xref: /linux/drivers/md/dm-crypt.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bvec_iter iter_in;
57 	struct bio *bio_out;
58 	struct bvec_iter iter_out;
59 	atomic_t cc_pending;
60 	u64 cc_sector;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 	bool aead_recheck;
66 	bool aead_failed;
67 
68 };
69 
70 /*
71  * per bio private data
72  */
73 struct dm_crypt_io {
74 	struct crypt_config *cc;
75 	struct bio *base_bio;
76 	u8 *integrity_metadata;
77 	bool integrity_metadata_from_pool:1;
78 
79 	struct work_struct work;
80 
81 	struct convert_context ctx;
82 
83 	atomic_t io_pending;
84 	blk_status_t error;
85 	sector_t sector;
86 
87 	struct bvec_iter saved_bi_iter;
88 
89 	struct rb_node rb_node;
90 } CRYPTO_MINALIGN_ATTR;
91 
92 struct dm_crypt_request {
93 	struct convert_context *ctx;
94 	struct scatterlist sg_in[4];
95 	struct scatterlist sg_out[4];
96 	u64 iv_sector;
97 };
98 
99 struct crypt_config;
100 
101 struct crypt_iv_operations {
102 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
103 		   const char *opts);
104 	void (*dtr)(struct crypt_config *cc);
105 	int (*init)(struct crypt_config *cc);
106 	int (*wipe)(struct crypt_config *cc);
107 	int (*generator)(struct crypt_config *cc, u8 *iv,
108 			 struct dm_crypt_request *dmreq);
109 	int (*post)(struct crypt_config *cc, u8 *iv,
110 		    struct dm_crypt_request *dmreq);
111 };
112 
113 struct iv_benbi_private {
114 	int shift;
115 };
116 
117 #define LMK_SEED_SIZE 64 /* hash + 0 */
118 struct iv_lmk_private {
119 	struct crypto_shash *hash_tfm;
120 	u8 *seed;
121 };
122 
123 #define TCW_WHITENING_SIZE 16
124 struct iv_tcw_private {
125 	struct crypto_shash *crc32_tfm;
126 	u8 *iv_seed;
127 	u8 *whitening;
128 };
129 
130 #define ELEPHANT_MAX_KEY_SIZE 32
131 struct iv_elephant_private {
132 	struct crypto_skcipher *tfm;
133 };
134 
135 /*
136  * Crypt: maps a linear range of a block device
137  * and encrypts / decrypts at the same time.
138  */
139 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
140 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
141 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
142 	     DM_CRYPT_WRITE_INLINE };
143 
144 enum cipher_flags {
145 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
146 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
147 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
148 };
149 
150 /*
151  * The fields in here must be read only after initialization.
152  */
153 struct crypt_config {
154 	struct dm_dev *dev;
155 	sector_t start;
156 
157 	struct percpu_counter n_allocated_pages;
158 
159 	struct workqueue_struct *io_queue;
160 	struct workqueue_struct *crypt_queue;
161 
162 	spinlock_t write_thread_lock;
163 	struct task_struct *write_thread;
164 	struct rb_root write_tree;
165 
166 	char *cipher_string;
167 	char *cipher_auth;
168 	char *key_string;
169 
170 	const struct crypt_iv_operations *iv_gen_ops;
171 	union {
172 		struct iv_benbi_private benbi;
173 		struct iv_lmk_private lmk;
174 		struct iv_tcw_private tcw;
175 		struct iv_elephant_private elephant;
176 	} iv_gen_private;
177 	u64 iv_offset;
178 	unsigned int iv_size;
179 	unsigned short sector_size;
180 	unsigned char sector_shift;
181 
182 	union {
183 		struct crypto_skcipher **tfms;
184 		struct crypto_aead **tfms_aead;
185 	} cipher_tfm;
186 	unsigned int tfms_count;
187 	unsigned long cipher_flags;
188 
189 	/*
190 	 * Layout of each crypto request:
191 	 *
192 	 *   struct skcipher_request
193 	 *      context
194 	 *      padding
195 	 *   struct dm_crypt_request
196 	 *      padding
197 	 *   IV
198 	 *
199 	 * The padding is added so that dm_crypt_request and the IV are
200 	 * correctly aligned.
201 	 */
202 	unsigned int dmreq_start;
203 
204 	unsigned int per_bio_data_size;
205 
206 	unsigned long flags;
207 	unsigned int key_size;
208 	unsigned int key_parts;      /* independent parts in key buffer */
209 	unsigned int key_extra_size; /* additional keys length */
210 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
211 
212 	unsigned int integrity_tag_size;
213 	unsigned int integrity_iv_size;
214 	unsigned int on_disk_tag_size;
215 
216 	/*
217 	 * pool for per bio private data, crypto requests,
218 	 * encryption requeusts/buffer pages and integrity tags
219 	 */
220 	unsigned int tag_pool_max_sectors;
221 	mempool_t tag_pool;
222 	mempool_t req_pool;
223 	mempool_t page_pool;
224 
225 	struct bio_set bs;
226 	struct mutex bio_alloc_lock;
227 
228 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
229 	u8 key[] __counted_by(key_size);
230 };
231 
232 #define MIN_IOS		64
233 #define MAX_TAG_SIZE	480
234 #define POOL_ENTRY_SIZE	512
235 
236 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
237 static unsigned int dm_crypt_clients_n;
238 static volatile unsigned long dm_crypt_pages_per_client;
239 #define DM_CRYPT_MEMORY_PERCENT			2
240 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
241 
242 static void crypt_endio(struct bio *clone);
243 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
244 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
245 					     struct scatterlist *sg);
246 
247 static bool crypt_integrity_aead(struct crypt_config *cc);
248 
249 /*
250  * Use this to access cipher attributes that are independent of the key.
251  */
252 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
253 {
254 	return cc->cipher_tfm.tfms[0];
255 }
256 
257 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
258 {
259 	return cc->cipher_tfm.tfms_aead[0];
260 }
261 
262 /*
263  * Different IV generation algorithms:
264  *
265  * plain: the initial vector is the 32-bit little-endian version of the sector
266  *        number, padded with zeros if necessary.
267  *
268  * plain64: the initial vector is the 64-bit little-endian version of the sector
269  *        number, padded with zeros if necessary.
270  *
271  * plain64be: the initial vector is the 64-bit big-endian version of the sector
272  *        number, padded with zeros if necessary.
273  *
274  * essiv: "encrypted sector|salt initial vector", the sector number is
275  *        encrypted with the bulk cipher using a salt as key. The salt
276  *        should be derived from the bulk cipher's key via hashing.
277  *
278  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
279  *        (needed for LRW-32-AES and possible other narrow block modes)
280  *
281  * null: the initial vector is always zero.  Provides compatibility with
282  *       obsolete loop_fish2 devices.  Do not use for new devices.
283  *
284  * lmk:  Compatible implementation of the block chaining mode used
285  *       by the Loop-AES block device encryption system
286  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
287  *       It operates on full 512 byte sectors and uses CBC
288  *       with an IV derived from the sector number, the data and
289  *       optionally extra IV seed.
290  *       This means that after decryption the first block
291  *       of sector must be tweaked according to decrypted data.
292  *       Loop-AES can use three encryption schemes:
293  *         version 1: is plain aes-cbc mode
294  *         version 2: uses 64 multikey scheme with lmk IV generator
295  *         version 3: the same as version 2 with additional IV seed
296  *                   (it uses 65 keys, last key is used as IV seed)
297  *
298  * tcw:  Compatible implementation of the block chaining mode used
299  *       by the TrueCrypt device encryption system (prior to version 4.1).
300  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
301  *       It operates on full 512 byte sectors and uses CBC
302  *       with an IV derived from initial key and the sector number.
303  *       In addition, whitening value is applied on every sector, whitening
304  *       is calculated from initial key, sector number and mixed using CRC32.
305  *       Note that this encryption scheme is vulnerable to watermarking attacks
306  *       and should be used for old compatible containers access only.
307  *
308  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
309  *        The IV is encrypted little-endian byte-offset (with the same key
310  *        and cipher as the volume).
311  *
312  * elephant: The extended version of eboiv with additional Elephant diffuser
313  *           used with Bitlocker CBC mode.
314  *           This mode was used in older Windows systems
315  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
316  */
317 
318 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
319 			      struct dm_crypt_request *dmreq)
320 {
321 	memset(iv, 0, cc->iv_size);
322 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
323 
324 	return 0;
325 }
326 
327 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
328 				struct dm_crypt_request *dmreq)
329 {
330 	memset(iv, 0, cc->iv_size);
331 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
332 
333 	return 0;
334 }
335 
336 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
337 				  struct dm_crypt_request *dmreq)
338 {
339 	memset(iv, 0, cc->iv_size);
340 	/* iv_size is at least of size u64; usually it is 16 bytes */
341 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
342 
343 	return 0;
344 }
345 
346 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
347 			      struct dm_crypt_request *dmreq)
348 {
349 	/*
350 	 * ESSIV encryption of the IV is now handled by the crypto API,
351 	 * so just pass the plain sector number here.
352 	 */
353 	memset(iv, 0, cc->iv_size);
354 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
355 
356 	return 0;
357 }
358 
359 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
360 			      const char *opts)
361 {
362 	unsigned int bs;
363 	int log;
364 
365 	if (crypt_integrity_aead(cc))
366 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
367 	else
368 		bs = crypto_skcipher_blocksize(any_tfm(cc));
369 	log = ilog2(bs);
370 
371 	/*
372 	 * We need to calculate how far we must shift the sector count
373 	 * to get the cipher block count, we use this shift in _gen.
374 	 */
375 	if (1 << log != bs) {
376 		ti->error = "cypher blocksize is not a power of 2";
377 		return -EINVAL;
378 	}
379 
380 	if (log > 9) {
381 		ti->error = "cypher blocksize is > 512";
382 		return -EINVAL;
383 	}
384 
385 	cc->iv_gen_private.benbi.shift = 9 - log;
386 
387 	return 0;
388 }
389 
390 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
391 {
392 }
393 
394 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
395 			      struct dm_crypt_request *dmreq)
396 {
397 	__be64 val;
398 
399 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
400 
401 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
402 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
403 
404 	return 0;
405 }
406 
407 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
408 			     struct dm_crypt_request *dmreq)
409 {
410 	memset(iv, 0, cc->iv_size);
411 
412 	return 0;
413 }
414 
415 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
416 {
417 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
418 
419 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
420 		crypto_free_shash(lmk->hash_tfm);
421 	lmk->hash_tfm = NULL;
422 
423 	kfree_sensitive(lmk->seed);
424 	lmk->seed = NULL;
425 }
426 
427 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
428 			    const char *opts)
429 {
430 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
431 
432 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
433 		ti->error = "Unsupported sector size for LMK";
434 		return -EINVAL;
435 	}
436 
437 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
438 					   CRYPTO_ALG_ALLOCATES_MEMORY);
439 	if (IS_ERR(lmk->hash_tfm)) {
440 		ti->error = "Error initializing LMK hash";
441 		return PTR_ERR(lmk->hash_tfm);
442 	}
443 
444 	/* No seed in LMK version 2 */
445 	if (cc->key_parts == cc->tfms_count) {
446 		lmk->seed = NULL;
447 		return 0;
448 	}
449 
450 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
451 	if (!lmk->seed) {
452 		crypt_iv_lmk_dtr(cc);
453 		ti->error = "Error kmallocing seed storage in LMK";
454 		return -ENOMEM;
455 	}
456 
457 	return 0;
458 }
459 
460 static int crypt_iv_lmk_init(struct crypt_config *cc)
461 {
462 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463 	int subkey_size = cc->key_size / cc->key_parts;
464 
465 	/* LMK seed is on the position of LMK_KEYS + 1 key */
466 	if (lmk->seed)
467 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
468 		       crypto_shash_digestsize(lmk->hash_tfm));
469 
470 	return 0;
471 }
472 
473 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
474 {
475 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476 
477 	if (lmk->seed)
478 		memset(lmk->seed, 0, LMK_SEED_SIZE);
479 
480 	return 0;
481 }
482 
483 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
484 			    struct dm_crypt_request *dmreq,
485 			    u8 *data)
486 {
487 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
489 	struct md5_state md5state;
490 	__le32 buf[4];
491 	int i, r;
492 
493 	desc->tfm = lmk->hash_tfm;
494 
495 	r = crypto_shash_init(desc);
496 	if (r)
497 		return r;
498 
499 	if (lmk->seed) {
500 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
501 		if (r)
502 			return r;
503 	}
504 
505 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
506 	r = crypto_shash_update(desc, data + 16, 16 * 31);
507 	if (r)
508 		return r;
509 
510 	/* Sector is cropped to 56 bits here */
511 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
512 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
513 	buf[2] = cpu_to_le32(4024);
514 	buf[3] = 0;
515 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
516 	if (r)
517 		return r;
518 
519 	/* No MD5 padding here */
520 	r = crypto_shash_export(desc, &md5state);
521 	if (r)
522 		return r;
523 
524 	for (i = 0; i < MD5_HASH_WORDS; i++)
525 		__cpu_to_le32s(&md5state.hash[i]);
526 	memcpy(iv, &md5state.hash, cc->iv_size);
527 
528 	return 0;
529 }
530 
531 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
532 			    struct dm_crypt_request *dmreq)
533 {
534 	struct scatterlist *sg;
535 	u8 *src;
536 	int r = 0;
537 
538 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
539 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
540 		src = kmap_local_page(sg_page(sg));
541 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
542 		kunmap_local(src);
543 	} else
544 		memset(iv, 0, cc->iv_size);
545 
546 	return r;
547 }
548 
549 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
550 			     struct dm_crypt_request *dmreq)
551 {
552 	struct scatterlist *sg;
553 	u8 *dst;
554 	int r;
555 
556 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
557 		return 0;
558 
559 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
560 	dst = kmap_local_page(sg_page(sg));
561 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
562 
563 	/* Tweak the first block of plaintext sector */
564 	if (!r)
565 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
566 
567 	kunmap_local(dst);
568 	return r;
569 }
570 
571 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
572 {
573 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574 
575 	kfree_sensitive(tcw->iv_seed);
576 	tcw->iv_seed = NULL;
577 	kfree_sensitive(tcw->whitening);
578 	tcw->whitening = NULL;
579 
580 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
581 		crypto_free_shash(tcw->crc32_tfm);
582 	tcw->crc32_tfm = NULL;
583 }
584 
585 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
586 			    const char *opts)
587 {
588 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
589 
590 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
591 		ti->error = "Unsupported sector size for TCW";
592 		return -EINVAL;
593 	}
594 
595 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
596 		ti->error = "Wrong key size for TCW";
597 		return -EINVAL;
598 	}
599 
600 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
601 					    CRYPTO_ALG_ALLOCATES_MEMORY);
602 	if (IS_ERR(tcw->crc32_tfm)) {
603 		ti->error = "Error initializing CRC32 in TCW";
604 		return PTR_ERR(tcw->crc32_tfm);
605 	}
606 
607 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
608 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609 	if (!tcw->iv_seed || !tcw->whitening) {
610 		crypt_iv_tcw_dtr(cc);
611 		ti->error = "Error allocating seed storage in TCW";
612 		return -ENOMEM;
613 	}
614 
615 	return 0;
616 }
617 
618 static int crypt_iv_tcw_init(struct crypt_config *cc)
619 {
620 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622 
623 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625 	       TCW_WHITENING_SIZE);
626 
627 	return 0;
628 }
629 
630 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631 {
632 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633 
634 	memset(tcw->iv_seed, 0, cc->iv_size);
635 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636 
637 	return 0;
638 }
639 
640 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
641 				  struct dm_crypt_request *dmreq,
642 				  u8 *data)
643 {
644 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
645 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
646 	u8 buf[TCW_WHITENING_SIZE];
647 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
648 	int i, r;
649 
650 	/* xor whitening with sector number */
651 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
652 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
653 
654 	/* calculate crc32 for every 32bit part and xor it */
655 	desc->tfm = tcw->crc32_tfm;
656 	for (i = 0; i < 4; i++) {
657 		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
658 		if (r)
659 			goto out;
660 	}
661 	crypto_xor(&buf[0], &buf[12], 4);
662 	crypto_xor(&buf[4], &buf[8], 4);
663 
664 	/* apply whitening (8 bytes) to whole sector */
665 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
666 		crypto_xor(data + i * 8, buf, 8);
667 out:
668 	memzero_explicit(buf, sizeof(buf));
669 	return r;
670 }
671 
672 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
673 			    struct dm_crypt_request *dmreq)
674 {
675 	struct scatterlist *sg;
676 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
678 	u8 *src;
679 	int r = 0;
680 
681 	/* Remove whitening from ciphertext */
682 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
683 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
684 		src = kmap_local_page(sg_page(sg));
685 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
686 		kunmap_local(src);
687 	}
688 
689 	/* Calculate IV */
690 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
691 	if (cc->iv_size > 8)
692 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
693 			       cc->iv_size - 8);
694 
695 	return r;
696 }
697 
698 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
699 			     struct dm_crypt_request *dmreq)
700 {
701 	struct scatterlist *sg;
702 	u8 *dst;
703 	int r;
704 
705 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
706 		return 0;
707 
708 	/* Apply whitening on ciphertext */
709 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
710 	dst = kmap_local_page(sg_page(sg));
711 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
712 	kunmap_local(dst);
713 
714 	return r;
715 }
716 
717 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
718 				struct dm_crypt_request *dmreq)
719 {
720 	/* Used only for writes, there must be an additional space to store IV */
721 	get_random_bytes(iv, cc->iv_size);
722 	return 0;
723 }
724 
725 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
726 			    const char *opts)
727 {
728 	if (crypt_integrity_aead(cc)) {
729 		ti->error = "AEAD transforms not supported for EBOIV";
730 		return -EINVAL;
731 	}
732 
733 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
734 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
735 		return -EINVAL;
736 	}
737 
738 	return 0;
739 }
740 
741 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
742 			    struct dm_crypt_request *dmreq)
743 {
744 	struct crypto_skcipher *tfm = any_tfm(cc);
745 	struct skcipher_request *req;
746 	struct scatterlist src, dst;
747 	DECLARE_CRYPTO_WAIT(wait);
748 	unsigned int reqsize;
749 	int err;
750 	u8 *buf;
751 
752 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
753 	reqsize = ALIGN(reqsize, __alignof__(__le64));
754 
755 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
756 	if (!req)
757 		return -ENOMEM;
758 
759 	skcipher_request_set_tfm(req, tfm);
760 
761 	buf = (u8 *)req + reqsize;
762 	memset(buf, 0, cc->iv_size);
763 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
764 
765 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
766 	sg_init_one(&dst, iv, cc->iv_size);
767 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
768 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
769 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
770 	kfree_sensitive(req);
771 
772 	return err;
773 }
774 
775 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
776 {
777 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
778 
779 	crypto_free_skcipher(elephant->tfm);
780 	elephant->tfm = NULL;
781 }
782 
783 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
784 			    const char *opts)
785 {
786 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
787 	int r;
788 
789 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
790 					      CRYPTO_ALG_ALLOCATES_MEMORY);
791 	if (IS_ERR(elephant->tfm)) {
792 		r = PTR_ERR(elephant->tfm);
793 		elephant->tfm = NULL;
794 		return r;
795 	}
796 
797 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
798 	if (r)
799 		crypt_iv_elephant_dtr(cc);
800 	return r;
801 }
802 
803 static void diffuser_disk_to_cpu(u32 *d, size_t n)
804 {
805 #ifndef __LITTLE_ENDIAN
806 	int i;
807 
808 	for (i = 0; i < n; i++)
809 		d[i] = le32_to_cpu((__le32)d[i]);
810 #endif
811 }
812 
813 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
814 {
815 #ifndef __LITTLE_ENDIAN
816 	int i;
817 
818 	for (i = 0; i < n; i++)
819 		d[i] = cpu_to_le32((u32)d[i]);
820 #endif
821 }
822 
823 static void diffuser_a_decrypt(u32 *d, size_t n)
824 {
825 	int i, i1, i2, i3;
826 
827 	for (i = 0; i < 5; i++) {
828 		i1 = 0;
829 		i2 = n - 2;
830 		i3 = n - 5;
831 
832 		while (i1 < (n - 1)) {
833 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
834 			i1++; i2++; i3++;
835 
836 			if (i3 >= n)
837 				i3 -= n;
838 
839 			d[i1] += d[i2] ^ d[i3];
840 			i1++; i2++; i3++;
841 
842 			if (i2 >= n)
843 				i2 -= n;
844 
845 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
846 			i1++; i2++; i3++;
847 
848 			d[i1] += d[i2] ^ d[i3];
849 			i1++; i2++; i3++;
850 		}
851 	}
852 }
853 
854 static void diffuser_a_encrypt(u32 *d, size_t n)
855 {
856 	int i, i1, i2, i3;
857 
858 	for (i = 0; i < 5; i++) {
859 		i1 = n - 1;
860 		i2 = n - 2 - 1;
861 		i3 = n - 5 - 1;
862 
863 		while (i1 > 0) {
864 			d[i1] -= d[i2] ^ d[i3];
865 			i1--; i2--; i3--;
866 
867 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
868 			i1--; i2--; i3--;
869 
870 			if (i2 < 0)
871 				i2 += n;
872 
873 			d[i1] -= d[i2] ^ d[i3];
874 			i1--; i2--; i3--;
875 
876 			if (i3 < 0)
877 				i3 += n;
878 
879 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
880 			i1--; i2--; i3--;
881 		}
882 	}
883 }
884 
885 static void diffuser_b_decrypt(u32 *d, size_t n)
886 {
887 	int i, i1, i2, i3;
888 
889 	for (i = 0; i < 3; i++) {
890 		i1 = 0;
891 		i2 = 2;
892 		i3 = 5;
893 
894 		while (i1 < (n - 1)) {
895 			d[i1] += d[i2] ^ d[i3];
896 			i1++; i2++; i3++;
897 
898 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
899 			i1++; i2++; i3++;
900 
901 			if (i2 >= n)
902 				i2 -= n;
903 
904 			d[i1] += d[i2] ^ d[i3];
905 			i1++; i2++; i3++;
906 
907 			if (i3 >= n)
908 				i3 -= n;
909 
910 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
911 			i1++; i2++; i3++;
912 		}
913 	}
914 }
915 
916 static void diffuser_b_encrypt(u32 *d, size_t n)
917 {
918 	int i, i1, i2, i3;
919 
920 	for (i = 0; i < 3; i++) {
921 		i1 = n - 1;
922 		i2 = 2 - 1;
923 		i3 = 5 - 1;
924 
925 		while (i1 > 0) {
926 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
927 			i1--; i2--; i3--;
928 
929 			if (i3 < 0)
930 				i3 += n;
931 
932 			d[i1] -= d[i2] ^ d[i3];
933 			i1--; i2--; i3--;
934 
935 			if (i2 < 0)
936 				i2 += n;
937 
938 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
939 			i1--; i2--; i3--;
940 
941 			d[i1] -= d[i2] ^ d[i3];
942 			i1--; i2--; i3--;
943 		}
944 	}
945 }
946 
947 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
948 {
949 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
950 	u8 *es, *ks, *data, *data2, *data_offset;
951 	struct skcipher_request *req;
952 	struct scatterlist *sg, *sg2, src, dst;
953 	DECLARE_CRYPTO_WAIT(wait);
954 	int i, r;
955 
956 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
957 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
958 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
959 
960 	if (!req || !es || !ks) {
961 		r = -ENOMEM;
962 		goto out;
963 	}
964 
965 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
966 
967 	/* E(Ks, e(s)) */
968 	sg_init_one(&src, es, 16);
969 	sg_init_one(&dst, ks, 16);
970 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
971 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
972 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
973 	if (r)
974 		goto out;
975 
976 	/* E(Ks, e'(s)) */
977 	es[15] = 0x80;
978 	sg_init_one(&dst, &ks[16], 16);
979 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
980 	if (r)
981 		goto out;
982 
983 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
984 	data = kmap_local_page(sg_page(sg));
985 	data_offset = data + sg->offset;
986 
987 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
988 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
989 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
990 		data2 = kmap_local_page(sg_page(sg2));
991 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
992 		kunmap_local(data2);
993 	}
994 
995 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
996 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
997 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
998 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
999 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000 	}
1001 
1002 	for (i = 0; i < (cc->sector_size / 32); i++)
1003 		crypto_xor(data_offset + i * 32, ks, 32);
1004 
1005 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010 	}
1011 
1012 	kunmap_local(data);
1013 out:
1014 	kfree_sensitive(ks);
1015 	kfree_sensitive(es);
1016 	skcipher_request_free(req);
1017 	return r;
1018 }
1019 
1020 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021 			    struct dm_crypt_request *dmreq)
1022 {
1023 	int r;
1024 
1025 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026 		r = crypt_iv_elephant(cc, dmreq);
1027 		if (r)
1028 			return r;
1029 	}
1030 
1031 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032 }
1033 
1034 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035 				  struct dm_crypt_request *dmreq)
1036 {
1037 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038 		return crypt_iv_elephant(cc, dmreq);
1039 
1040 	return 0;
1041 }
1042 
1043 static int crypt_iv_elephant_init(struct crypt_config *cc)
1044 {
1045 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046 	int key_offset = cc->key_size - cc->key_extra_size;
1047 
1048 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049 }
1050 
1051 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052 {
1053 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055 
1056 	memset(key, 0, cc->key_extra_size);
1057 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058 }
1059 
1060 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061 	.generator = crypt_iv_plain_gen
1062 };
1063 
1064 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065 	.generator = crypt_iv_plain64_gen
1066 };
1067 
1068 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069 	.generator = crypt_iv_plain64be_gen
1070 };
1071 
1072 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073 	.generator = crypt_iv_essiv_gen
1074 };
1075 
1076 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077 	.ctr	   = crypt_iv_benbi_ctr,
1078 	.dtr	   = crypt_iv_benbi_dtr,
1079 	.generator = crypt_iv_benbi_gen
1080 };
1081 
1082 static const struct crypt_iv_operations crypt_iv_null_ops = {
1083 	.generator = crypt_iv_null_gen
1084 };
1085 
1086 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087 	.ctr	   = crypt_iv_lmk_ctr,
1088 	.dtr	   = crypt_iv_lmk_dtr,
1089 	.init	   = crypt_iv_lmk_init,
1090 	.wipe	   = crypt_iv_lmk_wipe,
1091 	.generator = crypt_iv_lmk_gen,
1092 	.post	   = crypt_iv_lmk_post
1093 };
1094 
1095 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096 	.ctr	   = crypt_iv_tcw_ctr,
1097 	.dtr	   = crypt_iv_tcw_dtr,
1098 	.init	   = crypt_iv_tcw_init,
1099 	.wipe	   = crypt_iv_tcw_wipe,
1100 	.generator = crypt_iv_tcw_gen,
1101 	.post	   = crypt_iv_tcw_post
1102 };
1103 
1104 static const struct crypt_iv_operations crypt_iv_random_ops = {
1105 	.generator = crypt_iv_random_gen
1106 };
1107 
1108 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109 	.ctr	   = crypt_iv_eboiv_ctr,
1110 	.generator = crypt_iv_eboiv_gen
1111 };
1112 
1113 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114 	.ctr	   = crypt_iv_elephant_ctr,
1115 	.dtr	   = crypt_iv_elephant_dtr,
1116 	.init	   = crypt_iv_elephant_init,
1117 	.wipe	   = crypt_iv_elephant_wipe,
1118 	.generator = crypt_iv_elephant_gen,
1119 	.post	   = crypt_iv_elephant_post
1120 };
1121 
1122 /*
1123  * Integrity extensions
1124  */
1125 static bool crypt_integrity_aead(struct crypt_config *cc)
1126 {
1127 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128 }
1129 
1130 static bool crypt_integrity_hmac(struct crypt_config *cc)
1131 {
1132 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133 }
1134 
1135 /* Get sg containing data */
1136 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137 					     struct scatterlist *sg)
1138 {
1139 	if (unlikely(crypt_integrity_aead(cc)))
1140 		return &sg[2];
1141 
1142 	return sg;
1143 }
1144 
1145 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146 {
1147 	struct bio_integrity_payload *bip;
1148 	unsigned int tag_len;
1149 	int ret;
1150 
1151 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152 		return 0;
1153 
1154 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155 	if (IS_ERR(bip))
1156 		return PTR_ERR(bip);
1157 
1158 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159 
1160 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161 
1162 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163 				     tag_len, offset_in_page(io->integrity_metadata));
1164 	if (unlikely(ret != tag_len))
1165 		return -ENOMEM;
1166 
1167 	return 0;
1168 }
1169 
1170 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171 {
1172 #ifdef CONFIG_BLK_DEV_INTEGRITY
1173 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174 	struct mapped_device *md = dm_table_get_md(ti->table);
1175 
1176 	/* From now we require underlying device with our integrity profile */
1177 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178 		ti->error = "Integrity profile not supported.";
1179 		return -EINVAL;
1180 	}
1181 
1182 	if (bi->tag_size != cc->on_disk_tag_size ||
1183 	    bi->tuple_size != cc->on_disk_tag_size) {
1184 		ti->error = "Integrity profile tag size mismatch.";
1185 		return -EINVAL;
1186 	}
1187 	if (1 << bi->interval_exp != cc->sector_size) {
1188 		ti->error = "Integrity profile sector size mismatch.";
1189 		return -EINVAL;
1190 	}
1191 
1192 	if (crypt_integrity_aead(cc)) {
1193 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195 		       cc->integrity_tag_size, cc->integrity_iv_size);
1196 
1197 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198 			ti->error = "Integrity AEAD auth tag size is not supported.";
1199 			return -EINVAL;
1200 		}
1201 	} else if (cc->integrity_iv_size)
1202 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203 		       cc->integrity_iv_size);
1204 
1205 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206 		ti->error = "Not enough space for integrity tag in the profile.";
1207 		return -EINVAL;
1208 	}
1209 
1210 	return 0;
1211 #else
1212 	ti->error = "Integrity profile not supported.";
1213 	return -EINVAL;
1214 #endif
1215 }
1216 
1217 static void crypt_convert_init(struct crypt_config *cc,
1218 			       struct convert_context *ctx,
1219 			       struct bio *bio_out, struct bio *bio_in,
1220 			       sector_t sector)
1221 {
1222 	ctx->bio_in = bio_in;
1223 	ctx->bio_out = bio_out;
1224 	if (bio_in)
1225 		ctx->iter_in = bio_in->bi_iter;
1226 	if (bio_out)
1227 		ctx->iter_out = bio_out->bi_iter;
1228 	ctx->cc_sector = sector + cc->iv_offset;
1229 	init_completion(&ctx->restart);
1230 }
1231 
1232 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233 					     void *req)
1234 {
1235 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236 }
1237 
1238 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1239 {
1240 	return (void *)((char *)dmreq - cc->dmreq_start);
1241 }
1242 
1243 static u8 *iv_of_dmreq(struct crypt_config *cc,
1244 		       struct dm_crypt_request *dmreq)
1245 {
1246 	if (crypt_integrity_aead(cc))
1247 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249 	else
1250 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252 }
1253 
1254 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255 		       struct dm_crypt_request *dmreq)
1256 {
1257 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258 }
1259 
1260 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261 		       struct dm_crypt_request *dmreq)
1262 {
1263 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264 
1265 	return (__le64 *) ptr;
1266 }
1267 
1268 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269 		       struct dm_crypt_request *dmreq)
1270 {
1271 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272 		  cc->iv_size + sizeof(uint64_t);
1273 
1274 	return (unsigned int *)ptr;
1275 }
1276 
1277 static void *tag_from_dmreq(struct crypt_config *cc,
1278 				struct dm_crypt_request *dmreq)
1279 {
1280 	struct convert_context *ctx = dmreq->ctx;
1281 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282 
1283 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284 		cc->on_disk_tag_size];
1285 }
1286 
1287 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288 			       struct dm_crypt_request *dmreq)
1289 {
1290 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291 }
1292 
1293 static int crypt_convert_block_aead(struct crypt_config *cc,
1294 				     struct convert_context *ctx,
1295 				     struct aead_request *req,
1296 				     unsigned int tag_offset)
1297 {
1298 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300 	struct dm_crypt_request *dmreq;
1301 	u8 *iv, *org_iv, *tag_iv, *tag;
1302 	__le64 *sector;
1303 	int r = 0;
1304 
1305 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306 
1307 	/* Reject unexpected unaligned bio. */
1308 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309 		return -EIO;
1310 
1311 	dmreq = dmreq_of_req(cc, req);
1312 	dmreq->iv_sector = ctx->cc_sector;
1313 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314 		dmreq->iv_sector >>= cc->sector_shift;
1315 	dmreq->ctx = ctx;
1316 
1317 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318 
1319 	sector = org_sector_of_dmreq(cc, dmreq);
1320 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321 
1322 	iv = iv_of_dmreq(cc, dmreq);
1323 	org_iv = org_iv_of_dmreq(cc, dmreq);
1324 	tag = tag_from_dmreq(cc, dmreq);
1325 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326 
1327 	/* AEAD request:
1328 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329 	 *  | (authenticated) | (auth+encryption) |              |
1330 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331 	 */
1332 	sg_init_table(dmreq->sg_in, 4);
1333 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337 
1338 	sg_init_table(dmreq->sg_out, 4);
1339 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343 
1344 	if (cc->iv_gen_ops) {
1345 		/* For READs use IV stored in integrity metadata */
1346 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347 			memcpy(org_iv, tag_iv, cc->iv_size);
1348 		} else {
1349 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350 			if (r < 0)
1351 				return r;
1352 			/* Store generated IV in integrity metadata */
1353 			if (cc->integrity_iv_size)
1354 				memcpy(tag_iv, org_iv, cc->iv_size);
1355 		}
1356 		/* Working copy of IV, to be modified in crypto API */
1357 		memcpy(iv, org_iv, cc->iv_size);
1358 	}
1359 
1360 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363 				       cc->sector_size, iv);
1364 		r = crypto_aead_encrypt(req);
1365 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368 	} else {
1369 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370 				       cc->sector_size + cc->integrity_tag_size, iv);
1371 		r = crypto_aead_decrypt(req);
1372 	}
1373 
1374 	if (r == -EBADMSG) {
1375 		sector_t s = le64_to_cpu(*sector);
1376 
1377 		ctx->aead_failed = true;
1378 		if (ctx->aead_recheck) {
1379 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380 				    ctx->bio_in->bi_bdev, s);
1381 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382 					 ctx->bio_in, s, 0);
1383 		}
1384 	}
1385 
1386 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388 
1389 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391 
1392 	return r;
1393 }
1394 
1395 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396 					struct convert_context *ctx,
1397 					struct skcipher_request *req,
1398 					unsigned int tag_offset)
1399 {
1400 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402 	struct scatterlist *sg_in, *sg_out;
1403 	struct dm_crypt_request *dmreq;
1404 	u8 *iv, *org_iv, *tag_iv;
1405 	__le64 *sector;
1406 	int r = 0;
1407 
1408 	/* Reject unexpected unaligned bio. */
1409 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410 		return -EIO;
1411 
1412 	dmreq = dmreq_of_req(cc, req);
1413 	dmreq->iv_sector = ctx->cc_sector;
1414 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415 		dmreq->iv_sector >>= cc->sector_shift;
1416 	dmreq->ctx = ctx;
1417 
1418 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419 
1420 	iv = iv_of_dmreq(cc, dmreq);
1421 	org_iv = org_iv_of_dmreq(cc, dmreq);
1422 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423 
1424 	sector = org_sector_of_dmreq(cc, dmreq);
1425 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426 
1427 	/* For skcipher we use only the first sg item */
1428 	sg_in  = &dmreq->sg_in[0];
1429 	sg_out = &dmreq->sg_out[0];
1430 
1431 	sg_init_table(sg_in, 1);
1432 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433 
1434 	sg_init_table(sg_out, 1);
1435 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436 
1437 	if (cc->iv_gen_ops) {
1438 		/* For READs use IV stored in integrity metadata */
1439 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441 		} else {
1442 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443 			if (r < 0)
1444 				return r;
1445 			/* Data can be already preprocessed in generator */
1446 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447 				sg_in = sg_out;
1448 			/* Store generated IV in integrity metadata */
1449 			if (cc->integrity_iv_size)
1450 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451 		}
1452 		/* Working copy of IV, to be modified in crypto API */
1453 		memcpy(iv, org_iv, cc->iv_size);
1454 	}
1455 
1456 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1457 
1458 	if (bio_data_dir(ctx->bio_in) == WRITE)
1459 		r = crypto_skcipher_encrypt(req);
1460 	else
1461 		r = crypto_skcipher_decrypt(req);
1462 
1463 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465 
1466 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468 
1469 	return r;
1470 }
1471 
1472 static void kcryptd_async_done(void *async_req, int error);
1473 
1474 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475 				     struct convert_context *ctx)
1476 {
1477 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478 
1479 	if (!ctx->r.req) {
1480 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481 		if (!ctx->r.req)
1482 			return -ENOMEM;
1483 	}
1484 
1485 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486 
1487 	/*
1488 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489 	 * requests if driver request queue is full.
1490 	 */
1491 	skcipher_request_set_callback(ctx->r.req,
1492 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494 
1495 	return 0;
1496 }
1497 
1498 static int crypt_alloc_req_aead(struct crypt_config *cc,
1499 				 struct convert_context *ctx)
1500 {
1501 	if (!ctx->r.req_aead) {
1502 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503 		if (!ctx->r.req_aead)
1504 			return -ENOMEM;
1505 	}
1506 
1507 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508 
1509 	/*
1510 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511 	 * requests if driver request queue is full.
1512 	 */
1513 	aead_request_set_callback(ctx->r.req_aead,
1514 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516 
1517 	return 0;
1518 }
1519 
1520 static int crypt_alloc_req(struct crypt_config *cc,
1521 			    struct convert_context *ctx)
1522 {
1523 	if (crypt_integrity_aead(cc))
1524 		return crypt_alloc_req_aead(cc, ctx);
1525 	else
1526 		return crypt_alloc_req_skcipher(cc, ctx);
1527 }
1528 
1529 static void crypt_free_req_skcipher(struct crypt_config *cc,
1530 				    struct skcipher_request *req, struct bio *base_bio)
1531 {
1532 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533 
1534 	if ((struct skcipher_request *)(io + 1) != req)
1535 		mempool_free(req, &cc->req_pool);
1536 }
1537 
1538 static void crypt_free_req_aead(struct crypt_config *cc,
1539 				struct aead_request *req, struct bio *base_bio)
1540 {
1541 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542 
1543 	if ((struct aead_request *)(io + 1) != req)
1544 		mempool_free(req, &cc->req_pool);
1545 }
1546 
1547 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548 {
1549 	if (crypt_integrity_aead(cc))
1550 		crypt_free_req_aead(cc, req, base_bio);
1551 	else
1552 		crypt_free_req_skcipher(cc, req, base_bio);
1553 }
1554 
1555 /*
1556  * Encrypt / decrypt data from one bio to another one (can be the same one)
1557  */
1558 static blk_status_t crypt_convert(struct crypt_config *cc,
1559 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560 {
1561 	unsigned int tag_offset = 0;
1562 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563 	int r;
1564 
1565 	/*
1566 	 * if reset_pending is set we are dealing with the bio for the first time,
1567 	 * else we're continuing to work on the previous bio, so don't mess with
1568 	 * the cc_pending counter
1569 	 */
1570 	if (reset_pending)
1571 		atomic_set(&ctx->cc_pending, 1);
1572 
1573 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574 
1575 		r = crypt_alloc_req(cc, ctx);
1576 		if (r) {
1577 			complete(&ctx->restart);
1578 			return BLK_STS_DEV_RESOURCE;
1579 		}
1580 
1581 		atomic_inc(&ctx->cc_pending);
1582 
1583 		if (crypt_integrity_aead(cc))
1584 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585 		else
1586 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587 
1588 		switch (r) {
1589 		/*
1590 		 * The request was queued by a crypto driver
1591 		 * but the driver request queue is full, let's wait.
1592 		 */
1593 		case -EBUSY:
1594 			if (in_interrupt()) {
1595 				if (try_wait_for_completion(&ctx->restart)) {
1596 					/*
1597 					 * we don't have to block to wait for completion,
1598 					 * so proceed
1599 					 */
1600 				} else {
1601 					/*
1602 					 * we can't wait for completion without blocking
1603 					 * exit and continue processing in a workqueue
1604 					 */
1605 					ctx->r.req = NULL;
1606 					ctx->cc_sector += sector_step;
1607 					tag_offset++;
1608 					return BLK_STS_DEV_RESOURCE;
1609 				}
1610 			} else {
1611 				wait_for_completion(&ctx->restart);
1612 			}
1613 			reinit_completion(&ctx->restart);
1614 			fallthrough;
1615 		/*
1616 		 * The request is queued and processed asynchronously,
1617 		 * completion function kcryptd_async_done() will be called.
1618 		 */
1619 		case -EINPROGRESS:
1620 			ctx->r.req = NULL;
1621 			ctx->cc_sector += sector_step;
1622 			tag_offset++;
1623 			continue;
1624 		/*
1625 		 * The request was already processed (synchronously).
1626 		 */
1627 		case 0:
1628 			atomic_dec(&ctx->cc_pending);
1629 			ctx->cc_sector += sector_step;
1630 			tag_offset++;
1631 			if (!atomic)
1632 				cond_resched();
1633 			continue;
1634 		/*
1635 		 * There was a data integrity error.
1636 		 */
1637 		case -EBADMSG:
1638 			atomic_dec(&ctx->cc_pending);
1639 			return BLK_STS_PROTECTION;
1640 		/*
1641 		 * There was an error while processing the request.
1642 		 */
1643 		default:
1644 			atomic_dec(&ctx->cc_pending);
1645 			return BLK_STS_IOERR;
1646 		}
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653 
1654 /*
1655  * Generate a new unfragmented bio with the given size
1656  * This should never violate the device limitations (but only because
1657  * max_segment_size is being constrained to PAGE_SIZE).
1658  *
1659  * This function may be called concurrently. If we allocate from the mempool
1660  * concurrently, there is a possibility of deadlock. For example, if we have
1661  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662  * the mempool concurrently, it may deadlock in a situation where both processes
1663  * have allocated 128 pages and the mempool is exhausted.
1664  *
1665  * In order to avoid this scenario we allocate the pages under a mutex.
1666  *
1667  * In order to not degrade performance with excessive locking, we try
1668  * non-blocking allocations without a mutex first but on failure we fallback
1669  * to blocking allocations with a mutex.
1670  *
1671  * In order to reduce allocation overhead, we try to allocate compound pages in
1672  * the first pass. If they are not available, we fall back to the mempool.
1673  */
1674 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675 {
1676 	struct crypt_config *cc = io->cc;
1677 	struct bio *clone;
1678 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680 	unsigned int remaining_size;
1681 	unsigned int order = MAX_PAGE_ORDER;
1682 
1683 retry:
1684 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685 		mutex_lock(&cc->bio_alloc_lock);
1686 
1687 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688 				 GFP_NOIO, &cc->bs);
1689 	clone->bi_private = io;
1690 	clone->bi_end_io = crypt_endio;
1691 	clone->bi_ioprio = io->base_bio->bi_ioprio;
1692 
1693 	remaining_size = size;
1694 
1695 	while (remaining_size) {
1696 		struct page *pages;
1697 		unsigned size_to_add;
1698 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1699 		order = min(order, remaining_order);
1700 
1701 		while (order > 0) {
1702 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1703 					(1 << order) > dm_crypt_pages_per_client))
1704 				goto decrease_order;
1705 			pages = alloc_pages(gfp_mask
1706 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1707 				order);
1708 			if (likely(pages != NULL)) {
1709 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1710 				goto have_pages;
1711 			}
1712 decrease_order:
1713 			order--;
1714 		}
1715 
1716 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1717 		if (!pages) {
1718 			crypt_free_buffer_pages(cc, clone);
1719 			bio_put(clone);
1720 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1721 			order = 0;
1722 			goto retry;
1723 		}
1724 
1725 have_pages:
1726 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1727 		__bio_add_page(clone, pages, size_to_add, 0);
1728 		remaining_size -= size_to_add;
1729 	}
1730 
1731 	/* Allocate space for integrity tags */
1732 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1733 		crypt_free_buffer_pages(cc, clone);
1734 		bio_put(clone);
1735 		clone = NULL;
1736 	}
1737 
1738 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1739 		mutex_unlock(&cc->bio_alloc_lock);
1740 
1741 	return clone;
1742 }
1743 
1744 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1745 {
1746 	struct folio_iter fi;
1747 
1748 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1749 		bio_for_each_folio_all(fi, clone) {
1750 			if (folio_test_large(fi.folio)) {
1751 				percpu_counter_sub(&cc->n_allocated_pages,
1752 						1 << folio_order(fi.folio));
1753 				folio_put(fi.folio);
1754 			} else {
1755 				mempool_free(&fi.folio->page, &cc->page_pool);
1756 			}
1757 		}
1758 	}
1759 }
1760 
1761 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1762 			  struct bio *bio, sector_t sector)
1763 {
1764 	io->cc = cc;
1765 	io->base_bio = bio;
1766 	io->sector = sector;
1767 	io->error = 0;
1768 	io->ctx.aead_recheck = false;
1769 	io->ctx.aead_failed = false;
1770 	io->ctx.r.req = NULL;
1771 	io->integrity_metadata = NULL;
1772 	io->integrity_metadata_from_pool = false;
1773 	atomic_set(&io->io_pending, 0);
1774 }
1775 
1776 static void crypt_inc_pending(struct dm_crypt_io *io)
1777 {
1778 	atomic_inc(&io->io_pending);
1779 }
1780 
1781 static void kcryptd_queue_read(struct dm_crypt_io *io);
1782 
1783 /*
1784  * One of the bios was finished. Check for completion of
1785  * the whole request and correctly clean up the buffer.
1786  */
1787 static void crypt_dec_pending(struct dm_crypt_io *io)
1788 {
1789 	struct crypt_config *cc = io->cc;
1790 	struct bio *base_bio = io->base_bio;
1791 	blk_status_t error = io->error;
1792 
1793 	if (!atomic_dec_and_test(&io->io_pending))
1794 		return;
1795 
1796 	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1797 	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1798 		io->ctx.aead_recheck = true;
1799 		io->ctx.aead_failed = false;
1800 		io->error = 0;
1801 		kcryptd_queue_read(io);
1802 		return;
1803 	}
1804 
1805 	if (io->ctx.r.req)
1806 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1807 
1808 	if (unlikely(io->integrity_metadata_from_pool))
1809 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1810 	else
1811 		kfree(io->integrity_metadata);
1812 
1813 	base_bio->bi_status = error;
1814 
1815 	bio_endio(base_bio);
1816 }
1817 
1818 /*
1819  * kcryptd/kcryptd_io:
1820  *
1821  * Needed because it would be very unwise to do decryption in an
1822  * interrupt context.
1823  *
1824  * kcryptd performs the actual encryption or decryption.
1825  *
1826  * kcryptd_io performs the IO submission.
1827  *
1828  * They must be separated as otherwise the final stages could be
1829  * starved by new requests which can block in the first stages due
1830  * to memory allocation.
1831  *
1832  * The work is done per CPU global for all dm-crypt instances.
1833  * They should not depend on each other and do not block.
1834  */
1835 static void crypt_endio(struct bio *clone)
1836 {
1837 	struct dm_crypt_io *io = clone->bi_private;
1838 	struct crypt_config *cc = io->cc;
1839 	unsigned int rw = bio_data_dir(clone);
1840 	blk_status_t error = clone->bi_status;
1841 
1842 	if (io->ctx.aead_recheck && !error) {
1843 		kcryptd_queue_crypt(io);
1844 		return;
1845 	}
1846 
1847 	/*
1848 	 * free the processed pages
1849 	 */
1850 	if (rw == WRITE || io->ctx.aead_recheck)
1851 		crypt_free_buffer_pages(cc, clone);
1852 
1853 	bio_put(clone);
1854 
1855 	if (rw == READ && !error) {
1856 		kcryptd_queue_crypt(io);
1857 		return;
1858 	}
1859 
1860 	if (unlikely(error))
1861 		io->error = error;
1862 
1863 	crypt_dec_pending(io);
1864 }
1865 
1866 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1867 
1868 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1869 {
1870 	struct crypt_config *cc = io->cc;
1871 	struct bio *clone;
1872 
1873 	if (io->ctx.aead_recheck) {
1874 		if (!(gfp & __GFP_DIRECT_RECLAIM))
1875 			return 1;
1876 		crypt_inc_pending(io);
1877 		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1878 		if (unlikely(!clone)) {
1879 			crypt_dec_pending(io);
1880 			return 1;
1881 		}
1882 		clone->bi_iter.bi_sector = cc->start + io->sector;
1883 		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1884 		io->saved_bi_iter = clone->bi_iter;
1885 		dm_submit_bio_remap(io->base_bio, clone);
1886 		return 0;
1887 	}
1888 
1889 	/*
1890 	 * We need the original biovec array in order to decrypt the whole bio
1891 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1892 	 * worry about the block layer modifying the biovec array; so leverage
1893 	 * bio_alloc_clone().
1894 	 */
1895 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1896 	if (!clone)
1897 		return 1;
1898 	clone->bi_private = io;
1899 	clone->bi_end_io = crypt_endio;
1900 
1901 	crypt_inc_pending(io);
1902 
1903 	clone->bi_iter.bi_sector = cc->start + io->sector;
1904 
1905 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1906 		crypt_dec_pending(io);
1907 		bio_put(clone);
1908 		return 1;
1909 	}
1910 
1911 	dm_submit_bio_remap(io->base_bio, clone);
1912 	return 0;
1913 }
1914 
1915 static void kcryptd_io_read_work(struct work_struct *work)
1916 {
1917 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1918 
1919 	crypt_inc_pending(io);
1920 	if (kcryptd_io_read(io, GFP_NOIO))
1921 		io->error = BLK_STS_RESOURCE;
1922 	crypt_dec_pending(io);
1923 }
1924 
1925 static void kcryptd_queue_read(struct dm_crypt_io *io)
1926 {
1927 	struct crypt_config *cc = io->cc;
1928 
1929 	INIT_WORK(&io->work, kcryptd_io_read_work);
1930 	queue_work(cc->io_queue, &io->work);
1931 }
1932 
1933 static void kcryptd_io_write(struct dm_crypt_io *io)
1934 {
1935 	struct bio *clone = io->ctx.bio_out;
1936 
1937 	dm_submit_bio_remap(io->base_bio, clone);
1938 }
1939 
1940 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1941 
1942 static int dmcrypt_write(void *data)
1943 {
1944 	struct crypt_config *cc = data;
1945 	struct dm_crypt_io *io;
1946 
1947 	while (1) {
1948 		struct rb_root write_tree;
1949 		struct blk_plug plug;
1950 
1951 		spin_lock_irq(&cc->write_thread_lock);
1952 continue_locked:
1953 
1954 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1955 			goto pop_from_list;
1956 
1957 		set_current_state(TASK_INTERRUPTIBLE);
1958 
1959 		spin_unlock_irq(&cc->write_thread_lock);
1960 
1961 		if (unlikely(kthread_should_stop())) {
1962 			set_current_state(TASK_RUNNING);
1963 			break;
1964 		}
1965 
1966 		schedule();
1967 
1968 		spin_lock_irq(&cc->write_thread_lock);
1969 		goto continue_locked;
1970 
1971 pop_from_list:
1972 		write_tree = cc->write_tree;
1973 		cc->write_tree = RB_ROOT;
1974 		spin_unlock_irq(&cc->write_thread_lock);
1975 
1976 		BUG_ON(rb_parent(write_tree.rb_node));
1977 
1978 		/*
1979 		 * Note: we cannot walk the tree here with rb_next because
1980 		 * the structures may be freed when kcryptd_io_write is called.
1981 		 */
1982 		blk_start_plug(&plug);
1983 		do {
1984 			io = crypt_io_from_node(rb_first(&write_tree));
1985 			rb_erase(&io->rb_node, &write_tree);
1986 			kcryptd_io_write(io);
1987 			cond_resched();
1988 		} while (!RB_EMPTY_ROOT(&write_tree));
1989 		blk_finish_plug(&plug);
1990 	}
1991 	return 0;
1992 }
1993 
1994 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995 {
1996 	struct bio *clone = io->ctx.bio_out;
1997 	struct crypt_config *cc = io->cc;
1998 	unsigned long flags;
1999 	sector_t sector;
2000 	struct rb_node **rbp, *parent;
2001 
2002 	if (unlikely(io->error)) {
2003 		crypt_free_buffer_pages(cc, clone);
2004 		bio_put(clone);
2005 		crypt_dec_pending(io);
2006 		return;
2007 	}
2008 
2009 	/* crypt_convert should have filled the clone bio */
2010 	BUG_ON(io->ctx.iter_out.bi_size);
2011 
2012 	clone->bi_iter.bi_sector = cc->start + io->sector;
2013 
2014 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016 		dm_submit_bio_remap(io->base_bio, clone);
2017 		return;
2018 	}
2019 
2020 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021 	if (RB_EMPTY_ROOT(&cc->write_tree))
2022 		wake_up_process(cc->write_thread);
2023 	rbp = &cc->write_tree.rb_node;
2024 	parent = NULL;
2025 	sector = io->sector;
2026 	while (*rbp) {
2027 		parent = *rbp;
2028 		if (sector < crypt_io_from_node(parent)->sector)
2029 			rbp = &(*rbp)->rb_left;
2030 		else
2031 			rbp = &(*rbp)->rb_right;
2032 	}
2033 	rb_link_node(&io->rb_node, parent, rbp);
2034 	rb_insert_color(&io->rb_node, &cc->write_tree);
2035 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036 }
2037 
2038 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039 				       struct convert_context *ctx)
2040 
2041 {
2042 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043 		return false;
2044 
2045 	/*
2046 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047 	 * constraints so they do not need to be issued inline by
2048 	 * kcryptd_crypt_write_convert().
2049 	 */
2050 	switch (bio_op(ctx->bio_in)) {
2051 	case REQ_OP_WRITE:
2052 	case REQ_OP_WRITE_ZEROES:
2053 		return true;
2054 	default:
2055 		return false;
2056 	}
2057 }
2058 
2059 static void kcryptd_crypt_write_continue(struct work_struct *work)
2060 {
2061 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062 	struct crypt_config *cc = io->cc;
2063 	struct convert_context *ctx = &io->ctx;
2064 	int crypt_finished;
2065 	sector_t sector = io->sector;
2066 	blk_status_t r;
2067 
2068 	wait_for_completion(&ctx->restart);
2069 	reinit_completion(&ctx->restart);
2070 
2071 	r = crypt_convert(cc, &io->ctx, true, false);
2072 	if (r)
2073 		io->error = r;
2074 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076 		/* Wait for completion signaled by kcryptd_async_done() */
2077 		wait_for_completion(&ctx->restart);
2078 		crypt_finished = 1;
2079 	}
2080 
2081 	/* Encryption was already finished, submit io now */
2082 	if (crypt_finished) {
2083 		kcryptd_crypt_write_io_submit(io, 0);
2084 		io->sector = sector;
2085 	}
2086 
2087 	crypt_dec_pending(io);
2088 }
2089 
2090 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091 {
2092 	struct crypt_config *cc = io->cc;
2093 	struct convert_context *ctx = &io->ctx;
2094 	struct bio *clone;
2095 	int crypt_finished;
2096 	sector_t sector = io->sector;
2097 	blk_status_t r;
2098 
2099 	/*
2100 	 * Prevent io from disappearing until this function completes.
2101 	 */
2102 	crypt_inc_pending(io);
2103 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2104 
2105 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106 	if (unlikely(!clone)) {
2107 		io->error = BLK_STS_IOERR;
2108 		goto dec;
2109 	}
2110 
2111 	io->ctx.bio_out = clone;
2112 	io->ctx.iter_out = clone->bi_iter;
2113 
2114 	if (crypt_integrity_aead(cc)) {
2115 		bio_copy_data(clone, io->base_bio);
2116 		io->ctx.bio_in = clone;
2117 		io->ctx.iter_in = clone->bi_iter;
2118 	}
2119 
2120 	sector += bio_sectors(clone);
2121 
2122 	crypt_inc_pending(io);
2123 	r = crypt_convert(cc, ctx,
2124 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125 	/*
2126 	 * Crypto API backlogged the request, because its queue was full
2127 	 * and we're in softirq context, so continue from a workqueue
2128 	 * (TODO: is it actually possible to be in softirq in the write path?)
2129 	 */
2130 	if (r == BLK_STS_DEV_RESOURCE) {
2131 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132 		queue_work(cc->crypt_queue, &io->work);
2133 		return;
2134 	}
2135 	if (r)
2136 		io->error = r;
2137 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139 		/* Wait for completion signaled by kcryptd_async_done() */
2140 		wait_for_completion(&ctx->restart);
2141 		crypt_finished = 1;
2142 	}
2143 
2144 	/* Encryption was already finished, submit io now */
2145 	if (crypt_finished) {
2146 		kcryptd_crypt_write_io_submit(io, 0);
2147 		io->sector = sector;
2148 	}
2149 
2150 dec:
2151 	crypt_dec_pending(io);
2152 }
2153 
2154 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155 {
2156 	if (io->ctx.aead_recheck) {
2157 		if (!io->error) {
2158 			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159 			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160 		}
2161 		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162 		bio_put(io->ctx.bio_in);
2163 	}
2164 	crypt_dec_pending(io);
2165 }
2166 
2167 static void kcryptd_crypt_read_continue(struct work_struct *work)
2168 {
2169 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170 	struct crypt_config *cc = io->cc;
2171 	blk_status_t r;
2172 
2173 	wait_for_completion(&io->ctx.restart);
2174 	reinit_completion(&io->ctx.restart);
2175 
2176 	r = crypt_convert(cc, &io->ctx, true, false);
2177 	if (r)
2178 		io->error = r;
2179 
2180 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181 		kcryptd_crypt_read_done(io);
2182 
2183 	crypt_dec_pending(io);
2184 }
2185 
2186 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187 {
2188 	struct crypt_config *cc = io->cc;
2189 	blk_status_t r;
2190 
2191 	crypt_inc_pending(io);
2192 
2193 	if (io->ctx.aead_recheck) {
2194 		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195 		r = crypt_convert(cc, &io->ctx,
2196 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197 	} else {
2198 		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199 				   io->sector);
2200 
2201 		r = crypt_convert(cc, &io->ctx,
2202 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203 	}
2204 	/*
2205 	 * Crypto API backlogged the request, because its queue was full
2206 	 * and we're in softirq context, so continue from a workqueue
2207 	 */
2208 	if (r == BLK_STS_DEV_RESOURCE) {
2209 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210 		queue_work(cc->crypt_queue, &io->work);
2211 		return;
2212 	}
2213 	if (r)
2214 		io->error = r;
2215 
2216 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217 		kcryptd_crypt_read_done(io);
2218 
2219 	crypt_dec_pending(io);
2220 }
2221 
2222 static void kcryptd_async_done(void *data, int error)
2223 {
2224 	struct dm_crypt_request *dmreq = data;
2225 	struct convert_context *ctx = dmreq->ctx;
2226 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227 	struct crypt_config *cc = io->cc;
2228 
2229 	/*
2230 	 * A request from crypto driver backlog is going to be processed now,
2231 	 * finish the completion and continue in crypt_convert().
2232 	 * (Callback will be called for the second time for this request.)
2233 	 */
2234 	if (error == -EINPROGRESS) {
2235 		complete(&ctx->restart);
2236 		return;
2237 	}
2238 
2239 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241 
2242 	if (error == -EBADMSG) {
2243 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244 
2245 		ctx->aead_failed = true;
2246 		if (ctx->aead_recheck) {
2247 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248 				    ctx->bio_in->bi_bdev, s);
2249 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250 					 ctx->bio_in, s, 0);
2251 		}
2252 		io->error = BLK_STS_PROTECTION;
2253 	} else if (error < 0)
2254 		io->error = BLK_STS_IOERR;
2255 
2256 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257 
2258 	if (!atomic_dec_and_test(&ctx->cc_pending))
2259 		return;
2260 
2261 	/*
2262 	 * The request is fully completed: for inline writes, let
2263 	 * kcryptd_crypt_write_convert() do the IO submission.
2264 	 */
2265 	if (bio_data_dir(io->base_bio) == READ) {
2266 		kcryptd_crypt_read_done(io);
2267 		return;
2268 	}
2269 
2270 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271 		complete(&ctx->restart);
2272 		return;
2273 	}
2274 
2275 	kcryptd_crypt_write_io_submit(io, 1);
2276 }
2277 
2278 static void kcryptd_crypt(struct work_struct *work)
2279 {
2280 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281 
2282 	if (bio_data_dir(io->base_bio) == READ)
2283 		kcryptd_crypt_read_convert(io);
2284 	else
2285 		kcryptd_crypt_write_convert(io);
2286 }
2287 
2288 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289 {
2290 	struct crypt_config *cc = io->cc;
2291 
2292 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294 		/*
2295 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297 		 * it is being executed with irqs disabled.
2298 		 */
2299 		if (in_hardirq() || irqs_disabled()) {
2300 			INIT_WORK(&io->work, kcryptd_crypt);
2301 			queue_work(system_bh_wq, &io->work);
2302 			return;
2303 		} else {
2304 			kcryptd_crypt(&io->work);
2305 			return;
2306 		}
2307 	}
2308 
2309 	INIT_WORK(&io->work, kcryptd_crypt);
2310 	queue_work(cc->crypt_queue, &io->work);
2311 }
2312 
2313 static void crypt_free_tfms_aead(struct crypt_config *cc)
2314 {
2315 	if (!cc->cipher_tfm.tfms_aead)
2316 		return;
2317 
2318 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2319 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2320 		cc->cipher_tfm.tfms_aead[0] = NULL;
2321 	}
2322 
2323 	kfree(cc->cipher_tfm.tfms_aead);
2324 	cc->cipher_tfm.tfms_aead = NULL;
2325 }
2326 
2327 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2328 {
2329 	unsigned int i;
2330 
2331 	if (!cc->cipher_tfm.tfms)
2332 		return;
2333 
2334 	for (i = 0; i < cc->tfms_count; i++)
2335 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2336 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2337 			cc->cipher_tfm.tfms[i] = NULL;
2338 		}
2339 
2340 	kfree(cc->cipher_tfm.tfms);
2341 	cc->cipher_tfm.tfms = NULL;
2342 }
2343 
2344 static void crypt_free_tfms(struct crypt_config *cc)
2345 {
2346 	if (crypt_integrity_aead(cc))
2347 		crypt_free_tfms_aead(cc);
2348 	else
2349 		crypt_free_tfms_skcipher(cc);
2350 }
2351 
2352 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2353 {
2354 	unsigned int i;
2355 	int err;
2356 
2357 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2358 				      sizeof(struct crypto_skcipher *),
2359 				      GFP_KERNEL);
2360 	if (!cc->cipher_tfm.tfms)
2361 		return -ENOMEM;
2362 
2363 	for (i = 0; i < cc->tfms_count; i++) {
2364 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2365 						CRYPTO_ALG_ALLOCATES_MEMORY);
2366 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2367 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2368 			crypt_free_tfms(cc);
2369 			return err;
2370 		}
2371 	}
2372 
2373 	/*
2374 	 * dm-crypt performance can vary greatly depending on which crypto
2375 	 * algorithm implementation is used.  Help people debug performance
2376 	 * problems by logging the ->cra_driver_name.
2377 	 */
2378 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2379 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2380 	return 0;
2381 }
2382 
2383 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2384 {
2385 	int err;
2386 
2387 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2388 	if (!cc->cipher_tfm.tfms)
2389 		return -ENOMEM;
2390 
2391 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2392 						CRYPTO_ALG_ALLOCATES_MEMORY);
2393 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2394 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2395 		crypt_free_tfms(cc);
2396 		return err;
2397 	}
2398 
2399 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2400 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2401 	return 0;
2402 }
2403 
2404 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2405 {
2406 	if (crypt_integrity_aead(cc))
2407 		return crypt_alloc_tfms_aead(cc, ciphermode);
2408 	else
2409 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2410 }
2411 
2412 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2413 {
2414 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2415 }
2416 
2417 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2418 {
2419 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2420 }
2421 
2422 /*
2423  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2424  * the key must be for some reason in special format.
2425  * This funcion converts cc->key to this special format.
2426  */
2427 static void crypt_copy_authenckey(char *p, const void *key,
2428 				  unsigned int enckeylen, unsigned int authkeylen)
2429 {
2430 	struct crypto_authenc_key_param *param;
2431 	struct rtattr *rta;
2432 
2433 	rta = (struct rtattr *)p;
2434 	param = RTA_DATA(rta);
2435 	param->enckeylen = cpu_to_be32(enckeylen);
2436 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2437 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2438 	p += RTA_SPACE(sizeof(*param));
2439 	memcpy(p, key + enckeylen, authkeylen);
2440 	p += authkeylen;
2441 	memcpy(p, key, enckeylen);
2442 }
2443 
2444 static int crypt_setkey(struct crypt_config *cc)
2445 {
2446 	unsigned int subkey_size;
2447 	int err = 0, i, r;
2448 
2449 	/* Ignore extra keys (which are used for IV etc) */
2450 	subkey_size = crypt_subkey_size(cc);
2451 
2452 	if (crypt_integrity_hmac(cc)) {
2453 		if (subkey_size < cc->key_mac_size)
2454 			return -EINVAL;
2455 
2456 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2457 				      subkey_size - cc->key_mac_size,
2458 				      cc->key_mac_size);
2459 	}
2460 
2461 	for (i = 0; i < cc->tfms_count; i++) {
2462 		if (crypt_integrity_hmac(cc))
2463 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2464 				cc->authenc_key, crypt_authenckey_size(cc));
2465 		else if (crypt_integrity_aead(cc))
2466 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2467 					       cc->key + (i * subkey_size),
2468 					       subkey_size);
2469 		else
2470 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2471 						   cc->key + (i * subkey_size),
2472 						   subkey_size);
2473 		if (r)
2474 			err = r;
2475 	}
2476 
2477 	if (crypt_integrity_hmac(cc))
2478 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2479 
2480 	return err;
2481 }
2482 
2483 #ifdef CONFIG_KEYS
2484 
2485 static bool contains_whitespace(const char *str)
2486 {
2487 	while (*str)
2488 		if (isspace(*str++))
2489 			return true;
2490 	return false;
2491 }
2492 
2493 static int set_key_user(struct crypt_config *cc, struct key *key)
2494 {
2495 	const struct user_key_payload *ukp;
2496 
2497 	ukp = user_key_payload_locked(key);
2498 	if (!ukp)
2499 		return -EKEYREVOKED;
2500 
2501 	if (cc->key_size != ukp->datalen)
2502 		return -EINVAL;
2503 
2504 	memcpy(cc->key, ukp->data, cc->key_size);
2505 
2506 	return 0;
2507 }
2508 
2509 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2510 {
2511 	const struct encrypted_key_payload *ekp;
2512 
2513 	ekp = key->payload.data[0];
2514 	if (!ekp)
2515 		return -EKEYREVOKED;
2516 
2517 	if (cc->key_size != ekp->decrypted_datalen)
2518 		return -EINVAL;
2519 
2520 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2521 
2522 	return 0;
2523 }
2524 
2525 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2526 {
2527 	const struct trusted_key_payload *tkp;
2528 
2529 	tkp = key->payload.data[0];
2530 	if (!tkp)
2531 		return -EKEYREVOKED;
2532 
2533 	if (cc->key_size != tkp->key_len)
2534 		return -EINVAL;
2535 
2536 	memcpy(cc->key, tkp->key, cc->key_size);
2537 
2538 	return 0;
2539 }
2540 
2541 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2542 {
2543 	char *new_key_string, *key_desc;
2544 	int ret;
2545 	struct key_type *type;
2546 	struct key *key;
2547 	int (*set_key)(struct crypt_config *cc, struct key *key);
2548 
2549 	/*
2550 	 * Reject key_string with whitespace. dm core currently lacks code for
2551 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2552 	 */
2553 	if (contains_whitespace(key_string)) {
2554 		DMERR("whitespace chars not allowed in key string");
2555 		return -EINVAL;
2556 	}
2557 
2558 	/* look for next ':' separating key_type from key_description */
2559 	key_desc = strchr(key_string, ':');
2560 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2561 		return -EINVAL;
2562 
2563 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2564 		type = &key_type_logon;
2565 		set_key = set_key_user;
2566 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2567 		type = &key_type_user;
2568 		set_key = set_key_user;
2569 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2570 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2571 		type = &key_type_encrypted;
2572 		set_key = set_key_encrypted;
2573 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2574 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2575 		type = &key_type_trusted;
2576 		set_key = set_key_trusted;
2577 	} else {
2578 		return -EINVAL;
2579 	}
2580 
2581 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2582 	if (!new_key_string)
2583 		return -ENOMEM;
2584 
2585 	key = request_key(type, key_desc + 1, NULL);
2586 	if (IS_ERR(key)) {
2587 		kfree_sensitive(new_key_string);
2588 		return PTR_ERR(key);
2589 	}
2590 
2591 	down_read(&key->sem);
2592 
2593 	ret = set_key(cc, key);
2594 	if (ret < 0) {
2595 		up_read(&key->sem);
2596 		key_put(key);
2597 		kfree_sensitive(new_key_string);
2598 		return ret;
2599 	}
2600 
2601 	up_read(&key->sem);
2602 	key_put(key);
2603 
2604 	/* clear the flag since following operations may invalidate previously valid key */
2605 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2606 
2607 	ret = crypt_setkey(cc);
2608 
2609 	if (!ret) {
2610 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2611 		kfree_sensitive(cc->key_string);
2612 		cc->key_string = new_key_string;
2613 	} else
2614 		kfree_sensitive(new_key_string);
2615 
2616 	return ret;
2617 }
2618 
2619 static int get_key_size(char **key_string)
2620 {
2621 	char *colon, dummy;
2622 	int ret;
2623 
2624 	if (*key_string[0] != ':')
2625 		return strlen(*key_string) >> 1;
2626 
2627 	/* look for next ':' in key string */
2628 	colon = strpbrk(*key_string + 1, ":");
2629 	if (!colon)
2630 		return -EINVAL;
2631 
2632 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2633 		return -EINVAL;
2634 
2635 	*key_string = colon;
2636 
2637 	/* remaining key string should be :<logon|user>:<key_desc> */
2638 
2639 	return ret;
2640 }
2641 
2642 #else
2643 
2644 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2645 {
2646 	return -EINVAL;
2647 }
2648 
2649 static int get_key_size(char **key_string)
2650 {
2651 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2652 }
2653 
2654 #endif /* CONFIG_KEYS */
2655 
2656 static int crypt_set_key(struct crypt_config *cc, char *key)
2657 {
2658 	int r = -EINVAL;
2659 	int key_string_len = strlen(key);
2660 
2661 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2662 	if (!cc->key_size && strcmp(key, "-"))
2663 		goto out;
2664 
2665 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2666 	if (key[0] == ':') {
2667 		r = crypt_set_keyring_key(cc, key + 1);
2668 		goto out;
2669 	}
2670 
2671 	/* clear the flag since following operations may invalidate previously valid key */
2672 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2673 
2674 	/* wipe references to any kernel keyring key */
2675 	kfree_sensitive(cc->key_string);
2676 	cc->key_string = NULL;
2677 
2678 	/* Decode key from its hex representation. */
2679 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2680 		goto out;
2681 
2682 	r = crypt_setkey(cc);
2683 	if (!r)
2684 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2685 
2686 out:
2687 	/* Hex key string not needed after here, so wipe it. */
2688 	memset(key, '0', key_string_len);
2689 
2690 	return r;
2691 }
2692 
2693 static int crypt_wipe_key(struct crypt_config *cc)
2694 {
2695 	int r;
2696 
2697 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2698 	get_random_bytes(&cc->key, cc->key_size);
2699 
2700 	/* Wipe IV private keys */
2701 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2702 		r = cc->iv_gen_ops->wipe(cc);
2703 		if (r)
2704 			return r;
2705 	}
2706 
2707 	kfree_sensitive(cc->key_string);
2708 	cc->key_string = NULL;
2709 	r = crypt_setkey(cc);
2710 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2711 
2712 	return r;
2713 }
2714 
2715 static void crypt_calculate_pages_per_client(void)
2716 {
2717 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2718 
2719 	if (!dm_crypt_clients_n)
2720 		return;
2721 
2722 	pages /= dm_crypt_clients_n;
2723 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2724 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2725 	dm_crypt_pages_per_client = pages;
2726 }
2727 
2728 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2729 {
2730 	struct crypt_config *cc = pool_data;
2731 	struct page *page;
2732 
2733 	/*
2734 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2735 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2736 	 * but avoids potential spinlock contention of an exact result.
2737 	 */
2738 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2739 	    likely(gfp_mask & __GFP_NORETRY))
2740 		return NULL;
2741 
2742 	page = alloc_page(gfp_mask);
2743 	if (likely(page != NULL))
2744 		percpu_counter_add(&cc->n_allocated_pages, 1);
2745 
2746 	return page;
2747 }
2748 
2749 static void crypt_page_free(void *page, void *pool_data)
2750 {
2751 	struct crypt_config *cc = pool_data;
2752 
2753 	__free_page(page);
2754 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2755 }
2756 
2757 static void crypt_dtr(struct dm_target *ti)
2758 {
2759 	struct crypt_config *cc = ti->private;
2760 
2761 	ti->private = NULL;
2762 
2763 	if (!cc)
2764 		return;
2765 
2766 	if (cc->write_thread)
2767 		kthread_stop(cc->write_thread);
2768 
2769 	if (cc->io_queue)
2770 		destroy_workqueue(cc->io_queue);
2771 	if (cc->crypt_queue)
2772 		destroy_workqueue(cc->crypt_queue);
2773 
2774 	crypt_free_tfms(cc);
2775 
2776 	bioset_exit(&cc->bs);
2777 
2778 	mempool_exit(&cc->page_pool);
2779 	mempool_exit(&cc->req_pool);
2780 	mempool_exit(&cc->tag_pool);
2781 
2782 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2783 	percpu_counter_destroy(&cc->n_allocated_pages);
2784 
2785 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2786 		cc->iv_gen_ops->dtr(cc);
2787 
2788 	if (cc->dev)
2789 		dm_put_device(ti, cc->dev);
2790 
2791 	kfree_sensitive(cc->cipher_string);
2792 	kfree_sensitive(cc->key_string);
2793 	kfree_sensitive(cc->cipher_auth);
2794 	kfree_sensitive(cc->authenc_key);
2795 
2796 	mutex_destroy(&cc->bio_alloc_lock);
2797 
2798 	/* Must zero key material before freeing */
2799 	kfree_sensitive(cc);
2800 
2801 	spin_lock(&dm_crypt_clients_lock);
2802 	WARN_ON(!dm_crypt_clients_n);
2803 	dm_crypt_clients_n--;
2804 	crypt_calculate_pages_per_client();
2805 	spin_unlock(&dm_crypt_clients_lock);
2806 
2807 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2808 }
2809 
2810 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2811 {
2812 	struct crypt_config *cc = ti->private;
2813 
2814 	if (crypt_integrity_aead(cc))
2815 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2816 	else
2817 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2818 
2819 	if (cc->iv_size)
2820 		/* at least a 64 bit sector number should fit in our buffer */
2821 		cc->iv_size = max(cc->iv_size,
2822 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2823 	else if (ivmode) {
2824 		DMWARN("Selected cipher does not support IVs");
2825 		ivmode = NULL;
2826 	}
2827 
2828 	/* Choose ivmode, see comments at iv code. */
2829 	if (ivmode == NULL)
2830 		cc->iv_gen_ops = NULL;
2831 	else if (strcmp(ivmode, "plain") == 0)
2832 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2833 	else if (strcmp(ivmode, "plain64") == 0)
2834 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2835 	else if (strcmp(ivmode, "plain64be") == 0)
2836 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2837 	else if (strcmp(ivmode, "essiv") == 0)
2838 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2839 	else if (strcmp(ivmode, "benbi") == 0)
2840 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2841 	else if (strcmp(ivmode, "null") == 0)
2842 		cc->iv_gen_ops = &crypt_iv_null_ops;
2843 	else if (strcmp(ivmode, "eboiv") == 0)
2844 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2845 	else if (strcmp(ivmode, "elephant") == 0) {
2846 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2847 		cc->key_parts = 2;
2848 		cc->key_extra_size = cc->key_size / 2;
2849 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2850 			return -EINVAL;
2851 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2852 	} else if (strcmp(ivmode, "lmk") == 0) {
2853 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2854 		/*
2855 		 * Version 2 and 3 is recognised according
2856 		 * to length of provided multi-key string.
2857 		 * If present (version 3), last key is used as IV seed.
2858 		 * All keys (including IV seed) are always the same size.
2859 		 */
2860 		if (cc->key_size % cc->key_parts) {
2861 			cc->key_parts++;
2862 			cc->key_extra_size = cc->key_size / cc->key_parts;
2863 		}
2864 	} else if (strcmp(ivmode, "tcw") == 0) {
2865 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2866 		cc->key_parts += 2; /* IV + whitening */
2867 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2868 	} else if (strcmp(ivmode, "random") == 0) {
2869 		cc->iv_gen_ops = &crypt_iv_random_ops;
2870 		/* Need storage space in integrity fields. */
2871 		cc->integrity_iv_size = cc->iv_size;
2872 	} else {
2873 		ti->error = "Invalid IV mode";
2874 		return -EINVAL;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 /*
2881  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2882  * The HMAC is needed to calculate tag size (HMAC digest size).
2883  * This should be probably done by crypto-api calls (once available...)
2884  */
2885 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2886 {
2887 	char *start, *end, *mac_alg = NULL;
2888 	struct crypto_ahash *mac;
2889 
2890 	if (!strstarts(cipher_api, "authenc("))
2891 		return 0;
2892 
2893 	start = strchr(cipher_api, '(');
2894 	end = strchr(cipher_api, ',');
2895 	if (!start || !end || ++start > end)
2896 		return -EINVAL;
2897 
2898 	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2899 	if (!mac_alg)
2900 		return -ENOMEM;
2901 
2902 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2903 	kfree(mac_alg);
2904 
2905 	if (IS_ERR(mac))
2906 		return PTR_ERR(mac);
2907 
2908 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2909 	crypto_free_ahash(mac);
2910 
2911 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2912 	if (!cc->authenc_key)
2913 		return -ENOMEM;
2914 
2915 	return 0;
2916 }
2917 
2918 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2919 				char **ivmode, char **ivopts)
2920 {
2921 	struct crypt_config *cc = ti->private;
2922 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2923 	int ret = -EINVAL;
2924 
2925 	cc->tfms_count = 1;
2926 
2927 	/*
2928 	 * New format (capi: prefix)
2929 	 * capi:cipher_api_spec-iv:ivopts
2930 	 */
2931 	tmp = &cipher_in[strlen("capi:")];
2932 
2933 	/* Separate IV options if present, it can contain another '-' in hash name */
2934 	*ivopts = strrchr(tmp, ':');
2935 	if (*ivopts) {
2936 		**ivopts = '\0';
2937 		(*ivopts)++;
2938 	}
2939 	/* Parse IV mode */
2940 	*ivmode = strrchr(tmp, '-');
2941 	if (*ivmode) {
2942 		**ivmode = '\0';
2943 		(*ivmode)++;
2944 	}
2945 	/* The rest is crypto API spec */
2946 	cipher_api = tmp;
2947 
2948 	/* Alloc AEAD, can be used only in new format. */
2949 	if (crypt_integrity_aead(cc)) {
2950 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2951 		if (ret < 0) {
2952 			ti->error = "Invalid AEAD cipher spec";
2953 			return ret;
2954 		}
2955 	}
2956 
2957 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2958 		cc->tfms_count = 64;
2959 
2960 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2961 		if (!*ivopts) {
2962 			ti->error = "Digest algorithm missing for ESSIV mode";
2963 			return -EINVAL;
2964 		}
2965 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2966 			       cipher_api, *ivopts);
2967 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2968 			ti->error = "Cannot allocate cipher string";
2969 			return -ENOMEM;
2970 		}
2971 		cipher_api = buf;
2972 	}
2973 
2974 	cc->key_parts = cc->tfms_count;
2975 
2976 	/* Allocate cipher */
2977 	ret = crypt_alloc_tfms(cc, cipher_api);
2978 	if (ret < 0) {
2979 		ti->error = "Error allocating crypto tfm";
2980 		return ret;
2981 	}
2982 
2983 	if (crypt_integrity_aead(cc))
2984 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2985 	else
2986 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2987 
2988 	return 0;
2989 }
2990 
2991 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2992 				char **ivmode, char **ivopts)
2993 {
2994 	struct crypt_config *cc = ti->private;
2995 	char *tmp, *cipher, *chainmode, *keycount;
2996 	char *cipher_api = NULL;
2997 	int ret = -EINVAL;
2998 	char dummy;
2999 
3000 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3001 		ti->error = "Bad cipher specification";
3002 		return -EINVAL;
3003 	}
3004 
3005 	/*
3006 	 * Legacy dm-crypt cipher specification
3007 	 * cipher[:keycount]-mode-iv:ivopts
3008 	 */
3009 	tmp = cipher_in;
3010 	keycount = strsep(&tmp, "-");
3011 	cipher = strsep(&keycount, ":");
3012 
3013 	if (!keycount)
3014 		cc->tfms_count = 1;
3015 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3016 		 !is_power_of_2(cc->tfms_count)) {
3017 		ti->error = "Bad cipher key count specification";
3018 		return -EINVAL;
3019 	}
3020 	cc->key_parts = cc->tfms_count;
3021 
3022 	chainmode = strsep(&tmp, "-");
3023 	*ivmode = strsep(&tmp, ":");
3024 	*ivopts = tmp;
3025 
3026 	/*
3027 	 * For compatibility with the original dm-crypt mapping format, if
3028 	 * only the cipher name is supplied, use cbc-plain.
3029 	 */
3030 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3031 		chainmode = "cbc";
3032 		*ivmode = "plain";
3033 	}
3034 
3035 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3036 		ti->error = "IV mechanism required";
3037 		return -EINVAL;
3038 	}
3039 
3040 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3041 	if (!cipher_api)
3042 		goto bad_mem;
3043 
3044 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3045 		if (!*ivopts) {
3046 			ti->error = "Digest algorithm missing for ESSIV mode";
3047 			kfree(cipher_api);
3048 			return -EINVAL;
3049 		}
3050 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3051 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3052 	} else {
3053 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3054 			       "%s(%s)", chainmode, cipher);
3055 	}
3056 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3057 		kfree(cipher_api);
3058 		goto bad_mem;
3059 	}
3060 
3061 	/* Allocate cipher */
3062 	ret = crypt_alloc_tfms(cc, cipher_api);
3063 	if (ret < 0) {
3064 		ti->error = "Error allocating crypto tfm";
3065 		kfree(cipher_api);
3066 		return ret;
3067 	}
3068 	kfree(cipher_api);
3069 
3070 	return 0;
3071 bad_mem:
3072 	ti->error = "Cannot allocate cipher strings";
3073 	return -ENOMEM;
3074 }
3075 
3076 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3077 {
3078 	struct crypt_config *cc = ti->private;
3079 	char *ivmode = NULL, *ivopts = NULL;
3080 	int ret;
3081 
3082 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3083 	if (!cc->cipher_string) {
3084 		ti->error = "Cannot allocate cipher strings";
3085 		return -ENOMEM;
3086 	}
3087 
3088 	if (strstarts(cipher_in, "capi:"))
3089 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3090 	else
3091 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3092 	if (ret)
3093 		return ret;
3094 
3095 	/* Initialize IV */
3096 	ret = crypt_ctr_ivmode(ti, ivmode);
3097 	if (ret < 0)
3098 		return ret;
3099 
3100 	/* Initialize and set key */
3101 	ret = crypt_set_key(cc, key);
3102 	if (ret < 0) {
3103 		ti->error = "Error decoding and setting key";
3104 		return ret;
3105 	}
3106 
3107 	/* Allocate IV */
3108 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3109 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3110 		if (ret < 0) {
3111 			ti->error = "Error creating IV";
3112 			return ret;
3113 		}
3114 	}
3115 
3116 	/* Initialize IV (set keys for ESSIV etc) */
3117 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3118 		ret = cc->iv_gen_ops->init(cc);
3119 		if (ret < 0) {
3120 			ti->error = "Error initialising IV";
3121 			return ret;
3122 		}
3123 	}
3124 
3125 	/* wipe the kernel key payload copy */
3126 	if (cc->key_string)
3127 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3128 
3129 	return ret;
3130 }
3131 
3132 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3133 {
3134 	struct crypt_config *cc = ti->private;
3135 	struct dm_arg_set as;
3136 	static const struct dm_arg _args[] = {
3137 		{0, 8, "Invalid number of feature args"},
3138 	};
3139 	unsigned int opt_params, val;
3140 	const char *opt_string, *sval;
3141 	char dummy;
3142 	int ret;
3143 
3144 	/* Optional parameters */
3145 	as.argc = argc;
3146 	as.argv = argv;
3147 
3148 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3149 	if (ret)
3150 		return ret;
3151 
3152 	while (opt_params--) {
3153 		opt_string = dm_shift_arg(&as);
3154 		if (!opt_string) {
3155 			ti->error = "Not enough feature arguments";
3156 			return -EINVAL;
3157 		}
3158 
3159 		if (!strcasecmp(opt_string, "allow_discards"))
3160 			ti->num_discard_bios = 1;
3161 
3162 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3163 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3164 
3165 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3166 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3167 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3168 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3169 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3170 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3171 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3172 			if (val == 0 || val > MAX_TAG_SIZE) {
3173 				ti->error = "Invalid integrity arguments";
3174 				return -EINVAL;
3175 			}
3176 			cc->on_disk_tag_size = val;
3177 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3178 			if (!strcasecmp(sval, "aead")) {
3179 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3180 			} else if (strcasecmp(sval, "none")) {
3181 				ti->error = "Unknown integrity profile";
3182 				return -EINVAL;
3183 			}
3184 
3185 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3186 			if (!cc->cipher_auth)
3187 				return -ENOMEM;
3188 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3189 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3190 			    cc->sector_size > 4096 ||
3191 			    (cc->sector_size & (cc->sector_size - 1))) {
3192 				ti->error = "Invalid feature value for sector_size";
3193 				return -EINVAL;
3194 			}
3195 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3196 				ti->error = "Device size is not multiple of sector_size feature";
3197 				return -EINVAL;
3198 			}
3199 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3200 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3201 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3202 		else {
3203 			ti->error = "Invalid feature arguments";
3204 			return -EINVAL;
3205 		}
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 #ifdef CONFIG_BLK_DEV_ZONED
3212 static int crypt_report_zones(struct dm_target *ti,
3213 		struct dm_report_zones_args *args, unsigned int nr_zones)
3214 {
3215 	struct crypt_config *cc = ti->private;
3216 
3217 	return dm_report_zones(cc->dev->bdev, cc->start,
3218 			cc->start + dm_target_offset(ti, args->next_sector),
3219 			args, nr_zones);
3220 }
3221 #else
3222 #define crypt_report_zones NULL
3223 #endif
3224 
3225 /*
3226  * Construct an encryption mapping:
3227  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3228  */
3229 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3230 {
3231 	struct crypt_config *cc;
3232 	const char *devname = dm_table_device_name(ti->table);
3233 	int key_size;
3234 	unsigned int align_mask;
3235 	unsigned long long tmpll;
3236 	int ret;
3237 	size_t iv_size_padding, additional_req_size;
3238 	char dummy;
3239 
3240 	if (argc < 5) {
3241 		ti->error = "Not enough arguments";
3242 		return -EINVAL;
3243 	}
3244 
3245 	key_size = get_key_size(&argv[1]);
3246 	if (key_size < 0) {
3247 		ti->error = "Cannot parse key size";
3248 		return -EINVAL;
3249 	}
3250 
3251 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3252 	if (!cc) {
3253 		ti->error = "Cannot allocate encryption context";
3254 		return -ENOMEM;
3255 	}
3256 	cc->key_size = key_size;
3257 	cc->sector_size = (1 << SECTOR_SHIFT);
3258 	cc->sector_shift = 0;
3259 
3260 	ti->private = cc;
3261 
3262 	spin_lock(&dm_crypt_clients_lock);
3263 	dm_crypt_clients_n++;
3264 	crypt_calculate_pages_per_client();
3265 	spin_unlock(&dm_crypt_clients_lock);
3266 
3267 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3268 	if (ret < 0)
3269 		goto bad;
3270 
3271 	/* Optional parameters need to be read before cipher constructor */
3272 	if (argc > 5) {
3273 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3274 		if (ret)
3275 			goto bad;
3276 	}
3277 
3278 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3279 	if (ret < 0)
3280 		goto bad;
3281 
3282 	if (crypt_integrity_aead(cc)) {
3283 		cc->dmreq_start = sizeof(struct aead_request);
3284 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3285 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3286 	} else {
3287 		cc->dmreq_start = sizeof(struct skcipher_request);
3288 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3289 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3290 	}
3291 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3292 
3293 	if (align_mask < CRYPTO_MINALIGN) {
3294 		/* Allocate the padding exactly */
3295 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3296 				& align_mask;
3297 	} else {
3298 		/*
3299 		 * If the cipher requires greater alignment than kmalloc
3300 		 * alignment, we don't know the exact position of the
3301 		 * initialization vector. We must assume worst case.
3302 		 */
3303 		iv_size_padding = align_mask;
3304 	}
3305 
3306 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3307 	additional_req_size = sizeof(struct dm_crypt_request) +
3308 		iv_size_padding + cc->iv_size +
3309 		cc->iv_size +
3310 		sizeof(uint64_t) +
3311 		sizeof(unsigned int);
3312 
3313 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3314 	if (ret) {
3315 		ti->error = "Cannot allocate crypt request mempool";
3316 		goto bad;
3317 	}
3318 
3319 	cc->per_bio_data_size = ti->per_io_data_size =
3320 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3321 		      ARCH_DMA_MINALIGN);
3322 
3323 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3324 	if (ret) {
3325 		ti->error = "Cannot allocate page mempool";
3326 		goto bad;
3327 	}
3328 
3329 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3330 	if (ret) {
3331 		ti->error = "Cannot allocate crypt bioset";
3332 		goto bad;
3333 	}
3334 
3335 	mutex_init(&cc->bio_alloc_lock);
3336 
3337 	ret = -EINVAL;
3338 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3339 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3340 		ti->error = "Invalid iv_offset sector";
3341 		goto bad;
3342 	}
3343 	cc->iv_offset = tmpll;
3344 
3345 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3346 	if (ret) {
3347 		ti->error = "Device lookup failed";
3348 		goto bad;
3349 	}
3350 
3351 	ret = -EINVAL;
3352 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3353 		ti->error = "Invalid device sector";
3354 		goto bad;
3355 	}
3356 	cc->start = tmpll;
3357 
3358 	if (bdev_is_zoned(cc->dev->bdev)) {
3359 		/*
3360 		 * For zoned block devices, we need to preserve the issuer write
3361 		 * ordering. To do so, disable write workqueues and force inline
3362 		 * encryption completion.
3363 		 */
3364 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3365 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3366 
3367 		/*
3368 		 * All zone append writes to a zone of a zoned block device will
3369 		 * have the same BIO sector, the start of the zone. When the
3370 		 * cypher IV mode uses sector values, all data targeting a
3371 		 * zone will be encrypted using the first sector numbers of the
3372 		 * zone. This will not result in write errors but will
3373 		 * cause most reads to fail as reads will use the sector values
3374 		 * for the actual data locations, resulting in IV mismatch.
3375 		 * To avoid this problem, ask DM core to emulate zone append
3376 		 * operations with regular writes.
3377 		 */
3378 		DMDEBUG("Zone append operations will be emulated");
3379 		ti->emulate_zone_append = true;
3380 	}
3381 
3382 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3383 		ret = crypt_integrity_ctr(cc, ti);
3384 		if (ret)
3385 			goto bad;
3386 
3387 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3388 		if (!cc->tag_pool_max_sectors)
3389 			cc->tag_pool_max_sectors = 1;
3390 
3391 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3392 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3393 		if (ret) {
3394 			ti->error = "Cannot allocate integrity tags mempool";
3395 			goto bad;
3396 		}
3397 
3398 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3399 	}
3400 
3401 	ret = -ENOMEM;
3402 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3403 	if (!cc->io_queue) {
3404 		ti->error = "Couldn't create kcryptd io queue";
3405 		goto bad;
3406 	}
3407 
3408 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3409 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3410 						  1, devname);
3411 	else
3412 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3413 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3414 						  num_online_cpus(), devname);
3415 	if (!cc->crypt_queue) {
3416 		ti->error = "Couldn't create kcryptd queue";
3417 		goto bad;
3418 	}
3419 
3420 	spin_lock_init(&cc->write_thread_lock);
3421 	cc->write_tree = RB_ROOT;
3422 
3423 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3424 	if (IS_ERR(cc->write_thread)) {
3425 		ret = PTR_ERR(cc->write_thread);
3426 		cc->write_thread = NULL;
3427 		ti->error = "Couldn't spawn write thread";
3428 		goto bad;
3429 	}
3430 
3431 	ti->num_flush_bios = 1;
3432 	ti->limit_swap_bios = true;
3433 	ti->accounts_remapped_io = true;
3434 
3435 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3436 	return 0;
3437 
3438 bad:
3439 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3440 	crypt_dtr(ti);
3441 	return ret;
3442 }
3443 
3444 static int crypt_map(struct dm_target *ti, struct bio *bio)
3445 {
3446 	struct dm_crypt_io *io;
3447 	struct crypt_config *cc = ti->private;
3448 
3449 	/*
3450 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3451 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3452 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3453 	 */
3454 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3455 	    bio_op(bio) == REQ_OP_DISCARD)) {
3456 		bio_set_dev(bio, cc->dev->bdev);
3457 		if (bio_sectors(bio))
3458 			bio->bi_iter.bi_sector = cc->start +
3459 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3460 		return DM_MAPIO_REMAPPED;
3461 	}
3462 
3463 	/*
3464 	 * Check if bio is too large, split as needed.
3465 	 */
3466 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3467 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3468 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3469 
3470 	/*
3471 	 * Ensure that bio is a multiple of internal sector encryption size
3472 	 * and is aligned to this size as defined in IO hints.
3473 	 */
3474 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3475 		return DM_MAPIO_KILL;
3476 
3477 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3478 		return DM_MAPIO_KILL;
3479 
3480 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3481 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3482 
3483 	if (cc->on_disk_tag_size) {
3484 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3485 
3486 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3487 			io->integrity_metadata = NULL;
3488 		else
3489 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3490 
3491 		if (unlikely(!io->integrity_metadata)) {
3492 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3493 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3494 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3495 			io->integrity_metadata_from_pool = true;
3496 		}
3497 	}
3498 
3499 	if (crypt_integrity_aead(cc))
3500 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3501 	else
3502 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3503 
3504 	if (bio_data_dir(io->base_bio) == READ) {
3505 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3506 			kcryptd_queue_read(io);
3507 	} else
3508 		kcryptd_queue_crypt(io);
3509 
3510 	return DM_MAPIO_SUBMITTED;
3511 }
3512 
3513 static char hex2asc(unsigned char c)
3514 {
3515 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3516 }
3517 
3518 static void crypt_status(struct dm_target *ti, status_type_t type,
3519 			 unsigned int status_flags, char *result, unsigned int maxlen)
3520 {
3521 	struct crypt_config *cc = ti->private;
3522 	unsigned int i, sz = 0;
3523 	int num_feature_args = 0;
3524 
3525 	switch (type) {
3526 	case STATUSTYPE_INFO:
3527 		result[0] = '\0';
3528 		break;
3529 
3530 	case STATUSTYPE_TABLE:
3531 		DMEMIT("%s ", cc->cipher_string);
3532 
3533 		if (cc->key_size > 0) {
3534 			if (cc->key_string)
3535 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3536 			else {
3537 				for (i = 0; i < cc->key_size; i++) {
3538 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3539 					       hex2asc(cc->key[i] & 0xf));
3540 				}
3541 			}
3542 		} else
3543 			DMEMIT("-");
3544 
3545 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3546 				cc->dev->name, (unsigned long long)cc->start);
3547 
3548 		num_feature_args += !!ti->num_discard_bios;
3549 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3550 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3551 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3552 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3553 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3554 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3555 		if (cc->on_disk_tag_size)
3556 			num_feature_args++;
3557 		if (num_feature_args) {
3558 			DMEMIT(" %d", num_feature_args);
3559 			if (ti->num_discard_bios)
3560 				DMEMIT(" allow_discards");
3561 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3562 				DMEMIT(" same_cpu_crypt");
3563 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3564 				DMEMIT(" submit_from_crypt_cpus");
3565 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3566 				DMEMIT(" no_read_workqueue");
3567 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3568 				DMEMIT(" no_write_workqueue");
3569 			if (cc->on_disk_tag_size)
3570 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3571 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3572 				DMEMIT(" sector_size:%d", cc->sector_size);
3573 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3574 				DMEMIT(" iv_large_sectors");
3575 		}
3576 		break;
3577 
3578 	case STATUSTYPE_IMA:
3579 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3580 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3581 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3582 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3583 		       'y' : 'n');
3584 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3585 		       'y' : 'n');
3586 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3587 		       'y' : 'n');
3588 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3589 		       'y' : 'n');
3590 
3591 		if (cc->on_disk_tag_size)
3592 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3593 			       cc->on_disk_tag_size, cc->cipher_auth);
3594 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3595 			DMEMIT(",sector_size=%d", cc->sector_size);
3596 		if (cc->cipher_string)
3597 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3598 
3599 		DMEMIT(",key_size=%u", cc->key_size);
3600 		DMEMIT(",key_parts=%u", cc->key_parts);
3601 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3602 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3603 		DMEMIT(";");
3604 		break;
3605 	}
3606 }
3607 
3608 static void crypt_postsuspend(struct dm_target *ti)
3609 {
3610 	struct crypt_config *cc = ti->private;
3611 
3612 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3613 }
3614 
3615 static int crypt_preresume(struct dm_target *ti)
3616 {
3617 	struct crypt_config *cc = ti->private;
3618 
3619 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3620 		DMERR("aborting resume - crypt key is not set.");
3621 		return -EAGAIN;
3622 	}
3623 
3624 	return 0;
3625 }
3626 
3627 static void crypt_resume(struct dm_target *ti)
3628 {
3629 	struct crypt_config *cc = ti->private;
3630 
3631 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3632 }
3633 
3634 /* Message interface
3635  *	key set <key>
3636  *	key wipe
3637  */
3638 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3639 			 char *result, unsigned int maxlen)
3640 {
3641 	struct crypt_config *cc = ti->private;
3642 	int key_size, ret = -EINVAL;
3643 
3644 	if (argc < 2)
3645 		goto error;
3646 
3647 	if (!strcasecmp(argv[0], "key")) {
3648 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3649 			DMWARN("not suspended during key manipulation.");
3650 			return -EINVAL;
3651 		}
3652 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3653 			/* The key size may not be changed. */
3654 			key_size = get_key_size(&argv[2]);
3655 			if (key_size < 0 || cc->key_size != key_size) {
3656 				memset(argv[2], '0', strlen(argv[2]));
3657 				return -EINVAL;
3658 			}
3659 
3660 			ret = crypt_set_key(cc, argv[2]);
3661 			if (ret)
3662 				return ret;
3663 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3664 				ret = cc->iv_gen_ops->init(cc);
3665 			/* wipe the kernel key payload copy */
3666 			if (cc->key_string)
3667 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3668 			return ret;
3669 		}
3670 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3671 			return crypt_wipe_key(cc);
3672 	}
3673 
3674 error:
3675 	DMWARN("unrecognised message received.");
3676 	return -EINVAL;
3677 }
3678 
3679 static int crypt_iterate_devices(struct dm_target *ti,
3680 				 iterate_devices_callout_fn fn, void *data)
3681 {
3682 	struct crypt_config *cc = ti->private;
3683 
3684 	return fn(ti, cc->dev, cc->start, ti->len, data);
3685 }
3686 
3687 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3688 {
3689 	struct crypt_config *cc = ti->private;
3690 
3691 	/*
3692 	 * Unfortunate constraint that is required to avoid the potential
3693 	 * for exceeding underlying device's max_segments limits -- due to
3694 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3695 	 * bio that are not as physically contiguous as the original bio.
3696 	 */
3697 	limits->max_segment_size = PAGE_SIZE;
3698 
3699 	limits->logical_block_size =
3700 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3701 	limits->physical_block_size =
3702 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3703 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3704 	limits->dma_alignment = limits->logical_block_size - 1;
3705 }
3706 
3707 static struct target_type crypt_target = {
3708 	.name   = "crypt",
3709 	.version = {1, 25, 0},
3710 	.module = THIS_MODULE,
3711 	.ctr    = crypt_ctr,
3712 	.dtr    = crypt_dtr,
3713 	.features = DM_TARGET_ZONED_HM,
3714 	.report_zones = crypt_report_zones,
3715 	.map    = crypt_map,
3716 	.status = crypt_status,
3717 	.postsuspend = crypt_postsuspend,
3718 	.preresume = crypt_preresume,
3719 	.resume = crypt_resume,
3720 	.message = crypt_message,
3721 	.iterate_devices = crypt_iterate_devices,
3722 	.io_hints = crypt_io_hints,
3723 };
3724 module_dm(crypt);
3725 
3726 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3727 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3728 MODULE_LICENSE("GPL");
3729