xref: /linux/drivers/md/dm-cache-target.c (revision 52338415)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&iot->lock, flags);
80 	r = __iot_idle_for(iot, jifs);
81 	spin_unlock_irqrestore(&iot->lock, flags);
82 
83 	return r;
84 }
85 
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&iot->lock, flags);
91 	iot->in_flight += len;
92 	spin_unlock_irqrestore(&iot->lock, flags);
93 }
94 
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 	if (!len)
98 		return;
99 
100 	iot->in_flight -= len;
101 	if (!iot->in_flight)
102 		iot->idle_time = jiffies;
103 }
104 
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&iot->lock, flags);
110 	__iot_io_end(iot, len);
111 	spin_unlock_irqrestore(&iot->lock, flags);
112 }
113 
114 /*----------------------------------------------------------------*/
115 
116 /*
117  * Represents a chunk of future work.  'input' allows continuations to pass
118  * values between themselves, typically error values.
119  */
120 struct continuation {
121 	struct work_struct ws;
122 	blk_status_t input;
123 };
124 
125 static inline void init_continuation(struct continuation *k,
126 				     void (*fn)(struct work_struct *))
127 {
128 	INIT_WORK(&k->ws, fn);
129 	k->input = 0;
130 }
131 
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 				      struct continuation *k)
134 {
135 	queue_work(wq, &k->ws);
136 }
137 
138 /*----------------------------------------------------------------*/
139 
140 /*
141  * The batcher collects together pieces of work that need a particular
142  * operation to occur before they can proceed (typically a commit).
143  */
144 struct batcher {
145 	/*
146 	 * The operation that everyone is waiting for.
147 	 */
148 	blk_status_t (*commit_op)(void *context);
149 	void *commit_context;
150 
151 	/*
152 	 * This is how bios should be issued once the commit op is complete
153 	 * (accounted_request).
154 	 */
155 	void (*issue_op)(struct bio *bio, void *context);
156 	void *issue_context;
157 
158 	/*
159 	 * Queued work gets put on here after commit.
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	spinlock_t lock;
164 	struct list_head work_items;
165 	struct bio_list bios;
166 	struct work_struct commit_work;
167 
168 	bool commit_scheduled;
169 };
170 
171 static void __commit(struct work_struct *_ws)
172 {
173 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 	blk_status_t r;
175 	unsigned long flags;
176 	struct list_head work_items;
177 	struct work_struct *ws, *tmp;
178 	struct continuation *k;
179 	struct bio *bio;
180 	struct bio_list bios;
181 
182 	INIT_LIST_HEAD(&work_items);
183 	bio_list_init(&bios);
184 
185 	/*
186 	 * We have to grab these before the commit_op to avoid a race
187 	 * condition.
188 	 */
189 	spin_lock_irqsave(&b->lock, flags);
190 	list_splice_init(&b->work_items, &work_items);
191 	bio_list_merge(&bios, &b->bios);
192 	bio_list_init(&b->bios);
193 	b->commit_scheduled = false;
194 	spin_unlock_irqrestore(&b->lock, flags);
195 
196 	r = b->commit_op(b->commit_context);
197 
198 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 		k = container_of(ws, struct continuation, ws);
200 		k->input = r;
201 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 		queue_work(b->wq, ws);
203 	}
204 
205 	while ((bio = bio_list_pop(&bios))) {
206 		if (r) {
207 			bio->bi_status = r;
208 			bio_endio(bio);
209 		} else
210 			b->issue_op(bio, b->issue_context);
211 	}
212 }
213 
214 static void batcher_init(struct batcher *b,
215 			 blk_status_t (*commit_op)(void *),
216 			 void *commit_context,
217 			 void (*issue_op)(struct bio *bio, void *),
218 			 void *issue_context,
219 			 struct workqueue_struct *wq)
220 {
221 	b->commit_op = commit_op;
222 	b->commit_context = commit_context;
223 	b->issue_op = issue_op;
224 	b->issue_context = issue_context;
225 	b->wq = wq;
226 
227 	spin_lock_init(&b->lock);
228 	INIT_LIST_HEAD(&b->work_items);
229 	bio_list_init(&b->bios);
230 	INIT_WORK(&b->commit_work, __commit);
231 	b->commit_scheduled = false;
232 }
233 
234 static void async_commit(struct batcher *b)
235 {
236 	queue_work(b->wq, &b->commit_work);
237 }
238 
239 static void continue_after_commit(struct batcher *b, struct continuation *k)
240 {
241 	unsigned long flags;
242 	bool commit_scheduled;
243 
244 	spin_lock_irqsave(&b->lock, flags);
245 	commit_scheduled = b->commit_scheduled;
246 	list_add_tail(&k->ws.entry, &b->work_items);
247 	spin_unlock_irqrestore(&b->lock, flags);
248 
249 	if (commit_scheduled)
250 		async_commit(b);
251 }
252 
253 /*
254  * Bios are errored if commit failed.
255  */
256 static void issue_after_commit(struct batcher *b, struct bio *bio)
257 {
258        unsigned long flags;
259        bool commit_scheduled;
260 
261        spin_lock_irqsave(&b->lock, flags);
262        commit_scheduled = b->commit_scheduled;
263        bio_list_add(&b->bios, bio);
264        spin_unlock_irqrestore(&b->lock, flags);
265 
266        if (commit_scheduled)
267 	       async_commit(b);
268 }
269 
270 /*
271  * Call this if some urgent work is waiting for the commit to complete.
272  */
273 static void schedule_commit(struct batcher *b)
274 {
275 	bool immediate;
276 	unsigned long flags;
277 
278 	spin_lock_irqsave(&b->lock, flags);
279 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 	b->commit_scheduled = true;
281 	spin_unlock_irqrestore(&b->lock, flags);
282 
283 	if (immediate)
284 		async_commit(b);
285 }
286 
287 /*
288  * There are a couple of places where we let a bio run, but want to do some
289  * work before calling its endio function.  We do this by temporarily
290  * changing the endio fn.
291  */
292 struct dm_hook_info {
293 	bio_end_io_t *bi_end_io;
294 };
295 
296 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 			bio_end_io_t *bi_end_io, void *bi_private)
298 {
299 	h->bi_end_io = bio->bi_end_io;
300 
301 	bio->bi_end_io = bi_end_io;
302 	bio->bi_private = bi_private;
303 }
304 
305 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306 {
307 	bio->bi_end_io = h->bi_end_io;
308 }
309 
310 /*----------------------------------------------------------------*/
311 
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
315 
316 /*
317  * The block size of the device holding cache data must be
318  * between 32KB and 1GB.
319  */
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322 
323 enum cache_metadata_mode {
324 	CM_WRITE,		/* metadata may be changed */
325 	CM_READ_ONLY,		/* metadata may not be changed */
326 	CM_FAIL
327 };
328 
329 enum cache_io_mode {
330 	/*
331 	 * Data is written to cached blocks only.  These blocks are marked
332 	 * dirty.  If you lose the cache device you will lose data.
333 	 * Potential performance increase for both reads and writes.
334 	 */
335 	CM_IO_WRITEBACK,
336 
337 	/*
338 	 * Data is written to both cache and origin.  Blocks are never
339 	 * dirty.  Potential performance benfit for reads only.
340 	 */
341 	CM_IO_WRITETHROUGH,
342 
343 	/*
344 	 * A degraded mode useful for various cache coherency situations
345 	 * (eg, rolling back snapshots).  Reads and writes always go to the
346 	 * origin.  If a write goes to a cached oblock, then the cache
347 	 * block is invalidated.
348 	 */
349 	CM_IO_PASSTHROUGH
350 };
351 
352 struct cache_features {
353 	enum cache_metadata_mode mode;
354 	enum cache_io_mode io_mode;
355 	unsigned metadata_version;
356 	bool discard_passdown:1;
357 };
358 
359 struct cache_stats {
360 	atomic_t read_hit;
361 	atomic_t read_miss;
362 	atomic_t write_hit;
363 	atomic_t write_miss;
364 	atomic_t demotion;
365 	atomic_t promotion;
366 	atomic_t writeback;
367 	atomic_t copies_avoided;
368 	atomic_t cache_cell_clash;
369 	atomic_t commit_count;
370 	atomic_t discard_count;
371 };
372 
373 struct cache {
374 	struct dm_target *ti;
375 	spinlock_t lock;
376 
377 	/*
378 	 * Fields for converting from sectors to blocks.
379 	 */
380 	int sectors_per_block_shift;
381 	sector_t sectors_per_block;
382 
383 	struct dm_cache_metadata *cmd;
384 
385 	/*
386 	 * Metadata is written to this device.
387 	 */
388 	struct dm_dev *metadata_dev;
389 
390 	/*
391 	 * The slower of the two data devices.  Typically a spindle.
392 	 */
393 	struct dm_dev *origin_dev;
394 
395 	/*
396 	 * The faster of the two data devices.  Typically an SSD.
397 	 */
398 	struct dm_dev *cache_dev;
399 
400 	/*
401 	 * Size of the origin device in _complete_ blocks and native sectors.
402 	 */
403 	dm_oblock_t origin_blocks;
404 	sector_t origin_sectors;
405 
406 	/*
407 	 * Size of the cache device in blocks.
408 	 */
409 	dm_cblock_t cache_size;
410 
411 	/*
412 	 * Invalidation fields.
413 	 */
414 	spinlock_t invalidation_lock;
415 	struct list_head invalidation_requests;
416 
417 	sector_t migration_threshold;
418 	wait_queue_head_t migration_wait;
419 	atomic_t nr_allocated_migrations;
420 
421 	/*
422 	 * The number of in flight migrations that are performing
423 	 * background io. eg, promotion, writeback.
424 	 */
425 	atomic_t nr_io_migrations;
426 
427 	struct bio_list deferred_bios;
428 
429 	struct rw_semaphore quiesce_lock;
430 
431 	struct dm_target_callbacks callbacks;
432 
433 	/*
434 	 * origin_blocks entries, discarded if set.
435 	 */
436 	dm_dblock_t discard_nr_blocks;
437 	unsigned long *discard_bitset;
438 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
439 
440 	/*
441 	 * Rather than reconstructing the table line for the status we just
442 	 * save it and regurgitate.
443 	 */
444 	unsigned nr_ctr_args;
445 	const char **ctr_args;
446 
447 	struct dm_kcopyd_client *copier;
448 	struct work_struct deferred_bio_worker;
449 	struct work_struct migration_worker;
450 	struct workqueue_struct *wq;
451 	struct delayed_work waker;
452 	struct dm_bio_prison_v2 *prison;
453 
454 	/*
455 	 * cache_size entries, dirty if set
456 	 */
457 	unsigned long *dirty_bitset;
458 	atomic_t nr_dirty;
459 
460 	unsigned policy_nr_args;
461 	struct dm_cache_policy *policy;
462 
463 	/*
464 	 * Cache features such as write-through.
465 	 */
466 	struct cache_features features;
467 
468 	struct cache_stats stats;
469 
470 	bool need_tick_bio:1;
471 	bool sized:1;
472 	bool invalidate:1;
473 	bool commit_requested:1;
474 	bool loaded_mappings:1;
475 	bool loaded_discards:1;
476 
477 	struct rw_semaphore background_work_lock;
478 
479 	struct batcher committer;
480 	struct work_struct commit_ws;
481 
482 	struct io_tracker tracker;
483 
484 	mempool_t migration_pool;
485 
486 	struct bio_set bs;
487 };
488 
489 struct per_bio_data {
490 	bool tick:1;
491 	unsigned req_nr:2;
492 	struct dm_bio_prison_cell_v2 *cell;
493 	struct dm_hook_info hook_info;
494 	sector_t len;
495 };
496 
497 struct dm_cache_migration {
498 	struct continuation k;
499 	struct cache *cache;
500 
501 	struct policy_work *op;
502 	struct bio *overwrite_bio;
503 	struct dm_bio_prison_cell_v2 *cell;
504 
505 	dm_cblock_t invalidate_cblock;
506 	dm_oblock_t invalidate_oblock;
507 };
508 
509 /*----------------------------------------------------------------*/
510 
511 static bool writethrough_mode(struct cache *cache)
512 {
513 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
514 }
515 
516 static bool writeback_mode(struct cache *cache)
517 {
518 	return cache->features.io_mode == CM_IO_WRITEBACK;
519 }
520 
521 static inline bool passthrough_mode(struct cache *cache)
522 {
523 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
524 }
525 
526 /*----------------------------------------------------------------*/
527 
528 static void wake_deferred_bio_worker(struct cache *cache)
529 {
530 	queue_work(cache->wq, &cache->deferred_bio_worker);
531 }
532 
533 static void wake_migration_worker(struct cache *cache)
534 {
535 	if (passthrough_mode(cache))
536 		return;
537 
538 	queue_work(cache->wq, &cache->migration_worker);
539 }
540 
541 /*----------------------------------------------------------------*/
542 
543 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
544 {
545 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
546 }
547 
548 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
549 {
550 	dm_bio_prison_free_cell_v2(cache->prison, cell);
551 }
552 
553 static struct dm_cache_migration *alloc_migration(struct cache *cache)
554 {
555 	struct dm_cache_migration *mg;
556 
557 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
558 
559 	memset(mg, 0, sizeof(*mg));
560 
561 	mg->cache = cache;
562 	atomic_inc(&cache->nr_allocated_migrations);
563 
564 	return mg;
565 }
566 
567 static void free_migration(struct dm_cache_migration *mg)
568 {
569 	struct cache *cache = mg->cache;
570 
571 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
572 		wake_up(&cache->migration_wait);
573 
574 	mempool_free(mg, &cache->migration_pool);
575 }
576 
577 /*----------------------------------------------------------------*/
578 
579 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
580 {
581 	return to_oblock(from_oblock(b) + 1ull);
582 }
583 
584 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
585 {
586 	key->virtual = 0;
587 	key->dev = 0;
588 	key->block_begin = from_oblock(begin);
589 	key->block_end = from_oblock(end);
590 }
591 
592 /*
593  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
594  * level 1 which prevents *both* READs and WRITEs.
595  */
596 #define WRITE_LOCK_LEVEL 0
597 #define READ_WRITE_LOCK_LEVEL 1
598 
599 static unsigned lock_level(struct bio *bio)
600 {
601 	return bio_data_dir(bio) == WRITE ?
602 		WRITE_LOCK_LEVEL :
603 		READ_WRITE_LOCK_LEVEL;
604 }
605 
606 /*----------------------------------------------------------------
607  * Per bio data
608  *--------------------------------------------------------------*/
609 
610 static struct per_bio_data *get_per_bio_data(struct bio *bio)
611 {
612 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
613 	BUG_ON(!pb);
614 	return pb;
615 }
616 
617 static struct per_bio_data *init_per_bio_data(struct bio *bio)
618 {
619 	struct per_bio_data *pb = get_per_bio_data(bio);
620 
621 	pb->tick = false;
622 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
623 	pb->cell = NULL;
624 	pb->len = 0;
625 
626 	return pb;
627 }
628 
629 /*----------------------------------------------------------------*/
630 
631 static void defer_bio(struct cache *cache, struct bio *bio)
632 {
633 	unsigned long flags;
634 
635 	spin_lock_irqsave(&cache->lock, flags);
636 	bio_list_add(&cache->deferred_bios, bio);
637 	spin_unlock_irqrestore(&cache->lock, flags);
638 
639 	wake_deferred_bio_worker(cache);
640 }
641 
642 static void defer_bios(struct cache *cache, struct bio_list *bios)
643 {
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&cache->lock, flags);
647 	bio_list_merge(&cache->deferred_bios, bios);
648 	bio_list_init(bios);
649 	spin_unlock_irqrestore(&cache->lock, flags);
650 
651 	wake_deferred_bio_worker(cache);
652 }
653 
654 /*----------------------------------------------------------------*/
655 
656 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
657 {
658 	bool r;
659 	struct per_bio_data *pb;
660 	struct dm_cell_key_v2 key;
661 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
662 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
663 
664 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
665 
666 	build_key(oblock, end, &key);
667 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
668 	if (!r) {
669 		/*
670 		 * Failed to get the lock.
671 		 */
672 		free_prison_cell(cache, cell_prealloc);
673 		return r;
674 	}
675 
676 	if (cell != cell_prealloc)
677 		free_prison_cell(cache, cell_prealloc);
678 
679 	pb = get_per_bio_data(bio);
680 	pb->cell = cell;
681 
682 	return r;
683 }
684 
685 /*----------------------------------------------------------------*/
686 
687 static bool is_dirty(struct cache *cache, dm_cblock_t b)
688 {
689 	return test_bit(from_cblock(b), cache->dirty_bitset);
690 }
691 
692 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
693 {
694 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
695 		atomic_inc(&cache->nr_dirty);
696 		policy_set_dirty(cache->policy, cblock);
697 	}
698 }
699 
700 /*
701  * These two are called when setting after migrations to force the policy
702  * and dirty bitset to be in sync.
703  */
704 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
705 {
706 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
707 		atomic_inc(&cache->nr_dirty);
708 	policy_set_dirty(cache->policy, cblock);
709 }
710 
711 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
712 {
713 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
714 		if (atomic_dec_return(&cache->nr_dirty) == 0)
715 			dm_table_event(cache->ti->table);
716 	}
717 
718 	policy_clear_dirty(cache->policy, cblock);
719 }
720 
721 /*----------------------------------------------------------------*/
722 
723 static bool block_size_is_power_of_two(struct cache *cache)
724 {
725 	return cache->sectors_per_block_shift >= 0;
726 }
727 
728 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
729 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
730 __always_inline
731 #endif
732 static dm_block_t block_div(dm_block_t b, uint32_t n)
733 {
734 	do_div(b, n);
735 
736 	return b;
737 }
738 
739 static dm_block_t oblocks_per_dblock(struct cache *cache)
740 {
741 	dm_block_t oblocks = cache->discard_block_size;
742 
743 	if (block_size_is_power_of_two(cache))
744 		oblocks >>= cache->sectors_per_block_shift;
745 	else
746 		oblocks = block_div(oblocks, cache->sectors_per_block);
747 
748 	return oblocks;
749 }
750 
751 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
752 {
753 	return to_dblock(block_div(from_oblock(oblock),
754 				   oblocks_per_dblock(cache)));
755 }
756 
757 static void set_discard(struct cache *cache, dm_dblock_t b)
758 {
759 	unsigned long flags;
760 
761 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
762 	atomic_inc(&cache->stats.discard_count);
763 
764 	spin_lock_irqsave(&cache->lock, flags);
765 	set_bit(from_dblock(b), cache->discard_bitset);
766 	spin_unlock_irqrestore(&cache->lock, flags);
767 }
768 
769 static void clear_discard(struct cache *cache, dm_dblock_t b)
770 {
771 	unsigned long flags;
772 
773 	spin_lock_irqsave(&cache->lock, flags);
774 	clear_bit(from_dblock(b), cache->discard_bitset);
775 	spin_unlock_irqrestore(&cache->lock, flags);
776 }
777 
778 static bool is_discarded(struct cache *cache, dm_dblock_t b)
779 {
780 	int r;
781 	unsigned long flags;
782 
783 	spin_lock_irqsave(&cache->lock, flags);
784 	r = test_bit(from_dblock(b), cache->discard_bitset);
785 	spin_unlock_irqrestore(&cache->lock, flags);
786 
787 	return r;
788 }
789 
790 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
791 {
792 	int r;
793 	unsigned long flags;
794 
795 	spin_lock_irqsave(&cache->lock, flags);
796 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
797 		     cache->discard_bitset);
798 	spin_unlock_irqrestore(&cache->lock, flags);
799 
800 	return r;
801 }
802 
803 /*----------------------------------------------------------------
804  * Remapping
805  *--------------------------------------------------------------*/
806 static void remap_to_origin(struct cache *cache, struct bio *bio)
807 {
808 	bio_set_dev(bio, cache->origin_dev->bdev);
809 }
810 
811 static void remap_to_cache(struct cache *cache, struct bio *bio,
812 			   dm_cblock_t cblock)
813 {
814 	sector_t bi_sector = bio->bi_iter.bi_sector;
815 	sector_t block = from_cblock(cblock);
816 
817 	bio_set_dev(bio, cache->cache_dev->bdev);
818 	if (!block_size_is_power_of_two(cache))
819 		bio->bi_iter.bi_sector =
820 			(block * cache->sectors_per_block) +
821 			sector_div(bi_sector, cache->sectors_per_block);
822 	else
823 		bio->bi_iter.bi_sector =
824 			(block << cache->sectors_per_block_shift) |
825 			(bi_sector & (cache->sectors_per_block - 1));
826 }
827 
828 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
829 {
830 	unsigned long flags;
831 	struct per_bio_data *pb;
832 
833 	spin_lock_irqsave(&cache->lock, flags);
834 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
835 	    bio_op(bio) != REQ_OP_DISCARD) {
836 		pb = get_per_bio_data(bio);
837 		pb->tick = true;
838 		cache->need_tick_bio = false;
839 	}
840 	spin_unlock_irqrestore(&cache->lock, flags);
841 }
842 
843 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
844 					    dm_oblock_t oblock, bool bio_has_pbd)
845 {
846 	if (bio_has_pbd)
847 		check_if_tick_bio_needed(cache, bio);
848 	remap_to_origin(cache, bio);
849 	if (bio_data_dir(bio) == WRITE)
850 		clear_discard(cache, oblock_to_dblock(cache, oblock));
851 }
852 
853 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
854 					  dm_oblock_t oblock)
855 {
856 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
857 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
858 }
859 
860 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
861 				 dm_oblock_t oblock, dm_cblock_t cblock)
862 {
863 	check_if_tick_bio_needed(cache, bio);
864 	remap_to_cache(cache, bio, cblock);
865 	if (bio_data_dir(bio) == WRITE) {
866 		set_dirty(cache, cblock);
867 		clear_discard(cache, oblock_to_dblock(cache, oblock));
868 	}
869 }
870 
871 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
872 {
873 	sector_t block_nr = bio->bi_iter.bi_sector;
874 
875 	if (!block_size_is_power_of_two(cache))
876 		(void) sector_div(block_nr, cache->sectors_per_block);
877 	else
878 		block_nr >>= cache->sectors_per_block_shift;
879 
880 	return to_oblock(block_nr);
881 }
882 
883 static bool accountable_bio(struct cache *cache, struct bio *bio)
884 {
885 	return bio_op(bio) != REQ_OP_DISCARD;
886 }
887 
888 static void accounted_begin(struct cache *cache, struct bio *bio)
889 {
890 	struct per_bio_data *pb;
891 
892 	if (accountable_bio(cache, bio)) {
893 		pb = get_per_bio_data(bio);
894 		pb->len = bio_sectors(bio);
895 		iot_io_begin(&cache->tracker, pb->len);
896 	}
897 }
898 
899 static void accounted_complete(struct cache *cache, struct bio *bio)
900 {
901 	struct per_bio_data *pb = get_per_bio_data(bio);
902 
903 	iot_io_end(&cache->tracker, pb->len);
904 }
905 
906 static void accounted_request(struct cache *cache, struct bio *bio)
907 {
908 	accounted_begin(cache, bio);
909 	generic_make_request(bio);
910 }
911 
912 static void issue_op(struct bio *bio, void *context)
913 {
914 	struct cache *cache = context;
915 	accounted_request(cache, bio);
916 }
917 
918 /*
919  * When running in writethrough mode we need to send writes to clean blocks
920  * to both the cache and origin devices.  Clone the bio and send them in parallel.
921  */
922 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
923 				      dm_oblock_t oblock, dm_cblock_t cblock)
924 {
925 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
926 
927 	BUG_ON(!origin_bio);
928 
929 	bio_chain(origin_bio, bio);
930 	/*
931 	 * Passing false to __remap_to_origin_clear_discard() skips
932 	 * all code that might use per_bio_data (since clone doesn't have it)
933 	 */
934 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
935 	submit_bio(origin_bio);
936 
937 	remap_to_cache(cache, bio, cblock);
938 }
939 
940 /*----------------------------------------------------------------
941  * Failure modes
942  *--------------------------------------------------------------*/
943 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
944 {
945 	return cache->features.mode;
946 }
947 
948 static const char *cache_device_name(struct cache *cache)
949 {
950 	return dm_device_name(dm_table_get_md(cache->ti->table));
951 }
952 
953 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
954 {
955 	const char *descs[] = {
956 		"write",
957 		"read-only",
958 		"fail"
959 	};
960 
961 	dm_table_event(cache->ti->table);
962 	DMINFO("%s: switching cache to %s mode",
963 	       cache_device_name(cache), descs[(int)mode]);
964 }
965 
966 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
967 {
968 	bool needs_check;
969 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
970 
971 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
972 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
973 		      cache_device_name(cache));
974 		new_mode = CM_FAIL;
975 	}
976 
977 	if (new_mode == CM_WRITE && needs_check) {
978 		DMERR("%s: unable to switch cache to write mode until repaired.",
979 		      cache_device_name(cache));
980 		if (old_mode != new_mode)
981 			new_mode = old_mode;
982 		else
983 			new_mode = CM_READ_ONLY;
984 	}
985 
986 	/* Never move out of fail mode */
987 	if (old_mode == CM_FAIL)
988 		new_mode = CM_FAIL;
989 
990 	switch (new_mode) {
991 	case CM_FAIL:
992 	case CM_READ_ONLY:
993 		dm_cache_metadata_set_read_only(cache->cmd);
994 		break;
995 
996 	case CM_WRITE:
997 		dm_cache_metadata_set_read_write(cache->cmd);
998 		break;
999 	}
1000 
1001 	cache->features.mode = new_mode;
1002 
1003 	if (new_mode != old_mode)
1004 		notify_mode_switch(cache, new_mode);
1005 }
1006 
1007 static void abort_transaction(struct cache *cache)
1008 {
1009 	const char *dev_name = cache_device_name(cache);
1010 
1011 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1012 		return;
1013 
1014 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1015 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1016 		set_cache_mode(cache, CM_FAIL);
1017 	}
1018 
1019 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1020 	if (dm_cache_metadata_abort(cache->cmd)) {
1021 		DMERR("%s: failed to abort metadata transaction", dev_name);
1022 		set_cache_mode(cache, CM_FAIL);
1023 	}
1024 }
1025 
1026 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1027 {
1028 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029 		    cache_device_name(cache), op, r);
1030 	abort_transaction(cache);
1031 	set_cache_mode(cache, CM_READ_ONLY);
1032 }
1033 
1034 /*----------------------------------------------------------------*/
1035 
1036 static void load_stats(struct cache *cache)
1037 {
1038 	struct dm_cache_statistics stats;
1039 
1040 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1041 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1042 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1043 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1044 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1045 }
1046 
1047 static void save_stats(struct cache *cache)
1048 {
1049 	struct dm_cache_statistics stats;
1050 
1051 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1052 		return;
1053 
1054 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1055 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1056 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1057 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1058 
1059 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1060 }
1061 
1062 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1063 {
1064 	switch (op) {
1065 	case POLICY_PROMOTE:
1066 		atomic_inc(&stats->promotion);
1067 		break;
1068 
1069 	case POLICY_DEMOTE:
1070 		atomic_inc(&stats->demotion);
1071 		break;
1072 
1073 	case POLICY_WRITEBACK:
1074 		atomic_inc(&stats->writeback);
1075 		break;
1076 	}
1077 }
1078 
1079 /*----------------------------------------------------------------
1080  * Migration processing
1081  *
1082  * Migration covers moving data from the origin device to the cache, or
1083  * vice versa.
1084  *--------------------------------------------------------------*/
1085 
1086 static void inc_io_migrations(struct cache *cache)
1087 {
1088 	atomic_inc(&cache->nr_io_migrations);
1089 }
1090 
1091 static void dec_io_migrations(struct cache *cache)
1092 {
1093 	atomic_dec(&cache->nr_io_migrations);
1094 }
1095 
1096 static bool discard_or_flush(struct bio *bio)
1097 {
1098 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1099 }
1100 
1101 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102 				     dm_dblock_t *b, dm_dblock_t *e)
1103 {
1104 	sector_t sb = bio->bi_iter.bi_sector;
1105 	sector_t se = bio_end_sector(bio);
1106 
1107 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1108 
1109 	if (se - sb < cache->discard_block_size)
1110 		*e = *b;
1111 	else
1112 		*e = to_dblock(block_div(se, cache->discard_block_size));
1113 }
1114 
1115 /*----------------------------------------------------------------*/
1116 
1117 static void prevent_background_work(struct cache *cache)
1118 {
1119 	lockdep_off();
1120 	down_write(&cache->background_work_lock);
1121 	lockdep_on();
1122 }
1123 
1124 static void allow_background_work(struct cache *cache)
1125 {
1126 	lockdep_off();
1127 	up_write(&cache->background_work_lock);
1128 	lockdep_on();
1129 }
1130 
1131 static bool background_work_begin(struct cache *cache)
1132 {
1133 	bool r;
1134 
1135 	lockdep_off();
1136 	r = down_read_trylock(&cache->background_work_lock);
1137 	lockdep_on();
1138 
1139 	return r;
1140 }
1141 
1142 static void background_work_end(struct cache *cache)
1143 {
1144 	lockdep_off();
1145 	up_read(&cache->background_work_lock);
1146 	lockdep_on();
1147 }
1148 
1149 /*----------------------------------------------------------------*/
1150 
1151 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1152 {
1153 	return (bio_data_dir(bio) == WRITE) &&
1154 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1155 }
1156 
1157 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1158 {
1159 	return writeback_mode(cache) &&
1160 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1161 }
1162 
1163 static void quiesce(struct dm_cache_migration *mg,
1164 		    void (*continuation)(struct work_struct *))
1165 {
1166 	init_continuation(&mg->k, continuation);
1167 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1168 }
1169 
1170 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1171 {
1172 	struct continuation *k = container_of(ws, struct continuation, ws);
1173 	return container_of(k, struct dm_cache_migration, k);
1174 }
1175 
1176 static void copy_complete(int read_err, unsigned long write_err, void *context)
1177 {
1178 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1179 
1180 	if (read_err || write_err)
1181 		mg->k.input = BLK_STS_IOERR;
1182 
1183 	queue_continuation(mg->cache->wq, &mg->k);
1184 }
1185 
1186 static void copy(struct dm_cache_migration *mg, bool promote)
1187 {
1188 	struct dm_io_region o_region, c_region;
1189 	struct cache *cache = mg->cache;
1190 
1191 	o_region.bdev = cache->origin_dev->bdev;
1192 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1193 	o_region.count = cache->sectors_per_block;
1194 
1195 	c_region.bdev = cache->cache_dev->bdev;
1196 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1197 	c_region.count = cache->sectors_per_block;
1198 
1199 	if (promote)
1200 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1201 	else
1202 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1203 }
1204 
1205 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1206 {
1207 	struct per_bio_data *pb = get_per_bio_data(bio);
1208 
1209 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1210 		free_prison_cell(cache, pb->cell);
1211 	pb->cell = NULL;
1212 }
1213 
1214 static void overwrite_endio(struct bio *bio)
1215 {
1216 	struct dm_cache_migration *mg = bio->bi_private;
1217 	struct cache *cache = mg->cache;
1218 	struct per_bio_data *pb = get_per_bio_data(bio);
1219 
1220 	dm_unhook_bio(&pb->hook_info, bio);
1221 
1222 	if (bio->bi_status)
1223 		mg->k.input = bio->bi_status;
1224 
1225 	queue_continuation(cache->wq, &mg->k);
1226 }
1227 
1228 static void overwrite(struct dm_cache_migration *mg,
1229 		      void (*continuation)(struct work_struct *))
1230 {
1231 	struct bio *bio = mg->overwrite_bio;
1232 	struct per_bio_data *pb = get_per_bio_data(bio);
1233 
1234 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1235 
1236 	/*
1237 	 * The overwrite bio is part of the copy operation, as such it does
1238 	 * not set/clear discard or dirty flags.
1239 	 */
1240 	if (mg->op->op == POLICY_PROMOTE)
1241 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1242 	else
1243 		remap_to_origin(mg->cache, bio);
1244 
1245 	init_continuation(&mg->k, continuation);
1246 	accounted_request(mg->cache, bio);
1247 }
1248 
1249 /*
1250  * Migration steps:
1251  *
1252  * 1) exclusive lock preventing WRITEs
1253  * 2) quiesce
1254  * 3) copy or issue overwrite bio
1255  * 4) upgrade to exclusive lock preventing READs and WRITEs
1256  * 5) quiesce
1257  * 6) update metadata and commit
1258  * 7) unlock
1259  */
1260 static void mg_complete(struct dm_cache_migration *mg, bool success)
1261 {
1262 	struct bio_list bios;
1263 	struct cache *cache = mg->cache;
1264 	struct policy_work *op = mg->op;
1265 	dm_cblock_t cblock = op->cblock;
1266 
1267 	if (success)
1268 		update_stats(&cache->stats, op->op);
1269 
1270 	switch (op->op) {
1271 	case POLICY_PROMOTE:
1272 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1273 		policy_complete_background_work(cache->policy, op, success);
1274 
1275 		if (mg->overwrite_bio) {
1276 			if (success)
1277 				force_set_dirty(cache, cblock);
1278 			else if (mg->k.input)
1279 				mg->overwrite_bio->bi_status = mg->k.input;
1280 			else
1281 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1282 			bio_endio(mg->overwrite_bio);
1283 		} else {
1284 			if (success)
1285 				force_clear_dirty(cache, cblock);
1286 			dec_io_migrations(cache);
1287 		}
1288 		break;
1289 
1290 	case POLICY_DEMOTE:
1291 		/*
1292 		 * We clear dirty here to update the nr_dirty counter.
1293 		 */
1294 		if (success)
1295 			force_clear_dirty(cache, cblock);
1296 		policy_complete_background_work(cache->policy, op, success);
1297 		dec_io_migrations(cache);
1298 		break;
1299 
1300 	case POLICY_WRITEBACK:
1301 		if (success)
1302 			force_clear_dirty(cache, cblock);
1303 		policy_complete_background_work(cache->policy, op, success);
1304 		dec_io_migrations(cache);
1305 		break;
1306 	}
1307 
1308 	bio_list_init(&bios);
1309 	if (mg->cell) {
1310 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1311 			free_prison_cell(cache, mg->cell);
1312 	}
1313 
1314 	free_migration(mg);
1315 	defer_bios(cache, &bios);
1316 	wake_migration_worker(cache);
1317 
1318 	background_work_end(cache);
1319 }
1320 
1321 static void mg_success(struct work_struct *ws)
1322 {
1323 	struct dm_cache_migration *mg = ws_to_mg(ws);
1324 	mg_complete(mg, mg->k.input == 0);
1325 }
1326 
1327 static void mg_update_metadata(struct work_struct *ws)
1328 {
1329 	int r;
1330 	struct dm_cache_migration *mg = ws_to_mg(ws);
1331 	struct cache *cache = mg->cache;
1332 	struct policy_work *op = mg->op;
1333 
1334 	switch (op->op) {
1335 	case POLICY_PROMOTE:
1336 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1337 		if (r) {
1338 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339 				    cache_device_name(cache));
1340 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1341 
1342 			mg_complete(mg, false);
1343 			return;
1344 		}
1345 		mg_complete(mg, true);
1346 		break;
1347 
1348 	case POLICY_DEMOTE:
1349 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1350 		if (r) {
1351 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352 				    cache_device_name(cache));
1353 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1354 
1355 			mg_complete(mg, false);
1356 			return;
1357 		}
1358 
1359 		/*
1360 		 * It would be nice if we only had to commit when a REQ_FLUSH
1361 		 * comes through.  But there's one scenario that we have to
1362 		 * look out for:
1363 		 *
1364 		 * - vblock x in a cache block
1365 		 * - domotion occurs
1366 		 * - cache block gets reallocated and over written
1367 		 * - crash
1368 		 *
1369 		 * When we recover, because there was no commit the cache will
1370 		 * rollback to having the data for vblock x in the cache block.
1371 		 * But the cache block has since been overwritten, so it'll end
1372 		 * up pointing to data that was never in 'x' during the history
1373 		 * of the device.
1374 		 *
1375 		 * To avoid this issue we require a commit as part of the
1376 		 * demotion operation.
1377 		 */
1378 		init_continuation(&mg->k, mg_success);
1379 		continue_after_commit(&cache->committer, &mg->k);
1380 		schedule_commit(&cache->committer);
1381 		break;
1382 
1383 	case POLICY_WRITEBACK:
1384 		mg_complete(mg, true);
1385 		break;
1386 	}
1387 }
1388 
1389 static void mg_update_metadata_after_copy(struct work_struct *ws)
1390 {
1391 	struct dm_cache_migration *mg = ws_to_mg(ws);
1392 
1393 	/*
1394 	 * Did the copy succeed?
1395 	 */
1396 	if (mg->k.input)
1397 		mg_complete(mg, false);
1398 	else
1399 		mg_update_metadata(ws);
1400 }
1401 
1402 static void mg_upgrade_lock(struct work_struct *ws)
1403 {
1404 	int r;
1405 	struct dm_cache_migration *mg = ws_to_mg(ws);
1406 
1407 	/*
1408 	 * Did the copy succeed?
1409 	 */
1410 	if (mg->k.input)
1411 		mg_complete(mg, false);
1412 
1413 	else {
1414 		/*
1415 		 * Now we want the lock to prevent both reads and writes.
1416 		 */
1417 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1418 					    READ_WRITE_LOCK_LEVEL);
1419 		if (r < 0)
1420 			mg_complete(mg, false);
1421 
1422 		else if (r)
1423 			quiesce(mg, mg_update_metadata);
1424 
1425 		else
1426 			mg_update_metadata(ws);
1427 	}
1428 }
1429 
1430 static void mg_full_copy(struct work_struct *ws)
1431 {
1432 	struct dm_cache_migration *mg = ws_to_mg(ws);
1433 	struct cache *cache = mg->cache;
1434 	struct policy_work *op = mg->op;
1435 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1436 
1437 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1438 	    is_discarded_oblock(cache, op->oblock)) {
1439 		mg_upgrade_lock(ws);
1440 		return;
1441 	}
1442 
1443 	init_continuation(&mg->k, mg_upgrade_lock);
1444 	copy(mg, is_policy_promote);
1445 }
1446 
1447 static void mg_copy(struct work_struct *ws)
1448 {
1449 	struct dm_cache_migration *mg = ws_to_mg(ws);
1450 
1451 	if (mg->overwrite_bio) {
1452 		/*
1453 		 * No exclusive lock was held when we last checked if the bio
1454 		 * was optimisable.  So we have to check again in case things
1455 		 * have changed (eg, the block may no longer be discarded).
1456 		 */
1457 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1458 			/*
1459 			 * Fallback to a real full copy after doing some tidying up.
1460 			 */
1461 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1462 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1463 			mg->overwrite_bio = NULL;
1464 			inc_io_migrations(mg->cache);
1465 			mg_full_copy(ws);
1466 			return;
1467 		}
1468 
1469 		/*
1470 		 * It's safe to do this here, even though it's new data
1471 		 * because all IO has been locked out of the block.
1472 		 *
1473 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474 		 * so _not_ using mg_upgrade_lock() as continutation.
1475 		 */
1476 		overwrite(mg, mg_update_metadata_after_copy);
1477 
1478 	} else
1479 		mg_full_copy(ws);
1480 }
1481 
1482 static int mg_lock_writes(struct dm_cache_migration *mg)
1483 {
1484 	int r;
1485 	struct dm_cell_key_v2 key;
1486 	struct cache *cache = mg->cache;
1487 	struct dm_bio_prison_cell_v2 *prealloc;
1488 
1489 	prealloc = alloc_prison_cell(cache);
1490 
1491 	/*
1492 	 * Prevent writes to the block, but allow reads to continue.
1493 	 * Unless we're using an overwrite bio, in which case we lock
1494 	 * everything.
1495 	 */
1496 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1497 	r = dm_cell_lock_v2(cache->prison, &key,
1498 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1499 			    prealloc, &mg->cell);
1500 	if (r < 0) {
1501 		free_prison_cell(cache, prealloc);
1502 		mg_complete(mg, false);
1503 		return r;
1504 	}
1505 
1506 	if (mg->cell != prealloc)
1507 		free_prison_cell(cache, prealloc);
1508 
1509 	if (r == 0)
1510 		mg_copy(&mg->k.ws);
1511 	else
1512 		quiesce(mg, mg_copy);
1513 
1514 	return 0;
1515 }
1516 
1517 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1518 {
1519 	struct dm_cache_migration *mg;
1520 
1521 	if (!background_work_begin(cache)) {
1522 		policy_complete_background_work(cache->policy, op, false);
1523 		return -EPERM;
1524 	}
1525 
1526 	mg = alloc_migration(cache);
1527 
1528 	mg->op = op;
1529 	mg->overwrite_bio = bio;
1530 
1531 	if (!bio)
1532 		inc_io_migrations(cache);
1533 
1534 	return mg_lock_writes(mg);
1535 }
1536 
1537 /*----------------------------------------------------------------
1538  * invalidation processing
1539  *--------------------------------------------------------------*/
1540 
1541 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1542 {
1543 	struct bio_list bios;
1544 	struct cache *cache = mg->cache;
1545 
1546 	bio_list_init(&bios);
1547 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1548 		free_prison_cell(cache, mg->cell);
1549 
1550 	if (!success && mg->overwrite_bio)
1551 		bio_io_error(mg->overwrite_bio);
1552 
1553 	free_migration(mg);
1554 	defer_bios(cache, &bios);
1555 
1556 	background_work_end(cache);
1557 }
1558 
1559 static void invalidate_completed(struct work_struct *ws)
1560 {
1561 	struct dm_cache_migration *mg = ws_to_mg(ws);
1562 	invalidate_complete(mg, !mg->k.input);
1563 }
1564 
1565 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1566 {
1567 	int r = policy_invalidate_mapping(cache->policy, cblock);
1568 	if (!r) {
1569 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1570 		if (r) {
1571 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572 				    cache_device_name(cache));
1573 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1574 		}
1575 
1576 	} else if (r == -ENODATA) {
1577 		/*
1578 		 * Harmless, already unmapped.
1579 		 */
1580 		r = 0;
1581 
1582 	} else
1583 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1584 
1585 	return r;
1586 }
1587 
1588 static void invalidate_remove(struct work_struct *ws)
1589 {
1590 	int r;
1591 	struct dm_cache_migration *mg = ws_to_mg(ws);
1592 	struct cache *cache = mg->cache;
1593 
1594 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1595 	if (r) {
1596 		invalidate_complete(mg, false);
1597 		return;
1598 	}
1599 
1600 	init_continuation(&mg->k, invalidate_completed);
1601 	continue_after_commit(&cache->committer, &mg->k);
1602 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1603 	mg->overwrite_bio = NULL;
1604 	schedule_commit(&cache->committer);
1605 }
1606 
1607 static int invalidate_lock(struct dm_cache_migration *mg)
1608 {
1609 	int r;
1610 	struct dm_cell_key_v2 key;
1611 	struct cache *cache = mg->cache;
1612 	struct dm_bio_prison_cell_v2 *prealloc;
1613 
1614 	prealloc = alloc_prison_cell(cache);
1615 
1616 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1617 	r = dm_cell_lock_v2(cache->prison, &key,
1618 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1619 	if (r < 0) {
1620 		free_prison_cell(cache, prealloc);
1621 		invalidate_complete(mg, false);
1622 		return r;
1623 	}
1624 
1625 	if (mg->cell != prealloc)
1626 		free_prison_cell(cache, prealloc);
1627 
1628 	if (r)
1629 		quiesce(mg, invalidate_remove);
1630 
1631 	else {
1632 		/*
1633 		 * We can't call invalidate_remove() directly here because we
1634 		 * might still be in request context.
1635 		 */
1636 		init_continuation(&mg->k, invalidate_remove);
1637 		queue_work(cache->wq, &mg->k.ws);
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1644 			    dm_oblock_t oblock, struct bio *bio)
1645 {
1646 	struct dm_cache_migration *mg;
1647 
1648 	if (!background_work_begin(cache))
1649 		return -EPERM;
1650 
1651 	mg = alloc_migration(cache);
1652 
1653 	mg->overwrite_bio = bio;
1654 	mg->invalidate_cblock = cblock;
1655 	mg->invalidate_oblock = oblock;
1656 
1657 	return invalidate_lock(mg);
1658 }
1659 
1660 /*----------------------------------------------------------------
1661  * bio processing
1662  *--------------------------------------------------------------*/
1663 
1664 enum busy {
1665 	IDLE,
1666 	BUSY
1667 };
1668 
1669 static enum busy spare_migration_bandwidth(struct cache *cache)
1670 {
1671 	bool idle = iot_idle_for(&cache->tracker, HZ);
1672 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1673 		cache->sectors_per_block;
1674 
1675 	if (idle && current_volume <= cache->migration_threshold)
1676 		return IDLE;
1677 	else
1678 		return BUSY;
1679 }
1680 
1681 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1682 {
1683 	atomic_inc(bio_data_dir(bio) == READ ?
1684 		   &cache->stats.read_hit : &cache->stats.write_hit);
1685 }
1686 
1687 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1688 {
1689 	atomic_inc(bio_data_dir(bio) == READ ?
1690 		   &cache->stats.read_miss : &cache->stats.write_miss);
1691 }
1692 
1693 /*----------------------------------------------------------------*/
1694 
1695 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1696 		   bool *commit_needed)
1697 {
1698 	int r, data_dir;
1699 	bool rb, background_queued;
1700 	dm_cblock_t cblock;
1701 
1702 	*commit_needed = false;
1703 
1704 	rb = bio_detain_shared(cache, block, bio);
1705 	if (!rb) {
1706 		/*
1707 		 * An exclusive lock is held for this block, so we have to
1708 		 * wait.  We set the commit_needed flag so the current
1709 		 * transaction will be committed asap, allowing this lock
1710 		 * to be dropped.
1711 		 */
1712 		*commit_needed = true;
1713 		return DM_MAPIO_SUBMITTED;
1714 	}
1715 
1716 	data_dir = bio_data_dir(bio);
1717 
1718 	if (optimisable_bio(cache, bio, block)) {
1719 		struct policy_work *op = NULL;
1720 
1721 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1722 		if (unlikely(r && r != -ENOENT)) {
1723 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724 				    cache_device_name(cache), r);
1725 			bio_io_error(bio);
1726 			return DM_MAPIO_SUBMITTED;
1727 		}
1728 
1729 		if (r == -ENOENT && op) {
1730 			bio_drop_shared_lock(cache, bio);
1731 			BUG_ON(op->op != POLICY_PROMOTE);
1732 			mg_start(cache, op, bio);
1733 			return DM_MAPIO_SUBMITTED;
1734 		}
1735 	} else {
1736 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1737 		if (unlikely(r && r != -ENOENT)) {
1738 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739 				    cache_device_name(cache), r);
1740 			bio_io_error(bio);
1741 			return DM_MAPIO_SUBMITTED;
1742 		}
1743 
1744 		if (background_queued)
1745 			wake_migration_worker(cache);
1746 	}
1747 
1748 	if (r == -ENOENT) {
1749 		struct per_bio_data *pb = get_per_bio_data(bio);
1750 
1751 		/*
1752 		 * Miss.
1753 		 */
1754 		inc_miss_counter(cache, bio);
1755 		if (pb->req_nr == 0) {
1756 			accounted_begin(cache, bio);
1757 			remap_to_origin_clear_discard(cache, bio, block);
1758 		} else {
1759 			/*
1760 			 * This is a duplicate writethrough io that is no
1761 			 * longer needed because the block has been demoted.
1762 			 */
1763 			bio_endio(bio);
1764 			return DM_MAPIO_SUBMITTED;
1765 		}
1766 	} else {
1767 		/*
1768 		 * Hit.
1769 		 */
1770 		inc_hit_counter(cache, bio);
1771 
1772 		/*
1773 		 * Passthrough always maps to the origin, invalidating any
1774 		 * cache blocks that are written to.
1775 		 */
1776 		if (passthrough_mode(cache)) {
1777 			if (bio_data_dir(bio) == WRITE) {
1778 				bio_drop_shared_lock(cache, bio);
1779 				atomic_inc(&cache->stats.demotion);
1780 				invalidate_start(cache, cblock, block, bio);
1781 			} else
1782 				remap_to_origin_clear_discard(cache, bio, block);
1783 		} else {
1784 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1785 			    !is_dirty(cache, cblock)) {
1786 				remap_to_origin_and_cache(cache, bio, block, cblock);
1787 				accounted_begin(cache, bio);
1788 			} else
1789 				remap_to_cache_dirty(cache, bio, block, cblock);
1790 		}
1791 	}
1792 
1793 	/*
1794 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1795 	 */
1796 	if (bio->bi_opf & REQ_FUA) {
1797 		/*
1798 		 * issue_after_commit will call accounted_begin a second time.  So
1799 		 * we call accounted_complete() to avoid double accounting.
1800 		 */
1801 		accounted_complete(cache, bio);
1802 		issue_after_commit(&cache->committer, bio);
1803 		*commit_needed = true;
1804 		return DM_MAPIO_SUBMITTED;
1805 	}
1806 
1807 	return DM_MAPIO_REMAPPED;
1808 }
1809 
1810 static bool process_bio(struct cache *cache, struct bio *bio)
1811 {
1812 	bool commit_needed;
1813 
1814 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1815 		generic_make_request(bio);
1816 
1817 	return commit_needed;
1818 }
1819 
1820 /*
1821  * A non-zero return indicates read_only or fail_io mode.
1822  */
1823 static int commit(struct cache *cache, bool clean_shutdown)
1824 {
1825 	int r;
1826 
1827 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1828 		return -EINVAL;
1829 
1830 	atomic_inc(&cache->stats.commit_count);
1831 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1832 	if (r)
1833 		metadata_operation_failed(cache, "dm_cache_commit", r);
1834 
1835 	return r;
1836 }
1837 
1838 /*
1839  * Used by the batcher.
1840  */
1841 static blk_status_t commit_op(void *context)
1842 {
1843 	struct cache *cache = context;
1844 
1845 	if (dm_cache_changed_this_transaction(cache->cmd))
1846 		return errno_to_blk_status(commit(cache, false));
1847 
1848 	return 0;
1849 }
1850 
1851 /*----------------------------------------------------------------*/
1852 
1853 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1854 {
1855 	struct per_bio_data *pb = get_per_bio_data(bio);
1856 
1857 	if (!pb->req_nr)
1858 		remap_to_origin(cache, bio);
1859 	else
1860 		remap_to_cache(cache, bio, 0);
1861 
1862 	issue_after_commit(&cache->committer, bio);
1863 	return true;
1864 }
1865 
1866 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1867 {
1868 	dm_dblock_t b, e;
1869 
1870 	// FIXME: do we need to lock the region?  Or can we just assume the
1871 	// user wont be so foolish as to issue discard concurrently with
1872 	// other IO?
1873 	calc_discard_block_range(cache, bio, &b, &e);
1874 	while (b != e) {
1875 		set_discard(cache, b);
1876 		b = to_dblock(from_dblock(b) + 1);
1877 	}
1878 
1879 	if (cache->features.discard_passdown) {
1880 		remap_to_origin(cache, bio);
1881 		generic_make_request(bio);
1882 	} else
1883 		bio_endio(bio);
1884 
1885 	return false;
1886 }
1887 
1888 static void process_deferred_bios(struct work_struct *ws)
1889 {
1890 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1891 
1892 	unsigned long flags;
1893 	bool commit_needed = false;
1894 	struct bio_list bios;
1895 	struct bio *bio;
1896 
1897 	bio_list_init(&bios);
1898 
1899 	spin_lock_irqsave(&cache->lock, flags);
1900 	bio_list_merge(&bios, &cache->deferred_bios);
1901 	bio_list_init(&cache->deferred_bios);
1902 	spin_unlock_irqrestore(&cache->lock, flags);
1903 
1904 	while ((bio = bio_list_pop(&bios))) {
1905 		if (bio->bi_opf & REQ_PREFLUSH)
1906 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1907 
1908 		else if (bio_op(bio) == REQ_OP_DISCARD)
1909 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1910 
1911 		else
1912 			commit_needed = process_bio(cache, bio) || commit_needed;
1913 	}
1914 
1915 	if (commit_needed)
1916 		schedule_commit(&cache->committer);
1917 }
1918 
1919 /*----------------------------------------------------------------
1920  * Main worker loop
1921  *--------------------------------------------------------------*/
1922 
1923 static void requeue_deferred_bios(struct cache *cache)
1924 {
1925 	struct bio *bio;
1926 	struct bio_list bios;
1927 
1928 	bio_list_init(&bios);
1929 	bio_list_merge(&bios, &cache->deferred_bios);
1930 	bio_list_init(&cache->deferred_bios);
1931 
1932 	while ((bio = bio_list_pop(&bios))) {
1933 		bio->bi_status = BLK_STS_DM_REQUEUE;
1934 		bio_endio(bio);
1935 	}
1936 }
1937 
1938 /*
1939  * We want to commit periodically so that not too much
1940  * unwritten metadata builds up.
1941  */
1942 static void do_waker(struct work_struct *ws)
1943 {
1944 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1945 
1946 	policy_tick(cache->policy, true);
1947 	wake_migration_worker(cache);
1948 	schedule_commit(&cache->committer);
1949 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1950 }
1951 
1952 static void check_migrations(struct work_struct *ws)
1953 {
1954 	int r;
1955 	struct policy_work *op;
1956 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1957 	enum busy b;
1958 
1959 	for (;;) {
1960 		b = spare_migration_bandwidth(cache);
1961 
1962 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1963 		if (r == -ENODATA)
1964 			break;
1965 
1966 		if (r) {
1967 			DMERR_LIMIT("%s: policy_background_work failed",
1968 				    cache_device_name(cache));
1969 			break;
1970 		}
1971 
1972 		r = mg_start(cache, op, NULL);
1973 		if (r)
1974 			break;
1975 	}
1976 }
1977 
1978 /*----------------------------------------------------------------
1979  * Target methods
1980  *--------------------------------------------------------------*/
1981 
1982 /*
1983  * This function gets called on the error paths of the constructor, so we
1984  * have to cope with a partially initialised struct.
1985  */
1986 static void destroy(struct cache *cache)
1987 {
1988 	unsigned i;
1989 
1990 	mempool_exit(&cache->migration_pool);
1991 
1992 	if (cache->prison)
1993 		dm_bio_prison_destroy_v2(cache->prison);
1994 
1995 	if (cache->wq)
1996 		destroy_workqueue(cache->wq);
1997 
1998 	if (cache->dirty_bitset)
1999 		free_bitset(cache->dirty_bitset);
2000 
2001 	if (cache->discard_bitset)
2002 		free_bitset(cache->discard_bitset);
2003 
2004 	if (cache->copier)
2005 		dm_kcopyd_client_destroy(cache->copier);
2006 
2007 	if (cache->cmd)
2008 		dm_cache_metadata_close(cache->cmd);
2009 
2010 	if (cache->metadata_dev)
2011 		dm_put_device(cache->ti, cache->metadata_dev);
2012 
2013 	if (cache->origin_dev)
2014 		dm_put_device(cache->ti, cache->origin_dev);
2015 
2016 	if (cache->cache_dev)
2017 		dm_put_device(cache->ti, cache->cache_dev);
2018 
2019 	if (cache->policy)
2020 		dm_cache_policy_destroy(cache->policy);
2021 
2022 	for (i = 0; i < cache->nr_ctr_args ; i++)
2023 		kfree(cache->ctr_args[i]);
2024 	kfree(cache->ctr_args);
2025 
2026 	bioset_exit(&cache->bs);
2027 
2028 	kfree(cache);
2029 }
2030 
2031 static void cache_dtr(struct dm_target *ti)
2032 {
2033 	struct cache *cache = ti->private;
2034 
2035 	destroy(cache);
2036 }
2037 
2038 static sector_t get_dev_size(struct dm_dev *dev)
2039 {
2040 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2041 }
2042 
2043 /*----------------------------------------------------------------*/
2044 
2045 /*
2046  * Construct a cache device mapping.
2047  *
2048  * cache <metadata dev> <cache dev> <origin dev> <block size>
2049  *       <#feature args> [<feature arg>]*
2050  *       <policy> <#policy args> [<policy arg>]*
2051  *
2052  * metadata dev    : fast device holding the persistent metadata
2053  * cache dev	   : fast device holding cached data blocks
2054  * origin dev	   : slow device holding original data blocks
2055  * block size	   : cache unit size in sectors
2056  *
2057  * #feature args   : number of feature arguments passed
2058  * feature args    : writethrough.  (The default is writeback.)
2059  *
2060  * policy	   : the replacement policy to use
2061  * #policy args    : an even number of policy arguments corresponding
2062  *		     to key/value pairs passed to the policy
2063  * policy args	   : key/value pairs passed to the policy
2064  *		     E.g. 'sequential_threshold 1024'
2065  *		     See cache-policies.txt for details.
2066  *
2067  * Optional feature arguments are:
2068  *   writethrough  : write through caching that prohibits cache block
2069  *		     content from being different from origin block content.
2070  *		     Without this argument, the default behaviour is to write
2071  *		     back cache block contents later for performance reasons,
2072  *		     so they may differ from the corresponding origin blocks.
2073  */
2074 struct cache_args {
2075 	struct dm_target *ti;
2076 
2077 	struct dm_dev *metadata_dev;
2078 
2079 	struct dm_dev *cache_dev;
2080 	sector_t cache_sectors;
2081 
2082 	struct dm_dev *origin_dev;
2083 	sector_t origin_sectors;
2084 
2085 	uint32_t block_size;
2086 
2087 	const char *policy_name;
2088 	int policy_argc;
2089 	const char **policy_argv;
2090 
2091 	struct cache_features features;
2092 };
2093 
2094 static void destroy_cache_args(struct cache_args *ca)
2095 {
2096 	if (ca->metadata_dev)
2097 		dm_put_device(ca->ti, ca->metadata_dev);
2098 
2099 	if (ca->cache_dev)
2100 		dm_put_device(ca->ti, ca->cache_dev);
2101 
2102 	if (ca->origin_dev)
2103 		dm_put_device(ca->ti, ca->origin_dev);
2104 
2105 	kfree(ca);
2106 }
2107 
2108 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2109 {
2110 	if (!as->argc) {
2111 		*error = "Insufficient args";
2112 		return false;
2113 	}
2114 
2115 	return true;
2116 }
2117 
2118 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2119 			      char **error)
2120 {
2121 	int r;
2122 	sector_t metadata_dev_size;
2123 	char b[BDEVNAME_SIZE];
2124 
2125 	if (!at_least_one_arg(as, error))
2126 		return -EINVAL;
2127 
2128 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129 			  &ca->metadata_dev);
2130 	if (r) {
2131 		*error = "Error opening metadata device";
2132 		return r;
2133 	}
2134 
2135 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2136 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2137 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2139 
2140 	return 0;
2141 }
2142 
2143 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2144 			   char **error)
2145 {
2146 	int r;
2147 
2148 	if (!at_least_one_arg(as, error))
2149 		return -EINVAL;
2150 
2151 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2152 			  &ca->cache_dev);
2153 	if (r) {
2154 		*error = "Error opening cache device";
2155 		return r;
2156 	}
2157 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2158 
2159 	return 0;
2160 }
2161 
2162 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2163 			    char **error)
2164 {
2165 	int r;
2166 
2167 	if (!at_least_one_arg(as, error))
2168 		return -EINVAL;
2169 
2170 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171 			  &ca->origin_dev);
2172 	if (r) {
2173 		*error = "Error opening origin device";
2174 		return r;
2175 	}
2176 
2177 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2178 	if (ca->ti->len > ca->origin_sectors) {
2179 		*error = "Device size larger than cached device";
2180 		return -EINVAL;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2187 			    char **error)
2188 {
2189 	unsigned long block_size;
2190 
2191 	if (!at_least_one_arg(as, error))
2192 		return -EINVAL;
2193 
2194 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2195 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2196 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2197 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2198 		*error = "Invalid data block size";
2199 		return -EINVAL;
2200 	}
2201 
2202 	if (block_size > ca->cache_sectors) {
2203 		*error = "Data block size is larger than the cache device";
2204 		return -EINVAL;
2205 	}
2206 
2207 	ca->block_size = block_size;
2208 
2209 	return 0;
2210 }
2211 
2212 static void init_features(struct cache_features *cf)
2213 {
2214 	cf->mode = CM_WRITE;
2215 	cf->io_mode = CM_IO_WRITEBACK;
2216 	cf->metadata_version = 1;
2217 	cf->discard_passdown = true;
2218 }
2219 
2220 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2221 			  char **error)
2222 {
2223 	static const struct dm_arg _args[] = {
2224 		{0, 3, "Invalid number of cache feature arguments"},
2225 	};
2226 
2227 	int r, mode_ctr = 0;
2228 	unsigned argc;
2229 	const char *arg;
2230 	struct cache_features *cf = &ca->features;
2231 
2232 	init_features(cf);
2233 
2234 	r = dm_read_arg_group(_args, as, &argc, error);
2235 	if (r)
2236 		return -EINVAL;
2237 
2238 	while (argc--) {
2239 		arg = dm_shift_arg(as);
2240 
2241 		if (!strcasecmp(arg, "writeback")) {
2242 			cf->io_mode = CM_IO_WRITEBACK;
2243 			mode_ctr++;
2244 		}
2245 
2246 		else if (!strcasecmp(arg, "writethrough")) {
2247 			cf->io_mode = CM_IO_WRITETHROUGH;
2248 			mode_ctr++;
2249 		}
2250 
2251 		else if (!strcasecmp(arg, "passthrough")) {
2252 			cf->io_mode = CM_IO_PASSTHROUGH;
2253 			mode_ctr++;
2254 		}
2255 
2256 		else if (!strcasecmp(arg, "metadata2"))
2257 			cf->metadata_version = 2;
2258 
2259 		else if (!strcasecmp(arg, "no_discard_passdown"))
2260 			cf->discard_passdown = false;
2261 
2262 		else {
2263 			*error = "Unrecognised cache feature requested";
2264 			return -EINVAL;
2265 		}
2266 	}
2267 
2268 	if (mode_ctr > 1) {
2269 		*error = "Duplicate cache io_mode features requested";
2270 		return -EINVAL;
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2277 			char **error)
2278 {
2279 	static const struct dm_arg _args[] = {
2280 		{0, 1024, "Invalid number of policy arguments"},
2281 	};
2282 
2283 	int r;
2284 
2285 	if (!at_least_one_arg(as, error))
2286 		return -EINVAL;
2287 
2288 	ca->policy_name = dm_shift_arg(as);
2289 
2290 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2291 	if (r)
2292 		return -EINVAL;
2293 
2294 	ca->policy_argv = (const char **)as->argv;
2295 	dm_consume_args(as, ca->policy_argc);
2296 
2297 	return 0;
2298 }
2299 
2300 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2301 			    char **error)
2302 {
2303 	int r;
2304 	struct dm_arg_set as;
2305 
2306 	as.argc = argc;
2307 	as.argv = argv;
2308 
2309 	r = parse_metadata_dev(ca, &as, error);
2310 	if (r)
2311 		return r;
2312 
2313 	r = parse_cache_dev(ca, &as, error);
2314 	if (r)
2315 		return r;
2316 
2317 	r = parse_origin_dev(ca, &as, error);
2318 	if (r)
2319 		return r;
2320 
2321 	r = parse_block_size(ca, &as, error);
2322 	if (r)
2323 		return r;
2324 
2325 	r = parse_features(ca, &as, error);
2326 	if (r)
2327 		return r;
2328 
2329 	r = parse_policy(ca, &as, error);
2330 	if (r)
2331 		return r;
2332 
2333 	return 0;
2334 }
2335 
2336 /*----------------------------------------------------------------*/
2337 
2338 static struct kmem_cache *migration_cache;
2339 
2340 #define NOT_CORE_OPTION 1
2341 
2342 static int process_config_option(struct cache *cache, const char *key, const char *value)
2343 {
2344 	unsigned long tmp;
2345 
2346 	if (!strcasecmp(key, "migration_threshold")) {
2347 		if (kstrtoul(value, 10, &tmp))
2348 			return -EINVAL;
2349 
2350 		cache->migration_threshold = tmp;
2351 		return 0;
2352 	}
2353 
2354 	return NOT_CORE_OPTION;
2355 }
2356 
2357 static int set_config_value(struct cache *cache, const char *key, const char *value)
2358 {
2359 	int r = process_config_option(cache, key, value);
2360 
2361 	if (r == NOT_CORE_OPTION)
2362 		r = policy_set_config_value(cache->policy, key, value);
2363 
2364 	if (r)
2365 		DMWARN("bad config value for %s: %s", key, value);
2366 
2367 	return r;
2368 }
2369 
2370 static int set_config_values(struct cache *cache, int argc, const char **argv)
2371 {
2372 	int r = 0;
2373 
2374 	if (argc & 1) {
2375 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2376 		return -EINVAL;
2377 	}
2378 
2379 	while (argc) {
2380 		r = set_config_value(cache, argv[0], argv[1]);
2381 		if (r)
2382 			break;
2383 
2384 		argc -= 2;
2385 		argv += 2;
2386 	}
2387 
2388 	return r;
2389 }
2390 
2391 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2392 			       char **error)
2393 {
2394 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2395 							   cache->cache_size,
2396 							   cache->origin_sectors,
2397 							   cache->sectors_per_block);
2398 	if (IS_ERR(p)) {
2399 		*error = "Error creating cache's policy";
2400 		return PTR_ERR(p);
2401 	}
2402 	cache->policy = p;
2403 	BUG_ON(!cache->policy);
2404 
2405 	return 0;
2406 }
2407 
2408 /*
2409  * We want the discard block size to be at least the size of the cache
2410  * block size and have no more than 2^14 discard blocks across the origin.
2411  */
2412 #define MAX_DISCARD_BLOCKS (1 << 14)
2413 
2414 static bool too_many_discard_blocks(sector_t discard_block_size,
2415 				    sector_t origin_size)
2416 {
2417 	(void) sector_div(origin_size, discard_block_size);
2418 
2419 	return origin_size > MAX_DISCARD_BLOCKS;
2420 }
2421 
2422 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2423 					     sector_t origin_size)
2424 {
2425 	sector_t discard_block_size = cache_block_size;
2426 
2427 	if (origin_size)
2428 		while (too_many_discard_blocks(discard_block_size, origin_size))
2429 			discard_block_size *= 2;
2430 
2431 	return discard_block_size;
2432 }
2433 
2434 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2435 {
2436 	dm_block_t nr_blocks = from_cblock(size);
2437 
2438 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2439 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2442 			     (unsigned long long) nr_blocks);
2443 
2444 	cache->cache_size = size;
2445 }
2446 
2447 static int is_congested(struct dm_dev *dev, int bdi_bits)
2448 {
2449 	struct request_queue *q = bdev_get_queue(dev->bdev);
2450 	return bdi_congested(q->backing_dev_info, bdi_bits);
2451 }
2452 
2453 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2454 {
2455 	struct cache *cache = container_of(cb, struct cache, callbacks);
2456 
2457 	return is_congested(cache->origin_dev, bdi_bits) ||
2458 		is_congested(cache->cache_dev, bdi_bits);
2459 }
2460 
2461 #define DEFAULT_MIGRATION_THRESHOLD 2048
2462 
2463 static int cache_create(struct cache_args *ca, struct cache **result)
2464 {
2465 	int r = 0;
2466 	char **error = &ca->ti->error;
2467 	struct cache *cache;
2468 	struct dm_target *ti = ca->ti;
2469 	dm_block_t origin_blocks;
2470 	struct dm_cache_metadata *cmd;
2471 	bool may_format = ca->features.mode == CM_WRITE;
2472 
2473 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2474 	if (!cache)
2475 		return -ENOMEM;
2476 
2477 	cache->ti = ca->ti;
2478 	ti->private = cache;
2479 	ti->num_flush_bios = 2;
2480 	ti->flush_supported = true;
2481 
2482 	ti->num_discard_bios = 1;
2483 	ti->discards_supported = true;
2484 
2485 	ti->per_io_data_size = sizeof(struct per_bio_data);
2486 
2487 	cache->features = ca->features;
2488 	if (writethrough_mode(cache)) {
2489 		/* Create bioset for writethrough bios issued to origin */
2490 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2491 		if (r)
2492 			goto bad;
2493 	}
2494 
2495 	cache->callbacks.congested_fn = cache_is_congested;
2496 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2497 
2498 	cache->metadata_dev = ca->metadata_dev;
2499 	cache->origin_dev = ca->origin_dev;
2500 	cache->cache_dev = ca->cache_dev;
2501 
2502 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2503 
2504 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2505 	origin_blocks = block_div(origin_blocks, ca->block_size);
2506 	cache->origin_blocks = to_oblock(origin_blocks);
2507 
2508 	cache->sectors_per_block = ca->block_size;
2509 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2510 		r = -EINVAL;
2511 		goto bad;
2512 	}
2513 
2514 	if (ca->block_size & (ca->block_size - 1)) {
2515 		dm_block_t cache_size = ca->cache_sectors;
2516 
2517 		cache->sectors_per_block_shift = -1;
2518 		cache_size = block_div(cache_size, ca->block_size);
2519 		set_cache_size(cache, to_cblock(cache_size));
2520 	} else {
2521 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2522 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2523 	}
2524 
2525 	r = create_cache_policy(cache, ca, error);
2526 	if (r)
2527 		goto bad;
2528 
2529 	cache->policy_nr_args = ca->policy_argc;
2530 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2531 
2532 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2533 	if (r) {
2534 		*error = "Error setting cache policy's config values";
2535 		goto bad;
2536 	}
2537 
2538 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2539 				     ca->block_size, may_format,
2540 				     dm_cache_policy_get_hint_size(cache->policy),
2541 				     ca->features.metadata_version);
2542 	if (IS_ERR(cmd)) {
2543 		*error = "Error creating metadata object";
2544 		r = PTR_ERR(cmd);
2545 		goto bad;
2546 	}
2547 	cache->cmd = cmd;
2548 	set_cache_mode(cache, CM_WRITE);
2549 	if (get_cache_mode(cache) != CM_WRITE) {
2550 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2551 		r = -EINVAL;
2552 		goto bad;
2553 	}
2554 
2555 	if (passthrough_mode(cache)) {
2556 		bool all_clean;
2557 
2558 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2559 		if (r) {
2560 			*error = "dm_cache_metadata_all_clean() failed";
2561 			goto bad;
2562 		}
2563 
2564 		if (!all_clean) {
2565 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2566 			r = -EINVAL;
2567 			goto bad;
2568 		}
2569 
2570 		policy_allow_migrations(cache->policy, false);
2571 	}
2572 
2573 	spin_lock_init(&cache->lock);
2574 	bio_list_init(&cache->deferred_bios);
2575 	atomic_set(&cache->nr_allocated_migrations, 0);
2576 	atomic_set(&cache->nr_io_migrations, 0);
2577 	init_waitqueue_head(&cache->migration_wait);
2578 
2579 	r = -ENOMEM;
2580 	atomic_set(&cache->nr_dirty, 0);
2581 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2582 	if (!cache->dirty_bitset) {
2583 		*error = "could not allocate dirty bitset";
2584 		goto bad;
2585 	}
2586 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2587 
2588 	cache->discard_block_size =
2589 		calculate_discard_block_size(cache->sectors_per_block,
2590 					     cache->origin_sectors);
2591 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2592 							      cache->discard_block_size));
2593 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2594 	if (!cache->discard_bitset) {
2595 		*error = "could not allocate discard bitset";
2596 		goto bad;
2597 	}
2598 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2599 
2600 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2601 	if (IS_ERR(cache->copier)) {
2602 		*error = "could not create kcopyd client";
2603 		r = PTR_ERR(cache->copier);
2604 		goto bad;
2605 	}
2606 
2607 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2608 	if (!cache->wq) {
2609 		*error = "could not create workqueue for metadata object";
2610 		goto bad;
2611 	}
2612 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2613 	INIT_WORK(&cache->migration_worker, check_migrations);
2614 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2615 
2616 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2617 	if (!cache->prison) {
2618 		*error = "could not create bio prison";
2619 		goto bad;
2620 	}
2621 
2622 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2623 				   migration_cache);
2624 	if (r) {
2625 		*error = "Error creating cache's migration mempool";
2626 		goto bad;
2627 	}
2628 
2629 	cache->need_tick_bio = true;
2630 	cache->sized = false;
2631 	cache->invalidate = false;
2632 	cache->commit_requested = false;
2633 	cache->loaded_mappings = false;
2634 	cache->loaded_discards = false;
2635 
2636 	load_stats(cache);
2637 
2638 	atomic_set(&cache->stats.demotion, 0);
2639 	atomic_set(&cache->stats.promotion, 0);
2640 	atomic_set(&cache->stats.copies_avoided, 0);
2641 	atomic_set(&cache->stats.cache_cell_clash, 0);
2642 	atomic_set(&cache->stats.commit_count, 0);
2643 	atomic_set(&cache->stats.discard_count, 0);
2644 
2645 	spin_lock_init(&cache->invalidation_lock);
2646 	INIT_LIST_HEAD(&cache->invalidation_requests);
2647 
2648 	batcher_init(&cache->committer, commit_op, cache,
2649 		     issue_op, cache, cache->wq);
2650 	iot_init(&cache->tracker);
2651 
2652 	init_rwsem(&cache->background_work_lock);
2653 	prevent_background_work(cache);
2654 
2655 	*result = cache;
2656 	return 0;
2657 bad:
2658 	destroy(cache);
2659 	return r;
2660 }
2661 
2662 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2663 {
2664 	unsigned i;
2665 	const char **copy;
2666 
2667 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2668 	if (!copy)
2669 		return -ENOMEM;
2670 	for (i = 0; i < argc; i++) {
2671 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2672 		if (!copy[i]) {
2673 			while (i--)
2674 				kfree(copy[i]);
2675 			kfree(copy);
2676 			return -ENOMEM;
2677 		}
2678 	}
2679 
2680 	cache->nr_ctr_args = argc;
2681 	cache->ctr_args = copy;
2682 
2683 	return 0;
2684 }
2685 
2686 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2687 {
2688 	int r = -EINVAL;
2689 	struct cache_args *ca;
2690 	struct cache *cache = NULL;
2691 
2692 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2693 	if (!ca) {
2694 		ti->error = "Error allocating memory for cache";
2695 		return -ENOMEM;
2696 	}
2697 	ca->ti = ti;
2698 
2699 	r = parse_cache_args(ca, argc, argv, &ti->error);
2700 	if (r)
2701 		goto out;
2702 
2703 	r = cache_create(ca, &cache);
2704 	if (r)
2705 		goto out;
2706 
2707 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2708 	if (r) {
2709 		destroy(cache);
2710 		goto out;
2711 	}
2712 
2713 	ti->private = cache;
2714 out:
2715 	destroy_cache_args(ca);
2716 	return r;
2717 }
2718 
2719 /*----------------------------------------------------------------*/
2720 
2721 static int cache_map(struct dm_target *ti, struct bio *bio)
2722 {
2723 	struct cache *cache = ti->private;
2724 
2725 	int r;
2726 	bool commit_needed;
2727 	dm_oblock_t block = get_bio_block(cache, bio);
2728 
2729 	init_per_bio_data(bio);
2730 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2731 		/*
2732 		 * This can only occur if the io goes to a partial block at
2733 		 * the end of the origin device.  We don't cache these.
2734 		 * Just remap to the origin and carry on.
2735 		 */
2736 		remap_to_origin(cache, bio);
2737 		accounted_begin(cache, bio);
2738 		return DM_MAPIO_REMAPPED;
2739 	}
2740 
2741 	if (discard_or_flush(bio)) {
2742 		defer_bio(cache, bio);
2743 		return DM_MAPIO_SUBMITTED;
2744 	}
2745 
2746 	r = map_bio(cache, bio, block, &commit_needed);
2747 	if (commit_needed)
2748 		schedule_commit(&cache->committer);
2749 
2750 	return r;
2751 }
2752 
2753 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2754 {
2755 	struct cache *cache = ti->private;
2756 	unsigned long flags;
2757 	struct per_bio_data *pb = get_per_bio_data(bio);
2758 
2759 	if (pb->tick) {
2760 		policy_tick(cache->policy, false);
2761 
2762 		spin_lock_irqsave(&cache->lock, flags);
2763 		cache->need_tick_bio = true;
2764 		spin_unlock_irqrestore(&cache->lock, flags);
2765 	}
2766 
2767 	bio_drop_shared_lock(cache, bio);
2768 	accounted_complete(cache, bio);
2769 
2770 	return DM_ENDIO_DONE;
2771 }
2772 
2773 static int write_dirty_bitset(struct cache *cache)
2774 {
2775 	int r;
2776 
2777 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2778 		return -EINVAL;
2779 
2780 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2781 	if (r)
2782 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2783 
2784 	return r;
2785 }
2786 
2787 static int write_discard_bitset(struct cache *cache)
2788 {
2789 	unsigned i, r;
2790 
2791 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2792 		return -EINVAL;
2793 
2794 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2795 					   cache->discard_nr_blocks);
2796 	if (r) {
2797 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2798 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2799 		return r;
2800 	}
2801 
2802 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2803 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2804 					 is_discarded(cache, to_dblock(i)));
2805 		if (r) {
2806 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2807 			return r;
2808 		}
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static int write_hints(struct cache *cache)
2815 {
2816 	int r;
2817 
2818 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2819 		return -EINVAL;
2820 
2821 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2822 	if (r) {
2823 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2824 		return r;
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 /*
2831  * returns true on success
2832  */
2833 static bool sync_metadata(struct cache *cache)
2834 {
2835 	int r1, r2, r3, r4;
2836 
2837 	r1 = write_dirty_bitset(cache);
2838 	if (r1)
2839 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2840 
2841 	r2 = write_discard_bitset(cache);
2842 	if (r2)
2843 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2844 
2845 	save_stats(cache);
2846 
2847 	r3 = write_hints(cache);
2848 	if (r3)
2849 		DMERR("%s: could not write hints", cache_device_name(cache));
2850 
2851 	/*
2852 	 * If writing the above metadata failed, we still commit, but don't
2853 	 * set the clean shutdown flag.  This will effectively force every
2854 	 * dirty bit to be set on reload.
2855 	 */
2856 	r4 = commit(cache, !r1 && !r2 && !r3);
2857 	if (r4)
2858 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2859 
2860 	return !r1 && !r2 && !r3 && !r4;
2861 }
2862 
2863 static void cache_postsuspend(struct dm_target *ti)
2864 {
2865 	struct cache *cache = ti->private;
2866 
2867 	prevent_background_work(cache);
2868 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2869 
2870 	cancel_delayed_work(&cache->waker);
2871 	flush_workqueue(cache->wq);
2872 	WARN_ON(cache->tracker.in_flight);
2873 
2874 	/*
2875 	 * If it's a flush suspend there won't be any deferred bios, so this
2876 	 * call is harmless.
2877 	 */
2878 	requeue_deferred_bios(cache);
2879 
2880 	if (get_cache_mode(cache) == CM_WRITE)
2881 		(void) sync_metadata(cache);
2882 }
2883 
2884 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2885 			bool dirty, uint32_t hint, bool hint_valid)
2886 {
2887 	int r;
2888 	struct cache *cache = context;
2889 
2890 	if (dirty) {
2891 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2892 		atomic_inc(&cache->nr_dirty);
2893 	} else
2894 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2895 
2896 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2897 	if (r)
2898 		return r;
2899 
2900 	return 0;
2901 }
2902 
2903 /*
2904  * The discard block size in the on disk metadata is not
2905  * neccessarily the same as we're currently using.  So we have to
2906  * be careful to only set the discarded attribute if we know it
2907  * covers a complete block of the new size.
2908  */
2909 struct discard_load_info {
2910 	struct cache *cache;
2911 
2912 	/*
2913 	 * These blocks are sized using the on disk dblock size, rather
2914 	 * than the current one.
2915 	 */
2916 	dm_block_t block_size;
2917 	dm_block_t discard_begin, discard_end;
2918 };
2919 
2920 static void discard_load_info_init(struct cache *cache,
2921 				   struct discard_load_info *li)
2922 {
2923 	li->cache = cache;
2924 	li->discard_begin = li->discard_end = 0;
2925 }
2926 
2927 static void set_discard_range(struct discard_load_info *li)
2928 {
2929 	sector_t b, e;
2930 
2931 	if (li->discard_begin == li->discard_end)
2932 		return;
2933 
2934 	/*
2935 	 * Convert to sectors.
2936 	 */
2937 	b = li->discard_begin * li->block_size;
2938 	e = li->discard_end * li->block_size;
2939 
2940 	/*
2941 	 * Then convert back to the current dblock size.
2942 	 */
2943 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2944 	sector_div(e, li->cache->discard_block_size);
2945 
2946 	/*
2947 	 * The origin may have shrunk, so we need to check we're still in
2948 	 * bounds.
2949 	 */
2950 	if (e > from_dblock(li->cache->discard_nr_blocks))
2951 		e = from_dblock(li->cache->discard_nr_blocks);
2952 
2953 	for (; b < e; b++)
2954 		set_discard(li->cache, to_dblock(b));
2955 }
2956 
2957 static int load_discard(void *context, sector_t discard_block_size,
2958 			dm_dblock_t dblock, bool discard)
2959 {
2960 	struct discard_load_info *li = context;
2961 
2962 	li->block_size = discard_block_size;
2963 
2964 	if (discard) {
2965 		if (from_dblock(dblock) == li->discard_end)
2966 			/*
2967 			 * We're already in a discard range, just extend it.
2968 			 */
2969 			li->discard_end = li->discard_end + 1ULL;
2970 
2971 		else {
2972 			/*
2973 			 * Emit the old range and start a new one.
2974 			 */
2975 			set_discard_range(li);
2976 			li->discard_begin = from_dblock(dblock);
2977 			li->discard_end = li->discard_begin + 1ULL;
2978 		}
2979 	} else {
2980 		set_discard_range(li);
2981 		li->discard_begin = li->discard_end = 0;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2988 {
2989 	sector_t size = get_dev_size(cache->cache_dev);
2990 	(void) sector_div(size, cache->sectors_per_block);
2991 	return to_cblock(size);
2992 }
2993 
2994 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2995 {
2996 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2997 		if (cache->sized) {
2998 			DMERR("%s: unable to extend cache due to missing cache table reload",
2999 			      cache_device_name(cache));
3000 			return false;
3001 		}
3002 	}
3003 
3004 	/*
3005 	 * We can't drop a dirty block when shrinking the cache.
3006 	 */
3007 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3008 		new_size = to_cblock(from_cblock(new_size) + 1);
3009 		if (is_dirty(cache, new_size)) {
3010 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011 			      cache_device_name(cache),
3012 			      (unsigned long long) from_cblock(new_size));
3013 			return false;
3014 		}
3015 	}
3016 
3017 	return true;
3018 }
3019 
3020 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3021 {
3022 	int r;
3023 
3024 	r = dm_cache_resize(cache->cmd, new_size);
3025 	if (r) {
3026 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3027 		metadata_operation_failed(cache, "dm_cache_resize", r);
3028 		return r;
3029 	}
3030 
3031 	set_cache_size(cache, new_size);
3032 
3033 	return 0;
3034 }
3035 
3036 static int cache_preresume(struct dm_target *ti)
3037 {
3038 	int r = 0;
3039 	struct cache *cache = ti->private;
3040 	dm_cblock_t csize = get_cache_dev_size(cache);
3041 
3042 	/*
3043 	 * Check to see if the cache has resized.
3044 	 */
3045 	if (!cache->sized) {
3046 		r = resize_cache_dev(cache, csize);
3047 		if (r)
3048 			return r;
3049 
3050 		cache->sized = true;
3051 
3052 	} else if (csize != cache->cache_size) {
3053 		if (!can_resize(cache, csize))
3054 			return -EINVAL;
3055 
3056 		r = resize_cache_dev(cache, csize);
3057 		if (r)
3058 			return r;
3059 	}
3060 
3061 	if (!cache->loaded_mappings) {
3062 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3063 					   load_mapping, cache);
3064 		if (r) {
3065 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3066 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3067 			return r;
3068 		}
3069 
3070 		cache->loaded_mappings = true;
3071 	}
3072 
3073 	if (!cache->loaded_discards) {
3074 		struct discard_load_info li;
3075 
3076 		/*
3077 		 * The discard bitset could have been resized, or the
3078 		 * discard block size changed.  To be safe we start by
3079 		 * setting every dblock to not discarded.
3080 		 */
3081 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3082 
3083 		discard_load_info_init(cache, &li);
3084 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3085 		if (r) {
3086 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3087 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3088 			return r;
3089 		}
3090 		set_discard_range(&li);
3091 
3092 		cache->loaded_discards = true;
3093 	}
3094 
3095 	return r;
3096 }
3097 
3098 static void cache_resume(struct dm_target *ti)
3099 {
3100 	struct cache *cache = ti->private;
3101 
3102 	cache->need_tick_bio = true;
3103 	allow_background_work(cache);
3104 	do_waker(&cache->waker.work);
3105 }
3106 
3107 static void emit_flags(struct cache *cache, char *result,
3108 		       unsigned maxlen, ssize_t *sz_ptr)
3109 {
3110 	ssize_t sz = *sz_ptr;
3111 	struct cache_features *cf = &cache->features;
3112 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3113 
3114 	DMEMIT("%u ", count);
3115 
3116 	if (cf->metadata_version == 2)
3117 		DMEMIT("metadata2 ");
3118 
3119 	if (writethrough_mode(cache))
3120 		DMEMIT("writethrough ");
3121 
3122 	else if (passthrough_mode(cache))
3123 		DMEMIT("passthrough ");
3124 
3125 	else if (writeback_mode(cache))
3126 		DMEMIT("writeback ");
3127 
3128 	else {
3129 		DMEMIT("unknown ");
3130 		DMERR("%s: internal error: unknown io mode: %d",
3131 		      cache_device_name(cache), (int) cf->io_mode);
3132 	}
3133 
3134 	if (!cf->discard_passdown)
3135 		DMEMIT("no_discard_passdown ");
3136 
3137 	*sz_ptr = sz;
3138 }
3139 
3140 /*
3141  * Status format:
3142  *
3143  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144  * <cache block size> <#used cache blocks>/<#total cache blocks>
3145  * <#read hits> <#read misses> <#write hits> <#write misses>
3146  * <#demotions> <#promotions> <#dirty>
3147  * <#features> <features>*
3148  * <#core args> <core args>
3149  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3150  */
3151 static void cache_status(struct dm_target *ti, status_type_t type,
3152 			 unsigned status_flags, char *result, unsigned maxlen)
3153 {
3154 	int r = 0;
3155 	unsigned i;
3156 	ssize_t sz = 0;
3157 	dm_block_t nr_free_blocks_metadata = 0;
3158 	dm_block_t nr_blocks_metadata = 0;
3159 	char buf[BDEVNAME_SIZE];
3160 	struct cache *cache = ti->private;
3161 	dm_cblock_t residency;
3162 	bool needs_check;
3163 
3164 	switch (type) {
3165 	case STATUSTYPE_INFO:
3166 		if (get_cache_mode(cache) == CM_FAIL) {
3167 			DMEMIT("Fail");
3168 			break;
3169 		}
3170 
3171 		/* Commit to ensure statistics aren't out-of-date */
3172 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3173 			(void) commit(cache, false);
3174 
3175 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3176 		if (r) {
3177 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178 			      cache_device_name(cache), r);
3179 			goto err;
3180 		}
3181 
3182 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3183 		if (r) {
3184 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185 			      cache_device_name(cache), r);
3186 			goto err;
3187 		}
3188 
3189 		residency = policy_residency(cache->policy);
3190 
3191 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3193 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3194 		       (unsigned long long)nr_blocks_metadata,
3195 		       (unsigned long long)cache->sectors_per_block,
3196 		       (unsigned long long) from_cblock(residency),
3197 		       (unsigned long long) from_cblock(cache->cache_size),
3198 		       (unsigned) atomic_read(&cache->stats.read_hit),
3199 		       (unsigned) atomic_read(&cache->stats.read_miss),
3200 		       (unsigned) atomic_read(&cache->stats.write_hit),
3201 		       (unsigned) atomic_read(&cache->stats.write_miss),
3202 		       (unsigned) atomic_read(&cache->stats.demotion),
3203 		       (unsigned) atomic_read(&cache->stats.promotion),
3204 		       (unsigned long) atomic_read(&cache->nr_dirty));
3205 
3206 		emit_flags(cache, result, maxlen, &sz);
3207 
3208 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3209 
3210 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3211 		if (sz < maxlen) {
3212 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3213 			if (r)
3214 				DMERR("%s: policy_emit_config_values returned %d",
3215 				      cache_device_name(cache), r);
3216 		}
3217 
3218 		if (get_cache_mode(cache) == CM_READ_ONLY)
3219 			DMEMIT("ro ");
3220 		else
3221 			DMEMIT("rw ");
3222 
3223 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3224 
3225 		if (r || needs_check)
3226 			DMEMIT("needs_check ");
3227 		else
3228 			DMEMIT("- ");
3229 
3230 		break;
3231 
3232 	case STATUSTYPE_TABLE:
3233 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3234 		DMEMIT("%s ", buf);
3235 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3236 		DMEMIT("%s ", buf);
3237 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3238 		DMEMIT("%s", buf);
3239 
3240 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3241 			DMEMIT(" %s", cache->ctr_args[i]);
3242 		if (cache->nr_ctr_args)
3243 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3244 	}
3245 
3246 	return;
3247 
3248 err:
3249 	DMEMIT("Error");
3250 }
3251 
3252 /*
3253  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3254  * the one-past-the-end value.
3255  */
3256 struct cblock_range {
3257 	dm_cblock_t begin;
3258 	dm_cblock_t end;
3259 };
3260 
3261 /*
3262  * A cache block range can take two forms:
3263  *
3264  * i) A single cblock, eg. '3456'
3265  * ii) A begin and end cblock with a dash between, eg. 123-234
3266  */
3267 static int parse_cblock_range(struct cache *cache, const char *str,
3268 			      struct cblock_range *result)
3269 {
3270 	char dummy;
3271 	uint64_t b, e;
3272 	int r;
3273 
3274 	/*
3275 	 * Try and parse form (ii) first.
3276 	 */
3277 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278 	if (r < 0)
3279 		return r;
3280 
3281 	if (r == 2) {
3282 		result->begin = to_cblock(b);
3283 		result->end = to_cblock(e);
3284 		return 0;
3285 	}
3286 
3287 	/*
3288 	 * That didn't work, try form (i).
3289 	 */
3290 	r = sscanf(str, "%llu%c", &b, &dummy);
3291 	if (r < 0)
3292 		return r;
3293 
3294 	if (r == 1) {
3295 		result->begin = to_cblock(b);
3296 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3297 		return 0;
3298 	}
3299 
3300 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3301 	return -EINVAL;
3302 }
3303 
3304 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3305 {
3306 	uint64_t b = from_cblock(range->begin);
3307 	uint64_t e = from_cblock(range->end);
3308 	uint64_t n = from_cblock(cache->cache_size);
3309 
3310 	if (b >= n) {
3311 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3312 		      cache_device_name(cache), b, n);
3313 		return -EINVAL;
3314 	}
3315 
3316 	if (e > n) {
3317 		DMERR("%s: end cblock out of range: %llu > %llu",
3318 		      cache_device_name(cache), e, n);
3319 		return -EINVAL;
3320 	}
3321 
3322 	if (b >= e) {
3323 		DMERR("%s: invalid cblock range: %llu >= %llu",
3324 		      cache_device_name(cache), b, e);
3325 		return -EINVAL;
3326 	}
3327 
3328 	return 0;
3329 }
3330 
3331 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3332 {
3333 	return to_cblock(from_cblock(b) + 1);
3334 }
3335 
3336 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337 {
3338 	int r = 0;
3339 
3340 	/*
3341 	 * We don't need to do any locking here because we know we're in
3342 	 * passthrough mode.  There's is potential for a race between an
3343 	 * invalidation triggered by an io and an invalidation message.  This
3344 	 * is harmless, we must not worry if the policy call fails.
3345 	 */
3346 	while (range->begin != range->end) {
3347 		r = invalidate_cblock(cache, range->begin);
3348 		if (r)
3349 			return r;
3350 
3351 		range->begin = cblock_succ(range->begin);
3352 	}
3353 
3354 	cache->commit_requested = true;
3355 	return r;
3356 }
3357 
3358 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3359 					      const char **cblock_ranges)
3360 {
3361 	int r = 0;
3362 	unsigned i;
3363 	struct cblock_range range;
3364 
3365 	if (!passthrough_mode(cache)) {
3366 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3367 		      cache_device_name(cache));
3368 		return -EPERM;
3369 	}
3370 
3371 	for (i = 0; i < count; i++) {
3372 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3373 		if (r)
3374 			break;
3375 
3376 		r = validate_cblock_range(cache, &range);
3377 		if (r)
3378 			break;
3379 
3380 		/*
3381 		 * Pass begin and end origin blocks to the worker and wake it.
3382 		 */
3383 		r = request_invalidation(cache, &range);
3384 		if (r)
3385 			break;
3386 	}
3387 
3388 	return r;
3389 }
3390 
3391 /*
3392  * Supports
3393  *	"<key> <value>"
3394  * and
3395  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3396  *
3397  * The key migration_threshold is supported by the cache target core.
3398  */
3399 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3400 			 char *result, unsigned maxlen)
3401 {
3402 	struct cache *cache = ti->private;
3403 
3404 	if (!argc)
3405 		return -EINVAL;
3406 
3407 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3408 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409 		      cache_device_name(cache));
3410 		return -EOPNOTSUPP;
3411 	}
3412 
3413 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3414 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415 
3416 	if (argc != 2)
3417 		return -EINVAL;
3418 
3419 	return set_config_value(cache, argv[0], argv[1]);
3420 }
3421 
3422 static int cache_iterate_devices(struct dm_target *ti,
3423 				 iterate_devices_callout_fn fn, void *data)
3424 {
3425 	int r = 0;
3426 	struct cache *cache = ti->private;
3427 
3428 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3429 	if (!r)
3430 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431 
3432 	return r;
3433 }
3434 
3435 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3436 {
3437 	struct request_queue *q = bdev_get_queue(origin_bdev);
3438 
3439 	return q && blk_queue_discard(q);
3440 }
3441 
3442 /*
3443  * If discard_passdown was enabled verify that the origin device
3444  * supports discards.  Disable discard_passdown if not.
3445  */
3446 static void disable_passdown_if_not_supported(struct cache *cache)
3447 {
3448 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3449 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3450 	const char *reason = NULL;
3451 	char buf[BDEVNAME_SIZE];
3452 
3453 	if (!cache->features.discard_passdown)
3454 		return;
3455 
3456 	if (!origin_dev_supports_discard(origin_bdev))
3457 		reason = "discard unsupported";
3458 
3459 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3460 		reason = "max discard sectors smaller than a block";
3461 
3462 	if (reason) {
3463 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464 		       bdevname(origin_bdev, buf), reason);
3465 		cache->features.discard_passdown = false;
3466 	}
3467 }
3468 
3469 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3470 {
3471 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3472 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3473 
3474 	if (!cache->features.discard_passdown) {
3475 		/* No passdown is done so setting own virtual limits */
3476 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3477 						    cache->origin_sectors);
3478 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3479 		return;
3480 	}
3481 
3482 	/*
3483 	 * cache_iterate_devices() is stacking both origin and fast device limits
3484 	 * but discards aren't passed to fast device, so inherit origin's limits.
3485 	 */
3486 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3487 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3488 	limits->discard_granularity = origin_limits->discard_granularity;
3489 	limits->discard_alignment = origin_limits->discard_alignment;
3490 	limits->discard_misaligned = origin_limits->discard_misaligned;
3491 }
3492 
3493 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3494 {
3495 	struct cache *cache = ti->private;
3496 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3497 
3498 	/*
3499 	 * If the system-determined stacked limits are compatible with the
3500 	 * cache's blocksize (io_opt is a factor) do not override them.
3501 	 */
3502 	if (io_opt_sectors < cache->sectors_per_block ||
3503 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3504 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3505 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3506 	}
3507 
3508 	disable_passdown_if_not_supported(cache);
3509 	set_discard_limits(cache, limits);
3510 }
3511 
3512 /*----------------------------------------------------------------*/
3513 
3514 static struct target_type cache_target = {
3515 	.name = "cache",
3516 	.version = {2, 1, 0},
3517 	.module = THIS_MODULE,
3518 	.ctr = cache_ctr,
3519 	.dtr = cache_dtr,
3520 	.map = cache_map,
3521 	.end_io = cache_end_io,
3522 	.postsuspend = cache_postsuspend,
3523 	.preresume = cache_preresume,
3524 	.resume = cache_resume,
3525 	.status = cache_status,
3526 	.message = cache_message,
3527 	.iterate_devices = cache_iterate_devices,
3528 	.io_hints = cache_io_hints,
3529 };
3530 
3531 static int __init dm_cache_init(void)
3532 {
3533 	int r;
3534 
3535 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3536 	if (!migration_cache)
3537 		return -ENOMEM;
3538 
3539 	r = dm_register_target(&cache_target);
3540 	if (r) {
3541 		DMERR("cache target registration failed: %d", r);
3542 		kmem_cache_destroy(migration_cache);
3543 		return r;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 static void __exit dm_cache_exit(void)
3550 {
3551 	dm_unregister_target(&cache_target);
3552 	kmem_cache_destroy(migration_cache);
3553 }
3554 
3555 module_init(dm_cache_init);
3556 module_exit(dm_cache_exit);
3557 
3558 MODULE_DESCRIPTION(DM_NAME " cache target");
3559 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560 MODULE_LICENSE("GPL");
3561