xref: /linux/drivers/md/bcache/btree.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
127 						  _w, b);		\
128 	if (!IS_ERR(_child)) {						\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
152 		}							\
153 		rw_unlock(_w, _b);					\
154 		bch_cannibalize_unlock(c);				\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 	} while (_r == -EINTR);						\
158 									\
159 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
160 	_r;								\
161 })
162 
163 static inline struct bset *write_block(struct btree *b)
164 {
165 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167 
168 static void bch_btree_init_next(struct btree *b)
169 {
170 	/* If not a leaf node, always sort */
171 	if (b->level && b->keys.nsets)
172 		bch_btree_sort(&b->keys, &b->c->sort);
173 	else
174 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
175 
176 	if (b->written < btree_blocks(b))
177 		bch_bset_init_next(&b->keys, write_block(b),
178 				   bset_magic(&b->c->sb));
179 
180 }
181 
182 /* Btree key manipulation */
183 
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 	unsigned int i;
187 
188 	for (i = 0; i < KEY_PTRS(k); i++)
189 		if (ptr_available(c, k, i))
190 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192 
193 /* Btree IO */
194 
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 	uint64_t crc = b->key.ptr[0];
198 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
199 
200 	crc = bch_crc64_update(crc, data, end - data);
201 	return crc ^ 0xffffffffffffffffULL;
202 }
203 
204 void bch_btree_node_read_done(struct btree *b)
205 {
206 	const char *err = "bad btree header";
207 	struct bset *i = btree_bset_first(b);
208 	struct btree_iter *iter;
209 
210 	/*
211 	 * c->fill_iter can allocate an iterator with more memory space
212 	 * than static MAX_BSETS.
213 	 * See the comment arount cache_set->fill_iter.
214 	 */
215 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 	iter->used = 0;
218 
219 #ifdef CONFIG_BCACHE_DEBUG
220 	iter->b = &b->keys;
221 #endif
222 
223 	if (!i->seq)
224 		goto err;
225 
226 	for (;
227 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 	     i = write_block(b)) {
229 		err = "unsupported bset version";
230 		if (i->version > BCACHE_BSET_VERSION)
231 			goto err;
232 
233 		err = "bad btree header";
234 		if (b->written + set_blocks(i, block_bytes(b->c)) >
235 		    btree_blocks(b))
236 			goto err;
237 
238 		err = "bad magic";
239 		if (i->magic != bset_magic(&b->c->sb))
240 			goto err;
241 
242 		err = "bad checksum";
243 		switch (i->version) {
244 		case 0:
245 			if (i->csum != csum_set(i))
246 				goto err;
247 			break;
248 		case BCACHE_BSET_VERSION:
249 			if (i->csum != btree_csum_set(b, i))
250 				goto err;
251 			break;
252 		}
253 
254 		err = "empty set";
255 		if (i != b->keys.set[0].data && !i->keys)
256 			goto err;
257 
258 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
259 
260 		b->written += set_blocks(i, block_bytes(b->c));
261 	}
262 
263 	err = "corrupted btree";
264 	for (i = write_block(b);
265 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 	     i = ((void *) i) + block_bytes(b->c))
267 		if (i->seq == b->keys.set[0].data->seq)
268 			goto err;
269 
270 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
271 
272 	i = b->keys.set[0].data;
273 	err = "short btree key";
274 	if (b->keys.set[0].size &&
275 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 		goto err;
277 
278 	if (b->written < btree_blocks(b))
279 		bch_bset_init_next(&b->keys, write_block(b),
280 				   bset_magic(&b->c->sb));
281 out:
282 	mempool_free(iter, &b->c->fill_iter);
283 	return;
284 err:
285 	set_btree_node_io_error(b);
286 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 			    bset_block_offset(b, i), i->keys);
289 	goto out;
290 }
291 
292 static void btree_node_read_endio(struct bio *bio)
293 {
294 	struct closure *cl = bio->bi_private;
295 
296 	closure_put(cl);
297 }
298 
299 static void bch_btree_node_read(struct btree *b)
300 {
301 	uint64_t start_time = local_clock();
302 	struct closure cl;
303 	struct bio *bio;
304 
305 	trace_bcache_btree_read(b);
306 
307 	closure_init_stack(&cl);
308 
309 	bio = bch_bbio_alloc(b->c);
310 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 	bio->bi_end_io	= btree_node_read_endio;
312 	bio->bi_private	= &cl;
313 	bio->bi_opf = REQ_OP_READ | REQ_META;
314 
315 	bch_bio_map(bio, b->keys.set[0].data);
316 
317 	bch_submit_bbio(bio, b->c, &b->key, 0);
318 	closure_sync(&cl);
319 
320 	if (bio->bi_status)
321 		set_btree_node_io_error(b);
322 
323 	bch_bbio_free(bio, b->c);
324 
325 	if (btree_node_io_error(b))
326 		goto err;
327 
328 	bch_btree_node_read_done(b);
329 	bch_time_stats_update(&b->c->btree_read_time, start_time);
330 
331 	return;
332 err:
333 	bch_cache_set_error(b->c, "io error reading bucket %zu",
334 			    PTR_BUCKET_NR(b->c, &b->key, 0));
335 }
336 
337 static void btree_complete_write(struct btree *b, struct btree_write *w)
338 {
339 	if (w->prio_blocked &&
340 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 		wake_up_allocators(b->c);
342 
343 	if (w->journal) {
344 		atomic_dec_bug(w->journal);
345 		__closure_wake_up(&b->c->journal.wait);
346 	}
347 
348 	w->prio_blocked	= 0;
349 	w->journal	= NULL;
350 }
351 
352 static void btree_node_write_unlock(struct closure *cl)
353 {
354 	struct btree *b = container_of(cl, struct btree, io);
355 
356 	up(&b->io_mutex);
357 }
358 
359 static void __btree_node_write_done(struct closure *cl)
360 {
361 	struct btree *b = container_of(cl, struct btree, io);
362 	struct btree_write *w = btree_prev_write(b);
363 
364 	bch_bbio_free(b->bio, b->c);
365 	b->bio = NULL;
366 	btree_complete_write(b, w);
367 
368 	if (btree_node_dirty(b))
369 		schedule_delayed_work(&b->work, 30 * HZ);
370 
371 	closure_return_with_destructor(cl, btree_node_write_unlock);
372 }
373 
374 static void btree_node_write_done(struct closure *cl)
375 {
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	bio_free_pages(b->bio);
379 	__btree_node_write_done(cl);
380 }
381 
382 static void btree_node_write_endio(struct bio *bio)
383 {
384 	struct closure *cl = bio->bi_private;
385 	struct btree *b = container_of(cl, struct btree, io);
386 
387 	if (bio->bi_status)
388 		set_btree_node_io_error(b);
389 
390 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 	closure_put(cl);
392 }
393 
394 static void do_btree_node_write(struct btree *b)
395 {
396 	struct closure *cl = &b->io;
397 	struct bset *i = btree_bset_last(b);
398 	BKEY_PADDED(key) k;
399 
400 	i->version	= BCACHE_BSET_VERSION;
401 	i->csum		= btree_csum_set(b, i);
402 
403 	BUG_ON(b->bio);
404 	b->bio = bch_bbio_alloc(b->c);
405 
406 	b->bio->bi_end_io	= btree_node_write_endio;
407 	b->bio->bi_private	= cl;
408 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
409 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
410 	bch_bio_map(b->bio, i);
411 
412 	/*
413 	 * If we're appending to a leaf node, we don't technically need FUA -
414 	 * this write just needs to be persisted before the next journal write,
415 	 * which will be marked FLUSH|FUA.
416 	 *
417 	 * Similarly if we're writing a new btree root - the pointer is going to
418 	 * be in the next journal entry.
419 	 *
420 	 * But if we're writing a new btree node (that isn't a root) or
421 	 * appending to a non leaf btree node, we need either FUA or a flush
422 	 * when we write the parent with the new pointer. FUA is cheaper than a
423 	 * flush, and writes appending to leaf nodes aren't blocking anything so
424 	 * just make all btree node writes FUA to keep things sane.
425 	 */
426 
427 	bkey_copy(&k.key, &b->key);
428 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 		       bset_sector_offset(&b->keys, i));
430 
431 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 		struct bio_vec *bv;
433 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
434 		struct bvec_iter_all iter_all;
435 
436 		bio_for_each_segment_all(bv, b->bio, iter_all) {
437 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
438 			addr += PAGE_SIZE;
439 		}
440 
441 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
442 
443 		continue_at(cl, btree_node_write_done, NULL);
444 	} else {
445 		/*
446 		 * No problem for multipage bvec since the bio is
447 		 * just allocated
448 		 */
449 		b->bio->bi_vcnt = 0;
450 		bch_bio_map(b->bio, i);
451 
452 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
453 
454 		closure_sync(cl);
455 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
456 	}
457 }
458 
459 void __bch_btree_node_write(struct btree *b, struct closure *parent)
460 {
461 	struct bset *i = btree_bset_last(b);
462 
463 	lockdep_assert_held(&b->write_lock);
464 
465 	trace_bcache_btree_write(b);
466 
467 	BUG_ON(current->bio_list);
468 	BUG_ON(b->written >= btree_blocks(b));
469 	BUG_ON(b->written && !i->keys);
470 	BUG_ON(btree_bset_first(b)->seq != i->seq);
471 	bch_check_keys(&b->keys, "writing");
472 
473 	cancel_delayed_work(&b->work);
474 
475 	/* If caller isn't waiting for write, parent refcount is cache set */
476 	down(&b->io_mutex);
477 	closure_init(&b->io, parent ?: &b->c->cl);
478 
479 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
480 	change_bit(BTREE_NODE_write_idx, &b->flags);
481 
482 	do_btree_node_write(b);
483 
484 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
485 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
486 
487 	b->written += set_blocks(i, block_bytes(b->c));
488 }
489 
490 void bch_btree_node_write(struct btree *b, struct closure *parent)
491 {
492 	unsigned int nsets = b->keys.nsets;
493 
494 	lockdep_assert_held(&b->lock);
495 
496 	__bch_btree_node_write(b, parent);
497 
498 	/*
499 	 * do verify if there was more than one set initially (i.e. we did a
500 	 * sort) and we sorted down to a single set:
501 	 */
502 	if (nsets && !b->keys.nsets)
503 		bch_btree_verify(b);
504 
505 	bch_btree_init_next(b);
506 }
507 
508 static void bch_btree_node_write_sync(struct btree *b)
509 {
510 	struct closure cl;
511 
512 	closure_init_stack(&cl);
513 
514 	mutex_lock(&b->write_lock);
515 	bch_btree_node_write(b, &cl);
516 	mutex_unlock(&b->write_lock);
517 
518 	closure_sync(&cl);
519 }
520 
521 static void btree_node_write_work(struct work_struct *w)
522 {
523 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
524 
525 	mutex_lock(&b->write_lock);
526 	if (btree_node_dirty(b))
527 		__bch_btree_node_write(b, NULL);
528 	mutex_unlock(&b->write_lock);
529 }
530 
531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
532 {
533 	struct bset *i = btree_bset_last(b);
534 	struct btree_write *w = btree_current_write(b);
535 
536 	lockdep_assert_held(&b->write_lock);
537 
538 	BUG_ON(!b->written);
539 	BUG_ON(!i->keys);
540 
541 	if (!btree_node_dirty(b))
542 		schedule_delayed_work(&b->work, 30 * HZ);
543 
544 	set_btree_node_dirty(b);
545 
546 	if (journal_ref) {
547 		if (w->journal &&
548 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
549 			atomic_dec_bug(w->journal);
550 			w->journal = NULL;
551 		}
552 
553 		if (!w->journal) {
554 			w->journal = journal_ref;
555 			atomic_inc(w->journal);
556 		}
557 	}
558 
559 	/* Force write if set is too big */
560 	if (set_bytes(i) > PAGE_SIZE - 48 &&
561 	    !current->bio_list)
562 		bch_btree_node_write(b, NULL);
563 }
564 
565 /*
566  * Btree in memory cache - allocation/freeing
567  * mca -> memory cache
568  */
569 
570 #define mca_reserve(c)	(((c->root && c->root->level)		\
571 			  ? c->root->level : 1) * 8 + 16)
572 #define mca_can_free(c)						\
573 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
574 
575 static void mca_data_free(struct btree *b)
576 {
577 	BUG_ON(b->io_mutex.count != 1);
578 
579 	bch_btree_keys_free(&b->keys);
580 
581 	b->c->btree_cache_used--;
582 	list_move(&b->list, &b->c->btree_cache_freed);
583 }
584 
585 static void mca_bucket_free(struct btree *b)
586 {
587 	BUG_ON(btree_node_dirty(b));
588 
589 	b->key.ptr[0] = 0;
590 	hlist_del_init_rcu(&b->hash);
591 	list_move(&b->list, &b->c->btree_cache_freeable);
592 }
593 
594 static unsigned int btree_order(struct bkey *k)
595 {
596 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
597 }
598 
599 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
600 {
601 	if (!bch_btree_keys_alloc(&b->keys,
602 				  max_t(unsigned int,
603 					ilog2(b->c->btree_pages),
604 					btree_order(k)),
605 				  gfp)) {
606 		b->c->btree_cache_used++;
607 		list_move(&b->list, &b->c->btree_cache);
608 	} else {
609 		list_move(&b->list, &b->c->btree_cache_freed);
610 	}
611 }
612 
613 static struct btree *mca_bucket_alloc(struct cache_set *c,
614 				      struct bkey *k, gfp_t gfp)
615 {
616 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
617 
618 	if (!b)
619 		return NULL;
620 
621 	init_rwsem(&b->lock);
622 	lockdep_set_novalidate_class(&b->lock);
623 	mutex_init(&b->write_lock);
624 	lockdep_set_novalidate_class(&b->write_lock);
625 	INIT_LIST_HEAD(&b->list);
626 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
627 	b->c = c;
628 	sema_init(&b->io_mutex, 1);
629 
630 	mca_data_alloc(b, k, gfp);
631 	return b;
632 }
633 
634 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
635 {
636 	struct closure cl;
637 
638 	closure_init_stack(&cl);
639 	lockdep_assert_held(&b->c->bucket_lock);
640 
641 	if (!down_write_trylock(&b->lock))
642 		return -ENOMEM;
643 
644 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
645 
646 	if (b->keys.page_order < min_order)
647 		goto out_unlock;
648 
649 	if (!flush) {
650 		if (btree_node_dirty(b))
651 			goto out_unlock;
652 
653 		if (down_trylock(&b->io_mutex))
654 			goto out_unlock;
655 		up(&b->io_mutex);
656 	}
657 
658 	mutex_lock(&b->write_lock);
659 	if (btree_node_dirty(b))
660 		__bch_btree_node_write(b, &cl);
661 	mutex_unlock(&b->write_lock);
662 
663 	closure_sync(&cl);
664 
665 	/* wait for any in flight btree write */
666 	down(&b->io_mutex);
667 	up(&b->io_mutex);
668 
669 	return 0;
670 out_unlock:
671 	rw_unlock(true, b);
672 	return -ENOMEM;
673 }
674 
675 static unsigned long bch_mca_scan(struct shrinker *shrink,
676 				  struct shrink_control *sc)
677 {
678 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
679 	struct btree *b, *t;
680 	unsigned long i, nr = sc->nr_to_scan;
681 	unsigned long freed = 0;
682 	unsigned int btree_cache_used;
683 
684 	if (c->shrinker_disabled)
685 		return SHRINK_STOP;
686 
687 	if (c->btree_cache_alloc_lock)
688 		return SHRINK_STOP;
689 
690 	/* Return -1 if we can't do anything right now */
691 	if (sc->gfp_mask & __GFP_IO)
692 		mutex_lock(&c->bucket_lock);
693 	else if (!mutex_trylock(&c->bucket_lock))
694 		return -1;
695 
696 	/*
697 	 * It's _really_ critical that we don't free too many btree nodes - we
698 	 * have to always leave ourselves a reserve. The reserve is how we
699 	 * guarantee that allocating memory for a new btree node can always
700 	 * succeed, so that inserting keys into the btree can always succeed and
701 	 * IO can always make forward progress:
702 	 */
703 	nr /= c->btree_pages;
704 	nr = min_t(unsigned long, nr, mca_can_free(c));
705 
706 	i = 0;
707 	btree_cache_used = c->btree_cache_used;
708 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
709 		if (nr <= 0)
710 			goto out;
711 
712 		if (++i > 3 &&
713 		    !mca_reap(b, 0, false)) {
714 			mca_data_free(b);
715 			rw_unlock(true, b);
716 			freed++;
717 		}
718 		nr--;
719 	}
720 
721 	for (;  (nr--) && i < btree_cache_used; i++) {
722 		if (list_empty(&c->btree_cache))
723 			goto out;
724 
725 		b = list_first_entry(&c->btree_cache, struct btree, list);
726 		list_rotate_left(&c->btree_cache);
727 
728 		if (!b->accessed &&
729 		    !mca_reap(b, 0, false)) {
730 			mca_bucket_free(b);
731 			mca_data_free(b);
732 			rw_unlock(true, b);
733 			freed++;
734 		} else
735 			b->accessed = 0;
736 	}
737 out:
738 	mutex_unlock(&c->bucket_lock);
739 	return freed * c->btree_pages;
740 }
741 
742 static unsigned long bch_mca_count(struct shrinker *shrink,
743 				   struct shrink_control *sc)
744 {
745 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
746 
747 	if (c->shrinker_disabled)
748 		return 0;
749 
750 	if (c->btree_cache_alloc_lock)
751 		return 0;
752 
753 	return mca_can_free(c) * c->btree_pages;
754 }
755 
756 void bch_btree_cache_free(struct cache_set *c)
757 {
758 	struct btree *b;
759 	struct closure cl;
760 
761 	closure_init_stack(&cl);
762 
763 	if (c->shrink.list.next)
764 		unregister_shrinker(&c->shrink);
765 
766 	mutex_lock(&c->bucket_lock);
767 
768 #ifdef CONFIG_BCACHE_DEBUG
769 	if (c->verify_data)
770 		list_move(&c->verify_data->list, &c->btree_cache);
771 
772 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
773 #endif
774 
775 	list_splice(&c->btree_cache_freeable,
776 		    &c->btree_cache);
777 
778 	while (!list_empty(&c->btree_cache)) {
779 		b = list_first_entry(&c->btree_cache, struct btree, list);
780 
781 		if (btree_node_dirty(b))
782 			btree_complete_write(b, btree_current_write(b));
783 		clear_bit(BTREE_NODE_dirty, &b->flags);
784 
785 		mca_data_free(b);
786 	}
787 
788 	while (!list_empty(&c->btree_cache_freed)) {
789 		b = list_first_entry(&c->btree_cache_freed,
790 				     struct btree, list);
791 		list_del(&b->list);
792 		cancel_delayed_work_sync(&b->work);
793 		kfree(b);
794 	}
795 
796 	mutex_unlock(&c->bucket_lock);
797 }
798 
799 int bch_btree_cache_alloc(struct cache_set *c)
800 {
801 	unsigned int i;
802 
803 	for (i = 0; i < mca_reserve(c); i++)
804 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
805 			return -ENOMEM;
806 
807 	list_splice_init(&c->btree_cache,
808 			 &c->btree_cache_freeable);
809 
810 #ifdef CONFIG_BCACHE_DEBUG
811 	mutex_init(&c->verify_lock);
812 
813 	c->verify_ondisk = (void *)
814 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
815 
816 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
817 
818 	if (c->verify_data &&
819 	    c->verify_data->keys.set->data)
820 		list_del_init(&c->verify_data->list);
821 	else
822 		c->verify_data = NULL;
823 #endif
824 
825 	c->shrink.count_objects = bch_mca_count;
826 	c->shrink.scan_objects = bch_mca_scan;
827 	c->shrink.seeks = 4;
828 	c->shrink.batch = c->btree_pages * 2;
829 
830 	if (register_shrinker(&c->shrink))
831 		pr_warn("bcache: %s: could not register shrinker",
832 				__func__);
833 
834 	return 0;
835 }
836 
837 /* Btree in memory cache - hash table */
838 
839 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
840 {
841 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
842 }
843 
844 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
845 {
846 	struct btree *b;
847 
848 	rcu_read_lock();
849 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
850 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
851 			goto out;
852 	b = NULL;
853 out:
854 	rcu_read_unlock();
855 	return b;
856 }
857 
858 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
859 {
860 	struct task_struct *old;
861 
862 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
863 	if (old && old != current) {
864 		if (op)
865 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
866 					TASK_UNINTERRUPTIBLE);
867 		return -EINTR;
868 	}
869 
870 	return 0;
871 }
872 
873 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
874 				     struct bkey *k)
875 {
876 	struct btree *b;
877 
878 	trace_bcache_btree_cache_cannibalize(c);
879 
880 	if (mca_cannibalize_lock(c, op))
881 		return ERR_PTR(-EINTR);
882 
883 	list_for_each_entry_reverse(b, &c->btree_cache, list)
884 		if (!mca_reap(b, btree_order(k), false))
885 			return b;
886 
887 	list_for_each_entry_reverse(b, &c->btree_cache, list)
888 		if (!mca_reap(b, btree_order(k), true))
889 			return b;
890 
891 	WARN(1, "btree cache cannibalize failed\n");
892 	return ERR_PTR(-ENOMEM);
893 }
894 
895 /*
896  * We can only have one thread cannibalizing other cached btree nodes at a time,
897  * or we'll deadlock. We use an open coded mutex to ensure that, which a
898  * cannibalize_bucket() will take. This means every time we unlock the root of
899  * the btree, we need to release this lock if we have it held.
900  */
901 static void bch_cannibalize_unlock(struct cache_set *c)
902 {
903 	if (c->btree_cache_alloc_lock == current) {
904 		c->btree_cache_alloc_lock = NULL;
905 		wake_up(&c->btree_cache_wait);
906 	}
907 }
908 
909 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
910 			       struct bkey *k, int level)
911 {
912 	struct btree *b;
913 
914 	BUG_ON(current->bio_list);
915 
916 	lockdep_assert_held(&c->bucket_lock);
917 
918 	if (mca_find(c, k))
919 		return NULL;
920 
921 	/* btree_free() doesn't free memory; it sticks the node on the end of
922 	 * the list. Check if there's any freed nodes there:
923 	 */
924 	list_for_each_entry(b, &c->btree_cache_freeable, list)
925 		if (!mca_reap(b, btree_order(k), false))
926 			goto out;
927 
928 	/* We never free struct btree itself, just the memory that holds the on
929 	 * disk node. Check the freed list before allocating a new one:
930 	 */
931 	list_for_each_entry(b, &c->btree_cache_freed, list)
932 		if (!mca_reap(b, 0, false)) {
933 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
934 			if (!b->keys.set[0].data)
935 				goto err;
936 			else
937 				goto out;
938 		}
939 
940 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
941 	if (!b)
942 		goto err;
943 
944 	BUG_ON(!down_write_trylock(&b->lock));
945 	if (!b->keys.set->data)
946 		goto err;
947 out:
948 	BUG_ON(b->io_mutex.count != 1);
949 
950 	bkey_copy(&b->key, k);
951 	list_move(&b->list, &c->btree_cache);
952 	hlist_del_init_rcu(&b->hash);
953 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
954 
955 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
956 	b->parent	= (void *) ~0UL;
957 	b->flags	= 0;
958 	b->written	= 0;
959 	b->level	= level;
960 
961 	if (!b->level)
962 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
963 				    &b->c->expensive_debug_checks);
964 	else
965 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
966 				    &b->c->expensive_debug_checks);
967 
968 	return b;
969 err:
970 	if (b)
971 		rw_unlock(true, b);
972 
973 	b = mca_cannibalize(c, op, k);
974 	if (!IS_ERR(b))
975 		goto out;
976 
977 	return b;
978 }
979 
980 /*
981  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
982  * in from disk if necessary.
983  *
984  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
985  *
986  * The btree node will have either a read or a write lock held, depending on
987  * level and op->lock.
988  */
989 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
990 				 struct bkey *k, int level, bool write,
991 				 struct btree *parent)
992 {
993 	int i = 0;
994 	struct btree *b;
995 
996 	BUG_ON(level < 0);
997 retry:
998 	b = mca_find(c, k);
999 
1000 	if (!b) {
1001 		if (current->bio_list)
1002 			return ERR_PTR(-EAGAIN);
1003 
1004 		mutex_lock(&c->bucket_lock);
1005 		b = mca_alloc(c, op, k, level);
1006 		mutex_unlock(&c->bucket_lock);
1007 
1008 		if (!b)
1009 			goto retry;
1010 		if (IS_ERR(b))
1011 			return b;
1012 
1013 		bch_btree_node_read(b);
1014 
1015 		if (!write)
1016 			downgrade_write(&b->lock);
1017 	} else {
1018 		rw_lock(write, b, level);
1019 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1020 			rw_unlock(write, b);
1021 			goto retry;
1022 		}
1023 		BUG_ON(b->level != level);
1024 	}
1025 
1026 	if (btree_node_io_error(b)) {
1027 		rw_unlock(write, b);
1028 		return ERR_PTR(-EIO);
1029 	}
1030 
1031 	BUG_ON(!b->written);
1032 
1033 	b->parent = parent;
1034 	b->accessed = 1;
1035 
1036 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1037 		prefetch(b->keys.set[i].tree);
1038 		prefetch(b->keys.set[i].data);
1039 	}
1040 
1041 	for (; i <= b->keys.nsets; i++)
1042 		prefetch(b->keys.set[i].data);
1043 
1044 	return b;
1045 }
1046 
1047 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1048 {
1049 	struct btree *b;
1050 
1051 	mutex_lock(&parent->c->bucket_lock);
1052 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1053 	mutex_unlock(&parent->c->bucket_lock);
1054 
1055 	if (!IS_ERR_OR_NULL(b)) {
1056 		b->parent = parent;
1057 		bch_btree_node_read(b);
1058 		rw_unlock(true, b);
1059 	}
1060 }
1061 
1062 /* Btree alloc */
1063 
1064 static void btree_node_free(struct btree *b)
1065 {
1066 	trace_bcache_btree_node_free(b);
1067 
1068 	BUG_ON(b == b->c->root);
1069 
1070 	mutex_lock(&b->write_lock);
1071 
1072 	if (btree_node_dirty(b))
1073 		btree_complete_write(b, btree_current_write(b));
1074 	clear_bit(BTREE_NODE_dirty, &b->flags);
1075 
1076 	mutex_unlock(&b->write_lock);
1077 
1078 	cancel_delayed_work(&b->work);
1079 
1080 	mutex_lock(&b->c->bucket_lock);
1081 	bch_bucket_free(b->c, &b->key);
1082 	mca_bucket_free(b);
1083 	mutex_unlock(&b->c->bucket_lock);
1084 }
1085 
1086 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1087 				     int level, bool wait,
1088 				     struct btree *parent)
1089 {
1090 	BKEY_PADDED(key) k;
1091 	struct btree *b = ERR_PTR(-EAGAIN);
1092 
1093 	mutex_lock(&c->bucket_lock);
1094 retry:
1095 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1096 		goto err;
1097 
1098 	bkey_put(c, &k.key);
1099 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1100 
1101 	b = mca_alloc(c, op, &k.key, level);
1102 	if (IS_ERR(b))
1103 		goto err_free;
1104 
1105 	if (!b) {
1106 		cache_bug(c,
1107 			"Tried to allocate bucket that was in btree cache");
1108 		goto retry;
1109 	}
1110 
1111 	b->accessed = 1;
1112 	b->parent = parent;
1113 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1114 
1115 	mutex_unlock(&c->bucket_lock);
1116 
1117 	trace_bcache_btree_node_alloc(b);
1118 	return b;
1119 err_free:
1120 	bch_bucket_free(c, &k.key);
1121 err:
1122 	mutex_unlock(&c->bucket_lock);
1123 
1124 	trace_bcache_btree_node_alloc_fail(c);
1125 	return b;
1126 }
1127 
1128 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1129 					  struct btree_op *op, int level,
1130 					  struct btree *parent)
1131 {
1132 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1133 }
1134 
1135 static struct btree *btree_node_alloc_replacement(struct btree *b,
1136 						  struct btree_op *op)
1137 {
1138 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1139 
1140 	if (!IS_ERR_OR_NULL(n)) {
1141 		mutex_lock(&n->write_lock);
1142 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1143 		bkey_copy_key(&n->key, &b->key);
1144 		mutex_unlock(&n->write_lock);
1145 	}
1146 
1147 	return n;
1148 }
1149 
1150 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1151 {
1152 	unsigned int i;
1153 
1154 	mutex_lock(&b->c->bucket_lock);
1155 
1156 	atomic_inc(&b->c->prio_blocked);
1157 
1158 	bkey_copy(k, &b->key);
1159 	bkey_copy_key(k, &ZERO_KEY);
1160 
1161 	for (i = 0; i < KEY_PTRS(k); i++)
1162 		SET_PTR_GEN(k, i,
1163 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1164 					PTR_BUCKET(b->c, &b->key, i)));
1165 
1166 	mutex_unlock(&b->c->bucket_lock);
1167 }
1168 
1169 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1170 {
1171 	struct cache_set *c = b->c;
1172 	struct cache *ca;
1173 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1174 
1175 	mutex_lock(&c->bucket_lock);
1176 
1177 	for_each_cache(ca, c, i)
1178 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1179 			if (op)
1180 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1181 						TASK_UNINTERRUPTIBLE);
1182 			mutex_unlock(&c->bucket_lock);
1183 			return -EINTR;
1184 		}
1185 
1186 	mutex_unlock(&c->bucket_lock);
1187 
1188 	return mca_cannibalize_lock(b->c, op);
1189 }
1190 
1191 /* Garbage collection */
1192 
1193 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1194 				    struct bkey *k)
1195 {
1196 	uint8_t stale = 0;
1197 	unsigned int i;
1198 	struct bucket *g;
1199 
1200 	/*
1201 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1202 	 * freed, but since ptr_bad() returns true we'll never actually use them
1203 	 * for anything and thus we don't want mark their pointers here
1204 	 */
1205 	if (!bkey_cmp(k, &ZERO_KEY))
1206 		return stale;
1207 
1208 	for (i = 0; i < KEY_PTRS(k); i++) {
1209 		if (!ptr_available(c, k, i))
1210 			continue;
1211 
1212 		g = PTR_BUCKET(c, k, i);
1213 
1214 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1215 			g->last_gc = PTR_GEN(k, i);
1216 
1217 		if (ptr_stale(c, k, i)) {
1218 			stale = max(stale, ptr_stale(c, k, i));
1219 			continue;
1220 		}
1221 
1222 		cache_bug_on(GC_MARK(g) &&
1223 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1224 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1225 			     GC_MARK(g), level);
1226 
1227 		if (level)
1228 			SET_GC_MARK(g, GC_MARK_METADATA);
1229 		else if (KEY_DIRTY(k))
1230 			SET_GC_MARK(g, GC_MARK_DIRTY);
1231 		else if (!GC_MARK(g))
1232 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1233 
1234 		/* guard against overflow */
1235 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1236 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1237 					     MAX_GC_SECTORS_USED));
1238 
1239 		BUG_ON(!GC_SECTORS_USED(g));
1240 	}
1241 
1242 	return stale;
1243 }
1244 
1245 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1246 
1247 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1248 {
1249 	unsigned int i;
1250 
1251 	for (i = 0; i < KEY_PTRS(k); i++)
1252 		if (ptr_available(c, k, i) &&
1253 		    !ptr_stale(c, k, i)) {
1254 			struct bucket *b = PTR_BUCKET(c, k, i);
1255 
1256 			b->gen = PTR_GEN(k, i);
1257 
1258 			if (level && bkey_cmp(k, &ZERO_KEY))
1259 				b->prio = BTREE_PRIO;
1260 			else if (!level && b->prio == BTREE_PRIO)
1261 				b->prio = INITIAL_PRIO;
1262 		}
1263 
1264 	__bch_btree_mark_key(c, level, k);
1265 }
1266 
1267 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1268 {
1269 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1270 }
1271 
1272 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1273 {
1274 	uint8_t stale = 0;
1275 	unsigned int keys = 0, good_keys = 0;
1276 	struct bkey *k;
1277 	struct btree_iter iter;
1278 	struct bset_tree *t;
1279 
1280 	gc->nodes++;
1281 
1282 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1283 		stale = max(stale, btree_mark_key(b, k));
1284 		keys++;
1285 
1286 		if (bch_ptr_bad(&b->keys, k))
1287 			continue;
1288 
1289 		gc->key_bytes += bkey_u64s(k);
1290 		gc->nkeys++;
1291 		good_keys++;
1292 
1293 		gc->data += KEY_SIZE(k);
1294 	}
1295 
1296 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1297 		btree_bug_on(t->size &&
1298 			     bset_written(&b->keys, t) &&
1299 			     bkey_cmp(&b->key, &t->end) < 0,
1300 			     b, "found short btree key in gc");
1301 
1302 	if (b->c->gc_always_rewrite)
1303 		return true;
1304 
1305 	if (stale > 10)
1306 		return true;
1307 
1308 	if ((keys - good_keys) * 2 > keys)
1309 		return true;
1310 
1311 	return false;
1312 }
1313 
1314 #define GC_MERGE_NODES	4U
1315 
1316 struct gc_merge_info {
1317 	struct btree	*b;
1318 	unsigned int	keys;
1319 };
1320 
1321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1322 				 struct keylist *insert_keys,
1323 				 atomic_t *journal_ref,
1324 				 struct bkey *replace_key);
1325 
1326 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1327 			     struct gc_stat *gc, struct gc_merge_info *r)
1328 {
1329 	unsigned int i, nodes = 0, keys = 0, blocks;
1330 	struct btree *new_nodes[GC_MERGE_NODES];
1331 	struct keylist keylist;
1332 	struct closure cl;
1333 	struct bkey *k;
1334 
1335 	bch_keylist_init(&keylist);
1336 
1337 	if (btree_check_reserve(b, NULL))
1338 		return 0;
1339 
1340 	memset(new_nodes, 0, sizeof(new_nodes));
1341 	closure_init_stack(&cl);
1342 
1343 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1344 		keys += r[nodes++].keys;
1345 
1346 	blocks = btree_default_blocks(b->c) * 2 / 3;
1347 
1348 	if (nodes < 2 ||
1349 	    __set_blocks(b->keys.set[0].data, keys,
1350 			 block_bytes(b->c)) > blocks * (nodes - 1))
1351 		return 0;
1352 
1353 	for (i = 0; i < nodes; i++) {
1354 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1355 		if (IS_ERR_OR_NULL(new_nodes[i]))
1356 			goto out_nocoalesce;
1357 	}
1358 
1359 	/*
1360 	 * We have to check the reserve here, after we've allocated our new
1361 	 * nodes, to make sure the insert below will succeed - we also check
1362 	 * before as an optimization to potentially avoid a bunch of expensive
1363 	 * allocs/sorts
1364 	 */
1365 	if (btree_check_reserve(b, NULL))
1366 		goto out_nocoalesce;
1367 
1368 	for (i = 0; i < nodes; i++)
1369 		mutex_lock(&new_nodes[i]->write_lock);
1370 
1371 	for (i = nodes - 1; i > 0; --i) {
1372 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1373 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1374 		struct bkey *k, *last = NULL;
1375 
1376 		keys = 0;
1377 
1378 		if (i > 1) {
1379 			for (k = n2->start;
1380 			     k < bset_bkey_last(n2);
1381 			     k = bkey_next(k)) {
1382 				if (__set_blocks(n1, n1->keys + keys +
1383 						 bkey_u64s(k),
1384 						 block_bytes(b->c)) > blocks)
1385 					break;
1386 
1387 				last = k;
1388 				keys += bkey_u64s(k);
1389 			}
1390 		} else {
1391 			/*
1392 			 * Last node we're not getting rid of - we're getting
1393 			 * rid of the node at r[0]. Have to try and fit all of
1394 			 * the remaining keys into this node; we can't ensure
1395 			 * they will always fit due to rounding and variable
1396 			 * length keys (shouldn't be possible in practice,
1397 			 * though)
1398 			 */
1399 			if (__set_blocks(n1, n1->keys + n2->keys,
1400 					 block_bytes(b->c)) >
1401 			    btree_blocks(new_nodes[i]))
1402 				goto out_nocoalesce;
1403 
1404 			keys = n2->keys;
1405 			/* Take the key of the node we're getting rid of */
1406 			last = &r->b->key;
1407 		}
1408 
1409 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1410 		       btree_blocks(new_nodes[i]));
1411 
1412 		if (last)
1413 			bkey_copy_key(&new_nodes[i]->key, last);
1414 
1415 		memcpy(bset_bkey_last(n1),
1416 		       n2->start,
1417 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1418 
1419 		n1->keys += keys;
1420 		r[i].keys = n1->keys;
1421 
1422 		memmove(n2->start,
1423 			bset_bkey_idx(n2, keys),
1424 			(void *) bset_bkey_last(n2) -
1425 			(void *) bset_bkey_idx(n2, keys));
1426 
1427 		n2->keys -= keys;
1428 
1429 		if (__bch_keylist_realloc(&keylist,
1430 					  bkey_u64s(&new_nodes[i]->key)))
1431 			goto out_nocoalesce;
1432 
1433 		bch_btree_node_write(new_nodes[i], &cl);
1434 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1435 	}
1436 
1437 	for (i = 0; i < nodes; i++)
1438 		mutex_unlock(&new_nodes[i]->write_lock);
1439 
1440 	closure_sync(&cl);
1441 
1442 	/* We emptied out this node */
1443 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1444 	btree_node_free(new_nodes[0]);
1445 	rw_unlock(true, new_nodes[0]);
1446 	new_nodes[0] = NULL;
1447 
1448 	for (i = 0; i < nodes; i++) {
1449 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1450 			goto out_nocoalesce;
1451 
1452 		make_btree_freeing_key(r[i].b, keylist.top);
1453 		bch_keylist_push(&keylist);
1454 	}
1455 
1456 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1457 	BUG_ON(!bch_keylist_empty(&keylist));
1458 
1459 	for (i = 0; i < nodes; i++) {
1460 		btree_node_free(r[i].b);
1461 		rw_unlock(true, r[i].b);
1462 
1463 		r[i].b = new_nodes[i];
1464 	}
1465 
1466 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1467 	r[nodes - 1].b = ERR_PTR(-EINTR);
1468 
1469 	trace_bcache_btree_gc_coalesce(nodes);
1470 	gc->nodes--;
1471 
1472 	bch_keylist_free(&keylist);
1473 
1474 	/* Invalidated our iterator */
1475 	return -EINTR;
1476 
1477 out_nocoalesce:
1478 	closure_sync(&cl);
1479 
1480 	while ((k = bch_keylist_pop(&keylist)))
1481 		if (!bkey_cmp(k, &ZERO_KEY))
1482 			atomic_dec(&b->c->prio_blocked);
1483 	bch_keylist_free(&keylist);
1484 
1485 	for (i = 0; i < nodes; i++)
1486 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1487 			btree_node_free(new_nodes[i]);
1488 			rw_unlock(true, new_nodes[i]);
1489 		}
1490 	return 0;
1491 }
1492 
1493 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1494 				 struct btree *replace)
1495 {
1496 	struct keylist keys;
1497 	struct btree *n;
1498 
1499 	if (btree_check_reserve(b, NULL))
1500 		return 0;
1501 
1502 	n = btree_node_alloc_replacement(replace, NULL);
1503 
1504 	/* recheck reserve after allocating replacement node */
1505 	if (btree_check_reserve(b, NULL)) {
1506 		btree_node_free(n);
1507 		rw_unlock(true, n);
1508 		return 0;
1509 	}
1510 
1511 	bch_btree_node_write_sync(n);
1512 
1513 	bch_keylist_init(&keys);
1514 	bch_keylist_add(&keys, &n->key);
1515 
1516 	make_btree_freeing_key(replace, keys.top);
1517 	bch_keylist_push(&keys);
1518 
1519 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1520 	BUG_ON(!bch_keylist_empty(&keys));
1521 
1522 	btree_node_free(replace);
1523 	rw_unlock(true, n);
1524 
1525 	/* Invalidated our iterator */
1526 	return -EINTR;
1527 }
1528 
1529 static unsigned int btree_gc_count_keys(struct btree *b)
1530 {
1531 	struct bkey *k;
1532 	struct btree_iter iter;
1533 	unsigned int ret = 0;
1534 
1535 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1536 		ret += bkey_u64s(k);
1537 
1538 	return ret;
1539 }
1540 
1541 static size_t btree_gc_min_nodes(struct cache_set *c)
1542 {
1543 	size_t min_nodes;
1544 
1545 	/*
1546 	 * Since incremental GC would stop 100ms when front
1547 	 * side I/O comes, so when there are many btree nodes,
1548 	 * if GC only processes constant (100) nodes each time,
1549 	 * GC would last a long time, and the front side I/Os
1550 	 * would run out of the buckets (since no new bucket
1551 	 * can be allocated during GC), and be blocked again.
1552 	 * So GC should not process constant nodes, but varied
1553 	 * nodes according to the number of btree nodes, which
1554 	 * realized by dividing GC into constant(100) times,
1555 	 * so when there are many btree nodes, GC can process
1556 	 * more nodes each time, otherwise, GC will process less
1557 	 * nodes each time (but no less than MIN_GC_NODES)
1558 	 */
1559 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1560 	if (min_nodes < MIN_GC_NODES)
1561 		min_nodes = MIN_GC_NODES;
1562 
1563 	return min_nodes;
1564 }
1565 
1566 
1567 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1568 			    struct closure *writes, struct gc_stat *gc)
1569 {
1570 	int ret = 0;
1571 	bool should_rewrite;
1572 	struct bkey *k;
1573 	struct btree_iter iter;
1574 	struct gc_merge_info r[GC_MERGE_NODES];
1575 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1576 
1577 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1578 
1579 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1580 		i->b = ERR_PTR(-EINTR);
1581 
1582 	while (1) {
1583 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1584 		if (k) {
1585 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1586 						  true, b);
1587 			if (IS_ERR(r->b)) {
1588 				ret = PTR_ERR(r->b);
1589 				break;
1590 			}
1591 
1592 			r->keys = btree_gc_count_keys(r->b);
1593 
1594 			ret = btree_gc_coalesce(b, op, gc, r);
1595 			if (ret)
1596 				break;
1597 		}
1598 
1599 		if (!last->b)
1600 			break;
1601 
1602 		if (!IS_ERR(last->b)) {
1603 			should_rewrite = btree_gc_mark_node(last->b, gc);
1604 			if (should_rewrite) {
1605 				ret = btree_gc_rewrite_node(b, op, last->b);
1606 				if (ret)
1607 					break;
1608 			}
1609 
1610 			if (last->b->level) {
1611 				ret = btree_gc_recurse(last->b, op, writes, gc);
1612 				if (ret)
1613 					break;
1614 			}
1615 
1616 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1617 
1618 			/*
1619 			 * Must flush leaf nodes before gc ends, since replace
1620 			 * operations aren't journalled
1621 			 */
1622 			mutex_lock(&last->b->write_lock);
1623 			if (btree_node_dirty(last->b))
1624 				bch_btree_node_write(last->b, writes);
1625 			mutex_unlock(&last->b->write_lock);
1626 			rw_unlock(true, last->b);
1627 		}
1628 
1629 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1630 		r->b = NULL;
1631 
1632 		if (atomic_read(&b->c->search_inflight) &&
1633 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1634 			gc->nodes_pre =  gc->nodes;
1635 			ret = -EAGAIN;
1636 			break;
1637 		}
1638 
1639 		if (need_resched()) {
1640 			ret = -EAGAIN;
1641 			break;
1642 		}
1643 	}
1644 
1645 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1646 		if (!IS_ERR_OR_NULL(i->b)) {
1647 			mutex_lock(&i->b->write_lock);
1648 			if (btree_node_dirty(i->b))
1649 				bch_btree_node_write(i->b, writes);
1650 			mutex_unlock(&i->b->write_lock);
1651 			rw_unlock(true, i->b);
1652 		}
1653 
1654 	return ret;
1655 }
1656 
1657 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1658 			     struct closure *writes, struct gc_stat *gc)
1659 {
1660 	struct btree *n = NULL;
1661 	int ret = 0;
1662 	bool should_rewrite;
1663 
1664 	should_rewrite = btree_gc_mark_node(b, gc);
1665 	if (should_rewrite) {
1666 		n = btree_node_alloc_replacement(b, NULL);
1667 
1668 		if (!IS_ERR_OR_NULL(n)) {
1669 			bch_btree_node_write_sync(n);
1670 
1671 			bch_btree_set_root(n);
1672 			btree_node_free(b);
1673 			rw_unlock(true, n);
1674 
1675 			return -EINTR;
1676 		}
1677 	}
1678 
1679 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1680 
1681 	if (b->level) {
1682 		ret = btree_gc_recurse(b, op, writes, gc);
1683 		if (ret)
1684 			return ret;
1685 	}
1686 
1687 	bkey_copy_key(&b->c->gc_done, &b->key);
1688 
1689 	return ret;
1690 }
1691 
1692 static void btree_gc_start(struct cache_set *c)
1693 {
1694 	struct cache *ca;
1695 	struct bucket *b;
1696 	unsigned int i;
1697 
1698 	if (!c->gc_mark_valid)
1699 		return;
1700 
1701 	mutex_lock(&c->bucket_lock);
1702 
1703 	c->gc_mark_valid = 0;
1704 	c->gc_done = ZERO_KEY;
1705 
1706 	for_each_cache(ca, c, i)
1707 		for_each_bucket(b, ca) {
1708 			b->last_gc = b->gen;
1709 			if (!atomic_read(&b->pin)) {
1710 				SET_GC_MARK(b, 0);
1711 				SET_GC_SECTORS_USED(b, 0);
1712 			}
1713 		}
1714 
1715 	mutex_unlock(&c->bucket_lock);
1716 }
1717 
1718 static void bch_btree_gc_finish(struct cache_set *c)
1719 {
1720 	struct bucket *b;
1721 	struct cache *ca;
1722 	unsigned int i;
1723 
1724 	mutex_lock(&c->bucket_lock);
1725 
1726 	set_gc_sectors(c);
1727 	c->gc_mark_valid = 1;
1728 	c->need_gc	= 0;
1729 
1730 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1731 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1732 			    GC_MARK_METADATA);
1733 
1734 	/* don't reclaim buckets to which writeback keys point */
1735 	rcu_read_lock();
1736 	for (i = 0; i < c->devices_max_used; i++) {
1737 		struct bcache_device *d = c->devices[i];
1738 		struct cached_dev *dc;
1739 		struct keybuf_key *w, *n;
1740 		unsigned int j;
1741 
1742 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1743 			continue;
1744 		dc = container_of(d, struct cached_dev, disk);
1745 
1746 		spin_lock(&dc->writeback_keys.lock);
1747 		rbtree_postorder_for_each_entry_safe(w, n,
1748 					&dc->writeback_keys.keys, node)
1749 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1750 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1751 					    GC_MARK_DIRTY);
1752 		spin_unlock(&dc->writeback_keys.lock);
1753 	}
1754 	rcu_read_unlock();
1755 
1756 	c->avail_nbuckets = 0;
1757 	for_each_cache(ca, c, i) {
1758 		uint64_t *i;
1759 
1760 		ca->invalidate_needs_gc = 0;
1761 
1762 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1763 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1764 
1765 		for (i = ca->prio_buckets;
1766 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1767 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1768 
1769 		for_each_bucket(b, ca) {
1770 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1771 
1772 			if (atomic_read(&b->pin))
1773 				continue;
1774 
1775 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1776 
1777 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1778 				c->avail_nbuckets++;
1779 		}
1780 	}
1781 
1782 	mutex_unlock(&c->bucket_lock);
1783 }
1784 
1785 static void bch_btree_gc(struct cache_set *c)
1786 {
1787 	int ret;
1788 	struct gc_stat stats;
1789 	struct closure writes;
1790 	struct btree_op op;
1791 	uint64_t start_time = local_clock();
1792 
1793 	trace_bcache_gc_start(c);
1794 
1795 	memset(&stats, 0, sizeof(struct gc_stat));
1796 	closure_init_stack(&writes);
1797 	bch_btree_op_init(&op, SHRT_MAX);
1798 
1799 	btree_gc_start(c);
1800 
1801 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1802 	do {
1803 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1804 		closure_sync(&writes);
1805 		cond_resched();
1806 
1807 		if (ret == -EAGAIN)
1808 			schedule_timeout_interruptible(msecs_to_jiffies
1809 						       (GC_SLEEP_MS));
1810 		else if (ret)
1811 			pr_warn("gc failed!");
1812 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1813 
1814 	bch_btree_gc_finish(c);
1815 	wake_up_allocators(c);
1816 
1817 	bch_time_stats_update(&c->btree_gc_time, start_time);
1818 
1819 	stats.key_bytes *= sizeof(uint64_t);
1820 	stats.data	<<= 9;
1821 	bch_update_bucket_in_use(c, &stats);
1822 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1823 
1824 	trace_bcache_gc_end(c);
1825 
1826 	bch_moving_gc(c);
1827 }
1828 
1829 static bool gc_should_run(struct cache_set *c)
1830 {
1831 	struct cache *ca;
1832 	unsigned int i;
1833 
1834 	for_each_cache(ca, c, i)
1835 		if (ca->invalidate_needs_gc)
1836 			return true;
1837 
1838 	if (atomic_read(&c->sectors_to_gc) < 0)
1839 		return true;
1840 
1841 	return false;
1842 }
1843 
1844 static int bch_gc_thread(void *arg)
1845 {
1846 	struct cache_set *c = arg;
1847 
1848 	while (1) {
1849 		wait_event_interruptible(c->gc_wait,
1850 			   kthread_should_stop() ||
1851 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1852 			   gc_should_run(c));
1853 
1854 		if (kthread_should_stop() ||
1855 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1856 			break;
1857 
1858 		set_gc_sectors(c);
1859 		bch_btree_gc(c);
1860 	}
1861 
1862 	wait_for_kthread_stop();
1863 	return 0;
1864 }
1865 
1866 int bch_gc_thread_start(struct cache_set *c)
1867 {
1868 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1869 	return PTR_ERR_OR_ZERO(c->gc_thread);
1870 }
1871 
1872 /* Initial partial gc */
1873 
1874 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1875 {
1876 	int ret = 0;
1877 	struct bkey *k, *p = NULL;
1878 	struct btree_iter iter;
1879 
1880 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1881 		bch_initial_mark_key(b->c, b->level, k);
1882 
1883 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1884 
1885 	if (b->level) {
1886 		bch_btree_iter_init(&b->keys, &iter, NULL);
1887 
1888 		do {
1889 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1890 						       bch_ptr_bad);
1891 			if (k) {
1892 				btree_node_prefetch(b, k);
1893 				/*
1894 				 * initiallize c->gc_stats.nodes
1895 				 * for incremental GC
1896 				 */
1897 				b->c->gc_stats.nodes++;
1898 			}
1899 
1900 			if (p)
1901 				ret = btree(check_recurse, p, b, op);
1902 
1903 			p = k;
1904 		} while (p && !ret);
1905 	}
1906 
1907 	return ret;
1908 }
1909 
1910 int bch_btree_check(struct cache_set *c)
1911 {
1912 	struct btree_op op;
1913 
1914 	bch_btree_op_init(&op, SHRT_MAX);
1915 
1916 	return btree_root(check_recurse, c, &op);
1917 }
1918 
1919 void bch_initial_gc_finish(struct cache_set *c)
1920 {
1921 	struct cache *ca;
1922 	struct bucket *b;
1923 	unsigned int i;
1924 
1925 	bch_btree_gc_finish(c);
1926 
1927 	mutex_lock(&c->bucket_lock);
1928 
1929 	/*
1930 	 * We need to put some unused buckets directly on the prio freelist in
1931 	 * order to get the allocator thread started - it needs freed buckets in
1932 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1933 	 * and gens in order to free buckets.
1934 	 *
1935 	 * This is only safe for buckets that have no live data in them, which
1936 	 * there should always be some of.
1937 	 */
1938 	for_each_cache(ca, c, i) {
1939 		for_each_bucket(b, ca) {
1940 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1941 			    fifo_full(&ca->free[RESERVE_BTREE]))
1942 				break;
1943 
1944 			if (bch_can_invalidate_bucket(ca, b) &&
1945 			    !GC_MARK(b)) {
1946 				__bch_invalidate_one_bucket(ca, b);
1947 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1948 				   b - ca->buckets))
1949 					fifo_push(&ca->free[RESERVE_BTREE],
1950 						  b - ca->buckets);
1951 			}
1952 		}
1953 	}
1954 
1955 	mutex_unlock(&c->bucket_lock);
1956 }
1957 
1958 /* Btree insertion */
1959 
1960 static bool btree_insert_key(struct btree *b, struct bkey *k,
1961 			     struct bkey *replace_key)
1962 {
1963 	unsigned int status;
1964 
1965 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1966 
1967 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1968 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1969 		bch_check_keys(&b->keys, "%u for %s", status,
1970 			       replace_key ? "replace" : "insert");
1971 
1972 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1973 					      status);
1974 		return true;
1975 	} else
1976 		return false;
1977 }
1978 
1979 static size_t insert_u64s_remaining(struct btree *b)
1980 {
1981 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1982 
1983 	/*
1984 	 * Might land in the middle of an existing extent and have to split it
1985 	 */
1986 	if (b->keys.ops->is_extents)
1987 		ret -= KEY_MAX_U64S;
1988 
1989 	return max(ret, 0L);
1990 }
1991 
1992 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1993 				  struct keylist *insert_keys,
1994 				  struct bkey *replace_key)
1995 {
1996 	bool ret = false;
1997 	int oldsize = bch_count_data(&b->keys);
1998 
1999 	while (!bch_keylist_empty(insert_keys)) {
2000 		struct bkey *k = insert_keys->keys;
2001 
2002 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2003 			break;
2004 
2005 		if (bkey_cmp(k, &b->key) <= 0) {
2006 			if (!b->level)
2007 				bkey_put(b->c, k);
2008 
2009 			ret |= btree_insert_key(b, k, replace_key);
2010 			bch_keylist_pop_front(insert_keys);
2011 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2012 			BKEY_PADDED(key) temp;
2013 			bkey_copy(&temp.key, insert_keys->keys);
2014 
2015 			bch_cut_back(&b->key, &temp.key);
2016 			bch_cut_front(&b->key, insert_keys->keys);
2017 
2018 			ret |= btree_insert_key(b, &temp.key, replace_key);
2019 			break;
2020 		} else {
2021 			break;
2022 		}
2023 	}
2024 
2025 	if (!ret)
2026 		op->insert_collision = true;
2027 
2028 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2029 
2030 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2031 	return ret;
2032 }
2033 
2034 static int btree_split(struct btree *b, struct btree_op *op,
2035 		       struct keylist *insert_keys,
2036 		       struct bkey *replace_key)
2037 {
2038 	bool split;
2039 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2040 	uint64_t start_time = local_clock();
2041 	struct closure cl;
2042 	struct keylist parent_keys;
2043 
2044 	closure_init_stack(&cl);
2045 	bch_keylist_init(&parent_keys);
2046 
2047 	if (btree_check_reserve(b, op)) {
2048 		if (!b->level)
2049 			return -EINTR;
2050 		else
2051 			WARN(1, "insufficient reserve for split\n");
2052 	}
2053 
2054 	n1 = btree_node_alloc_replacement(b, op);
2055 	if (IS_ERR(n1))
2056 		goto err;
2057 
2058 	split = set_blocks(btree_bset_first(n1),
2059 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2060 
2061 	if (split) {
2062 		unsigned int keys = 0;
2063 
2064 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2065 
2066 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2067 		if (IS_ERR(n2))
2068 			goto err_free1;
2069 
2070 		if (!b->parent) {
2071 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2072 			if (IS_ERR(n3))
2073 				goto err_free2;
2074 		}
2075 
2076 		mutex_lock(&n1->write_lock);
2077 		mutex_lock(&n2->write_lock);
2078 
2079 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2080 
2081 		/*
2082 		 * Has to be a linear search because we don't have an auxiliary
2083 		 * search tree yet
2084 		 */
2085 
2086 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2087 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2088 							keys));
2089 
2090 		bkey_copy_key(&n1->key,
2091 			      bset_bkey_idx(btree_bset_first(n1), keys));
2092 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2093 
2094 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2095 		btree_bset_first(n1)->keys = keys;
2096 
2097 		memcpy(btree_bset_first(n2)->start,
2098 		       bset_bkey_last(btree_bset_first(n1)),
2099 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2100 
2101 		bkey_copy_key(&n2->key, &b->key);
2102 
2103 		bch_keylist_add(&parent_keys, &n2->key);
2104 		bch_btree_node_write(n2, &cl);
2105 		mutex_unlock(&n2->write_lock);
2106 		rw_unlock(true, n2);
2107 	} else {
2108 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2109 
2110 		mutex_lock(&n1->write_lock);
2111 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2112 	}
2113 
2114 	bch_keylist_add(&parent_keys, &n1->key);
2115 	bch_btree_node_write(n1, &cl);
2116 	mutex_unlock(&n1->write_lock);
2117 
2118 	if (n3) {
2119 		/* Depth increases, make a new root */
2120 		mutex_lock(&n3->write_lock);
2121 		bkey_copy_key(&n3->key, &MAX_KEY);
2122 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2123 		bch_btree_node_write(n3, &cl);
2124 		mutex_unlock(&n3->write_lock);
2125 
2126 		closure_sync(&cl);
2127 		bch_btree_set_root(n3);
2128 		rw_unlock(true, n3);
2129 	} else if (!b->parent) {
2130 		/* Root filled up but didn't need to be split */
2131 		closure_sync(&cl);
2132 		bch_btree_set_root(n1);
2133 	} else {
2134 		/* Split a non root node */
2135 		closure_sync(&cl);
2136 		make_btree_freeing_key(b, parent_keys.top);
2137 		bch_keylist_push(&parent_keys);
2138 
2139 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2140 		BUG_ON(!bch_keylist_empty(&parent_keys));
2141 	}
2142 
2143 	btree_node_free(b);
2144 	rw_unlock(true, n1);
2145 
2146 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2147 
2148 	return 0;
2149 err_free2:
2150 	bkey_put(b->c, &n2->key);
2151 	btree_node_free(n2);
2152 	rw_unlock(true, n2);
2153 err_free1:
2154 	bkey_put(b->c, &n1->key);
2155 	btree_node_free(n1);
2156 	rw_unlock(true, n1);
2157 err:
2158 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2159 
2160 	if (n3 == ERR_PTR(-EAGAIN) ||
2161 	    n2 == ERR_PTR(-EAGAIN) ||
2162 	    n1 == ERR_PTR(-EAGAIN))
2163 		return -EAGAIN;
2164 
2165 	return -ENOMEM;
2166 }
2167 
2168 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2169 				 struct keylist *insert_keys,
2170 				 atomic_t *journal_ref,
2171 				 struct bkey *replace_key)
2172 {
2173 	struct closure cl;
2174 
2175 	BUG_ON(b->level && replace_key);
2176 
2177 	closure_init_stack(&cl);
2178 
2179 	mutex_lock(&b->write_lock);
2180 
2181 	if (write_block(b) != btree_bset_last(b) &&
2182 	    b->keys.last_set_unwritten)
2183 		bch_btree_init_next(b); /* just wrote a set */
2184 
2185 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2186 		mutex_unlock(&b->write_lock);
2187 		goto split;
2188 	}
2189 
2190 	BUG_ON(write_block(b) != btree_bset_last(b));
2191 
2192 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2193 		if (!b->level)
2194 			bch_btree_leaf_dirty(b, journal_ref);
2195 		else
2196 			bch_btree_node_write(b, &cl);
2197 	}
2198 
2199 	mutex_unlock(&b->write_lock);
2200 
2201 	/* wait for btree node write if necessary, after unlock */
2202 	closure_sync(&cl);
2203 
2204 	return 0;
2205 split:
2206 	if (current->bio_list) {
2207 		op->lock = b->c->root->level + 1;
2208 		return -EAGAIN;
2209 	} else if (op->lock <= b->c->root->level) {
2210 		op->lock = b->c->root->level + 1;
2211 		return -EINTR;
2212 	} else {
2213 		/* Invalidated all iterators */
2214 		int ret = btree_split(b, op, insert_keys, replace_key);
2215 
2216 		if (bch_keylist_empty(insert_keys))
2217 			return 0;
2218 		else if (!ret)
2219 			return -EINTR;
2220 		return ret;
2221 	}
2222 }
2223 
2224 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2225 			       struct bkey *check_key)
2226 {
2227 	int ret = -EINTR;
2228 	uint64_t btree_ptr = b->key.ptr[0];
2229 	unsigned long seq = b->seq;
2230 	struct keylist insert;
2231 	bool upgrade = op->lock == -1;
2232 
2233 	bch_keylist_init(&insert);
2234 
2235 	if (upgrade) {
2236 		rw_unlock(false, b);
2237 		rw_lock(true, b, b->level);
2238 
2239 		if (b->key.ptr[0] != btree_ptr ||
2240 		    b->seq != seq + 1) {
2241 			op->lock = b->level;
2242 			goto out;
2243 		}
2244 	}
2245 
2246 	SET_KEY_PTRS(check_key, 1);
2247 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2248 
2249 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2250 
2251 	bch_keylist_add(&insert, check_key);
2252 
2253 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2254 
2255 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2256 out:
2257 	if (upgrade)
2258 		downgrade_write(&b->lock);
2259 	return ret;
2260 }
2261 
2262 struct btree_insert_op {
2263 	struct btree_op	op;
2264 	struct keylist	*keys;
2265 	atomic_t	*journal_ref;
2266 	struct bkey	*replace_key;
2267 };
2268 
2269 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2270 {
2271 	struct btree_insert_op *op = container_of(b_op,
2272 					struct btree_insert_op, op);
2273 
2274 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2275 					op->journal_ref, op->replace_key);
2276 	if (ret && !bch_keylist_empty(op->keys))
2277 		return ret;
2278 	else
2279 		return MAP_DONE;
2280 }
2281 
2282 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2283 		     atomic_t *journal_ref, struct bkey *replace_key)
2284 {
2285 	struct btree_insert_op op;
2286 	int ret = 0;
2287 
2288 	BUG_ON(current->bio_list);
2289 	BUG_ON(bch_keylist_empty(keys));
2290 
2291 	bch_btree_op_init(&op.op, 0);
2292 	op.keys		= keys;
2293 	op.journal_ref	= journal_ref;
2294 	op.replace_key	= replace_key;
2295 
2296 	while (!ret && !bch_keylist_empty(keys)) {
2297 		op.op.lock = 0;
2298 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2299 					       &START_KEY(keys->keys),
2300 					       btree_insert_fn);
2301 	}
2302 
2303 	if (ret) {
2304 		struct bkey *k;
2305 
2306 		pr_err("error %i", ret);
2307 
2308 		while ((k = bch_keylist_pop(keys)))
2309 			bkey_put(c, k);
2310 	} else if (op.op.insert_collision)
2311 		ret = -ESRCH;
2312 
2313 	return ret;
2314 }
2315 
2316 void bch_btree_set_root(struct btree *b)
2317 {
2318 	unsigned int i;
2319 	struct closure cl;
2320 
2321 	closure_init_stack(&cl);
2322 
2323 	trace_bcache_btree_set_root(b);
2324 
2325 	BUG_ON(!b->written);
2326 
2327 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2328 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2329 
2330 	mutex_lock(&b->c->bucket_lock);
2331 	list_del_init(&b->list);
2332 	mutex_unlock(&b->c->bucket_lock);
2333 
2334 	b->c->root = b;
2335 
2336 	bch_journal_meta(b->c, &cl);
2337 	closure_sync(&cl);
2338 }
2339 
2340 /* Map across nodes or keys */
2341 
2342 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2343 				       struct bkey *from,
2344 				       btree_map_nodes_fn *fn, int flags)
2345 {
2346 	int ret = MAP_CONTINUE;
2347 
2348 	if (b->level) {
2349 		struct bkey *k;
2350 		struct btree_iter iter;
2351 
2352 		bch_btree_iter_init(&b->keys, &iter, from);
2353 
2354 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2355 						       bch_ptr_bad))) {
2356 			ret = btree(map_nodes_recurse, k, b,
2357 				    op, from, fn, flags);
2358 			from = NULL;
2359 
2360 			if (ret != MAP_CONTINUE)
2361 				return ret;
2362 		}
2363 	}
2364 
2365 	if (!b->level || flags == MAP_ALL_NODES)
2366 		ret = fn(op, b);
2367 
2368 	return ret;
2369 }
2370 
2371 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2372 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2373 {
2374 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2375 }
2376 
2377 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2378 				      struct bkey *from, btree_map_keys_fn *fn,
2379 				      int flags)
2380 {
2381 	int ret = MAP_CONTINUE;
2382 	struct bkey *k;
2383 	struct btree_iter iter;
2384 
2385 	bch_btree_iter_init(&b->keys, &iter, from);
2386 
2387 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2388 		ret = !b->level
2389 			? fn(op, b, k)
2390 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2391 		from = NULL;
2392 
2393 		if (ret != MAP_CONTINUE)
2394 			return ret;
2395 	}
2396 
2397 	if (!b->level && (flags & MAP_END_KEY))
2398 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2399 				     KEY_OFFSET(&b->key), 0));
2400 
2401 	return ret;
2402 }
2403 
2404 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2405 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2406 {
2407 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2408 }
2409 
2410 /* Keybuf code */
2411 
2412 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2413 {
2414 	/* Overlapping keys compare equal */
2415 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2416 		return -1;
2417 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2418 		return 1;
2419 	return 0;
2420 }
2421 
2422 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2423 					    struct keybuf_key *r)
2424 {
2425 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2426 }
2427 
2428 struct refill {
2429 	struct btree_op	op;
2430 	unsigned int	nr_found;
2431 	struct keybuf	*buf;
2432 	struct bkey	*end;
2433 	keybuf_pred_fn	*pred;
2434 };
2435 
2436 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2437 			    struct bkey *k)
2438 {
2439 	struct refill *refill = container_of(op, struct refill, op);
2440 	struct keybuf *buf = refill->buf;
2441 	int ret = MAP_CONTINUE;
2442 
2443 	if (bkey_cmp(k, refill->end) > 0) {
2444 		ret = MAP_DONE;
2445 		goto out;
2446 	}
2447 
2448 	if (!KEY_SIZE(k)) /* end key */
2449 		goto out;
2450 
2451 	if (refill->pred(buf, k)) {
2452 		struct keybuf_key *w;
2453 
2454 		spin_lock(&buf->lock);
2455 
2456 		w = array_alloc(&buf->freelist);
2457 		if (!w) {
2458 			spin_unlock(&buf->lock);
2459 			return MAP_DONE;
2460 		}
2461 
2462 		w->private = NULL;
2463 		bkey_copy(&w->key, k);
2464 
2465 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2466 			array_free(&buf->freelist, w);
2467 		else
2468 			refill->nr_found++;
2469 
2470 		if (array_freelist_empty(&buf->freelist))
2471 			ret = MAP_DONE;
2472 
2473 		spin_unlock(&buf->lock);
2474 	}
2475 out:
2476 	buf->last_scanned = *k;
2477 	return ret;
2478 }
2479 
2480 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2481 		       struct bkey *end, keybuf_pred_fn *pred)
2482 {
2483 	struct bkey start = buf->last_scanned;
2484 	struct refill refill;
2485 
2486 	cond_resched();
2487 
2488 	bch_btree_op_init(&refill.op, -1);
2489 	refill.nr_found	= 0;
2490 	refill.buf	= buf;
2491 	refill.end	= end;
2492 	refill.pred	= pred;
2493 
2494 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2495 			   refill_keybuf_fn, MAP_END_KEY);
2496 
2497 	trace_bcache_keyscan(refill.nr_found,
2498 			     KEY_INODE(&start), KEY_OFFSET(&start),
2499 			     KEY_INODE(&buf->last_scanned),
2500 			     KEY_OFFSET(&buf->last_scanned));
2501 
2502 	spin_lock(&buf->lock);
2503 
2504 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2505 		struct keybuf_key *w;
2506 
2507 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2508 		buf->start	= START_KEY(&w->key);
2509 
2510 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2511 		buf->end	= w->key;
2512 	} else {
2513 		buf->start	= MAX_KEY;
2514 		buf->end	= MAX_KEY;
2515 	}
2516 
2517 	spin_unlock(&buf->lock);
2518 }
2519 
2520 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2521 {
2522 	rb_erase(&w->node, &buf->keys);
2523 	array_free(&buf->freelist, w);
2524 }
2525 
2526 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2527 {
2528 	spin_lock(&buf->lock);
2529 	__bch_keybuf_del(buf, w);
2530 	spin_unlock(&buf->lock);
2531 }
2532 
2533 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2534 				  struct bkey *end)
2535 {
2536 	bool ret = false;
2537 	struct keybuf_key *p, *w, s;
2538 
2539 	s.key = *start;
2540 
2541 	if (bkey_cmp(end, &buf->start) <= 0 ||
2542 	    bkey_cmp(start, &buf->end) >= 0)
2543 		return false;
2544 
2545 	spin_lock(&buf->lock);
2546 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2547 
2548 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2549 		p = w;
2550 		w = RB_NEXT(w, node);
2551 
2552 		if (p->private)
2553 			ret = true;
2554 		else
2555 			__bch_keybuf_del(buf, p);
2556 	}
2557 
2558 	spin_unlock(&buf->lock);
2559 	return ret;
2560 }
2561 
2562 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2563 {
2564 	struct keybuf_key *w;
2565 
2566 	spin_lock(&buf->lock);
2567 
2568 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2569 
2570 	while (w && w->private)
2571 		w = RB_NEXT(w, node);
2572 
2573 	if (w)
2574 		w->private = ERR_PTR(-EINTR);
2575 
2576 	spin_unlock(&buf->lock);
2577 	return w;
2578 }
2579 
2580 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2581 					  struct keybuf *buf,
2582 					  struct bkey *end,
2583 					  keybuf_pred_fn *pred)
2584 {
2585 	struct keybuf_key *ret;
2586 
2587 	while (1) {
2588 		ret = bch_keybuf_next(buf);
2589 		if (ret)
2590 			break;
2591 
2592 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2593 			pr_debug("scan finished");
2594 			break;
2595 		}
2596 
2597 		bch_refill_keybuf(c, buf, end, pred);
2598 	}
2599 
2600 	return ret;
2601 }
2602 
2603 void bch_keybuf_init(struct keybuf *buf)
2604 {
2605 	buf->last_scanned	= MAX_KEY;
2606 	buf->keys		= RB_ROOT;
2607 
2608 	spin_lock_init(&buf->lock);
2609 	array_allocator_init(&buf->freelist);
2610 }
2611