xref: /linux/drivers/md/bcache/btree.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
127 						  _w, b);		\
128 	if (!IS_ERR(_child)) {						\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
152 		}							\
153 		rw_unlock(_w, _b);					\
154 		bch_cannibalize_unlock(c);				\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 	} while (_r == -EINTR);						\
158 									\
159 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
160 	_r;								\
161 })
162 
163 static inline struct bset *write_block(struct btree *b)
164 {
165 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167 
168 static void bch_btree_init_next(struct btree *b)
169 {
170 	/* If not a leaf node, always sort */
171 	if (b->level && b->keys.nsets)
172 		bch_btree_sort(&b->keys, &b->c->sort);
173 	else
174 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
175 
176 	if (b->written < btree_blocks(b))
177 		bch_bset_init_next(&b->keys, write_block(b),
178 				   bset_magic(&b->c->sb));
179 
180 }
181 
182 /* Btree key manipulation */
183 
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 	unsigned int i;
187 
188 	for (i = 0; i < KEY_PTRS(k); i++)
189 		if (ptr_available(c, k, i))
190 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192 
193 /* Btree IO */
194 
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 	uint64_t crc = b->key.ptr[0];
198 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
199 
200 	crc = bch_crc64_update(crc, data, end - data);
201 	return crc ^ 0xffffffffffffffffULL;
202 }
203 
204 void bch_btree_node_read_done(struct btree *b)
205 {
206 	const char *err = "bad btree header";
207 	struct bset *i = btree_bset_first(b);
208 	struct btree_iter *iter;
209 
210 	/*
211 	 * c->fill_iter can allocate an iterator with more memory space
212 	 * than static MAX_BSETS.
213 	 * See the comment arount cache_set->fill_iter.
214 	 */
215 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 	iter->used = 0;
218 
219 #ifdef CONFIG_BCACHE_DEBUG
220 	iter->b = &b->keys;
221 #endif
222 
223 	if (!i->seq)
224 		goto err;
225 
226 	for (;
227 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 	     i = write_block(b)) {
229 		err = "unsupported bset version";
230 		if (i->version > BCACHE_BSET_VERSION)
231 			goto err;
232 
233 		err = "bad btree header";
234 		if (b->written + set_blocks(i, block_bytes(b->c)) >
235 		    btree_blocks(b))
236 			goto err;
237 
238 		err = "bad magic";
239 		if (i->magic != bset_magic(&b->c->sb))
240 			goto err;
241 
242 		err = "bad checksum";
243 		switch (i->version) {
244 		case 0:
245 			if (i->csum != csum_set(i))
246 				goto err;
247 			break;
248 		case BCACHE_BSET_VERSION:
249 			if (i->csum != btree_csum_set(b, i))
250 				goto err;
251 			break;
252 		}
253 
254 		err = "empty set";
255 		if (i != b->keys.set[0].data && !i->keys)
256 			goto err;
257 
258 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
259 
260 		b->written += set_blocks(i, block_bytes(b->c));
261 	}
262 
263 	err = "corrupted btree";
264 	for (i = write_block(b);
265 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 	     i = ((void *) i) + block_bytes(b->c))
267 		if (i->seq == b->keys.set[0].data->seq)
268 			goto err;
269 
270 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
271 
272 	i = b->keys.set[0].data;
273 	err = "short btree key";
274 	if (b->keys.set[0].size &&
275 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 		goto err;
277 
278 	if (b->written < btree_blocks(b))
279 		bch_bset_init_next(&b->keys, write_block(b),
280 				   bset_magic(&b->c->sb));
281 out:
282 	mempool_free(iter, &b->c->fill_iter);
283 	return;
284 err:
285 	set_btree_node_io_error(b);
286 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 			    bset_block_offset(b, i), i->keys);
289 	goto out;
290 }
291 
292 static void btree_node_read_endio(struct bio *bio)
293 {
294 	struct closure *cl = bio->bi_private;
295 
296 	closure_put(cl);
297 }
298 
299 static void bch_btree_node_read(struct btree *b)
300 {
301 	uint64_t start_time = local_clock();
302 	struct closure cl;
303 	struct bio *bio;
304 
305 	trace_bcache_btree_read(b);
306 
307 	closure_init_stack(&cl);
308 
309 	bio = bch_bbio_alloc(b->c);
310 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 	bio->bi_end_io	= btree_node_read_endio;
312 	bio->bi_private	= &cl;
313 	bio->bi_opf = REQ_OP_READ | REQ_META;
314 
315 	bch_bio_map(bio, b->keys.set[0].data);
316 
317 	bch_submit_bbio(bio, b->c, &b->key, 0);
318 	closure_sync(&cl);
319 
320 	if (bio->bi_status)
321 		set_btree_node_io_error(b);
322 
323 	bch_bbio_free(bio, b->c);
324 
325 	if (btree_node_io_error(b))
326 		goto err;
327 
328 	bch_btree_node_read_done(b);
329 	bch_time_stats_update(&b->c->btree_read_time, start_time);
330 
331 	return;
332 err:
333 	bch_cache_set_error(b->c, "io error reading bucket %zu",
334 			    PTR_BUCKET_NR(b->c, &b->key, 0));
335 }
336 
337 static void btree_complete_write(struct btree *b, struct btree_write *w)
338 {
339 	if (w->prio_blocked &&
340 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 		wake_up_allocators(b->c);
342 
343 	if (w->journal) {
344 		atomic_dec_bug(w->journal);
345 		__closure_wake_up(&b->c->journal.wait);
346 	}
347 
348 	w->prio_blocked	= 0;
349 	w->journal	= NULL;
350 }
351 
352 static void btree_node_write_unlock(struct closure *cl)
353 {
354 	struct btree *b = container_of(cl, struct btree, io);
355 
356 	up(&b->io_mutex);
357 }
358 
359 static void __btree_node_write_done(struct closure *cl)
360 {
361 	struct btree *b = container_of(cl, struct btree, io);
362 	struct btree_write *w = btree_prev_write(b);
363 
364 	bch_bbio_free(b->bio, b->c);
365 	b->bio = NULL;
366 	btree_complete_write(b, w);
367 
368 	if (btree_node_dirty(b))
369 		schedule_delayed_work(&b->work, 30 * HZ);
370 
371 	closure_return_with_destructor(cl, btree_node_write_unlock);
372 }
373 
374 static void btree_node_write_done(struct closure *cl)
375 {
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	bio_free_pages(b->bio);
379 	__btree_node_write_done(cl);
380 }
381 
382 static void btree_node_write_endio(struct bio *bio)
383 {
384 	struct closure *cl = bio->bi_private;
385 	struct btree *b = container_of(cl, struct btree, io);
386 
387 	if (bio->bi_status)
388 		set_btree_node_io_error(b);
389 
390 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 	closure_put(cl);
392 }
393 
394 static void do_btree_node_write(struct btree *b)
395 {
396 	struct closure *cl = &b->io;
397 	struct bset *i = btree_bset_last(b);
398 	BKEY_PADDED(key) k;
399 
400 	i->version	= BCACHE_BSET_VERSION;
401 	i->csum		= btree_csum_set(b, i);
402 
403 	BUG_ON(b->bio);
404 	b->bio = bch_bbio_alloc(b->c);
405 
406 	b->bio->bi_end_io	= btree_node_write_endio;
407 	b->bio->bi_private	= cl;
408 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
409 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
410 	bch_bio_map(b->bio, i);
411 
412 	/*
413 	 * If we're appending to a leaf node, we don't technically need FUA -
414 	 * this write just needs to be persisted before the next journal write,
415 	 * which will be marked FLUSH|FUA.
416 	 *
417 	 * Similarly if we're writing a new btree root - the pointer is going to
418 	 * be in the next journal entry.
419 	 *
420 	 * But if we're writing a new btree node (that isn't a root) or
421 	 * appending to a non leaf btree node, we need either FUA or a flush
422 	 * when we write the parent with the new pointer. FUA is cheaper than a
423 	 * flush, and writes appending to leaf nodes aren't blocking anything so
424 	 * just make all btree node writes FUA to keep things sane.
425 	 */
426 
427 	bkey_copy(&k.key, &b->key);
428 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 		       bset_sector_offset(&b->keys, i));
430 
431 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 		struct bio_vec *bv;
433 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
434 		struct bvec_iter_all iter_all;
435 
436 		bio_for_each_segment_all(bv, b->bio, iter_all) {
437 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
438 			addr += PAGE_SIZE;
439 		}
440 
441 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
442 
443 		continue_at(cl, btree_node_write_done, NULL);
444 	} else {
445 		/*
446 		 * No problem for multipage bvec since the bio is
447 		 * just allocated
448 		 */
449 		b->bio->bi_vcnt = 0;
450 		bch_bio_map(b->bio, i);
451 
452 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
453 
454 		closure_sync(cl);
455 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
456 	}
457 }
458 
459 void __bch_btree_node_write(struct btree *b, struct closure *parent)
460 {
461 	struct bset *i = btree_bset_last(b);
462 
463 	lockdep_assert_held(&b->write_lock);
464 
465 	trace_bcache_btree_write(b);
466 
467 	BUG_ON(current->bio_list);
468 	BUG_ON(b->written >= btree_blocks(b));
469 	BUG_ON(b->written && !i->keys);
470 	BUG_ON(btree_bset_first(b)->seq != i->seq);
471 	bch_check_keys(&b->keys, "writing");
472 
473 	cancel_delayed_work(&b->work);
474 
475 	/* If caller isn't waiting for write, parent refcount is cache set */
476 	down(&b->io_mutex);
477 	closure_init(&b->io, parent ?: &b->c->cl);
478 
479 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
480 	change_bit(BTREE_NODE_write_idx, &b->flags);
481 
482 	do_btree_node_write(b);
483 
484 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
485 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
486 
487 	b->written += set_blocks(i, block_bytes(b->c));
488 }
489 
490 void bch_btree_node_write(struct btree *b, struct closure *parent)
491 {
492 	unsigned int nsets = b->keys.nsets;
493 
494 	lockdep_assert_held(&b->lock);
495 
496 	__bch_btree_node_write(b, parent);
497 
498 	/*
499 	 * do verify if there was more than one set initially (i.e. we did a
500 	 * sort) and we sorted down to a single set:
501 	 */
502 	if (nsets && !b->keys.nsets)
503 		bch_btree_verify(b);
504 
505 	bch_btree_init_next(b);
506 }
507 
508 static void bch_btree_node_write_sync(struct btree *b)
509 {
510 	struct closure cl;
511 
512 	closure_init_stack(&cl);
513 
514 	mutex_lock(&b->write_lock);
515 	bch_btree_node_write(b, &cl);
516 	mutex_unlock(&b->write_lock);
517 
518 	closure_sync(&cl);
519 }
520 
521 static void btree_node_write_work(struct work_struct *w)
522 {
523 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
524 
525 	mutex_lock(&b->write_lock);
526 	if (btree_node_dirty(b))
527 		__bch_btree_node_write(b, NULL);
528 	mutex_unlock(&b->write_lock);
529 }
530 
531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
532 {
533 	struct bset *i = btree_bset_last(b);
534 	struct btree_write *w = btree_current_write(b);
535 
536 	lockdep_assert_held(&b->write_lock);
537 
538 	BUG_ON(!b->written);
539 	BUG_ON(!i->keys);
540 
541 	if (!btree_node_dirty(b))
542 		schedule_delayed_work(&b->work, 30 * HZ);
543 
544 	set_btree_node_dirty(b);
545 
546 	/*
547 	 * w->journal is always the oldest journal pin of all bkeys
548 	 * in the leaf node, to make sure the oldest jset seq won't
549 	 * be increased before this btree node is flushed.
550 	 */
551 	if (journal_ref) {
552 		if (w->journal &&
553 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
554 			atomic_dec_bug(w->journal);
555 			w->journal = NULL;
556 		}
557 
558 		if (!w->journal) {
559 			w->journal = journal_ref;
560 			atomic_inc(w->journal);
561 		}
562 	}
563 
564 	/* Force write if set is too big */
565 	if (set_bytes(i) > PAGE_SIZE - 48 &&
566 	    !current->bio_list)
567 		bch_btree_node_write(b, NULL);
568 }
569 
570 /*
571  * Btree in memory cache - allocation/freeing
572  * mca -> memory cache
573  */
574 
575 #define mca_reserve(c)	(((c->root && c->root->level)		\
576 			  ? c->root->level : 1) * 8 + 16)
577 #define mca_can_free(c)						\
578 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
579 
580 static void mca_data_free(struct btree *b)
581 {
582 	BUG_ON(b->io_mutex.count != 1);
583 
584 	bch_btree_keys_free(&b->keys);
585 
586 	b->c->btree_cache_used--;
587 	list_move(&b->list, &b->c->btree_cache_freed);
588 }
589 
590 static void mca_bucket_free(struct btree *b)
591 {
592 	BUG_ON(btree_node_dirty(b));
593 
594 	b->key.ptr[0] = 0;
595 	hlist_del_init_rcu(&b->hash);
596 	list_move(&b->list, &b->c->btree_cache_freeable);
597 }
598 
599 static unsigned int btree_order(struct bkey *k)
600 {
601 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
602 }
603 
604 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
605 {
606 	if (!bch_btree_keys_alloc(&b->keys,
607 				  max_t(unsigned int,
608 					ilog2(b->c->btree_pages),
609 					btree_order(k)),
610 				  gfp)) {
611 		b->c->btree_cache_used++;
612 		list_move(&b->list, &b->c->btree_cache);
613 	} else {
614 		list_move(&b->list, &b->c->btree_cache_freed);
615 	}
616 }
617 
618 static struct btree *mca_bucket_alloc(struct cache_set *c,
619 				      struct bkey *k, gfp_t gfp)
620 {
621 	/*
622 	 * kzalloc() is necessary here for initialization,
623 	 * see code comments in bch_btree_keys_init().
624 	 */
625 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
626 
627 	if (!b)
628 		return NULL;
629 
630 	init_rwsem(&b->lock);
631 	lockdep_set_novalidate_class(&b->lock);
632 	mutex_init(&b->write_lock);
633 	lockdep_set_novalidate_class(&b->write_lock);
634 	INIT_LIST_HEAD(&b->list);
635 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
636 	b->c = c;
637 	sema_init(&b->io_mutex, 1);
638 
639 	mca_data_alloc(b, k, gfp);
640 	return b;
641 }
642 
643 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
644 {
645 	struct closure cl;
646 
647 	closure_init_stack(&cl);
648 	lockdep_assert_held(&b->c->bucket_lock);
649 
650 	if (!down_write_trylock(&b->lock))
651 		return -ENOMEM;
652 
653 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
654 
655 	if (b->keys.page_order < min_order)
656 		goto out_unlock;
657 
658 	if (!flush) {
659 		if (btree_node_dirty(b))
660 			goto out_unlock;
661 
662 		if (down_trylock(&b->io_mutex))
663 			goto out_unlock;
664 		up(&b->io_mutex);
665 	}
666 
667 retry:
668 	/*
669 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
670 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
671 	 * b->write_lock before checking BTREE_NODE_dirty bit.
672 	 */
673 	mutex_lock(&b->write_lock);
674 	/*
675 	 * If this btree node is selected in btree_flush_write() by journal
676 	 * code, delay and retry until the node is flushed by journal code
677 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
678 	 */
679 	if (btree_node_journal_flush(b)) {
680 		pr_debug("bnode %p is flushing by journal, retry", b);
681 		mutex_unlock(&b->write_lock);
682 		udelay(1);
683 		goto retry;
684 	}
685 
686 	if (btree_node_dirty(b))
687 		__bch_btree_node_write(b, &cl);
688 	mutex_unlock(&b->write_lock);
689 
690 	closure_sync(&cl);
691 
692 	/* wait for any in flight btree write */
693 	down(&b->io_mutex);
694 	up(&b->io_mutex);
695 
696 	return 0;
697 out_unlock:
698 	rw_unlock(true, b);
699 	return -ENOMEM;
700 }
701 
702 static unsigned long bch_mca_scan(struct shrinker *shrink,
703 				  struct shrink_control *sc)
704 {
705 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
706 	struct btree *b, *t;
707 	unsigned long i, nr = sc->nr_to_scan;
708 	unsigned long freed = 0;
709 	unsigned int btree_cache_used;
710 
711 	if (c->shrinker_disabled)
712 		return SHRINK_STOP;
713 
714 	if (c->btree_cache_alloc_lock)
715 		return SHRINK_STOP;
716 
717 	/* Return -1 if we can't do anything right now */
718 	if (sc->gfp_mask & __GFP_IO)
719 		mutex_lock(&c->bucket_lock);
720 	else if (!mutex_trylock(&c->bucket_lock))
721 		return -1;
722 
723 	/*
724 	 * It's _really_ critical that we don't free too many btree nodes - we
725 	 * have to always leave ourselves a reserve. The reserve is how we
726 	 * guarantee that allocating memory for a new btree node can always
727 	 * succeed, so that inserting keys into the btree can always succeed and
728 	 * IO can always make forward progress:
729 	 */
730 	nr /= c->btree_pages;
731 	if (nr == 0)
732 		nr = 1;
733 	nr = min_t(unsigned long, nr, mca_can_free(c));
734 
735 	i = 0;
736 	btree_cache_used = c->btree_cache_used;
737 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
738 		if (nr <= 0)
739 			goto out;
740 
741 		if (++i > 3 &&
742 		    !mca_reap(b, 0, false)) {
743 			mca_data_free(b);
744 			rw_unlock(true, b);
745 			freed++;
746 		}
747 		nr--;
748 	}
749 
750 	for (;  (nr--) && i < btree_cache_used; i++) {
751 		if (list_empty(&c->btree_cache))
752 			goto out;
753 
754 		b = list_first_entry(&c->btree_cache, struct btree, list);
755 		list_rotate_left(&c->btree_cache);
756 
757 		if (!b->accessed &&
758 		    !mca_reap(b, 0, false)) {
759 			mca_bucket_free(b);
760 			mca_data_free(b);
761 			rw_unlock(true, b);
762 			freed++;
763 		} else
764 			b->accessed = 0;
765 	}
766 out:
767 	mutex_unlock(&c->bucket_lock);
768 	return freed * c->btree_pages;
769 }
770 
771 static unsigned long bch_mca_count(struct shrinker *shrink,
772 				   struct shrink_control *sc)
773 {
774 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
775 
776 	if (c->shrinker_disabled)
777 		return 0;
778 
779 	if (c->btree_cache_alloc_lock)
780 		return 0;
781 
782 	return mca_can_free(c) * c->btree_pages;
783 }
784 
785 void bch_btree_cache_free(struct cache_set *c)
786 {
787 	struct btree *b;
788 	struct closure cl;
789 
790 	closure_init_stack(&cl);
791 
792 	if (c->shrink.list.next)
793 		unregister_shrinker(&c->shrink);
794 
795 	mutex_lock(&c->bucket_lock);
796 
797 #ifdef CONFIG_BCACHE_DEBUG
798 	if (c->verify_data)
799 		list_move(&c->verify_data->list, &c->btree_cache);
800 
801 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
802 #endif
803 
804 	list_splice(&c->btree_cache_freeable,
805 		    &c->btree_cache);
806 
807 	while (!list_empty(&c->btree_cache)) {
808 		b = list_first_entry(&c->btree_cache, struct btree, list);
809 
810 		/*
811 		 * This function is called by cache_set_free(), no I/O
812 		 * request on cache now, it is unnecessary to acquire
813 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
814 		 */
815 		if (btree_node_dirty(b)) {
816 			btree_complete_write(b, btree_current_write(b));
817 			clear_bit(BTREE_NODE_dirty, &b->flags);
818 		}
819 		mca_data_free(b);
820 	}
821 
822 	while (!list_empty(&c->btree_cache_freed)) {
823 		b = list_first_entry(&c->btree_cache_freed,
824 				     struct btree, list);
825 		list_del(&b->list);
826 		cancel_delayed_work_sync(&b->work);
827 		kfree(b);
828 	}
829 
830 	mutex_unlock(&c->bucket_lock);
831 }
832 
833 int bch_btree_cache_alloc(struct cache_set *c)
834 {
835 	unsigned int i;
836 
837 	for (i = 0; i < mca_reserve(c); i++)
838 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
839 			return -ENOMEM;
840 
841 	list_splice_init(&c->btree_cache,
842 			 &c->btree_cache_freeable);
843 
844 #ifdef CONFIG_BCACHE_DEBUG
845 	mutex_init(&c->verify_lock);
846 
847 	c->verify_ondisk = (void *)
848 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
849 
850 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
851 
852 	if (c->verify_data &&
853 	    c->verify_data->keys.set->data)
854 		list_del_init(&c->verify_data->list);
855 	else
856 		c->verify_data = NULL;
857 #endif
858 
859 	c->shrink.count_objects = bch_mca_count;
860 	c->shrink.scan_objects = bch_mca_scan;
861 	c->shrink.seeks = 4;
862 	c->shrink.batch = c->btree_pages * 2;
863 
864 	if (register_shrinker(&c->shrink))
865 		pr_warn("bcache: %s: could not register shrinker",
866 				__func__);
867 
868 	return 0;
869 }
870 
871 /* Btree in memory cache - hash table */
872 
873 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
874 {
875 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
876 }
877 
878 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
879 {
880 	struct btree *b;
881 
882 	rcu_read_lock();
883 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
884 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
885 			goto out;
886 	b = NULL;
887 out:
888 	rcu_read_unlock();
889 	return b;
890 }
891 
892 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
893 {
894 	spin_lock(&c->btree_cannibalize_lock);
895 	if (likely(c->btree_cache_alloc_lock == NULL)) {
896 		c->btree_cache_alloc_lock = current;
897 	} else if (c->btree_cache_alloc_lock != current) {
898 		if (op)
899 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
900 					TASK_UNINTERRUPTIBLE);
901 		spin_unlock(&c->btree_cannibalize_lock);
902 		return -EINTR;
903 	}
904 	spin_unlock(&c->btree_cannibalize_lock);
905 
906 	return 0;
907 }
908 
909 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
910 				     struct bkey *k)
911 {
912 	struct btree *b;
913 
914 	trace_bcache_btree_cache_cannibalize(c);
915 
916 	if (mca_cannibalize_lock(c, op))
917 		return ERR_PTR(-EINTR);
918 
919 	list_for_each_entry_reverse(b, &c->btree_cache, list)
920 		if (!mca_reap(b, btree_order(k), false))
921 			return b;
922 
923 	list_for_each_entry_reverse(b, &c->btree_cache, list)
924 		if (!mca_reap(b, btree_order(k), true))
925 			return b;
926 
927 	WARN(1, "btree cache cannibalize failed\n");
928 	return ERR_PTR(-ENOMEM);
929 }
930 
931 /*
932  * We can only have one thread cannibalizing other cached btree nodes at a time,
933  * or we'll deadlock. We use an open coded mutex to ensure that, which a
934  * cannibalize_bucket() will take. This means every time we unlock the root of
935  * the btree, we need to release this lock if we have it held.
936  */
937 static void bch_cannibalize_unlock(struct cache_set *c)
938 {
939 	spin_lock(&c->btree_cannibalize_lock);
940 	if (c->btree_cache_alloc_lock == current) {
941 		c->btree_cache_alloc_lock = NULL;
942 		wake_up(&c->btree_cache_wait);
943 	}
944 	spin_unlock(&c->btree_cannibalize_lock);
945 }
946 
947 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
948 			       struct bkey *k, int level)
949 {
950 	struct btree *b;
951 
952 	BUG_ON(current->bio_list);
953 
954 	lockdep_assert_held(&c->bucket_lock);
955 
956 	if (mca_find(c, k))
957 		return NULL;
958 
959 	/* btree_free() doesn't free memory; it sticks the node on the end of
960 	 * the list. Check if there's any freed nodes there:
961 	 */
962 	list_for_each_entry(b, &c->btree_cache_freeable, list)
963 		if (!mca_reap(b, btree_order(k), false))
964 			goto out;
965 
966 	/* We never free struct btree itself, just the memory that holds the on
967 	 * disk node. Check the freed list before allocating a new one:
968 	 */
969 	list_for_each_entry(b, &c->btree_cache_freed, list)
970 		if (!mca_reap(b, 0, false)) {
971 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
972 			if (!b->keys.set[0].data)
973 				goto err;
974 			else
975 				goto out;
976 		}
977 
978 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
979 	if (!b)
980 		goto err;
981 
982 	BUG_ON(!down_write_trylock(&b->lock));
983 	if (!b->keys.set->data)
984 		goto err;
985 out:
986 	BUG_ON(b->io_mutex.count != 1);
987 
988 	bkey_copy(&b->key, k);
989 	list_move(&b->list, &c->btree_cache);
990 	hlist_del_init_rcu(&b->hash);
991 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
992 
993 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
994 	b->parent	= (void *) ~0UL;
995 	b->flags	= 0;
996 	b->written	= 0;
997 	b->level	= level;
998 
999 	if (!b->level)
1000 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
1001 				    &b->c->expensive_debug_checks);
1002 	else
1003 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
1004 				    &b->c->expensive_debug_checks);
1005 
1006 	return b;
1007 err:
1008 	if (b)
1009 		rw_unlock(true, b);
1010 
1011 	b = mca_cannibalize(c, op, k);
1012 	if (!IS_ERR(b))
1013 		goto out;
1014 
1015 	return b;
1016 }
1017 
1018 /*
1019  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1020  * in from disk if necessary.
1021  *
1022  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1023  *
1024  * The btree node will have either a read or a write lock held, depending on
1025  * level and op->lock.
1026  */
1027 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1028 				 struct bkey *k, int level, bool write,
1029 				 struct btree *parent)
1030 {
1031 	int i = 0;
1032 	struct btree *b;
1033 
1034 	BUG_ON(level < 0);
1035 retry:
1036 	b = mca_find(c, k);
1037 
1038 	if (!b) {
1039 		if (current->bio_list)
1040 			return ERR_PTR(-EAGAIN);
1041 
1042 		mutex_lock(&c->bucket_lock);
1043 		b = mca_alloc(c, op, k, level);
1044 		mutex_unlock(&c->bucket_lock);
1045 
1046 		if (!b)
1047 			goto retry;
1048 		if (IS_ERR(b))
1049 			return b;
1050 
1051 		bch_btree_node_read(b);
1052 
1053 		if (!write)
1054 			downgrade_write(&b->lock);
1055 	} else {
1056 		rw_lock(write, b, level);
1057 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1058 			rw_unlock(write, b);
1059 			goto retry;
1060 		}
1061 		BUG_ON(b->level != level);
1062 	}
1063 
1064 	if (btree_node_io_error(b)) {
1065 		rw_unlock(write, b);
1066 		return ERR_PTR(-EIO);
1067 	}
1068 
1069 	BUG_ON(!b->written);
1070 
1071 	b->parent = parent;
1072 	b->accessed = 1;
1073 
1074 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1075 		prefetch(b->keys.set[i].tree);
1076 		prefetch(b->keys.set[i].data);
1077 	}
1078 
1079 	for (; i <= b->keys.nsets; i++)
1080 		prefetch(b->keys.set[i].data);
1081 
1082 	return b;
1083 }
1084 
1085 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1086 {
1087 	struct btree *b;
1088 
1089 	mutex_lock(&parent->c->bucket_lock);
1090 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1091 	mutex_unlock(&parent->c->bucket_lock);
1092 
1093 	if (!IS_ERR_OR_NULL(b)) {
1094 		b->parent = parent;
1095 		bch_btree_node_read(b);
1096 		rw_unlock(true, b);
1097 	}
1098 }
1099 
1100 /* Btree alloc */
1101 
1102 static void btree_node_free(struct btree *b)
1103 {
1104 	trace_bcache_btree_node_free(b);
1105 
1106 	BUG_ON(b == b->c->root);
1107 
1108 retry:
1109 	mutex_lock(&b->write_lock);
1110 	/*
1111 	 * If the btree node is selected and flushing in btree_flush_write(),
1112 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1113 	 * then it is safe to free the btree node here. Otherwise this btree
1114 	 * node will be in race condition.
1115 	 */
1116 	if (btree_node_journal_flush(b)) {
1117 		mutex_unlock(&b->write_lock);
1118 		pr_debug("bnode %p journal_flush set, retry", b);
1119 		udelay(1);
1120 		goto retry;
1121 	}
1122 
1123 	if (btree_node_dirty(b)) {
1124 		btree_complete_write(b, btree_current_write(b));
1125 		clear_bit(BTREE_NODE_dirty, &b->flags);
1126 	}
1127 
1128 	mutex_unlock(&b->write_lock);
1129 
1130 	cancel_delayed_work(&b->work);
1131 
1132 	mutex_lock(&b->c->bucket_lock);
1133 	bch_bucket_free(b->c, &b->key);
1134 	mca_bucket_free(b);
1135 	mutex_unlock(&b->c->bucket_lock);
1136 }
1137 
1138 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1139 				     int level, bool wait,
1140 				     struct btree *parent)
1141 {
1142 	BKEY_PADDED(key) k;
1143 	struct btree *b = ERR_PTR(-EAGAIN);
1144 
1145 	mutex_lock(&c->bucket_lock);
1146 retry:
1147 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1148 		goto err;
1149 
1150 	bkey_put(c, &k.key);
1151 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1152 
1153 	b = mca_alloc(c, op, &k.key, level);
1154 	if (IS_ERR(b))
1155 		goto err_free;
1156 
1157 	if (!b) {
1158 		cache_bug(c,
1159 			"Tried to allocate bucket that was in btree cache");
1160 		goto retry;
1161 	}
1162 
1163 	b->accessed = 1;
1164 	b->parent = parent;
1165 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1166 
1167 	mutex_unlock(&c->bucket_lock);
1168 
1169 	trace_bcache_btree_node_alloc(b);
1170 	return b;
1171 err_free:
1172 	bch_bucket_free(c, &k.key);
1173 err:
1174 	mutex_unlock(&c->bucket_lock);
1175 
1176 	trace_bcache_btree_node_alloc_fail(c);
1177 	return b;
1178 }
1179 
1180 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1181 					  struct btree_op *op, int level,
1182 					  struct btree *parent)
1183 {
1184 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1185 }
1186 
1187 static struct btree *btree_node_alloc_replacement(struct btree *b,
1188 						  struct btree_op *op)
1189 {
1190 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1191 
1192 	if (!IS_ERR_OR_NULL(n)) {
1193 		mutex_lock(&n->write_lock);
1194 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1195 		bkey_copy_key(&n->key, &b->key);
1196 		mutex_unlock(&n->write_lock);
1197 	}
1198 
1199 	return n;
1200 }
1201 
1202 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1203 {
1204 	unsigned int i;
1205 
1206 	mutex_lock(&b->c->bucket_lock);
1207 
1208 	atomic_inc(&b->c->prio_blocked);
1209 
1210 	bkey_copy(k, &b->key);
1211 	bkey_copy_key(k, &ZERO_KEY);
1212 
1213 	for (i = 0; i < KEY_PTRS(k); i++)
1214 		SET_PTR_GEN(k, i,
1215 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1216 					PTR_BUCKET(b->c, &b->key, i)));
1217 
1218 	mutex_unlock(&b->c->bucket_lock);
1219 }
1220 
1221 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1222 {
1223 	struct cache_set *c = b->c;
1224 	struct cache *ca;
1225 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1226 
1227 	mutex_lock(&c->bucket_lock);
1228 
1229 	for_each_cache(ca, c, i)
1230 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1231 			if (op)
1232 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1233 						TASK_UNINTERRUPTIBLE);
1234 			mutex_unlock(&c->bucket_lock);
1235 			return -EINTR;
1236 		}
1237 
1238 	mutex_unlock(&c->bucket_lock);
1239 
1240 	return mca_cannibalize_lock(b->c, op);
1241 }
1242 
1243 /* Garbage collection */
1244 
1245 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1246 				    struct bkey *k)
1247 {
1248 	uint8_t stale = 0;
1249 	unsigned int i;
1250 	struct bucket *g;
1251 
1252 	/*
1253 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1254 	 * freed, but since ptr_bad() returns true we'll never actually use them
1255 	 * for anything and thus we don't want mark their pointers here
1256 	 */
1257 	if (!bkey_cmp(k, &ZERO_KEY))
1258 		return stale;
1259 
1260 	for (i = 0; i < KEY_PTRS(k); i++) {
1261 		if (!ptr_available(c, k, i))
1262 			continue;
1263 
1264 		g = PTR_BUCKET(c, k, i);
1265 
1266 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1267 			g->last_gc = PTR_GEN(k, i);
1268 
1269 		if (ptr_stale(c, k, i)) {
1270 			stale = max(stale, ptr_stale(c, k, i));
1271 			continue;
1272 		}
1273 
1274 		cache_bug_on(GC_MARK(g) &&
1275 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1276 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1277 			     GC_MARK(g), level);
1278 
1279 		if (level)
1280 			SET_GC_MARK(g, GC_MARK_METADATA);
1281 		else if (KEY_DIRTY(k))
1282 			SET_GC_MARK(g, GC_MARK_DIRTY);
1283 		else if (!GC_MARK(g))
1284 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1285 
1286 		/* guard against overflow */
1287 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1288 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1289 					     MAX_GC_SECTORS_USED));
1290 
1291 		BUG_ON(!GC_SECTORS_USED(g));
1292 	}
1293 
1294 	return stale;
1295 }
1296 
1297 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1298 
1299 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1300 {
1301 	unsigned int i;
1302 
1303 	for (i = 0; i < KEY_PTRS(k); i++)
1304 		if (ptr_available(c, k, i) &&
1305 		    !ptr_stale(c, k, i)) {
1306 			struct bucket *b = PTR_BUCKET(c, k, i);
1307 
1308 			b->gen = PTR_GEN(k, i);
1309 
1310 			if (level && bkey_cmp(k, &ZERO_KEY))
1311 				b->prio = BTREE_PRIO;
1312 			else if (!level && b->prio == BTREE_PRIO)
1313 				b->prio = INITIAL_PRIO;
1314 		}
1315 
1316 	__bch_btree_mark_key(c, level, k);
1317 }
1318 
1319 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1320 {
1321 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1322 }
1323 
1324 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1325 {
1326 	uint8_t stale = 0;
1327 	unsigned int keys = 0, good_keys = 0;
1328 	struct bkey *k;
1329 	struct btree_iter iter;
1330 	struct bset_tree *t;
1331 
1332 	gc->nodes++;
1333 
1334 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1335 		stale = max(stale, btree_mark_key(b, k));
1336 		keys++;
1337 
1338 		if (bch_ptr_bad(&b->keys, k))
1339 			continue;
1340 
1341 		gc->key_bytes += bkey_u64s(k);
1342 		gc->nkeys++;
1343 		good_keys++;
1344 
1345 		gc->data += KEY_SIZE(k);
1346 	}
1347 
1348 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1349 		btree_bug_on(t->size &&
1350 			     bset_written(&b->keys, t) &&
1351 			     bkey_cmp(&b->key, &t->end) < 0,
1352 			     b, "found short btree key in gc");
1353 
1354 	if (b->c->gc_always_rewrite)
1355 		return true;
1356 
1357 	if (stale > 10)
1358 		return true;
1359 
1360 	if ((keys - good_keys) * 2 > keys)
1361 		return true;
1362 
1363 	return false;
1364 }
1365 
1366 #define GC_MERGE_NODES	4U
1367 
1368 struct gc_merge_info {
1369 	struct btree	*b;
1370 	unsigned int	keys;
1371 };
1372 
1373 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1374 				 struct keylist *insert_keys,
1375 				 atomic_t *journal_ref,
1376 				 struct bkey *replace_key);
1377 
1378 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1379 			     struct gc_stat *gc, struct gc_merge_info *r)
1380 {
1381 	unsigned int i, nodes = 0, keys = 0, blocks;
1382 	struct btree *new_nodes[GC_MERGE_NODES];
1383 	struct keylist keylist;
1384 	struct closure cl;
1385 	struct bkey *k;
1386 
1387 	bch_keylist_init(&keylist);
1388 
1389 	if (btree_check_reserve(b, NULL))
1390 		return 0;
1391 
1392 	memset(new_nodes, 0, sizeof(new_nodes));
1393 	closure_init_stack(&cl);
1394 
1395 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1396 		keys += r[nodes++].keys;
1397 
1398 	blocks = btree_default_blocks(b->c) * 2 / 3;
1399 
1400 	if (nodes < 2 ||
1401 	    __set_blocks(b->keys.set[0].data, keys,
1402 			 block_bytes(b->c)) > blocks * (nodes - 1))
1403 		return 0;
1404 
1405 	for (i = 0; i < nodes; i++) {
1406 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1407 		if (IS_ERR_OR_NULL(new_nodes[i]))
1408 			goto out_nocoalesce;
1409 	}
1410 
1411 	/*
1412 	 * We have to check the reserve here, after we've allocated our new
1413 	 * nodes, to make sure the insert below will succeed - we also check
1414 	 * before as an optimization to potentially avoid a bunch of expensive
1415 	 * allocs/sorts
1416 	 */
1417 	if (btree_check_reserve(b, NULL))
1418 		goto out_nocoalesce;
1419 
1420 	for (i = 0; i < nodes; i++)
1421 		mutex_lock(&new_nodes[i]->write_lock);
1422 
1423 	for (i = nodes - 1; i > 0; --i) {
1424 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1425 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1426 		struct bkey *k, *last = NULL;
1427 
1428 		keys = 0;
1429 
1430 		if (i > 1) {
1431 			for (k = n2->start;
1432 			     k < bset_bkey_last(n2);
1433 			     k = bkey_next(k)) {
1434 				if (__set_blocks(n1, n1->keys + keys +
1435 						 bkey_u64s(k),
1436 						 block_bytes(b->c)) > blocks)
1437 					break;
1438 
1439 				last = k;
1440 				keys += bkey_u64s(k);
1441 			}
1442 		} else {
1443 			/*
1444 			 * Last node we're not getting rid of - we're getting
1445 			 * rid of the node at r[0]. Have to try and fit all of
1446 			 * the remaining keys into this node; we can't ensure
1447 			 * they will always fit due to rounding and variable
1448 			 * length keys (shouldn't be possible in practice,
1449 			 * though)
1450 			 */
1451 			if (__set_blocks(n1, n1->keys + n2->keys,
1452 					 block_bytes(b->c)) >
1453 			    btree_blocks(new_nodes[i]))
1454 				goto out_nocoalesce;
1455 
1456 			keys = n2->keys;
1457 			/* Take the key of the node we're getting rid of */
1458 			last = &r->b->key;
1459 		}
1460 
1461 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1462 		       btree_blocks(new_nodes[i]));
1463 
1464 		if (last)
1465 			bkey_copy_key(&new_nodes[i]->key, last);
1466 
1467 		memcpy(bset_bkey_last(n1),
1468 		       n2->start,
1469 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1470 
1471 		n1->keys += keys;
1472 		r[i].keys = n1->keys;
1473 
1474 		memmove(n2->start,
1475 			bset_bkey_idx(n2, keys),
1476 			(void *) bset_bkey_last(n2) -
1477 			(void *) bset_bkey_idx(n2, keys));
1478 
1479 		n2->keys -= keys;
1480 
1481 		if (__bch_keylist_realloc(&keylist,
1482 					  bkey_u64s(&new_nodes[i]->key)))
1483 			goto out_nocoalesce;
1484 
1485 		bch_btree_node_write(new_nodes[i], &cl);
1486 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1487 	}
1488 
1489 	for (i = 0; i < nodes; i++)
1490 		mutex_unlock(&new_nodes[i]->write_lock);
1491 
1492 	closure_sync(&cl);
1493 
1494 	/* We emptied out this node */
1495 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1496 	btree_node_free(new_nodes[0]);
1497 	rw_unlock(true, new_nodes[0]);
1498 	new_nodes[0] = NULL;
1499 
1500 	for (i = 0; i < nodes; i++) {
1501 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1502 			goto out_nocoalesce;
1503 
1504 		make_btree_freeing_key(r[i].b, keylist.top);
1505 		bch_keylist_push(&keylist);
1506 	}
1507 
1508 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1509 	BUG_ON(!bch_keylist_empty(&keylist));
1510 
1511 	for (i = 0; i < nodes; i++) {
1512 		btree_node_free(r[i].b);
1513 		rw_unlock(true, r[i].b);
1514 
1515 		r[i].b = new_nodes[i];
1516 	}
1517 
1518 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1519 	r[nodes - 1].b = ERR_PTR(-EINTR);
1520 
1521 	trace_bcache_btree_gc_coalesce(nodes);
1522 	gc->nodes--;
1523 
1524 	bch_keylist_free(&keylist);
1525 
1526 	/* Invalidated our iterator */
1527 	return -EINTR;
1528 
1529 out_nocoalesce:
1530 	closure_sync(&cl);
1531 
1532 	while ((k = bch_keylist_pop(&keylist)))
1533 		if (!bkey_cmp(k, &ZERO_KEY))
1534 			atomic_dec(&b->c->prio_blocked);
1535 	bch_keylist_free(&keylist);
1536 
1537 	for (i = 0; i < nodes; i++)
1538 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1539 			btree_node_free(new_nodes[i]);
1540 			rw_unlock(true, new_nodes[i]);
1541 		}
1542 	return 0;
1543 }
1544 
1545 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1546 				 struct btree *replace)
1547 {
1548 	struct keylist keys;
1549 	struct btree *n;
1550 
1551 	if (btree_check_reserve(b, NULL))
1552 		return 0;
1553 
1554 	n = btree_node_alloc_replacement(replace, NULL);
1555 
1556 	/* recheck reserve after allocating replacement node */
1557 	if (btree_check_reserve(b, NULL)) {
1558 		btree_node_free(n);
1559 		rw_unlock(true, n);
1560 		return 0;
1561 	}
1562 
1563 	bch_btree_node_write_sync(n);
1564 
1565 	bch_keylist_init(&keys);
1566 	bch_keylist_add(&keys, &n->key);
1567 
1568 	make_btree_freeing_key(replace, keys.top);
1569 	bch_keylist_push(&keys);
1570 
1571 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1572 	BUG_ON(!bch_keylist_empty(&keys));
1573 
1574 	btree_node_free(replace);
1575 	rw_unlock(true, n);
1576 
1577 	/* Invalidated our iterator */
1578 	return -EINTR;
1579 }
1580 
1581 static unsigned int btree_gc_count_keys(struct btree *b)
1582 {
1583 	struct bkey *k;
1584 	struct btree_iter iter;
1585 	unsigned int ret = 0;
1586 
1587 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1588 		ret += bkey_u64s(k);
1589 
1590 	return ret;
1591 }
1592 
1593 static size_t btree_gc_min_nodes(struct cache_set *c)
1594 {
1595 	size_t min_nodes;
1596 
1597 	/*
1598 	 * Since incremental GC would stop 100ms when front
1599 	 * side I/O comes, so when there are many btree nodes,
1600 	 * if GC only processes constant (100) nodes each time,
1601 	 * GC would last a long time, and the front side I/Os
1602 	 * would run out of the buckets (since no new bucket
1603 	 * can be allocated during GC), and be blocked again.
1604 	 * So GC should not process constant nodes, but varied
1605 	 * nodes according to the number of btree nodes, which
1606 	 * realized by dividing GC into constant(100) times,
1607 	 * so when there are many btree nodes, GC can process
1608 	 * more nodes each time, otherwise, GC will process less
1609 	 * nodes each time (but no less than MIN_GC_NODES)
1610 	 */
1611 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1612 	if (min_nodes < MIN_GC_NODES)
1613 		min_nodes = MIN_GC_NODES;
1614 
1615 	return min_nodes;
1616 }
1617 
1618 
1619 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1620 			    struct closure *writes, struct gc_stat *gc)
1621 {
1622 	int ret = 0;
1623 	bool should_rewrite;
1624 	struct bkey *k;
1625 	struct btree_iter iter;
1626 	struct gc_merge_info r[GC_MERGE_NODES];
1627 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1628 
1629 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1630 
1631 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1632 		i->b = ERR_PTR(-EINTR);
1633 
1634 	while (1) {
1635 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1636 		if (k) {
1637 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1638 						  true, b);
1639 			if (IS_ERR(r->b)) {
1640 				ret = PTR_ERR(r->b);
1641 				break;
1642 			}
1643 
1644 			r->keys = btree_gc_count_keys(r->b);
1645 
1646 			ret = btree_gc_coalesce(b, op, gc, r);
1647 			if (ret)
1648 				break;
1649 		}
1650 
1651 		if (!last->b)
1652 			break;
1653 
1654 		if (!IS_ERR(last->b)) {
1655 			should_rewrite = btree_gc_mark_node(last->b, gc);
1656 			if (should_rewrite) {
1657 				ret = btree_gc_rewrite_node(b, op, last->b);
1658 				if (ret)
1659 					break;
1660 			}
1661 
1662 			if (last->b->level) {
1663 				ret = btree_gc_recurse(last->b, op, writes, gc);
1664 				if (ret)
1665 					break;
1666 			}
1667 
1668 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1669 
1670 			/*
1671 			 * Must flush leaf nodes before gc ends, since replace
1672 			 * operations aren't journalled
1673 			 */
1674 			mutex_lock(&last->b->write_lock);
1675 			if (btree_node_dirty(last->b))
1676 				bch_btree_node_write(last->b, writes);
1677 			mutex_unlock(&last->b->write_lock);
1678 			rw_unlock(true, last->b);
1679 		}
1680 
1681 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1682 		r->b = NULL;
1683 
1684 		if (atomic_read(&b->c->search_inflight) &&
1685 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1686 			gc->nodes_pre =  gc->nodes;
1687 			ret = -EAGAIN;
1688 			break;
1689 		}
1690 
1691 		if (need_resched()) {
1692 			ret = -EAGAIN;
1693 			break;
1694 		}
1695 	}
1696 
1697 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1698 		if (!IS_ERR_OR_NULL(i->b)) {
1699 			mutex_lock(&i->b->write_lock);
1700 			if (btree_node_dirty(i->b))
1701 				bch_btree_node_write(i->b, writes);
1702 			mutex_unlock(&i->b->write_lock);
1703 			rw_unlock(true, i->b);
1704 		}
1705 
1706 	return ret;
1707 }
1708 
1709 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1710 			     struct closure *writes, struct gc_stat *gc)
1711 {
1712 	struct btree *n = NULL;
1713 	int ret = 0;
1714 	bool should_rewrite;
1715 
1716 	should_rewrite = btree_gc_mark_node(b, gc);
1717 	if (should_rewrite) {
1718 		n = btree_node_alloc_replacement(b, NULL);
1719 
1720 		if (!IS_ERR_OR_NULL(n)) {
1721 			bch_btree_node_write_sync(n);
1722 
1723 			bch_btree_set_root(n);
1724 			btree_node_free(b);
1725 			rw_unlock(true, n);
1726 
1727 			return -EINTR;
1728 		}
1729 	}
1730 
1731 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1732 
1733 	if (b->level) {
1734 		ret = btree_gc_recurse(b, op, writes, gc);
1735 		if (ret)
1736 			return ret;
1737 	}
1738 
1739 	bkey_copy_key(&b->c->gc_done, &b->key);
1740 
1741 	return ret;
1742 }
1743 
1744 static void btree_gc_start(struct cache_set *c)
1745 {
1746 	struct cache *ca;
1747 	struct bucket *b;
1748 	unsigned int i;
1749 
1750 	if (!c->gc_mark_valid)
1751 		return;
1752 
1753 	mutex_lock(&c->bucket_lock);
1754 
1755 	c->gc_mark_valid = 0;
1756 	c->gc_done = ZERO_KEY;
1757 
1758 	for_each_cache(ca, c, i)
1759 		for_each_bucket(b, ca) {
1760 			b->last_gc = b->gen;
1761 			if (!atomic_read(&b->pin)) {
1762 				SET_GC_MARK(b, 0);
1763 				SET_GC_SECTORS_USED(b, 0);
1764 			}
1765 		}
1766 
1767 	mutex_unlock(&c->bucket_lock);
1768 }
1769 
1770 static void bch_btree_gc_finish(struct cache_set *c)
1771 {
1772 	struct bucket *b;
1773 	struct cache *ca;
1774 	unsigned int i;
1775 
1776 	mutex_lock(&c->bucket_lock);
1777 
1778 	set_gc_sectors(c);
1779 	c->gc_mark_valid = 1;
1780 	c->need_gc	= 0;
1781 
1782 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1783 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1784 			    GC_MARK_METADATA);
1785 
1786 	/* don't reclaim buckets to which writeback keys point */
1787 	rcu_read_lock();
1788 	for (i = 0; i < c->devices_max_used; i++) {
1789 		struct bcache_device *d = c->devices[i];
1790 		struct cached_dev *dc;
1791 		struct keybuf_key *w, *n;
1792 		unsigned int j;
1793 
1794 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1795 			continue;
1796 		dc = container_of(d, struct cached_dev, disk);
1797 
1798 		spin_lock(&dc->writeback_keys.lock);
1799 		rbtree_postorder_for_each_entry_safe(w, n,
1800 					&dc->writeback_keys.keys, node)
1801 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1802 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1803 					    GC_MARK_DIRTY);
1804 		spin_unlock(&dc->writeback_keys.lock);
1805 	}
1806 	rcu_read_unlock();
1807 
1808 	c->avail_nbuckets = 0;
1809 	for_each_cache(ca, c, i) {
1810 		uint64_t *i;
1811 
1812 		ca->invalidate_needs_gc = 0;
1813 
1814 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1815 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1816 
1817 		for (i = ca->prio_buckets;
1818 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1819 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1820 
1821 		for_each_bucket(b, ca) {
1822 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1823 
1824 			if (atomic_read(&b->pin))
1825 				continue;
1826 
1827 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1828 
1829 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1830 				c->avail_nbuckets++;
1831 		}
1832 	}
1833 
1834 	mutex_unlock(&c->bucket_lock);
1835 }
1836 
1837 static void bch_btree_gc(struct cache_set *c)
1838 {
1839 	int ret;
1840 	struct gc_stat stats;
1841 	struct closure writes;
1842 	struct btree_op op;
1843 	uint64_t start_time = local_clock();
1844 
1845 	trace_bcache_gc_start(c);
1846 
1847 	memset(&stats, 0, sizeof(struct gc_stat));
1848 	closure_init_stack(&writes);
1849 	bch_btree_op_init(&op, SHRT_MAX);
1850 
1851 	btree_gc_start(c);
1852 
1853 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1854 	do {
1855 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1856 		closure_sync(&writes);
1857 		cond_resched();
1858 
1859 		if (ret == -EAGAIN)
1860 			schedule_timeout_interruptible(msecs_to_jiffies
1861 						       (GC_SLEEP_MS));
1862 		else if (ret)
1863 			pr_warn("gc failed!");
1864 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1865 
1866 	bch_btree_gc_finish(c);
1867 	wake_up_allocators(c);
1868 
1869 	bch_time_stats_update(&c->btree_gc_time, start_time);
1870 
1871 	stats.key_bytes *= sizeof(uint64_t);
1872 	stats.data	<<= 9;
1873 	bch_update_bucket_in_use(c, &stats);
1874 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1875 
1876 	trace_bcache_gc_end(c);
1877 
1878 	bch_moving_gc(c);
1879 }
1880 
1881 static bool gc_should_run(struct cache_set *c)
1882 {
1883 	struct cache *ca;
1884 	unsigned int i;
1885 
1886 	for_each_cache(ca, c, i)
1887 		if (ca->invalidate_needs_gc)
1888 			return true;
1889 
1890 	if (atomic_read(&c->sectors_to_gc) < 0)
1891 		return true;
1892 
1893 	return false;
1894 }
1895 
1896 static int bch_gc_thread(void *arg)
1897 {
1898 	struct cache_set *c = arg;
1899 
1900 	while (1) {
1901 		wait_event_interruptible(c->gc_wait,
1902 			   kthread_should_stop() ||
1903 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1904 			   gc_should_run(c));
1905 
1906 		if (kthread_should_stop() ||
1907 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1908 			break;
1909 
1910 		set_gc_sectors(c);
1911 		bch_btree_gc(c);
1912 	}
1913 
1914 	wait_for_kthread_stop();
1915 	return 0;
1916 }
1917 
1918 int bch_gc_thread_start(struct cache_set *c)
1919 {
1920 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1921 	return PTR_ERR_OR_ZERO(c->gc_thread);
1922 }
1923 
1924 /* Initial partial gc */
1925 
1926 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1927 {
1928 	int ret = 0;
1929 	struct bkey *k, *p = NULL;
1930 	struct btree_iter iter;
1931 
1932 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1933 		bch_initial_mark_key(b->c, b->level, k);
1934 
1935 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1936 
1937 	if (b->level) {
1938 		bch_btree_iter_init(&b->keys, &iter, NULL);
1939 
1940 		do {
1941 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1942 						       bch_ptr_bad);
1943 			if (k) {
1944 				btree_node_prefetch(b, k);
1945 				/*
1946 				 * initiallize c->gc_stats.nodes
1947 				 * for incremental GC
1948 				 */
1949 				b->c->gc_stats.nodes++;
1950 			}
1951 
1952 			if (p)
1953 				ret = btree(check_recurse, p, b, op);
1954 
1955 			p = k;
1956 		} while (p && !ret);
1957 	}
1958 
1959 	return ret;
1960 }
1961 
1962 int bch_btree_check(struct cache_set *c)
1963 {
1964 	struct btree_op op;
1965 
1966 	bch_btree_op_init(&op, SHRT_MAX);
1967 
1968 	return btree_root(check_recurse, c, &op);
1969 }
1970 
1971 void bch_initial_gc_finish(struct cache_set *c)
1972 {
1973 	struct cache *ca;
1974 	struct bucket *b;
1975 	unsigned int i;
1976 
1977 	bch_btree_gc_finish(c);
1978 
1979 	mutex_lock(&c->bucket_lock);
1980 
1981 	/*
1982 	 * We need to put some unused buckets directly on the prio freelist in
1983 	 * order to get the allocator thread started - it needs freed buckets in
1984 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1985 	 * and gens in order to free buckets.
1986 	 *
1987 	 * This is only safe for buckets that have no live data in them, which
1988 	 * there should always be some of.
1989 	 */
1990 	for_each_cache(ca, c, i) {
1991 		for_each_bucket(b, ca) {
1992 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1993 			    fifo_full(&ca->free[RESERVE_BTREE]))
1994 				break;
1995 
1996 			if (bch_can_invalidate_bucket(ca, b) &&
1997 			    !GC_MARK(b)) {
1998 				__bch_invalidate_one_bucket(ca, b);
1999 				if (!fifo_push(&ca->free[RESERVE_PRIO],
2000 				   b - ca->buckets))
2001 					fifo_push(&ca->free[RESERVE_BTREE],
2002 						  b - ca->buckets);
2003 			}
2004 		}
2005 	}
2006 
2007 	mutex_unlock(&c->bucket_lock);
2008 }
2009 
2010 /* Btree insertion */
2011 
2012 static bool btree_insert_key(struct btree *b, struct bkey *k,
2013 			     struct bkey *replace_key)
2014 {
2015 	unsigned int status;
2016 
2017 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2018 
2019 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2020 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2021 		bch_check_keys(&b->keys, "%u for %s", status,
2022 			       replace_key ? "replace" : "insert");
2023 
2024 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2025 					      status);
2026 		return true;
2027 	} else
2028 		return false;
2029 }
2030 
2031 static size_t insert_u64s_remaining(struct btree *b)
2032 {
2033 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2034 
2035 	/*
2036 	 * Might land in the middle of an existing extent and have to split it
2037 	 */
2038 	if (b->keys.ops->is_extents)
2039 		ret -= KEY_MAX_U64S;
2040 
2041 	return max(ret, 0L);
2042 }
2043 
2044 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2045 				  struct keylist *insert_keys,
2046 				  struct bkey *replace_key)
2047 {
2048 	bool ret = false;
2049 	int oldsize = bch_count_data(&b->keys);
2050 
2051 	while (!bch_keylist_empty(insert_keys)) {
2052 		struct bkey *k = insert_keys->keys;
2053 
2054 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2055 			break;
2056 
2057 		if (bkey_cmp(k, &b->key) <= 0) {
2058 			if (!b->level)
2059 				bkey_put(b->c, k);
2060 
2061 			ret |= btree_insert_key(b, k, replace_key);
2062 			bch_keylist_pop_front(insert_keys);
2063 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2064 			BKEY_PADDED(key) temp;
2065 			bkey_copy(&temp.key, insert_keys->keys);
2066 
2067 			bch_cut_back(&b->key, &temp.key);
2068 			bch_cut_front(&b->key, insert_keys->keys);
2069 
2070 			ret |= btree_insert_key(b, &temp.key, replace_key);
2071 			break;
2072 		} else {
2073 			break;
2074 		}
2075 	}
2076 
2077 	if (!ret)
2078 		op->insert_collision = true;
2079 
2080 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2081 
2082 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2083 	return ret;
2084 }
2085 
2086 static int btree_split(struct btree *b, struct btree_op *op,
2087 		       struct keylist *insert_keys,
2088 		       struct bkey *replace_key)
2089 {
2090 	bool split;
2091 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2092 	uint64_t start_time = local_clock();
2093 	struct closure cl;
2094 	struct keylist parent_keys;
2095 
2096 	closure_init_stack(&cl);
2097 	bch_keylist_init(&parent_keys);
2098 
2099 	if (btree_check_reserve(b, op)) {
2100 		if (!b->level)
2101 			return -EINTR;
2102 		else
2103 			WARN(1, "insufficient reserve for split\n");
2104 	}
2105 
2106 	n1 = btree_node_alloc_replacement(b, op);
2107 	if (IS_ERR(n1))
2108 		goto err;
2109 
2110 	split = set_blocks(btree_bset_first(n1),
2111 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2112 
2113 	if (split) {
2114 		unsigned int keys = 0;
2115 
2116 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2117 
2118 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2119 		if (IS_ERR(n2))
2120 			goto err_free1;
2121 
2122 		if (!b->parent) {
2123 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2124 			if (IS_ERR(n3))
2125 				goto err_free2;
2126 		}
2127 
2128 		mutex_lock(&n1->write_lock);
2129 		mutex_lock(&n2->write_lock);
2130 
2131 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2132 
2133 		/*
2134 		 * Has to be a linear search because we don't have an auxiliary
2135 		 * search tree yet
2136 		 */
2137 
2138 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2139 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2140 							keys));
2141 
2142 		bkey_copy_key(&n1->key,
2143 			      bset_bkey_idx(btree_bset_first(n1), keys));
2144 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2145 
2146 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2147 		btree_bset_first(n1)->keys = keys;
2148 
2149 		memcpy(btree_bset_first(n2)->start,
2150 		       bset_bkey_last(btree_bset_first(n1)),
2151 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2152 
2153 		bkey_copy_key(&n2->key, &b->key);
2154 
2155 		bch_keylist_add(&parent_keys, &n2->key);
2156 		bch_btree_node_write(n2, &cl);
2157 		mutex_unlock(&n2->write_lock);
2158 		rw_unlock(true, n2);
2159 	} else {
2160 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2161 
2162 		mutex_lock(&n1->write_lock);
2163 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2164 	}
2165 
2166 	bch_keylist_add(&parent_keys, &n1->key);
2167 	bch_btree_node_write(n1, &cl);
2168 	mutex_unlock(&n1->write_lock);
2169 
2170 	if (n3) {
2171 		/* Depth increases, make a new root */
2172 		mutex_lock(&n3->write_lock);
2173 		bkey_copy_key(&n3->key, &MAX_KEY);
2174 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2175 		bch_btree_node_write(n3, &cl);
2176 		mutex_unlock(&n3->write_lock);
2177 
2178 		closure_sync(&cl);
2179 		bch_btree_set_root(n3);
2180 		rw_unlock(true, n3);
2181 	} else if (!b->parent) {
2182 		/* Root filled up but didn't need to be split */
2183 		closure_sync(&cl);
2184 		bch_btree_set_root(n1);
2185 	} else {
2186 		/* Split a non root node */
2187 		closure_sync(&cl);
2188 		make_btree_freeing_key(b, parent_keys.top);
2189 		bch_keylist_push(&parent_keys);
2190 
2191 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2192 		BUG_ON(!bch_keylist_empty(&parent_keys));
2193 	}
2194 
2195 	btree_node_free(b);
2196 	rw_unlock(true, n1);
2197 
2198 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2199 
2200 	return 0;
2201 err_free2:
2202 	bkey_put(b->c, &n2->key);
2203 	btree_node_free(n2);
2204 	rw_unlock(true, n2);
2205 err_free1:
2206 	bkey_put(b->c, &n1->key);
2207 	btree_node_free(n1);
2208 	rw_unlock(true, n1);
2209 err:
2210 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2211 
2212 	if (n3 == ERR_PTR(-EAGAIN) ||
2213 	    n2 == ERR_PTR(-EAGAIN) ||
2214 	    n1 == ERR_PTR(-EAGAIN))
2215 		return -EAGAIN;
2216 
2217 	return -ENOMEM;
2218 }
2219 
2220 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2221 				 struct keylist *insert_keys,
2222 				 atomic_t *journal_ref,
2223 				 struct bkey *replace_key)
2224 {
2225 	struct closure cl;
2226 
2227 	BUG_ON(b->level && replace_key);
2228 
2229 	closure_init_stack(&cl);
2230 
2231 	mutex_lock(&b->write_lock);
2232 
2233 	if (write_block(b) != btree_bset_last(b) &&
2234 	    b->keys.last_set_unwritten)
2235 		bch_btree_init_next(b); /* just wrote a set */
2236 
2237 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2238 		mutex_unlock(&b->write_lock);
2239 		goto split;
2240 	}
2241 
2242 	BUG_ON(write_block(b) != btree_bset_last(b));
2243 
2244 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2245 		if (!b->level)
2246 			bch_btree_leaf_dirty(b, journal_ref);
2247 		else
2248 			bch_btree_node_write(b, &cl);
2249 	}
2250 
2251 	mutex_unlock(&b->write_lock);
2252 
2253 	/* wait for btree node write if necessary, after unlock */
2254 	closure_sync(&cl);
2255 
2256 	return 0;
2257 split:
2258 	if (current->bio_list) {
2259 		op->lock = b->c->root->level + 1;
2260 		return -EAGAIN;
2261 	} else if (op->lock <= b->c->root->level) {
2262 		op->lock = b->c->root->level + 1;
2263 		return -EINTR;
2264 	} else {
2265 		/* Invalidated all iterators */
2266 		int ret = btree_split(b, op, insert_keys, replace_key);
2267 
2268 		if (bch_keylist_empty(insert_keys))
2269 			return 0;
2270 		else if (!ret)
2271 			return -EINTR;
2272 		return ret;
2273 	}
2274 }
2275 
2276 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2277 			       struct bkey *check_key)
2278 {
2279 	int ret = -EINTR;
2280 	uint64_t btree_ptr = b->key.ptr[0];
2281 	unsigned long seq = b->seq;
2282 	struct keylist insert;
2283 	bool upgrade = op->lock == -1;
2284 
2285 	bch_keylist_init(&insert);
2286 
2287 	if (upgrade) {
2288 		rw_unlock(false, b);
2289 		rw_lock(true, b, b->level);
2290 
2291 		if (b->key.ptr[0] != btree_ptr ||
2292 		    b->seq != seq + 1) {
2293 			op->lock = b->level;
2294 			goto out;
2295 		}
2296 	}
2297 
2298 	SET_KEY_PTRS(check_key, 1);
2299 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2300 
2301 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2302 
2303 	bch_keylist_add(&insert, check_key);
2304 
2305 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2306 
2307 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2308 out:
2309 	if (upgrade)
2310 		downgrade_write(&b->lock);
2311 	return ret;
2312 }
2313 
2314 struct btree_insert_op {
2315 	struct btree_op	op;
2316 	struct keylist	*keys;
2317 	atomic_t	*journal_ref;
2318 	struct bkey	*replace_key;
2319 };
2320 
2321 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2322 {
2323 	struct btree_insert_op *op = container_of(b_op,
2324 					struct btree_insert_op, op);
2325 
2326 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2327 					op->journal_ref, op->replace_key);
2328 	if (ret && !bch_keylist_empty(op->keys))
2329 		return ret;
2330 	else
2331 		return MAP_DONE;
2332 }
2333 
2334 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2335 		     atomic_t *journal_ref, struct bkey *replace_key)
2336 {
2337 	struct btree_insert_op op;
2338 	int ret = 0;
2339 
2340 	BUG_ON(current->bio_list);
2341 	BUG_ON(bch_keylist_empty(keys));
2342 
2343 	bch_btree_op_init(&op.op, 0);
2344 	op.keys		= keys;
2345 	op.journal_ref	= journal_ref;
2346 	op.replace_key	= replace_key;
2347 
2348 	while (!ret && !bch_keylist_empty(keys)) {
2349 		op.op.lock = 0;
2350 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2351 					       &START_KEY(keys->keys),
2352 					       btree_insert_fn);
2353 	}
2354 
2355 	if (ret) {
2356 		struct bkey *k;
2357 
2358 		pr_err("error %i", ret);
2359 
2360 		while ((k = bch_keylist_pop(keys)))
2361 			bkey_put(c, k);
2362 	} else if (op.op.insert_collision)
2363 		ret = -ESRCH;
2364 
2365 	return ret;
2366 }
2367 
2368 void bch_btree_set_root(struct btree *b)
2369 {
2370 	unsigned int i;
2371 	struct closure cl;
2372 
2373 	closure_init_stack(&cl);
2374 
2375 	trace_bcache_btree_set_root(b);
2376 
2377 	BUG_ON(!b->written);
2378 
2379 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2380 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2381 
2382 	mutex_lock(&b->c->bucket_lock);
2383 	list_del_init(&b->list);
2384 	mutex_unlock(&b->c->bucket_lock);
2385 
2386 	b->c->root = b;
2387 
2388 	bch_journal_meta(b->c, &cl);
2389 	closure_sync(&cl);
2390 }
2391 
2392 /* Map across nodes or keys */
2393 
2394 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2395 				       struct bkey *from,
2396 				       btree_map_nodes_fn *fn, int flags)
2397 {
2398 	int ret = MAP_CONTINUE;
2399 
2400 	if (b->level) {
2401 		struct bkey *k;
2402 		struct btree_iter iter;
2403 
2404 		bch_btree_iter_init(&b->keys, &iter, from);
2405 
2406 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2407 						       bch_ptr_bad))) {
2408 			ret = btree(map_nodes_recurse, k, b,
2409 				    op, from, fn, flags);
2410 			from = NULL;
2411 
2412 			if (ret != MAP_CONTINUE)
2413 				return ret;
2414 		}
2415 	}
2416 
2417 	if (!b->level || flags == MAP_ALL_NODES)
2418 		ret = fn(op, b);
2419 
2420 	return ret;
2421 }
2422 
2423 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2424 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2425 {
2426 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2427 }
2428 
2429 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2430 				      struct bkey *from, btree_map_keys_fn *fn,
2431 				      int flags)
2432 {
2433 	int ret = MAP_CONTINUE;
2434 	struct bkey *k;
2435 	struct btree_iter iter;
2436 
2437 	bch_btree_iter_init(&b->keys, &iter, from);
2438 
2439 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2440 		ret = !b->level
2441 			? fn(op, b, k)
2442 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2443 		from = NULL;
2444 
2445 		if (ret != MAP_CONTINUE)
2446 			return ret;
2447 	}
2448 
2449 	if (!b->level && (flags & MAP_END_KEY))
2450 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2451 				     KEY_OFFSET(&b->key), 0));
2452 
2453 	return ret;
2454 }
2455 
2456 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2457 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2458 {
2459 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2460 }
2461 
2462 /* Keybuf code */
2463 
2464 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2465 {
2466 	/* Overlapping keys compare equal */
2467 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2468 		return -1;
2469 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2470 		return 1;
2471 	return 0;
2472 }
2473 
2474 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2475 					    struct keybuf_key *r)
2476 {
2477 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2478 }
2479 
2480 struct refill {
2481 	struct btree_op	op;
2482 	unsigned int	nr_found;
2483 	struct keybuf	*buf;
2484 	struct bkey	*end;
2485 	keybuf_pred_fn	*pred;
2486 };
2487 
2488 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2489 			    struct bkey *k)
2490 {
2491 	struct refill *refill = container_of(op, struct refill, op);
2492 	struct keybuf *buf = refill->buf;
2493 	int ret = MAP_CONTINUE;
2494 
2495 	if (bkey_cmp(k, refill->end) > 0) {
2496 		ret = MAP_DONE;
2497 		goto out;
2498 	}
2499 
2500 	if (!KEY_SIZE(k)) /* end key */
2501 		goto out;
2502 
2503 	if (refill->pred(buf, k)) {
2504 		struct keybuf_key *w;
2505 
2506 		spin_lock(&buf->lock);
2507 
2508 		w = array_alloc(&buf->freelist);
2509 		if (!w) {
2510 			spin_unlock(&buf->lock);
2511 			return MAP_DONE;
2512 		}
2513 
2514 		w->private = NULL;
2515 		bkey_copy(&w->key, k);
2516 
2517 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2518 			array_free(&buf->freelist, w);
2519 		else
2520 			refill->nr_found++;
2521 
2522 		if (array_freelist_empty(&buf->freelist))
2523 			ret = MAP_DONE;
2524 
2525 		spin_unlock(&buf->lock);
2526 	}
2527 out:
2528 	buf->last_scanned = *k;
2529 	return ret;
2530 }
2531 
2532 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2533 		       struct bkey *end, keybuf_pred_fn *pred)
2534 {
2535 	struct bkey start = buf->last_scanned;
2536 	struct refill refill;
2537 
2538 	cond_resched();
2539 
2540 	bch_btree_op_init(&refill.op, -1);
2541 	refill.nr_found	= 0;
2542 	refill.buf	= buf;
2543 	refill.end	= end;
2544 	refill.pred	= pred;
2545 
2546 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2547 			   refill_keybuf_fn, MAP_END_KEY);
2548 
2549 	trace_bcache_keyscan(refill.nr_found,
2550 			     KEY_INODE(&start), KEY_OFFSET(&start),
2551 			     KEY_INODE(&buf->last_scanned),
2552 			     KEY_OFFSET(&buf->last_scanned));
2553 
2554 	spin_lock(&buf->lock);
2555 
2556 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2557 		struct keybuf_key *w;
2558 
2559 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2560 		buf->start	= START_KEY(&w->key);
2561 
2562 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2563 		buf->end	= w->key;
2564 	} else {
2565 		buf->start	= MAX_KEY;
2566 		buf->end	= MAX_KEY;
2567 	}
2568 
2569 	spin_unlock(&buf->lock);
2570 }
2571 
2572 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2573 {
2574 	rb_erase(&w->node, &buf->keys);
2575 	array_free(&buf->freelist, w);
2576 }
2577 
2578 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2579 {
2580 	spin_lock(&buf->lock);
2581 	__bch_keybuf_del(buf, w);
2582 	spin_unlock(&buf->lock);
2583 }
2584 
2585 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2586 				  struct bkey *end)
2587 {
2588 	bool ret = false;
2589 	struct keybuf_key *p, *w, s;
2590 
2591 	s.key = *start;
2592 
2593 	if (bkey_cmp(end, &buf->start) <= 0 ||
2594 	    bkey_cmp(start, &buf->end) >= 0)
2595 		return false;
2596 
2597 	spin_lock(&buf->lock);
2598 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2599 
2600 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2601 		p = w;
2602 		w = RB_NEXT(w, node);
2603 
2604 		if (p->private)
2605 			ret = true;
2606 		else
2607 			__bch_keybuf_del(buf, p);
2608 	}
2609 
2610 	spin_unlock(&buf->lock);
2611 	return ret;
2612 }
2613 
2614 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2615 {
2616 	struct keybuf_key *w;
2617 
2618 	spin_lock(&buf->lock);
2619 
2620 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2621 
2622 	while (w && w->private)
2623 		w = RB_NEXT(w, node);
2624 
2625 	if (w)
2626 		w->private = ERR_PTR(-EINTR);
2627 
2628 	spin_unlock(&buf->lock);
2629 	return w;
2630 }
2631 
2632 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2633 					  struct keybuf *buf,
2634 					  struct bkey *end,
2635 					  keybuf_pred_fn *pred)
2636 {
2637 	struct keybuf_key *ret;
2638 
2639 	while (1) {
2640 		ret = bch_keybuf_next(buf);
2641 		if (ret)
2642 			break;
2643 
2644 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2645 			pr_debug("scan finished");
2646 			break;
2647 		}
2648 
2649 		bch_refill_keybuf(c, buf, end, pred);
2650 	}
2651 
2652 	return ret;
2653 }
2654 
2655 void bch_keybuf_init(struct keybuf *buf)
2656 {
2657 	buf->last_scanned	= MAX_KEY;
2658 	buf->keys		= RB_ROOT;
2659 
2660 	spin_lock_init(&buf->lock);
2661 	array_allocator_init(&buf->freelist);
2662 }
2663