]) {
590 			++map;
591 			/* start at incr with current bit 0 */
592 			offset = qpt->incr | (offset & 1);
593 		} else {
594 			map = &qpt->map[0];
595 			/* wrap to first map page, invert bit 0 */
596 			offset = qpt->incr | ((offset & 1) ^ 1);
597 		}
598 		/* there can be no set bits in low-order QoS bits */
599 		WARN_ON(rdi->dparms.qos_shift > 1 &&
600 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
601 		qpn = mk_qpn(qpt, map, offset);
602 	}
603 
604 	ret = -ENOMEM;
605 
606 bail:
607 	return ret;
608 }
609 
610 /**
611  * rvt_clear_mr_refs - Drop help mr refs
612  * @qp: rvt qp data structure
613  * @clr_sends: If shoudl clear send side or not
614  */
615 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
616 {
617 	unsigned n;
618 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
619 
620 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
621 		rvt_put_ss(&qp->s_rdma_read_sge);
622 
623 	rvt_put_ss(&qp->r_sge);
624 
625 	if (clr_sends) {
626 		while (qp->s_last != qp->s_head) {
627 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
628 
629 			rvt_put_qp_swqe(qp, wqe);
630 			if (++qp->s_last >= qp->s_size)
631 				qp->s_last = 0;
632 			smp_wmb(); /* see qp_set_savail */
633 		}
634 		if (qp->s_rdma_mr) {
635 			rvt_put_mr(qp->s_rdma_mr);
636 			qp->s_rdma_mr = NULL;
637 		}
638 	}
639 
640 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
641 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
642 
643 		if (e->rdma_sge.mr) {
644 			rvt_put_mr(e->rdma_sge.mr);
645 			e->rdma_sge.mr = NULL;
646 		}
647 	}
648 }
649 
650 /**
651  * rvt_swqe_has_lkey - return true if lkey is used by swqe
652  * @wqe - the send wqe
653  * @lkey - the lkey
654  *
655  * Test the swqe for using lkey
656  */
657 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
658 {
659 	int i;
660 
661 	for (i = 0; i < wqe->wr.num_sge; i++) {
662 		struct rvt_sge *sge = &wqe->sg_list[i];
663 
664 		if (rvt_mr_has_lkey(sge->mr, lkey))
665 			return true;
666 	}
667 	return false;
668 }
669 
670 /**
671  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
672  * @qp - the rvt_qp
673  * @lkey - the lkey
674  */
675 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
676 {
677 	u32 s_last = qp->s_last;
678 
679 	while (s_last != qp->s_head) {
680 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
681 
682 		if (rvt_swqe_has_lkey(wqe, lkey))
683 			return true;
684 
685 		if (++s_last >= qp->s_size)
686 			s_last = 0;
687 	}
688 	if (qp->s_rdma_mr)
689 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
690 			return true;
691 	return false;
692 }
693 
694 /**
695  * rvt_qp_acks_has_lkey - return true if acks have lkey
696  * @qp - the qp
697  * @lkey - the lkey
698  */
699 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
700 {
701 	int i;
702 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
703 
704 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
705 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
706 
707 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
708 			return true;
709 	}
710 	return false;
711 }
712 
713 /*
714  * rvt_qp_mr_clean - clean up remote ops for lkey
715  * @qp - the qp
716  * @lkey - the lkey that is being de-registered
717  *
718  * This routine checks if the lkey is being used by
719  * the qp.
720  *
721  * If so, the qp is put into an error state to elminate
722  * any references from the qp.
723  */
724 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
725 {
726 	bool lastwqe = false;
727 
728 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
729 	    qp->ibqp.qp_type == IB_QPT_GSI)
730 		/* avoid special QPs */
731 		return;
732 	spin_lock_irq(&qp->r_lock);
733 	spin_lock(&qp->s_hlock);
734 	spin_lock(&qp->s_lock);
735 
736 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
737 		goto check_lwqe;
738 
739 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
740 	    rvt_qp_sends_has_lkey(qp, lkey) ||
741 	    rvt_qp_acks_has_lkey(qp, lkey))
742 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
743 check_lwqe:
744 	spin_unlock(&qp->s_lock);
745 	spin_unlock(&qp->s_hlock);
746 	spin_unlock_irq(&qp->r_lock);
747 	if (lastwqe) {
748 		struct ib_event ev;
749 
750 		ev.device = qp->ibqp.device;
751 		ev.element.qp = &qp->ibqp;
752 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
753 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
754 	}
755 }
756 
757 /**
758  * rvt_remove_qp - remove qp form table
759  * @rdi: rvt dev struct
760  * @qp: qp to remove
761  *
762  * Remove the QP from the table so it can't be found asynchronously by
763  * the receive routine.
764  */
765 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
766 {
767 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
768 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
769 	unsigned long flags;
770 	int removed = 1;
771 
772 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
773 
774 	if (rcu_dereference_protected(rvp->qp[0],
775 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
776 		RCU_INIT_POINTER(rvp->qp[0], NULL);
777 	} else if (rcu_dereference_protected(rvp->qp[1],
778 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
779 		RCU_INIT_POINTER(rvp->qp[1], NULL);
780 	} else {
781 		struct rvt_qp *q;
782 		struct rvt_qp __rcu **qpp;
783 
784 		removed = 0;
785 		qpp = &rdi->qp_dev->qp_table[n];
786 		for (; (q = rcu_dereference_protected(*qpp,
787 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
788 			qpp = &q->next) {
789 			if (q == qp) {
790 				RCU_INIT_POINTER(*qpp,
791 				     rcu_dereference_protected(qp->next,
792 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
793 				removed = 1;
794 				trace_rvt_qpremove(qp, n);
795 				break;
796 			}
797 		}
798 	}
799 
800 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
801 	if (removed) {
802 		synchronize_rcu();
803 		rvt_put_qp(qp);
804 	}
805 }
806 
807 /**
808  * rvt_alloc_rq - allocate memory for user or kernel buffer
809  * @rq: receive queue data structure
810  * @size: number of request queue entries
811  * @node: The NUMA node
812  * @udata: True if user data is available or not false
813  *
814  * Return: If memory allocation failed, return -ENONEM
815  * This function is used by both shared receive
816  * queues and non-shared receive queues to allocate
817  * memory.
818  */
819 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
820 		 struct ib_udata *udata)
821 {
822 	if (udata) {
823 		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
824 		if (!rq->wq)
825 			goto bail;
826 		/* need kwq with no buffers */
827 		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
828 		if (!rq->kwq)
829 			goto bail;
830 		rq->kwq->curr_wq = rq->wq->wq;
831 	} else {
832 		/* need kwq with buffers */
833 		rq->kwq =
834 			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
835 		if (!rq->kwq)
836 			goto bail;
837 		rq->kwq->curr_wq = rq->kwq->wq;
838 	}
839 
840 	spin_lock_init(&rq->kwq->p_lock);
841 	spin_lock_init(&rq->kwq->c_lock);
842 	return 0;
843 bail:
844 	rvt_free_rq(rq);
845 	return -ENOMEM;
846 }
847 
848 /**
849  * rvt_init_qp - initialize the QP state to the reset state
850  * @qp: the QP to init or reinit
851  * @type: the QP type
852  *
853  * This function is called from both rvt_create_qp() and
854  * rvt_reset_qp().   The difference is that the reset
855  * patch the necessary locks to protect against concurent
856  * access.
857  */
858 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
859 			enum ib_qp_type type)
860 {
861 	qp->remote_qpn = 0;
862 	qp->qkey = 0;
863 	qp->qp_access_flags = 0;
864 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
865 	qp->s_hdrwords = 0;
866 	qp->s_wqe = NULL;
867 	qp->s_draining = 0;
868 	qp->s_next_psn = 0;
869 	qp->s_last_psn = 0;
870 	qp->s_sending_psn = 0;
871 	qp->s_sending_hpsn = 0;
872 	qp->s_psn = 0;
873 	qp->r_psn = 0;
874 	qp->r_msn = 0;
875 	if (type == IB_QPT_RC) {
876 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
877 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
878 	} else {
879 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
880 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
881 	}
882 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
883 	qp->r_nak_state = 0;
884 	qp->r_aflags = 0;
885 	qp->r_flags = 0;
886 	qp->s_head = 0;
887 	qp->s_tail = 0;
888 	qp->s_cur = 0;
889 	qp->s_acked = 0;
890 	qp->s_last = 0;
891 	qp->s_ssn = 1;
892 	qp->s_lsn = 0;
893 	qp->s_mig_state = IB_MIG_MIGRATED;
894 	qp->r_head_ack_queue = 0;
895 	qp->s_tail_ack_queue = 0;
896 	qp->s_acked_ack_queue = 0;
897 	qp->s_num_rd_atomic = 0;
898 	if (qp->r_rq.kwq)
899 		qp->r_rq.kwq->count = qp->r_rq.size;
900 	qp->r_sge.num_sge = 0;
901 	atomic_set(&qp->s_reserved_used, 0);
902 }
903 
904 /**
905  * rvt_reset_qp - initialize the QP state to the reset state
906  * @qp: the QP to reset
907  * @type: the QP type
908  *
909  * r_lock, s_hlock, and s_lock are required to be held by the caller
910  */
911 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
912 			 enum ib_qp_type type)
913 	__must_hold(&qp->s_lock)
914 	__must_hold(&qp->s_hlock)
915 	__must_hold(&qp->r_lock)
916 {
917 	lockdep_assert_held(&qp->r_lock);
918 	lockdep_assert_held(&qp->s_hlock);
919 	lockdep_assert_held(&qp->s_lock);
920 	if (qp->state != IB_QPS_RESET) {
921 		qp->state = IB_QPS_RESET;
922 
923 		/* Let drivers flush their waitlist */
924 		rdi->driver_f.flush_qp_waiters(qp);
925 		rvt_stop_rc_timers(qp);
926 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
927 		spin_unlock(&qp->s_lock);
928 		spin_unlock(&qp->s_hlock);
929 		spin_unlock_irq(&qp->r_lock);
930 
931 		/* Stop the send queue and the retry timer */
932 		rdi->driver_f.stop_send_queue(qp);
933 		rvt_del_timers_sync(qp);
934 		/* Wait for things to stop */
935 		rdi->driver_f.quiesce_qp(qp);
936 
937 		/* take qp out the hash and wait for it to be unused */
938 		rvt_remove_qp(rdi, qp);
939 
940 		/* grab the lock b/c it was locked at call time */
941 		spin_lock_irq(&qp->r_lock);
942 		spin_lock(&qp->s_hlock);
943 		spin_lock(&qp->s_lock);
944 
945 		rvt_clear_mr_refs(qp, 1);
946 		/*
947 		 * Let the driver do any tear down or re-init it needs to for
948 		 * a qp that has been reset
949 		 */
950 		rdi->driver_f.notify_qp_reset(qp);
951 	}
952 	rvt_init_qp(rdi, qp, type);
953 	lockdep_assert_held(&qp->r_lock);
954 	lockdep_assert_held(&qp->s_hlock);
955 	lockdep_assert_held(&qp->s_lock);
956 }
957 
958 /** rvt_free_qpn - Free a qpn from the bit map
959  * @qpt: QP table
960  * @qpn: queue pair number to free
961  */
962 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
963 {
964 	struct rvt_qpn_map *map;
965 
966 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
967 	if (map->page)
968 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
969 }
970 
971 /**
972  * get_allowed_ops - Given a QP type return the appropriate allowed OP
973  * @type: valid, supported, QP type
974  */
975 static u8 get_allowed_ops(enum ib_qp_type type)
976 {
977 	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
978 		IB_OPCODE_UC : IB_OPCODE_UD;
979 }
980 
981 /**
982  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
983  * @qp: Valid QP with allowed_ops set
984  *
985  * The rvt_swqe data structure being used is a union, so this is
986  * only valid for UD QPs.
987  */
988 static void free_ud_wq_attr(struct rvt_qp *qp)
989 {
990 	struct rvt_swqe *wqe;
991 	int i;
992 
993 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
994 		wqe = rvt_get_swqe_ptr(qp, i);
995 		kfree(wqe->ud_wr.attr);
996 		wqe->ud_wr.attr = NULL;
997 	}
998 }
999 
1000 /**
1001  * alloc_ud_wq_attr - AH attribute cache for UD QPs
1002  * @qp: Valid QP with allowed_ops set
1003  * @node: Numa node for allocation
1004  *
1005  * The rvt_swqe data structure being used is a union, so this is
1006  * only valid for UD QPs.
1007  */
1008 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1009 {
1010 	struct rvt_swqe *wqe;
1011 	int i;
1012 
1013 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1014 		wqe = rvt_get_swqe_ptr(qp, i);
1015 		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1016 					       GFP_KERNEL, node);
1017 		if (!wqe->ud_wr.attr) {
1018 			free_ud_wq_attr(qp);
1019 			return -ENOMEM;
1020 		}
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 /**
1027  * rvt_create_qp - create a queue pair for a device
1028  * @ibpd: the protection domain who's device we create the queue pair for
1029  * @init_attr: the attributes of the queue pair
1030  * @udata: user data for libibverbs.so
1031  *
1032  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1033  * unique idea of what queue pair numbers mean. For instance there is a reserved
1034  * range for PSM.
1035  *
1036  * Return: the queue pair on success, otherwise returns an errno.
1037  *
1038  * Called by the ib_create_qp() core verbs function.
1039  */
1040 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1041 			    struct ib_qp_init_attr *init_attr,
1042 			    struct ib_udata *udata)
1043 {
1044 	struct rvt_qp *qp;
1045 	int err;
1046 	struct rvt_swqe *swq = NULL;
1047 	size_t sz;
1048 	size_t sg_list_sz;
1049 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
1050 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1051 	void *priv = NULL;
1052 	size_t sqsize;
1053 
1054 	if (!rdi)
1055 		return ERR_PTR(-EINVAL);
1056 
1057 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1058 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1059 	    init_attr->create_flags)
1060 		return ERR_PTR(-EINVAL);
1061 
1062 	/* Check receive queue parameters if no SRQ is specified. */
1063 	if (!init_attr->srq) {
1064 		if (init_attr->cap.max_recv_sge >
1065 		    rdi->dparms.props.max_recv_sge ||
1066 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1067 			return ERR_PTR(-EINVAL);
1068 
1069 		if (init_attr->cap.max_send_sge +
1070 		    init_attr->cap.max_send_wr +
1071 		    init_attr->cap.max_recv_sge +
1072 		    init_attr->cap.max_recv_wr == 0)
1073 			return ERR_PTR(-EINVAL);
1074 	}
1075 	sqsize =
1076 		init_attr->cap.max_send_wr + 1 +
1077 		rdi->dparms.reserved_operations;
1078 	switch (init_attr->qp_type) {
1079 	case IB_QPT_SMI:
1080 	case IB_QPT_GSI:
1081 		if (init_attr->port_num == 0 ||
1082 		    init_attr->port_num > ibpd->device->phys_port_cnt)
1083 			return ERR_PTR(-EINVAL);
1084 		/* fall through */
1085 	case IB_QPT_UC:
1086 	case IB_QPT_RC:
1087 	case IB_QPT_UD:
1088 		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1089 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1090 		if (!swq)
1091 			return ERR_PTR(-ENOMEM);
1092 
1093 		sz = sizeof(*qp);
1094 		sg_list_sz = 0;
1095 		if (init_attr->srq) {
1096 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1097 
1098 			if (srq->rq.max_sge > 1)
1099 				sg_list_sz = sizeof(*qp->r_sg_list) *
1100 					(srq->rq.max_sge - 1);
1101 		} else if (init_attr->cap.max_recv_sge > 1)
1102 			sg_list_sz = sizeof(*qp->r_sg_list) *
1103 				(init_attr->cap.max_recv_sge - 1);
1104 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1105 				  rdi->dparms.node);
1106 		if (!qp)
1107 			goto bail_swq;
1108 		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1109 
1110 		RCU_INIT_POINTER(qp->next, NULL);
1111 		if (init_attr->qp_type == IB_QPT_RC) {
1112 			qp->s_ack_queue =
1113 				kcalloc_node(rvt_max_atomic(rdi),
1114 					     sizeof(*qp->s_ack_queue),
1115 					     GFP_KERNEL,
1116 					     rdi->dparms.node);
1117 			if (!qp->s_ack_queue)
1118 				goto bail_qp;
1119 		}
1120 		/* initialize timers needed for rc qp */
1121 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1122 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1123 			     HRTIMER_MODE_REL);
1124 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1125 
1126 		/*
1127 		 * Driver needs to set up it's private QP structure and do any
1128 		 * initialization that is needed.
1129 		 */
1130 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1131 		if (IS_ERR(priv)) {
1132 			ret = priv;
1133 			goto bail_qp;
1134 		}
1135 		qp->priv = priv;
1136 		qp->timeout_jiffies =
1137 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1138 				1000UL);
1139 		if (init_attr->srq) {
1140 			sz = 0;
1141 		} else {
1142 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1143 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1144 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1145 				sizeof(struct rvt_rwqe);
1146 			err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1147 					   rdi->dparms.node, udata);
1148 			if (err) {
1149 				ret = ERR_PTR(err);
1150 				goto bail_driver_priv;
1151 			}
1152 		}
1153 
1154 		/*
1155 		 * ib_create_qp() will initialize qp->ibqp
1156 		 * except for qp->ibqp.qp_num.
1157 		 */
1158 		spin_lock_init(&qp->r_lock);
1159 		spin_lock_init(&qp->s_hlock);
1160 		spin_lock_init(&qp->s_lock);
1161 		atomic_set(&qp->refcount, 0);
1162 		atomic_set(&qp->local_ops_pending, 0);
1163 		init_waitqueue_head(&qp->wait);
1164 		INIT_LIST_HEAD(&qp->rspwait);
1165 		qp->state = IB_QPS_RESET;
1166 		qp->s_wq = swq;
1167 		qp->s_size = sqsize;
1168 		qp->s_avail = init_attr->cap.max_send_wr;
1169 		qp->s_max_sge = init_attr->cap.max_send_sge;
1170 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1171 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1172 		err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1173 		if (err) {
1174 			ret = (ERR_PTR(err));
1175 			goto bail_driver_priv;
1176 		}
1177 
1178 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1179 				init_attr->qp_type,
1180 				init_attr->port_num);
1181 		if (err < 0) {
1182 			ret = ERR_PTR(err);
1183 			goto bail_rq_wq;
1184 		}
1185 		qp->ibqp.qp_num = err;
1186 		qp->port_num = init_attr->port_num;
1187 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1188 		if (rdi->driver_f.qp_priv_init) {
1189 			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1190 			if (err) {
1191 				ret = ERR_PTR(err);
1192 				goto bail_rq_wq;
1193 			}
1194 		}
1195 		break;
1196 
1197 	default:
1198 		/* Don't support raw QPs */
1199 		return ERR_PTR(-EINVAL);
1200 	}
1201 
1202 	init_attr->cap.max_inline_data = 0;
1203 
1204 	/*
1205 	 * Return the address of the RWQ as the offset to mmap.
1206 	 * See rvt_mmap() for details.
1207 	 */
1208 	if (udata && udata->outlen >= sizeof(__u64)) {
1209 		if (!qp->r_rq.wq) {
1210 			__u64 offset = 0;
1211 
1212 			err = ib_copy_to_udata(udata, &offset,
1213 					       sizeof(offset));
1214 			if (err) {
1215 				ret = ERR_PTR(err);
1216 				goto bail_qpn;
1217 			}
1218 		} else {
1219 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1220 
1221 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1222 						      qp->r_rq.wq);
1223 			if (!qp->ip) {
1224 				ret = ERR_PTR(-ENOMEM);
1225 				goto bail_qpn;
1226 			}
1227 
1228 			err = ib_copy_to_udata(udata, &qp->ip->offset,
1229 					       sizeof(qp->ip->offset));
1230 			if (err) {
1231 				ret = ERR_PTR(err);
1232 				goto bail_ip;
1233 			}
1234 		}
1235 		qp->pid = current->pid;
1236 	}
1237 
1238 	spin_lock(&rdi->n_qps_lock);
1239 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1240 		spin_unlock(&rdi->n_qps_lock);
1241 		ret = ERR_PTR(-ENOMEM);
1242 		goto bail_ip;
1243 	}
1244 
1245 	rdi->n_qps_allocated++;
1246 	/*
1247 	 * Maintain a busy_jiffies variable that will be added to the timeout
1248 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1249 	 * is scaled by the number of rc qps created for the device to reduce
1250 	 * the number of timeouts occurring when there is a large number of
1251 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1252 	 * The scaling interval is selected based on extensive performance
1253 	 * evaluation of targeted workloads.
1254 	 */
1255 	if (init_attr->qp_type == IB_QPT_RC) {
1256 		rdi->n_rc_qps++;
1257 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1258 	}
1259 	spin_unlock(&rdi->n_qps_lock);
1260 
1261 	if (qp->ip) {
1262 		spin_lock_irq(&rdi->pending_lock);
1263 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1264 		spin_unlock_irq(&rdi->pending_lock);
1265 	}
1266 
1267 	ret = &qp->ibqp;
1268 
1269 	return ret;
1270 
1271 bail_ip:
1272 	if (qp->ip)
1273 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1274 
1275 bail_qpn:
1276 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1277 
1278 bail_rq_wq:
1279 	rvt_free_rq(&qp->r_rq);
1280 	free_ud_wq_attr(qp);
1281 
1282 bail_driver_priv:
1283 	rdi->driver_f.qp_priv_free(rdi, qp);
1284 
1285 bail_qp:
1286 	kfree(qp->s_ack_queue);
1287 	kfree(qp);
1288 
1289 bail_swq:
1290 	vfree(swq);
1291 
1292 	return ret;
1293 }
1294 
1295 /**
1296  * rvt_error_qp - put a QP into the error state
1297  * @qp: the QP to put into the error state
1298  * @err: the receive completion error to signal if a RWQE is active
1299  *
1300  * Flushes both send and receive work queues.
1301  *
1302  * Return: true if last WQE event should be generated.
1303  * The QP r_lock and s_lock should be held and interrupts disabled.
1304  * If we are already in error state, just return.
1305  */
1306 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1307 {
1308 	struct ib_wc wc;
1309 	int ret = 0;
1310 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1311 
1312 	lockdep_assert_held(&qp->r_lock);
1313 	lockdep_assert_held(&qp->s_lock);
1314 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1315 		goto bail;
1316 
1317 	qp->state = IB_QPS_ERR;
1318 
1319 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1320 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1321 		del_timer(&qp->s_timer);
1322 	}
1323 
1324 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1325 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1326 
1327 	rdi->driver_f.notify_error_qp(qp);
1328 
1329 	/* Schedule the sending tasklet to drain the send work queue. */
1330 	if (READ_ONCE(qp->s_last) != qp->s_head)
1331 		rdi->driver_f.schedule_send(qp);
1332 
1333 	rvt_clear_mr_refs(qp, 0);
1334 
1335 	memset(&wc, 0, sizeof(wc));
1336 	wc.qp = &qp->ibqp;
1337 	wc.opcode = IB_WC_RECV;
1338 
1339 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1340 		wc.wr_id = qp->r_wr_id;
1341 		wc.status = err;
1342 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1343 	}
1344 	wc.status = IB_WC_WR_FLUSH_ERR;
1345 
1346 	if (qp->r_rq.kwq) {
1347 		u32 head;
1348 		u32 tail;
1349 		struct rvt_rwq *wq = NULL;
1350 		struct rvt_krwq *kwq = NULL;
1351 
1352 		spin_lock(&qp->r_rq.kwq->c_lock);
1353 		/* qp->ip used to validate if there is a  user buffer mmaped */
1354 		if (qp->ip) {
1355 			wq = qp->r_rq.wq;
1356 			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1357 			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1358 		} else {
1359 			kwq = qp->r_rq.kwq;
1360 			head = kwq->head;
1361 			tail = kwq->tail;
1362 		}
1363 		/* sanity check pointers before trusting them */
1364 		if (head >= qp->r_rq.size)
1365 			head = 0;
1366 		if (tail >= qp->r_rq.size)
1367 			tail = 0;
1368 		while (tail != head) {
1369 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1370 			if (++tail >= qp->r_rq.size)
1371 				tail = 0;
1372 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1373 		}
1374 		if (qp->ip)
1375 			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1376 		else
1377 			kwq->tail = tail;
1378 		spin_unlock(&qp->r_rq.kwq->c_lock);
1379 	} else if (qp->ibqp.event_handler) {
1380 		ret = 1;
1381 	}
1382 
1383 bail:
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL(rvt_error_qp);
1387 
1388 /*
1389  * Put the QP into the hash table.
1390  * The hash table holds a reference to the QP.
1391  */
1392 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1393 {
1394 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1395 	unsigned long flags;
1396 
1397 	rvt_get_qp(qp);
1398 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1399 
1400 	if (qp->ibqp.qp_num <= 1) {
1401 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1402 	} else {
1403 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1404 
1405 		qp->next = rdi->qp_dev->qp_table[n];
1406 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1407 		trace_rvt_qpinsert(qp, n);
1408 	}
1409 
1410 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1411 }
1412 
1413 /**
1414  * rvt_modify_qp - modify the attributes of a queue pair
1415  * @ibqp: the queue pair who's attributes we're modifying
1416  * @attr: the new attributes
1417  * @attr_mask: the mask of attributes to modify
1418  * @udata: user data for libibverbs.so
1419  *
1420  * Return: 0 on success, otherwise returns an errno.
1421  */
1422 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1423 		  int attr_mask, struct ib_udata *udata)
1424 {
1425 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1426 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1427 	enum ib_qp_state cur_state, new_state;
1428 	struct ib_event ev;
1429 	int lastwqe = 0;
1430 	int mig = 0;
1431 	int pmtu = 0; /* for gcc warning only */
1432 	int opa_ah;
1433 
1434 	spin_lock_irq(&qp->r_lock);
1435 	spin_lock(&qp->s_hlock);
1436 	spin_lock(&qp->s_lock);
1437 
1438 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1439 		attr->cur_qp_state : qp->state;
1440 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1441 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1442 
1443 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1444 				attr_mask))
1445 		goto inval;
1446 
1447 	if (rdi->driver_f.check_modify_qp &&
1448 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1449 		goto inval;
1450 
1451 	if (attr_mask & IB_QP_AV) {
1452 		if (opa_ah) {
1453 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1454 				opa_get_mcast_base(OPA_MCAST_NR))
1455 				goto inval;
1456 		} else {
1457 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1458 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1459 				goto inval;
1460 		}
1461 
1462 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1463 			goto inval;
1464 	}
1465 
1466 	if (attr_mask & IB_QP_ALT_PATH) {
1467 		if (opa_ah) {
1468 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1469 				opa_get_mcast_base(OPA_MCAST_NR))
1470 				goto inval;
1471 		} else {
1472 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1473 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1474 				goto inval;
1475 		}
1476 
1477 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1478 			goto inval;
1479 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1480 			goto inval;
1481 	}
1482 
1483 	if (attr_mask & IB_QP_PKEY_INDEX)
1484 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1485 			goto inval;
1486 
1487 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1488 		if (attr->min_rnr_timer > 31)
1489 			goto inval;
1490 
1491 	if (attr_mask & IB_QP_PORT)
1492 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1493 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1494 		    attr->port_num == 0 ||
1495 		    attr->port_num > ibqp->device->phys_port_cnt)
1496 			goto inval;
1497 
1498 	if (attr_mask & IB_QP_DEST_QPN)
1499 		if (attr->dest_qp_num > RVT_QPN_MASK)
1500 			goto inval;
1501 
1502 	if (attr_mask & IB_QP_RETRY_CNT)
1503 		if (attr->retry_cnt > 7)
1504 			goto inval;
1505 
1506 	if (attr_mask & IB_QP_RNR_RETRY)
1507 		if (attr->rnr_retry > 7)
1508 			goto inval;
1509 
1510 	/*
1511 	 * Don't allow invalid path_mtu values.  OK to set greater
1512 	 * than the active mtu (or even the max_cap, if we have tuned
1513 	 * that to a small mtu.  We'll set qp->path_mtu
1514 	 * to the lesser of requested attribute mtu and active,
1515 	 * for packetizing messages.
1516 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1517 	 */
1518 	if (attr_mask & IB_QP_PATH_MTU) {
1519 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1520 		if (pmtu < 0)
1521 			goto inval;
1522 	}
1523 
1524 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1525 		if (attr->path_mig_state == IB_MIG_REARM) {
1526 			if (qp->s_mig_state == IB_MIG_ARMED)
1527 				goto inval;
1528 			if (new_state != IB_QPS_RTS)
1529 				goto inval;
1530 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1531 			if (qp->s_mig_state == IB_MIG_REARM)
1532 				goto inval;
1533 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1534 				goto inval;
1535 			if (qp->s_mig_state == IB_MIG_ARMED)
1536 				mig = 1;
1537 		} else {
1538 			goto inval;
1539 		}
1540 	}
1541 
1542 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1543 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1544 			goto inval;
1545 
1546 	switch (new_state) {
1547 	case IB_QPS_RESET:
1548 		if (qp->state != IB_QPS_RESET)
1549 			rvt_reset_qp(rdi, qp, ibqp->qp_type);
1550 		break;
1551 
1552 	case IB_QPS_RTR:
1553 		/* Allow event to re-trigger if QP set to RTR more than once */
1554 		qp->r_flags &= ~RVT_R_COMM_EST;
1555 		qp->state = new_state;
1556 		break;
1557 
1558 	case IB_QPS_SQD:
1559 		qp->s_draining = qp->s_last != qp->s_cur;
1560 		qp->state = new_state;
1561 		break;
1562 
1563 	case IB_QPS_SQE:
1564 		if (qp->ibqp.qp_type == IB_QPT_RC)
1565 			goto inval;
1566 		qp->state = new_state;
1567 		break;
1568 
1569 	case IB_QPS_ERR:
1570 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1571 		break;
1572 
1573 	default:
1574 		qp->state = new_state;
1575 		break;
1576 	}
1577 
1578 	if (attr_mask & IB_QP_PKEY_INDEX)
1579 		qp->s_pkey_index = attr->pkey_index;
1580 
1581 	if (attr_mask & IB_QP_PORT)
1582 		qp->port_num = attr->port_num;
1583 
1584 	if (attr_mask & IB_QP_DEST_QPN)
1585 		qp->remote_qpn = attr->dest_qp_num;
1586 
1587 	if (attr_mask & IB_QP_SQ_PSN) {
1588 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1589 		qp->s_psn = qp->s_next_psn;
1590 		qp->s_sending_psn = qp->s_next_psn;
1591 		qp->s_last_psn = qp->s_next_psn - 1;
1592 		qp->s_sending_hpsn = qp->s_last_psn;
1593 	}
1594 
1595 	if (attr_mask & IB_QP_RQ_PSN)
1596 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1597 
1598 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1599 		qp->qp_access_flags = attr->qp_access_flags;
1600 
1601 	if (attr_mask & IB_QP_AV) {
1602 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1603 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1604 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1605 	}
1606 
1607 	if (attr_mask & IB_QP_ALT_PATH) {
1608 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1609 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1610 	}
1611 
1612 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1613 		qp->s_mig_state = attr->path_mig_state;
1614 		if (mig) {
1615 			qp->remote_ah_attr = qp->alt_ah_attr;
1616 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1617 			qp->s_pkey_index = qp->s_alt_pkey_index;
1618 		}
1619 	}
1620 
1621 	if (attr_mask & IB_QP_PATH_MTU) {
1622 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1623 		qp->log_pmtu = ilog2(qp->pmtu);
1624 	}
1625 
1626 	if (attr_mask & IB_QP_RETRY_CNT) {
1627 		qp->s_retry_cnt = attr->retry_cnt;
1628 		qp->s_retry = attr->retry_cnt;
1629 	}
1630 
1631 	if (attr_mask & IB_QP_RNR_RETRY) {
1632 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1633 		qp->s_rnr_retry = attr->rnr_retry;
1634 	}
1635 
1636 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1637 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1638 
1639 	if (attr_mask & IB_QP_TIMEOUT) {
1640 		qp->timeout = attr->timeout;
1641 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1642 	}
1643 
1644 	if (attr_mask & IB_QP_QKEY)
1645 		qp->qkey = attr->qkey;
1646 
1647 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1648 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1649 
1650 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1651 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1652 
1653 	if (rdi->driver_f.modify_qp)
1654 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1655 
1656 	spin_unlock(&qp->s_lock);
1657 	spin_unlock(&qp->s_hlock);
1658 	spin_unlock_irq(&qp->r_lock);
1659 
1660 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1661 		rvt_insert_qp(rdi, qp);
1662 
1663 	if (lastwqe) {
1664 		ev.device = qp->ibqp.device;
1665 		ev.element.qp = &qp->ibqp;
1666 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1667 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1668 	}
1669 	if (mig) {
1670 		ev.device = qp->ibqp.device;
1671 		ev.element.qp = &qp->ibqp;
1672 		ev.event = IB_EVENT_PATH_MIG;
1673 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1674 	}
1675 	return 0;
1676 
1677 inval:
1678 	spin_unlock(&qp->s_lock);
1679 	spin_unlock(&qp->s_hlock);
1680 	spin_unlock_irq(&qp->r_lock);
1681 	return -EINVAL;
1682 }
1683 
1684 /**
1685  * rvt_destroy_qp - destroy a queue pair
1686  * @ibqp: the queue pair to destroy
1687  *
1688  * Note that this can be called while the QP is actively sending or
1689  * receiving!
1690  *
1691  * Return: 0 on success.
1692  */
1693 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1694 {
1695 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1696 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1697 
1698 	spin_lock_irq(&qp->r_lock);
1699 	spin_lock(&qp->s_hlock);
1700 	spin_lock(&qp->s_lock);
1701 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1702 	spin_unlock(&qp->s_lock);
1703 	spin_unlock(&qp->s_hlock);
1704 	spin_unlock_irq(&qp->r_lock);
1705 
1706 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1707 	/* qpn is now available for use again */
1708 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1709 
1710 	spin_lock(&rdi->n_qps_lock);
1711 	rdi->n_qps_allocated--;
1712 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1713 		rdi->n_rc_qps--;
1714 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1715 	}
1716 	spin_unlock(&rdi->n_qps_lock);
1717 
1718 	if (qp->ip)
1719 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1720 	kvfree(qp->r_rq.kwq);
1721 	rdi->driver_f.qp_priv_free(rdi, qp);
1722 	kfree(qp->s_ack_queue);
1723 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1724 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1725 	free_ud_wq_attr(qp);
1726 	vfree(qp->s_wq);
1727 	kfree(qp);
1728 	return 0;
1729 }
1730 
1731 /**
1732  * rvt_query_qp - query an ipbq
1733  * @ibqp: IB qp to query
1734  * @attr: attr struct to fill in
1735  * @attr_mask: attr mask ignored
1736  * @init_attr: struct to fill in
1737  *
1738  * Return: always 0
1739  */
1740 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1741 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1742 {
1743 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1744 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1745 
1746 	attr->qp_state = qp->state;
1747 	attr->cur_qp_state = attr->qp_state;
1748 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1749 	attr->path_mig_state = qp->s_mig_state;
1750 	attr->qkey = qp->qkey;
1751 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1752 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1753 	attr->dest_qp_num = qp->remote_qpn;
1754 	attr->qp_access_flags = qp->qp_access_flags;
1755 	attr->cap.max_send_wr = qp->s_size - 1 -
1756 		rdi->dparms.reserved_operations;
1757 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1758 	attr->cap.max_send_sge = qp->s_max_sge;
1759 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1760 	attr->cap.max_inline_data = 0;
1761 	attr->ah_attr = qp->remote_ah_attr;
1762 	attr->alt_ah_attr = qp->alt_ah_attr;
1763 	attr->pkey_index = qp->s_pkey_index;
1764 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1765 	attr->en_sqd_async_notify = 0;
1766 	attr->sq_draining = qp->s_draining;
1767 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1768 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1769 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1770 	attr->port_num = qp->port_num;
1771 	attr->timeout = qp->timeout;
1772 	attr->retry_cnt = qp->s_retry_cnt;
1773 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1774 	attr->alt_port_num =
1775 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1776 	attr->alt_timeout = qp->alt_timeout;
1777 
1778 	init_attr->event_handler = qp->ibqp.event_handler;
1779 	init_attr->qp_context = qp->ibqp.qp_context;
1780 	init_attr->send_cq = qp->ibqp.send_cq;
1781 	init_attr->recv_cq = qp->ibqp.recv_cq;
1782 	init_attr->srq = qp->ibqp.srq;
1783 	init_attr->cap = attr->cap;
1784 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1785 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1786 	else
1787 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1788 	init_attr->qp_type = qp->ibqp.qp_type;
1789 	init_attr->port_num = qp->port_num;
1790 	return 0;
1791 }
1792 
1793 /**
1794  * rvt_post_receive - post a receive on a QP
1795  * @ibqp: the QP to post the receive on
1796  * @wr: the WR to post
1797  * @bad_wr: the first bad WR is put here
1798  *
1799  * This may be called from interrupt context.
1800  *
1801  * Return: 0 on success otherwise errno
1802  */
1803 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1804 		  const struct ib_recv_wr **bad_wr)
1805 {
1806 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1807 	struct rvt_krwq *wq = qp->r_rq.kwq;
1808 	unsigned long flags;
1809 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1810 				!qp->ibqp.srq;
1811 
1812 	/* Check that state is OK to post receive. */
1813 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1814 		*bad_wr = wr;
1815 		return -EINVAL;
1816 	}
1817 
1818 	for (; wr; wr = wr->next) {
1819 		struct rvt_rwqe *wqe;
1820 		u32 next;
1821 		int i;
1822 
1823 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1824 			*bad_wr = wr;
1825 			return -EINVAL;
1826 		}
1827 
1828 		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1829 		next = wq->head + 1;
1830 		if (next >= qp->r_rq.size)
1831 			next = 0;
1832 		if (next == READ_ONCE(wq->tail)) {
1833 			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1834 			*bad_wr = wr;
1835 			return -ENOMEM;
1836 		}
1837 		if (unlikely(qp_err_flush)) {
1838 			struct ib_wc wc;
1839 
1840 			memset(&wc, 0, sizeof(wc));
1841 			wc.qp = &qp->ibqp;
1842 			wc.opcode = IB_WC_RECV;
1843 			wc.wr_id = wr->wr_id;
1844 			wc.status = IB_WC_WR_FLUSH_ERR;
1845 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1846 		} else {
1847 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1848 			wqe->wr_id = wr->wr_id;
1849 			wqe->num_sge = wr->num_sge;
1850 			for (i = 0; i < wr->num_sge; i++) {
1851 				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1852 				wqe->sg_list[i].length = wr->sg_list[i].length;
1853 				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1854 			}
1855 			/*
1856 			 * Make sure queue entry is written
1857 			 * before the head index.
1858 			 */
1859 			smp_store_release(&wq->head, next);
1860 		}
1861 		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1862 	}
1863 	return 0;
1864 }
1865 
1866 /**
1867  * rvt_qp_valid_operation - validate post send wr request
1868  * @qp - the qp
1869  * @post-parms - the post send table for the driver
1870  * @wr - the work request
1871  *
1872  * The routine validates the operation based on the
1873  * validation table an returns the length of the operation
1874  * which can extend beyond the ib_send_bw.  Operation
1875  * dependent flags key atomic operation validation.
1876  *
1877  * There is an exception for UD qps that validates the pd and
1878  * overrides the length to include the additional UD specific
1879  * length.
1880  *
1881  * Returns a negative error or the length of the work request
1882  * for building the swqe.
1883  */
1884 static inline int rvt_qp_valid_operation(
1885 	struct rvt_qp *qp,
1886 	const struct rvt_operation_params *post_parms,
1887 	const struct ib_send_wr *wr)
1888 {
1889 	int len;
1890 
1891 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1892 		return -EINVAL;
1893 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1894 		return -EINVAL;
1895 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1896 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1897 		return -EINVAL;
1898 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1899 	    (wr->num_sge == 0 ||
1900 	     wr->sg_list[0].length < sizeof(u64) ||
1901 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1902 		return -EINVAL;
1903 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1904 	    !qp->s_max_rd_atomic)
1905 		return -EINVAL;
1906 	len = post_parms[wr->opcode].length;
1907 	/* UD specific */
1908 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1909 	    qp->ibqp.qp_type != IB_QPT_RC) {
1910 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1911 			return -EINVAL;
1912 		len = sizeof(struct ib_ud_wr);
1913 	}
1914 	return len;
1915 }
1916 
1917 /**
1918  * rvt_qp_is_avail - determine queue capacity
1919  * @qp: the qp
1920  * @rdi: the rdmavt device
1921  * @reserved_op: is reserved operation
1922  *
1923  * This assumes the s_hlock is held but the s_last
1924  * qp variable is uncontrolled.
1925  *
1926  * For non reserved operations, the qp->s_avail
1927  * may be changed.
1928  *
1929  * The return value is zero or a -ENOMEM.
1930  */
1931 static inline int rvt_qp_is_avail(
1932 	struct rvt_qp *qp,
1933 	struct rvt_dev_info *rdi,
1934 	bool reserved_op)
1935 {
1936 	u32 slast;
1937 	u32 avail;
1938 	u32 reserved_used;
1939 
1940 	/* see rvt_qp_wqe_unreserve() */
1941 	smp_mb__before_atomic();
1942 	if (unlikely(reserved_op)) {
1943 		/* see rvt_qp_wqe_unreserve() */
1944 		reserved_used = atomic_read(&qp->s_reserved_used);
1945 		if (reserved_used >= rdi->dparms.reserved_operations)
1946 			return -ENOMEM;
1947 		return 0;
1948 	}
1949 	/* non-reserved operations */
1950 	if (likely(qp->s_avail))
1951 		return 0;
1952 	/* See rvt_qp_complete_swqe() */
1953 	slast = smp_load_acquire(&qp->s_last);
1954 	if (qp->s_head >= slast)
1955 		avail = qp->s_size - (qp->s_head - slast);
1956 	else
1957 		avail = slast - qp->s_head;
1958 
1959 	reserved_used = atomic_read(&qp->s_reserved_used);
1960 	avail =  avail - 1 -
1961 		(rdi->dparms.reserved_operations - reserved_used);
1962 	/* insure we don't assign a negative s_avail */
1963 	if ((s32)avail <= 0)
1964 		return -ENOMEM;
1965 	qp->s_avail = avail;
1966 	if (WARN_ON(qp->s_avail >
1967 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1968 		rvt_pr_err(rdi,
1969 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1970 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1971 			   qp->s_head, qp->s_tail, qp->s_cur,
1972 			   qp->s_acked, qp->s_last);
1973 	return 0;
1974 }
1975 
1976 /**
1977  * rvt_post_one_wr - post one RC, UC, or UD send work request
1978  * @qp: the QP to post on
1979  * @wr: the work request to send
1980  */
1981 static int rvt_post_one_wr(struct rvt_qp *qp,
1982 			   const struct ib_send_wr *wr,
1983 			   bool *call_send)
1984 {
1985 	struct rvt_swqe *wqe;
1986 	u32 next;
1987 	int i;
1988 	int j;
1989 	int acc;
1990 	struct rvt_lkey_table *rkt;
1991 	struct rvt_pd *pd;
1992 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1993 	u8 log_pmtu;
1994 	int ret;
1995 	size_t cplen;
1996 	bool reserved_op;
1997 	int local_ops_delayed = 0;
1998 
1999 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2000 
2001 	/* IB spec says that num_sge == 0 is OK. */
2002 	if (unlikely(wr->num_sge > qp->s_max_sge))
2003 		return -EINVAL;
2004 
2005 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2006 	if (ret < 0)
2007 		return ret;
2008 	cplen = ret;
2009 
2010 	/*
2011 	 * Local operations include fast register and local invalidate.
2012 	 * Fast register needs to be processed immediately because the
2013 	 * registered lkey may be used by following work requests and the
2014 	 * lkey needs to be valid at the time those requests are posted.
2015 	 * Local invalidate can be processed immediately if fencing is
2016 	 * not required and no previous local invalidate ops are pending.
2017 	 * Signaled local operations that have been processed immediately
2018 	 * need to have requests with "completion only" flags set posted
2019 	 * to the send queue in order to generate completions.
2020 	 */
2021 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2022 		switch (wr->opcode) {
2023 		case IB_WR_REG_MR:
2024 			ret = rvt_fast_reg_mr(qp,
2025 					      reg_wr(wr)->mr,
2026 					      reg_wr(wr)->key,
2027 					      reg_wr(wr)->access);
2028 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2029 				return ret;
2030 			break;
2031 		case IB_WR_LOCAL_INV:
2032 			if ((wr->send_flags & IB_SEND_FENCE) ||
2033 			    atomic_read(&qp->local_ops_pending)) {
2034 				local_ops_delayed = 1;
2035 			} else {
2036 				ret = rvt_invalidate_rkey(
2037 					qp, wr->ex.invalidate_rkey);
2038 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2039 					return ret;
2040 			}
2041 			break;
2042 		default:
2043 			return -EINVAL;
2044 		}
2045 	}
2046 
2047 	reserved_op = rdi->post_parms[wr->opcode].flags &
2048 			RVT_OPERATION_USE_RESERVE;
2049 	/* check for avail */
2050 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2051 	if (ret)
2052 		return ret;
2053 	next = qp->s_head + 1;
2054 	if (next >= qp->s_size)
2055 		next = 0;
2056 
2057 	rkt = &rdi->lkey_table;
2058 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2059 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2060 
2061 	/* cplen has length from above */
2062 	memcpy(&wqe->wr, wr, cplen);
2063 
2064 	wqe->length = 0;
2065 	j = 0;
2066 	if (wr->num_sge) {
2067 		struct rvt_sge *last_sge = NULL;
2068 
2069 		acc = wr->opcode >= IB_WR_RDMA_READ ?
2070 			IB_ACCESS_LOCAL_WRITE : 0;
2071 		for (i = 0; i < wr->num_sge; i++) {
2072 			u32 length = wr->sg_list[i].length;
2073 
2074 			if (length == 0)
2075 				continue;
2076 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2077 					  &wr->sg_list[i], acc);
2078 			if (unlikely(ret < 0))
2079 				goto bail_inval_free;
2080 			wqe->length += length;
2081 			if (ret)
2082 				last_sge = &wqe->sg_list[j];
2083 			j += ret;
2084 		}
2085 		wqe->wr.num_sge = j;
2086 	}
2087 
2088 	/*
2089 	 * Calculate and set SWQE PSN values prior to handing it off
2090 	 * to the driver's check routine. This give the driver the
2091 	 * opportunity to adjust PSN values based on internal checks.
2092 	 */
2093 	log_pmtu = qp->log_pmtu;
2094 	if (qp->allowed_ops == IB_OPCODE_UD) {
2095 		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2096 
2097 		log_pmtu = ah->log_pmtu;
2098 		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2099 	}
2100 
2101 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2102 		if (local_ops_delayed)
2103 			atomic_inc(&qp->local_ops_pending);
2104 		else
2105 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2106 		wqe->ssn = 0;
2107 		wqe->psn = 0;
2108 		wqe->lpsn = 0;
2109 	} else {
2110 		wqe->ssn = qp->s_ssn++;
2111 		wqe->psn = qp->s_next_psn;
2112 		wqe->lpsn = wqe->psn +
2113 				(wqe->length ?
2114 					((wqe->length - 1) >> log_pmtu) :
2115 					0);
2116 	}
2117 
2118 	/* general part of wqe valid - allow for driver checks */
2119 	if (rdi->driver_f.setup_wqe) {
2120 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2121 		if (ret < 0)
2122 			goto bail_inval_free_ref;
2123 	}
2124 
2125 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2126 		qp->s_next_psn = wqe->lpsn + 1;
2127 
2128 	if (unlikely(reserved_op)) {
2129 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2130 		rvt_qp_wqe_reserve(qp, wqe);
2131 	} else {
2132 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2133 		qp->s_avail--;
2134 	}
2135 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2136 	smp_wmb(); /* see request builders */
2137 	qp->s_head = next;
2138 
2139 	return 0;
2140 
2141 bail_inval_free_ref:
2142 	if (qp->allowed_ops == IB_OPCODE_UD)
2143 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2144 bail_inval_free:
2145 	/* release mr holds */
2146 	while (j) {
2147 		struct rvt_sge *sge = &wqe->sg_list[--j];
2148 
2149 		rvt_put_mr(sge->mr);
2150 	}
2151 	return ret;
2152 }
2153 
2154 /**
2155  * rvt_post_send - post a send on a QP
2156  * @ibqp: the QP to post the send on
2157  * @wr: the list of work requests to post
2158  * @bad_wr: the first bad WR is put here
2159  *
2160  * This may be called from interrupt context.
2161  *
2162  * Return: 0 on success else errno
2163  */
2164 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2165 		  const struct ib_send_wr **bad_wr)
2166 {
2167 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2168 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2169 	unsigned long flags = 0;
2170 	bool call_send;
2171 	unsigned nreq = 0;
2172 	int err = 0;
2173 
2174 	spin_lock_irqsave(&qp->s_hlock, flags);
2175 
2176 	/*
2177 	 * Ensure QP state is such that we can send. If not bail out early,
2178 	 * there is no need to do this every time we post a send.
2179 	 */
2180 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2181 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2182 		return -EINVAL;
2183 	}
2184 
2185 	/*
2186 	 * If the send queue is empty, and we only have a single WR then just go
2187 	 * ahead and kick the send engine into gear. Otherwise we will always
2188 	 * just schedule the send to happen later.
2189 	 */
2190 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2191 
2192 	for (; wr; wr = wr->next) {
2193 		err = rvt_post_one_wr(qp, wr, &call_send);
2194 		if (unlikely(err)) {
2195 			*bad_wr = wr;
2196 			goto bail;
2197 		}
2198 		nreq++;
2199 	}
2200 bail:
2201 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2202 	if (nreq) {
2203 		/*
2204 		 * Only call do_send if there is exactly one packet, and the
2205 		 * driver said it was ok.
2206 		 */
2207 		if (nreq == 1 && call_send)
2208 			rdi->driver_f.do_send(qp);
2209 		else
2210 			rdi->driver_f.schedule_send_no_lock(qp);
2211 	}
2212 	return err;
2213 }
2214 
2215 /**
2216  * rvt_post_srq_receive - post a receive on a shared receive queue
2217  * @ibsrq: the SRQ to post the receive on
2218  * @wr: the list of work requests to post
2219  * @bad_wr: A pointer to the first WR to cause a problem is put here
2220  *
2221  * This may be called from interrupt context.
2222  *
2223  * Return: 0 on success else errno
2224  */
2225 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2226 		      const struct ib_recv_wr **bad_wr)
2227 {
2228 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2229 	struct rvt_krwq *wq;
2230 	unsigned long flags;
2231 
2232 	for (; wr; wr = wr->next) {
2233 		struct rvt_rwqe *wqe;
2234 		u32 next;
2235 		int i;
2236 
2237 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2238 			*bad_wr = wr;
2239 			return -EINVAL;
2240 		}
2241 
2242 		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2243 		wq = srq->rq.kwq;
2244 		next = wq->head + 1;
2245 		if (next >= srq->rq.size)
2246 			next = 0;
2247 		if (next == READ_ONCE(wq->tail)) {
2248 			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2249 			*bad_wr = wr;
2250 			return -ENOMEM;
2251 		}
2252 
2253 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2254 		wqe->wr_id = wr->wr_id;
2255 		wqe->num_sge = wr->num_sge;
2256 		for (i = 0; i < wr->num_sge; i++) {
2257 			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2258 			wqe->sg_list[i].length = wr->sg_list[i].length;
2259 			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2260 		}
2261 		/* Make sure queue entry is written before the head index. */
2262 		smp_store_release(&wq->head, next);
2263 		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2264 	}
2265 	return 0;
2266 }
2267 
2268 /*
2269  * rvt used the internal kernel struct as part of its ABI, for now make sure
2270  * the kernel struct does not change layout. FIXME: rvt should never cast the
2271  * user struct to a kernel struct.
2272  */
2273 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2274 {
2275 	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2276 		     offsetof(struct rvt_wqe_sge, addr));
2277 	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2278 		     offsetof(struct rvt_wqe_sge, length));
2279 	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2280 		     offsetof(struct rvt_wqe_sge, lkey));
2281 	return (struct ib_sge *)sge;
2282 }
2283 
2284 /*
2285  * Validate a RWQE and fill in the SGE state.
2286  * Return 1 if OK.
2287  */
2288 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2289 {
2290 	int i, j, ret;
2291 	struct ib_wc wc;
2292 	struct rvt_lkey_table *rkt;
2293 	struct rvt_pd *pd;
2294 	struct rvt_sge_state *ss;
2295 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2296 
2297 	rkt = &rdi->lkey_table;
2298 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2299 	ss = &qp->r_sge;
2300 	ss->sg_list = qp->r_sg_list;
2301 	qp->r_len = 0;
2302 	for (i = j = 0; i < wqe->num_sge; i++) {
2303 		if (wqe->sg_list[i].length == 0)
2304 			continue;
2305 		/* Check LKEY */
2306 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2307 				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2308 				  IB_ACCESS_LOCAL_WRITE);
2309 		if (unlikely(ret <= 0))
2310 			goto bad_lkey;
2311 		qp->r_len += wqe->sg_list[i].length;
2312 		j++;
2313 	}
2314 	ss->num_sge = j;
2315 	ss->total_len = qp->r_len;
2316 	return 1;
2317 
2318 bad_lkey:
2319 	while (j) {
2320 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2321 
2322 		rvt_put_mr(sge->mr);
2323 	}
2324 	ss->num_sge = 0;
2325 	memset(&wc, 0, sizeof(wc));
2326 	wc.wr_id = wqe->wr_id;
2327 	wc.status = IB_WC_LOC_PROT_ERR;
2328 	wc.opcode = IB_WC_RECV;
2329 	wc.qp = &qp->ibqp;
2330 	/* Signal solicited completion event. */
2331 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2332 	return 0;
2333 }
2334 
2335 /**
2336  * get_count - count numbers of request work queue entries
2337  * in circular buffer
2338  * @rq: data structure for request queue entry
2339  * @tail: tail indices of the circular buffer
2340  * @head: head indices of the circular buffer
2341  *
2342  * Return - total number of entries in the circular buffer
2343  */
2344 static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head)
2345 {
2346 	u32 count;
2347 
2348 	count = head;
2349 
2350 	if (count >= rq->size)
2351 		count = 0;
2352 	if (count < tail)
2353 		count += rq->size - tail;
2354 	else
2355 		count -= tail;
2356 
2357 	return count;
2358 }
2359 
2360 /**
2361  * get_rvt_head - get head indices of the circular buffer
2362  * @rq: data structure for request queue entry
2363  * @ip: the QP
2364  *
2365  * Return - head index value
2366  */
2367 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2368 {
2369 	u32 head;
2370 
2371 	if (ip)
2372 		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2373 	else
2374 		head = rq->kwq->head;
2375 
2376 	return head;
2377 }
2378 
2379 /**
2380  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2381  * @qp: the QP
2382  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2383  *
2384  * Return -1 if there is a local error, 0 if no RWQE is available,
2385  * otherwise return 1.
2386  *
2387  * Can be called from interrupt level.
2388  */
2389 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2390 {
2391 	unsigned long flags;
2392 	struct rvt_rq *rq;
2393 	struct rvt_krwq *kwq = NULL;
2394 	struct rvt_rwq *wq;
2395 	struct rvt_srq *srq;
2396 	struct rvt_rwqe *wqe;
2397 	void (*handler)(struct ib_event *, void *);
2398 	u32 tail;
2399 	u32 head;
2400 	int ret;
2401 	void *ip = NULL;
2402 
2403 	if (qp->ibqp.srq) {
2404 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2405 		handler = srq->ibsrq.event_handler;
2406 		rq = &srq->rq;
2407 		ip = srq->ip;
2408 	} else {
2409 		srq = NULL;
2410 		handler = NULL;
2411 		rq = &qp->r_rq;
2412 		ip = qp->ip;
2413 	}
2414 
2415 	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2416 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2417 		ret = 0;
2418 		goto unlock;
2419 	}
2420 	kwq = rq->kwq;
2421 	if (ip) {
2422 		wq = rq->wq;
2423 		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2424 	} else {
2425 		tail = kwq->tail;
2426 	}
2427 
2428 	/* Validate tail before using it since it is user writable. */
2429 	if (tail >= rq->size)
2430 		tail = 0;
2431 
2432 	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2433 		head = get_rvt_head(rq, ip);
2434 		kwq->count = get_count(rq, tail, head);
2435 	}
2436 	if (unlikely(kwq->count == 0)) {
2437 		ret = 0;
2438 		goto unlock;
2439 	}
2440 	/* Make sure entry is read after the count is read. */
2441 	smp_rmb();
2442 	wqe = rvt_get_rwqe_ptr(rq, tail);
2443 	/*
2444 	 * Even though we update the tail index in memory, the verbs
2445 	 * consumer is not supposed to post more entries until a
2446 	 * completion is generated.
2447 	 */
2448 	if (++tail >= rq->size)
2449 		tail = 0;
2450 	if (ip)
2451 		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2452 	else
2453 		kwq->tail = tail;
2454 	if (!wr_id_only && !init_sge(qp, wqe)) {
2455 		ret = -1;
2456 		goto unlock;
2457 	}
2458 	qp->r_wr_id = wqe->wr_id;
2459 
2460 	kwq->count--;
2461 	ret = 1;
2462 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2463 	if (handler) {
2464 		/*
2465 		 * Validate head pointer value and compute
2466 		 * the number of remaining WQEs.
2467 		 */
2468 		if (kwq->count < srq->limit) {
2469 			kwq->count = get_count(rq, tail, get_rvt_head(rq, ip));
2470 			if (kwq->count < srq->limit) {
2471 				struct ib_event ev;
2472 
2473 				srq->limit = 0;
2474 				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2475 				ev.device = qp->ibqp.device;
2476 				ev.element.srq = qp->ibqp.srq;
2477 				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2478 				handler(&ev, srq->ibsrq.srq_context);
2479 				goto bail;
2480 			}
2481 		}
2482 	}
2483 unlock:
2484 	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2485 bail:
2486 	return ret;
2487 }
2488 EXPORT_SYMBOL(rvt_get_rwqe);
2489 
2490 /**
2491  * qp_comm_est - handle trap with QP established
2492  * @qp: the QP
2493  */
2494 void rvt_comm_est(struct rvt_qp *qp)
2495 {
2496 	qp->r_flags |= RVT_R_COMM_EST;
2497 	if (qp->ibqp.event_handler) {
2498 		struct ib_event ev;
2499 
2500 		ev.device = qp->ibqp.device;
2501 		ev.element.qp = &qp->ibqp;
2502 		ev.event = IB_EVENT_COMM_EST;
2503 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2504 	}
2505 }
2506 EXPORT_SYMBOL(rvt_comm_est);
2507 
2508 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2509 {
2510 	unsigned long flags;
2511 	int lastwqe;
2512 
2513 	spin_lock_irqsave(&qp->s_lock, flags);
2514 	lastwqe = rvt_error_qp(qp, err);
2515 	spin_unlock_irqrestore(&qp->s_lock, flags);
2516 
2517 	if (lastwqe) {
2518 		struct ib_event ev;
2519 
2520 		ev.device = qp->ibqp.device;
2521 		ev.element.qp = &qp->ibqp;
2522 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2523 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2524 	}
2525 }
2526 EXPORT_SYMBOL(rvt_rc_error);
2527 
2528 /*
2529  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2530  *  @index - the index
2531  *  return usec from an index into ib_rvt_rnr_table
2532  */
2533 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2534 {
2535 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2536 }
2537 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2538 
2539 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2540 {
2541 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2542 				  IB_AETH_CREDIT_MASK];
2543 }
2544 
2545 /*
2546  *  rvt_add_retry_timer_ext - add/start a retry timer
2547  *  @qp - the QP
2548  *  @shift - timeout shift to wait for multiple packets
2549  *  add a retry timer on the QP
2550  */
2551 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2552 {
2553 	struct ib_qp *ibqp = &qp->ibqp;
2554 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2555 
2556 	lockdep_assert_held(&qp->s_lock);
2557 	qp->s_flags |= RVT_S_TIMER;
2558        /* 4.096 usec. * (1 << qp->timeout) */
2559 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2560 			      (qp->timeout_jiffies << shift);
2561 	add_timer(&qp->s_timer);
2562 }
2563 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2564 
2565 /**
2566  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2567  * @qp: the QP
2568  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2569  */
2570 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2571 {
2572 	u32 to;
2573 
2574 	lockdep_assert_held(&qp->s_lock);
2575 	qp->s_flags |= RVT_S_WAIT_RNR;
2576 	to = rvt_aeth_to_usec(aeth);
2577 	trace_rvt_rnrnak_add(qp, to);
2578 	hrtimer_start(&qp->s_rnr_timer,
2579 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2580 }
2581 EXPORT_SYMBOL(rvt_add_rnr_timer);
2582 
2583 /**
2584  * rvt_stop_rc_timers - stop all timers
2585  * @qp: the QP
2586  * stop any pending timers
2587  */
2588 void rvt_stop_rc_timers(struct rvt_qp *qp)
2589 {
2590 	lockdep_assert_held(&qp->s_lock);
2591 	/* Remove QP from all timers */
2592 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2593 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2594 		del_timer(&qp->s_timer);
2595 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2596 	}
2597 }
2598 EXPORT_SYMBOL(rvt_stop_rc_timers);
2599 
2600 /**
2601  * rvt_stop_rnr_timer - stop an rnr timer
2602  * @qp - the QP
2603  *
2604  * stop an rnr timer and return if the timer
2605  * had been pending.
2606  */
2607 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2608 {
2609 	lockdep_assert_held(&qp->s_lock);
2610 	/* Remove QP from rnr timer */
2611 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2612 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2613 		trace_rvt_rnrnak_stop(qp, 0);
2614 	}
2615 }
2616 
2617 /**
2618  * rvt_del_timers_sync - wait for any timeout routines to exit
2619  * @qp: the QP
2620  */
2621 void rvt_del_timers_sync(struct rvt_qp *qp)
2622 {
2623 	del_timer_sync(&qp->s_timer);
2624 	hrtimer_cancel(&qp->s_rnr_timer);
2625 }
2626 EXPORT_SYMBOL(rvt_del_timers_sync);
2627 
2628 /*
2629  * This is called from s_timer for missing responses.
2630  */
2631 static void rvt_rc_timeout(struct timer_list *t)
2632 {
2633 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2634 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2635 	unsigned long flags;
2636 
2637 	spin_lock_irqsave(&qp->r_lock, flags);
2638 	spin_lock(&qp->s_lock);
2639 	if (qp->s_flags & RVT_S_TIMER) {
2640 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2641 
2642 		qp->s_flags &= ~RVT_S_TIMER;
2643 		rvp->n_rc_timeouts++;
2644 		del_timer(&qp->s_timer);
2645 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2646 		if (rdi->driver_f.notify_restart_rc)
2647 			rdi->driver_f.notify_restart_rc(qp,
2648 							qp->s_last_psn + 1,
2649 							1);
2650 		rdi->driver_f.schedule_send(qp);
2651 	}
2652 	spin_unlock(&qp->s_lock);
2653 	spin_unlock_irqrestore(&qp->r_lock, flags);
2654 }
2655 
2656 /*
2657  * This is called from s_timer for RNR timeouts.
2658  */
2659 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2660 {
2661 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2662 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2663 	unsigned long flags;
2664 
2665 	spin_lock_irqsave(&qp->s_lock, flags);
2666 	rvt_stop_rnr_timer(qp);
2667 	trace_rvt_rnrnak_timeout(qp, 0);
2668 	rdi->driver_f.schedule_send(qp);
2669 	spin_unlock_irqrestore(&qp->s_lock, flags);
2670 	return HRTIMER_NORESTART;
2671 }
2672 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2673 
2674 /**
2675  * rvt_qp_iter_init - initial for QP iteration
2676  * @rdi: rvt devinfo
2677  * @v: u64 value
2678  * @cb: user-defined callback
2679  *
2680  * This returns an iterator suitable for iterating QPs
2681  * in the system.
2682  *
2683  * The @cb is a user-defined callback and @v is a 64-bit
2684  * value passed to and relevant for processing in the
2685  * @cb.  An example use case would be to alter QP processing
2686  * based on criteria not part of the rvt_qp.
2687  *
2688  * Use cases that require memory allocation to succeed
2689  * must preallocate appropriately.
2690  *
2691  * Return: a pointer to an rvt_qp_iter or NULL
2692  */
2693 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2694 				     u64 v,
2695 				     void (*cb)(struct rvt_qp *qp, u64 v))
2696 {
2697 	struct rvt_qp_iter *i;
2698 
2699 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2700 	if (!i)
2701 		return NULL;
2702 
2703 	i->rdi = rdi;
2704 	/* number of special QPs (SMI/GSI) for device */
2705 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2706 	i->v = v;
2707 	i->cb = cb;
2708 
2709 	return i;
2710 }
2711 EXPORT_SYMBOL(rvt_qp_iter_init);
2712 
2713 /**
2714  * rvt_qp_iter_next - return the next QP in iter
2715  * @iter: the iterator
2716  *
2717  * Fine grained QP iterator suitable for use
2718  * with debugfs seq_file mechanisms.
2719  *
2720  * Updates iter->qp with the current QP when the return
2721  * value is 0.
2722  *
2723  * Return: 0 - iter->qp is valid 1 - no more QPs
2724  */
2725 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2726 	__must_hold(RCU)
2727 {
2728 	int n = iter->n;
2729 	int ret = 1;
2730 	struct rvt_qp *pqp = iter->qp;
2731 	struct rvt_qp *qp;
2732 	struct rvt_dev_info *rdi = iter->rdi;
2733 
2734 	/*
2735 	 * The approach is to consider the special qps
2736 	 * as additional table entries before the
2737 	 * real hash table.  Since the qp code sets
2738 	 * the qp->next hash link to NULL, this works just fine.
2739 	 *
2740 	 * iter->specials is 2 * # ports
2741 	 *
2742 	 * n = 0..iter->specials is the special qp indices
2743 	 *
2744 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2745 	 * the potential hash bucket entries
2746 	 *
2747 	 */
2748 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2749 		if (pqp) {
2750 			qp = rcu_dereference(pqp->next);
2751 		} else {
2752 			if (n < iter->specials) {
2753 				struct rvt_ibport *rvp;
2754 				int pidx;
2755 
2756 				pidx = n % rdi->ibdev.phys_port_cnt;
2757 				rvp = rdi->ports[pidx];
2758 				qp = rcu_dereference(rvp->qp[n & 1]);
2759 			} else {
2760 				qp = rcu_dereference(
2761 					rdi->qp_dev->qp_table[
2762 						(n - iter->specials)]);
2763 			}
2764 		}
2765 		pqp = qp;
2766 		if (qp) {
2767 			iter->qp = qp;
2768 			iter->n = n;
2769 			return 0;
2770 		}
2771 	}
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(rvt_qp_iter_next);
2775 
2776 /**
2777  * rvt_qp_iter - iterate all QPs
2778  * @rdi: rvt devinfo
2779  * @v: a 64-bit value
2780  * @cb: a callback
2781  *
2782  * This provides a way for iterating all QPs.
2783  *
2784  * The @cb is a user-defined callback and @v is a 64-bit
2785  * value passed to and relevant for processing in the
2786  * cb.  An example use case would be to alter QP processing
2787  * based on criteria not part of the rvt_qp.
2788  *
2789  * The code has an internal iterator to simplify
2790  * non seq_file use cases.
2791  */
2792 void rvt_qp_iter(struct rvt_dev_info *rdi,
2793 		 u64 v,
2794 		 void (*cb)(struct rvt_qp *qp, u64 v))
2795 {
2796 	int ret;
2797 	struct rvt_qp_iter i = {
2798 		.rdi = rdi,
2799 		.specials = rdi->ibdev.phys_port_cnt * 2,
2800 		.v = v,
2801 		.cb = cb
2802 	};
2803 
2804 	rcu_read_lock();
2805 	do {
2806 		ret = rvt_qp_iter_next(&i);
2807 		if (!ret) {
2808 			rvt_get_qp(i.qp);
2809 			rcu_read_unlock();
2810 			i.cb(i.qp, i.v);
2811 			rcu_read_lock();
2812 			rvt_put_qp(i.qp);
2813 		}
2814 	} while (!ret);
2815 	rcu_read_unlock();
2816 }
2817 EXPORT_SYMBOL(rvt_qp_iter);
2818 
2819 /*
2820  * This should be called with s_lock held.
2821  */
2822 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2823 		       enum ib_wc_status status)
2824 {
2825 	u32 old_last, last;
2826 	struct rvt_dev_info *rdi;
2827 
2828 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2829 		return;
2830 	rdi = ib_to_rvt(qp->ibqp.device);
2831 
2832 	old_last = qp->s_last;
2833 	trace_rvt_qp_send_completion(qp, wqe, old_last);
2834 	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2835 				    status);
2836 	if (qp->s_acked == old_last)
2837 		qp->s_acked = last;
2838 	if (qp->s_cur == old_last)
2839 		qp->s_cur = last;
2840 	if (qp->s_tail == old_last)
2841 		qp->s_tail = last;
2842 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2843 		qp->s_draining = 0;
2844 }
2845 EXPORT_SYMBOL(rvt_send_complete);
2846 
2847 /**
2848  * rvt_copy_sge - copy data to SGE memory
2849  * @qp: associated QP
2850  * @ss: the SGE state
2851  * @data: the data to copy
2852  * @length: the length of the data
2853  * @release: boolean to release MR
2854  * @copy_last: do a separate copy of the last 8 bytes
2855  */
2856 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2857 		  void *data, u32 length,
2858 		  bool release, bool copy_last)
2859 {
2860 	struct rvt_sge *sge = &ss->sge;
2861 	int i;
2862 	bool in_last = false;
2863 	bool cacheless_copy = false;
2864 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2865 	struct rvt_wss *wss = rdi->wss;
2866 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2867 
2868 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2869 		cacheless_copy = length >= PAGE_SIZE;
2870 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2871 		if (length >= PAGE_SIZE) {
2872 			/*
2873 			 * NOTE: this *assumes*:
2874 			 * o The first vaddr is the dest.
2875 			 * o If multiple pages, then vaddr is sequential.
2876 			 */
2877 			wss_insert(wss, sge->vaddr);
2878 			if (length >= (2 * PAGE_SIZE))
2879 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2880 
2881 			cacheless_copy = wss_exceeds_threshold(wss);
2882 		} else {
2883 			wss_advance_clean_counter(wss);
2884 		}
2885 	}
2886 
2887 	if (copy_last) {
2888 		if (length > 8) {
2889 			length -= 8;
2890 		} else {
2891 			copy_last = false;
2892 			in_last = true;
2893 		}
2894 	}
2895 
2896 again:
2897 	while (length) {
2898 		u32 len = rvt_get_sge_length(sge, length);
2899 
2900 		WARN_ON_ONCE(len == 0);
2901 		if (unlikely(in_last)) {
2902 			/* enforce byte transfer ordering */
2903 			for (i = 0; i < len; i++)
2904 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2905 		} else if (cacheless_copy) {
2906 			cacheless_memcpy(sge->vaddr, data, len);
2907 		} else {
2908 			memcpy(sge->vaddr, data, len);
2909 		}
2910 		rvt_update_sge(ss, len, release);
2911 		data += len;
2912 		length -= len;
2913 	}
2914 
2915 	if (copy_last) {
2916 		copy_last = false;
2917 		in_last = true;
2918 		length = 8;
2919 		goto again;
2920 	}
2921 }
2922 EXPORT_SYMBOL(rvt_copy_sge);
2923 
2924 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2925 					  struct rvt_qp *sqp)
2926 {
2927 	rvp->n_pkt_drops++;
2928 	/*
2929 	 * For RC, the requester would timeout and retry so
2930 	 * shortcut the timeouts and just signal too many retries.
2931 	 */
2932 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2933 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2934 }
2935 
2936 /**
2937  * ruc_loopback - handle UC and RC loopback requests
2938  * @sqp: the sending QP
2939  *
2940  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2941  * Note that although we are single threaded due to the send engine, we still
2942  * have to protect against post_send().  We don't have to worry about
2943  * receive interrupts since this is a connected protocol and all packets
2944  * will pass through here.
2945  */
2946 void rvt_ruc_loopback(struct rvt_qp *sqp)
2947 {
2948 	struct rvt_ibport *rvp =  NULL;
2949 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2950 	struct rvt_qp *qp;
2951 	struct rvt_swqe *wqe;
2952 	struct rvt_sge *sge;
2953 	unsigned long flags;
2954 	struct ib_wc wc;
2955 	u64 sdata;
2956 	atomic64_t *maddr;
2957 	enum ib_wc_status send_status;
2958 	bool release;
2959 	int ret;
2960 	bool copy_last = false;
2961 	int local_ops = 0;
2962 
2963 	rcu_read_lock();
2964 	rvp = rdi->ports[sqp->port_num - 1];
2965 
2966 	/*
2967 	 * Note that we check the responder QP state after
2968 	 * checking the requester's state.
2969 	 */
2970 
2971 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2972 			    sqp->remote_qpn);
2973 
2974 	spin_lock_irqsave(&sqp->s_lock, flags);
2975 
2976 	/* Return if we are already busy processing a work request. */
2977 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2978 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2979 		goto unlock;
2980 
2981 	sqp->s_flags |= RVT_S_BUSY;
2982 
2983 again:
2984 	if (sqp->s_last == READ_ONCE(sqp->s_head))
2985 		goto clr_busy;
2986 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2987 
2988 	/* Return if it is not OK to start a new work request. */
2989 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2990 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2991 			goto clr_busy;
2992 		/* We are in the error state, flush the work request. */
2993 		send_status = IB_WC_WR_FLUSH_ERR;
2994 		goto flush_send;
2995 	}
2996 
2997 	/*
2998 	 * We can rely on the entry not changing without the s_lock
2999 	 * being held until we update s_last.
3000 	 * We increment s_cur to indicate s_last is in progress.
3001 	 */
3002 	if (sqp->s_last == sqp->s_cur) {
3003 		if (++sqp->s_cur >= sqp->s_size)
3004 			sqp->s_cur = 0;
3005 	}
3006 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3007 
3008 	if (!qp) {
3009 		send_status = loopback_qp_drop(rvp, sqp);
3010 		goto serr_no_r_lock;
3011 	}
3012 	spin_lock_irqsave(&qp->r_lock, flags);
3013 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3014 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3015 		send_status = loopback_qp_drop(rvp, sqp);
3016 		goto serr;
3017 	}
3018 
3019 	memset(&wc, 0, sizeof(wc));
3020 	send_status = IB_WC_SUCCESS;
3021 
3022 	release = true;
3023 	sqp->s_sge.sge = wqe->sg_list[0];
3024 	sqp->s_sge.sg_list = wqe->sg_list + 1;
3025 	sqp->s_sge.num_sge = wqe->wr.num_sge;
3026 	sqp->s_len = wqe->length;
3027 	switch (wqe->wr.opcode) {
3028 	case IB_WR_REG_MR:
3029 		goto send_comp;
3030 
3031 	case IB_WR_LOCAL_INV:
3032 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3033 			if (rvt_invalidate_rkey(sqp,
3034 						wqe->wr.ex.invalidate_rkey))
3035 				send_status = IB_WC_LOC_PROT_ERR;
3036 			local_ops = 1;
3037 		}
3038 		goto send_comp;
3039 
3040 	case IB_WR_SEND_WITH_INV:
3041 	case IB_WR_SEND_WITH_IMM:
3042 	case IB_WR_SEND:
3043 		ret = rvt_get_rwqe(qp, false);
3044 		if (ret < 0)
3045 			goto op_err;
3046 		if (!ret)
3047 			goto rnr_nak;
3048 		if (wqe->length > qp->r_len)
3049 			goto inv_err;
3050 		switch (wqe->wr.opcode) {
3051 		case IB_WR_SEND_WITH_INV:
3052 			if (!rvt_invalidate_rkey(qp,
3053 						 wqe->wr.ex.invalidate_rkey)) {
3054 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3055 				wc.ex.invalidate_rkey =
3056 					wqe->wr.ex.invalidate_rkey;
3057 			}
3058 			break;
3059 		case IB_WR_SEND_WITH_IMM:
3060 			wc.wc_flags = IB_WC_WITH_IMM;
3061 			wc.ex.imm_data = wqe->wr.ex.imm_data;
3062 			break;
3063 		default:
3064 			break;
3065 		}
3066 		break;
3067 
3068 	case IB_WR_RDMA_WRITE_WITH_IMM:
3069 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3070 			goto inv_err;
3071 		wc.wc_flags = IB_WC_WITH_IMM;
3072 		wc.ex.imm_data = wqe->wr.ex.imm_data;
3073 		ret = rvt_get_rwqe(qp, true);
3074 		if (ret < 0)
3075 			goto op_err;
3076 		if (!ret)
3077 			goto rnr_nak;
3078 		/* skip copy_last set and qp_access_flags recheck */
3079 		goto do_write;
3080 	case IB_WR_RDMA_WRITE:
3081 		copy_last = rvt_is_user_qp(qp);
3082 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3083 			goto inv_err;
3084 do_write:
3085 		if (wqe->length == 0)
3086 			break;
3087 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3088 					  wqe->rdma_wr.remote_addr,
3089 					  wqe->rdma_wr.rkey,
3090 					  IB_ACCESS_REMOTE_WRITE)))
3091 			goto acc_err;
3092 		qp->r_sge.sg_list = NULL;
3093 		qp->r_sge.num_sge = 1;
3094 		qp->r_sge.total_len = wqe->length;
3095 		break;
3096 
3097 	case IB_WR_RDMA_READ:
3098 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3099 			goto inv_err;
3100 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3101 					  wqe->rdma_wr.remote_addr,
3102 					  wqe->rdma_wr.rkey,
3103 					  IB_ACCESS_REMOTE_READ)))
3104 			goto acc_err;
3105 		release = false;
3106 		sqp->s_sge.sg_list = NULL;
3107 		sqp->s_sge.num_sge = 1;
3108 		qp->r_sge.sge = wqe->sg_list[0];
3109 		qp->r_sge.sg_list = wqe->sg_list + 1;
3110 		qp->r_sge.num_sge = wqe->wr.num_sge;
3111 		qp->r_sge.total_len = wqe->length;
3112 		break;
3113 
3114 	case IB_WR_ATOMIC_CMP_AND_SWP:
3115 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3116 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3117 			goto inv_err;
3118 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3119 					  wqe->atomic_wr.remote_addr,
3120 					  wqe->atomic_wr.rkey,
3121 					  IB_ACCESS_REMOTE_ATOMIC)))
3122 			goto acc_err;
3123 		/* Perform atomic OP and save result. */
3124 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3125 		sdata = wqe->atomic_wr.compare_add;
3126 		*(u64 *)sqp->s_sge.sge.vaddr =
3127 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3128 			(u64)atomic64_add_return(sdata, maddr) - sdata :
3129 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3130 				      sdata, wqe->atomic_wr.swap);
3131 		rvt_put_mr(qp->r_sge.sge.mr);
3132 		qp->r_sge.num_sge = 0;
3133 		goto send_comp;
3134 
3135 	default:
3136 		send_status = IB_WC_LOC_QP_OP_ERR;
3137 		goto serr;
3138 	}
3139 
3140 	sge = &sqp->s_sge.sge;
3141 	while (sqp->s_len) {
3142 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3143 
3144 		WARN_ON_ONCE(len == 0);
3145 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3146 			     len, release, copy_last);
3147 		rvt_update_sge(&sqp->s_sge, len, !release);
3148 		sqp->s_len -= len;
3149 	}
3150 	if (release)
3151 		rvt_put_ss(&qp->r_sge);
3152 
3153 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3154 		goto send_comp;
3155 
3156 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3157 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3158 	else
3159 		wc.opcode = IB_WC_RECV;
3160 	wc.wr_id = qp->r_wr_id;
3161 	wc.status = IB_WC_SUCCESS;
3162 	wc.byte_len = wqe->length;
3163 	wc.qp = &qp->ibqp;
3164 	wc.src_qp = qp->remote_qpn;
3165 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3166 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3167 	wc.port_num = 1;
3168 	/* Signal completion event if the solicited bit is set. */
3169 	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3170 
3171 send_comp:
3172 	spin_unlock_irqrestore(&qp->r_lock, flags);
3173 	spin_lock_irqsave(&sqp->s_lock, flags);
3174 	rvp->n_loop_pkts++;
3175 flush_send:
3176 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3177 	rvt_send_complete(sqp, wqe, send_status);
3178 	if (local_ops) {
3179 		atomic_dec(&sqp->local_ops_pending);
3180 		local_ops = 0;
3181 	}
3182 	goto again;
3183 
3184 rnr_nak:
3185 	/* Handle RNR NAK */
3186 	if (qp->ibqp.qp_type == IB_QPT_UC)
3187 		goto send_comp;
3188 	rvp->n_rnr_naks++;
3189 	/*
3190 	 * Note: we don't need the s_lock held since the BUSY flag
3191 	 * makes this single threaded.
3192 	 */
3193 	if (sqp->s_rnr_retry == 0) {
3194 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3195 		goto serr;
3196 	}
3197 	if (sqp->s_rnr_retry_cnt < 7)
3198 		sqp->s_rnr_retry--;
3199 	spin_unlock_irqrestore(&qp->r_lock, flags);
3200 	spin_lock_irqsave(&sqp->s_lock, flags);
3201 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3202 		goto clr_busy;
3203 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3204 				IB_AETH_CREDIT_SHIFT);
3205 	goto clr_busy;
3206 
3207 op_err:
3208 	send_status = IB_WC_REM_OP_ERR;
3209 	wc.status = IB_WC_LOC_QP_OP_ERR;
3210 	goto err;
3211 
3212 inv_err:
3213 	send_status =
3214 		sqp->ibqp.qp_type == IB_QPT_RC ?
3215 			IB_WC_REM_INV_REQ_ERR :
3216 			IB_WC_SUCCESS;
3217 	wc.status = IB_WC_LOC_QP_OP_ERR;
3218 	goto err;
3219 
3220 acc_err:
3221 	send_status = IB_WC_REM_ACCESS_ERR;
3222 	wc.status = IB_WC_LOC_PROT_ERR;
3223 err:
3224 	/* responder goes to error state */
3225 	rvt_rc_error(qp, wc.status);
3226 
3227 serr:
3228 	spin_unlock_irqrestore(&qp->r_lock, flags);
3229 serr_no_r_lock:
3230 	spin_lock_irqsave(&sqp->s_lock, flags);
3231 	rvt_send_complete(sqp, wqe, send_status);
3232 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3233 		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3234 
3235 		sqp->s_flags &= ~RVT_S_BUSY;
3236 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3237 		if (lastwqe) {
3238 			struct ib_event ev;
3239 
3240 			ev.device = sqp->ibqp.device;
3241 			ev.element.qp = &sqp->ibqp;
3242 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3243 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3244 		}
3245 		goto done;
3246 	}
3247 clr_busy:
3248 	sqp->s_flags &= ~RVT_S_BUSY;
3249 unlock:
3250 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3251 done:
3252 	rcu_read_unlock();
3253 }
3254 EXPORT_SYMBOL(rvt_ruc_loopback);
3255