xref: /linux/drivers/md/dm-crypt.c (revision 2da68a77)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-integrity.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/crypto.h>
22 #include <linux/workqueue.h>
23 #include <linux/kthread.h>
24 #include <linux/backing-dev.h>
25 #include <linux/atomic.h>
26 #include <linux/scatterlist.h>
27 #include <linux/rbtree.h>
28 #include <linux/ctype.h>
29 #include <asm/page.h>
30 #include <asm/unaligned.h>
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/algapi.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
38 #include <linux/key-type.h>
39 #include <keys/user-type.h>
40 #include <keys/encrypted-type.h>
41 #include <keys/trusted-type.h>
42 
43 #include <linux/device-mapper.h>
44 
45 #include "dm-audit.h"
46 
47 #define DM_MSG_PREFIX "crypt"
48 
49 /*
50  * context holding the current state of a multi-part conversion
51  */
52 struct convert_context {
53 	struct completion restart;
54 	struct bio *bio_in;
55 	struct bio *bio_out;
56 	struct bvec_iter iter_in;
57 	struct bvec_iter iter_out;
58 	u64 cc_sector;
59 	atomic_t cc_pending;
60 	union {
61 		struct skcipher_request *req;
62 		struct aead_request *req_aead;
63 	} r;
64 
65 };
66 
67 /*
68  * per bio private data
69  */
70 struct dm_crypt_io {
71 	struct crypt_config *cc;
72 	struct bio *base_bio;
73 	u8 *integrity_metadata;
74 	bool integrity_metadata_from_pool;
75 	struct work_struct work;
76 	struct tasklet_struct tasklet;
77 
78 	struct convert_context ctx;
79 
80 	atomic_t io_pending;
81 	blk_status_t error;
82 	sector_t sector;
83 
84 	struct rb_node rb_node;
85 } CRYPTO_MINALIGN_ATTR;
86 
87 struct dm_crypt_request {
88 	struct convert_context *ctx;
89 	struct scatterlist sg_in[4];
90 	struct scatterlist sg_out[4];
91 	u64 iv_sector;
92 };
93 
94 struct crypt_config;
95 
96 struct crypt_iv_operations {
97 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
98 		   const char *opts);
99 	void (*dtr)(struct crypt_config *cc);
100 	int (*init)(struct crypt_config *cc);
101 	int (*wipe)(struct crypt_config *cc);
102 	int (*generator)(struct crypt_config *cc, u8 *iv,
103 			 struct dm_crypt_request *dmreq);
104 	int (*post)(struct crypt_config *cc, u8 *iv,
105 		    struct dm_crypt_request *dmreq);
106 };
107 
108 struct iv_benbi_private {
109 	int shift;
110 };
111 
112 #define LMK_SEED_SIZE 64 /* hash + 0 */
113 struct iv_lmk_private {
114 	struct crypto_shash *hash_tfm;
115 	u8 *seed;
116 };
117 
118 #define TCW_WHITENING_SIZE 16
119 struct iv_tcw_private {
120 	struct crypto_shash *crc32_tfm;
121 	u8 *iv_seed;
122 	u8 *whitening;
123 };
124 
125 #define ELEPHANT_MAX_KEY_SIZE 32
126 struct iv_elephant_private {
127 	struct crypto_skcipher *tfm;
128 };
129 
130 /*
131  * Crypt: maps a linear range of a block device
132  * and encrypts / decrypts at the same time.
133  */
134 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
135 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
136 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
137 	     DM_CRYPT_WRITE_INLINE };
138 
139 enum cipher_flags {
140 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
141 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
142 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
143 };
144 
145 /*
146  * The fields in here must be read only after initialization.
147  */
148 struct crypt_config {
149 	struct dm_dev *dev;
150 	sector_t start;
151 
152 	struct percpu_counter n_allocated_pages;
153 
154 	struct workqueue_struct *io_queue;
155 	struct workqueue_struct *crypt_queue;
156 
157 	spinlock_t write_thread_lock;
158 	struct task_struct *write_thread;
159 	struct rb_root write_tree;
160 
161 	char *cipher_string;
162 	char *cipher_auth;
163 	char *key_string;
164 
165 	const struct crypt_iv_operations *iv_gen_ops;
166 	union {
167 		struct iv_benbi_private benbi;
168 		struct iv_lmk_private lmk;
169 		struct iv_tcw_private tcw;
170 		struct iv_elephant_private elephant;
171 	} iv_gen_private;
172 	u64 iv_offset;
173 	unsigned int iv_size;
174 	unsigned short int sector_size;
175 	unsigned char sector_shift;
176 
177 	union {
178 		struct crypto_skcipher **tfms;
179 		struct crypto_aead **tfms_aead;
180 	} cipher_tfm;
181 	unsigned tfms_count;
182 	unsigned long cipher_flags;
183 
184 	/*
185 	 * Layout of each crypto request:
186 	 *
187 	 *   struct skcipher_request
188 	 *      context
189 	 *      padding
190 	 *   struct dm_crypt_request
191 	 *      padding
192 	 *   IV
193 	 *
194 	 * The padding is added so that dm_crypt_request and the IV are
195 	 * correctly aligned.
196 	 */
197 	unsigned int dmreq_start;
198 
199 	unsigned int per_bio_data_size;
200 
201 	unsigned long flags;
202 	unsigned int key_size;
203 	unsigned int key_parts;      /* independent parts in key buffer */
204 	unsigned int key_extra_size; /* additional keys length */
205 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
206 
207 	unsigned int integrity_tag_size;
208 	unsigned int integrity_iv_size;
209 	unsigned int on_disk_tag_size;
210 
211 	/*
212 	 * pool for per bio private data, crypto requests,
213 	 * encryption requeusts/buffer pages and integrity tags
214 	 */
215 	unsigned tag_pool_max_sectors;
216 	mempool_t tag_pool;
217 	mempool_t req_pool;
218 	mempool_t page_pool;
219 
220 	struct bio_set bs;
221 	struct mutex bio_alloc_lock;
222 
223 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
224 	u8 key[];
225 };
226 
227 #define MIN_IOS		64
228 #define MAX_TAG_SIZE	480
229 #define POOL_ENTRY_SIZE	512
230 
231 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
232 static unsigned dm_crypt_clients_n = 0;
233 static volatile unsigned long dm_crypt_pages_per_client;
234 #define DM_CRYPT_MEMORY_PERCENT			2
235 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
236 
237 static void crypt_endio(struct bio *clone);
238 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
239 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
240 					     struct scatterlist *sg);
241 
242 static bool crypt_integrity_aead(struct crypt_config *cc);
243 
244 /*
245  * Use this to access cipher attributes that are independent of the key.
246  */
247 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
248 {
249 	return cc->cipher_tfm.tfms[0];
250 }
251 
252 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
253 {
254 	return cc->cipher_tfm.tfms_aead[0];
255 }
256 
257 /*
258  * Different IV generation algorithms:
259  *
260  * plain: the initial vector is the 32-bit little-endian version of the sector
261  *        number, padded with zeros if necessary.
262  *
263  * plain64: the initial vector is the 64-bit little-endian version of the sector
264  *        number, padded with zeros if necessary.
265  *
266  * plain64be: the initial vector is the 64-bit big-endian version of the sector
267  *        number, padded with zeros if necessary.
268  *
269  * essiv: "encrypted sector|salt initial vector", the sector number is
270  *        encrypted with the bulk cipher using a salt as key. The salt
271  *        should be derived from the bulk cipher's key via hashing.
272  *
273  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
274  *        (needed for LRW-32-AES and possible other narrow block modes)
275  *
276  * null: the initial vector is always zero.  Provides compatibility with
277  *       obsolete loop_fish2 devices.  Do not use for new devices.
278  *
279  * lmk:  Compatible implementation of the block chaining mode used
280  *       by the Loop-AES block device encryption system
281  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
282  *       It operates on full 512 byte sectors and uses CBC
283  *       with an IV derived from the sector number, the data and
284  *       optionally extra IV seed.
285  *       This means that after decryption the first block
286  *       of sector must be tweaked according to decrypted data.
287  *       Loop-AES can use three encryption schemes:
288  *         version 1: is plain aes-cbc mode
289  *         version 2: uses 64 multikey scheme with lmk IV generator
290  *         version 3: the same as version 2 with additional IV seed
291  *                   (it uses 65 keys, last key is used as IV seed)
292  *
293  * tcw:  Compatible implementation of the block chaining mode used
294  *       by the TrueCrypt device encryption system (prior to version 4.1).
295  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
296  *       It operates on full 512 byte sectors and uses CBC
297  *       with an IV derived from initial key and the sector number.
298  *       In addition, whitening value is applied on every sector, whitening
299  *       is calculated from initial key, sector number and mixed using CRC32.
300  *       Note that this encryption scheme is vulnerable to watermarking attacks
301  *       and should be used for old compatible containers access only.
302  *
303  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
304  *        The IV is encrypted little-endian byte-offset (with the same key
305  *        and cipher as the volume).
306  *
307  * elephant: The extended version of eboiv with additional Elephant diffuser
308  *           used with Bitlocker CBC mode.
309  *           This mode was used in older Windows systems
310  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
311  */
312 
313 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
314 			      struct dm_crypt_request *dmreq)
315 {
316 	memset(iv, 0, cc->iv_size);
317 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
318 
319 	return 0;
320 }
321 
322 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
323 				struct dm_crypt_request *dmreq)
324 {
325 	memset(iv, 0, cc->iv_size);
326 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
327 
328 	return 0;
329 }
330 
331 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
332 				  struct dm_crypt_request *dmreq)
333 {
334 	memset(iv, 0, cc->iv_size);
335 	/* iv_size is at least of size u64; usually it is 16 bytes */
336 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
337 
338 	return 0;
339 }
340 
341 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
342 			      struct dm_crypt_request *dmreq)
343 {
344 	/*
345 	 * ESSIV encryption of the IV is now handled by the crypto API,
346 	 * so just pass the plain sector number here.
347 	 */
348 	memset(iv, 0, cc->iv_size);
349 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
350 
351 	return 0;
352 }
353 
354 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
355 			      const char *opts)
356 {
357 	unsigned bs;
358 	int log;
359 
360 	if (crypt_integrity_aead(cc))
361 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
362 	else
363 		bs = crypto_skcipher_blocksize(any_tfm(cc));
364 	log = ilog2(bs);
365 
366 	/* we need to calculate how far we must shift the sector count
367 	 * to get the cipher block count, we use this shift in _gen */
368 
369 	if (1 << log != bs) {
370 		ti->error = "cypher blocksize is not a power of 2";
371 		return -EINVAL;
372 	}
373 
374 	if (log > 9) {
375 		ti->error = "cypher blocksize is > 512";
376 		return -EINVAL;
377 	}
378 
379 	cc->iv_gen_private.benbi.shift = 9 - log;
380 
381 	return 0;
382 }
383 
384 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
385 {
386 }
387 
388 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
389 			      struct dm_crypt_request *dmreq)
390 {
391 	__be64 val;
392 
393 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
394 
395 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
396 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
397 
398 	return 0;
399 }
400 
401 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
402 			     struct dm_crypt_request *dmreq)
403 {
404 	memset(iv, 0, cc->iv_size);
405 
406 	return 0;
407 }
408 
409 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
410 {
411 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
412 
413 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
414 		crypto_free_shash(lmk->hash_tfm);
415 	lmk->hash_tfm = NULL;
416 
417 	kfree_sensitive(lmk->seed);
418 	lmk->seed = NULL;
419 }
420 
421 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
422 			    const char *opts)
423 {
424 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
425 
426 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
427 		ti->error = "Unsupported sector size for LMK";
428 		return -EINVAL;
429 	}
430 
431 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
432 					   CRYPTO_ALG_ALLOCATES_MEMORY);
433 	if (IS_ERR(lmk->hash_tfm)) {
434 		ti->error = "Error initializing LMK hash";
435 		return PTR_ERR(lmk->hash_tfm);
436 	}
437 
438 	/* No seed in LMK version 2 */
439 	if (cc->key_parts == cc->tfms_count) {
440 		lmk->seed = NULL;
441 		return 0;
442 	}
443 
444 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
445 	if (!lmk->seed) {
446 		crypt_iv_lmk_dtr(cc);
447 		ti->error = "Error kmallocing seed storage in LMK";
448 		return -ENOMEM;
449 	}
450 
451 	return 0;
452 }
453 
454 static int crypt_iv_lmk_init(struct crypt_config *cc)
455 {
456 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
457 	int subkey_size = cc->key_size / cc->key_parts;
458 
459 	/* LMK seed is on the position of LMK_KEYS + 1 key */
460 	if (lmk->seed)
461 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
462 		       crypto_shash_digestsize(lmk->hash_tfm));
463 
464 	return 0;
465 }
466 
467 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
468 {
469 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470 
471 	if (lmk->seed)
472 		memset(lmk->seed, 0, LMK_SEED_SIZE);
473 
474 	return 0;
475 }
476 
477 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
478 			    struct dm_crypt_request *dmreq,
479 			    u8 *data)
480 {
481 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
482 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
483 	struct md5_state md5state;
484 	__le32 buf[4];
485 	int i, r;
486 
487 	desc->tfm = lmk->hash_tfm;
488 
489 	r = crypto_shash_init(desc);
490 	if (r)
491 		return r;
492 
493 	if (lmk->seed) {
494 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
495 		if (r)
496 			return r;
497 	}
498 
499 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
500 	r = crypto_shash_update(desc, data + 16, 16 * 31);
501 	if (r)
502 		return r;
503 
504 	/* Sector is cropped to 56 bits here */
505 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
506 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
507 	buf[2] = cpu_to_le32(4024);
508 	buf[3] = 0;
509 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
510 	if (r)
511 		return r;
512 
513 	/* No MD5 padding here */
514 	r = crypto_shash_export(desc, &md5state);
515 	if (r)
516 		return r;
517 
518 	for (i = 0; i < MD5_HASH_WORDS; i++)
519 		__cpu_to_le32s(&md5state.hash[i]);
520 	memcpy(iv, &md5state.hash, cc->iv_size);
521 
522 	return 0;
523 }
524 
525 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
526 			    struct dm_crypt_request *dmreq)
527 {
528 	struct scatterlist *sg;
529 	u8 *src;
530 	int r = 0;
531 
532 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
533 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
534 		src = kmap_atomic(sg_page(sg));
535 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
536 		kunmap_atomic(src);
537 	} else
538 		memset(iv, 0, cc->iv_size);
539 
540 	return r;
541 }
542 
543 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
544 			     struct dm_crypt_request *dmreq)
545 {
546 	struct scatterlist *sg;
547 	u8 *dst;
548 	int r;
549 
550 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
551 		return 0;
552 
553 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
554 	dst = kmap_atomic(sg_page(sg));
555 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
556 
557 	/* Tweak the first block of plaintext sector */
558 	if (!r)
559 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
560 
561 	kunmap_atomic(dst);
562 	return r;
563 }
564 
565 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
566 {
567 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
568 
569 	kfree_sensitive(tcw->iv_seed);
570 	tcw->iv_seed = NULL;
571 	kfree_sensitive(tcw->whitening);
572 	tcw->whitening = NULL;
573 
574 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
575 		crypto_free_shash(tcw->crc32_tfm);
576 	tcw->crc32_tfm = NULL;
577 }
578 
579 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
580 			    const char *opts)
581 {
582 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
583 
584 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
585 		ti->error = "Unsupported sector size for TCW";
586 		return -EINVAL;
587 	}
588 
589 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
590 		ti->error = "Wrong key size for TCW";
591 		return -EINVAL;
592 	}
593 
594 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
595 					    CRYPTO_ALG_ALLOCATES_MEMORY);
596 	if (IS_ERR(tcw->crc32_tfm)) {
597 		ti->error = "Error initializing CRC32 in TCW";
598 		return PTR_ERR(tcw->crc32_tfm);
599 	}
600 
601 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
602 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
603 	if (!tcw->iv_seed || !tcw->whitening) {
604 		crypt_iv_tcw_dtr(cc);
605 		ti->error = "Error allocating seed storage in TCW";
606 		return -ENOMEM;
607 	}
608 
609 	return 0;
610 }
611 
612 static int crypt_iv_tcw_init(struct crypt_config *cc)
613 {
614 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
615 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
616 
617 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
618 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
619 	       TCW_WHITENING_SIZE);
620 
621 	return 0;
622 }
623 
624 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
625 {
626 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
627 
628 	memset(tcw->iv_seed, 0, cc->iv_size);
629 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
630 
631 	return 0;
632 }
633 
634 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
635 				  struct dm_crypt_request *dmreq,
636 				  u8 *data)
637 {
638 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
639 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
640 	u8 buf[TCW_WHITENING_SIZE];
641 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
642 	int i, r;
643 
644 	/* xor whitening with sector number */
645 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
646 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
647 
648 	/* calculate crc32 for every 32bit part and xor it */
649 	desc->tfm = tcw->crc32_tfm;
650 	for (i = 0; i < 4; i++) {
651 		r = crypto_shash_init(desc);
652 		if (r)
653 			goto out;
654 		r = crypto_shash_update(desc, &buf[i * 4], 4);
655 		if (r)
656 			goto out;
657 		r = crypto_shash_final(desc, &buf[i * 4]);
658 		if (r)
659 			goto out;
660 	}
661 	crypto_xor(&buf[0], &buf[12], 4);
662 	crypto_xor(&buf[4], &buf[8], 4);
663 
664 	/* apply whitening (8 bytes) to whole sector */
665 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
666 		crypto_xor(data + i * 8, buf, 8);
667 out:
668 	memzero_explicit(buf, sizeof(buf));
669 	return r;
670 }
671 
672 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
673 			    struct dm_crypt_request *dmreq)
674 {
675 	struct scatterlist *sg;
676 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
678 	u8 *src;
679 	int r = 0;
680 
681 	/* Remove whitening from ciphertext */
682 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
683 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
684 		src = kmap_atomic(sg_page(sg));
685 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
686 		kunmap_atomic(src);
687 	}
688 
689 	/* Calculate IV */
690 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
691 	if (cc->iv_size > 8)
692 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
693 			       cc->iv_size - 8);
694 
695 	return r;
696 }
697 
698 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
699 			     struct dm_crypt_request *dmreq)
700 {
701 	struct scatterlist *sg;
702 	u8 *dst;
703 	int r;
704 
705 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
706 		return 0;
707 
708 	/* Apply whitening on ciphertext */
709 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
710 	dst = kmap_atomic(sg_page(sg));
711 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
712 	kunmap_atomic(dst);
713 
714 	return r;
715 }
716 
717 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
718 				struct dm_crypt_request *dmreq)
719 {
720 	/* Used only for writes, there must be an additional space to store IV */
721 	get_random_bytes(iv, cc->iv_size);
722 	return 0;
723 }
724 
725 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
726 			    const char *opts)
727 {
728 	if (crypt_integrity_aead(cc)) {
729 		ti->error = "AEAD transforms not supported for EBOIV";
730 		return -EINVAL;
731 	}
732 
733 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
734 		ti->error = "Block size of EBOIV cipher does "
735 			    "not match IV size of block cipher";
736 		return -EINVAL;
737 	}
738 
739 	return 0;
740 }
741 
742 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
743 			    struct dm_crypt_request *dmreq)
744 {
745 	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
746 	struct skcipher_request *req;
747 	struct scatterlist src, dst;
748 	DECLARE_CRYPTO_WAIT(wait);
749 	int err;
750 
751 	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
752 	if (!req)
753 		return -ENOMEM;
754 
755 	memset(buf, 0, cc->iv_size);
756 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
757 
758 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
759 	sg_init_one(&dst, iv, cc->iv_size);
760 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
761 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
762 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
763 	skcipher_request_free(req);
764 
765 	return err;
766 }
767 
768 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
769 {
770 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
771 
772 	crypto_free_skcipher(elephant->tfm);
773 	elephant->tfm = NULL;
774 }
775 
776 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
777 			    const char *opts)
778 {
779 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
780 	int r;
781 
782 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
783 					      CRYPTO_ALG_ALLOCATES_MEMORY);
784 	if (IS_ERR(elephant->tfm)) {
785 		r = PTR_ERR(elephant->tfm);
786 		elephant->tfm = NULL;
787 		return r;
788 	}
789 
790 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
791 	if (r)
792 		crypt_iv_elephant_dtr(cc);
793 	return r;
794 }
795 
796 static void diffuser_disk_to_cpu(u32 *d, size_t n)
797 {
798 #ifndef __LITTLE_ENDIAN
799 	int i;
800 
801 	for (i = 0; i < n; i++)
802 		d[i] = le32_to_cpu((__le32)d[i]);
803 #endif
804 }
805 
806 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
807 {
808 #ifndef __LITTLE_ENDIAN
809 	int i;
810 
811 	for (i = 0; i < n; i++)
812 		d[i] = cpu_to_le32((u32)d[i]);
813 #endif
814 }
815 
816 static void diffuser_a_decrypt(u32 *d, size_t n)
817 {
818 	int i, i1, i2, i3;
819 
820 	for (i = 0; i < 5; i++) {
821 		i1 = 0;
822 		i2 = n - 2;
823 		i3 = n - 5;
824 
825 		while (i1 < (n - 1)) {
826 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
827 			i1++; i2++; i3++;
828 
829 			if (i3 >= n)
830 				i3 -= n;
831 
832 			d[i1] += d[i2] ^ d[i3];
833 			i1++; i2++; i3++;
834 
835 			if (i2 >= n)
836 				i2 -= n;
837 
838 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
839 			i1++; i2++; i3++;
840 
841 			d[i1] += d[i2] ^ d[i3];
842 			i1++; i2++; i3++;
843 		}
844 	}
845 }
846 
847 static void diffuser_a_encrypt(u32 *d, size_t n)
848 {
849 	int i, i1, i2, i3;
850 
851 	for (i = 0; i < 5; i++) {
852 		i1 = n - 1;
853 		i2 = n - 2 - 1;
854 		i3 = n - 5 - 1;
855 
856 		while (i1 > 0) {
857 			d[i1] -= d[i2] ^ d[i3];
858 			i1--; i2--; i3--;
859 
860 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
861 			i1--; i2--; i3--;
862 
863 			if (i2 < 0)
864 				i2 += n;
865 
866 			d[i1] -= d[i2] ^ d[i3];
867 			i1--; i2--; i3--;
868 
869 			if (i3 < 0)
870 				i3 += n;
871 
872 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
873 			i1--; i2--; i3--;
874 		}
875 	}
876 }
877 
878 static void diffuser_b_decrypt(u32 *d, size_t n)
879 {
880 	int i, i1, i2, i3;
881 
882 	for (i = 0; i < 3; i++) {
883 		i1 = 0;
884 		i2 = 2;
885 		i3 = 5;
886 
887 		while (i1 < (n - 1)) {
888 			d[i1] += d[i2] ^ d[i3];
889 			i1++; i2++; i3++;
890 
891 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
892 			i1++; i2++; i3++;
893 
894 			if (i2 >= n)
895 				i2 -= n;
896 
897 			d[i1] += d[i2] ^ d[i3];
898 			i1++; i2++; i3++;
899 
900 			if (i3 >= n)
901 				i3 -= n;
902 
903 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
904 			i1++; i2++; i3++;
905 		}
906 	}
907 }
908 
909 static void diffuser_b_encrypt(u32 *d, size_t n)
910 {
911 	int i, i1, i2, i3;
912 
913 	for (i = 0; i < 3; i++) {
914 		i1 = n - 1;
915 		i2 = 2 - 1;
916 		i3 = 5 - 1;
917 
918 		while (i1 > 0) {
919 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
920 			i1--; i2--; i3--;
921 
922 			if (i3 < 0)
923 				i3 += n;
924 
925 			d[i1] -= d[i2] ^ d[i3];
926 			i1--; i2--; i3--;
927 
928 			if (i2 < 0)
929 				i2 += n;
930 
931 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
932 			i1--; i2--; i3--;
933 
934 			d[i1] -= d[i2] ^ d[i3];
935 			i1--; i2--; i3--;
936 		}
937 	}
938 }
939 
940 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
941 {
942 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
943 	u8 *es, *ks, *data, *data2, *data_offset;
944 	struct skcipher_request *req;
945 	struct scatterlist *sg, *sg2, src, dst;
946 	DECLARE_CRYPTO_WAIT(wait);
947 	int i, r;
948 
949 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
950 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
951 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
952 
953 	if (!req || !es || !ks) {
954 		r = -ENOMEM;
955 		goto out;
956 	}
957 
958 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
959 
960 	/* E(Ks, e(s)) */
961 	sg_init_one(&src, es, 16);
962 	sg_init_one(&dst, ks, 16);
963 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
964 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
965 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
966 	if (r)
967 		goto out;
968 
969 	/* E(Ks, e'(s)) */
970 	es[15] = 0x80;
971 	sg_init_one(&dst, &ks[16], 16);
972 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
973 	if (r)
974 		goto out;
975 
976 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
977 	data = kmap_atomic(sg_page(sg));
978 	data_offset = data + sg->offset;
979 
980 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
981 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
982 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
983 		data2 = kmap_atomic(sg_page(sg2));
984 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
985 		kunmap_atomic(data2);
986 	}
987 
988 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
989 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
990 		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
991 		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
992 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
993 	}
994 
995 	for (i = 0; i < (cc->sector_size / 32); i++)
996 		crypto_xor(data_offset + i * 32, ks, 32);
997 
998 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
999 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
1000 		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1001 		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1002 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1003 	}
1004 
1005 	kunmap_atomic(data);
1006 out:
1007 	kfree_sensitive(ks);
1008 	kfree_sensitive(es);
1009 	skcipher_request_free(req);
1010 	return r;
1011 }
1012 
1013 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1014 			    struct dm_crypt_request *dmreq)
1015 {
1016 	int r;
1017 
1018 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1019 		r = crypt_iv_elephant(cc, dmreq);
1020 		if (r)
1021 			return r;
1022 	}
1023 
1024 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1025 }
1026 
1027 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1028 				  struct dm_crypt_request *dmreq)
1029 {
1030 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1031 		return crypt_iv_elephant(cc, dmreq);
1032 
1033 	return 0;
1034 }
1035 
1036 static int crypt_iv_elephant_init(struct crypt_config *cc)
1037 {
1038 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1039 	int key_offset = cc->key_size - cc->key_extra_size;
1040 
1041 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1042 }
1043 
1044 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1045 {
1046 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1047 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1048 
1049 	memset(key, 0, cc->key_extra_size);
1050 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1051 }
1052 
1053 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1054 	.generator = crypt_iv_plain_gen
1055 };
1056 
1057 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1058 	.generator = crypt_iv_plain64_gen
1059 };
1060 
1061 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1062 	.generator = crypt_iv_plain64be_gen
1063 };
1064 
1065 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1066 	.generator = crypt_iv_essiv_gen
1067 };
1068 
1069 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1070 	.ctr	   = crypt_iv_benbi_ctr,
1071 	.dtr	   = crypt_iv_benbi_dtr,
1072 	.generator = crypt_iv_benbi_gen
1073 };
1074 
1075 static const struct crypt_iv_operations crypt_iv_null_ops = {
1076 	.generator = crypt_iv_null_gen
1077 };
1078 
1079 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1080 	.ctr	   = crypt_iv_lmk_ctr,
1081 	.dtr	   = crypt_iv_lmk_dtr,
1082 	.init	   = crypt_iv_lmk_init,
1083 	.wipe	   = crypt_iv_lmk_wipe,
1084 	.generator = crypt_iv_lmk_gen,
1085 	.post	   = crypt_iv_lmk_post
1086 };
1087 
1088 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1089 	.ctr	   = crypt_iv_tcw_ctr,
1090 	.dtr	   = crypt_iv_tcw_dtr,
1091 	.init	   = crypt_iv_tcw_init,
1092 	.wipe	   = crypt_iv_tcw_wipe,
1093 	.generator = crypt_iv_tcw_gen,
1094 	.post	   = crypt_iv_tcw_post
1095 };
1096 
1097 static const struct crypt_iv_operations crypt_iv_random_ops = {
1098 	.generator = crypt_iv_random_gen
1099 };
1100 
1101 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1102 	.ctr	   = crypt_iv_eboiv_ctr,
1103 	.generator = crypt_iv_eboiv_gen
1104 };
1105 
1106 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1107 	.ctr	   = crypt_iv_elephant_ctr,
1108 	.dtr	   = crypt_iv_elephant_dtr,
1109 	.init	   = crypt_iv_elephant_init,
1110 	.wipe	   = crypt_iv_elephant_wipe,
1111 	.generator = crypt_iv_elephant_gen,
1112 	.post	   = crypt_iv_elephant_post
1113 };
1114 
1115 /*
1116  * Integrity extensions
1117  */
1118 static bool crypt_integrity_aead(struct crypt_config *cc)
1119 {
1120 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1121 }
1122 
1123 static bool crypt_integrity_hmac(struct crypt_config *cc)
1124 {
1125 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1126 }
1127 
1128 /* Get sg containing data */
1129 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1130 					     struct scatterlist *sg)
1131 {
1132 	if (unlikely(crypt_integrity_aead(cc)))
1133 		return &sg[2];
1134 
1135 	return sg;
1136 }
1137 
1138 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1139 {
1140 	struct bio_integrity_payload *bip;
1141 	unsigned int tag_len;
1142 	int ret;
1143 
1144 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1145 		return 0;
1146 
1147 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1148 	if (IS_ERR(bip))
1149 		return PTR_ERR(bip);
1150 
1151 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1152 
1153 	bip->bip_iter.bi_size = tag_len;
1154 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1155 
1156 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1157 				     tag_len, offset_in_page(io->integrity_metadata));
1158 	if (unlikely(ret != tag_len))
1159 		return -ENOMEM;
1160 
1161 	return 0;
1162 }
1163 
1164 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1165 {
1166 #ifdef CONFIG_BLK_DEV_INTEGRITY
1167 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1168 	struct mapped_device *md = dm_table_get_md(ti->table);
1169 
1170 	/* From now we require underlying device with our integrity profile */
1171 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1172 		ti->error = "Integrity profile not supported.";
1173 		return -EINVAL;
1174 	}
1175 
1176 	if (bi->tag_size != cc->on_disk_tag_size ||
1177 	    bi->tuple_size != cc->on_disk_tag_size) {
1178 		ti->error = "Integrity profile tag size mismatch.";
1179 		return -EINVAL;
1180 	}
1181 	if (1 << bi->interval_exp != cc->sector_size) {
1182 		ti->error = "Integrity profile sector size mismatch.";
1183 		return -EINVAL;
1184 	}
1185 
1186 	if (crypt_integrity_aead(cc)) {
1187 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1188 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1189 		       cc->integrity_tag_size, cc->integrity_iv_size);
1190 
1191 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1192 			ti->error = "Integrity AEAD auth tag size is not supported.";
1193 			return -EINVAL;
1194 		}
1195 	} else if (cc->integrity_iv_size)
1196 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1197 		       cc->integrity_iv_size);
1198 
1199 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1200 		ti->error = "Not enough space for integrity tag in the profile.";
1201 		return -EINVAL;
1202 	}
1203 
1204 	return 0;
1205 #else
1206 	ti->error = "Integrity profile not supported.";
1207 	return -EINVAL;
1208 #endif
1209 }
1210 
1211 static void crypt_convert_init(struct crypt_config *cc,
1212 			       struct convert_context *ctx,
1213 			       struct bio *bio_out, struct bio *bio_in,
1214 			       sector_t sector)
1215 {
1216 	ctx->bio_in = bio_in;
1217 	ctx->bio_out = bio_out;
1218 	if (bio_in)
1219 		ctx->iter_in = bio_in->bi_iter;
1220 	if (bio_out)
1221 		ctx->iter_out = bio_out->bi_iter;
1222 	ctx->cc_sector = sector + cc->iv_offset;
1223 	init_completion(&ctx->restart);
1224 }
1225 
1226 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1227 					     void *req)
1228 {
1229 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1230 }
1231 
1232 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1233 {
1234 	return (void *)((char *)dmreq - cc->dmreq_start);
1235 }
1236 
1237 static u8 *iv_of_dmreq(struct crypt_config *cc,
1238 		       struct dm_crypt_request *dmreq)
1239 {
1240 	if (crypt_integrity_aead(cc))
1241 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1242 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1243 	else
1244 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1245 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1246 }
1247 
1248 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1249 		       struct dm_crypt_request *dmreq)
1250 {
1251 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1252 }
1253 
1254 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1255 		       struct dm_crypt_request *dmreq)
1256 {
1257 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1258 	return (__le64 *) ptr;
1259 }
1260 
1261 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1262 		       struct dm_crypt_request *dmreq)
1263 {
1264 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1265 		  cc->iv_size + sizeof(uint64_t);
1266 	return (unsigned int*)ptr;
1267 }
1268 
1269 static void *tag_from_dmreq(struct crypt_config *cc,
1270 				struct dm_crypt_request *dmreq)
1271 {
1272 	struct convert_context *ctx = dmreq->ctx;
1273 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1274 
1275 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1276 		cc->on_disk_tag_size];
1277 }
1278 
1279 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1280 			       struct dm_crypt_request *dmreq)
1281 {
1282 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1283 }
1284 
1285 static int crypt_convert_block_aead(struct crypt_config *cc,
1286 				     struct convert_context *ctx,
1287 				     struct aead_request *req,
1288 				     unsigned int tag_offset)
1289 {
1290 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1291 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1292 	struct dm_crypt_request *dmreq;
1293 	u8 *iv, *org_iv, *tag_iv, *tag;
1294 	__le64 *sector;
1295 	int r = 0;
1296 
1297 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1298 
1299 	/* Reject unexpected unaligned bio. */
1300 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1301 		return -EIO;
1302 
1303 	dmreq = dmreq_of_req(cc, req);
1304 	dmreq->iv_sector = ctx->cc_sector;
1305 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1306 		dmreq->iv_sector >>= cc->sector_shift;
1307 	dmreq->ctx = ctx;
1308 
1309 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1310 
1311 	sector = org_sector_of_dmreq(cc, dmreq);
1312 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1313 
1314 	iv = iv_of_dmreq(cc, dmreq);
1315 	org_iv = org_iv_of_dmreq(cc, dmreq);
1316 	tag = tag_from_dmreq(cc, dmreq);
1317 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1318 
1319 	/* AEAD request:
1320 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1321 	 *  | (authenticated) | (auth+encryption) |              |
1322 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1323 	 */
1324 	sg_init_table(dmreq->sg_in, 4);
1325 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1326 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1327 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1328 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1329 
1330 	sg_init_table(dmreq->sg_out, 4);
1331 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1332 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1333 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1334 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1335 
1336 	if (cc->iv_gen_ops) {
1337 		/* For READs use IV stored in integrity metadata */
1338 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1339 			memcpy(org_iv, tag_iv, cc->iv_size);
1340 		} else {
1341 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1342 			if (r < 0)
1343 				return r;
1344 			/* Store generated IV in integrity metadata */
1345 			if (cc->integrity_iv_size)
1346 				memcpy(tag_iv, org_iv, cc->iv_size);
1347 		}
1348 		/* Working copy of IV, to be modified in crypto API */
1349 		memcpy(iv, org_iv, cc->iv_size);
1350 	}
1351 
1352 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1353 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1354 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1355 				       cc->sector_size, iv);
1356 		r = crypto_aead_encrypt(req);
1357 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1358 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1359 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1360 	} else {
1361 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1362 				       cc->sector_size + cc->integrity_tag_size, iv);
1363 		r = crypto_aead_decrypt(req);
1364 	}
1365 
1366 	if (r == -EBADMSG) {
1367 		sector_t s = le64_to_cpu(*sector);
1368 
1369 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1370 			    ctx->bio_in->bi_bdev, s);
1371 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1372 				 ctx->bio_in, s, 0);
1373 	}
1374 
1375 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1377 
1378 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1379 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1380 
1381 	return r;
1382 }
1383 
1384 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1385 					struct convert_context *ctx,
1386 					struct skcipher_request *req,
1387 					unsigned int tag_offset)
1388 {
1389 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1390 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1391 	struct scatterlist *sg_in, *sg_out;
1392 	struct dm_crypt_request *dmreq;
1393 	u8 *iv, *org_iv, *tag_iv;
1394 	__le64 *sector;
1395 	int r = 0;
1396 
1397 	/* Reject unexpected unaligned bio. */
1398 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1399 		return -EIO;
1400 
1401 	dmreq = dmreq_of_req(cc, req);
1402 	dmreq->iv_sector = ctx->cc_sector;
1403 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1404 		dmreq->iv_sector >>= cc->sector_shift;
1405 	dmreq->ctx = ctx;
1406 
1407 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1408 
1409 	iv = iv_of_dmreq(cc, dmreq);
1410 	org_iv = org_iv_of_dmreq(cc, dmreq);
1411 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1412 
1413 	sector = org_sector_of_dmreq(cc, dmreq);
1414 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1415 
1416 	/* For skcipher we use only the first sg item */
1417 	sg_in  = &dmreq->sg_in[0];
1418 	sg_out = &dmreq->sg_out[0];
1419 
1420 	sg_init_table(sg_in, 1);
1421 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1422 
1423 	sg_init_table(sg_out, 1);
1424 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1425 
1426 	if (cc->iv_gen_ops) {
1427 		/* For READs use IV stored in integrity metadata */
1428 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1429 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1430 		} else {
1431 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1432 			if (r < 0)
1433 				return r;
1434 			/* Data can be already preprocessed in generator */
1435 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1436 				sg_in = sg_out;
1437 			/* Store generated IV in integrity metadata */
1438 			if (cc->integrity_iv_size)
1439 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1440 		}
1441 		/* Working copy of IV, to be modified in crypto API */
1442 		memcpy(iv, org_iv, cc->iv_size);
1443 	}
1444 
1445 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1446 
1447 	if (bio_data_dir(ctx->bio_in) == WRITE)
1448 		r = crypto_skcipher_encrypt(req);
1449 	else
1450 		r = crypto_skcipher_decrypt(req);
1451 
1452 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1453 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1454 
1455 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1456 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1457 
1458 	return r;
1459 }
1460 
1461 static void kcryptd_async_done(struct crypto_async_request *async_req,
1462 			       int error);
1463 
1464 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1465 				     struct convert_context *ctx)
1466 {
1467 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1468 
1469 	if (!ctx->r.req) {
1470 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1471 		if (!ctx->r.req)
1472 			return -ENOMEM;
1473 	}
1474 
1475 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1476 
1477 	/*
1478 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1479 	 * requests if driver request queue is full.
1480 	 */
1481 	skcipher_request_set_callback(ctx->r.req,
1482 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1483 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1484 
1485 	return 0;
1486 }
1487 
1488 static int crypt_alloc_req_aead(struct crypt_config *cc,
1489 				 struct convert_context *ctx)
1490 {
1491 	if (!ctx->r.req_aead) {
1492 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1493 		if (!ctx->r.req_aead)
1494 			return -ENOMEM;
1495 	}
1496 
1497 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1498 
1499 	/*
1500 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1501 	 * requests if driver request queue is full.
1502 	 */
1503 	aead_request_set_callback(ctx->r.req_aead,
1504 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1505 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1506 
1507 	return 0;
1508 }
1509 
1510 static int crypt_alloc_req(struct crypt_config *cc,
1511 			    struct convert_context *ctx)
1512 {
1513 	if (crypt_integrity_aead(cc))
1514 		return crypt_alloc_req_aead(cc, ctx);
1515 	else
1516 		return crypt_alloc_req_skcipher(cc, ctx);
1517 }
1518 
1519 static void crypt_free_req_skcipher(struct crypt_config *cc,
1520 				    struct skcipher_request *req, struct bio *base_bio)
1521 {
1522 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1523 
1524 	if ((struct skcipher_request *)(io + 1) != req)
1525 		mempool_free(req, &cc->req_pool);
1526 }
1527 
1528 static void crypt_free_req_aead(struct crypt_config *cc,
1529 				struct aead_request *req, struct bio *base_bio)
1530 {
1531 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1532 
1533 	if ((struct aead_request *)(io + 1) != req)
1534 		mempool_free(req, &cc->req_pool);
1535 }
1536 
1537 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1538 {
1539 	if (crypt_integrity_aead(cc))
1540 		crypt_free_req_aead(cc, req, base_bio);
1541 	else
1542 		crypt_free_req_skcipher(cc, req, base_bio);
1543 }
1544 
1545 /*
1546  * Encrypt / decrypt data from one bio to another one (can be the same one)
1547  */
1548 static blk_status_t crypt_convert(struct crypt_config *cc,
1549 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1550 {
1551 	unsigned int tag_offset = 0;
1552 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1553 	int r;
1554 
1555 	/*
1556 	 * if reset_pending is set we are dealing with the bio for the first time,
1557 	 * else we're continuing to work on the previous bio, so don't mess with
1558 	 * the cc_pending counter
1559 	 */
1560 	if (reset_pending)
1561 		atomic_set(&ctx->cc_pending, 1);
1562 
1563 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1564 
1565 		r = crypt_alloc_req(cc, ctx);
1566 		if (r) {
1567 			complete(&ctx->restart);
1568 			return BLK_STS_DEV_RESOURCE;
1569 		}
1570 
1571 		atomic_inc(&ctx->cc_pending);
1572 
1573 		if (crypt_integrity_aead(cc))
1574 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1575 		else
1576 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1577 
1578 		switch (r) {
1579 		/*
1580 		 * The request was queued by a crypto driver
1581 		 * but the driver request queue is full, let's wait.
1582 		 */
1583 		case -EBUSY:
1584 			if (in_interrupt()) {
1585 				if (try_wait_for_completion(&ctx->restart)) {
1586 					/*
1587 					 * we don't have to block to wait for completion,
1588 					 * so proceed
1589 					 */
1590 				} else {
1591 					/*
1592 					 * we can't wait for completion without blocking
1593 					 * exit and continue processing in a workqueue
1594 					 */
1595 					ctx->r.req = NULL;
1596 					ctx->cc_sector += sector_step;
1597 					tag_offset++;
1598 					return BLK_STS_DEV_RESOURCE;
1599 				}
1600 			} else {
1601 				wait_for_completion(&ctx->restart);
1602 			}
1603 			reinit_completion(&ctx->restart);
1604 			fallthrough;
1605 		/*
1606 		 * The request is queued and processed asynchronously,
1607 		 * completion function kcryptd_async_done() will be called.
1608 		 */
1609 		case -EINPROGRESS:
1610 			ctx->r.req = NULL;
1611 			ctx->cc_sector += sector_step;
1612 			tag_offset++;
1613 			continue;
1614 		/*
1615 		 * The request was already processed (synchronously).
1616 		 */
1617 		case 0:
1618 			atomic_dec(&ctx->cc_pending);
1619 			ctx->cc_sector += sector_step;
1620 			tag_offset++;
1621 			if (!atomic)
1622 				cond_resched();
1623 			continue;
1624 		/*
1625 		 * There was a data integrity error.
1626 		 */
1627 		case -EBADMSG:
1628 			atomic_dec(&ctx->cc_pending);
1629 			return BLK_STS_PROTECTION;
1630 		/*
1631 		 * There was an error while processing the request.
1632 		 */
1633 		default:
1634 			atomic_dec(&ctx->cc_pending);
1635 			return BLK_STS_IOERR;
1636 		}
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1643 
1644 /*
1645  * Generate a new unfragmented bio with the given size
1646  * This should never violate the device limitations (but only because
1647  * max_segment_size is being constrained to PAGE_SIZE).
1648  *
1649  * This function may be called concurrently. If we allocate from the mempool
1650  * concurrently, there is a possibility of deadlock. For example, if we have
1651  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1652  * the mempool concurrently, it may deadlock in a situation where both processes
1653  * have allocated 128 pages and the mempool is exhausted.
1654  *
1655  * In order to avoid this scenario we allocate the pages under a mutex.
1656  *
1657  * In order to not degrade performance with excessive locking, we try
1658  * non-blocking allocations without a mutex first but on failure we fallback
1659  * to blocking allocations with a mutex.
1660  */
1661 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1662 {
1663 	struct crypt_config *cc = io->cc;
1664 	struct bio *clone;
1665 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1666 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1667 	unsigned i, len, remaining_size;
1668 	struct page *page;
1669 
1670 retry:
1671 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1672 		mutex_lock(&cc->bio_alloc_lock);
1673 
1674 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1675 				 GFP_NOIO, &cc->bs);
1676 	clone->bi_private = io;
1677 	clone->bi_end_io = crypt_endio;
1678 
1679 	remaining_size = size;
1680 
1681 	for (i = 0; i < nr_iovecs; i++) {
1682 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1683 		if (!page) {
1684 			crypt_free_buffer_pages(cc, clone);
1685 			bio_put(clone);
1686 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1687 			goto retry;
1688 		}
1689 
1690 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1691 
1692 		bio_add_page(clone, page, len, 0);
1693 
1694 		remaining_size -= len;
1695 	}
1696 
1697 	/* Allocate space for integrity tags */
1698 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1699 		crypt_free_buffer_pages(cc, clone);
1700 		bio_put(clone);
1701 		clone = NULL;
1702 	}
1703 
1704 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1705 		mutex_unlock(&cc->bio_alloc_lock);
1706 
1707 	return clone;
1708 }
1709 
1710 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1711 {
1712 	struct bio_vec *bv;
1713 	struct bvec_iter_all iter_all;
1714 
1715 	bio_for_each_segment_all(bv, clone, iter_all) {
1716 		BUG_ON(!bv->bv_page);
1717 		mempool_free(bv->bv_page, &cc->page_pool);
1718 	}
1719 }
1720 
1721 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1722 			  struct bio *bio, sector_t sector)
1723 {
1724 	io->cc = cc;
1725 	io->base_bio = bio;
1726 	io->sector = sector;
1727 	io->error = 0;
1728 	io->ctx.r.req = NULL;
1729 	io->integrity_metadata = NULL;
1730 	io->integrity_metadata_from_pool = false;
1731 	atomic_set(&io->io_pending, 0);
1732 }
1733 
1734 static void crypt_inc_pending(struct dm_crypt_io *io)
1735 {
1736 	atomic_inc(&io->io_pending);
1737 }
1738 
1739 static void kcryptd_io_bio_endio(struct work_struct *work)
1740 {
1741 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1742 	bio_endio(io->base_bio);
1743 }
1744 
1745 /*
1746  * One of the bios was finished. Check for completion of
1747  * the whole request and correctly clean up the buffer.
1748  */
1749 static void crypt_dec_pending(struct dm_crypt_io *io)
1750 {
1751 	struct crypt_config *cc = io->cc;
1752 	struct bio *base_bio = io->base_bio;
1753 	blk_status_t error = io->error;
1754 
1755 	if (!atomic_dec_and_test(&io->io_pending))
1756 		return;
1757 
1758 	if (io->ctx.r.req)
1759 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1760 
1761 	if (unlikely(io->integrity_metadata_from_pool))
1762 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1763 	else
1764 		kfree(io->integrity_metadata);
1765 
1766 	base_bio->bi_status = error;
1767 
1768 	/*
1769 	 * If we are running this function from our tasklet,
1770 	 * we can't call bio_endio() here, because it will call
1771 	 * clone_endio() from dm.c, which in turn will
1772 	 * free the current struct dm_crypt_io structure with
1773 	 * our tasklet. In this case we need to delay bio_endio()
1774 	 * execution to after the tasklet is done and dequeued.
1775 	 */
1776 	if (tasklet_trylock(&io->tasklet)) {
1777 		tasklet_unlock(&io->tasklet);
1778 		bio_endio(base_bio);
1779 		return;
1780 	}
1781 
1782 	INIT_WORK(&io->work, kcryptd_io_bio_endio);
1783 	queue_work(cc->io_queue, &io->work);
1784 }
1785 
1786 /*
1787  * kcryptd/kcryptd_io:
1788  *
1789  * Needed because it would be very unwise to do decryption in an
1790  * interrupt context.
1791  *
1792  * kcryptd performs the actual encryption or decryption.
1793  *
1794  * kcryptd_io performs the IO submission.
1795  *
1796  * They must be separated as otherwise the final stages could be
1797  * starved by new requests which can block in the first stages due
1798  * to memory allocation.
1799  *
1800  * The work is done per CPU global for all dm-crypt instances.
1801  * They should not depend on each other and do not block.
1802  */
1803 static void crypt_endio(struct bio *clone)
1804 {
1805 	struct dm_crypt_io *io = clone->bi_private;
1806 	struct crypt_config *cc = io->cc;
1807 	unsigned rw = bio_data_dir(clone);
1808 	blk_status_t error;
1809 
1810 	/*
1811 	 * free the processed pages
1812 	 */
1813 	if (rw == WRITE)
1814 		crypt_free_buffer_pages(cc, clone);
1815 
1816 	error = clone->bi_status;
1817 	bio_put(clone);
1818 
1819 	if (rw == READ && !error) {
1820 		kcryptd_queue_crypt(io);
1821 		return;
1822 	}
1823 
1824 	if (unlikely(error))
1825 		io->error = error;
1826 
1827 	crypt_dec_pending(io);
1828 }
1829 
1830 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1831 
1832 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1833 {
1834 	struct crypt_config *cc = io->cc;
1835 	struct bio *clone;
1836 
1837 	/*
1838 	 * We need the original biovec array in order to decrypt the whole bio
1839 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1840 	 * worry about the block layer modifying the biovec array; so leverage
1841 	 * bio_alloc_clone().
1842 	 */
1843 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1844 	if (!clone)
1845 		return 1;
1846 	clone->bi_private = io;
1847 	clone->bi_end_io = crypt_endio;
1848 
1849 	crypt_inc_pending(io);
1850 
1851 	clone->bi_iter.bi_sector = cc->start + io->sector;
1852 
1853 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1854 		crypt_dec_pending(io);
1855 		bio_put(clone);
1856 		return 1;
1857 	}
1858 
1859 	dm_submit_bio_remap(io->base_bio, clone);
1860 	return 0;
1861 }
1862 
1863 static void kcryptd_io_read_work(struct work_struct *work)
1864 {
1865 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1866 
1867 	crypt_inc_pending(io);
1868 	if (kcryptd_io_read(io, GFP_NOIO))
1869 		io->error = BLK_STS_RESOURCE;
1870 	crypt_dec_pending(io);
1871 }
1872 
1873 static void kcryptd_queue_read(struct dm_crypt_io *io)
1874 {
1875 	struct crypt_config *cc = io->cc;
1876 
1877 	INIT_WORK(&io->work, kcryptd_io_read_work);
1878 	queue_work(cc->io_queue, &io->work);
1879 }
1880 
1881 static void kcryptd_io_write(struct dm_crypt_io *io)
1882 {
1883 	struct bio *clone = io->ctx.bio_out;
1884 
1885 	dm_submit_bio_remap(io->base_bio, clone);
1886 }
1887 
1888 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1889 
1890 static int dmcrypt_write(void *data)
1891 {
1892 	struct crypt_config *cc = data;
1893 	struct dm_crypt_io *io;
1894 
1895 	while (1) {
1896 		struct rb_root write_tree;
1897 		struct blk_plug plug;
1898 
1899 		spin_lock_irq(&cc->write_thread_lock);
1900 continue_locked:
1901 
1902 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1903 			goto pop_from_list;
1904 
1905 		set_current_state(TASK_INTERRUPTIBLE);
1906 
1907 		spin_unlock_irq(&cc->write_thread_lock);
1908 
1909 		if (unlikely(kthread_should_stop())) {
1910 			set_current_state(TASK_RUNNING);
1911 			break;
1912 		}
1913 
1914 		schedule();
1915 
1916 		set_current_state(TASK_RUNNING);
1917 		spin_lock_irq(&cc->write_thread_lock);
1918 		goto continue_locked;
1919 
1920 pop_from_list:
1921 		write_tree = cc->write_tree;
1922 		cc->write_tree = RB_ROOT;
1923 		spin_unlock_irq(&cc->write_thread_lock);
1924 
1925 		BUG_ON(rb_parent(write_tree.rb_node));
1926 
1927 		/*
1928 		 * Note: we cannot walk the tree here with rb_next because
1929 		 * the structures may be freed when kcryptd_io_write is called.
1930 		 */
1931 		blk_start_plug(&plug);
1932 		do {
1933 			io = crypt_io_from_node(rb_first(&write_tree));
1934 			rb_erase(&io->rb_node, &write_tree);
1935 			kcryptd_io_write(io);
1936 		} while (!RB_EMPTY_ROOT(&write_tree));
1937 		blk_finish_plug(&plug);
1938 	}
1939 	return 0;
1940 }
1941 
1942 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1943 {
1944 	struct bio *clone = io->ctx.bio_out;
1945 	struct crypt_config *cc = io->cc;
1946 	unsigned long flags;
1947 	sector_t sector;
1948 	struct rb_node **rbp, *parent;
1949 
1950 	if (unlikely(io->error)) {
1951 		crypt_free_buffer_pages(cc, clone);
1952 		bio_put(clone);
1953 		crypt_dec_pending(io);
1954 		return;
1955 	}
1956 
1957 	/* crypt_convert should have filled the clone bio */
1958 	BUG_ON(io->ctx.iter_out.bi_size);
1959 
1960 	clone->bi_iter.bi_sector = cc->start + io->sector;
1961 
1962 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1963 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1964 		dm_submit_bio_remap(io->base_bio, clone);
1965 		return;
1966 	}
1967 
1968 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1969 	if (RB_EMPTY_ROOT(&cc->write_tree))
1970 		wake_up_process(cc->write_thread);
1971 	rbp = &cc->write_tree.rb_node;
1972 	parent = NULL;
1973 	sector = io->sector;
1974 	while (*rbp) {
1975 		parent = *rbp;
1976 		if (sector < crypt_io_from_node(parent)->sector)
1977 			rbp = &(*rbp)->rb_left;
1978 		else
1979 			rbp = &(*rbp)->rb_right;
1980 	}
1981 	rb_link_node(&io->rb_node, parent, rbp);
1982 	rb_insert_color(&io->rb_node, &cc->write_tree);
1983 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1984 }
1985 
1986 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1987 				       struct convert_context *ctx)
1988 
1989 {
1990 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1991 		return false;
1992 
1993 	/*
1994 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1995 	 * constraints so they do not need to be issued inline by
1996 	 * kcryptd_crypt_write_convert().
1997 	 */
1998 	switch (bio_op(ctx->bio_in)) {
1999 	case REQ_OP_WRITE:
2000 	case REQ_OP_WRITE_ZEROES:
2001 		return true;
2002 	default:
2003 		return false;
2004 	}
2005 }
2006 
2007 static void kcryptd_crypt_write_continue(struct work_struct *work)
2008 {
2009 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2010 	struct crypt_config *cc = io->cc;
2011 	struct convert_context *ctx = &io->ctx;
2012 	int crypt_finished;
2013 	sector_t sector = io->sector;
2014 	blk_status_t r;
2015 
2016 	wait_for_completion(&ctx->restart);
2017 	reinit_completion(&ctx->restart);
2018 
2019 	r = crypt_convert(cc, &io->ctx, true, false);
2020 	if (r)
2021 		io->error = r;
2022 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2023 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2024 		/* Wait for completion signaled by kcryptd_async_done() */
2025 		wait_for_completion(&ctx->restart);
2026 		crypt_finished = 1;
2027 	}
2028 
2029 	/* Encryption was already finished, submit io now */
2030 	if (crypt_finished) {
2031 		kcryptd_crypt_write_io_submit(io, 0);
2032 		io->sector = sector;
2033 	}
2034 
2035 	crypt_dec_pending(io);
2036 }
2037 
2038 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2039 {
2040 	struct crypt_config *cc = io->cc;
2041 	struct convert_context *ctx = &io->ctx;
2042 	struct bio *clone;
2043 	int crypt_finished;
2044 	sector_t sector = io->sector;
2045 	blk_status_t r;
2046 
2047 	/*
2048 	 * Prevent io from disappearing until this function completes.
2049 	 */
2050 	crypt_inc_pending(io);
2051 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2052 
2053 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2054 	if (unlikely(!clone)) {
2055 		io->error = BLK_STS_IOERR;
2056 		goto dec;
2057 	}
2058 
2059 	io->ctx.bio_out = clone;
2060 	io->ctx.iter_out = clone->bi_iter;
2061 
2062 	sector += bio_sectors(clone);
2063 
2064 	crypt_inc_pending(io);
2065 	r = crypt_convert(cc, ctx,
2066 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2067 	/*
2068 	 * Crypto API backlogged the request, because its queue was full
2069 	 * and we're in softirq context, so continue from a workqueue
2070 	 * (TODO: is it actually possible to be in softirq in the write path?)
2071 	 */
2072 	if (r == BLK_STS_DEV_RESOURCE) {
2073 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2074 		queue_work(cc->crypt_queue, &io->work);
2075 		return;
2076 	}
2077 	if (r)
2078 		io->error = r;
2079 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2080 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2081 		/* Wait for completion signaled by kcryptd_async_done() */
2082 		wait_for_completion(&ctx->restart);
2083 		crypt_finished = 1;
2084 	}
2085 
2086 	/* Encryption was already finished, submit io now */
2087 	if (crypt_finished) {
2088 		kcryptd_crypt_write_io_submit(io, 0);
2089 		io->sector = sector;
2090 	}
2091 
2092 dec:
2093 	crypt_dec_pending(io);
2094 }
2095 
2096 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2097 {
2098 	crypt_dec_pending(io);
2099 }
2100 
2101 static void kcryptd_crypt_read_continue(struct work_struct *work)
2102 {
2103 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2104 	struct crypt_config *cc = io->cc;
2105 	blk_status_t r;
2106 
2107 	wait_for_completion(&io->ctx.restart);
2108 	reinit_completion(&io->ctx.restart);
2109 
2110 	r = crypt_convert(cc, &io->ctx, true, false);
2111 	if (r)
2112 		io->error = r;
2113 
2114 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2115 		kcryptd_crypt_read_done(io);
2116 
2117 	crypt_dec_pending(io);
2118 }
2119 
2120 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2121 {
2122 	struct crypt_config *cc = io->cc;
2123 	blk_status_t r;
2124 
2125 	crypt_inc_pending(io);
2126 
2127 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2128 			   io->sector);
2129 
2130 	r = crypt_convert(cc, &io->ctx,
2131 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2132 	/*
2133 	 * Crypto API backlogged the request, because its queue was full
2134 	 * and we're in softirq context, so continue from a workqueue
2135 	 */
2136 	if (r == BLK_STS_DEV_RESOURCE) {
2137 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2138 		queue_work(cc->crypt_queue, &io->work);
2139 		return;
2140 	}
2141 	if (r)
2142 		io->error = r;
2143 
2144 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2145 		kcryptd_crypt_read_done(io);
2146 
2147 	crypt_dec_pending(io);
2148 }
2149 
2150 static void kcryptd_async_done(struct crypto_async_request *async_req,
2151 			       int error)
2152 {
2153 	struct dm_crypt_request *dmreq = async_req->data;
2154 	struct convert_context *ctx = dmreq->ctx;
2155 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2156 	struct crypt_config *cc = io->cc;
2157 
2158 	/*
2159 	 * A request from crypto driver backlog is going to be processed now,
2160 	 * finish the completion and continue in crypt_convert().
2161 	 * (Callback will be called for the second time for this request.)
2162 	 */
2163 	if (error == -EINPROGRESS) {
2164 		complete(&ctx->restart);
2165 		return;
2166 	}
2167 
2168 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2169 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2170 
2171 	if (error == -EBADMSG) {
2172 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2173 
2174 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2175 			    ctx->bio_in->bi_bdev, s);
2176 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2177 				 ctx->bio_in, s, 0);
2178 		io->error = BLK_STS_PROTECTION;
2179 	} else if (error < 0)
2180 		io->error = BLK_STS_IOERR;
2181 
2182 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2183 
2184 	if (!atomic_dec_and_test(&ctx->cc_pending))
2185 		return;
2186 
2187 	/*
2188 	 * The request is fully completed: for inline writes, let
2189 	 * kcryptd_crypt_write_convert() do the IO submission.
2190 	 */
2191 	if (bio_data_dir(io->base_bio) == READ) {
2192 		kcryptd_crypt_read_done(io);
2193 		return;
2194 	}
2195 
2196 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2197 		complete(&ctx->restart);
2198 		return;
2199 	}
2200 
2201 	kcryptd_crypt_write_io_submit(io, 1);
2202 }
2203 
2204 static void kcryptd_crypt(struct work_struct *work)
2205 {
2206 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2207 
2208 	if (bio_data_dir(io->base_bio) == READ)
2209 		kcryptd_crypt_read_convert(io);
2210 	else
2211 		kcryptd_crypt_write_convert(io);
2212 }
2213 
2214 static void kcryptd_crypt_tasklet(unsigned long work)
2215 {
2216 	kcryptd_crypt((struct work_struct *)work);
2217 }
2218 
2219 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2220 {
2221 	struct crypt_config *cc = io->cc;
2222 
2223 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2224 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2225 		/*
2226 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2227 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2228 		 * it is being executed with irqs disabled.
2229 		 */
2230 		if (in_hardirq() || irqs_disabled()) {
2231 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2232 			tasklet_schedule(&io->tasklet);
2233 			return;
2234 		}
2235 
2236 		kcryptd_crypt(&io->work);
2237 		return;
2238 	}
2239 
2240 	INIT_WORK(&io->work, kcryptd_crypt);
2241 	queue_work(cc->crypt_queue, &io->work);
2242 }
2243 
2244 static void crypt_free_tfms_aead(struct crypt_config *cc)
2245 {
2246 	if (!cc->cipher_tfm.tfms_aead)
2247 		return;
2248 
2249 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2250 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2251 		cc->cipher_tfm.tfms_aead[0] = NULL;
2252 	}
2253 
2254 	kfree(cc->cipher_tfm.tfms_aead);
2255 	cc->cipher_tfm.tfms_aead = NULL;
2256 }
2257 
2258 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2259 {
2260 	unsigned i;
2261 
2262 	if (!cc->cipher_tfm.tfms)
2263 		return;
2264 
2265 	for (i = 0; i < cc->tfms_count; i++)
2266 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2267 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2268 			cc->cipher_tfm.tfms[i] = NULL;
2269 		}
2270 
2271 	kfree(cc->cipher_tfm.tfms);
2272 	cc->cipher_tfm.tfms = NULL;
2273 }
2274 
2275 static void crypt_free_tfms(struct crypt_config *cc)
2276 {
2277 	if (crypt_integrity_aead(cc))
2278 		crypt_free_tfms_aead(cc);
2279 	else
2280 		crypt_free_tfms_skcipher(cc);
2281 }
2282 
2283 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2284 {
2285 	unsigned i;
2286 	int err;
2287 
2288 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2289 				      sizeof(struct crypto_skcipher *),
2290 				      GFP_KERNEL);
2291 	if (!cc->cipher_tfm.tfms)
2292 		return -ENOMEM;
2293 
2294 	for (i = 0; i < cc->tfms_count; i++) {
2295 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2296 						CRYPTO_ALG_ALLOCATES_MEMORY);
2297 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2298 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2299 			crypt_free_tfms(cc);
2300 			return err;
2301 		}
2302 	}
2303 
2304 	/*
2305 	 * dm-crypt performance can vary greatly depending on which crypto
2306 	 * algorithm implementation is used.  Help people debug performance
2307 	 * problems by logging the ->cra_driver_name.
2308 	 */
2309 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2310 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2311 	return 0;
2312 }
2313 
2314 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2315 {
2316 	int err;
2317 
2318 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2319 	if (!cc->cipher_tfm.tfms)
2320 		return -ENOMEM;
2321 
2322 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2323 						CRYPTO_ALG_ALLOCATES_MEMORY);
2324 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2325 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2326 		crypt_free_tfms(cc);
2327 		return err;
2328 	}
2329 
2330 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2331 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2332 	return 0;
2333 }
2334 
2335 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2336 {
2337 	if (crypt_integrity_aead(cc))
2338 		return crypt_alloc_tfms_aead(cc, ciphermode);
2339 	else
2340 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2341 }
2342 
2343 static unsigned crypt_subkey_size(struct crypt_config *cc)
2344 {
2345 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2346 }
2347 
2348 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2349 {
2350 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2351 }
2352 
2353 /*
2354  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2355  * the key must be for some reason in special format.
2356  * This funcion converts cc->key to this special format.
2357  */
2358 static void crypt_copy_authenckey(char *p, const void *key,
2359 				  unsigned enckeylen, unsigned authkeylen)
2360 {
2361 	struct crypto_authenc_key_param *param;
2362 	struct rtattr *rta;
2363 
2364 	rta = (struct rtattr *)p;
2365 	param = RTA_DATA(rta);
2366 	param->enckeylen = cpu_to_be32(enckeylen);
2367 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2368 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2369 	p += RTA_SPACE(sizeof(*param));
2370 	memcpy(p, key + enckeylen, authkeylen);
2371 	p += authkeylen;
2372 	memcpy(p, key, enckeylen);
2373 }
2374 
2375 static int crypt_setkey(struct crypt_config *cc)
2376 {
2377 	unsigned subkey_size;
2378 	int err = 0, i, r;
2379 
2380 	/* Ignore extra keys (which are used for IV etc) */
2381 	subkey_size = crypt_subkey_size(cc);
2382 
2383 	if (crypt_integrity_hmac(cc)) {
2384 		if (subkey_size < cc->key_mac_size)
2385 			return -EINVAL;
2386 
2387 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2388 				      subkey_size - cc->key_mac_size,
2389 				      cc->key_mac_size);
2390 	}
2391 
2392 	for (i = 0; i < cc->tfms_count; i++) {
2393 		if (crypt_integrity_hmac(cc))
2394 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2395 				cc->authenc_key, crypt_authenckey_size(cc));
2396 		else if (crypt_integrity_aead(cc))
2397 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2398 					       cc->key + (i * subkey_size),
2399 					       subkey_size);
2400 		else
2401 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2402 						   cc->key + (i * subkey_size),
2403 						   subkey_size);
2404 		if (r)
2405 			err = r;
2406 	}
2407 
2408 	if (crypt_integrity_hmac(cc))
2409 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2410 
2411 	return err;
2412 }
2413 
2414 #ifdef CONFIG_KEYS
2415 
2416 static bool contains_whitespace(const char *str)
2417 {
2418 	while (*str)
2419 		if (isspace(*str++))
2420 			return true;
2421 	return false;
2422 }
2423 
2424 static int set_key_user(struct crypt_config *cc, struct key *key)
2425 {
2426 	const struct user_key_payload *ukp;
2427 
2428 	ukp = user_key_payload_locked(key);
2429 	if (!ukp)
2430 		return -EKEYREVOKED;
2431 
2432 	if (cc->key_size != ukp->datalen)
2433 		return -EINVAL;
2434 
2435 	memcpy(cc->key, ukp->data, cc->key_size);
2436 
2437 	return 0;
2438 }
2439 
2440 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2441 {
2442 	const struct encrypted_key_payload *ekp;
2443 
2444 	ekp = key->payload.data[0];
2445 	if (!ekp)
2446 		return -EKEYREVOKED;
2447 
2448 	if (cc->key_size != ekp->decrypted_datalen)
2449 		return -EINVAL;
2450 
2451 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2452 
2453 	return 0;
2454 }
2455 
2456 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2457 {
2458 	const struct trusted_key_payload *tkp;
2459 
2460 	tkp = key->payload.data[0];
2461 	if (!tkp)
2462 		return -EKEYREVOKED;
2463 
2464 	if (cc->key_size != tkp->key_len)
2465 		return -EINVAL;
2466 
2467 	memcpy(cc->key, tkp->key, cc->key_size);
2468 
2469 	return 0;
2470 }
2471 
2472 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2473 {
2474 	char *new_key_string, *key_desc;
2475 	int ret;
2476 	struct key_type *type;
2477 	struct key *key;
2478 	int (*set_key)(struct crypt_config *cc, struct key *key);
2479 
2480 	/*
2481 	 * Reject key_string with whitespace. dm core currently lacks code for
2482 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2483 	 */
2484 	if (contains_whitespace(key_string)) {
2485 		DMERR("whitespace chars not allowed in key string");
2486 		return -EINVAL;
2487 	}
2488 
2489 	/* look for next ':' separating key_type from key_description */
2490 	key_desc = strpbrk(key_string, ":");
2491 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2492 		return -EINVAL;
2493 
2494 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2495 		type = &key_type_logon;
2496 		set_key = set_key_user;
2497 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2498 		type = &key_type_user;
2499 		set_key = set_key_user;
2500 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2501 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2502 		type = &key_type_encrypted;
2503 		set_key = set_key_encrypted;
2504 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2505 	           !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2506 		type = &key_type_trusted;
2507 		set_key = set_key_trusted;
2508 	} else {
2509 		return -EINVAL;
2510 	}
2511 
2512 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2513 	if (!new_key_string)
2514 		return -ENOMEM;
2515 
2516 	key = request_key(type, key_desc + 1, NULL);
2517 	if (IS_ERR(key)) {
2518 		kfree_sensitive(new_key_string);
2519 		return PTR_ERR(key);
2520 	}
2521 
2522 	down_read(&key->sem);
2523 
2524 	ret = set_key(cc, key);
2525 	if (ret < 0) {
2526 		up_read(&key->sem);
2527 		key_put(key);
2528 		kfree_sensitive(new_key_string);
2529 		return ret;
2530 	}
2531 
2532 	up_read(&key->sem);
2533 	key_put(key);
2534 
2535 	/* clear the flag since following operations may invalidate previously valid key */
2536 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2537 
2538 	ret = crypt_setkey(cc);
2539 
2540 	if (!ret) {
2541 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2542 		kfree_sensitive(cc->key_string);
2543 		cc->key_string = new_key_string;
2544 	} else
2545 		kfree_sensitive(new_key_string);
2546 
2547 	return ret;
2548 }
2549 
2550 static int get_key_size(char **key_string)
2551 {
2552 	char *colon, dummy;
2553 	int ret;
2554 
2555 	if (*key_string[0] != ':')
2556 		return strlen(*key_string) >> 1;
2557 
2558 	/* look for next ':' in key string */
2559 	colon = strpbrk(*key_string + 1, ":");
2560 	if (!colon)
2561 		return -EINVAL;
2562 
2563 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2564 		return -EINVAL;
2565 
2566 	*key_string = colon;
2567 
2568 	/* remaining key string should be :<logon|user>:<key_desc> */
2569 
2570 	return ret;
2571 }
2572 
2573 #else
2574 
2575 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2576 {
2577 	return -EINVAL;
2578 }
2579 
2580 static int get_key_size(char **key_string)
2581 {
2582 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2583 }
2584 
2585 #endif /* CONFIG_KEYS */
2586 
2587 static int crypt_set_key(struct crypt_config *cc, char *key)
2588 {
2589 	int r = -EINVAL;
2590 	int key_string_len = strlen(key);
2591 
2592 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2593 	if (!cc->key_size && strcmp(key, "-"))
2594 		goto out;
2595 
2596 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2597 	if (key[0] == ':') {
2598 		r = crypt_set_keyring_key(cc, key + 1);
2599 		goto out;
2600 	}
2601 
2602 	/* clear the flag since following operations may invalidate previously valid key */
2603 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2604 
2605 	/* wipe references to any kernel keyring key */
2606 	kfree_sensitive(cc->key_string);
2607 	cc->key_string = NULL;
2608 
2609 	/* Decode key from its hex representation. */
2610 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2611 		goto out;
2612 
2613 	r = crypt_setkey(cc);
2614 	if (!r)
2615 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2616 
2617 out:
2618 	/* Hex key string not needed after here, so wipe it. */
2619 	memset(key, '0', key_string_len);
2620 
2621 	return r;
2622 }
2623 
2624 static int crypt_wipe_key(struct crypt_config *cc)
2625 {
2626 	int r;
2627 
2628 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629 	get_random_bytes(&cc->key, cc->key_size);
2630 
2631 	/* Wipe IV private keys */
2632 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2633 		r = cc->iv_gen_ops->wipe(cc);
2634 		if (r)
2635 			return r;
2636 	}
2637 
2638 	kfree_sensitive(cc->key_string);
2639 	cc->key_string = NULL;
2640 	r = crypt_setkey(cc);
2641 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2642 
2643 	return r;
2644 }
2645 
2646 static void crypt_calculate_pages_per_client(void)
2647 {
2648 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2649 
2650 	if (!dm_crypt_clients_n)
2651 		return;
2652 
2653 	pages /= dm_crypt_clients_n;
2654 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2655 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2656 	dm_crypt_pages_per_client = pages;
2657 }
2658 
2659 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2660 {
2661 	struct crypt_config *cc = pool_data;
2662 	struct page *page;
2663 
2664 	/*
2665 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2666 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2667 	 * but avoids potential spinlock contention of an exact result.
2668 	 */
2669 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2670 	    likely(gfp_mask & __GFP_NORETRY))
2671 		return NULL;
2672 
2673 	page = alloc_page(gfp_mask);
2674 	if (likely(page != NULL))
2675 		percpu_counter_add(&cc->n_allocated_pages, 1);
2676 
2677 	return page;
2678 }
2679 
2680 static void crypt_page_free(void *page, void *pool_data)
2681 {
2682 	struct crypt_config *cc = pool_data;
2683 
2684 	__free_page(page);
2685 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2686 }
2687 
2688 static void crypt_dtr(struct dm_target *ti)
2689 {
2690 	struct crypt_config *cc = ti->private;
2691 
2692 	ti->private = NULL;
2693 
2694 	if (!cc)
2695 		return;
2696 
2697 	if (cc->write_thread)
2698 		kthread_stop(cc->write_thread);
2699 
2700 	if (cc->io_queue)
2701 		destroy_workqueue(cc->io_queue);
2702 	if (cc->crypt_queue)
2703 		destroy_workqueue(cc->crypt_queue);
2704 
2705 	crypt_free_tfms(cc);
2706 
2707 	bioset_exit(&cc->bs);
2708 
2709 	mempool_exit(&cc->page_pool);
2710 	mempool_exit(&cc->req_pool);
2711 	mempool_exit(&cc->tag_pool);
2712 
2713 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2714 	percpu_counter_destroy(&cc->n_allocated_pages);
2715 
2716 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2717 		cc->iv_gen_ops->dtr(cc);
2718 
2719 	if (cc->dev)
2720 		dm_put_device(ti, cc->dev);
2721 
2722 	kfree_sensitive(cc->cipher_string);
2723 	kfree_sensitive(cc->key_string);
2724 	kfree_sensitive(cc->cipher_auth);
2725 	kfree_sensitive(cc->authenc_key);
2726 
2727 	mutex_destroy(&cc->bio_alloc_lock);
2728 
2729 	/* Must zero key material before freeing */
2730 	kfree_sensitive(cc);
2731 
2732 	spin_lock(&dm_crypt_clients_lock);
2733 	WARN_ON(!dm_crypt_clients_n);
2734 	dm_crypt_clients_n--;
2735 	crypt_calculate_pages_per_client();
2736 	spin_unlock(&dm_crypt_clients_lock);
2737 
2738 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2739 }
2740 
2741 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2742 {
2743 	struct crypt_config *cc = ti->private;
2744 
2745 	if (crypt_integrity_aead(cc))
2746 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2747 	else
2748 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2749 
2750 	if (cc->iv_size)
2751 		/* at least a 64 bit sector number should fit in our buffer */
2752 		cc->iv_size = max(cc->iv_size,
2753 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2754 	else if (ivmode) {
2755 		DMWARN("Selected cipher does not support IVs");
2756 		ivmode = NULL;
2757 	}
2758 
2759 	/* Choose ivmode, see comments at iv code. */
2760 	if (ivmode == NULL)
2761 		cc->iv_gen_ops = NULL;
2762 	else if (strcmp(ivmode, "plain") == 0)
2763 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2764 	else if (strcmp(ivmode, "plain64") == 0)
2765 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2766 	else if (strcmp(ivmode, "plain64be") == 0)
2767 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2768 	else if (strcmp(ivmode, "essiv") == 0)
2769 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2770 	else if (strcmp(ivmode, "benbi") == 0)
2771 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2772 	else if (strcmp(ivmode, "null") == 0)
2773 		cc->iv_gen_ops = &crypt_iv_null_ops;
2774 	else if (strcmp(ivmode, "eboiv") == 0)
2775 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2776 	else if (strcmp(ivmode, "elephant") == 0) {
2777 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2778 		cc->key_parts = 2;
2779 		cc->key_extra_size = cc->key_size / 2;
2780 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2781 			return -EINVAL;
2782 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2783 	} else if (strcmp(ivmode, "lmk") == 0) {
2784 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2785 		/*
2786 		 * Version 2 and 3 is recognised according
2787 		 * to length of provided multi-key string.
2788 		 * If present (version 3), last key is used as IV seed.
2789 		 * All keys (including IV seed) are always the same size.
2790 		 */
2791 		if (cc->key_size % cc->key_parts) {
2792 			cc->key_parts++;
2793 			cc->key_extra_size = cc->key_size / cc->key_parts;
2794 		}
2795 	} else if (strcmp(ivmode, "tcw") == 0) {
2796 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2797 		cc->key_parts += 2; /* IV + whitening */
2798 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2799 	} else if (strcmp(ivmode, "random") == 0) {
2800 		cc->iv_gen_ops = &crypt_iv_random_ops;
2801 		/* Need storage space in integrity fields. */
2802 		cc->integrity_iv_size = cc->iv_size;
2803 	} else {
2804 		ti->error = "Invalid IV mode";
2805 		return -EINVAL;
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 /*
2812  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2813  * The HMAC is needed to calculate tag size (HMAC digest size).
2814  * This should be probably done by crypto-api calls (once available...)
2815  */
2816 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2817 {
2818 	char *start, *end, *mac_alg = NULL;
2819 	struct crypto_ahash *mac;
2820 
2821 	if (!strstarts(cipher_api, "authenc("))
2822 		return 0;
2823 
2824 	start = strchr(cipher_api, '(');
2825 	end = strchr(cipher_api, ',');
2826 	if (!start || !end || ++start > end)
2827 		return -EINVAL;
2828 
2829 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2830 	if (!mac_alg)
2831 		return -ENOMEM;
2832 	strncpy(mac_alg, start, end - start);
2833 
2834 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2835 	kfree(mac_alg);
2836 
2837 	if (IS_ERR(mac))
2838 		return PTR_ERR(mac);
2839 
2840 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2841 	crypto_free_ahash(mac);
2842 
2843 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2844 	if (!cc->authenc_key)
2845 		return -ENOMEM;
2846 
2847 	return 0;
2848 }
2849 
2850 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2851 				char **ivmode, char **ivopts)
2852 {
2853 	struct crypt_config *cc = ti->private;
2854 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2855 	int ret = -EINVAL;
2856 
2857 	cc->tfms_count = 1;
2858 
2859 	/*
2860 	 * New format (capi: prefix)
2861 	 * capi:cipher_api_spec-iv:ivopts
2862 	 */
2863 	tmp = &cipher_in[strlen("capi:")];
2864 
2865 	/* Separate IV options if present, it can contain another '-' in hash name */
2866 	*ivopts = strrchr(tmp, ':');
2867 	if (*ivopts) {
2868 		**ivopts = '\0';
2869 		(*ivopts)++;
2870 	}
2871 	/* Parse IV mode */
2872 	*ivmode = strrchr(tmp, '-');
2873 	if (*ivmode) {
2874 		**ivmode = '\0';
2875 		(*ivmode)++;
2876 	}
2877 	/* The rest is crypto API spec */
2878 	cipher_api = tmp;
2879 
2880 	/* Alloc AEAD, can be used only in new format. */
2881 	if (crypt_integrity_aead(cc)) {
2882 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2883 		if (ret < 0) {
2884 			ti->error = "Invalid AEAD cipher spec";
2885 			return -ENOMEM;
2886 		}
2887 	}
2888 
2889 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2890 		cc->tfms_count = 64;
2891 
2892 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2893 		if (!*ivopts) {
2894 			ti->error = "Digest algorithm missing for ESSIV mode";
2895 			return -EINVAL;
2896 		}
2897 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2898 			       cipher_api, *ivopts);
2899 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2900 			ti->error = "Cannot allocate cipher string";
2901 			return -ENOMEM;
2902 		}
2903 		cipher_api = buf;
2904 	}
2905 
2906 	cc->key_parts = cc->tfms_count;
2907 
2908 	/* Allocate cipher */
2909 	ret = crypt_alloc_tfms(cc, cipher_api);
2910 	if (ret < 0) {
2911 		ti->error = "Error allocating crypto tfm";
2912 		return ret;
2913 	}
2914 
2915 	if (crypt_integrity_aead(cc))
2916 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2917 	else
2918 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2919 
2920 	return 0;
2921 }
2922 
2923 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2924 				char **ivmode, char **ivopts)
2925 {
2926 	struct crypt_config *cc = ti->private;
2927 	char *tmp, *cipher, *chainmode, *keycount;
2928 	char *cipher_api = NULL;
2929 	int ret = -EINVAL;
2930 	char dummy;
2931 
2932 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2933 		ti->error = "Bad cipher specification";
2934 		return -EINVAL;
2935 	}
2936 
2937 	/*
2938 	 * Legacy dm-crypt cipher specification
2939 	 * cipher[:keycount]-mode-iv:ivopts
2940 	 */
2941 	tmp = cipher_in;
2942 	keycount = strsep(&tmp, "-");
2943 	cipher = strsep(&keycount, ":");
2944 
2945 	if (!keycount)
2946 		cc->tfms_count = 1;
2947 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2948 		 !is_power_of_2(cc->tfms_count)) {
2949 		ti->error = "Bad cipher key count specification";
2950 		return -EINVAL;
2951 	}
2952 	cc->key_parts = cc->tfms_count;
2953 
2954 	chainmode = strsep(&tmp, "-");
2955 	*ivmode = strsep(&tmp, ":");
2956 	*ivopts = tmp;
2957 
2958 	/*
2959 	 * For compatibility with the original dm-crypt mapping format, if
2960 	 * only the cipher name is supplied, use cbc-plain.
2961 	 */
2962 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2963 		chainmode = "cbc";
2964 		*ivmode = "plain";
2965 	}
2966 
2967 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2968 		ti->error = "IV mechanism required";
2969 		return -EINVAL;
2970 	}
2971 
2972 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2973 	if (!cipher_api)
2974 		goto bad_mem;
2975 
2976 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2977 		if (!*ivopts) {
2978 			ti->error = "Digest algorithm missing for ESSIV mode";
2979 			kfree(cipher_api);
2980 			return -EINVAL;
2981 		}
2982 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2983 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2984 	} else {
2985 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2986 			       "%s(%s)", chainmode, cipher);
2987 	}
2988 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2989 		kfree(cipher_api);
2990 		goto bad_mem;
2991 	}
2992 
2993 	/* Allocate cipher */
2994 	ret = crypt_alloc_tfms(cc, cipher_api);
2995 	if (ret < 0) {
2996 		ti->error = "Error allocating crypto tfm";
2997 		kfree(cipher_api);
2998 		return ret;
2999 	}
3000 	kfree(cipher_api);
3001 
3002 	return 0;
3003 bad_mem:
3004 	ti->error = "Cannot allocate cipher strings";
3005 	return -ENOMEM;
3006 }
3007 
3008 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3009 {
3010 	struct crypt_config *cc = ti->private;
3011 	char *ivmode = NULL, *ivopts = NULL;
3012 	int ret;
3013 
3014 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3015 	if (!cc->cipher_string) {
3016 		ti->error = "Cannot allocate cipher strings";
3017 		return -ENOMEM;
3018 	}
3019 
3020 	if (strstarts(cipher_in, "capi:"))
3021 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3022 	else
3023 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3024 	if (ret)
3025 		return ret;
3026 
3027 	/* Initialize IV */
3028 	ret = crypt_ctr_ivmode(ti, ivmode);
3029 	if (ret < 0)
3030 		return ret;
3031 
3032 	/* Initialize and set key */
3033 	ret = crypt_set_key(cc, key);
3034 	if (ret < 0) {
3035 		ti->error = "Error decoding and setting key";
3036 		return ret;
3037 	}
3038 
3039 	/* Allocate IV */
3040 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3041 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3042 		if (ret < 0) {
3043 			ti->error = "Error creating IV";
3044 			return ret;
3045 		}
3046 	}
3047 
3048 	/* Initialize IV (set keys for ESSIV etc) */
3049 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3050 		ret = cc->iv_gen_ops->init(cc);
3051 		if (ret < 0) {
3052 			ti->error = "Error initialising IV";
3053 			return ret;
3054 		}
3055 	}
3056 
3057 	/* wipe the kernel key payload copy */
3058 	if (cc->key_string)
3059 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3060 
3061 	return ret;
3062 }
3063 
3064 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3065 {
3066 	struct crypt_config *cc = ti->private;
3067 	struct dm_arg_set as;
3068 	static const struct dm_arg _args[] = {
3069 		{0, 8, "Invalid number of feature args"},
3070 	};
3071 	unsigned int opt_params, val;
3072 	const char *opt_string, *sval;
3073 	char dummy;
3074 	int ret;
3075 
3076 	/* Optional parameters */
3077 	as.argc = argc;
3078 	as.argv = argv;
3079 
3080 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3081 	if (ret)
3082 		return ret;
3083 
3084 	while (opt_params--) {
3085 		opt_string = dm_shift_arg(&as);
3086 		if (!opt_string) {
3087 			ti->error = "Not enough feature arguments";
3088 			return -EINVAL;
3089 		}
3090 
3091 		if (!strcasecmp(opt_string, "allow_discards"))
3092 			ti->num_discard_bios = 1;
3093 
3094 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3095 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3096 
3097 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3098 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3099 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3100 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3101 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3102 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3103 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3104 			if (val == 0 || val > MAX_TAG_SIZE) {
3105 				ti->error = "Invalid integrity arguments";
3106 				return -EINVAL;
3107 			}
3108 			cc->on_disk_tag_size = val;
3109 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3110 			if (!strcasecmp(sval, "aead")) {
3111 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3112 			} else  if (strcasecmp(sval, "none")) {
3113 				ti->error = "Unknown integrity profile";
3114 				return -EINVAL;
3115 			}
3116 
3117 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3118 			if (!cc->cipher_auth)
3119 				return -ENOMEM;
3120 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3121 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3122 			    cc->sector_size > 4096 ||
3123 			    (cc->sector_size & (cc->sector_size - 1))) {
3124 				ti->error = "Invalid feature value for sector_size";
3125 				return -EINVAL;
3126 			}
3127 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3128 				ti->error = "Device size is not multiple of sector_size feature";
3129 				return -EINVAL;
3130 			}
3131 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3132 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3133 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3134 		else {
3135 			ti->error = "Invalid feature arguments";
3136 			return -EINVAL;
3137 		}
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 #ifdef CONFIG_BLK_DEV_ZONED
3144 static int crypt_report_zones(struct dm_target *ti,
3145 		struct dm_report_zones_args *args, unsigned int nr_zones)
3146 {
3147 	struct crypt_config *cc = ti->private;
3148 
3149 	return dm_report_zones(cc->dev->bdev, cc->start,
3150 			cc->start + dm_target_offset(ti, args->next_sector),
3151 			args, nr_zones);
3152 }
3153 #else
3154 #define crypt_report_zones NULL
3155 #endif
3156 
3157 /*
3158  * Construct an encryption mapping:
3159  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3160  */
3161 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3162 {
3163 	struct crypt_config *cc;
3164 	const char *devname = dm_table_device_name(ti->table);
3165 	int key_size;
3166 	unsigned int align_mask;
3167 	unsigned long long tmpll;
3168 	int ret;
3169 	size_t iv_size_padding, additional_req_size;
3170 	char dummy;
3171 
3172 	if (argc < 5) {
3173 		ti->error = "Not enough arguments";
3174 		return -EINVAL;
3175 	}
3176 
3177 	key_size = get_key_size(&argv[1]);
3178 	if (key_size < 0) {
3179 		ti->error = "Cannot parse key size";
3180 		return -EINVAL;
3181 	}
3182 
3183 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3184 	if (!cc) {
3185 		ti->error = "Cannot allocate encryption context";
3186 		return -ENOMEM;
3187 	}
3188 	cc->key_size = key_size;
3189 	cc->sector_size = (1 << SECTOR_SHIFT);
3190 	cc->sector_shift = 0;
3191 
3192 	ti->private = cc;
3193 
3194 	spin_lock(&dm_crypt_clients_lock);
3195 	dm_crypt_clients_n++;
3196 	crypt_calculate_pages_per_client();
3197 	spin_unlock(&dm_crypt_clients_lock);
3198 
3199 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3200 	if (ret < 0)
3201 		goto bad;
3202 
3203 	/* Optional parameters need to be read before cipher constructor */
3204 	if (argc > 5) {
3205 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3206 		if (ret)
3207 			goto bad;
3208 	}
3209 
3210 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3211 	if (ret < 0)
3212 		goto bad;
3213 
3214 	if (crypt_integrity_aead(cc)) {
3215 		cc->dmreq_start = sizeof(struct aead_request);
3216 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3217 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3218 	} else {
3219 		cc->dmreq_start = sizeof(struct skcipher_request);
3220 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3221 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3222 	}
3223 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3224 
3225 	if (align_mask < CRYPTO_MINALIGN) {
3226 		/* Allocate the padding exactly */
3227 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3228 				& align_mask;
3229 	} else {
3230 		/*
3231 		 * If the cipher requires greater alignment than kmalloc
3232 		 * alignment, we don't know the exact position of the
3233 		 * initialization vector. We must assume worst case.
3234 		 */
3235 		iv_size_padding = align_mask;
3236 	}
3237 
3238 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3239 	additional_req_size = sizeof(struct dm_crypt_request) +
3240 		iv_size_padding + cc->iv_size +
3241 		cc->iv_size +
3242 		sizeof(uint64_t) +
3243 		sizeof(unsigned int);
3244 
3245 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3246 	if (ret) {
3247 		ti->error = "Cannot allocate crypt request mempool";
3248 		goto bad;
3249 	}
3250 
3251 	cc->per_bio_data_size = ti->per_io_data_size =
3252 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3253 		      ARCH_KMALLOC_MINALIGN);
3254 
3255 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3256 	if (ret) {
3257 		ti->error = "Cannot allocate page mempool";
3258 		goto bad;
3259 	}
3260 
3261 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3262 	if (ret) {
3263 		ti->error = "Cannot allocate crypt bioset";
3264 		goto bad;
3265 	}
3266 
3267 	mutex_init(&cc->bio_alloc_lock);
3268 
3269 	ret = -EINVAL;
3270 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3271 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3272 		ti->error = "Invalid iv_offset sector";
3273 		goto bad;
3274 	}
3275 	cc->iv_offset = tmpll;
3276 
3277 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3278 	if (ret) {
3279 		ti->error = "Device lookup failed";
3280 		goto bad;
3281 	}
3282 
3283 	ret = -EINVAL;
3284 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3285 		ti->error = "Invalid device sector";
3286 		goto bad;
3287 	}
3288 	cc->start = tmpll;
3289 
3290 	if (bdev_is_zoned(cc->dev->bdev)) {
3291 		/*
3292 		 * For zoned block devices, we need to preserve the issuer write
3293 		 * ordering. To do so, disable write workqueues and force inline
3294 		 * encryption completion.
3295 		 */
3296 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3297 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3298 
3299 		/*
3300 		 * All zone append writes to a zone of a zoned block device will
3301 		 * have the same BIO sector, the start of the zone. When the
3302 		 * cypher IV mode uses sector values, all data targeting a
3303 		 * zone will be encrypted using the first sector numbers of the
3304 		 * zone. This will not result in write errors but will
3305 		 * cause most reads to fail as reads will use the sector values
3306 		 * for the actual data locations, resulting in IV mismatch.
3307 		 * To avoid this problem, ask DM core to emulate zone append
3308 		 * operations with regular writes.
3309 		 */
3310 		DMDEBUG("Zone append operations will be emulated");
3311 		ti->emulate_zone_append = true;
3312 	}
3313 
3314 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3315 		ret = crypt_integrity_ctr(cc, ti);
3316 		if (ret)
3317 			goto bad;
3318 
3319 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3320 		if (!cc->tag_pool_max_sectors)
3321 			cc->tag_pool_max_sectors = 1;
3322 
3323 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3324 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3325 		if (ret) {
3326 			ti->error = "Cannot allocate integrity tags mempool";
3327 			goto bad;
3328 		}
3329 
3330 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3331 	}
3332 
3333 	ret = -ENOMEM;
3334 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3335 	if (!cc->io_queue) {
3336 		ti->error = "Couldn't create kcryptd io queue";
3337 		goto bad;
3338 	}
3339 
3340 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3341 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3342 						  1, devname);
3343 	else
3344 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3345 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3346 						  num_online_cpus(), devname);
3347 	if (!cc->crypt_queue) {
3348 		ti->error = "Couldn't create kcryptd queue";
3349 		goto bad;
3350 	}
3351 
3352 	spin_lock_init(&cc->write_thread_lock);
3353 	cc->write_tree = RB_ROOT;
3354 
3355 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3356 	if (IS_ERR(cc->write_thread)) {
3357 		ret = PTR_ERR(cc->write_thread);
3358 		cc->write_thread = NULL;
3359 		ti->error = "Couldn't spawn write thread";
3360 		goto bad;
3361 	}
3362 
3363 	ti->num_flush_bios = 1;
3364 	ti->limit_swap_bios = true;
3365 	ti->accounts_remapped_io = true;
3366 
3367 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3368 	return 0;
3369 
3370 bad:
3371 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3372 	crypt_dtr(ti);
3373 	return ret;
3374 }
3375 
3376 static int crypt_map(struct dm_target *ti, struct bio *bio)
3377 {
3378 	struct dm_crypt_io *io;
3379 	struct crypt_config *cc = ti->private;
3380 
3381 	/*
3382 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3383 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3384 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3385 	 */
3386 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3387 	    bio_op(bio) == REQ_OP_DISCARD)) {
3388 		bio_set_dev(bio, cc->dev->bdev);
3389 		if (bio_sectors(bio))
3390 			bio->bi_iter.bi_sector = cc->start +
3391 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3392 		return DM_MAPIO_REMAPPED;
3393 	}
3394 
3395 	/*
3396 	 * Check if bio is too large, split as needed.
3397 	 */
3398 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3399 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3400 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3401 
3402 	/*
3403 	 * Ensure that bio is a multiple of internal sector encryption size
3404 	 * and is aligned to this size as defined in IO hints.
3405 	 */
3406 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3407 		return DM_MAPIO_KILL;
3408 
3409 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3410 		return DM_MAPIO_KILL;
3411 
3412 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3413 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3414 
3415 	if (cc->on_disk_tag_size) {
3416 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3417 
3418 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3419 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3420 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3421 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3422 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3423 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3424 			io->integrity_metadata_from_pool = true;
3425 		}
3426 	}
3427 
3428 	if (crypt_integrity_aead(cc))
3429 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3430 	else
3431 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3432 
3433 	if (bio_data_dir(io->base_bio) == READ) {
3434 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3435 			kcryptd_queue_read(io);
3436 	} else
3437 		kcryptd_queue_crypt(io);
3438 
3439 	return DM_MAPIO_SUBMITTED;
3440 }
3441 
3442 static char hex2asc(unsigned char c)
3443 {
3444 	return c + '0' + ((unsigned)(9 - c) >> 4 & 0x27);
3445 }
3446 
3447 static void crypt_status(struct dm_target *ti, status_type_t type,
3448 			 unsigned status_flags, char *result, unsigned maxlen)
3449 {
3450 	struct crypt_config *cc = ti->private;
3451 	unsigned i, sz = 0;
3452 	int num_feature_args = 0;
3453 
3454 	switch (type) {
3455 	case STATUSTYPE_INFO:
3456 		result[0] = '\0';
3457 		break;
3458 
3459 	case STATUSTYPE_TABLE:
3460 		DMEMIT("%s ", cc->cipher_string);
3461 
3462 		if (cc->key_size > 0) {
3463 			if (cc->key_string)
3464 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3465 			else {
3466 				for (i = 0; i < cc->key_size; i++) {
3467 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3468 					       hex2asc(cc->key[i] & 0xf));
3469 				}
3470 			}
3471 		} else
3472 			DMEMIT("-");
3473 
3474 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3475 				cc->dev->name, (unsigned long long)cc->start);
3476 
3477 		num_feature_args += !!ti->num_discard_bios;
3478 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3479 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3480 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3481 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3482 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3483 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3484 		if (cc->on_disk_tag_size)
3485 			num_feature_args++;
3486 		if (num_feature_args) {
3487 			DMEMIT(" %d", num_feature_args);
3488 			if (ti->num_discard_bios)
3489 				DMEMIT(" allow_discards");
3490 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3491 				DMEMIT(" same_cpu_crypt");
3492 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3493 				DMEMIT(" submit_from_crypt_cpus");
3494 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3495 				DMEMIT(" no_read_workqueue");
3496 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3497 				DMEMIT(" no_write_workqueue");
3498 			if (cc->on_disk_tag_size)
3499 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3500 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3501 				DMEMIT(" sector_size:%d", cc->sector_size);
3502 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3503 				DMEMIT(" iv_large_sectors");
3504 		}
3505 		break;
3506 
3507 	case STATUSTYPE_IMA:
3508 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3509 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3510 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3511 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3512 		       'y' : 'n');
3513 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3514 		       'y' : 'n');
3515 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3516 		       'y' : 'n');
3517 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3518 		       'y' : 'n');
3519 
3520 		if (cc->on_disk_tag_size)
3521 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3522 			       cc->on_disk_tag_size, cc->cipher_auth);
3523 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3524 			DMEMIT(",sector_size=%d", cc->sector_size);
3525 		if (cc->cipher_string)
3526 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3527 
3528 		DMEMIT(",key_size=%u", cc->key_size);
3529 		DMEMIT(",key_parts=%u", cc->key_parts);
3530 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3531 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3532 		DMEMIT(";");
3533 		break;
3534 	}
3535 }
3536 
3537 static void crypt_postsuspend(struct dm_target *ti)
3538 {
3539 	struct crypt_config *cc = ti->private;
3540 
3541 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3542 }
3543 
3544 static int crypt_preresume(struct dm_target *ti)
3545 {
3546 	struct crypt_config *cc = ti->private;
3547 
3548 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3549 		DMERR("aborting resume - crypt key is not set.");
3550 		return -EAGAIN;
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 static void crypt_resume(struct dm_target *ti)
3557 {
3558 	struct crypt_config *cc = ti->private;
3559 
3560 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3561 }
3562 
3563 /* Message interface
3564  *	key set <key>
3565  *	key wipe
3566  */
3567 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3568 			 char *result, unsigned maxlen)
3569 {
3570 	struct crypt_config *cc = ti->private;
3571 	int key_size, ret = -EINVAL;
3572 
3573 	if (argc < 2)
3574 		goto error;
3575 
3576 	if (!strcasecmp(argv[0], "key")) {
3577 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3578 			DMWARN("not suspended during key manipulation.");
3579 			return -EINVAL;
3580 		}
3581 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3582 			/* The key size may not be changed. */
3583 			key_size = get_key_size(&argv[2]);
3584 			if (key_size < 0 || cc->key_size != key_size) {
3585 				memset(argv[2], '0', strlen(argv[2]));
3586 				return -EINVAL;
3587 			}
3588 
3589 			ret = crypt_set_key(cc, argv[2]);
3590 			if (ret)
3591 				return ret;
3592 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3593 				ret = cc->iv_gen_ops->init(cc);
3594 			/* wipe the kernel key payload copy */
3595 			if (cc->key_string)
3596 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3597 			return ret;
3598 		}
3599 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3600 			return crypt_wipe_key(cc);
3601 	}
3602 
3603 error:
3604 	DMWARN("unrecognised message received.");
3605 	return -EINVAL;
3606 }
3607 
3608 static int crypt_iterate_devices(struct dm_target *ti,
3609 				 iterate_devices_callout_fn fn, void *data)
3610 {
3611 	struct crypt_config *cc = ti->private;
3612 
3613 	return fn(ti, cc->dev, cc->start, ti->len, data);
3614 }
3615 
3616 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3617 {
3618 	struct crypt_config *cc = ti->private;
3619 
3620 	/*
3621 	 * Unfortunate constraint that is required to avoid the potential
3622 	 * for exceeding underlying device's max_segments limits -- due to
3623 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3624 	 * bio that are not as physically contiguous as the original bio.
3625 	 */
3626 	limits->max_segment_size = PAGE_SIZE;
3627 
3628 	limits->logical_block_size =
3629 		max_t(unsigned, limits->logical_block_size, cc->sector_size);
3630 	limits->physical_block_size =
3631 		max_t(unsigned, limits->physical_block_size, cc->sector_size);
3632 	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3633 	limits->dma_alignment = limits->logical_block_size - 1;
3634 }
3635 
3636 static struct target_type crypt_target = {
3637 	.name   = "crypt",
3638 	.version = {1, 24, 0},
3639 	.module = THIS_MODULE,
3640 	.ctr    = crypt_ctr,
3641 	.dtr    = crypt_dtr,
3642 	.features = DM_TARGET_ZONED_HM,
3643 	.report_zones = crypt_report_zones,
3644 	.map    = crypt_map,
3645 	.status = crypt_status,
3646 	.postsuspend = crypt_postsuspend,
3647 	.preresume = crypt_preresume,
3648 	.resume = crypt_resume,
3649 	.message = crypt_message,
3650 	.iterate_devices = crypt_iterate_devices,
3651 	.io_hints = crypt_io_hints,
3652 };
3653 
3654 static int __init dm_crypt_init(void)
3655 {
3656 	int r;
3657 
3658 	r = dm_register_target(&crypt_target);
3659 	if (r < 0)
3660 		DMERR("register failed %d", r);
3661 
3662 	return r;
3663 }
3664 
3665 static void __exit dm_crypt_exit(void)
3666 {
3667 	dm_unregister_target(&crypt_target);
3668 }
3669 
3670 module_init(dm_crypt_init);
3671 module_exit(dm_crypt_exit);
3672 
3673 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3674 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3675 MODULE_LICENSE("GPL");
3676