xref: /linux/drivers/iommu/amd/iommu.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41 
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45 
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47 
48 /* IO virtual address start page frame number */
49 #define IOVA_START_PFN		(1)
50 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
51 
52 /* Reserved IOVA ranges */
53 #define MSI_RANGE_START		(0xfee00000)
54 #define MSI_RANGE_END		(0xfeefffff)
55 #define HT_RANGE_START		(0xfd00000000ULL)
56 #define HT_RANGE_END		(0xffffffffffULL)
57 
58 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
59 
60 static DEFINE_SPINLOCK(pd_bitmap_lock);
61 
62 LIST_HEAD(ioapic_map);
63 LIST_HEAD(hpet_map);
64 LIST_HEAD(acpihid_map);
65 
66 const struct iommu_ops amd_iommu_ops;
67 const struct iommu_dirty_ops amd_dirty_ops;
68 
69 int amd_iommu_max_glx_val = -1;
70 
71 /*
72  * general struct to manage commands send to an IOMMU
73  */
74 struct iommu_cmd {
75 	u32 data[4];
76 };
77 
78 struct kmem_cache *amd_iommu_irq_cache;
79 
80 static void detach_device(struct device *dev);
81 
82 /****************************************************************************
83  *
84  * Helper functions
85  *
86  ****************************************************************************/
87 
88 static inline int get_acpihid_device_id(struct device *dev,
89 					struct acpihid_map_entry **entry)
90 {
91 	struct acpi_device *adev = ACPI_COMPANION(dev);
92 	struct acpihid_map_entry *p;
93 
94 	if (!adev)
95 		return -ENODEV;
96 
97 	list_for_each_entry(p, &acpihid_map, list) {
98 		if (acpi_dev_hid_uid_match(adev, p->hid,
99 					   p->uid[0] ? p->uid : NULL)) {
100 			if (entry)
101 				*entry = p;
102 			return p->devid;
103 		}
104 	}
105 	return -EINVAL;
106 }
107 
108 static inline int get_device_sbdf_id(struct device *dev)
109 {
110 	int sbdf;
111 
112 	if (dev_is_pci(dev))
113 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
114 	else
115 		sbdf = get_acpihid_device_id(dev, NULL);
116 
117 	return sbdf;
118 }
119 
120 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
121 {
122 	struct dev_table_entry *dev_table;
123 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
124 
125 	BUG_ON(pci_seg == NULL);
126 	dev_table = pci_seg->dev_table;
127 	BUG_ON(dev_table == NULL);
128 
129 	return dev_table;
130 }
131 
132 static inline u16 get_device_segment(struct device *dev)
133 {
134 	u16 seg;
135 
136 	if (dev_is_pci(dev)) {
137 		struct pci_dev *pdev = to_pci_dev(dev);
138 
139 		seg = pci_domain_nr(pdev->bus);
140 	} else {
141 		u32 devid = get_acpihid_device_id(dev, NULL);
142 
143 		seg = PCI_SBDF_TO_SEGID(devid);
144 	}
145 
146 	return seg;
147 }
148 
149 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
150 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
151 {
152 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
153 
154 	pci_seg->rlookup_table[devid] = iommu;
155 }
156 
157 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
158 {
159 	struct amd_iommu_pci_seg *pci_seg;
160 
161 	for_each_pci_segment(pci_seg) {
162 		if (pci_seg->id == seg)
163 			return pci_seg->rlookup_table[devid];
164 	}
165 	return NULL;
166 }
167 
168 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
169 {
170 	u16 seg = get_device_segment(dev);
171 	int devid = get_device_sbdf_id(dev);
172 
173 	if (devid < 0)
174 		return NULL;
175 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
176 }
177 
178 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
179 {
180 	return container_of(dom, struct protection_domain, domain);
181 }
182 
183 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
184 {
185 	struct iommu_dev_data *dev_data;
186 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
187 
188 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
189 	if (!dev_data)
190 		return NULL;
191 
192 	spin_lock_init(&dev_data->lock);
193 	dev_data->devid = devid;
194 	ratelimit_default_init(&dev_data->rs);
195 
196 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
197 	return dev_data;
198 }
199 
200 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
201 {
202 	struct iommu_dev_data *dev_data;
203 	struct llist_node *node;
204 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
205 
206 	if (llist_empty(&pci_seg->dev_data_list))
207 		return NULL;
208 
209 	node = pci_seg->dev_data_list.first;
210 	llist_for_each_entry(dev_data, node, dev_data_list) {
211 		if (dev_data->devid == devid)
212 			return dev_data;
213 	}
214 
215 	return NULL;
216 }
217 
218 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
219 {
220 	struct amd_iommu *iommu;
221 	struct dev_table_entry *dev_table;
222 	u16 devid = pci_dev_id(pdev);
223 
224 	if (devid == alias)
225 		return 0;
226 
227 	iommu = rlookup_amd_iommu(&pdev->dev);
228 	if (!iommu)
229 		return 0;
230 
231 	amd_iommu_set_rlookup_table(iommu, alias);
232 	dev_table = get_dev_table(iommu);
233 	memcpy(dev_table[alias].data,
234 	       dev_table[devid].data,
235 	       sizeof(dev_table[alias].data));
236 
237 	return 0;
238 }
239 
240 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
241 {
242 	struct pci_dev *pdev;
243 
244 	if (!dev_is_pci(dev))
245 		return;
246 	pdev = to_pci_dev(dev);
247 
248 	/*
249 	 * The IVRS alias stored in the alias table may not be
250 	 * part of the PCI DMA aliases if it's bus differs
251 	 * from the original device.
252 	 */
253 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
254 
255 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
256 }
257 
258 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
259 {
260 	struct pci_dev *pdev = to_pci_dev(dev);
261 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
262 	u16 ivrs_alias;
263 
264 	/* For ACPI HID devices, there are no aliases */
265 	if (!dev_is_pci(dev))
266 		return;
267 
268 	/*
269 	 * Add the IVRS alias to the pci aliases if it is on the same
270 	 * bus. The IVRS table may know about a quirk that we don't.
271 	 */
272 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
273 	if (ivrs_alias != pci_dev_id(pdev) &&
274 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
275 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
276 
277 	clone_aliases(iommu, dev);
278 }
279 
280 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
281 {
282 	struct iommu_dev_data *dev_data;
283 
284 	dev_data = search_dev_data(iommu, devid);
285 
286 	if (dev_data == NULL) {
287 		dev_data = alloc_dev_data(iommu, devid);
288 		if (!dev_data)
289 			return NULL;
290 
291 		if (translation_pre_enabled(iommu))
292 			dev_data->defer_attach = true;
293 	}
294 
295 	return dev_data;
296 }
297 
298 /*
299 * Find or create an IOMMU group for a acpihid device.
300 */
301 static struct iommu_group *acpihid_device_group(struct device *dev)
302 {
303 	struct acpihid_map_entry *p, *entry = NULL;
304 	int devid;
305 
306 	devid = get_acpihid_device_id(dev, &entry);
307 	if (devid < 0)
308 		return ERR_PTR(devid);
309 
310 	list_for_each_entry(p, &acpihid_map, list) {
311 		if ((devid == p->devid) && p->group)
312 			entry->group = p->group;
313 	}
314 
315 	if (!entry->group)
316 		entry->group = generic_device_group(dev);
317 	else
318 		iommu_group_ref_get(entry->group);
319 
320 	return entry->group;
321 }
322 
323 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
324 {
325 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
326 }
327 
328 static u32 pdev_get_caps(struct pci_dev *pdev)
329 {
330 	int features;
331 	u32 flags = 0;
332 
333 	if (pci_ats_supported(pdev))
334 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
335 
336 	if (pci_pri_supported(pdev))
337 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
338 
339 	features = pci_pasid_features(pdev);
340 	if (features >= 0) {
341 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
342 
343 		if (features & PCI_PASID_CAP_EXEC)
344 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
345 
346 		if (features & PCI_PASID_CAP_PRIV)
347 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
348 	}
349 
350 	return flags;
351 }
352 
353 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
354 {
355 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
356 	int ret = -EINVAL;
357 
358 	if (dev_data->ats_enabled)
359 		return 0;
360 
361 	if (amd_iommu_iotlb_sup &&
362 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
363 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
364 		if (!ret) {
365 			dev_data->ats_enabled = 1;
366 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
367 		}
368 	}
369 
370 	return ret;
371 }
372 
373 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
374 {
375 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
376 
377 	if (dev_data->ats_enabled) {
378 		pci_disable_ats(pdev);
379 		dev_data->ats_enabled = 0;
380 	}
381 }
382 
383 int amd_iommu_pdev_enable_cap_pri(struct pci_dev *pdev)
384 {
385 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
386 	int ret = -EINVAL;
387 
388 	if (dev_data->pri_enabled)
389 		return 0;
390 
391 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
392 		/*
393 		 * First reset the PRI state of the device.
394 		 * FIXME: Hardcode number of outstanding requests for now
395 		 */
396 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
397 			dev_data->pri_enabled = 1;
398 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
399 
400 			ret = 0;
401 		}
402 	}
403 
404 	return ret;
405 }
406 
407 void amd_iommu_pdev_disable_cap_pri(struct pci_dev *pdev)
408 {
409 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
410 
411 	if (dev_data->pri_enabled) {
412 		pci_disable_pri(pdev);
413 		dev_data->pri_enabled = 0;
414 	}
415 }
416 
417 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
418 {
419 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
420 	int ret = -EINVAL;
421 
422 	if (dev_data->pasid_enabled)
423 		return 0;
424 
425 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
426 		/* Only allow access to user-accessible pages */
427 		ret = pci_enable_pasid(pdev, 0);
428 		if (!ret)
429 			dev_data->pasid_enabled = 1;
430 	}
431 
432 	return ret;
433 }
434 
435 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
436 {
437 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
438 
439 	if (dev_data->pasid_enabled) {
440 		pci_disable_pasid(pdev);
441 		dev_data->pasid_enabled = 0;
442 	}
443 }
444 
445 static void pdev_enable_caps(struct pci_dev *pdev)
446 {
447 	pdev_enable_cap_ats(pdev);
448 	pdev_enable_cap_pasid(pdev);
449 	amd_iommu_pdev_enable_cap_pri(pdev);
450 
451 }
452 
453 static void pdev_disable_caps(struct pci_dev *pdev)
454 {
455 	pdev_disable_cap_ats(pdev);
456 	pdev_disable_cap_pasid(pdev);
457 	amd_iommu_pdev_disable_cap_pri(pdev);
458 }
459 
460 /*
461  * This function checks if the driver got a valid device from the caller to
462  * avoid dereferencing invalid pointers.
463  */
464 static bool check_device(struct device *dev)
465 {
466 	struct amd_iommu_pci_seg *pci_seg;
467 	struct amd_iommu *iommu;
468 	int devid, sbdf;
469 
470 	if (!dev)
471 		return false;
472 
473 	sbdf = get_device_sbdf_id(dev);
474 	if (sbdf < 0)
475 		return false;
476 	devid = PCI_SBDF_TO_DEVID(sbdf);
477 
478 	iommu = rlookup_amd_iommu(dev);
479 	if (!iommu)
480 		return false;
481 
482 	/* Out of our scope? */
483 	pci_seg = iommu->pci_seg;
484 	if (devid > pci_seg->last_bdf)
485 		return false;
486 
487 	return true;
488 }
489 
490 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
491 {
492 	struct iommu_dev_data *dev_data;
493 	int devid, sbdf;
494 
495 	if (dev_iommu_priv_get(dev))
496 		return 0;
497 
498 	sbdf = get_device_sbdf_id(dev);
499 	if (sbdf < 0)
500 		return sbdf;
501 
502 	devid = PCI_SBDF_TO_DEVID(sbdf);
503 	dev_data = find_dev_data(iommu, devid);
504 	if (!dev_data)
505 		return -ENOMEM;
506 
507 	dev_data->dev = dev;
508 	setup_aliases(iommu, dev);
509 
510 	/*
511 	 * By default we use passthrough mode for IOMMUv2 capable device.
512 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
513 	 * invalid address), we ignore the capability for the device so
514 	 * it'll be forced to go into translation mode.
515 	 */
516 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
517 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
518 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
519 	}
520 
521 	dev_iommu_priv_set(dev, dev_data);
522 
523 	return 0;
524 }
525 
526 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
527 {
528 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
529 	struct dev_table_entry *dev_table = get_dev_table(iommu);
530 	int devid, sbdf;
531 
532 	sbdf = get_device_sbdf_id(dev);
533 	if (sbdf < 0)
534 		return;
535 
536 	devid = PCI_SBDF_TO_DEVID(sbdf);
537 	pci_seg->rlookup_table[devid] = NULL;
538 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
539 
540 	setup_aliases(iommu, dev);
541 }
542 
543 static void amd_iommu_uninit_device(struct device *dev)
544 {
545 	struct iommu_dev_data *dev_data;
546 
547 	dev_data = dev_iommu_priv_get(dev);
548 	if (!dev_data)
549 		return;
550 
551 	if (dev_data->domain)
552 		detach_device(dev);
553 
554 	dev_iommu_priv_set(dev, NULL);
555 
556 	/*
557 	 * We keep dev_data around for unplugged devices and reuse it when the
558 	 * device is re-plugged - not doing so would introduce a ton of races.
559 	 */
560 }
561 
562 /****************************************************************************
563  *
564  * Interrupt handling functions
565  *
566  ****************************************************************************/
567 
568 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
569 {
570 	int i;
571 	struct dev_table_entry *dev_table = get_dev_table(iommu);
572 
573 	for (i = 0; i < 4; ++i)
574 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
575 }
576 
577 static void dump_command(unsigned long phys_addr)
578 {
579 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
580 	int i;
581 
582 	for (i = 0; i < 4; ++i)
583 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
584 }
585 
586 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
587 {
588 	struct iommu_dev_data *dev_data = NULL;
589 	int devid, vmg_tag, flags;
590 	struct pci_dev *pdev;
591 	u64 spa;
592 
593 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
594 	vmg_tag = (event[1]) & 0xFFFF;
595 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
596 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
597 
598 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
599 					   devid & 0xff);
600 	if (pdev)
601 		dev_data = dev_iommu_priv_get(&pdev->dev);
602 
603 	if (dev_data) {
604 		if (__ratelimit(&dev_data->rs)) {
605 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
606 				vmg_tag, spa, flags);
607 		}
608 	} else {
609 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
610 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 			vmg_tag, spa, flags);
612 	}
613 
614 	if (pdev)
615 		pci_dev_put(pdev);
616 }
617 
618 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
619 {
620 	struct iommu_dev_data *dev_data = NULL;
621 	int devid, flags_rmp, vmg_tag, flags;
622 	struct pci_dev *pdev;
623 	u64 gpa;
624 
625 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
626 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
627 	vmg_tag   = (event[1]) & 0xFFFF;
628 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
629 	gpa       = ((u64)event[3] << 32) | event[2];
630 
631 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
632 					   devid & 0xff);
633 	if (pdev)
634 		dev_data = dev_iommu_priv_get(&pdev->dev);
635 
636 	if (dev_data) {
637 		if (__ratelimit(&dev_data->rs)) {
638 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
639 				vmg_tag, gpa, flags_rmp, flags);
640 		}
641 	} else {
642 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
643 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 			vmg_tag, gpa, flags_rmp, flags);
645 	}
646 
647 	if (pdev)
648 		pci_dev_put(pdev);
649 }
650 
651 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
652 	(((flags) & EVENT_FLAG_I) == 0)
653 
654 #define IS_WRITE_REQUEST(flags)			\
655 	((flags) & EVENT_FLAG_RW)
656 
657 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
658 					u16 devid, u16 domain_id,
659 					u64 address, int flags)
660 {
661 	struct iommu_dev_data *dev_data = NULL;
662 	struct pci_dev *pdev;
663 
664 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
665 					   devid & 0xff);
666 	if (pdev)
667 		dev_data = dev_iommu_priv_get(&pdev->dev);
668 
669 	if (dev_data) {
670 		/*
671 		 * If this is a DMA fault (for which the I(nterrupt)
672 		 * bit will be unset), allow report_iommu_fault() to
673 		 * prevent logging it.
674 		 */
675 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
676 			/* Device not attached to domain properly */
677 			if (dev_data->domain == NULL) {
678 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
679 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
680 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
681 						   PCI_FUNC(devid), domain_id);
682 				goto out;
683 			}
684 
685 			if (!report_iommu_fault(&dev_data->domain->domain,
686 						&pdev->dev, address,
687 						IS_WRITE_REQUEST(flags) ?
688 							IOMMU_FAULT_WRITE :
689 							IOMMU_FAULT_READ))
690 				goto out;
691 		}
692 
693 		if (__ratelimit(&dev_data->rs)) {
694 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
695 				domain_id, address, flags);
696 		}
697 	} else {
698 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
699 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
700 			domain_id, address, flags);
701 	}
702 
703 out:
704 	if (pdev)
705 		pci_dev_put(pdev);
706 }
707 
708 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
709 {
710 	struct device *dev = iommu->iommu.dev;
711 	int type, devid, flags, tag;
712 	volatile u32 *event = __evt;
713 	int count = 0;
714 	u64 address;
715 	u32 pasid;
716 
717 retry:
718 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
719 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
720 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
721 		  (event[1] & EVENT_DOMID_MASK_LO);
722 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
723 	address = (u64)(((u64)event[3]) << 32) | event[2];
724 
725 	if (type == 0) {
726 		/* Did we hit the erratum? */
727 		if (++count == LOOP_TIMEOUT) {
728 			pr_err("No event written to event log\n");
729 			return;
730 		}
731 		udelay(1);
732 		goto retry;
733 	}
734 
735 	if (type == EVENT_TYPE_IO_FAULT) {
736 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
737 		return;
738 	}
739 
740 	switch (type) {
741 	case EVENT_TYPE_ILL_DEV:
742 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
743 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
744 			pasid, address, flags);
745 		dump_dte_entry(iommu, devid);
746 		break;
747 	case EVENT_TYPE_DEV_TAB_ERR:
748 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
749 			"address=0x%llx flags=0x%04x]\n",
750 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
751 			address, flags);
752 		break;
753 	case EVENT_TYPE_PAGE_TAB_ERR:
754 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
755 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
756 			pasid, address, flags);
757 		break;
758 	case EVENT_TYPE_ILL_CMD:
759 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
760 		dump_command(address);
761 		break;
762 	case EVENT_TYPE_CMD_HARD_ERR:
763 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
764 			address, flags);
765 		break;
766 	case EVENT_TYPE_IOTLB_INV_TO:
767 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
768 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
769 			address);
770 		break;
771 	case EVENT_TYPE_INV_DEV_REQ:
772 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
773 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
774 			pasid, address, flags);
775 		break;
776 	case EVENT_TYPE_RMP_FAULT:
777 		amd_iommu_report_rmp_fault(iommu, event);
778 		break;
779 	case EVENT_TYPE_RMP_HW_ERR:
780 		amd_iommu_report_rmp_hw_error(iommu, event);
781 		break;
782 	case EVENT_TYPE_INV_PPR_REQ:
783 		pasid = PPR_PASID(*((u64 *)__evt));
784 		tag = event[1] & 0x03FF;
785 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
786 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
787 			pasid, address, flags, tag);
788 		break;
789 	default:
790 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
791 			event[0], event[1], event[2], event[3]);
792 	}
793 
794 	/*
795 	 * To detect the hardware errata 732 we need to clear the
796 	 * entry back to zero. This issue does not exist on SNP
797 	 * enabled system. Also this buffer is not writeable on
798 	 * SNP enabled system.
799 	 */
800 	if (!amd_iommu_snp_en)
801 		memset(__evt, 0, 4 * sizeof(u32));
802 }
803 
804 static void iommu_poll_events(struct amd_iommu *iommu)
805 {
806 	u32 head, tail;
807 
808 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
809 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
810 
811 	while (head != tail) {
812 		iommu_print_event(iommu, iommu->evt_buf + head);
813 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
814 	}
815 
816 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
817 }
818 
819 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
820 {
821 	u32 head, tail;
822 
823 	if (iommu->ppr_log == NULL)
824 		return;
825 
826 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
827 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
828 
829 	while (head != tail) {
830 		volatile u64 *raw;
831 		u64 entry[2];
832 		int i;
833 
834 		raw = (u64 *)(iommu->ppr_log + head);
835 
836 		/*
837 		 * Hardware bug: Interrupt may arrive before the entry is
838 		 * written to memory. If this happens we need to wait for the
839 		 * entry to arrive.
840 		 */
841 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
842 			if (PPR_REQ_TYPE(raw[0]) != 0)
843 				break;
844 			udelay(1);
845 		}
846 
847 		/* Avoid memcpy function-call overhead */
848 		entry[0] = raw[0];
849 		entry[1] = raw[1];
850 
851 		/*
852 		 * To detect the hardware errata 733 we need to clear the
853 		 * entry back to zero. This issue does not exist on SNP
854 		 * enabled system. Also this buffer is not writeable on
855 		 * SNP enabled system.
856 		 */
857 		if (!amd_iommu_snp_en)
858 			raw[0] = raw[1] = 0UL;
859 
860 		/* Update head pointer of hardware ring-buffer */
861 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
862 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
863 
864 		/* TODO: PPR Handler will be added when we add IOPF support */
865 
866 		/* Refresh ring-buffer information */
867 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
868 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
869 	}
870 }
871 
872 #ifdef CONFIG_IRQ_REMAP
873 static int (*iommu_ga_log_notifier)(u32);
874 
875 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
876 {
877 	iommu_ga_log_notifier = notifier;
878 
879 	return 0;
880 }
881 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
882 
883 static void iommu_poll_ga_log(struct amd_iommu *iommu)
884 {
885 	u32 head, tail;
886 
887 	if (iommu->ga_log == NULL)
888 		return;
889 
890 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
891 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
892 
893 	while (head != tail) {
894 		volatile u64 *raw;
895 		u64 log_entry;
896 
897 		raw = (u64 *)(iommu->ga_log + head);
898 
899 		/* Avoid memcpy function-call overhead */
900 		log_entry = *raw;
901 
902 		/* Update head pointer of hardware ring-buffer */
903 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
904 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
905 
906 		/* Handle GA entry */
907 		switch (GA_REQ_TYPE(log_entry)) {
908 		case GA_GUEST_NR:
909 			if (!iommu_ga_log_notifier)
910 				break;
911 
912 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
913 				 __func__, GA_DEVID(log_entry),
914 				 GA_TAG(log_entry));
915 
916 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
917 				pr_err("GA log notifier failed.\n");
918 			break;
919 		default:
920 			break;
921 		}
922 	}
923 }
924 
925 static void
926 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
927 {
928 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
929 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
930 		return;
931 
932 	dev_set_msi_domain(dev, iommu->ir_domain);
933 }
934 
935 #else /* CONFIG_IRQ_REMAP */
936 static inline void
937 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
938 #endif /* !CONFIG_IRQ_REMAP */
939 
940 static void amd_iommu_handle_irq(void *data, const char *evt_type,
941 				 u32 int_mask, u32 overflow_mask,
942 				 void (*int_handler)(struct amd_iommu *),
943 				 void (*overflow_handler)(struct amd_iommu *))
944 {
945 	struct amd_iommu *iommu = (struct amd_iommu *) data;
946 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
947 	u32 mask = int_mask | overflow_mask;
948 
949 	while (status & mask) {
950 		/* Enable interrupt sources again */
951 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
952 
953 		if (int_handler) {
954 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
955 				 iommu->index, evt_type);
956 			int_handler(iommu);
957 		}
958 
959 		if ((status & overflow_mask) && overflow_handler)
960 			overflow_handler(iommu);
961 
962 		/*
963 		 * Hardware bug: ERBT1312
964 		 * When re-enabling interrupt (by writing 1
965 		 * to clear the bit), the hardware might also try to set
966 		 * the interrupt bit in the event status register.
967 		 * In this scenario, the bit will be set, and disable
968 		 * subsequent interrupts.
969 		 *
970 		 * Workaround: The IOMMU driver should read back the
971 		 * status register and check if the interrupt bits are cleared.
972 		 * If not, driver will need to go through the interrupt handler
973 		 * again and re-clear the bits
974 		 */
975 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
976 	}
977 }
978 
979 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
980 {
981 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
982 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
983 			     iommu_poll_events, amd_iommu_restart_event_logging);
984 
985 	return IRQ_HANDLED;
986 }
987 
988 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
989 {
990 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
991 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
992 			     iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
993 
994 	return IRQ_HANDLED;
995 }
996 
997 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
998 {
999 #ifdef CONFIG_IRQ_REMAP
1000 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1001 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1002 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1003 #endif
1004 
1005 	return IRQ_HANDLED;
1006 }
1007 
1008 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1009 {
1010 	amd_iommu_int_thread_evtlog(irq, data);
1011 	amd_iommu_int_thread_pprlog(irq, data);
1012 	amd_iommu_int_thread_galog(irq, data);
1013 
1014 	return IRQ_HANDLED;
1015 }
1016 
1017 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1018 {
1019 	return IRQ_WAKE_THREAD;
1020 }
1021 
1022 /****************************************************************************
1023  *
1024  * IOMMU command queuing functions
1025  *
1026  ****************************************************************************/
1027 
1028 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1029 {
1030 	int i = 0;
1031 
1032 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1033 		udelay(1);
1034 		i += 1;
1035 	}
1036 
1037 	if (i == LOOP_TIMEOUT) {
1038 		pr_alert("Completion-Wait loop timed out\n");
1039 		return -EIO;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1046 			       struct iommu_cmd *cmd)
1047 {
1048 	u8 *target;
1049 	u32 tail;
1050 
1051 	/* Copy command to buffer */
1052 	tail = iommu->cmd_buf_tail;
1053 	target = iommu->cmd_buf + tail;
1054 	memcpy(target, cmd, sizeof(*cmd));
1055 
1056 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1057 	iommu->cmd_buf_tail = tail;
1058 
1059 	/* Tell the IOMMU about it */
1060 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1061 }
1062 
1063 static void build_completion_wait(struct iommu_cmd *cmd,
1064 				  struct amd_iommu *iommu,
1065 				  u64 data)
1066 {
1067 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1068 
1069 	memset(cmd, 0, sizeof(*cmd));
1070 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1071 	cmd->data[1] = upper_32_bits(paddr);
1072 	cmd->data[2] = lower_32_bits(data);
1073 	cmd->data[3] = upper_32_bits(data);
1074 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1075 }
1076 
1077 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1078 {
1079 	memset(cmd, 0, sizeof(*cmd));
1080 	cmd->data[0] = devid;
1081 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1082 }
1083 
1084 /*
1085  * Builds an invalidation address which is suitable for one page or multiple
1086  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1087  */
1088 static inline u64 build_inv_address(u64 address, size_t size)
1089 {
1090 	u64 pages, end, msb_diff;
1091 
1092 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1093 
1094 	if (pages == 1)
1095 		return address & PAGE_MASK;
1096 
1097 	end = address + size - 1;
1098 
1099 	/*
1100 	 * msb_diff would hold the index of the most significant bit that
1101 	 * flipped between the start and end.
1102 	 */
1103 	msb_diff = fls64(end ^ address) - 1;
1104 
1105 	/*
1106 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1107 	 * between the start and the end, invalidate everything.
1108 	 */
1109 	if (unlikely(msb_diff > 51)) {
1110 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1111 	} else {
1112 		/*
1113 		 * The msb-bit must be clear on the address. Just set all the
1114 		 * lower bits.
1115 		 */
1116 		address |= (1ull << msb_diff) - 1;
1117 	}
1118 
1119 	/* Clear bits 11:0 */
1120 	address &= PAGE_MASK;
1121 
1122 	/* Set the size bit - we flush more than one 4kb page */
1123 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1124 }
1125 
1126 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1127 				  size_t size, u16 domid, int pde)
1128 {
1129 	u64 inv_address = build_inv_address(address, size);
1130 
1131 	memset(cmd, 0, sizeof(*cmd));
1132 	cmd->data[1] |= domid;
1133 	cmd->data[2]  = lower_32_bits(inv_address);
1134 	cmd->data[3]  = upper_32_bits(inv_address);
1135 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1136 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1137 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1138 }
1139 
1140 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1141 				  u64 address, size_t size)
1142 {
1143 	u64 inv_address = build_inv_address(address, size);
1144 
1145 	memset(cmd, 0, sizeof(*cmd));
1146 	cmd->data[0]  = devid;
1147 	cmd->data[0] |= (qdep & 0xff) << 24;
1148 	cmd->data[1]  = devid;
1149 	cmd->data[2]  = lower_32_bits(inv_address);
1150 	cmd->data[3]  = upper_32_bits(inv_address);
1151 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1152 }
1153 
1154 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1155 				  u64 address, bool size)
1156 {
1157 	memset(cmd, 0, sizeof(*cmd));
1158 
1159 	address &= ~(0xfffULL);
1160 
1161 	cmd->data[0]  = pasid;
1162 	cmd->data[1]  = domid;
1163 	cmd->data[2]  = lower_32_bits(address);
1164 	cmd->data[3]  = upper_32_bits(address);
1165 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1166 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1167 	if (size)
1168 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1169 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1170 }
1171 
1172 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1173 				  int qdep, u64 address, bool size)
1174 {
1175 	memset(cmd, 0, sizeof(*cmd));
1176 
1177 	address &= ~(0xfffULL);
1178 
1179 	cmd->data[0]  = devid;
1180 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1181 	cmd->data[0] |= (qdep  & 0xff) << 24;
1182 	cmd->data[1]  = devid;
1183 	cmd->data[1] |= (pasid & 0xff) << 16;
1184 	cmd->data[2]  = lower_32_bits(address);
1185 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1186 	cmd->data[3]  = upper_32_bits(address);
1187 	if (size)
1188 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1189 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1190 }
1191 
1192 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1193 			       int status, int tag, u8 gn)
1194 {
1195 	memset(cmd, 0, sizeof(*cmd));
1196 
1197 	cmd->data[0]  = devid;
1198 	if (gn) {
1199 		cmd->data[1]  = pasid;
1200 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1201 	}
1202 	cmd->data[3]  = tag & 0x1ff;
1203 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1204 
1205 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1206 }
1207 
1208 static void build_inv_all(struct iommu_cmd *cmd)
1209 {
1210 	memset(cmd, 0, sizeof(*cmd));
1211 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1212 }
1213 
1214 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1215 {
1216 	memset(cmd, 0, sizeof(*cmd));
1217 	cmd->data[0] = devid;
1218 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1219 }
1220 
1221 /*
1222  * Writes the command to the IOMMUs command buffer and informs the
1223  * hardware about the new command.
1224  */
1225 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1226 				      struct iommu_cmd *cmd,
1227 				      bool sync)
1228 {
1229 	unsigned int count = 0;
1230 	u32 left, next_tail;
1231 
1232 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1233 again:
1234 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1235 
1236 	if (left <= 0x20) {
1237 		/* Skip udelay() the first time around */
1238 		if (count++) {
1239 			if (count == LOOP_TIMEOUT) {
1240 				pr_err("Command buffer timeout\n");
1241 				return -EIO;
1242 			}
1243 
1244 			udelay(1);
1245 		}
1246 
1247 		/* Update head and recheck remaining space */
1248 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1249 					    MMIO_CMD_HEAD_OFFSET);
1250 
1251 		goto again;
1252 	}
1253 
1254 	copy_cmd_to_buffer(iommu, cmd);
1255 
1256 	/* Do we need to make sure all commands are processed? */
1257 	iommu->need_sync = sync;
1258 
1259 	return 0;
1260 }
1261 
1262 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1263 				    struct iommu_cmd *cmd,
1264 				    bool sync)
1265 {
1266 	unsigned long flags;
1267 	int ret;
1268 
1269 	raw_spin_lock_irqsave(&iommu->lock, flags);
1270 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1271 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1272 
1273 	return ret;
1274 }
1275 
1276 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1277 {
1278 	return iommu_queue_command_sync(iommu, cmd, true);
1279 }
1280 
1281 /*
1282  * This function queues a completion wait command into the command
1283  * buffer of an IOMMU
1284  */
1285 static int iommu_completion_wait(struct amd_iommu *iommu)
1286 {
1287 	struct iommu_cmd cmd;
1288 	unsigned long flags;
1289 	int ret;
1290 	u64 data;
1291 
1292 	if (!iommu->need_sync)
1293 		return 0;
1294 
1295 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
1296 	build_completion_wait(&cmd, iommu, data);
1297 
1298 	raw_spin_lock_irqsave(&iommu->lock, flags);
1299 
1300 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1301 	if (ret)
1302 		goto out_unlock;
1303 
1304 	ret = wait_on_sem(iommu, data);
1305 
1306 out_unlock:
1307 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1308 
1309 	return ret;
1310 }
1311 
1312 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1313 {
1314 	struct iommu_cmd cmd;
1315 
1316 	build_inv_dte(&cmd, devid);
1317 
1318 	return iommu_queue_command(iommu, &cmd);
1319 }
1320 
1321 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1322 {
1323 	u32 devid;
1324 	u16 last_bdf = iommu->pci_seg->last_bdf;
1325 
1326 	for (devid = 0; devid <= last_bdf; ++devid)
1327 		iommu_flush_dte(iommu, devid);
1328 
1329 	iommu_completion_wait(iommu);
1330 }
1331 
1332 /*
1333  * This function uses heavy locking and may disable irqs for some time. But
1334  * this is no issue because it is only called during resume.
1335  */
1336 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1337 {
1338 	u32 dom_id;
1339 	u16 last_bdf = iommu->pci_seg->last_bdf;
1340 
1341 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1342 		struct iommu_cmd cmd;
1343 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1344 				      dom_id, 1);
1345 		iommu_queue_command(iommu, &cmd);
1346 	}
1347 
1348 	iommu_completion_wait(iommu);
1349 }
1350 
1351 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1352 {
1353 	struct iommu_cmd cmd;
1354 
1355 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1356 			      dom_id, 1);
1357 	iommu_queue_command(iommu, &cmd);
1358 
1359 	iommu_completion_wait(iommu);
1360 }
1361 
1362 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1363 {
1364 	struct iommu_cmd cmd;
1365 
1366 	build_inv_all(&cmd);
1367 
1368 	iommu_queue_command(iommu, &cmd);
1369 	iommu_completion_wait(iommu);
1370 }
1371 
1372 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1373 {
1374 	struct iommu_cmd cmd;
1375 
1376 	build_inv_irt(&cmd, devid);
1377 
1378 	iommu_queue_command(iommu, &cmd);
1379 }
1380 
1381 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1382 {
1383 	u32 devid;
1384 	u16 last_bdf = iommu->pci_seg->last_bdf;
1385 
1386 	if (iommu->irtcachedis_enabled)
1387 		return;
1388 
1389 	for (devid = 0; devid <= last_bdf; devid++)
1390 		iommu_flush_irt(iommu, devid);
1391 
1392 	iommu_completion_wait(iommu);
1393 }
1394 
1395 void iommu_flush_all_caches(struct amd_iommu *iommu)
1396 {
1397 	if (check_feature(FEATURE_IA)) {
1398 		amd_iommu_flush_all(iommu);
1399 	} else {
1400 		amd_iommu_flush_dte_all(iommu);
1401 		amd_iommu_flush_irt_all(iommu);
1402 		amd_iommu_flush_tlb_all(iommu);
1403 	}
1404 }
1405 
1406 /*
1407  * Command send function for flushing on-device TLB
1408  */
1409 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1410 			      u64 address, size_t size)
1411 {
1412 	struct amd_iommu *iommu;
1413 	struct iommu_cmd cmd;
1414 	int qdep;
1415 
1416 	qdep     = dev_data->ats_qdep;
1417 	iommu    = rlookup_amd_iommu(dev_data->dev);
1418 	if (!iommu)
1419 		return -EINVAL;
1420 
1421 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1422 
1423 	return iommu_queue_command(iommu, &cmd);
1424 }
1425 
1426 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1427 {
1428 	struct amd_iommu *iommu = data;
1429 
1430 	return iommu_flush_dte(iommu, alias);
1431 }
1432 
1433 /*
1434  * Command send function for invalidating a device table entry
1435  */
1436 static int device_flush_dte(struct iommu_dev_data *dev_data)
1437 {
1438 	struct amd_iommu *iommu;
1439 	struct pci_dev *pdev = NULL;
1440 	struct amd_iommu_pci_seg *pci_seg;
1441 	u16 alias;
1442 	int ret;
1443 
1444 	iommu = rlookup_amd_iommu(dev_data->dev);
1445 	if (!iommu)
1446 		return -EINVAL;
1447 
1448 	if (dev_is_pci(dev_data->dev))
1449 		pdev = to_pci_dev(dev_data->dev);
1450 
1451 	if (pdev)
1452 		ret = pci_for_each_dma_alias(pdev,
1453 					     device_flush_dte_alias, iommu);
1454 	else
1455 		ret = iommu_flush_dte(iommu, dev_data->devid);
1456 	if (ret)
1457 		return ret;
1458 
1459 	pci_seg = iommu->pci_seg;
1460 	alias = pci_seg->alias_table[dev_data->devid];
1461 	if (alias != dev_data->devid) {
1462 		ret = iommu_flush_dte(iommu, alias);
1463 		if (ret)
1464 			return ret;
1465 	}
1466 
1467 	if (dev_data->ats_enabled)
1468 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1469 
1470 	return ret;
1471 }
1472 
1473 /*
1474  * TLB invalidation function which is called from the mapping functions.
1475  * It invalidates a single PTE if the range to flush is within a single
1476  * page. Otherwise it flushes the whole TLB of the IOMMU.
1477  */
1478 static void __domain_flush_pages(struct protection_domain *domain,
1479 				 u64 address, size_t size, int pde)
1480 {
1481 	struct iommu_dev_data *dev_data;
1482 	struct iommu_cmd cmd;
1483 	int ret = 0, i;
1484 
1485 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1486 
1487 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1488 		if (!domain->dev_iommu[i])
1489 			continue;
1490 
1491 		/*
1492 		 * Devices of this domain are behind this IOMMU
1493 		 * We need a TLB flush
1494 		 */
1495 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1496 	}
1497 
1498 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1499 
1500 		if (!dev_data->ats_enabled)
1501 			continue;
1502 
1503 		ret |= device_flush_iotlb(dev_data, address, size);
1504 	}
1505 
1506 	WARN_ON(ret);
1507 }
1508 
1509 static void domain_flush_pages(struct protection_domain *domain,
1510 			       u64 address, size_t size, int pde)
1511 {
1512 	if (likely(!amd_iommu_np_cache)) {
1513 		__domain_flush_pages(domain, address, size, pde);
1514 		return;
1515 	}
1516 
1517 	/*
1518 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1519 	 * In such setups it is best to avoid flushes of ranges which are not
1520 	 * naturally aligned, since it would lead to flushes of unmodified
1521 	 * PTEs. Such flushes would require the hypervisor to do more work than
1522 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1523 	 * until you cover the range. Each iteration flushes the smaller
1524 	 * between the natural alignment of the address that we flush and the
1525 	 * greatest naturally aligned region that fits in the range.
1526 	 */
1527 	while (size != 0) {
1528 		int addr_alignment = __ffs(address);
1529 		int size_alignment = __fls(size);
1530 		int min_alignment;
1531 		size_t flush_size;
1532 
1533 		/*
1534 		 * size is always non-zero, but address might be zero, causing
1535 		 * addr_alignment to be negative. As the casting of the
1536 		 * argument in __ffs(address) to long might trim the high bits
1537 		 * of the address on x86-32, cast to long when doing the check.
1538 		 */
1539 		if (likely((unsigned long)address != 0))
1540 			min_alignment = min(addr_alignment, size_alignment);
1541 		else
1542 			min_alignment = size_alignment;
1543 
1544 		flush_size = 1ul << min_alignment;
1545 
1546 		__domain_flush_pages(domain, address, flush_size, pde);
1547 		address += flush_size;
1548 		size -= flush_size;
1549 	}
1550 }
1551 
1552 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1553 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1554 {
1555 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1556 }
1557 
1558 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1559 {
1560 	int i;
1561 
1562 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1563 		if (domain && !domain->dev_iommu[i])
1564 			continue;
1565 
1566 		/*
1567 		 * Devices of this domain are behind this IOMMU
1568 		 * We need to wait for completion of all commands.
1569 		 */
1570 		iommu_completion_wait(amd_iommus[i]);
1571 	}
1572 }
1573 
1574 /* Flush the not present cache if it exists */
1575 static void domain_flush_np_cache(struct protection_domain *domain,
1576 		dma_addr_t iova, size_t size)
1577 {
1578 	if (unlikely(amd_iommu_np_cache)) {
1579 		unsigned long flags;
1580 
1581 		spin_lock_irqsave(&domain->lock, flags);
1582 		domain_flush_pages(domain, iova, size, 1);
1583 		amd_iommu_domain_flush_complete(domain);
1584 		spin_unlock_irqrestore(&domain->lock, flags);
1585 	}
1586 }
1587 
1588 
1589 /*
1590  * This function flushes the DTEs for all devices in domain
1591  */
1592 static void domain_flush_devices(struct protection_domain *domain)
1593 {
1594 	struct iommu_dev_data *dev_data;
1595 
1596 	list_for_each_entry(dev_data, &domain->dev_list, list)
1597 		device_flush_dte(dev_data);
1598 }
1599 
1600 /****************************************************************************
1601  *
1602  * The next functions belong to the domain allocation. A domain is
1603  * allocated for every IOMMU as the default domain. If device isolation
1604  * is enabled, every device get its own domain. The most important thing
1605  * about domains is the page table mapping the DMA address space they
1606  * contain.
1607  *
1608  ****************************************************************************/
1609 
1610 static u16 domain_id_alloc(void)
1611 {
1612 	int id;
1613 
1614 	spin_lock(&pd_bitmap_lock);
1615 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1616 	BUG_ON(id == 0);
1617 	if (id > 0 && id < MAX_DOMAIN_ID)
1618 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1619 	else
1620 		id = 0;
1621 	spin_unlock(&pd_bitmap_lock);
1622 
1623 	return id;
1624 }
1625 
1626 static void domain_id_free(int id)
1627 {
1628 	spin_lock(&pd_bitmap_lock);
1629 	if (id > 0 && id < MAX_DOMAIN_ID)
1630 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1631 	spin_unlock(&pd_bitmap_lock);
1632 }
1633 
1634 static void free_gcr3_tbl_level1(u64 *tbl)
1635 {
1636 	u64 *ptr;
1637 	int i;
1638 
1639 	for (i = 0; i < 512; ++i) {
1640 		if (!(tbl[i] & GCR3_VALID))
1641 			continue;
1642 
1643 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1644 
1645 		free_page((unsigned long)ptr);
1646 	}
1647 }
1648 
1649 static void free_gcr3_tbl_level2(u64 *tbl)
1650 {
1651 	u64 *ptr;
1652 	int i;
1653 
1654 	for (i = 0; i < 512; ++i) {
1655 		if (!(tbl[i] & GCR3_VALID))
1656 			continue;
1657 
1658 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1659 
1660 		free_gcr3_tbl_level1(ptr);
1661 	}
1662 }
1663 
1664 static void free_gcr3_table(struct protection_domain *domain)
1665 {
1666 	if (domain->glx == 2)
1667 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1668 	else if (domain->glx == 1)
1669 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1670 	else
1671 		BUG_ON(domain->glx != 0);
1672 
1673 	free_page((unsigned long)domain->gcr3_tbl);
1674 }
1675 
1676 /*
1677  * Number of GCR3 table levels required. Level must be 4-Kbyte
1678  * page and can contain up to 512 entries.
1679  */
1680 static int get_gcr3_levels(int pasids)
1681 {
1682 	int levels;
1683 
1684 	if (pasids == -1)
1685 		return amd_iommu_max_glx_val;
1686 
1687 	levels = get_count_order(pasids);
1688 
1689 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1690 }
1691 
1692 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
1693 static int setup_gcr3_table(struct protection_domain *domain, int pasids)
1694 {
1695 	int levels = get_gcr3_levels(pasids);
1696 
1697 	if (levels > amd_iommu_max_glx_val)
1698 		return -EINVAL;
1699 
1700 	domain->gcr3_tbl = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
1701 	if (domain->gcr3_tbl == NULL)
1702 		return -ENOMEM;
1703 
1704 	domain->glx      = levels;
1705 	domain->flags   |= PD_IOMMUV2_MASK;
1706 
1707 	amd_iommu_domain_update(domain);
1708 
1709 	return 0;
1710 }
1711 
1712 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1713 			  struct protection_domain *domain, bool ats, bool ppr)
1714 {
1715 	u64 pte_root = 0;
1716 	u64 flags = 0;
1717 	u32 old_domid;
1718 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1719 
1720 	if (domain->iop.mode != PAGE_MODE_NONE)
1721 		pte_root = iommu_virt_to_phys(domain->iop.root);
1722 
1723 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1724 		    << DEV_ENTRY_MODE_SHIFT;
1725 
1726 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1727 
1728 	/*
1729 	 * When SNP is enabled, Only set TV bit when IOMMU
1730 	 * page translation is in use.
1731 	 */
1732 	if (!amd_iommu_snp_en || (domain->id != 0))
1733 		pte_root |= DTE_FLAG_TV;
1734 
1735 	flags = dev_table[devid].data[1];
1736 
1737 	if (ats)
1738 		flags |= DTE_FLAG_IOTLB;
1739 
1740 	if (ppr)
1741 		pte_root |= 1ULL << DEV_ENTRY_PPR;
1742 
1743 	if (domain->dirty_tracking)
1744 		pte_root |= DTE_FLAG_HAD;
1745 
1746 	if (domain->flags & PD_IOMMUV2_MASK) {
1747 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1748 		u64 glx  = domain->glx;
1749 		u64 tmp;
1750 
1751 		pte_root |= DTE_FLAG_GV;
1752 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1753 
1754 		/* First mask out possible old values for GCR3 table */
1755 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1756 		flags    &= ~tmp;
1757 
1758 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1759 		flags    &= ~tmp;
1760 
1761 		/* Encode GCR3 table into DTE */
1762 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1763 		pte_root |= tmp;
1764 
1765 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1766 		flags    |= tmp;
1767 
1768 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1769 		flags    |= tmp;
1770 
1771 		if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1772 			dev_table[devid].data[2] |=
1773 				((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1774 		}
1775 
1776 		if (domain->flags & PD_GIOV_MASK)
1777 			pte_root |= DTE_FLAG_GIOV;
1778 	}
1779 
1780 	flags &= ~DEV_DOMID_MASK;
1781 	flags |= domain->id;
1782 
1783 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1784 	dev_table[devid].data[1]  = flags;
1785 	dev_table[devid].data[0]  = pte_root;
1786 
1787 	/*
1788 	 * A kdump kernel might be replacing a domain ID that was copied from
1789 	 * the previous kernel--if so, it needs to flush the translation cache
1790 	 * entries for the old domain ID that is being overwritten
1791 	 */
1792 	if (old_domid) {
1793 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1794 	}
1795 }
1796 
1797 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1798 {
1799 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1800 
1801 	/* remove entry from the device table seen by the hardware */
1802 	dev_table[devid].data[0]  = DTE_FLAG_V;
1803 
1804 	if (!amd_iommu_snp_en)
1805 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1806 
1807 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1808 
1809 	amd_iommu_apply_erratum_63(iommu, devid);
1810 }
1811 
1812 static void do_attach(struct iommu_dev_data *dev_data,
1813 		      struct protection_domain *domain)
1814 {
1815 	struct amd_iommu *iommu;
1816 	bool ats;
1817 
1818 	iommu = rlookup_amd_iommu(dev_data->dev);
1819 	if (!iommu)
1820 		return;
1821 	ats   = dev_data->ats_enabled;
1822 
1823 	/* Update data structures */
1824 	dev_data->domain = domain;
1825 	list_add(&dev_data->list, &domain->dev_list);
1826 
1827 	/* Update NUMA Node ID */
1828 	if (domain->nid == NUMA_NO_NODE)
1829 		domain->nid = dev_to_node(dev_data->dev);
1830 
1831 	/* Do reference counting */
1832 	domain->dev_iommu[iommu->index] += 1;
1833 	domain->dev_cnt                 += 1;
1834 
1835 	/* Update device table */
1836 	set_dte_entry(iommu, dev_data->devid, domain,
1837 		      ats, dev_data->ppr);
1838 	clone_aliases(iommu, dev_data->dev);
1839 
1840 	device_flush_dte(dev_data);
1841 }
1842 
1843 static void do_detach(struct iommu_dev_data *dev_data)
1844 {
1845 	struct protection_domain *domain = dev_data->domain;
1846 	struct amd_iommu *iommu;
1847 
1848 	iommu = rlookup_amd_iommu(dev_data->dev);
1849 	if (!iommu)
1850 		return;
1851 
1852 	/* Update data structures */
1853 	dev_data->domain = NULL;
1854 	list_del(&dev_data->list);
1855 	clear_dte_entry(iommu, dev_data->devid);
1856 	clone_aliases(iommu, dev_data->dev);
1857 
1858 	/* Flush the DTE entry */
1859 	device_flush_dte(dev_data);
1860 
1861 	/* Flush IOTLB */
1862 	amd_iommu_domain_flush_tlb_pde(domain);
1863 
1864 	/* Wait for the flushes to finish */
1865 	amd_iommu_domain_flush_complete(domain);
1866 
1867 	/* decrease reference counters - needs to happen after the flushes */
1868 	domain->dev_iommu[iommu->index] -= 1;
1869 	domain->dev_cnt                 -= 1;
1870 }
1871 
1872 /*
1873  * If a device is not yet associated with a domain, this function makes the
1874  * device visible in the domain
1875  */
1876 static int attach_device(struct device *dev,
1877 			 struct protection_domain *domain)
1878 {
1879 	struct iommu_dev_data *dev_data;
1880 	unsigned long flags;
1881 	int ret = 0;
1882 
1883 	spin_lock_irqsave(&domain->lock, flags);
1884 
1885 	dev_data = dev_iommu_priv_get(dev);
1886 
1887 	spin_lock(&dev_data->lock);
1888 
1889 	if (dev_data->domain != NULL) {
1890 		ret = -EBUSY;
1891 		goto out;
1892 	}
1893 
1894 	if (dev_is_pci(dev))
1895 		pdev_enable_caps(to_pci_dev(dev));
1896 
1897 	do_attach(dev_data, domain);
1898 
1899 	/*
1900 	 * We might boot into a crash-kernel here. The crashed kernel
1901 	 * left the caches in the IOMMU dirty. So we have to flush
1902 	 * here to evict all dirty stuff.
1903 	 */
1904 	amd_iommu_domain_flush_tlb_pde(domain);
1905 
1906 	amd_iommu_domain_flush_complete(domain);
1907 
1908 out:
1909 	spin_unlock(&dev_data->lock);
1910 
1911 	spin_unlock_irqrestore(&domain->lock, flags);
1912 
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Removes a device from a protection domain (with devtable_lock held)
1918  */
1919 static void detach_device(struct device *dev)
1920 {
1921 	struct protection_domain *domain;
1922 	struct iommu_dev_data *dev_data;
1923 	unsigned long flags;
1924 
1925 	dev_data = dev_iommu_priv_get(dev);
1926 	domain   = dev_data->domain;
1927 
1928 	spin_lock_irqsave(&domain->lock, flags);
1929 
1930 	spin_lock(&dev_data->lock);
1931 
1932 	/*
1933 	 * First check if the device is still attached. It might already
1934 	 * be detached from its domain because the generic
1935 	 * iommu_detach_group code detached it and we try again here in
1936 	 * our alias handling.
1937 	 */
1938 	if (WARN_ON(!dev_data->domain))
1939 		goto out;
1940 
1941 	do_detach(dev_data);
1942 
1943 	if (dev_is_pci(dev))
1944 		pdev_disable_caps(to_pci_dev(dev));
1945 
1946 out:
1947 	spin_unlock(&dev_data->lock);
1948 
1949 	spin_unlock_irqrestore(&domain->lock, flags);
1950 }
1951 
1952 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1953 {
1954 	struct iommu_device *iommu_dev;
1955 	struct amd_iommu *iommu;
1956 	int ret;
1957 
1958 	if (!check_device(dev))
1959 		return ERR_PTR(-ENODEV);
1960 
1961 	iommu = rlookup_amd_iommu(dev);
1962 	if (!iommu)
1963 		return ERR_PTR(-ENODEV);
1964 
1965 	/* Not registered yet? */
1966 	if (!iommu->iommu.ops)
1967 		return ERR_PTR(-ENODEV);
1968 
1969 	if (dev_iommu_priv_get(dev))
1970 		return &iommu->iommu;
1971 
1972 	ret = iommu_init_device(iommu, dev);
1973 	if (ret) {
1974 		if (ret != -ENOTSUPP)
1975 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1976 		iommu_dev = ERR_PTR(ret);
1977 		iommu_ignore_device(iommu, dev);
1978 	} else {
1979 		amd_iommu_set_pci_msi_domain(dev, iommu);
1980 		iommu_dev = &iommu->iommu;
1981 	}
1982 
1983 	iommu_completion_wait(iommu);
1984 
1985 	return iommu_dev;
1986 }
1987 
1988 static void amd_iommu_probe_finalize(struct device *dev)
1989 {
1990 	/* Domains are initialized for this device - have a look what we ended up with */
1991 	set_dma_ops(dev, NULL);
1992 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1993 }
1994 
1995 static void amd_iommu_release_device(struct device *dev)
1996 {
1997 	struct amd_iommu *iommu;
1998 
1999 	if (!check_device(dev))
2000 		return;
2001 
2002 	iommu = rlookup_amd_iommu(dev);
2003 	if (!iommu)
2004 		return;
2005 
2006 	amd_iommu_uninit_device(dev);
2007 	iommu_completion_wait(iommu);
2008 }
2009 
2010 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2011 {
2012 	if (dev_is_pci(dev))
2013 		return pci_device_group(dev);
2014 
2015 	return acpihid_device_group(dev);
2016 }
2017 
2018 /*****************************************************************************
2019  *
2020  * The next functions belong to the dma_ops mapping/unmapping code.
2021  *
2022  *****************************************************************************/
2023 
2024 static void update_device_table(struct protection_domain *domain)
2025 {
2026 	struct iommu_dev_data *dev_data;
2027 
2028 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2029 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2030 
2031 		if (!iommu)
2032 			continue;
2033 		set_dte_entry(iommu, dev_data->devid, domain,
2034 			      dev_data->ats_enabled, dev_data->ppr);
2035 		clone_aliases(iommu, dev_data->dev);
2036 	}
2037 }
2038 
2039 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
2040 {
2041 	update_device_table(domain);
2042 	domain_flush_devices(domain);
2043 }
2044 
2045 void amd_iommu_domain_update(struct protection_domain *domain)
2046 {
2047 	/* Update device table */
2048 	amd_iommu_update_and_flush_device_table(domain);
2049 
2050 	/* Flush domain TLB(s) and wait for completion */
2051 	amd_iommu_domain_flush_tlb_pde(domain);
2052 	amd_iommu_domain_flush_complete(domain);
2053 }
2054 
2055 /*****************************************************************************
2056  *
2057  * The following functions belong to the exported interface of AMD IOMMU
2058  *
2059  * This interface allows access to lower level functions of the IOMMU
2060  * like protection domain handling and assignement of devices to domains
2061  * which is not possible with the dma_ops interface.
2062  *
2063  *****************************************************************************/
2064 
2065 static void cleanup_domain(struct protection_domain *domain)
2066 {
2067 	struct iommu_dev_data *entry;
2068 
2069 	lockdep_assert_held(&domain->lock);
2070 
2071 	if (!domain->dev_cnt)
2072 		return;
2073 
2074 	while (!list_empty(&domain->dev_list)) {
2075 		entry = list_first_entry(&domain->dev_list,
2076 					 struct iommu_dev_data, list);
2077 		BUG_ON(!entry->domain);
2078 		do_detach(entry);
2079 	}
2080 	WARN_ON(domain->dev_cnt != 0);
2081 }
2082 
2083 static void protection_domain_free(struct protection_domain *domain)
2084 {
2085 	if (!domain)
2086 		return;
2087 
2088 	if (domain->iop.pgtbl_cfg.tlb)
2089 		free_io_pgtable_ops(&domain->iop.iop.ops);
2090 
2091 	if (domain->flags & PD_IOMMUV2_MASK)
2092 		free_gcr3_table(domain);
2093 
2094 	if (domain->iop.root)
2095 		free_page((unsigned long)domain->iop.root);
2096 
2097 	if (domain->id)
2098 		domain_id_free(domain->id);
2099 
2100 	kfree(domain);
2101 }
2102 
2103 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2104 {
2105 	u64 *pt_root = NULL;
2106 
2107 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2108 
2109 	if (mode != PAGE_MODE_NONE) {
2110 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2111 		if (!pt_root)
2112 			return -ENOMEM;
2113 	}
2114 
2115 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2116 
2117 	return 0;
2118 }
2119 
2120 static int protection_domain_init_v2(struct protection_domain *domain)
2121 {
2122 	domain->flags |= PD_GIOV_MASK;
2123 
2124 	domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2125 
2126 	if (setup_gcr3_table(domain, 1))
2127 		return -ENOMEM;
2128 
2129 	return 0;
2130 }
2131 
2132 static struct protection_domain *protection_domain_alloc(unsigned int type)
2133 {
2134 	struct io_pgtable_ops *pgtbl_ops;
2135 	struct protection_domain *domain;
2136 	int pgtable;
2137 	int ret;
2138 
2139 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2140 	if (!domain)
2141 		return NULL;
2142 
2143 	domain->id = domain_id_alloc();
2144 	if (!domain->id)
2145 		goto out_err;
2146 
2147 	spin_lock_init(&domain->lock);
2148 	INIT_LIST_HEAD(&domain->dev_list);
2149 	domain->nid = NUMA_NO_NODE;
2150 
2151 	switch (type) {
2152 	/* No need to allocate io pgtable ops in passthrough mode */
2153 	case IOMMU_DOMAIN_IDENTITY:
2154 		return domain;
2155 	case IOMMU_DOMAIN_DMA:
2156 		pgtable = amd_iommu_pgtable;
2157 		break;
2158 	/*
2159 	 * Force IOMMU v1 page table when allocating
2160 	 * domain for pass-through devices.
2161 	 */
2162 	case IOMMU_DOMAIN_UNMANAGED:
2163 		pgtable = AMD_IOMMU_V1;
2164 		break;
2165 	default:
2166 		goto out_err;
2167 	}
2168 
2169 	switch (pgtable) {
2170 	case AMD_IOMMU_V1:
2171 		ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
2172 		break;
2173 	case AMD_IOMMU_V2:
2174 		ret = protection_domain_init_v2(domain);
2175 		break;
2176 	default:
2177 		ret = -EINVAL;
2178 		break;
2179 	}
2180 
2181 	if (ret)
2182 		goto out_err;
2183 
2184 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2185 	if (!pgtbl_ops)
2186 		goto out_err;
2187 
2188 	return domain;
2189 out_err:
2190 	protection_domain_free(domain);
2191 	return NULL;
2192 }
2193 
2194 static inline u64 dma_max_address(void)
2195 {
2196 	if (amd_iommu_pgtable == AMD_IOMMU_V1)
2197 		return ~0ULL;
2198 
2199 	/* V2 with 4/5 level page table */
2200 	return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2201 }
2202 
2203 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2204 {
2205 	return iommu && (iommu->features & FEATURE_HDSUP);
2206 }
2207 
2208 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2209 						  struct device *dev, u32 flags)
2210 {
2211 	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2212 	struct protection_domain *domain;
2213 	struct amd_iommu *iommu = NULL;
2214 
2215 	if (dev) {
2216 		iommu = rlookup_amd_iommu(dev);
2217 		if (!iommu)
2218 			return ERR_PTR(-ENODEV);
2219 	}
2220 
2221 	/*
2222 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2223 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2224 	 */
2225 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2226 		return ERR_PTR(-EINVAL);
2227 
2228 	if (dirty_tracking && !amd_iommu_hd_support(iommu))
2229 		return ERR_PTR(-EOPNOTSUPP);
2230 
2231 	domain = protection_domain_alloc(type);
2232 	if (!domain)
2233 		return ERR_PTR(-ENOMEM);
2234 
2235 	domain->domain.geometry.aperture_start = 0;
2236 	domain->domain.geometry.aperture_end   = dma_max_address();
2237 	domain->domain.geometry.force_aperture = true;
2238 
2239 	if (iommu) {
2240 		domain->domain.type = type;
2241 		domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
2242 		domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2243 
2244 		if (dirty_tracking)
2245 			domain->domain.dirty_ops = &amd_dirty_ops;
2246 	}
2247 
2248 	return &domain->domain;
2249 }
2250 
2251 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2252 {
2253 	struct iommu_domain *domain;
2254 
2255 	domain = do_iommu_domain_alloc(type, NULL, 0);
2256 	if (IS_ERR(domain))
2257 		return NULL;
2258 
2259 	return domain;
2260 }
2261 
2262 static struct iommu_domain *
2263 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2264 			    struct iommu_domain *parent,
2265 			    const struct iommu_user_data *user_data)
2266 
2267 {
2268 	unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2269 
2270 	if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2271 		return ERR_PTR(-EOPNOTSUPP);
2272 
2273 	return do_iommu_domain_alloc(type, dev, flags);
2274 }
2275 
2276 static void amd_iommu_domain_free(struct iommu_domain *dom)
2277 {
2278 	struct protection_domain *domain;
2279 	unsigned long flags;
2280 
2281 	if (!dom)
2282 		return;
2283 
2284 	domain = to_pdomain(dom);
2285 
2286 	spin_lock_irqsave(&domain->lock, flags);
2287 
2288 	cleanup_domain(domain);
2289 
2290 	spin_unlock_irqrestore(&domain->lock, flags);
2291 
2292 	protection_domain_free(domain);
2293 }
2294 
2295 static int amd_iommu_attach_device(struct iommu_domain *dom,
2296 				   struct device *dev)
2297 {
2298 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2299 	struct protection_domain *domain = to_pdomain(dom);
2300 	struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2301 	int ret;
2302 
2303 	/*
2304 	 * Skip attach device to domain if new domain is same as
2305 	 * devices current domain
2306 	 */
2307 	if (dev_data->domain == domain)
2308 		return 0;
2309 
2310 	dev_data->defer_attach = false;
2311 
2312 	/*
2313 	 * Restrict to devices with compatible IOMMU hardware support
2314 	 * when enforcement of dirty tracking is enabled.
2315 	 */
2316 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2317 		return -EINVAL;
2318 
2319 	if (dev_data->domain)
2320 		detach_device(dev);
2321 
2322 	ret = attach_device(dev, domain);
2323 
2324 #ifdef CONFIG_IRQ_REMAP
2325 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2326 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2327 			dev_data->use_vapic = 1;
2328 		else
2329 			dev_data->use_vapic = 0;
2330 	}
2331 #endif
2332 
2333 	iommu_completion_wait(iommu);
2334 
2335 	return ret;
2336 }
2337 
2338 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2339 				    unsigned long iova, size_t size)
2340 {
2341 	struct protection_domain *domain = to_pdomain(dom);
2342 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2343 
2344 	if (ops->map_pages)
2345 		domain_flush_np_cache(domain, iova, size);
2346 	return 0;
2347 }
2348 
2349 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2350 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2351 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2352 {
2353 	struct protection_domain *domain = to_pdomain(dom);
2354 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2355 	int prot = 0;
2356 	int ret = -EINVAL;
2357 
2358 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2359 	    (domain->iop.mode == PAGE_MODE_NONE))
2360 		return -EINVAL;
2361 
2362 	if (iommu_prot & IOMMU_READ)
2363 		prot |= IOMMU_PROT_IR;
2364 	if (iommu_prot & IOMMU_WRITE)
2365 		prot |= IOMMU_PROT_IW;
2366 
2367 	if (ops->map_pages) {
2368 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2369 				     pgcount, prot, gfp, mapped);
2370 	}
2371 
2372 	return ret;
2373 }
2374 
2375 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2376 					    struct iommu_iotlb_gather *gather,
2377 					    unsigned long iova, size_t size)
2378 {
2379 	/*
2380 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2381 	 * Unless we run in a virtual machine, which can be inferred according
2382 	 * to whether "non-present cache" is on, it is probably best to prefer
2383 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2384 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2385 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2386 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2387 	 * should be avoided.
2388 	 */
2389 	if (amd_iommu_np_cache &&
2390 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2391 		iommu_iotlb_sync(domain, gather);
2392 
2393 	iommu_iotlb_gather_add_range(gather, iova, size);
2394 }
2395 
2396 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2397 				    size_t pgsize, size_t pgcount,
2398 				    struct iommu_iotlb_gather *gather)
2399 {
2400 	struct protection_domain *domain = to_pdomain(dom);
2401 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2402 	size_t r;
2403 
2404 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2405 	    (domain->iop.mode == PAGE_MODE_NONE))
2406 		return 0;
2407 
2408 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2409 
2410 	if (r)
2411 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2412 
2413 	return r;
2414 }
2415 
2416 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2417 					  dma_addr_t iova)
2418 {
2419 	struct protection_domain *domain = to_pdomain(dom);
2420 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2421 
2422 	return ops->iova_to_phys(ops, iova);
2423 }
2424 
2425 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2426 {
2427 	switch (cap) {
2428 	case IOMMU_CAP_CACHE_COHERENCY:
2429 		return true;
2430 	case IOMMU_CAP_NOEXEC:
2431 		return false;
2432 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2433 		return amdr_ivrs_remap_support;
2434 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2435 		return true;
2436 	case IOMMU_CAP_DEFERRED_FLUSH:
2437 		return true;
2438 	case IOMMU_CAP_DIRTY_TRACKING: {
2439 		struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2440 
2441 		return amd_iommu_hd_support(iommu);
2442 	}
2443 	default:
2444 		break;
2445 	}
2446 
2447 	return false;
2448 }
2449 
2450 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2451 					bool enable)
2452 {
2453 	struct protection_domain *pdomain = to_pdomain(domain);
2454 	struct dev_table_entry *dev_table;
2455 	struct iommu_dev_data *dev_data;
2456 	bool domain_flush = false;
2457 	struct amd_iommu *iommu;
2458 	unsigned long flags;
2459 	u64 pte_root;
2460 
2461 	spin_lock_irqsave(&pdomain->lock, flags);
2462 	if (!(pdomain->dirty_tracking ^ enable)) {
2463 		spin_unlock_irqrestore(&pdomain->lock, flags);
2464 		return 0;
2465 	}
2466 
2467 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2468 		iommu = rlookup_amd_iommu(dev_data->dev);
2469 		if (!iommu)
2470 			continue;
2471 
2472 		dev_table = get_dev_table(iommu);
2473 		pte_root = dev_table[dev_data->devid].data[0];
2474 
2475 		pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2476 				     pte_root & ~DTE_FLAG_HAD);
2477 
2478 		/* Flush device DTE */
2479 		dev_table[dev_data->devid].data[0] = pte_root;
2480 		device_flush_dte(dev_data);
2481 		domain_flush = true;
2482 	}
2483 
2484 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2485 	if (domain_flush) {
2486 		amd_iommu_domain_flush_tlb_pde(pdomain);
2487 		amd_iommu_domain_flush_complete(pdomain);
2488 	}
2489 	pdomain->dirty_tracking = enable;
2490 	spin_unlock_irqrestore(&pdomain->lock, flags);
2491 
2492 	return 0;
2493 }
2494 
2495 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2496 					  unsigned long iova, size_t size,
2497 					  unsigned long flags,
2498 					  struct iommu_dirty_bitmap *dirty)
2499 {
2500 	struct protection_domain *pdomain = to_pdomain(domain);
2501 	struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
2502 	unsigned long lflags;
2503 
2504 	if (!ops || !ops->read_and_clear_dirty)
2505 		return -EOPNOTSUPP;
2506 
2507 	spin_lock_irqsave(&pdomain->lock, lflags);
2508 	if (!pdomain->dirty_tracking && dirty->bitmap) {
2509 		spin_unlock_irqrestore(&pdomain->lock, lflags);
2510 		return -EINVAL;
2511 	}
2512 	spin_unlock_irqrestore(&pdomain->lock, lflags);
2513 
2514 	return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2515 }
2516 
2517 static void amd_iommu_get_resv_regions(struct device *dev,
2518 				       struct list_head *head)
2519 {
2520 	struct iommu_resv_region *region;
2521 	struct unity_map_entry *entry;
2522 	struct amd_iommu *iommu;
2523 	struct amd_iommu_pci_seg *pci_seg;
2524 	int devid, sbdf;
2525 
2526 	sbdf = get_device_sbdf_id(dev);
2527 	if (sbdf < 0)
2528 		return;
2529 
2530 	devid = PCI_SBDF_TO_DEVID(sbdf);
2531 	iommu = rlookup_amd_iommu(dev);
2532 	if (!iommu)
2533 		return;
2534 	pci_seg = iommu->pci_seg;
2535 
2536 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2537 		int type, prot = 0;
2538 		size_t length;
2539 
2540 		if (devid < entry->devid_start || devid > entry->devid_end)
2541 			continue;
2542 
2543 		type   = IOMMU_RESV_DIRECT;
2544 		length = entry->address_end - entry->address_start;
2545 		if (entry->prot & IOMMU_PROT_IR)
2546 			prot |= IOMMU_READ;
2547 		if (entry->prot & IOMMU_PROT_IW)
2548 			prot |= IOMMU_WRITE;
2549 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2550 			/* Exclusion range */
2551 			type = IOMMU_RESV_RESERVED;
2552 
2553 		region = iommu_alloc_resv_region(entry->address_start,
2554 						 length, prot, type,
2555 						 GFP_KERNEL);
2556 		if (!region) {
2557 			dev_err(dev, "Out of memory allocating dm-regions\n");
2558 			return;
2559 		}
2560 		list_add_tail(&region->list, head);
2561 	}
2562 
2563 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2564 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2565 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2566 	if (!region)
2567 		return;
2568 	list_add_tail(&region->list, head);
2569 
2570 	region = iommu_alloc_resv_region(HT_RANGE_START,
2571 					 HT_RANGE_END - HT_RANGE_START + 1,
2572 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2573 	if (!region)
2574 		return;
2575 	list_add_tail(&region->list, head);
2576 }
2577 
2578 bool amd_iommu_is_attach_deferred(struct device *dev)
2579 {
2580 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2581 
2582 	return dev_data->defer_attach;
2583 }
2584 
2585 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2586 {
2587 	struct protection_domain *dom = to_pdomain(domain);
2588 	unsigned long flags;
2589 
2590 	spin_lock_irqsave(&dom->lock, flags);
2591 	amd_iommu_domain_flush_tlb_pde(dom);
2592 	amd_iommu_domain_flush_complete(dom);
2593 	spin_unlock_irqrestore(&dom->lock, flags);
2594 }
2595 
2596 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2597 				 struct iommu_iotlb_gather *gather)
2598 {
2599 	struct protection_domain *dom = to_pdomain(domain);
2600 	unsigned long flags;
2601 
2602 	spin_lock_irqsave(&dom->lock, flags);
2603 	domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1);
2604 	amd_iommu_domain_flush_complete(dom);
2605 	spin_unlock_irqrestore(&dom->lock, flags);
2606 }
2607 
2608 static int amd_iommu_def_domain_type(struct device *dev)
2609 {
2610 	struct iommu_dev_data *dev_data;
2611 
2612 	dev_data = dev_iommu_priv_get(dev);
2613 	if (!dev_data)
2614 		return 0;
2615 
2616 	/*
2617 	 * Do not identity map IOMMUv2 capable devices when:
2618 	 *  - memory encryption is active, because some of those devices
2619 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2620 	 *    and require remapping.
2621 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2622 	 */
2623 	if (pdev_pasid_supported(dev_data) &&
2624 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2625 	    !amd_iommu_snp_en) {
2626 		return IOMMU_DOMAIN_IDENTITY;
2627 	}
2628 
2629 	return 0;
2630 }
2631 
2632 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2633 {
2634 	/* IOMMU_PTE_FC is always set */
2635 	return true;
2636 }
2637 
2638 const struct iommu_dirty_ops amd_dirty_ops = {
2639 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2640 	.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2641 };
2642 
2643 const struct iommu_ops amd_iommu_ops = {
2644 	.capable = amd_iommu_capable,
2645 	.domain_alloc = amd_iommu_domain_alloc,
2646 	.domain_alloc_user = amd_iommu_domain_alloc_user,
2647 	.probe_device = amd_iommu_probe_device,
2648 	.release_device = amd_iommu_release_device,
2649 	.probe_finalize = amd_iommu_probe_finalize,
2650 	.device_group = amd_iommu_device_group,
2651 	.get_resv_regions = amd_iommu_get_resv_regions,
2652 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2653 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2654 	.def_domain_type = amd_iommu_def_domain_type,
2655 	.default_domain_ops = &(const struct iommu_domain_ops) {
2656 		.attach_dev	= amd_iommu_attach_device,
2657 		.map_pages	= amd_iommu_map_pages,
2658 		.unmap_pages	= amd_iommu_unmap_pages,
2659 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2660 		.iova_to_phys	= amd_iommu_iova_to_phys,
2661 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2662 		.iotlb_sync	= amd_iommu_iotlb_sync,
2663 		.free		= amd_iommu_domain_free,
2664 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2665 	}
2666 };
2667 
2668 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2669 			 u64 address, bool size)
2670 {
2671 	struct iommu_dev_data *dev_data;
2672 	struct iommu_cmd cmd;
2673 	int i, ret;
2674 
2675 	if (!(domain->flags & PD_IOMMUV2_MASK))
2676 		return -EINVAL;
2677 
2678 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2679 
2680 	/*
2681 	 * IOMMU TLB needs to be flushed before Device TLB to
2682 	 * prevent device TLB refill from IOMMU TLB
2683 	 */
2684 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2685 		if (domain->dev_iommu[i] == 0)
2686 			continue;
2687 
2688 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2689 		if (ret != 0)
2690 			goto out;
2691 	}
2692 
2693 	/* Wait until IOMMU TLB flushes are complete */
2694 	amd_iommu_domain_flush_complete(domain);
2695 
2696 	/* Now flush device TLBs */
2697 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2698 		struct amd_iommu *iommu;
2699 		int qdep;
2700 
2701 		/*
2702 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2703 		 * domain.
2704 		 */
2705 		if (!dev_data->ats_enabled)
2706 			continue;
2707 
2708 		qdep  = dev_data->ats_qdep;
2709 		iommu = rlookup_amd_iommu(dev_data->dev);
2710 		if (!iommu)
2711 			continue;
2712 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2713 				      qdep, address, size);
2714 
2715 		ret = iommu_queue_command(iommu, &cmd);
2716 		if (ret != 0)
2717 			goto out;
2718 	}
2719 
2720 	/* Wait until all device TLBs are flushed */
2721 	amd_iommu_domain_flush_complete(domain);
2722 
2723 	ret = 0;
2724 
2725 out:
2726 
2727 	return ret;
2728 }
2729 
2730 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2731 				  u64 address)
2732 {
2733 	return __flush_pasid(domain, pasid, address, false);
2734 }
2735 
2736 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2737 			 u64 address)
2738 {
2739 	struct protection_domain *domain = to_pdomain(dom);
2740 	unsigned long flags;
2741 	int ret;
2742 
2743 	spin_lock_irqsave(&domain->lock, flags);
2744 	ret = __amd_iommu_flush_page(domain, pasid, address);
2745 	spin_unlock_irqrestore(&domain->lock, flags);
2746 
2747 	return ret;
2748 }
2749 
2750 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2751 {
2752 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2753 			     true);
2754 }
2755 
2756 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2757 {
2758 	struct protection_domain *domain = to_pdomain(dom);
2759 	unsigned long flags;
2760 	int ret;
2761 
2762 	spin_lock_irqsave(&domain->lock, flags);
2763 	ret = __amd_iommu_flush_tlb(domain, pasid);
2764 	spin_unlock_irqrestore(&domain->lock, flags);
2765 
2766 	return ret;
2767 }
2768 
2769 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2770 {
2771 	int index;
2772 	u64 *pte;
2773 
2774 	while (true) {
2775 
2776 		index = (pasid >> (9 * level)) & 0x1ff;
2777 		pte   = &root[index];
2778 
2779 		if (level == 0)
2780 			break;
2781 
2782 		if (!(*pte & GCR3_VALID)) {
2783 			if (!alloc)
2784 				return NULL;
2785 
2786 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2787 			if (root == NULL)
2788 				return NULL;
2789 
2790 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2791 		}
2792 
2793 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2794 
2795 		level -= 1;
2796 	}
2797 
2798 	return pte;
2799 }
2800 
2801 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2802 		      unsigned long cr3)
2803 {
2804 	u64 *pte;
2805 
2806 	if (domain->iop.mode != PAGE_MODE_NONE)
2807 		return -EINVAL;
2808 
2809 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2810 	if (pte == NULL)
2811 		return -ENOMEM;
2812 
2813 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2814 
2815 	return __amd_iommu_flush_tlb(domain, pasid);
2816 }
2817 
2818 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2819 {
2820 	u64 *pte;
2821 
2822 	if (domain->iop.mode != PAGE_MODE_NONE)
2823 		return -EINVAL;
2824 
2825 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2826 	if (pte == NULL)
2827 		return 0;
2828 
2829 	*pte = 0;
2830 
2831 	return __amd_iommu_flush_tlb(domain, pasid);
2832 }
2833 
2834 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2835 			      unsigned long cr3)
2836 {
2837 	struct protection_domain *domain = to_pdomain(dom);
2838 	unsigned long flags;
2839 	int ret;
2840 
2841 	spin_lock_irqsave(&domain->lock, flags);
2842 	ret = __set_gcr3(domain, pasid, cr3);
2843 	spin_unlock_irqrestore(&domain->lock, flags);
2844 
2845 	return ret;
2846 }
2847 
2848 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2849 {
2850 	struct protection_domain *domain = to_pdomain(dom);
2851 	unsigned long flags;
2852 	int ret;
2853 
2854 	spin_lock_irqsave(&domain->lock, flags);
2855 	ret = __clear_gcr3(domain, pasid);
2856 	spin_unlock_irqrestore(&domain->lock, flags);
2857 
2858 	return ret;
2859 }
2860 
2861 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2862 			   int status, int tag)
2863 {
2864 	struct iommu_dev_data *dev_data;
2865 	struct amd_iommu *iommu;
2866 	struct iommu_cmd cmd;
2867 
2868 	dev_data = dev_iommu_priv_get(&pdev->dev);
2869 	iommu    = rlookup_amd_iommu(&pdev->dev);
2870 	if (!iommu)
2871 		return -ENODEV;
2872 
2873 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2874 			   tag, dev_data->pri_tlp);
2875 
2876 	return iommu_queue_command(iommu, &cmd);
2877 }
2878 
2879 #ifdef CONFIG_IRQ_REMAP
2880 
2881 /*****************************************************************************
2882  *
2883  * Interrupt Remapping Implementation
2884  *
2885  *****************************************************************************/
2886 
2887 static struct irq_chip amd_ir_chip;
2888 static DEFINE_SPINLOCK(iommu_table_lock);
2889 
2890 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2891 {
2892 	int ret;
2893 	u64 data;
2894 	unsigned long flags;
2895 	struct iommu_cmd cmd, cmd2;
2896 
2897 	if (iommu->irtcachedis_enabled)
2898 		return;
2899 
2900 	build_inv_irt(&cmd, devid);
2901 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
2902 	build_completion_wait(&cmd2, iommu, data);
2903 
2904 	raw_spin_lock_irqsave(&iommu->lock, flags);
2905 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
2906 	if (ret)
2907 		goto out;
2908 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2909 	if (ret)
2910 		goto out;
2911 	wait_on_sem(iommu, data);
2912 out:
2913 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
2914 }
2915 
2916 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2917 			      struct irq_remap_table *table)
2918 {
2919 	u64 dte;
2920 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2921 
2922 	dte	= dev_table[devid].data[2];
2923 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2924 	dte	|= iommu_virt_to_phys(table->table);
2925 	dte	|= DTE_IRQ_REMAP_INTCTL;
2926 	dte	|= DTE_INTTABLEN;
2927 	dte	|= DTE_IRQ_REMAP_ENABLE;
2928 
2929 	dev_table[devid].data[2] = dte;
2930 }
2931 
2932 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2933 {
2934 	struct irq_remap_table *table;
2935 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2936 
2937 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2938 		      "%s: no iommu for devid %x:%x\n",
2939 		      __func__, pci_seg->id, devid))
2940 		return NULL;
2941 
2942 	table = pci_seg->irq_lookup_table[devid];
2943 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2944 		      __func__, pci_seg->id, devid))
2945 		return NULL;
2946 
2947 	return table;
2948 }
2949 
2950 static struct irq_remap_table *__alloc_irq_table(void)
2951 {
2952 	struct irq_remap_table *table;
2953 
2954 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2955 	if (!table)
2956 		return NULL;
2957 
2958 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2959 	if (!table->table) {
2960 		kfree(table);
2961 		return NULL;
2962 	}
2963 	raw_spin_lock_init(&table->lock);
2964 
2965 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2966 		memset(table->table, 0,
2967 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2968 	else
2969 		memset(table->table, 0,
2970 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2971 	return table;
2972 }
2973 
2974 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2975 				  struct irq_remap_table *table)
2976 {
2977 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2978 
2979 	pci_seg->irq_lookup_table[devid] = table;
2980 	set_dte_irq_entry(iommu, devid, table);
2981 	iommu_flush_dte(iommu, devid);
2982 }
2983 
2984 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2985 				       void *data)
2986 {
2987 	struct irq_remap_table *table = data;
2988 	struct amd_iommu_pci_seg *pci_seg;
2989 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2990 
2991 	if (!iommu)
2992 		return -EINVAL;
2993 
2994 	pci_seg = iommu->pci_seg;
2995 	pci_seg->irq_lookup_table[alias] = table;
2996 	set_dte_irq_entry(iommu, alias, table);
2997 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2998 
2999 	return 0;
3000 }
3001 
3002 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3003 					       u16 devid, struct pci_dev *pdev)
3004 {
3005 	struct irq_remap_table *table = NULL;
3006 	struct irq_remap_table *new_table = NULL;
3007 	struct amd_iommu_pci_seg *pci_seg;
3008 	unsigned long flags;
3009 	u16 alias;
3010 
3011 	spin_lock_irqsave(&iommu_table_lock, flags);
3012 
3013 	pci_seg = iommu->pci_seg;
3014 	table = pci_seg->irq_lookup_table[devid];
3015 	if (table)
3016 		goto out_unlock;
3017 
3018 	alias = pci_seg->alias_table[devid];
3019 	table = pci_seg->irq_lookup_table[alias];
3020 	if (table) {
3021 		set_remap_table_entry(iommu, devid, table);
3022 		goto out_wait;
3023 	}
3024 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3025 
3026 	/* Nothing there yet, allocate new irq remapping table */
3027 	new_table = __alloc_irq_table();
3028 	if (!new_table)
3029 		return NULL;
3030 
3031 	spin_lock_irqsave(&iommu_table_lock, flags);
3032 
3033 	table = pci_seg->irq_lookup_table[devid];
3034 	if (table)
3035 		goto out_unlock;
3036 
3037 	table = pci_seg->irq_lookup_table[alias];
3038 	if (table) {
3039 		set_remap_table_entry(iommu, devid, table);
3040 		goto out_wait;
3041 	}
3042 
3043 	table = new_table;
3044 	new_table = NULL;
3045 
3046 	if (pdev)
3047 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3048 				       table);
3049 	else
3050 		set_remap_table_entry(iommu, devid, table);
3051 
3052 	if (devid != alias)
3053 		set_remap_table_entry(iommu, alias, table);
3054 
3055 out_wait:
3056 	iommu_completion_wait(iommu);
3057 
3058 out_unlock:
3059 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3060 
3061 	if (new_table) {
3062 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3063 		kfree(new_table);
3064 	}
3065 	return table;
3066 }
3067 
3068 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3069 			   bool align, struct pci_dev *pdev)
3070 {
3071 	struct irq_remap_table *table;
3072 	int index, c, alignment = 1;
3073 	unsigned long flags;
3074 
3075 	table = alloc_irq_table(iommu, devid, pdev);
3076 	if (!table)
3077 		return -ENODEV;
3078 
3079 	if (align)
3080 		alignment = roundup_pow_of_two(count);
3081 
3082 	raw_spin_lock_irqsave(&table->lock, flags);
3083 
3084 	/* Scan table for free entries */
3085 	for (index = ALIGN(table->min_index, alignment), c = 0;
3086 	     index < MAX_IRQS_PER_TABLE;) {
3087 		if (!iommu->irte_ops->is_allocated(table, index)) {
3088 			c += 1;
3089 		} else {
3090 			c     = 0;
3091 			index = ALIGN(index + 1, alignment);
3092 			continue;
3093 		}
3094 
3095 		if (c == count)	{
3096 			for (; c != 0; --c)
3097 				iommu->irte_ops->set_allocated(table, index - c + 1);
3098 
3099 			index -= count - 1;
3100 			goto out;
3101 		}
3102 
3103 		index++;
3104 	}
3105 
3106 	index = -ENOSPC;
3107 
3108 out:
3109 	raw_spin_unlock_irqrestore(&table->lock, flags);
3110 
3111 	return index;
3112 }
3113 
3114 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3115 			  struct irte_ga *irte)
3116 {
3117 	struct irq_remap_table *table;
3118 	struct irte_ga *entry;
3119 	unsigned long flags;
3120 	u128 old;
3121 
3122 	table = get_irq_table(iommu, devid);
3123 	if (!table)
3124 		return -ENOMEM;
3125 
3126 	raw_spin_lock_irqsave(&table->lock, flags);
3127 
3128 	entry = (struct irte_ga *)table->table;
3129 	entry = &entry[index];
3130 
3131 	/*
3132 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3133 	 * and it cannot be updated by the hardware or other processors
3134 	 * behind us, so the return value of cmpxchg16 should be the
3135 	 * same as the old value.
3136 	 */
3137 	old = entry->irte;
3138 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3139 
3140 	raw_spin_unlock_irqrestore(&table->lock, flags);
3141 
3142 	iommu_flush_irt_and_complete(iommu, devid);
3143 
3144 	return 0;
3145 }
3146 
3147 static int modify_irte(struct amd_iommu *iommu,
3148 		       u16 devid, int index, union irte *irte)
3149 {
3150 	struct irq_remap_table *table;
3151 	unsigned long flags;
3152 
3153 	table = get_irq_table(iommu, devid);
3154 	if (!table)
3155 		return -ENOMEM;
3156 
3157 	raw_spin_lock_irqsave(&table->lock, flags);
3158 	table->table[index] = irte->val;
3159 	raw_spin_unlock_irqrestore(&table->lock, flags);
3160 
3161 	iommu_flush_irt_and_complete(iommu, devid);
3162 
3163 	return 0;
3164 }
3165 
3166 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3167 {
3168 	struct irq_remap_table *table;
3169 	unsigned long flags;
3170 
3171 	table = get_irq_table(iommu, devid);
3172 	if (!table)
3173 		return;
3174 
3175 	raw_spin_lock_irqsave(&table->lock, flags);
3176 	iommu->irte_ops->clear_allocated(table, index);
3177 	raw_spin_unlock_irqrestore(&table->lock, flags);
3178 
3179 	iommu_flush_irt_and_complete(iommu, devid);
3180 }
3181 
3182 static void irte_prepare(void *entry,
3183 			 u32 delivery_mode, bool dest_mode,
3184 			 u8 vector, u32 dest_apicid, int devid)
3185 {
3186 	union irte *irte = (union irte *) entry;
3187 
3188 	irte->val                = 0;
3189 	irte->fields.vector      = vector;
3190 	irte->fields.int_type    = delivery_mode;
3191 	irte->fields.destination = dest_apicid;
3192 	irte->fields.dm          = dest_mode;
3193 	irte->fields.valid       = 1;
3194 }
3195 
3196 static void irte_ga_prepare(void *entry,
3197 			    u32 delivery_mode, bool dest_mode,
3198 			    u8 vector, u32 dest_apicid, int devid)
3199 {
3200 	struct irte_ga *irte = (struct irte_ga *) entry;
3201 
3202 	irte->lo.val                      = 0;
3203 	irte->hi.val                      = 0;
3204 	irte->lo.fields_remap.int_type    = delivery_mode;
3205 	irte->lo.fields_remap.dm          = dest_mode;
3206 	irte->hi.fields.vector            = vector;
3207 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3208 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3209 	irte->lo.fields_remap.valid       = 1;
3210 }
3211 
3212 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3213 {
3214 	union irte *irte = (union irte *) entry;
3215 
3216 	irte->fields.valid = 1;
3217 	modify_irte(iommu, devid, index, irte);
3218 }
3219 
3220 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3221 {
3222 	struct irte_ga *irte = (struct irte_ga *) entry;
3223 
3224 	irte->lo.fields_remap.valid = 1;
3225 	modify_irte_ga(iommu, devid, index, irte);
3226 }
3227 
3228 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3229 {
3230 	union irte *irte = (union irte *) entry;
3231 
3232 	irte->fields.valid = 0;
3233 	modify_irte(iommu, devid, index, irte);
3234 }
3235 
3236 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3237 {
3238 	struct irte_ga *irte = (struct irte_ga *) entry;
3239 
3240 	irte->lo.fields_remap.valid = 0;
3241 	modify_irte_ga(iommu, devid, index, irte);
3242 }
3243 
3244 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3245 			      u8 vector, u32 dest_apicid)
3246 {
3247 	union irte *irte = (union irte *) entry;
3248 
3249 	irte->fields.vector = vector;
3250 	irte->fields.destination = dest_apicid;
3251 	modify_irte(iommu, devid, index, irte);
3252 }
3253 
3254 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3255 				 u8 vector, u32 dest_apicid)
3256 {
3257 	struct irte_ga *irte = (struct irte_ga *) entry;
3258 
3259 	if (!irte->lo.fields_remap.guest_mode) {
3260 		irte->hi.fields.vector = vector;
3261 		irte->lo.fields_remap.destination =
3262 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3263 		irte->hi.fields.destination =
3264 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3265 		modify_irte_ga(iommu, devid, index, irte);
3266 	}
3267 }
3268 
3269 #define IRTE_ALLOCATED (~1U)
3270 static void irte_set_allocated(struct irq_remap_table *table, int index)
3271 {
3272 	table->table[index] = IRTE_ALLOCATED;
3273 }
3274 
3275 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3276 {
3277 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3278 	struct irte_ga *irte = &ptr[index];
3279 
3280 	memset(&irte->lo.val, 0, sizeof(u64));
3281 	memset(&irte->hi.val, 0, sizeof(u64));
3282 	irte->hi.fields.vector = 0xff;
3283 }
3284 
3285 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3286 {
3287 	union irte *ptr = (union irte *)table->table;
3288 	union irte *irte = &ptr[index];
3289 
3290 	return irte->val != 0;
3291 }
3292 
3293 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3294 {
3295 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3296 	struct irte_ga *irte = &ptr[index];
3297 
3298 	return irte->hi.fields.vector != 0;
3299 }
3300 
3301 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3302 {
3303 	table->table[index] = 0;
3304 }
3305 
3306 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3307 {
3308 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3309 	struct irte_ga *irte = &ptr[index];
3310 
3311 	memset(&irte->lo.val, 0, sizeof(u64));
3312 	memset(&irte->hi.val, 0, sizeof(u64));
3313 }
3314 
3315 static int get_devid(struct irq_alloc_info *info)
3316 {
3317 	switch (info->type) {
3318 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3319 		return get_ioapic_devid(info->devid);
3320 	case X86_IRQ_ALLOC_TYPE_HPET:
3321 		return get_hpet_devid(info->devid);
3322 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3323 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3324 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3325 	default:
3326 		WARN_ON_ONCE(1);
3327 		return -1;
3328 	}
3329 }
3330 
3331 struct irq_remap_ops amd_iommu_irq_ops = {
3332 	.prepare		= amd_iommu_prepare,
3333 	.enable			= amd_iommu_enable,
3334 	.disable		= amd_iommu_disable,
3335 	.reenable		= amd_iommu_reenable,
3336 	.enable_faulting	= amd_iommu_enable_faulting,
3337 };
3338 
3339 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3340 {
3341 	msg->data = index;
3342 	msg->address_lo = 0;
3343 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3344 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3345 }
3346 
3347 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3348 				       struct irq_cfg *irq_cfg,
3349 				       struct irq_alloc_info *info,
3350 				       int devid, int index, int sub_handle)
3351 {
3352 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3353 	struct amd_iommu *iommu = data->iommu;
3354 
3355 	if (!iommu)
3356 		return;
3357 
3358 	data->irq_2_irte.devid = devid;
3359 	data->irq_2_irte.index = index + sub_handle;
3360 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3361 				 apic->dest_mode_logical, irq_cfg->vector,
3362 				 irq_cfg->dest_apicid, devid);
3363 
3364 	switch (info->type) {
3365 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3366 	case X86_IRQ_ALLOC_TYPE_HPET:
3367 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3368 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3369 		fill_msi_msg(&data->msi_entry, irte_info->index);
3370 		break;
3371 
3372 	default:
3373 		BUG_ON(1);
3374 		break;
3375 	}
3376 }
3377 
3378 struct amd_irte_ops irte_32_ops = {
3379 	.prepare = irte_prepare,
3380 	.activate = irte_activate,
3381 	.deactivate = irte_deactivate,
3382 	.set_affinity = irte_set_affinity,
3383 	.set_allocated = irte_set_allocated,
3384 	.is_allocated = irte_is_allocated,
3385 	.clear_allocated = irte_clear_allocated,
3386 };
3387 
3388 struct amd_irte_ops irte_128_ops = {
3389 	.prepare = irte_ga_prepare,
3390 	.activate = irte_ga_activate,
3391 	.deactivate = irte_ga_deactivate,
3392 	.set_affinity = irte_ga_set_affinity,
3393 	.set_allocated = irte_ga_set_allocated,
3394 	.is_allocated = irte_ga_is_allocated,
3395 	.clear_allocated = irte_ga_clear_allocated,
3396 };
3397 
3398 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3399 			       unsigned int nr_irqs, void *arg)
3400 {
3401 	struct irq_alloc_info *info = arg;
3402 	struct irq_data *irq_data;
3403 	struct amd_ir_data *data = NULL;
3404 	struct amd_iommu *iommu;
3405 	struct irq_cfg *cfg;
3406 	int i, ret, devid, seg, sbdf;
3407 	int index;
3408 
3409 	if (!info)
3410 		return -EINVAL;
3411 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3412 		return -EINVAL;
3413 
3414 	sbdf = get_devid(info);
3415 	if (sbdf < 0)
3416 		return -EINVAL;
3417 
3418 	seg = PCI_SBDF_TO_SEGID(sbdf);
3419 	devid = PCI_SBDF_TO_DEVID(sbdf);
3420 	iommu = __rlookup_amd_iommu(seg, devid);
3421 	if (!iommu)
3422 		return -EINVAL;
3423 
3424 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3425 	if (ret < 0)
3426 		return ret;
3427 
3428 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3429 		struct irq_remap_table *table;
3430 
3431 		table = alloc_irq_table(iommu, devid, NULL);
3432 		if (table) {
3433 			if (!table->min_index) {
3434 				/*
3435 				 * Keep the first 32 indexes free for IOAPIC
3436 				 * interrupts.
3437 				 */
3438 				table->min_index = 32;
3439 				for (i = 0; i < 32; ++i)
3440 					iommu->irte_ops->set_allocated(table, i);
3441 			}
3442 			WARN_ON(table->min_index != 32);
3443 			index = info->ioapic.pin;
3444 		} else {
3445 			index = -ENOMEM;
3446 		}
3447 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3448 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3449 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3450 
3451 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3452 					msi_desc_to_pci_dev(info->desc));
3453 	} else {
3454 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3455 	}
3456 
3457 	if (index < 0) {
3458 		pr_warn("Failed to allocate IRTE\n");
3459 		ret = index;
3460 		goto out_free_parent;
3461 	}
3462 
3463 	for (i = 0; i < nr_irqs; i++) {
3464 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3465 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3466 		if (!cfg) {
3467 			ret = -EINVAL;
3468 			goto out_free_data;
3469 		}
3470 
3471 		ret = -ENOMEM;
3472 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3473 		if (!data)
3474 			goto out_free_data;
3475 
3476 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3477 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3478 		else
3479 			data->entry = kzalloc(sizeof(struct irte_ga),
3480 						     GFP_KERNEL);
3481 		if (!data->entry) {
3482 			kfree(data);
3483 			goto out_free_data;
3484 		}
3485 
3486 		data->iommu = iommu;
3487 		irq_data->hwirq = (devid << 16) + i;
3488 		irq_data->chip_data = data;
3489 		irq_data->chip = &amd_ir_chip;
3490 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3491 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3492 	}
3493 
3494 	return 0;
3495 
3496 out_free_data:
3497 	for (i--; i >= 0; i--) {
3498 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3499 		if (irq_data)
3500 			kfree(irq_data->chip_data);
3501 	}
3502 	for (i = 0; i < nr_irqs; i++)
3503 		free_irte(iommu, devid, index + i);
3504 out_free_parent:
3505 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3506 	return ret;
3507 }
3508 
3509 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3510 			       unsigned int nr_irqs)
3511 {
3512 	struct irq_2_irte *irte_info;
3513 	struct irq_data *irq_data;
3514 	struct amd_ir_data *data;
3515 	int i;
3516 
3517 	for (i = 0; i < nr_irqs; i++) {
3518 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3519 		if (irq_data && irq_data->chip_data) {
3520 			data = irq_data->chip_data;
3521 			irte_info = &data->irq_2_irte;
3522 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3523 			kfree(data->entry);
3524 			kfree(data);
3525 		}
3526 	}
3527 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3528 }
3529 
3530 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3531 			       struct amd_ir_data *ir_data,
3532 			       struct irq_2_irte *irte_info,
3533 			       struct irq_cfg *cfg);
3534 
3535 static int irq_remapping_activate(struct irq_domain *domain,
3536 				  struct irq_data *irq_data, bool reserve)
3537 {
3538 	struct amd_ir_data *data = irq_data->chip_data;
3539 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3540 	struct amd_iommu *iommu = data->iommu;
3541 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3542 
3543 	if (!iommu)
3544 		return 0;
3545 
3546 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3547 				  irte_info->index);
3548 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3549 	return 0;
3550 }
3551 
3552 static void irq_remapping_deactivate(struct irq_domain *domain,
3553 				     struct irq_data *irq_data)
3554 {
3555 	struct amd_ir_data *data = irq_data->chip_data;
3556 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3557 	struct amd_iommu *iommu = data->iommu;
3558 
3559 	if (iommu)
3560 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3561 					    irte_info->index);
3562 }
3563 
3564 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3565 				enum irq_domain_bus_token bus_token)
3566 {
3567 	struct amd_iommu *iommu;
3568 	int devid = -1;
3569 
3570 	if (!amd_iommu_irq_remap)
3571 		return 0;
3572 
3573 	if (x86_fwspec_is_ioapic(fwspec))
3574 		devid = get_ioapic_devid(fwspec->param[0]);
3575 	else if (x86_fwspec_is_hpet(fwspec))
3576 		devid = get_hpet_devid(fwspec->param[0]);
3577 
3578 	if (devid < 0)
3579 		return 0;
3580 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3581 
3582 	return iommu && iommu->ir_domain == d;
3583 }
3584 
3585 static const struct irq_domain_ops amd_ir_domain_ops = {
3586 	.select = irq_remapping_select,
3587 	.alloc = irq_remapping_alloc,
3588 	.free = irq_remapping_free,
3589 	.activate = irq_remapping_activate,
3590 	.deactivate = irq_remapping_deactivate,
3591 };
3592 
3593 int amd_iommu_activate_guest_mode(void *data)
3594 {
3595 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3596 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3597 	u64 valid;
3598 
3599 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3600 		return 0;
3601 
3602 	valid = entry->lo.fields_vapic.valid;
3603 
3604 	entry->lo.val = 0;
3605 	entry->hi.val = 0;
3606 
3607 	entry->lo.fields_vapic.valid       = valid;
3608 	entry->lo.fields_vapic.guest_mode  = 1;
3609 	entry->lo.fields_vapic.ga_log_intr = 1;
3610 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3611 	entry->hi.fields.vector            = ir_data->ga_vector;
3612 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3613 
3614 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3615 			      ir_data->irq_2_irte.index, entry);
3616 }
3617 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3618 
3619 int amd_iommu_deactivate_guest_mode(void *data)
3620 {
3621 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3622 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3623 	struct irq_cfg *cfg = ir_data->cfg;
3624 	u64 valid;
3625 
3626 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3627 	    !entry || !entry->lo.fields_vapic.guest_mode)
3628 		return 0;
3629 
3630 	valid = entry->lo.fields_remap.valid;
3631 
3632 	entry->lo.val = 0;
3633 	entry->hi.val = 0;
3634 
3635 	entry->lo.fields_remap.valid       = valid;
3636 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3637 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3638 	entry->hi.fields.vector            = cfg->vector;
3639 	entry->lo.fields_remap.destination =
3640 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3641 	entry->hi.fields.destination =
3642 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3643 
3644 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3645 			      ir_data->irq_2_irte.index, entry);
3646 }
3647 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3648 
3649 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3650 {
3651 	int ret;
3652 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3653 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3654 	struct amd_ir_data *ir_data = data->chip_data;
3655 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3656 	struct iommu_dev_data *dev_data;
3657 
3658 	if (ir_data->iommu == NULL)
3659 		return -EINVAL;
3660 
3661 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3662 
3663 	/* Note:
3664 	 * This device has never been set up for guest mode.
3665 	 * we should not modify the IRTE
3666 	 */
3667 	if (!dev_data || !dev_data->use_vapic)
3668 		return 0;
3669 
3670 	ir_data->cfg = irqd_cfg(data);
3671 	pi_data->ir_data = ir_data;
3672 
3673 	/* Note:
3674 	 * SVM tries to set up for VAPIC mode, but we are in
3675 	 * legacy mode. So, we force legacy mode instead.
3676 	 */
3677 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3678 		pr_debug("%s: Fall back to using intr legacy remap\n",
3679 			 __func__);
3680 		pi_data->is_guest_mode = false;
3681 	}
3682 
3683 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3684 	if (pi_data->is_guest_mode) {
3685 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3686 		ir_data->ga_vector = vcpu_pi_info->vector;
3687 		ir_data->ga_tag = pi_data->ga_tag;
3688 		ret = amd_iommu_activate_guest_mode(ir_data);
3689 		if (!ret)
3690 			ir_data->cached_ga_tag = pi_data->ga_tag;
3691 	} else {
3692 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3693 
3694 		/*
3695 		 * This communicates the ga_tag back to the caller
3696 		 * so that it can do all the necessary clean up.
3697 		 */
3698 		if (!ret)
3699 			ir_data->cached_ga_tag = 0;
3700 	}
3701 
3702 	return ret;
3703 }
3704 
3705 
3706 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3707 			       struct amd_ir_data *ir_data,
3708 			       struct irq_2_irte *irte_info,
3709 			       struct irq_cfg *cfg)
3710 {
3711 
3712 	/*
3713 	 * Atomically updates the IRTE with the new destination, vector
3714 	 * and flushes the interrupt entry cache.
3715 	 */
3716 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3717 				      irte_info->index, cfg->vector,
3718 				      cfg->dest_apicid);
3719 }
3720 
3721 static int amd_ir_set_affinity(struct irq_data *data,
3722 			       const struct cpumask *mask, bool force)
3723 {
3724 	struct amd_ir_data *ir_data = data->chip_data;
3725 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3726 	struct irq_cfg *cfg = irqd_cfg(data);
3727 	struct irq_data *parent = data->parent_data;
3728 	struct amd_iommu *iommu = ir_data->iommu;
3729 	int ret;
3730 
3731 	if (!iommu)
3732 		return -ENODEV;
3733 
3734 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3735 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3736 		return ret;
3737 
3738 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3739 	/*
3740 	 * After this point, all the interrupts will start arriving
3741 	 * at the new destination. So, time to cleanup the previous
3742 	 * vector allocation.
3743 	 */
3744 	vector_schedule_cleanup(cfg);
3745 
3746 	return IRQ_SET_MASK_OK_DONE;
3747 }
3748 
3749 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3750 {
3751 	struct amd_ir_data *ir_data = irq_data->chip_data;
3752 
3753 	*msg = ir_data->msi_entry;
3754 }
3755 
3756 static struct irq_chip amd_ir_chip = {
3757 	.name			= "AMD-IR",
3758 	.irq_ack		= apic_ack_irq,
3759 	.irq_set_affinity	= amd_ir_set_affinity,
3760 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3761 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3762 };
3763 
3764 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3765 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3766 				  MSI_FLAG_MULTI_PCI_MSI |
3767 				  MSI_FLAG_PCI_IMS,
3768 	.prefix			= "IR-",
3769 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3770 };
3771 
3772 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3773 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3774 				  MSI_FLAG_MULTI_PCI_MSI,
3775 	.prefix			= "vIR-",
3776 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3777 };
3778 
3779 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3780 {
3781 	struct fwnode_handle *fn;
3782 
3783 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3784 	if (!fn)
3785 		return -ENOMEM;
3786 	iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3787 						       fn, &amd_ir_domain_ops, iommu);
3788 	if (!iommu->ir_domain) {
3789 		irq_domain_free_fwnode(fn);
3790 		return -ENOMEM;
3791 	}
3792 
3793 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_AMDVI);
3794 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3795 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3796 
3797 	if (amd_iommu_np_cache)
3798 		iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3799 	else
3800 		iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3801 
3802 	return 0;
3803 }
3804 
3805 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3806 {
3807 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3808 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3809 
3810 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3811 	    !entry || !entry->lo.fields_vapic.guest_mode)
3812 		return 0;
3813 
3814 	if (!ir_data->iommu)
3815 		return -ENODEV;
3816 
3817 	if (cpu >= 0) {
3818 		entry->lo.fields_vapic.destination =
3819 					APICID_TO_IRTE_DEST_LO(cpu);
3820 		entry->hi.fields.destination =
3821 					APICID_TO_IRTE_DEST_HI(cpu);
3822 	}
3823 	entry->lo.fields_vapic.is_run = is_run;
3824 
3825 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3826 			      ir_data->irq_2_irte.index, entry);
3827 }
3828 EXPORT_SYMBOL(amd_iommu_update_ga);
3829 #endif
3830