xref: /linux/drivers/iommu/intel/dmar.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32 
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 
38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39 struct dmar_res_callback {
40 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
41 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
42 	bool			ignore_unhandled;
43 	bool			print_entry;
44 };
45 
46 /*
47  * Assumptions:
48  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49  *    before IO devices managed by that unit.
50  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51  *    after IO devices managed by that unit.
52  * 3) Hotplug events are rare.
53  *
54  * Locking rules for DMA and interrupt remapping related global data structures:
55  * 1) Use dmar_global_lock in process context
56  * 2) Use RCU in interrupt context
57  */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60 
61 struct acpi_table_header * __initdata dmar_tbl;
62 static int dmar_dev_scope_status = 1;
63 static DEFINE_IDA(dmar_seq_ids);
64 
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67 
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 	/*
71 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 	 * the very end.
73 	 */
74 	if (drhd->include_all)
75 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 	else
77 		list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79 
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 	struct acpi_dmar_device_scope *scope;
83 
84 	*cnt = 0;
85 	while (start < end) {
86 		scope = start;
87 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 			(*cnt)++;
91 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 			pr_warn("Unsupported device scope\n");
94 		}
95 		start += scope->length;
96 	}
97 	if (*cnt == 0)
98 		return NULL;
99 
100 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102 
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 	int i;
106 	struct device *tmp_dev;
107 
108 	if (*devices && *cnt) {
109 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 			put_device(tmp_dev);
111 		kfree(*devices);
112 	}
113 
114 	*devices = NULL;
115 	*cnt = 0;
116 }
117 
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120 
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 	int level = 0;
125 	size_t size;
126 	struct pci_dev *tmp;
127 	struct dmar_pci_notify_info *info;
128 
129 	BUG_ON(dev->is_virtfn);
130 
131 	/*
132 	 * Ignore devices that have a domain number higher than what can
133 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 	 */
135 	if (pci_domain_nr(dev->bus) > U16_MAX)
136 		return NULL;
137 
138 	/* Only generate path[] for device addition event */
139 	if (event == BUS_NOTIFY_ADD_DEVICE)
140 		for (tmp = dev; tmp; tmp = tmp->bus->self)
141 			level++;
142 
143 	size = struct_size(info, path, level);
144 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 	} else {
147 		info = kzalloc(size, GFP_KERNEL);
148 		if (!info) {
149 			if (dmar_dev_scope_status == 0)
150 				dmar_dev_scope_status = -ENOMEM;
151 			return NULL;
152 		}
153 	}
154 
155 	info->event = event;
156 	info->dev = dev;
157 	info->seg = pci_domain_nr(dev->bus);
158 	info->level = level;
159 	if (event == BUS_NOTIFY_ADD_DEVICE) {
160 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 			level--;
162 			info->path[level].bus = tmp->bus->number;
163 			info->path[level].device = PCI_SLOT(tmp->devfn);
164 			info->path[level].function = PCI_FUNC(tmp->devfn);
165 			if (pci_is_root_bus(tmp->bus))
166 				info->bus = tmp->bus->number;
167 		}
168 	}
169 
170 	return info;
171 }
172 
173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 	if ((void *)info != dmar_pci_notify_info_buf)
176 		kfree(info);
177 }
178 
179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 				struct acpi_dmar_pci_path *path, int count)
181 {
182 	int i;
183 
184 	if (info->bus != bus)
185 		goto fallback;
186 	if (info->level != count)
187 		goto fallback;
188 
189 	for (i = 0; i < count; i++) {
190 		if (path[i].device != info->path[i].device ||
191 		    path[i].function != info->path[i].function)
192 			goto fallback;
193 	}
194 
195 	return true;
196 
197 fallback:
198 
199 	if (count != 1)
200 		return false;
201 
202 	i = info->level - 1;
203 	if (bus              == info->path[i].bus &&
204 	    path[0].device   == info->path[i].device &&
205 	    path[0].function == info->path[i].function) {
206 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 			bus, path[0].device, path[0].function);
208 		return true;
209 	}
210 
211 	return false;
212 }
213 
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 			  void *start, void*end, u16 segment,
217 			  struct dmar_dev_scope *devices,
218 			  int devices_cnt)
219 {
220 	int i, level;
221 	struct device *tmp, *dev = &info->dev->dev;
222 	struct acpi_dmar_device_scope *scope;
223 	struct acpi_dmar_pci_path *path;
224 
225 	if (segment != info->seg)
226 		return 0;
227 
228 	for (; start < end; start += scope->length) {
229 		scope = start;
230 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 			continue;
233 
234 		path = (struct acpi_dmar_pci_path *)(scope + 1);
235 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 		if (!dmar_match_pci_path(info, scope->bus, path, level))
237 			continue;
238 
239 		/*
240 		 * We expect devices with endpoint scope to have normal PCI
241 		 * headers, and devices with bridge scope to have bridge PCI
242 		 * headers.  However PCI NTB devices may be listed in the
243 		 * DMAR table with bridge scope, even though they have a
244 		 * normal PCI header.  NTB devices are identified by class
245 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 		 * for this special case.
247 		 */
248 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 			pr_warn("Device scope type does not match for %s\n",
254 				pci_name(info->dev));
255 			return -EINVAL;
256 		}
257 
258 		for_each_dev_scope(devices, devices_cnt, i, tmp)
259 			if (tmp == NULL) {
260 				devices[i].bus = info->dev->bus->number;
261 				devices[i].devfn = info->dev->devfn;
262 				rcu_assign_pointer(devices[i].dev,
263 						   get_device(dev));
264 				return 1;
265 			}
266 		BUG_ON(i >= devices_cnt);
267 	}
268 
269 	return 0;
270 }
271 
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 			  struct dmar_dev_scope *devices, int count)
274 {
275 	int index;
276 	struct device *tmp;
277 
278 	if (info->seg != segment)
279 		return 0;
280 
281 	for_each_active_dev_scope(devices, count, index, tmp)
282 		if (tmp == &info->dev->dev) {
283 			RCU_INIT_POINTER(devices[index].dev, NULL);
284 			synchronize_rcu();
285 			put_device(tmp);
286 			return 1;
287 		}
288 
289 	return 0;
290 }
291 
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294 	int ret = 0;
295 	struct dmar_drhd_unit *dmaru;
296 	struct acpi_dmar_hardware_unit *drhd;
297 
298 	for_each_drhd_unit(dmaru) {
299 		if (dmaru->include_all)
300 			continue;
301 
302 		drhd = container_of(dmaru->hdr,
303 				    struct acpi_dmar_hardware_unit, header);
304 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 				((void *)drhd) + drhd->header.length,
306 				dmaru->segment,
307 				dmaru->devices, dmaru->devices_cnt);
308 		if (ret)
309 			break;
310 	}
311 	if (ret >= 0)
312 		ret = dmar_iommu_notify_scope_dev(info);
313 	if (ret < 0 && dmar_dev_scope_status == 0)
314 		dmar_dev_scope_status = ret;
315 
316 	if (ret >= 0)
317 		intel_irq_remap_add_device(info);
318 
319 	return ret;
320 }
321 
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324 	struct dmar_drhd_unit *dmaru;
325 
326 	for_each_drhd_unit(dmaru)
327 		if (dmar_remove_dev_scope(info, dmaru->segment,
328 			dmaru->devices, dmaru->devices_cnt))
329 			break;
330 	dmar_iommu_notify_scope_dev(info);
331 }
332 
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335 	struct pci_dev *physfn = pci_physfn(pdev);
336 
337 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339 
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 				 unsigned long action, void *data)
342 {
343 	struct pci_dev *pdev = to_pci_dev(data);
344 	struct dmar_pci_notify_info *info;
345 
346 	/* Only care about add/remove events for physical functions.
347 	 * For VFs we actually do the lookup based on the corresponding
348 	 * PF in device_to_iommu() anyway. */
349 	if (pdev->is_virtfn) {
350 		/*
351 		 * Ensure that the VF device inherits the irq domain of the
352 		 * PF device. Ideally the device would inherit the domain
353 		 * from the bus, but DMAR can have multiple units per bus
354 		 * which makes this impossible. The VF 'bus' could inherit
355 		 * from the PF device, but that's yet another x86'sism to
356 		 * inflict on everybody else.
357 		 */
358 		if (action == BUS_NOTIFY_ADD_DEVICE)
359 			vf_inherit_msi_domain(pdev);
360 		return NOTIFY_DONE;
361 	}
362 
363 	if (action != BUS_NOTIFY_ADD_DEVICE &&
364 	    action != BUS_NOTIFY_REMOVED_DEVICE)
365 		return NOTIFY_DONE;
366 
367 	info = dmar_alloc_pci_notify_info(pdev, action);
368 	if (!info)
369 		return NOTIFY_DONE;
370 
371 	down_write(&dmar_global_lock);
372 	if (action == BUS_NOTIFY_ADD_DEVICE)
373 		dmar_pci_bus_add_dev(info);
374 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 		dmar_pci_bus_del_dev(info);
376 	up_write(&dmar_global_lock);
377 
378 	dmar_free_pci_notify_info(info);
379 
380 	return NOTIFY_OK;
381 }
382 
383 static struct notifier_block dmar_pci_bus_nb = {
384 	.notifier_call = dmar_pci_bus_notifier,
385 	.priority = 1,
386 };
387 
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391 	struct dmar_drhd_unit *dmaru;
392 
393 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 				dmar_rcu_check())
395 		if (dmaru->segment == drhd->segment &&
396 		    dmaru->reg_base_addr == drhd->address)
397 			return dmaru;
398 
399 	return NULL;
400 }
401 
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409 	struct acpi_dmar_hardware_unit *drhd;
410 	struct dmar_drhd_unit *dmaru;
411 	int ret;
412 
413 	drhd = (struct acpi_dmar_hardware_unit *)header;
414 	dmaru = dmar_find_dmaru(drhd);
415 	if (dmaru)
416 		goto out;
417 
418 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 	if (!dmaru)
420 		return -ENOMEM;
421 
422 	/*
423 	 * If header is allocated from slab by ACPI _DSM method, we need to
424 	 * copy the content because the memory buffer will be freed on return.
425 	 */
426 	dmaru->hdr = (void *)(dmaru + 1);
427 	memcpy(dmaru->hdr, header, header->length);
428 	dmaru->reg_base_addr = drhd->address;
429 	dmaru->segment = drhd->segment;
430 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
431 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
432 					      ((void *)drhd) + drhd->header.length,
433 					      &dmaru->devices_cnt);
434 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
435 		kfree(dmaru);
436 		return -ENOMEM;
437 	}
438 
439 	ret = alloc_iommu(dmaru);
440 	if (ret) {
441 		dmar_free_dev_scope(&dmaru->devices,
442 				    &dmaru->devices_cnt);
443 		kfree(dmaru);
444 		return ret;
445 	}
446 	dmar_register_drhd_unit(dmaru);
447 
448 out:
449 	if (arg)
450 		(*(int *)arg)++;
451 
452 	return 0;
453 }
454 
455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
456 {
457 	if (dmaru->devices && dmaru->devices_cnt)
458 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
459 	if (dmaru->iommu)
460 		free_iommu(dmaru->iommu);
461 	kfree(dmaru);
462 }
463 
464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
465 				      void *arg)
466 {
467 	struct acpi_dmar_andd *andd = (void *)header;
468 
469 	/* Check for NUL termination within the designated length */
470 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
471 		pr_warn(FW_BUG
472 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
473 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 			   dmi_get_system_info(DMI_BIOS_VENDOR),
475 			   dmi_get_system_info(DMI_BIOS_VERSION),
476 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
477 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
478 		return -EINVAL;
479 	}
480 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
481 		andd->device_name);
482 
483 	return 0;
484 }
485 
486 #ifdef CONFIG_ACPI_NUMA
487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
488 {
489 	struct acpi_dmar_rhsa *rhsa;
490 	struct dmar_drhd_unit *drhd;
491 
492 	rhsa = (struct acpi_dmar_rhsa *)header;
493 	for_each_drhd_unit(drhd) {
494 		if (drhd->reg_base_addr == rhsa->base_address) {
495 			int node = pxm_to_node(rhsa->proximity_domain);
496 
497 			if (node != NUMA_NO_NODE && !node_online(node))
498 				node = NUMA_NO_NODE;
499 			drhd->iommu->node = node;
500 			return 0;
501 		}
502 	}
503 	pr_warn(FW_BUG
504 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
505 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
506 		rhsa->base_address,
507 		dmi_get_system_info(DMI_BIOS_VENDOR),
508 		dmi_get_system_info(DMI_BIOS_VERSION),
509 		dmi_get_system_info(DMI_PRODUCT_VERSION));
510 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
511 
512 	return 0;
513 }
514 #else
515 #define	dmar_parse_one_rhsa		dmar_res_noop
516 #endif
517 
518 static void
519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
520 {
521 	struct acpi_dmar_hardware_unit *drhd;
522 	struct acpi_dmar_reserved_memory *rmrr;
523 	struct acpi_dmar_atsr *atsr;
524 	struct acpi_dmar_rhsa *rhsa;
525 	struct acpi_dmar_satc *satc;
526 
527 	switch (header->type) {
528 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
530 				    header);
531 		pr_info("DRHD base: %#016Lx flags: %#x\n",
532 			(unsigned long long)drhd->address, drhd->flags);
533 		break;
534 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
536 				    header);
537 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
538 			(unsigned long long)rmrr->base_address,
539 			(unsigned long long)rmrr->end_address);
540 		break;
541 	case ACPI_DMAR_TYPE_ROOT_ATS:
542 		atsr = container_of(header, struct acpi_dmar_atsr, header);
543 		pr_info("ATSR flags: %#x\n", atsr->flags);
544 		break;
545 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 		       (unsigned long long)rhsa->base_address,
549 		       rhsa->proximity_domain);
550 		break;
551 	case ACPI_DMAR_TYPE_NAMESPACE:
552 		/* We don't print this here because we need to sanity-check
553 		   it first. So print it in dmar_parse_one_andd() instead. */
554 		break;
555 	case ACPI_DMAR_TYPE_SATC:
556 		satc = container_of(header, struct acpi_dmar_satc, header);
557 		pr_info("SATC flags: 0x%x\n", satc->flags);
558 		break;
559 	}
560 }
561 
562 /**
563  * dmar_table_detect - checks to see if the platform supports DMAR devices
564  */
565 static int __init dmar_table_detect(void)
566 {
567 	acpi_status status = AE_OK;
568 
569 	/* if we could find DMAR table, then there are DMAR devices */
570 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
571 
572 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
573 		pr_warn("Unable to map DMAR\n");
574 		status = AE_NOT_FOUND;
575 	}
576 
577 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
578 }
579 
580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
581 				       size_t len, struct dmar_res_callback *cb)
582 {
583 	struct acpi_dmar_header *iter, *next;
584 	struct acpi_dmar_header *end = ((void *)start) + len;
585 
586 	for (iter = start; iter < end; iter = next) {
587 		next = (void *)iter + iter->length;
588 		if (iter->length == 0) {
589 			/* Avoid looping forever on bad ACPI tables */
590 			pr_debug(FW_BUG "Invalid 0-length structure\n");
591 			break;
592 		} else if (next > end) {
593 			/* Avoid passing table end */
594 			pr_warn(FW_BUG "Record passes table end\n");
595 			return -EINVAL;
596 		}
597 
598 		if (cb->print_entry)
599 			dmar_table_print_dmar_entry(iter);
600 
601 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
602 			/* continue for forward compatibility */
603 			pr_debug("Unknown DMAR structure type %d\n",
604 				 iter->type);
605 		} else if (cb->cb[iter->type]) {
606 			int ret;
607 
608 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
609 			if (ret)
610 				return ret;
611 		} else if (!cb->ignore_unhandled) {
612 			pr_warn("No handler for DMAR structure type %d\n",
613 				iter->type);
614 			return -EINVAL;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
622 				       struct dmar_res_callback *cb)
623 {
624 	return dmar_walk_remapping_entries((void *)(dmar + 1),
625 			dmar->header.length - sizeof(*dmar), cb);
626 }
627 
628 /**
629  * parse_dmar_table - parses the DMA reporting table
630  */
631 static int __init
632 parse_dmar_table(void)
633 {
634 	struct acpi_table_dmar *dmar;
635 	int drhd_count = 0;
636 	int ret;
637 	struct dmar_res_callback cb = {
638 		.print_entry = true,
639 		.ignore_unhandled = true,
640 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
641 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
642 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
643 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
644 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
645 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
646 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
647 	};
648 
649 	/*
650 	 * Do it again, earlier dmar_tbl mapping could be mapped with
651 	 * fixed map.
652 	 */
653 	dmar_table_detect();
654 
655 	/*
656 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
657 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
658 	 */
659 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
660 
661 	dmar = (struct acpi_table_dmar *)dmar_tbl;
662 	if (!dmar)
663 		return -ENODEV;
664 
665 	if (dmar->width < PAGE_SHIFT - 1) {
666 		pr_warn("Invalid DMAR haw\n");
667 		return -EINVAL;
668 	}
669 
670 	pr_info("Host address width %d\n", dmar->width + 1);
671 	ret = dmar_walk_dmar_table(dmar, &cb);
672 	if (ret == 0 && drhd_count == 0)
673 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
674 
675 	return ret;
676 }
677 
678 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
679 				 int cnt, struct pci_dev *dev)
680 {
681 	int index;
682 	struct device *tmp;
683 
684 	while (dev) {
685 		for_each_active_dev_scope(devices, cnt, index, tmp)
686 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
687 				return 1;
688 
689 		/* Check our parent */
690 		dev = dev->bus->self;
691 	}
692 
693 	return 0;
694 }
695 
696 struct dmar_drhd_unit *
697 dmar_find_matched_drhd_unit(struct pci_dev *dev)
698 {
699 	struct dmar_drhd_unit *dmaru;
700 	struct acpi_dmar_hardware_unit *drhd;
701 
702 	dev = pci_physfn(dev);
703 
704 	rcu_read_lock();
705 	for_each_drhd_unit(dmaru) {
706 		drhd = container_of(dmaru->hdr,
707 				    struct acpi_dmar_hardware_unit,
708 				    header);
709 
710 		if (dmaru->include_all &&
711 		    drhd->segment == pci_domain_nr(dev->bus))
712 			goto out;
713 
714 		if (dmar_pci_device_match(dmaru->devices,
715 					  dmaru->devices_cnt, dev))
716 			goto out;
717 	}
718 	dmaru = NULL;
719 out:
720 	rcu_read_unlock();
721 
722 	return dmaru;
723 }
724 
725 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
726 					      struct acpi_device *adev)
727 {
728 	struct dmar_drhd_unit *dmaru;
729 	struct acpi_dmar_hardware_unit *drhd;
730 	struct acpi_dmar_device_scope *scope;
731 	struct device *tmp;
732 	int i;
733 	struct acpi_dmar_pci_path *path;
734 
735 	for_each_drhd_unit(dmaru) {
736 		drhd = container_of(dmaru->hdr,
737 				    struct acpi_dmar_hardware_unit,
738 				    header);
739 
740 		for (scope = (void *)(drhd + 1);
741 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
742 		     scope = ((void *)scope) + scope->length) {
743 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
744 				continue;
745 			if (scope->enumeration_id != device_number)
746 				continue;
747 
748 			path = (void *)(scope + 1);
749 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
750 				dev_name(&adev->dev), dmaru->reg_base_addr,
751 				scope->bus, path->device, path->function);
752 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
753 				if (tmp == NULL) {
754 					dmaru->devices[i].bus = scope->bus;
755 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
756 									    path->function);
757 					rcu_assign_pointer(dmaru->devices[i].dev,
758 							   get_device(&adev->dev));
759 					return;
760 				}
761 			BUG_ON(i >= dmaru->devices_cnt);
762 		}
763 	}
764 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
765 		device_number, dev_name(&adev->dev));
766 }
767 
768 static int __init dmar_acpi_dev_scope_init(void)
769 {
770 	struct acpi_dmar_andd *andd;
771 
772 	if (dmar_tbl == NULL)
773 		return -ENODEV;
774 
775 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
776 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
777 	     andd = ((void *)andd) + andd->header.length) {
778 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
779 			acpi_handle h;
780 			struct acpi_device *adev;
781 
782 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
783 							  andd->device_name,
784 							  &h))) {
785 				pr_err("Failed to find handle for ACPI object %s\n",
786 				       andd->device_name);
787 				continue;
788 			}
789 			adev = acpi_fetch_acpi_dev(h);
790 			if (!adev) {
791 				pr_err("Failed to get device for ACPI object %s\n",
792 				       andd->device_name);
793 				continue;
794 			}
795 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
796 		}
797 	}
798 	return 0;
799 }
800 
801 int __init dmar_dev_scope_init(void)
802 {
803 	struct pci_dev *dev = NULL;
804 	struct dmar_pci_notify_info *info;
805 
806 	if (dmar_dev_scope_status != 1)
807 		return dmar_dev_scope_status;
808 
809 	if (list_empty(&dmar_drhd_units)) {
810 		dmar_dev_scope_status = -ENODEV;
811 	} else {
812 		dmar_dev_scope_status = 0;
813 
814 		dmar_acpi_dev_scope_init();
815 
816 		for_each_pci_dev(dev) {
817 			if (dev->is_virtfn)
818 				continue;
819 
820 			info = dmar_alloc_pci_notify_info(dev,
821 					BUS_NOTIFY_ADD_DEVICE);
822 			if (!info) {
823 				pci_dev_put(dev);
824 				return dmar_dev_scope_status;
825 			} else {
826 				dmar_pci_bus_add_dev(info);
827 				dmar_free_pci_notify_info(info);
828 			}
829 		}
830 	}
831 
832 	return dmar_dev_scope_status;
833 }
834 
835 void __init dmar_register_bus_notifier(void)
836 {
837 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
838 }
839 
840 
841 int __init dmar_table_init(void)
842 {
843 	static int dmar_table_initialized;
844 	int ret;
845 
846 	if (dmar_table_initialized == 0) {
847 		ret = parse_dmar_table();
848 		if (ret < 0) {
849 			if (ret != -ENODEV)
850 				pr_info("Parse DMAR table failure.\n");
851 		} else  if (list_empty(&dmar_drhd_units)) {
852 			pr_info("No DMAR devices found\n");
853 			ret = -ENODEV;
854 		}
855 
856 		if (ret < 0)
857 			dmar_table_initialized = ret;
858 		else
859 			dmar_table_initialized = 1;
860 	}
861 
862 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
863 }
864 
865 static void warn_invalid_dmar(u64 addr, const char *message)
866 {
867 	pr_warn_once(FW_BUG
868 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
869 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
870 		addr, message,
871 		dmi_get_system_info(DMI_BIOS_VENDOR),
872 		dmi_get_system_info(DMI_BIOS_VERSION),
873 		dmi_get_system_info(DMI_PRODUCT_VERSION));
874 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
875 }
876 
877 static int __ref
878 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
879 {
880 	struct acpi_dmar_hardware_unit *drhd;
881 	void __iomem *addr;
882 	u64 cap, ecap;
883 
884 	drhd = (void *)entry;
885 	if (!drhd->address) {
886 		warn_invalid_dmar(0, "");
887 		return -EINVAL;
888 	}
889 
890 	if (arg)
891 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
892 	else
893 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
894 	if (!addr) {
895 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
896 		return -EINVAL;
897 	}
898 
899 	cap = dmar_readq(addr + DMAR_CAP_REG);
900 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
901 
902 	if (arg)
903 		iounmap(addr);
904 	else
905 		early_iounmap(addr, VTD_PAGE_SIZE);
906 
907 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
908 		warn_invalid_dmar(drhd->address, " returns all ones");
909 		return -EINVAL;
910 	}
911 
912 	return 0;
913 }
914 
915 void __init detect_intel_iommu(void)
916 {
917 	int ret;
918 	struct dmar_res_callback validate_drhd_cb = {
919 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
920 		.ignore_unhandled = true,
921 	};
922 
923 	down_write(&dmar_global_lock);
924 	ret = dmar_table_detect();
925 	if (!ret)
926 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
927 					   &validate_drhd_cb);
928 	if (!ret && !no_iommu && !iommu_detected &&
929 	    (!dmar_disabled || dmar_platform_optin())) {
930 		iommu_detected = 1;
931 		/* Make sure ACS will be enabled */
932 		pci_request_acs();
933 	}
934 
935 #ifdef CONFIG_X86
936 	if (!ret) {
937 		x86_init.iommu.iommu_init = intel_iommu_init;
938 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
939 	}
940 
941 #endif
942 
943 	if (dmar_tbl) {
944 		acpi_put_table(dmar_tbl);
945 		dmar_tbl = NULL;
946 	}
947 	up_write(&dmar_global_lock);
948 }
949 
950 static void unmap_iommu(struct intel_iommu *iommu)
951 {
952 	iounmap(iommu->reg);
953 	release_mem_region(iommu->reg_phys, iommu->reg_size);
954 }
955 
956 /**
957  * map_iommu: map the iommu's registers
958  * @iommu: the iommu to map
959  * @phys_addr: the physical address of the base resgister
960  *
961  * Memory map the iommu's registers.  Start w/ a single page, and
962  * possibly expand if that turns out to be insufficent.
963  */
964 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
965 {
966 	int map_size, err=0;
967 
968 	iommu->reg_phys = phys_addr;
969 	iommu->reg_size = VTD_PAGE_SIZE;
970 
971 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
972 		pr_err("Can't reserve memory\n");
973 		err = -EBUSY;
974 		goto out;
975 	}
976 
977 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
978 	if (!iommu->reg) {
979 		pr_err("Can't map the region\n");
980 		err = -ENOMEM;
981 		goto release;
982 	}
983 
984 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
985 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
986 
987 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
988 		err = -EINVAL;
989 		warn_invalid_dmar(phys_addr, " returns all ones");
990 		goto unmap;
991 	}
992 	if (ecap_vcs(iommu->ecap))
993 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
994 
995 	/* the registers might be more than one page */
996 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
997 			 cap_max_fault_reg_offset(iommu->cap));
998 	map_size = VTD_PAGE_ALIGN(map_size);
999 	if (map_size > iommu->reg_size) {
1000 		iounmap(iommu->reg);
1001 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1002 		iommu->reg_size = map_size;
1003 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1004 					iommu->name)) {
1005 			pr_err("Can't reserve memory\n");
1006 			err = -EBUSY;
1007 			goto out;
1008 		}
1009 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1010 		if (!iommu->reg) {
1011 			pr_err("Can't map the region\n");
1012 			err = -ENOMEM;
1013 			goto release;
1014 		}
1015 	}
1016 	err = 0;
1017 	goto out;
1018 
1019 unmap:
1020 	iounmap(iommu->reg);
1021 release:
1022 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1023 out:
1024 	return err;
1025 }
1026 
1027 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1028 {
1029 	struct intel_iommu *iommu;
1030 	u32 ver, sts;
1031 	int agaw = -1;
1032 	int msagaw = -1;
1033 	int err;
1034 
1035 	if (!drhd->reg_base_addr) {
1036 		warn_invalid_dmar(0, "");
1037 		return -EINVAL;
1038 	}
1039 
1040 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1041 	if (!iommu)
1042 		return -ENOMEM;
1043 
1044 	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1045 					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1046 	if (iommu->seq_id < 0) {
1047 		pr_err("Failed to allocate seq_id\n");
1048 		err = iommu->seq_id;
1049 		goto error;
1050 	}
1051 	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1052 
1053 	err = map_iommu(iommu, drhd->reg_base_addr);
1054 	if (err) {
1055 		pr_err("Failed to map %s\n", iommu->name);
1056 		goto error_free_seq_id;
1057 	}
1058 
1059 	err = -EINVAL;
1060 	if (cap_sagaw(iommu->cap) == 0) {
1061 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1062 			iommu->name);
1063 		drhd->ignored = 1;
1064 	}
1065 
1066 	if (!drhd->ignored) {
1067 		agaw = iommu_calculate_agaw(iommu);
1068 		if (agaw < 0) {
1069 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1070 			       iommu->seq_id);
1071 			drhd->ignored = 1;
1072 		}
1073 	}
1074 	if (!drhd->ignored) {
1075 		msagaw = iommu_calculate_max_sagaw(iommu);
1076 		if (msagaw < 0) {
1077 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1078 			       iommu->seq_id);
1079 			drhd->ignored = 1;
1080 			agaw = -1;
1081 		}
1082 	}
1083 	iommu->agaw = agaw;
1084 	iommu->msagaw = msagaw;
1085 	iommu->segment = drhd->segment;
1086 
1087 	iommu->node = NUMA_NO_NODE;
1088 
1089 	ver = readl(iommu->reg + DMAR_VER_REG);
1090 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1091 		iommu->name,
1092 		(unsigned long long)drhd->reg_base_addr,
1093 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1094 		(unsigned long long)iommu->cap,
1095 		(unsigned long long)iommu->ecap);
1096 
1097 	/* Reflect status in gcmd */
1098 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1099 	if (sts & DMA_GSTS_IRES)
1100 		iommu->gcmd |= DMA_GCMD_IRE;
1101 	if (sts & DMA_GSTS_TES)
1102 		iommu->gcmd |= DMA_GCMD_TE;
1103 	if (sts & DMA_GSTS_QIES)
1104 		iommu->gcmd |= DMA_GCMD_QIE;
1105 
1106 	raw_spin_lock_init(&iommu->register_lock);
1107 
1108 	/*
1109 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1110 	 * be set yet. When intel_iommu_init() runs, it registers the units
1111 	 * present at boot time, then sets intel_iommu_enabled.
1112 	 */
1113 	if (intel_iommu_enabled && !drhd->ignored) {
1114 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1115 					     intel_iommu_groups,
1116 					     "%s", iommu->name);
1117 		if (err)
1118 			goto err_unmap;
1119 
1120 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1121 		if (err)
1122 			goto err_sysfs;
1123 	}
1124 
1125 	drhd->iommu = iommu;
1126 	iommu->drhd = drhd;
1127 
1128 	return 0;
1129 
1130 err_sysfs:
1131 	iommu_device_sysfs_remove(&iommu->iommu);
1132 err_unmap:
1133 	unmap_iommu(iommu);
1134 error_free_seq_id:
1135 	ida_free(&dmar_seq_ids, iommu->seq_id);
1136 error:
1137 	kfree(iommu);
1138 	return err;
1139 }
1140 
1141 static void free_iommu(struct intel_iommu *iommu)
1142 {
1143 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1144 		iommu_device_unregister(&iommu->iommu);
1145 		iommu_device_sysfs_remove(&iommu->iommu);
1146 	}
1147 
1148 	if (iommu->irq) {
1149 		if (iommu->pr_irq) {
1150 			free_irq(iommu->pr_irq, iommu);
1151 			dmar_free_hwirq(iommu->pr_irq);
1152 			iommu->pr_irq = 0;
1153 		}
1154 		free_irq(iommu->irq, iommu);
1155 		dmar_free_hwirq(iommu->irq);
1156 		iommu->irq = 0;
1157 	}
1158 
1159 	if (iommu->qi) {
1160 		free_page((unsigned long)iommu->qi->desc);
1161 		kfree(iommu->qi->desc_status);
1162 		kfree(iommu->qi);
1163 	}
1164 
1165 	if (iommu->reg)
1166 		unmap_iommu(iommu);
1167 
1168 	ida_free(&dmar_seq_ids, iommu->seq_id);
1169 	kfree(iommu);
1170 }
1171 
1172 /*
1173  * Reclaim all the submitted descriptors which have completed its work.
1174  */
1175 static inline void reclaim_free_desc(struct q_inval *qi)
1176 {
1177 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1178 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1179 		qi->desc_status[qi->free_tail] = QI_FREE;
1180 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1181 		qi->free_cnt++;
1182 	}
1183 }
1184 
1185 static const char *qi_type_string(u8 type)
1186 {
1187 	switch (type) {
1188 	case QI_CC_TYPE:
1189 		return "Context-cache Invalidation";
1190 	case QI_IOTLB_TYPE:
1191 		return "IOTLB Invalidation";
1192 	case QI_DIOTLB_TYPE:
1193 		return "Device-TLB Invalidation";
1194 	case QI_IEC_TYPE:
1195 		return "Interrupt Entry Cache Invalidation";
1196 	case QI_IWD_TYPE:
1197 		return "Invalidation Wait";
1198 	case QI_EIOTLB_TYPE:
1199 		return "PASID-based IOTLB Invalidation";
1200 	case QI_PC_TYPE:
1201 		return "PASID-cache Invalidation";
1202 	case QI_DEIOTLB_TYPE:
1203 		return "PASID-based Device-TLB Invalidation";
1204 	case QI_PGRP_RESP_TYPE:
1205 		return "Page Group Response";
1206 	default:
1207 		return "UNKNOWN";
1208 	}
1209 }
1210 
1211 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1212 {
1213 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1214 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1215 	struct qi_desc *desc = iommu->qi->desc + head;
1216 
1217 	if (fault & DMA_FSTS_IQE)
1218 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1219 		       DMAR_IQER_REG_IQEI(iqe_err));
1220 	if (fault & DMA_FSTS_ITE)
1221 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1222 		       DMAR_IQER_REG_ITESID(iqe_err));
1223 	if (fault & DMA_FSTS_ICE)
1224 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1225 		       DMAR_IQER_REG_ICESID(iqe_err));
1226 
1227 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1228 	       qi_type_string(desc->qw0 & 0xf),
1229 	       (unsigned long long)desc->qw0,
1230 	       (unsigned long long)desc->qw1);
1231 
1232 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1233 	head <<= qi_shift(iommu);
1234 	desc = iommu->qi->desc + head;
1235 
1236 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1237 	       qi_type_string(desc->qw0 & 0xf),
1238 	       (unsigned long long)desc->qw0,
1239 	       (unsigned long long)desc->qw1);
1240 }
1241 
1242 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1243 {
1244 	u32 fault;
1245 	int head, tail;
1246 	struct q_inval *qi = iommu->qi;
1247 	int shift = qi_shift(iommu);
1248 
1249 	if (qi->desc_status[wait_index] == QI_ABORT)
1250 		return -EAGAIN;
1251 
1252 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1253 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1254 		qi_dump_fault(iommu, fault);
1255 
1256 	/*
1257 	 * If IQE happens, the head points to the descriptor associated
1258 	 * with the error. No new descriptors are fetched until the IQE
1259 	 * is cleared.
1260 	 */
1261 	if (fault & DMA_FSTS_IQE) {
1262 		head = readl(iommu->reg + DMAR_IQH_REG);
1263 		if ((head >> shift) == index) {
1264 			struct qi_desc *desc = qi->desc + head;
1265 
1266 			/*
1267 			 * desc->qw2 and desc->qw3 are either reserved or
1268 			 * used by software as private data. We won't print
1269 			 * out these two qw's for security consideration.
1270 			 */
1271 			memcpy(desc, qi->desc + (wait_index << shift),
1272 			       1 << shift);
1273 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1274 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1275 			return -EINVAL;
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * If ITE happens, all pending wait_desc commands are aborted.
1281 	 * No new descriptors are fetched until the ITE is cleared.
1282 	 */
1283 	if (fault & DMA_FSTS_ITE) {
1284 		head = readl(iommu->reg + DMAR_IQH_REG);
1285 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1286 		head |= 1;
1287 		tail = readl(iommu->reg + DMAR_IQT_REG);
1288 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1289 
1290 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1291 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1292 
1293 		do {
1294 			if (qi->desc_status[head] == QI_IN_USE)
1295 				qi->desc_status[head] = QI_ABORT;
1296 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1297 		} while (head != tail);
1298 
1299 		if (qi->desc_status[wait_index] == QI_ABORT)
1300 			return -EAGAIN;
1301 	}
1302 
1303 	if (fault & DMA_FSTS_ICE) {
1304 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1305 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Function to submit invalidation descriptors of all types to the queued
1313  * invalidation interface(QI). Multiple descriptors can be submitted at a
1314  * time, a wait descriptor will be appended to each submission to ensure
1315  * hardware has completed the invalidation before return. Wait descriptors
1316  * can be part of the submission but it will not be polled for completion.
1317  */
1318 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1319 		   unsigned int count, unsigned long options)
1320 {
1321 	struct q_inval *qi = iommu->qi;
1322 	s64 devtlb_start_ktime = 0;
1323 	s64 iotlb_start_ktime = 0;
1324 	s64 iec_start_ktime = 0;
1325 	struct qi_desc wait_desc;
1326 	int wait_index, index;
1327 	unsigned long flags;
1328 	int offset, shift;
1329 	int rc, i;
1330 	u64 type;
1331 
1332 	if (!qi)
1333 		return 0;
1334 
1335 	type = desc->qw0 & GENMASK_ULL(3, 0);
1336 
1337 	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1338 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1339 		iotlb_start_ktime = ktime_to_ns(ktime_get());
1340 
1341 	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1342 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1343 		devtlb_start_ktime = ktime_to_ns(ktime_get());
1344 
1345 	if (type == QI_IEC_TYPE &&
1346 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1347 		iec_start_ktime = ktime_to_ns(ktime_get());
1348 
1349 restart:
1350 	rc = 0;
1351 
1352 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1353 	/*
1354 	 * Check if we have enough empty slots in the queue to submit,
1355 	 * the calculation is based on:
1356 	 * # of desc + 1 wait desc + 1 space between head and tail
1357 	 */
1358 	while (qi->free_cnt < count + 2) {
1359 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1360 		cpu_relax();
1361 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1362 	}
1363 
1364 	index = qi->free_head;
1365 	wait_index = (index + count) % QI_LENGTH;
1366 	shift = qi_shift(iommu);
1367 
1368 	for (i = 0; i < count; i++) {
1369 		offset = ((index + i) % QI_LENGTH) << shift;
1370 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1371 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1372 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1373 				desc[i].qw2, desc[i].qw3);
1374 	}
1375 	qi->desc_status[wait_index] = QI_IN_USE;
1376 
1377 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1378 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1379 	if (options & QI_OPT_WAIT_DRAIN)
1380 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1381 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1382 	wait_desc.qw2 = 0;
1383 	wait_desc.qw3 = 0;
1384 
1385 	offset = wait_index << shift;
1386 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1387 
1388 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1389 	qi->free_cnt -= count + 1;
1390 
1391 	/*
1392 	 * update the HW tail register indicating the presence of
1393 	 * new descriptors.
1394 	 */
1395 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1396 
1397 	while (qi->desc_status[wait_index] != QI_DONE) {
1398 		/*
1399 		 * We will leave the interrupts disabled, to prevent interrupt
1400 		 * context to queue another cmd while a cmd is already submitted
1401 		 * and waiting for completion on this cpu. This is to avoid
1402 		 * a deadlock where the interrupt context can wait indefinitely
1403 		 * for free slots in the queue.
1404 		 */
1405 		rc = qi_check_fault(iommu, index, wait_index);
1406 		if (rc)
1407 			break;
1408 
1409 		raw_spin_unlock(&qi->q_lock);
1410 		cpu_relax();
1411 		raw_spin_lock(&qi->q_lock);
1412 	}
1413 
1414 	for (i = 0; i < count; i++)
1415 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1416 
1417 	reclaim_free_desc(qi);
1418 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1419 
1420 	if (rc == -EAGAIN)
1421 		goto restart;
1422 
1423 	if (iotlb_start_ktime)
1424 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1425 				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1426 
1427 	if (devtlb_start_ktime)
1428 		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1429 				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1430 
1431 	if (iec_start_ktime)
1432 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1433 				ktime_to_ns(ktime_get()) - iec_start_ktime);
1434 
1435 	return rc;
1436 }
1437 
1438 /*
1439  * Flush the global interrupt entry cache.
1440  */
1441 void qi_global_iec(struct intel_iommu *iommu)
1442 {
1443 	struct qi_desc desc;
1444 
1445 	desc.qw0 = QI_IEC_TYPE;
1446 	desc.qw1 = 0;
1447 	desc.qw2 = 0;
1448 	desc.qw3 = 0;
1449 
1450 	/* should never fail */
1451 	qi_submit_sync(iommu, &desc, 1, 0);
1452 }
1453 
1454 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1455 		      u64 type)
1456 {
1457 	struct qi_desc desc;
1458 
1459 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1460 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1461 	desc.qw1 = 0;
1462 	desc.qw2 = 0;
1463 	desc.qw3 = 0;
1464 
1465 	qi_submit_sync(iommu, &desc, 1, 0);
1466 }
1467 
1468 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1469 		    unsigned int size_order, u64 type)
1470 {
1471 	u8 dw = 0, dr = 0;
1472 
1473 	struct qi_desc desc;
1474 	int ih = 0;
1475 
1476 	if (cap_write_drain(iommu->cap))
1477 		dw = 1;
1478 
1479 	if (cap_read_drain(iommu->cap))
1480 		dr = 1;
1481 
1482 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1483 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1484 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1485 		| QI_IOTLB_AM(size_order);
1486 	desc.qw2 = 0;
1487 	desc.qw3 = 0;
1488 
1489 	qi_submit_sync(iommu, &desc, 1, 0);
1490 }
1491 
1492 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1493 			u16 qdep, u64 addr, unsigned mask)
1494 {
1495 	struct qi_desc desc;
1496 
1497 	if (mask) {
1498 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1499 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1500 	} else
1501 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1502 
1503 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1504 		qdep = 0;
1505 
1506 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1507 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1508 	desc.qw2 = 0;
1509 	desc.qw3 = 0;
1510 
1511 	qi_submit_sync(iommu, &desc, 1, 0);
1512 }
1513 
1514 /* PASID-based IOTLB invalidation */
1515 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1516 		     unsigned long npages, bool ih)
1517 {
1518 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1519 
1520 	/*
1521 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1522 	 * a positive value for Page-selective-within-PASID invalidation.
1523 	 * 0 is not a valid input.
1524 	 */
1525 	if (WARN_ON(!npages)) {
1526 		pr_err("Invalid input npages = %ld\n", npages);
1527 		return;
1528 	}
1529 
1530 	if (npages == -1) {
1531 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1532 				QI_EIOTLB_DID(did) |
1533 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1534 				QI_EIOTLB_TYPE;
1535 		desc.qw1 = 0;
1536 	} else {
1537 		int mask = ilog2(__roundup_pow_of_two(npages));
1538 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1539 
1540 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1541 			addr = ALIGN_DOWN(addr, align);
1542 
1543 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1544 				QI_EIOTLB_DID(did) |
1545 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1546 				QI_EIOTLB_TYPE;
1547 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1548 				QI_EIOTLB_IH(ih) |
1549 				QI_EIOTLB_AM(mask);
1550 	}
1551 
1552 	qi_submit_sync(iommu, &desc, 1, 0);
1553 }
1554 
1555 /* PASID-based device IOTLB Invalidate */
1556 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1557 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1558 {
1559 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1560 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1561 
1562 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1563 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1564 		QI_DEV_IOTLB_PFSID(pfsid);
1565 
1566 	/*
1567 	 * If S bit is 0, we only flush a single page. If S bit is set,
1568 	 * The least significant zero bit indicates the invalidation address
1569 	 * range. VT-d spec 6.5.2.6.
1570 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1571 	 * size order = 0 is PAGE_SIZE 4KB
1572 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1573 	 * ECAP.
1574 	 */
1575 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1576 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1577 				    addr, size_order);
1578 
1579 	/* Take page address */
1580 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1581 
1582 	if (size_order) {
1583 		/*
1584 		 * Existing 0s in address below size_order may be the least
1585 		 * significant bit, we must set them to 1s to avoid having
1586 		 * smaller size than desired.
1587 		 */
1588 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1589 					VTD_PAGE_SHIFT);
1590 		/* Clear size_order bit to indicate size */
1591 		desc.qw1 &= ~mask;
1592 		/* Set the S bit to indicate flushing more than 1 page */
1593 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1594 	}
1595 
1596 	qi_submit_sync(iommu, &desc, 1, 0);
1597 }
1598 
1599 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1600 			  u64 granu, u32 pasid)
1601 {
1602 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1603 
1604 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1605 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1606 	qi_submit_sync(iommu, &desc, 1, 0);
1607 }
1608 
1609 /*
1610  * Disable Queued Invalidation interface.
1611  */
1612 void dmar_disable_qi(struct intel_iommu *iommu)
1613 {
1614 	unsigned long flags;
1615 	u32 sts;
1616 	cycles_t start_time = get_cycles();
1617 
1618 	if (!ecap_qis(iommu->ecap))
1619 		return;
1620 
1621 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1622 
1623 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1624 	if (!(sts & DMA_GSTS_QIES))
1625 		goto end;
1626 
1627 	/*
1628 	 * Give a chance to HW to complete the pending invalidation requests.
1629 	 */
1630 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1631 		readl(iommu->reg + DMAR_IQH_REG)) &&
1632 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1633 		cpu_relax();
1634 
1635 	iommu->gcmd &= ~DMA_GCMD_QIE;
1636 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1637 
1638 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1639 		      !(sts & DMA_GSTS_QIES), sts);
1640 end:
1641 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1642 }
1643 
1644 /*
1645  * Enable queued invalidation.
1646  */
1647 static void __dmar_enable_qi(struct intel_iommu *iommu)
1648 {
1649 	u32 sts;
1650 	unsigned long flags;
1651 	struct q_inval *qi = iommu->qi;
1652 	u64 val = virt_to_phys(qi->desc);
1653 
1654 	qi->free_head = qi->free_tail = 0;
1655 	qi->free_cnt = QI_LENGTH;
1656 
1657 	/*
1658 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1659 	 * is present.
1660 	 */
1661 	if (ecap_smts(iommu->ecap))
1662 		val |= (1 << 11) | 1;
1663 
1664 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1665 
1666 	/* write zero to the tail reg */
1667 	writel(0, iommu->reg + DMAR_IQT_REG);
1668 
1669 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1670 
1671 	iommu->gcmd |= DMA_GCMD_QIE;
1672 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1673 
1674 	/* Make sure hardware complete it */
1675 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1676 
1677 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1678 }
1679 
1680 /*
1681  * Enable Queued Invalidation interface. This is a must to support
1682  * interrupt-remapping. Also used by DMA-remapping, which replaces
1683  * register based IOTLB invalidation.
1684  */
1685 int dmar_enable_qi(struct intel_iommu *iommu)
1686 {
1687 	struct q_inval *qi;
1688 	struct page *desc_page;
1689 
1690 	if (!ecap_qis(iommu->ecap))
1691 		return -ENOENT;
1692 
1693 	/*
1694 	 * queued invalidation is already setup and enabled.
1695 	 */
1696 	if (iommu->qi)
1697 		return 0;
1698 
1699 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1700 	if (!iommu->qi)
1701 		return -ENOMEM;
1702 
1703 	qi = iommu->qi;
1704 
1705 	/*
1706 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1707 	 * if the remapping hardware supports scalable mode translation.
1708 	 */
1709 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1710 				     !!ecap_smts(iommu->ecap));
1711 	if (!desc_page) {
1712 		kfree(qi);
1713 		iommu->qi = NULL;
1714 		return -ENOMEM;
1715 	}
1716 
1717 	qi->desc = page_address(desc_page);
1718 
1719 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1720 	if (!qi->desc_status) {
1721 		free_page((unsigned long) qi->desc);
1722 		kfree(qi);
1723 		iommu->qi = NULL;
1724 		return -ENOMEM;
1725 	}
1726 
1727 	raw_spin_lock_init(&qi->q_lock);
1728 
1729 	__dmar_enable_qi(iommu);
1730 
1731 	return 0;
1732 }
1733 
1734 /* iommu interrupt handling. Most stuff are MSI-like. */
1735 
1736 enum faulttype {
1737 	DMA_REMAP,
1738 	INTR_REMAP,
1739 	UNKNOWN,
1740 };
1741 
1742 static const char *dma_remap_fault_reasons[] =
1743 {
1744 	"Software",
1745 	"Present bit in root entry is clear",
1746 	"Present bit in context entry is clear",
1747 	"Invalid context entry",
1748 	"Access beyond MGAW",
1749 	"PTE Write access is not set",
1750 	"PTE Read access is not set",
1751 	"Next page table ptr is invalid",
1752 	"Root table address invalid",
1753 	"Context table ptr is invalid",
1754 	"non-zero reserved fields in RTP",
1755 	"non-zero reserved fields in CTP",
1756 	"non-zero reserved fields in PTE",
1757 	"PCE for translation request specifies blocking",
1758 };
1759 
1760 static const char * const dma_remap_sm_fault_reasons[] = {
1761 	"SM: Invalid Root Table Address",
1762 	"SM: TTM 0 for request with PASID",
1763 	"SM: TTM 0 for page group request",
1764 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1765 	"SM: Error attempting to access Root Entry",
1766 	"SM: Present bit in Root Entry is clear",
1767 	"SM: Non-zero reserved field set in Root Entry",
1768 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1769 	"SM: Error attempting to access Context Entry",
1770 	"SM: Present bit in Context Entry is clear",
1771 	"SM: Non-zero reserved field set in the Context Entry",
1772 	"SM: Invalid Context Entry",
1773 	"SM: DTE field in Context Entry is clear",
1774 	"SM: PASID Enable field in Context Entry is clear",
1775 	"SM: PASID is larger than the max in Context Entry",
1776 	"SM: PRE field in Context-Entry is clear",
1777 	"SM: RID_PASID field error in Context-Entry",
1778 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1779 	"SM: Error attempting to access the PASID Directory Entry",
1780 	"SM: Present bit in Directory Entry is clear",
1781 	"SM: Non-zero reserved field set in PASID Directory Entry",
1782 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1783 	"SM: Error attempting to access PASID Table Entry",
1784 	"SM: Present bit in PASID Table Entry is clear",
1785 	"SM: Non-zero reserved field set in PASID Table Entry",
1786 	"SM: Invalid Scalable-Mode PASID Table Entry",
1787 	"SM: ERE field is clear in PASID Table Entry",
1788 	"SM: SRE field is clear in PASID Table Entry",
1789 	"Unknown", "Unknown",/* 0x5E-0x5F */
1790 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1791 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1792 	"SM: Error attempting to access first-level paging entry",
1793 	"SM: Present bit in first-level paging entry is clear",
1794 	"SM: Non-zero reserved field set in first-level paging entry",
1795 	"SM: Error attempting to access FL-PML4 entry",
1796 	"SM: First-level entry address beyond MGAW in Nested translation",
1797 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1798 	"SM: Read permission error in first-level paging entry in Nested translation",
1799 	"SM: Write permission error in first-level paging entry in Nested translation",
1800 	"SM: Error attempting to access second-level paging entry",
1801 	"SM: Read/Write permission error in second-level paging entry",
1802 	"SM: Non-zero reserved field set in second-level paging entry",
1803 	"SM: Invalid second-level page table pointer",
1804 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1805 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1806 	"SM: Address in first-level translation is not canonical",
1807 	"SM: U/S set 0 for first-level translation with user privilege",
1808 	"SM: No execute permission for request with PASID and ER=1",
1809 	"SM: Address beyond the DMA hardware max",
1810 	"SM: Second-level entry address beyond the max",
1811 	"SM: No write permission for Write/AtomicOp request",
1812 	"SM: No read permission for Read/AtomicOp request",
1813 	"SM: Invalid address-interrupt address",
1814 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1815 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1816 };
1817 
1818 static const char *irq_remap_fault_reasons[] =
1819 {
1820 	"Detected reserved fields in the decoded interrupt-remapped request",
1821 	"Interrupt index exceeded the interrupt-remapping table size",
1822 	"Present field in the IRTE entry is clear",
1823 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1824 	"Detected reserved fields in the IRTE entry",
1825 	"Blocked a compatibility format interrupt request",
1826 	"Blocked an interrupt request due to source-id verification failure",
1827 };
1828 
1829 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1830 {
1831 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1832 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1833 		*fault_type = INTR_REMAP;
1834 		return irq_remap_fault_reasons[fault_reason - 0x20];
1835 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1836 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1837 		*fault_type = DMA_REMAP;
1838 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1839 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1840 		*fault_type = DMA_REMAP;
1841 		return dma_remap_fault_reasons[fault_reason];
1842 	} else {
1843 		*fault_type = UNKNOWN;
1844 		return "Unknown";
1845 	}
1846 }
1847 
1848 
1849 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1850 {
1851 	if (iommu->irq == irq)
1852 		return DMAR_FECTL_REG;
1853 	else if (iommu->pr_irq == irq)
1854 		return DMAR_PECTL_REG;
1855 	else
1856 		BUG();
1857 }
1858 
1859 void dmar_msi_unmask(struct irq_data *data)
1860 {
1861 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1862 	int reg = dmar_msi_reg(iommu, data->irq);
1863 	unsigned long flag;
1864 
1865 	/* unmask it */
1866 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1867 	writel(0, iommu->reg + reg);
1868 	/* Read a reg to force flush the post write */
1869 	readl(iommu->reg + reg);
1870 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1871 }
1872 
1873 void dmar_msi_mask(struct irq_data *data)
1874 {
1875 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1876 	int reg = dmar_msi_reg(iommu, data->irq);
1877 	unsigned long flag;
1878 
1879 	/* mask it */
1880 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1881 	writel(DMA_FECTL_IM, iommu->reg + reg);
1882 	/* Read a reg to force flush the post write */
1883 	readl(iommu->reg + reg);
1884 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1885 }
1886 
1887 void dmar_msi_write(int irq, struct msi_msg *msg)
1888 {
1889 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1890 	int reg = dmar_msi_reg(iommu, irq);
1891 	unsigned long flag;
1892 
1893 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1894 	writel(msg->data, iommu->reg + reg + 4);
1895 	writel(msg->address_lo, iommu->reg + reg + 8);
1896 	writel(msg->address_hi, iommu->reg + reg + 12);
1897 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1898 }
1899 
1900 void dmar_msi_read(int irq, struct msi_msg *msg)
1901 {
1902 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1903 	int reg = dmar_msi_reg(iommu, irq);
1904 	unsigned long flag;
1905 
1906 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1907 	msg->data = readl(iommu->reg + reg + 4);
1908 	msg->address_lo = readl(iommu->reg + reg + 8);
1909 	msg->address_hi = readl(iommu->reg + reg + 12);
1910 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1911 }
1912 
1913 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1914 		u8 fault_reason, u32 pasid, u16 source_id,
1915 		unsigned long long addr)
1916 {
1917 	const char *reason;
1918 	int fault_type;
1919 
1920 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1921 
1922 	if (fault_type == INTR_REMAP) {
1923 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1924 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1925 		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1926 		       fault_reason, reason);
1927 
1928 		return 0;
1929 	}
1930 
1931 	if (pasid == INVALID_IOASID)
1932 		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1933 		       type ? "DMA Read" : "DMA Write",
1934 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1935 		       PCI_FUNC(source_id & 0xFF), addr,
1936 		       fault_reason, reason);
1937 	else
1938 		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1939 		       type ? "DMA Read" : "DMA Write", pasid,
1940 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1941 		       PCI_FUNC(source_id & 0xFF), addr,
1942 		       fault_reason, reason);
1943 
1944 	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1945 
1946 	return 0;
1947 }
1948 
1949 #define PRIMARY_FAULT_REG_LEN (16)
1950 irqreturn_t dmar_fault(int irq, void *dev_id)
1951 {
1952 	struct intel_iommu *iommu = dev_id;
1953 	int reg, fault_index;
1954 	u32 fault_status;
1955 	unsigned long flag;
1956 	static DEFINE_RATELIMIT_STATE(rs,
1957 				      DEFAULT_RATELIMIT_INTERVAL,
1958 				      DEFAULT_RATELIMIT_BURST);
1959 
1960 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1961 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1962 	if (fault_status && __ratelimit(&rs))
1963 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1964 
1965 	/* TBD: ignore advanced fault log currently */
1966 	if (!(fault_status & DMA_FSTS_PPF))
1967 		goto unlock_exit;
1968 
1969 	fault_index = dma_fsts_fault_record_index(fault_status);
1970 	reg = cap_fault_reg_offset(iommu->cap);
1971 	while (1) {
1972 		/* Disable printing, simply clear the fault when ratelimited */
1973 		bool ratelimited = !__ratelimit(&rs);
1974 		u8 fault_reason;
1975 		u16 source_id;
1976 		u64 guest_addr;
1977 		u32 pasid;
1978 		int type;
1979 		u32 data;
1980 		bool pasid_present;
1981 
1982 		/* highest 32 bits */
1983 		data = readl(iommu->reg + reg +
1984 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1985 		if (!(data & DMA_FRCD_F))
1986 			break;
1987 
1988 		if (!ratelimited) {
1989 			fault_reason = dma_frcd_fault_reason(data);
1990 			type = dma_frcd_type(data);
1991 
1992 			pasid = dma_frcd_pasid_value(data);
1993 			data = readl(iommu->reg + reg +
1994 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1995 			source_id = dma_frcd_source_id(data);
1996 
1997 			pasid_present = dma_frcd_pasid_present(data);
1998 			guest_addr = dmar_readq(iommu->reg + reg +
1999 					fault_index * PRIMARY_FAULT_REG_LEN);
2000 			guest_addr = dma_frcd_page_addr(guest_addr);
2001 		}
2002 
2003 		/* clear the fault */
2004 		writel(DMA_FRCD_F, iommu->reg + reg +
2005 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2006 
2007 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2008 
2009 		if (!ratelimited)
2010 			/* Using pasid -1 if pasid is not present */
2011 			dmar_fault_do_one(iommu, type, fault_reason,
2012 					  pasid_present ? pasid : INVALID_IOASID,
2013 					  source_id, guest_addr);
2014 
2015 		fault_index++;
2016 		if (fault_index >= cap_num_fault_regs(iommu->cap))
2017 			fault_index = 0;
2018 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2019 	}
2020 
2021 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2022 	       iommu->reg + DMAR_FSTS_REG);
2023 
2024 unlock_exit:
2025 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026 	return IRQ_HANDLED;
2027 }
2028 
2029 int dmar_set_interrupt(struct intel_iommu *iommu)
2030 {
2031 	int irq, ret;
2032 
2033 	/*
2034 	 * Check if the fault interrupt is already initialized.
2035 	 */
2036 	if (iommu->irq)
2037 		return 0;
2038 
2039 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2040 	if (irq > 0) {
2041 		iommu->irq = irq;
2042 	} else {
2043 		pr_err("No free IRQ vectors\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2048 	if (ret)
2049 		pr_err("Can't request irq\n");
2050 	return ret;
2051 }
2052 
2053 int __init enable_drhd_fault_handling(void)
2054 {
2055 	struct dmar_drhd_unit *drhd;
2056 	struct intel_iommu *iommu;
2057 
2058 	/*
2059 	 * Enable fault control interrupt.
2060 	 */
2061 	for_each_iommu(iommu, drhd) {
2062 		u32 fault_status;
2063 		int ret = dmar_set_interrupt(iommu);
2064 
2065 		if (ret) {
2066 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2067 			       (unsigned long long)drhd->reg_base_addr, ret);
2068 			return -1;
2069 		}
2070 
2071 		/*
2072 		 * Clear any previous faults.
2073 		 */
2074 		dmar_fault(iommu->irq, iommu);
2075 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2076 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 /*
2083  * Re-enable Queued Invalidation interface.
2084  */
2085 int dmar_reenable_qi(struct intel_iommu *iommu)
2086 {
2087 	if (!ecap_qis(iommu->ecap))
2088 		return -ENOENT;
2089 
2090 	if (!iommu->qi)
2091 		return -ENOENT;
2092 
2093 	/*
2094 	 * First disable queued invalidation.
2095 	 */
2096 	dmar_disable_qi(iommu);
2097 	/*
2098 	 * Then enable queued invalidation again. Since there is no pending
2099 	 * invalidation requests now, it's safe to re-enable queued
2100 	 * invalidation.
2101 	 */
2102 	__dmar_enable_qi(iommu);
2103 
2104 	return 0;
2105 }
2106 
2107 /*
2108  * Check interrupt remapping support in DMAR table description.
2109  */
2110 int __init dmar_ir_support(void)
2111 {
2112 	struct acpi_table_dmar *dmar;
2113 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2114 	if (!dmar)
2115 		return 0;
2116 	return dmar->flags & 0x1;
2117 }
2118 
2119 /* Check whether DMAR units are in use */
2120 static inline bool dmar_in_use(void)
2121 {
2122 	return irq_remapping_enabled || intel_iommu_enabled;
2123 }
2124 
2125 static int __init dmar_free_unused_resources(void)
2126 {
2127 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2128 
2129 	if (dmar_in_use())
2130 		return 0;
2131 
2132 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2133 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2134 
2135 	down_write(&dmar_global_lock);
2136 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2137 		list_del(&dmaru->list);
2138 		dmar_free_drhd(dmaru);
2139 	}
2140 	up_write(&dmar_global_lock);
2141 
2142 	return 0;
2143 }
2144 
2145 late_initcall(dmar_free_unused_resources);
2146 
2147 /*
2148  * DMAR Hotplug Support
2149  * For more details, please refer to Intel(R) Virtualization Technology
2150  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2151  * "Remapping Hardware Unit Hot Plug".
2152  */
2153 static guid_t dmar_hp_guid =
2154 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2155 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2156 
2157 /*
2158  * Currently there's only one revision and BIOS will not check the revision id,
2159  * so use 0 for safety.
2160  */
2161 #define	DMAR_DSM_REV_ID			0
2162 #define	DMAR_DSM_FUNC_DRHD		1
2163 #define	DMAR_DSM_FUNC_ATSR		2
2164 #define	DMAR_DSM_FUNC_RHSA		3
2165 #define	DMAR_DSM_FUNC_SATC		4
2166 
2167 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2168 {
2169 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2170 }
2171 
2172 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2173 				  dmar_res_handler_t handler, void *arg)
2174 {
2175 	int ret = -ENODEV;
2176 	union acpi_object *obj;
2177 	struct acpi_dmar_header *start;
2178 	struct dmar_res_callback callback;
2179 	static int res_type[] = {
2180 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2181 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2182 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2183 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2184 	};
2185 
2186 	if (!dmar_detect_dsm(handle, func))
2187 		return 0;
2188 
2189 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2190 				      func, NULL, ACPI_TYPE_BUFFER);
2191 	if (!obj)
2192 		return -ENODEV;
2193 
2194 	memset(&callback, 0, sizeof(callback));
2195 	callback.cb[res_type[func]] = handler;
2196 	callback.arg[res_type[func]] = arg;
2197 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2198 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2199 
2200 	ACPI_FREE(obj);
2201 
2202 	return ret;
2203 }
2204 
2205 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2206 {
2207 	int ret;
2208 	struct dmar_drhd_unit *dmaru;
2209 
2210 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2211 	if (!dmaru)
2212 		return -ENODEV;
2213 
2214 	ret = dmar_ir_hotplug(dmaru, true);
2215 	if (ret == 0)
2216 		ret = dmar_iommu_hotplug(dmaru, true);
2217 
2218 	return ret;
2219 }
2220 
2221 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2222 {
2223 	int i, ret;
2224 	struct device *dev;
2225 	struct dmar_drhd_unit *dmaru;
2226 
2227 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2228 	if (!dmaru)
2229 		return 0;
2230 
2231 	/*
2232 	 * All PCI devices managed by this unit should have been destroyed.
2233 	 */
2234 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2235 		for_each_active_dev_scope(dmaru->devices,
2236 					  dmaru->devices_cnt, i, dev)
2237 			return -EBUSY;
2238 	}
2239 
2240 	ret = dmar_ir_hotplug(dmaru, false);
2241 	if (ret == 0)
2242 		ret = dmar_iommu_hotplug(dmaru, false);
2243 
2244 	return ret;
2245 }
2246 
2247 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2248 {
2249 	struct dmar_drhd_unit *dmaru;
2250 
2251 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2252 	if (dmaru) {
2253 		list_del_rcu(&dmaru->list);
2254 		synchronize_rcu();
2255 		dmar_free_drhd(dmaru);
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 static int dmar_hotplug_insert(acpi_handle handle)
2262 {
2263 	int ret;
2264 	int drhd_count = 0;
2265 
2266 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2267 				     &dmar_validate_one_drhd, (void *)1);
2268 	if (ret)
2269 		goto out;
2270 
2271 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2272 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2273 	if (ret == 0 && drhd_count == 0) {
2274 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2275 		goto out;
2276 	} else if (ret) {
2277 		goto release_drhd;
2278 	}
2279 
2280 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2281 				     &dmar_parse_one_rhsa, NULL);
2282 	if (ret)
2283 		goto release_drhd;
2284 
2285 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2286 				     &dmar_parse_one_atsr, NULL);
2287 	if (ret)
2288 		goto release_atsr;
2289 
2290 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291 				     &dmar_hp_add_drhd, NULL);
2292 	if (!ret)
2293 		return 0;
2294 
2295 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2296 			       &dmar_hp_remove_drhd, NULL);
2297 release_atsr:
2298 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2299 			       &dmar_release_one_atsr, NULL);
2300 release_drhd:
2301 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2302 			       &dmar_hp_release_drhd, NULL);
2303 out:
2304 	return ret;
2305 }
2306 
2307 static int dmar_hotplug_remove(acpi_handle handle)
2308 {
2309 	int ret;
2310 
2311 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2312 				     &dmar_check_one_atsr, NULL);
2313 	if (ret)
2314 		return ret;
2315 
2316 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2317 				     &dmar_hp_remove_drhd, NULL);
2318 	if (ret == 0) {
2319 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2320 					       &dmar_release_one_atsr, NULL));
2321 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2322 					       &dmar_hp_release_drhd, NULL));
2323 	} else {
2324 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2325 				       &dmar_hp_add_drhd, NULL);
2326 	}
2327 
2328 	return ret;
2329 }
2330 
2331 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2332 				       void *context, void **retval)
2333 {
2334 	acpi_handle *phdl = retval;
2335 
2336 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2337 		*phdl = handle;
2338 		return AE_CTRL_TERMINATE;
2339 	}
2340 
2341 	return AE_OK;
2342 }
2343 
2344 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2345 {
2346 	int ret;
2347 	acpi_handle tmp = NULL;
2348 	acpi_status status;
2349 
2350 	if (!dmar_in_use())
2351 		return 0;
2352 
2353 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2354 		tmp = handle;
2355 	} else {
2356 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2357 					     ACPI_UINT32_MAX,
2358 					     dmar_get_dsm_handle,
2359 					     NULL, NULL, &tmp);
2360 		if (ACPI_FAILURE(status)) {
2361 			pr_warn("Failed to locate _DSM method.\n");
2362 			return -ENXIO;
2363 		}
2364 	}
2365 	if (tmp == NULL)
2366 		return 0;
2367 
2368 	down_write(&dmar_global_lock);
2369 	if (insert)
2370 		ret = dmar_hotplug_insert(tmp);
2371 	else
2372 		ret = dmar_hotplug_remove(tmp);
2373 	up_write(&dmar_global_lock);
2374 
2375 	return ret;
2376 }
2377 
2378 int dmar_device_add(acpi_handle handle)
2379 {
2380 	return dmar_device_hotplug(handle, true);
2381 }
2382 
2383 int dmar_device_remove(acpi_handle handle)
2384 {
2385 	return dmar_device_hotplug(handle, false);
2386 }
2387 
2388 /*
2389  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2390  *
2391  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2392  * the ACPI DMAR table. This means that the platform boot firmware has made
2393  * sure no device can issue DMA outside of RMRR regions.
2394  */
2395 bool dmar_platform_optin(void)
2396 {
2397 	struct acpi_table_dmar *dmar;
2398 	acpi_status status;
2399 	bool ret;
2400 
2401 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2402 				(struct acpi_table_header **)&dmar);
2403 	if (ACPI_FAILURE(status))
2404 		return false;
2405 
2406 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2407 	acpi_put_table((struct acpi_table_header *)dmar);
2408 
2409 	return ret;
2410 }
2411 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2412