xref: /linux/drivers/md/dm-integrity.c (revision db10cb9b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	struct notifier_block reboot_notifier;
282 };
283 
284 struct dm_integrity_range {
285 	sector_t logical_sector;
286 	sector_t n_sectors;
287 	bool waiting;
288 	union {
289 		struct rb_node node;
290 		struct {
291 			struct task_struct *task;
292 			struct list_head wait_entry;
293 		};
294 	};
295 };
296 
297 struct dm_integrity_io {
298 	struct work_struct work;
299 
300 	struct dm_integrity_c *ic;
301 	enum req_op op;
302 	bool fua;
303 
304 	struct dm_integrity_range range;
305 
306 	sector_t metadata_block;
307 	unsigned int metadata_offset;
308 
309 	atomic_t in_flight;
310 	blk_status_t bi_status;
311 
312 	struct completion *completion;
313 
314 	struct dm_bio_details bio_details;
315 };
316 
317 struct journal_completion {
318 	struct dm_integrity_c *ic;
319 	atomic_t in_flight;
320 	struct completion comp;
321 };
322 
323 struct journal_io {
324 	struct dm_integrity_range range;
325 	struct journal_completion *comp;
326 };
327 
328 struct bitmap_block_status {
329 	struct work_struct work;
330 	struct dm_integrity_c *ic;
331 	unsigned int idx;
332 	unsigned long *bitmap;
333 	struct bio_list bio_queue;
334 	spinlock_t bio_queue_lock;
335 
336 };
337 
338 static struct kmem_cache *journal_io_cache;
339 
340 #define JOURNAL_IO_MEMPOOL	32
341 
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345 						       len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...)			do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
349 #endif
350 
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354 
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358 
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363 	.name			= "DM-DIF-EXT-TAG",
364 	.generate_fn		= NULL,
365 	.verify_fn		= NULL,
366 	.prepare_fn		= dm_integrity_prepare,
367 	.complete_fn		= dm_integrity_complete,
368 };
369 
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373 
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376 	if (err == -EILSEQ)
377 		atomic64_inc(&ic->number_of_mismatches);
378 	if (!cmpxchg(&ic->failed, 0, err))
379 		DMERR("Error on %s: %d", msg, err);
380 }
381 
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384 	return READ_ONCE(ic->failed);
385 }
386 
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389 	if (ic->legacy_recalculate)
390 		return false;
391 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394 		return true;
395 	return false;
396 }
397 
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399 					  unsigned int j, unsigned char seq)
400 {
401 	/*
402 	 * Xor the number with section and sector, so that if a piece of
403 	 * journal is written at wrong place, it is detected.
404 	 */
405 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407 
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 				sector_t *area, sector_t *offset)
410 {
411 	if (!ic->meta_dev) {
412 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 		*area = data_sector >> log2_interleave_sectors;
414 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415 	} else {
416 		*area = 0;
417 		*offset = data_sector;
418 	}
419 }
420 
421 #define sector_to_block(ic, n)						\
422 do {									\
423 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
424 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
425 } while (0)
426 
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 					    sector_t offset, unsigned int *metadata_offset)
429 {
430 	__u64 ms;
431 	unsigned int mo;
432 
433 	ms = area << ic->sb->log2_interleave_sectors;
434 	if (likely(ic->log2_metadata_run >= 0))
435 		ms += area << ic->log2_metadata_run;
436 	else
437 		ms += area * ic->metadata_run;
438 	ms >>= ic->log2_buffer_sectors;
439 
440 	sector_to_block(ic, offset);
441 
442 	if (likely(ic->log2_tag_size >= 0)) {
443 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445 	} else {
446 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 	}
449 	*metadata_offset = mo;
450 	return ms;
451 }
452 
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455 	sector_t result;
456 
457 	if (ic->meta_dev)
458 		return offset;
459 
460 	result = area << ic->sb->log2_interleave_sectors;
461 	if (likely(ic->log2_metadata_run >= 0))
462 		result += (area + 1) << ic->log2_metadata_run;
463 	else
464 		result += (area + 1) * ic->metadata_run;
465 
466 	result += (sector_t)ic->initial_sectors + offset;
467 	result += ic->start;
468 
469 	return result;
470 }
471 
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474 	if (unlikely(*sec_ptr >= ic->journal_sections))
475 		*sec_ptr -= ic->journal_sections;
476 }
477 
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481 		ic->sb->version = SB_VERSION_5;
482 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483 		ic->sb->version = SB_VERSION_4;
484 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485 		ic->sb->version = SB_VERSION_3;
486 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487 		ic->sb->version = SB_VERSION_2;
488 	else
489 		ic->sb->version = SB_VERSION_1;
490 }
491 
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495 	int r;
496 	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
497 
498 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
499 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
500 		return -EINVAL;
501 	}
502 
503 	desc->tfm = ic->journal_mac;
504 
505 	r = crypto_shash_init(desc);
506 	if (unlikely(r < 0)) {
507 		dm_integrity_io_error(ic, "crypto_shash_init", r);
508 		return r;
509 	}
510 
511 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
512 	if (unlikely(r < 0)) {
513 		dm_integrity_io_error(ic, "crypto_shash_update", r);
514 		return r;
515 	}
516 
517 	if (likely(wr)) {
518 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
519 		if (unlikely(r < 0)) {
520 			dm_integrity_io_error(ic, "crypto_shash_final", r);
521 			return r;
522 		}
523 	} else {
524 		__u8 result[HASH_MAX_DIGESTSIZE];
525 
526 		r = crypto_shash_final(desc, result);
527 		if (unlikely(r < 0)) {
528 			dm_integrity_io_error(ic, "crypto_shash_final", r);
529 			return r;
530 		}
531 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
532 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
533 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
534 			return -EILSEQ;
535 		}
536 	}
537 
538 	return 0;
539 }
540 
541 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
542 {
543 	struct dm_io_request io_req;
544 	struct dm_io_region io_loc;
545 	const enum req_op op = opf & REQ_OP_MASK;
546 	int r;
547 
548 	io_req.bi_opf = opf;
549 	io_req.mem.type = DM_IO_KMEM;
550 	io_req.mem.ptr.addr = ic->sb;
551 	io_req.notify.fn = NULL;
552 	io_req.client = ic->io;
553 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
554 	io_loc.sector = ic->start;
555 	io_loc.count = SB_SECTORS;
556 
557 	if (op == REQ_OP_WRITE) {
558 		sb_set_version(ic);
559 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
560 			r = sb_mac(ic, true);
561 			if (unlikely(r))
562 				return r;
563 		}
564 	}
565 
566 	r = dm_io(&io_req, 1, &io_loc, NULL);
567 	if (unlikely(r))
568 		return r;
569 
570 	if (op == REQ_OP_READ) {
571 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
572 			r = sb_mac(ic, false);
573 			if (unlikely(r))
574 				return r;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 #define BITMAP_OP_TEST_ALL_SET		0
582 #define BITMAP_OP_TEST_ALL_CLEAR	1
583 #define BITMAP_OP_SET			2
584 #define BITMAP_OP_CLEAR			3
585 
586 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
587 			    sector_t sector, sector_t n_sectors, int mode)
588 {
589 	unsigned long bit, end_bit, this_end_bit, page, end_page;
590 	unsigned long *data;
591 
592 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
593 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
594 			sector,
595 			n_sectors,
596 			ic->sb->log2_sectors_per_block,
597 			ic->log2_blocks_per_bitmap_bit,
598 			mode);
599 		BUG();
600 	}
601 
602 	if (unlikely(!n_sectors))
603 		return true;
604 
605 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
606 	end_bit = (sector + n_sectors - 1) >>
607 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 
609 	page = bit / (PAGE_SIZE * 8);
610 	bit %= PAGE_SIZE * 8;
611 
612 	end_page = end_bit / (PAGE_SIZE * 8);
613 	end_bit %= PAGE_SIZE * 8;
614 
615 repeat:
616 	if (page < end_page)
617 		this_end_bit = PAGE_SIZE * 8 - 1;
618 	else
619 		this_end_bit = end_bit;
620 
621 	data = lowmem_page_address(bitmap[page].page);
622 
623 	if (mode == BITMAP_OP_TEST_ALL_SET) {
624 		while (bit <= this_end_bit) {
625 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
626 				do {
627 					if (data[bit / BITS_PER_LONG] != -1)
628 						return false;
629 					bit += BITS_PER_LONG;
630 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
631 				continue;
632 			}
633 			if (!test_bit(bit, data))
634 				return false;
635 			bit++;
636 		}
637 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
638 		while (bit <= this_end_bit) {
639 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640 				do {
641 					if (data[bit / BITS_PER_LONG] != 0)
642 						return false;
643 					bit += BITS_PER_LONG;
644 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
645 				continue;
646 			}
647 			if (test_bit(bit, data))
648 				return false;
649 			bit++;
650 		}
651 	} else if (mode == BITMAP_OP_SET) {
652 		while (bit <= this_end_bit) {
653 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654 				do {
655 					data[bit / BITS_PER_LONG] = -1;
656 					bit += BITS_PER_LONG;
657 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
658 				continue;
659 			}
660 			__set_bit(bit, data);
661 			bit++;
662 		}
663 	} else if (mode == BITMAP_OP_CLEAR) {
664 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
665 			clear_page(data);
666 		else {
667 			while (bit <= this_end_bit) {
668 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
669 					do {
670 						data[bit / BITS_PER_LONG] = 0;
671 						bit += BITS_PER_LONG;
672 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
673 					continue;
674 				}
675 				__clear_bit(bit, data);
676 				bit++;
677 			}
678 		}
679 	} else {
680 		BUG();
681 	}
682 
683 	if (unlikely(page < end_page)) {
684 		bit = 0;
685 		page++;
686 		goto repeat;
687 	}
688 
689 	return true;
690 }
691 
692 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
693 {
694 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
695 	unsigned int i;
696 
697 	for (i = 0; i < n_bitmap_pages; i++) {
698 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
699 		unsigned long *src_data = lowmem_page_address(src[i].page);
700 
701 		copy_page(dst_data, src_data);
702 	}
703 }
704 
705 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
706 {
707 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
708 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
709 
710 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
711 	return &ic->bbs[bitmap_block];
712 }
713 
714 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
715 				 bool e, const char *function)
716 {
717 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
718 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
719 
720 	if (unlikely(section >= ic->journal_sections) ||
721 	    unlikely(offset >= limit)) {
722 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
723 		       function, section, offset, ic->journal_sections, limit);
724 		BUG();
725 	}
726 #endif
727 }
728 
729 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
730 			       unsigned int *pl_index, unsigned int *pl_offset)
731 {
732 	unsigned int sector;
733 
734 	access_journal_check(ic, section, offset, false, "page_list_location");
735 
736 	sector = section * ic->journal_section_sectors + offset;
737 
738 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
740 }
741 
742 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
743 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
744 {
745 	unsigned int pl_index, pl_offset;
746 	char *va;
747 
748 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
749 
750 	if (n_sectors)
751 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
752 
753 	va = lowmem_page_address(pl[pl_index].page);
754 
755 	return (struct journal_sector *)(va + pl_offset);
756 }
757 
758 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
759 {
760 	return access_page_list(ic, ic->journal, section, offset, NULL);
761 }
762 
763 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
764 {
765 	unsigned int rel_sector, offset;
766 	struct journal_sector *js;
767 
768 	access_journal_check(ic, section, n, true, "access_journal_entry");
769 
770 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
771 	offset = n / JOURNAL_BLOCK_SECTORS;
772 
773 	js = access_journal(ic, section, rel_sector);
774 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
775 }
776 
777 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
778 {
779 	n <<= ic->sb->log2_sectors_per_block;
780 
781 	n += JOURNAL_BLOCK_SECTORS;
782 
783 	access_journal_check(ic, section, n, false, "access_journal_data");
784 
785 	return access_journal(ic, section, n);
786 }
787 
788 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
789 {
790 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
791 	int r;
792 	unsigned int j, size;
793 
794 	desc->tfm = ic->journal_mac;
795 
796 	r = crypto_shash_init(desc);
797 	if (unlikely(r < 0)) {
798 		dm_integrity_io_error(ic, "crypto_shash_init", r);
799 		goto err;
800 	}
801 
802 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
803 		__le64 section_le;
804 
805 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
806 		if (unlikely(r < 0)) {
807 			dm_integrity_io_error(ic, "crypto_shash_update", r);
808 			goto err;
809 		}
810 
811 		section_le = cpu_to_le64(section);
812 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
813 		if (unlikely(r < 0)) {
814 			dm_integrity_io_error(ic, "crypto_shash_update", r);
815 			goto err;
816 		}
817 	}
818 
819 	for (j = 0; j < ic->journal_section_entries; j++) {
820 		struct journal_entry *je = access_journal_entry(ic, section, j);
821 
822 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
823 		if (unlikely(r < 0)) {
824 			dm_integrity_io_error(ic, "crypto_shash_update", r);
825 			goto err;
826 		}
827 	}
828 
829 	size = crypto_shash_digestsize(ic->journal_mac);
830 
831 	if (likely(size <= JOURNAL_MAC_SIZE)) {
832 		r = crypto_shash_final(desc, result);
833 		if (unlikely(r < 0)) {
834 			dm_integrity_io_error(ic, "crypto_shash_final", r);
835 			goto err;
836 		}
837 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
838 	} else {
839 		__u8 digest[HASH_MAX_DIGESTSIZE];
840 
841 		if (WARN_ON(size > sizeof(digest))) {
842 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
843 			goto err;
844 		}
845 		r = crypto_shash_final(desc, digest);
846 		if (unlikely(r < 0)) {
847 			dm_integrity_io_error(ic, "crypto_shash_final", r);
848 			goto err;
849 		}
850 		memcpy(result, digest, JOURNAL_MAC_SIZE);
851 	}
852 
853 	return;
854 err:
855 	memset(result, 0, JOURNAL_MAC_SIZE);
856 }
857 
858 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
859 {
860 	__u8 result[JOURNAL_MAC_SIZE];
861 	unsigned int j;
862 
863 	if (!ic->journal_mac)
864 		return;
865 
866 	section_mac(ic, section, result);
867 
868 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
869 		struct journal_sector *js = access_journal(ic, section, j);
870 
871 		if (likely(wr))
872 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
873 		else {
874 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
875 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
876 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
877 			}
878 		}
879 	}
880 }
881 
882 static void complete_journal_op(void *context)
883 {
884 	struct journal_completion *comp = context;
885 
886 	BUG_ON(!atomic_read(&comp->in_flight));
887 	if (likely(atomic_dec_and_test(&comp->in_flight)))
888 		complete(&comp->comp);
889 }
890 
891 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
892 			unsigned int n_sections, struct journal_completion *comp)
893 {
894 	struct async_submit_ctl submit;
895 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
896 	unsigned int pl_index, pl_offset, section_index;
897 	struct page_list *source_pl, *target_pl;
898 
899 	if (likely(encrypt)) {
900 		source_pl = ic->journal;
901 		target_pl = ic->journal_io;
902 	} else {
903 		source_pl = ic->journal_io;
904 		target_pl = ic->journal;
905 	}
906 
907 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
908 
909 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
910 
911 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
912 
913 	section_index = pl_index;
914 
915 	do {
916 		size_t this_step;
917 		struct page *src_pages[2];
918 		struct page *dst_page;
919 
920 		while (unlikely(pl_index == section_index)) {
921 			unsigned int dummy;
922 
923 			if (likely(encrypt))
924 				rw_section_mac(ic, section, true);
925 			section++;
926 			n_sections--;
927 			if (!n_sections)
928 				break;
929 			page_list_location(ic, section, 0, &section_index, &dummy);
930 		}
931 
932 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
933 		dst_page = target_pl[pl_index].page;
934 		src_pages[0] = source_pl[pl_index].page;
935 		src_pages[1] = ic->journal_xor[pl_index].page;
936 
937 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
938 
939 		pl_index++;
940 		pl_offset = 0;
941 		n_bytes -= this_step;
942 	} while (n_bytes);
943 
944 	BUG_ON(n_sections);
945 
946 	async_tx_issue_pending_all();
947 }
948 
949 static void complete_journal_encrypt(void *data, int err)
950 {
951 	struct journal_completion *comp = data;
952 
953 	if (unlikely(err)) {
954 		if (likely(err == -EINPROGRESS)) {
955 			complete(&comp->ic->crypto_backoff);
956 			return;
957 		}
958 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959 	}
960 	complete_journal_op(comp);
961 }
962 
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965 	int r;
966 
967 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
968 				      complete_journal_encrypt, comp);
969 	if (likely(encrypt))
970 		r = crypto_skcipher_encrypt(req);
971 	else
972 		r = crypto_skcipher_decrypt(req);
973 	if (likely(!r))
974 		return false;
975 	if (likely(r == -EINPROGRESS))
976 		return true;
977 	if (likely(r == -EBUSY)) {
978 		wait_for_completion(&comp->ic->crypto_backoff);
979 		reinit_completion(&comp->ic->crypto_backoff);
980 		return true;
981 	}
982 	dm_integrity_io_error(comp->ic, "encrypt", r);
983 	return false;
984 }
985 
986 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
987 			  unsigned int n_sections, struct journal_completion *comp)
988 {
989 	struct scatterlist **source_sg;
990 	struct scatterlist **target_sg;
991 
992 	atomic_add(2, &comp->in_flight);
993 
994 	if (likely(encrypt)) {
995 		source_sg = ic->journal_scatterlist;
996 		target_sg = ic->journal_io_scatterlist;
997 	} else {
998 		source_sg = ic->journal_io_scatterlist;
999 		target_sg = ic->journal_scatterlist;
1000 	}
1001 
1002 	do {
1003 		struct skcipher_request *req;
1004 		unsigned int ivsize;
1005 		char *iv;
1006 
1007 		if (likely(encrypt))
1008 			rw_section_mac(ic, section, true);
1009 
1010 		req = ic->sk_requests[section];
1011 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1012 		iv = req->iv;
1013 
1014 		memcpy(iv, iv + ivsize, ivsize);
1015 
1016 		req->src = source_sg[section];
1017 		req->dst = target_sg[section];
1018 
1019 		if (unlikely(do_crypt(encrypt, req, comp)))
1020 			atomic_inc(&comp->in_flight);
1021 
1022 		section++;
1023 		n_sections--;
1024 	} while (n_sections);
1025 
1026 	atomic_dec(&comp->in_flight);
1027 	complete_journal_op(comp);
1028 }
1029 
1030 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1031 			    unsigned int n_sections, struct journal_completion *comp)
1032 {
1033 	if (ic->journal_xor)
1034 		return xor_journal(ic, encrypt, section, n_sections, comp);
1035 	else
1036 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1037 }
1038 
1039 static void complete_journal_io(unsigned long error, void *context)
1040 {
1041 	struct journal_completion *comp = context;
1042 
1043 	if (unlikely(error != 0))
1044 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1045 	complete_journal_op(comp);
1046 }
1047 
1048 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1049 			       unsigned int sector, unsigned int n_sectors,
1050 			       struct journal_completion *comp)
1051 {
1052 	struct dm_io_request io_req;
1053 	struct dm_io_region io_loc;
1054 	unsigned int pl_index, pl_offset;
1055 	int r;
1056 
1057 	if (unlikely(dm_integrity_failed(ic))) {
1058 		if (comp)
1059 			complete_journal_io(-1UL, comp);
1060 		return;
1061 	}
1062 
1063 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1064 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1065 
1066 	io_req.bi_opf = opf;
1067 	io_req.mem.type = DM_IO_PAGE_LIST;
1068 	if (ic->journal_io)
1069 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1070 	else
1071 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1072 	io_req.mem.offset = pl_offset;
1073 	if (likely(comp != NULL)) {
1074 		io_req.notify.fn = complete_journal_io;
1075 		io_req.notify.context = comp;
1076 	} else {
1077 		io_req.notify.fn = NULL;
1078 	}
1079 	io_req.client = ic->io;
1080 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1081 	io_loc.sector = ic->start + SB_SECTORS + sector;
1082 	io_loc.count = n_sectors;
1083 
1084 	r = dm_io(&io_req, 1, &io_loc, NULL);
1085 	if (unlikely(r)) {
1086 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1087 				      "reading journal" : "writing journal", r);
1088 		if (comp) {
1089 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1090 			complete_journal_io(-1UL, comp);
1091 		}
1092 	}
1093 }
1094 
1095 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1096 		       unsigned int section, unsigned int n_sections,
1097 		       struct journal_completion *comp)
1098 {
1099 	unsigned int sector, n_sectors;
1100 
1101 	sector = section * ic->journal_section_sectors;
1102 	n_sectors = n_sections * ic->journal_section_sectors;
1103 
1104 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1105 }
1106 
1107 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1108 {
1109 	struct journal_completion io_comp;
1110 	struct journal_completion crypt_comp_1;
1111 	struct journal_completion crypt_comp_2;
1112 	unsigned int i;
1113 
1114 	io_comp.ic = ic;
1115 	init_completion(&io_comp.comp);
1116 
1117 	if (commit_start + commit_sections <= ic->journal_sections) {
1118 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1119 		if (ic->journal_io) {
1120 			crypt_comp_1.ic = ic;
1121 			init_completion(&crypt_comp_1.comp);
1122 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1123 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1124 			wait_for_completion_io(&crypt_comp_1.comp);
1125 		} else {
1126 			for (i = 0; i < commit_sections; i++)
1127 				rw_section_mac(ic, commit_start + i, true);
1128 		}
1129 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1130 			   commit_sections, &io_comp);
1131 	} else {
1132 		unsigned int to_end;
1133 
1134 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1135 		to_end = ic->journal_sections - commit_start;
1136 		if (ic->journal_io) {
1137 			crypt_comp_1.ic = ic;
1138 			init_completion(&crypt_comp_1.comp);
1139 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1141 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1142 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1143 					   commit_start, to_end, &io_comp);
1144 				reinit_completion(&crypt_comp_1.comp);
1145 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1146 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1147 				wait_for_completion_io(&crypt_comp_1.comp);
1148 			} else {
1149 				crypt_comp_2.ic = ic;
1150 				init_completion(&crypt_comp_2.comp);
1151 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1152 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1153 				wait_for_completion_io(&crypt_comp_1.comp);
1154 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1155 				wait_for_completion_io(&crypt_comp_2.comp);
1156 			}
1157 		} else {
1158 			for (i = 0; i < to_end; i++)
1159 				rw_section_mac(ic, commit_start + i, true);
1160 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1161 			for (i = 0; i < commit_sections - to_end; i++)
1162 				rw_section_mac(ic, i, true);
1163 		}
1164 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1165 	}
1166 
1167 	wait_for_completion_io(&io_comp.comp);
1168 }
1169 
1170 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1171 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1172 {
1173 	struct dm_io_request io_req;
1174 	struct dm_io_region io_loc;
1175 	int r;
1176 	unsigned int sector, pl_index, pl_offset;
1177 
1178 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1179 
1180 	if (unlikely(dm_integrity_failed(ic))) {
1181 		fn(-1UL, data);
1182 		return;
1183 	}
1184 
1185 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1186 
1187 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1188 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1189 
1190 	io_req.bi_opf = REQ_OP_WRITE;
1191 	io_req.mem.type = DM_IO_PAGE_LIST;
1192 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1193 	io_req.mem.offset = pl_offset;
1194 	io_req.notify.fn = fn;
1195 	io_req.notify.context = data;
1196 	io_req.client = ic->io;
1197 	io_loc.bdev = ic->dev->bdev;
1198 	io_loc.sector = target;
1199 	io_loc.count = n_sectors;
1200 
1201 	r = dm_io(&io_req, 1, &io_loc, NULL);
1202 	if (unlikely(r)) {
1203 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1204 		fn(-1UL, data);
1205 	}
1206 }
1207 
1208 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1209 {
1210 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1211 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1212 }
1213 
1214 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1215 {
1216 	struct rb_node **n = &ic->in_progress.rb_node;
1217 	struct rb_node *parent;
1218 
1219 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1220 
1221 	if (likely(check_waiting)) {
1222 		struct dm_integrity_range *range;
1223 
1224 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1225 			if (unlikely(ranges_overlap(range, new_range)))
1226 				return false;
1227 		}
1228 	}
1229 
1230 	parent = NULL;
1231 
1232 	while (*n) {
1233 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1234 
1235 		parent = *n;
1236 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1237 			n = &range->node.rb_left;
1238 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1239 			n = &range->node.rb_right;
1240 		else
1241 			return false;
1242 	}
1243 
1244 	rb_link_node(&new_range->node, parent, n);
1245 	rb_insert_color(&new_range->node, &ic->in_progress);
1246 
1247 	return true;
1248 }
1249 
1250 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1251 {
1252 	rb_erase(&range->node, &ic->in_progress);
1253 	while (unlikely(!list_empty(&ic->wait_list))) {
1254 		struct dm_integrity_range *last_range =
1255 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1256 		struct task_struct *last_range_task;
1257 
1258 		last_range_task = last_range->task;
1259 		list_del(&last_range->wait_entry);
1260 		if (!add_new_range(ic, last_range, false)) {
1261 			last_range->task = last_range_task;
1262 			list_add(&last_range->wait_entry, &ic->wait_list);
1263 			break;
1264 		}
1265 		last_range->waiting = false;
1266 		wake_up_process(last_range_task);
1267 	}
1268 }
1269 
1270 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1271 {
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1275 	remove_range_unlocked(ic, range);
1276 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1277 }
1278 
1279 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1280 {
1281 	new_range->waiting = true;
1282 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1283 	new_range->task = current;
1284 	do {
1285 		__set_current_state(TASK_UNINTERRUPTIBLE);
1286 		spin_unlock_irq(&ic->endio_wait.lock);
1287 		io_schedule();
1288 		spin_lock_irq(&ic->endio_wait.lock);
1289 	} while (unlikely(new_range->waiting));
1290 }
1291 
1292 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1293 {
1294 	if (unlikely(!add_new_range(ic, new_range, true)))
1295 		wait_and_add_new_range(ic, new_range);
1296 }
1297 
1298 static void init_journal_node(struct journal_node *node)
1299 {
1300 	RB_CLEAR_NODE(&node->node);
1301 	node->sector = (sector_t)-1;
1302 }
1303 
1304 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1305 {
1306 	struct rb_node **link;
1307 	struct rb_node *parent;
1308 
1309 	node->sector = sector;
1310 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1311 
1312 	link = &ic->journal_tree_root.rb_node;
1313 	parent = NULL;
1314 
1315 	while (*link) {
1316 		struct journal_node *j;
1317 
1318 		parent = *link;
1319 		j = container_of(parent, struct journal_node, node);
1320 		if (sector < j->sector)
1321 			link = &j->node.rb_left;
1322 		else
1323 			link = &j->node.rb_right;
1324 	}
1325 
1326 	rb_link_node(&node->node, parent, link);
1327 	rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329 
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332 	BUG_ON(RB_EMPTY_NODE(&node->node));
1333 	rb_erase(&node->node, &ic->journal_tree_root);
1334 	init_journal_node(node);
1335 }
1336 
1337 #define NOT_FOUND	(-1U)
1338 
1339 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341 	struct rb_node *n = ic->journal_tree_root.rb_node;
1342 	unsigned int found = NOT_FOUND;
1343 
1344 	*next_sector = (sector_t)-1;
1345 	while (n) {
1346 		struct journal_node *j = container_of(n, struct journal_node, node);
1347 
1348 		if (sector == j->sector)
1349 			found = j - ic->journal_tree;
1350 
1351 		if (sector < j->sector) {
1352 			*next_sector = j->sector;
1353 			n = j->node.rb_left;
1354 		} else
1355 			n = j->node.rb_right;
1356 	}
1357 
1358 	return found;
1359 }
1360 
1361 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1362 {
1363 	struct journal_node *node, *next_node;
1364 	struct rb_node *next;
1365 
1366 	if (unlikely(pos >= ic->journal_entries))
1367 		return false;
1368 	node = &ic->journal_tree[pos];
1369 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1370 		return false;
1371 	if (unlikely(node->sector != sector))
1372 		return false;
1373 
1374 	next = rb_next(&node->node);
1375 	if (unlikely(!next))
1376 		return true;
1377 
1378 	next_node = container_of(next, struct journal_node, node);
1379 	return next_node->sector != sector;
1380 }
1381 
1382 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1383 {
1384 	struct rb_node *next;
1385 	struct journal_node *next_node;
1386 	unsigned int next_section;
1387 
1388 	BUG_ON(RB_EMPTY_NODE(&node->node));
1389 
1390 	next = rb_next(&node->node);
1391 	if (unlikely(!next))
1392 		return false;
1393 
1394 	next_node = container_of(next, struct journal_node, node);
1395 
1396 	if (next_node->sector != node->sector)
1397 		return false;
1398 
1399 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1400 	if (next_section >= ic->committed_section &&
1401 	    next_section < ic->committed_section + ic->n_committed_sections)
1402 		return true;
1403 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1404 		return true;
1405 
1406 	return false;
1407 }
1408 
1409 #define TAG_READ	0
1410 #define TAG_WRITE	1
1411 #define TAG_CMP		2
1412 
1413 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1414 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1415 {
1416 #define MAY_BE_FILLER		1
1417 #define MAY_BE_HASH		2
1418 	unsigned int hash_offset = 0;
1419 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1420 
1421 	do {
1422 		unsigned char *data, *dp;
1423 		struct dm_buffer *b;
1424 		unsigned int to_copy;
1425 		int r;
1426 
1427 		r = dm_integrity_failed(ic);
1428 		if (unlikely(r))
1429 			return r;
1430 
1431 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1432 		if (IS_ERR(data))
1433 			return PTR_ERR(data);
1434 
1435 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1436 		dp = data + *metadata_offset;
1437 		if (op == TAG_READ) {
1438 			memcpy(tag, dp, to_copy);
1439 		} else if (op == TAG_WRITE) {
1440 			if (memcmp(dp, tag, to_copy)) {
1441 				memcpy(dp, tag, to_copy);
1442 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1443 			}
1444 		} else {
1445 			/* e.g.: op == TAG_CMP */
1446 
1447 			if (likely(is_power_of_2(ic->tag_size))) {
1448 				if (unlikely(memcmp(dp, tag, to_copy)))
1449 					if (unlikely(!ic->discard) ||
1450 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1451 						goto thorough_test;
1452 				}
1453 			} else {
1454 				unsigned int i, ts;
1455 thorough_test:
1456 				ts = total_size;
1457 
1458 				for (i = 0; i < to_copy; i++, ts--) {
1459 					if (unlikely(dp[i] != tag[i]))
1460 						may_be &= ~MAY_BE_HASH;
1461 					if (likely(dp[i] != DISCARD_FILLER))
1462 						may_be &= ~MAY_BE_FILLER;
1463 					hash_offset++;
1464 					if (unlikely(hash_offset == ic->tag_size)) {
1465 						if (unlikely(!may_be)) {
1466 							dm_bufio_release(b);
1467 							return ts;
1468 						}
1469 						hash_offset = 0;
1470 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1471 					}
1472 				}
1473 			}
1474 		}
1475 		dm_bufio_release(b);
1476 
1477 		tag += to_copy;
1478 		*metadata_offset += to_copy;
1479 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1480 			(*metadata_block)++;
1481 			*metadata_offset = 0;
1482 		}
1483 
1484 		if (unlikely(!is_power_of_2(ic->tag_size)))
1485 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1486 
1487 		total_size -= to_copy;
1488 	} while (unlikely(total_size));
1489 
1490 	return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494 
1495 struct flush_request {
1496 	struct dm_io_request io_req;
1497 	struct dm_io_region io_reg;
1498 	struct dm_integrity_c *ic;
1499 	struct completion comp;
1500 };
1501 
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504 	struct flush_request *fr = fr_;
1505 
1506 	if (unlikely(error != 0))
1507 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1508 	complete(&fr->comp);
1509 }
1510 
1511 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1512 {
1513 	int r;
1514 	struct flush_request fr;
1515 
1516 	if (!ic->meta_dev)
1517 		flush_data = false;
1518 	if (flush_data) {
1519 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1520 		fr.io_req.mem.type = DM_IO_KMEM,
1521 		fr.io_req.mem.ptr.addr = NULL,
1522 		fr.io_req.notify.fn = flush_notify,
1523 		fr.io_req.notify.context = &fr;
1524 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1525 		fr.io_reg.bdev = ic->dev->bdev,
1526 		fr.io_reg.sector = 0,
1527 		fr.io_reg.count = 0,
1528 		fr.ic = ic;
1529 		init_completion(&fr.comp);
1530 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1531 		BUG_ON(r);
1532 	}
1533 
1534 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1535 	if (unlikely(r))
1536 		dm_integrity_io_error(ic, "writing tags", r);
1537 
1538 	if (flush_data)
1539 		wait_for_completion(&fr.comp);
1540 }
1541 
1542 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1543 {
1544 	DECLARE_WAITQUEUE(wait, current);
1545 
1546 	__add_wait_queue(&ic->endio_wait, &wait);
1547 	__set_current_state(TASK_UNINTERRUPTIBLE);
1548 	spin_unlock_irq(&ic->endio_wait.lock);
1549 	io_schedule();
1550 	spin_lock_irq(&ic->endio_wait.lock);
1551 	__remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553 
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557 
1558 	if (likely(!dm_integrity_failed(ic)))
1559 		queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561 
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564 	if (!timer_pending(&ic->autocommit_timer))
1565 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567 
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570 	struct bio *bio;
1571 	unsigned long flags;
1572 
1573 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575 	bio_list_add(&ic->flush_bio_list, bio);
1576 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577 
1578 	queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580 
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583 	int r;
1584 
1585 	r = dm_integrity_failed(ic);
1586 	if (unlikely(r) && !bio->bi_status)
1587 		bio->bi_status = errno_to_blk_status(r);
1588 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589 		unsigned long flags;
1590 
1591 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1592 		bio_list_add(&ic->synchronous_bios, bio);
1593 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1594 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1595 		return;
1596 	}
1597 	bio_endio(bio);
1598 }
1599 
1600 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1601 {
1602 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1603 
1604 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1605 		submit_flush_bio(ic, dio);
1606 	else
1607 		do_endio(ic, bio);
1608 }
1609 
1610 static void dec_in_flight(struct dm_integrity_io *dio)
1611 {
1612 	if (atomic_dec_and_test(&dio->in_flight)) {
1613 		struct dm_integrity_c *ic = dio->ic;
1614 		struct bio *bio;
1615 
1616 		remove_range(ic, &dio->range);
1617 
1618 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1619 			schedule_autocommit(ic);
1620 
1621 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1622 		if (unlikely(dio->bi_status) && !bio->bi_status)
1623 			bio->bi_status = dio->bi_status;
1624 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625 			dio->range.logical_sector += dio->range.n_sectors;
1626 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627 			INIT_WORK(&dio->work, integrity_bio_wait);
1628 			queue_work(ic->offload_wq, &dio->work);
1629 			return;
1630 		}
1631 		do_endio_flush(ic, dio);
1632 	}
1633 }
1634 
1635 static void integrity_end_io(struct bio *bio)
1636 {
1637 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638 
1639 	dm_bio_restore(&dio->bio_details, bio);
1640 	if (bio->bi_integrity)
1641 		bio->bi_opf |= REQ_INTEGRITY;
1642 
1643 	if (dio->completion)
1644 		complete(dio->completion);
1645 
1646 	dec_in_flight(dio);
1647 }
1648 
1649 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650 				      const char *data, char *result)
1651 {
1652 	__le64 sector_le = cpu_to_le64(sector);
1653 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654 	int r;
1655 	unsigned int digest_size;
1656 
1657 	req->tfm = ic->internal_hash;
1658 
1659 	r = crypto_shash_init(req);
1660 	if (unlikely(r < 0)) {
1661 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1662 		goto failed;
1663 	}
1664 
1665 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667 		if (unlikely(r < 0)) {
1668 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 			goto failed;
1670 		}
1671 	}
1672 
1673 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1674 	if (unlikely(r < 0)) {
1675 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1676 		goto failed;
1677 	}
1678 
1679 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680 	if (unlikely(r < 0)) {
1681 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1682 		goto failed;
1683 	}
1684 
1685 	r = crypto_shash_final(req, result);
1686 	if (unlikely(r < 0)) {
1687 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1688 		goto failed;
1689 	}
1690 
1691 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1692 	if (unlikely(digest_size < ic->tag_size))
1693 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1694 
1695 	return;
1696 
1697 failed:
1698 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1699 	get_random_bytes(result, ic->tag_size);
1700 }
1701 
1702 static void integrity_metadata(struct work_struct *w)
1703 {
1704 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705 	struct dm_integrity_c *ic = dio->ic;
1706 
1707 	int r;
1708 
1709 	if (ic->internal_hash) {
1710 		struct bvec_iter iter;
1711 		struct bio_vec bv;
1712 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1713 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714 		char *checksums;
1715 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717 		sector_t sector;
1718 		unsigned int sectors_to_process;
1719 
1720 		if (unlikely(ic->mode == 'R'))
1721 			goto skip_io;
1722 
1723 		if (likely(dio->op != REQ_OP_DISCARD))
1724 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726 		else
1727 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728 		if (!checksums) {
1729 			checksums = checksums_onstack;
1730 			if (WARN_ON(extra_space &&
1731 				    digest_size > sizeof(checksums_onstack))) {
1732 				r = -EINVAL;
1733 				goto error;
1734 			}
1735 		}
1736 
1737 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1739 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1740 			unsigned int max_blocks = max_size / ic->tag_size;
1741 
1742 			memset(checksums, DISCARD_FILLER, max_size);
1743 
1744 			while (bi_size) {
1745 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1746 
1747 				this_step_blocks = min(this_step_blocks, max_blocks);
1748 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1749 							this_step_blocks * ic->tag_size, TAG_WRITE);
1750 				if (unlikely(r)) {
1751 					if (likely(checksums != checksums_onstack))
1752 						kfree(checksums);
1753 					goto error;
1754 				}
1755 
1756 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1757 			}
1758 
1759 			if (likely(checksums != checksums_onstack))
1760 				kfree(checksums);
1761 			goto skip_io;
1762 		}
1763 
1764 		sector = dio->range.logical_sector;
1765 		sectors_to_process = dio->range.n_sectors;
1766 
1767 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1768 			unsigned int pos;
1769 			char *mem, *checksums_ptr;
1770 
1771 again:
1772 			mem = bvec_kmap_local(&bv);
1773 			pos = 0;
1774 			checksums_ptr = checksums;
1775 			do {
1776 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1777 				checksums_ptr += ic->tag_size;
1778 				sectors_to_process -= ic->sectors_per_block;
1779 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1780 				sector += ic->sectors_per_block;
1781 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1782 			kunmap_local(mem);
1783 
1784 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1785 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1786 			if (unlikely(r)) {
1787 				if (r > 0) {
1788 					sector_t s;
1789 
1790 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1791 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1792 						    bio->bi_bdev, s);
1793 					r = -EILSEQ;
1794 					atomic64_inc(&ic->number_of_mismatches);
1795 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1796 							 bio, s, 0);
1797 				}
1798 				if (likely(checksums != checksums_onstack))
1799 					kfree(checksums);
1800 				goto error;
1801 			}
1802 
1803 			if (!sectors_to_process)
1804 				break;
1805 
1806 			if (unlikely(pos < bv.bv_len)) {
1807 				bv.bv_offset += pos;
1808 				bv.bv_len -= pos;
1809 				goto again;
1810 			}
1811 		}
1812 
1813 		if (likely(checksums != checksums_onstack))
1814 			kfree(checksums);
1815 	} else {
1816 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1817 
1818 		if (bip) {
1819 			struct bio_vec biv;
1820 			struct bvec_iter iter;
1821 			unsigned int data_to_process = dio->range.n_sectors;
1822 
1823 			sector_to_block(ic, data_to_process);
1824 			data_to_process *= ic->tag_size;
1825 
1826 			bip_for_each_vec(biv, bip, iter) {
1827 				unsigned char *tag;
1828 				unsigned int this_len;
1829 
1830 				BUG_ON(PageHighMem(biv.bv_page));
1831 				tag = bvec_virt(&biv);
1832 				this_len = min(biv.bv_len, data_to_process);
1833 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1834 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1835 				if (unlikely(r))
1836 					goto error;
1837 				data_to_process -= this_len;
1838 				if (!data_to_process)
1839 					break;
1840 			}
1841 		}
1842 	}
1843 skip_io:
1844 	dec_in_flight(dio);
1845 	return;
1846 error:
1847 	dio->bi_status = errno_to_blk_status(r);
1848 	dec_in_flight(dio);
1849 }
1850 
1851 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1852 {
1853 	struct dm_integrity_c *ic = ti->private;
1854 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1855 	struct bio_integrity_payload *bip;
1856 
1857 	sector_t area, offset;
1858 
1859 	dio->ic = ic;
1860 	dio->bi_status = 0;
1861 	dio->op = bio_op(bio);
1862 
1863 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1864 		if (ti->max_io_len) {
1865 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1866 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1867 			sector_t start_boundary = sec >> log2_max_io_len;
1868 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1869 
1870 			if (start_boundary < end_boundary) {
1871 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1872 
1873 				dm_accept_partial_bio(bio, len);
1874 			}
1875 		}
1876 	}
1877 
1878 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1879 		submit_flush_bio(ic, dio);
1880 		return DM_MAPIO_SUBMITTED;
1881 	}
1882 
1883 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1884 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1885 	if (unlikely(dio->fua)) {
1886 		/*
1887 		 * Don't pass down the FUA flag because we have to flush
1888 		 * disk cache anyway.
1889 		 */
1890 		bio->bi_opf &= ~REQ_FUA;
1891 	}
1892 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1893 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1894 		      dio->range.logical_sector, bio_sectors(bio),
1895 		      ic->provided_data_sectors);
1896 		return DM_MAPIO_KILL;
1897 	}
1898 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1899 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1900 		      ic->sectors_per_block,
1901 		      dio->range.logical_sector, bio_sectors(bio));
1902 		return DM_MAPIO_KILL;
1903 	}
1904 
1905 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1906 		struct bvec_iter iter;
1907 		struct bio_vec bv;
1908 
1909 		bio_for_each_segment(bv, bio, iter) {
1910 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1911 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1912 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1913 				return DM_MAPIO_KILL;
1914 			}
1915 		}
1916 	}
1917 
1918 	bip = bio_integrity(bio);
1919 	if (!ic->internal_hash) {
1920 		if (bip) {
1921 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1922 
1923 			if (ic->log2_tag_size >= 0)
1924 				wanted_tag_size <<= ic->log2_tag_size;
1925 			else
1926 				wanted_tag_size *= ic->tag_size;
1927 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1928 				DMERR("Invalid integrity data size %u, expected %u",
1929 				      bip->bip_iter.bi_size, wanted_tag_size);
1930 				return DM_MAPIO_KILL;
1931 			}
1932 		}
1933 	} else {
1934 		if (unlikely(bip != NULL)) {
1935 			DMERR("Unexpected integrity data when using internal hash");
1936 			return DM_MAPIO_KILL;
1937 		}
1938 	}
1939 
1940 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1941 		return DM_MAPIO_KILL;
1942 
1943 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1944 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1945 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1946 
1947 	dm_integrity_map_continue(dio, true);
1948 	return DM_MAPIO_SUBMITTED;
1949 }
1950 
1951 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1952 				 unsigned int journal_section, unsigned int journal_entry)
1953 {
1954 	struct dm_integrity_c *ic = dio->ic;
1955 	sector_t logical_sector;
1956 	unsigned int n_sectors;
1957 
1958 	logical_sector = dio->range.logical_sector;
1959 	n_sectors = dio->range.n_sectors;
1960 	do {
1961 		struct bio_vec bv = bio_iovec(bio);
1962 		char *mem;
1963 
1964 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1965 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1966 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1967 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1968 retry_kmap:
1969 		mem = kmap_local_page(bv.bv_page);
1970 		if (likely(dio->op == REQ_OP_WRITE))
1971 			flush_dcache_page(bv.bv_page);
1972 
1973 		do {
1974 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1975 
1976 			if (unlikely(dio->op == REQ_OP_READ)) {
1977 				struct journal_sector *js;
1978 				char *mem_ptr;
1979 				unsigned int s;
1980 
1981 				if (unlikely(journal_entry_is_inprogress(je))) {
1982 					flush_dcache_page(bv.bv_page);
1983 					kunmap_local(mem);
1984 
1985 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1986 					goto retry_kmap;
1987 				}
1988 				smp_rmb();
1989 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1990 				js = access_journal_data(ic, journal_section, journal_entry);
1991 				mem_ptr = mem + bv.bv_offset;
1992 				s = 0;
1993 				do {
1994 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1995 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1996 					js++;
1997 					mem_ptr += 1 << SECTOR_SHIFT;
1998 				} while (++s < ic->sectors_per_block);
1999 #ifdef INTERNAL_VERIFY
2000 				if (ic->internal_hash) {
2001 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2002 
2003 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2004 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2005 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2006 							    logical_sector);
2007 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2008 								 bio, logical_sector, 0);
2009 					}
2010 				}
2011 #endif
2012 			}
2013 
2014 			if (!ic->internal_hash) {
2015 				struct bio_integrity_payload *bip = bio_integrity(bio);
2016 				unsigned int tag_todo = ic->tag_size;
2017 				char *tag_ptr = journal_entry_tag(ic, je);
2018 
2019 				if (bip) {
2020 					do {
2021 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2022 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2023 						char *tag_addr;
2024 
2025 						BUG_ON(PageHighMem(biv.bv_page));
2026 						tag_addr = bvec_virt(&biv);
2027 						if (likely(dio->op == REQ_OP_WRITE))
2028 							memcpy(tag_ptr, tag_addr, tag_now);
2029 						else
2030 							memcpy(tag_addr, tag_ptr, tag_now);
2031 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2032 						tag_ptr += tag_now;
2033 						tag_todo -= tag_now;
2034 					} while (unlikely(tag_todo));
2035 				} else if (likely(dio->op == REQ_OP_WRITE))
2036 					memset(tag_ptr, 0, tag_todo);
2037 			}
2038 
2039 			if (likely(dio->op == REQ_OP_WRITE)) {
2040 				struct journal_sector *js;
2041 				unsigned int s;
2042 
2043 				js = access_journal_data(ic, journal_section, journal_entry);
2044 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2045 
2046 				s = 0;
2047 				do {
2048 					je->last_bytes[s] = js[s].commit_id;
2049 				} while (++s < ic->sectors_per_block);
2050 
2051 				if (ic->internal_hash) {
2052 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2053 
2054 					if (unlikely(digest_size > ic->tag_size)) {
2055 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2056 
2057 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2058 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2059 					} else
2060 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2061 				}
2062 
2063 				journal_entry_set_sector(je, logical_sector);
2064 			}
2065 			logical_sector += ic->sectors_per_block;
2066 
2067 			journal_entry++;
2068 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2069 				journal_entry = 0;
2070 				journal_section++;
2071 				wraparound_section(ic, &journal_section);
2072 			}
2073 
2074 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2075 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2076 
2077 		if (unlikely(dio->op == REQ_OP_READ))
2078 			flush_dcache_page(bv.bv_page);
2079 		kunmap_local(mem);
2080 	} while (n_sectors);
2081 
2082 	if (likely(dio->op == REQ_OP_WRITE)) {
2083 		smp_mb();
2084 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2085 			wake_up(&ic->copy_to_journal_wait);
2086 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2087 			queue_work(ic->commit_wq, &ic->commit_work);
2088 		else
2089 			schedule_autocommit(ic);
2090 	} else
2091 		remove_range(ic, &dio->range);
2092 
2093 	if (unlikely(bio->bi_iter.bi_size)) {
2094 		sector_t area, offset;
2095 
2096 		dio->range.logical_sector = logical_sector;
2097 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2098 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2099 		return true;
2100 	}
2101 
2102 	return false;
2103 }
2104 
2105 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2106 {
2107 	struct dm_integrity_c *ic = dio->ic;
2108 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2109 	unsigned int journal_section, journal_entry;
2110 	unsigned int journal_read_pos;
2111 	struct completion read_comp;
2112 	bool discard_retried = false;
2113 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2114 
2115 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2116 		need_sync_io = true;
2117 
2118 	if (need_sync_io && from_map) {
2119 		INIT_WORK(&dio->work, integrity_bio_wait);
2120 		queue_work(ic->offload_wq, &dio->work);
2121 		return;
2122 	}
2123 
2124 lock_retry:
2125 	spin_lock_irq(&ic->endio_wait.lock);
2126 retry:
2127 	if (unlikely(dm_integrity_failed(ic))) {
2128 		spin_unlock_irq(&ic->endio_wait.lock);
2129 		do_endio(ic, bio);
2130 		return;
2131 	}
2132 	dio->range.n_sectors = bio_sectors(bio);
2133 	journal_read_pos = NOT_FOUND;
2134 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2135 		if (dio->op == REQ_OP_WRITE) {
2136 			unsigned int next_entry, i, pos;
2137 			unsigned int ws, we, range_sectors;
2138 
2139 			dio->range.n_sectors = min(dio->range.n_sectors,
2140 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2141 			if (unlikely(!dio->range.n_sectors)) {
2142 				if (from_map)
2143 					goto offload_to_thread;
2144 				sleep_on_endio_wait(ic);
2145 				goto retry;
2146 			}
2147 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2148 			ic->free_sectors -= range_sectors;
2149 			journal_section = ic->free_section;
2150 			journal_entry = ic->free_section_entry;
2151 
2152 			next_entry = ic->free_section_entry + range_sectors;
2153 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2154 			ic->free_section += next_entry / ic->journal_section_entries;
2155 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2156 			wraparound_section(ic, &ic->free_section);
2157 
2158 			pos = journal_section * ic->journal_section_entries + journal_entry;
2159 			ws = journal_section;
2160 			we = journal_entry;
2161 			i = 0;
2162 			do {
2163 				struct journal_entry *je;
2164 
2165 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2166 				pos++;
2167 				if (unlikely(pos >= ic->journal_entries))
2168 					pos = 0;
2169 
2170 				je = access_journal_entry(ic, ws, we);
2171 				BUG_ON(!journal_entry_is_unused(je));
2172 				journal_entry_set_inprogress(je);
2173 				we++;
2174 				if (unlikely(we == ic->journal_section_entries)) {
2175 					we = 0;
2176 					ws++;
2177 					wraparound_section(ic, &ws);
2178 				}
2179 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2180 
2181 			spin_unlock_irq(&ic->endio_wait.lock);
2182 			goto journal_read_write;
2183 		} else {
2184 			sector_t next_sector;
2185 
2186 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2187 			if (likely(journal_read_pos == NOT_FOUND)) {
2188 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2189 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2190 			} else {
2191 				unsigned int i;
2192 				unsigned int jp = journal_read_pos + 1;
2193 
2194 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2195 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2196 						break;
2197 				}
2198 				dio->range.n_sectors = i;
2199 			}
2200 		}
2201 	}
2202 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2203 		/*
2204 		 * We must not sleep in the request routine because it could
2205 		 * stall bios on current->bio_list.
2206 		 * So, we offload the bio to a workqueue if we have to sleep.
2207 		 */
2208 		if (from_map) {
2209 offload_to_thread:
2210 			spin_unlock_irq(&ic->endio_wait.lock);
2211 			INIT_WORK(&dio->work, integrity_bio_wait);
2212 			queue_work(ic->wait_wq, &dio->work);
2213 			return;
2214 		}
2215 		if (journal_read_pos != NOT_FOUND)
2216 			dio->range.n_sectors = ic->sectors_per_block;
2217 		wait_and_add_new_range(ic, &dio->range);
2218 		/*
2219 		 * wait_and_add_new_range drops the spinlock, so the journal
2220 		 * may have been changed arbitrarily. We need to recheck.
2221 		 * To simplify the code, we restrict I/O size to just one block.
2222 		 */
2223 		if (journal_read_pos != NOT_FOUND) {
2224 			sector_t next_sector;
2225 			unsigned int new_pos;
2226 
2227 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2228 			if (unlikely(new_pos != journal_read_pos)) {
2229 				remove_range_unlocked(ic, &dio->range);
2230 				goto retry;
2231 			}
2232 		}
2233 	}
2234 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2235 		sector_t next_sector;
2236 		unsigned int new_pos;
2237 
2238 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2239 		if (unlikely(new_pos != NOT_FOUND) ||
2240 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2241 			remove_range_unlocked(ic, &dio->range);
2242 			spin_unlock_irq(&ic->endio_wait.lock);
2243 			queue_work(ic->commit_wq, &ic->commit_work);
2244 			flush_workqueue(ic->commit_wq);
2245 			queue_work(ic->writer_wq, &ic->writer_work);
2246 			flush_workqueue(ic->writer_wq);
2247 			discard_retried = true;
2248 			goto lock_retry;
2249 		}
2250 	}
2251 	spin_unlock_irq(&ic->endio_wait.lock);
2252 
2253 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2254 		journal_section = journal_read_pos / ic->journal_section_entries;
2255 		journal_entry = journal_read_pos % ic->journal_section_entries;
2256 		goto journal_read_write;
2257 	}
2258 
2259 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2260 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2261 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2262 			struct bitmap_block_status *bbs;
2263 
2264 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2265 			spin_lock(&bbs->bio_queue_lock);
2266 			bio_list_add(&bbs->bio_queue, bio);
2267 			spin_unlock(&bbs->bio_queue_lock);
2268 			queue_work(ic->writer_wq, &bbs->work);
2269 			return;
2270 		}
2271 	}
2272 
2273 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2274 
2275 	if (need_sync_io) {
2276 		init_completion(&read_comp);
2277 		dio->completion = &read_comp;
2278 	} else
2279 		dio->completion = NULL;
2280 
2281 	dm_bio_record(&dio->bio_details, bio);
2282 	bio_set_dev(bio, ic->dev->bdev);
2283 	bio->bi_integrity = NULL;
2284 	bio->bi_opf &= ~REQ_INTEGRITY;
2285 	bio->bi_end_io = integrity_end_io;
2286 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2287 
2288 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2289 		integrity_metadata(&dio->work);
2290 		dm_integrity_flush_buffers(ic, false);
2291 
2292 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2293 		dio->completion = NULL;
2294 
2295 		submit_bio_noacct(bio);
2296 
2297 		return;
2298 	}
2299 
2300 	submit_bio_noacct(bio);
2301 
2302 	if (need_sync_io) {
2303 		wait_for_completion_io(&read_comp);
2304 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2305 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2306 			goto skip_check;
2307 		if (ic->mode == 'B') {
2308 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2309 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2310 				goto skip_check;
2311 		}
2312 
2313 		if (likely(!bio->bi_status))
2314 			integrity_metadata(&dio->work);
2315 		else
2316 skip_check:
2317 			dec_in_flight(dio);
2318 	} else {
2319 		INIT_WORK(&dio->work, integrity_metadata);
2320 		queue_work(ic->metadata_wq, &dio->work);
2321 	}
2322 
2323 	return;
2324 
2325 journal_read_write:
2326 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2327 		goto lock_retry;
2328 
2329 	do_endio_flush(ic, dio);
2330 }
2331 
2332 
2333 static void integrity_bio_wait(struct work_struct *w)
2334 {
2335 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2336 
2337 	dm_integrity_map_continue(dio, false);
2338 }
2339 
2340 static void pad_uncommitted(struct dm_integrity_c *ic)
2341 {
2342 	if (ic->free_section_entry) {
2343 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2344 		ic->free_section_entry = 0;
2345 		ic->free_section++;
2346 		wraparound_section(ic, &ic->free_section);
2347 		ic->n_uncommitted_sections++;
2348 	}
2349 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2350 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2351 		    ic->journal_section_entries + ic->free_sectors)) {
2352 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2353 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2354 		       "journal_section_entries %u, free_sectors %u",
2355 		       ic->journal_sections, ic->journal_section_entries,
2356 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2357 		       ic->journal_section_entries, ic->free_sectors);
2358 	}
2359 }
2360 
2361 static void integrity_commit(struct work_struct *w)
2362 {
2363 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2364 	unsigned int commit_start, commit_sections;
2365 	unsigned int i, j, n;
2366 	struct bio *flushes;
2367 
2368 	del_timer(&ic->autocommit_timer);
2369 
2370 	spin_lock_irq(&ic->endio_wait.lock);
2371 	flushes = bio_list_get(&ic->flush_bio_list);
2372 	if (unlikely(ic->mode != 'J')) {
2373 		spin_unlock_irq(&ic->endio_wait.lock);
2374 		dm_integrity_flush_buffers(ic, true);
2375 		goto release_flush_bios;
2376 	}
2377 
2378 	pad_uncommitted(ic);
2379 	commit_start = ic->uncommitted_section;
2380 	commit_sections = ic->n_uncommitted_sections;
2381 	spin_unlock_irq(&ic->endio_wait.lock);
2382 
2383 	if (!commit_sections)
2384 		goto release_flush_bios;
2385 
2386 	ic->wrote_to_journal = true;
2387 
2388 	i = commit_start;
2389 	for (n = 0; n < commit_sections; n++) {
2390 		for (j = 0; j < ic->journal_section_entries; j++) {
2391 			struct journal_entry *je;
2392 
2393 			je = access_journal_entry(ic, i, j);
2394 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2395 		}
2396 		for (j = 0; j < ic->journal_section_sectors; j++) {
2397 			struct journal_sector *js;
2398 
2399 			js = access_journal(ic, i, j);
2400 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2401 		}
2402 		i++;
2403 		if (unlikely(i >= ic->journal_sections))
2404 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2405 		wraparound_section(ic, &i);
2406 	}
2407 	smp_rmb();
2408 
2409 	write_journal(ic, commit_start, commit_sections);
2410 
2411 	spin_lock_irq(&ic->endio_wait.lock);
2412 	ic->uncommitted_section += commit_sections;
2413 	wraparound_section(ic, &ic->uncommitted_section);
2414 	ic->n_uncommitted_sections -= commit_sections;
2415 	ic->n_committed_sections += commit_sections;
2416 	spin_unlock_irq(&ic->endio_wait.lock);
2417 
2418 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2419 		queue_work(ic->writer_wq, &ic->writer_work);
2420 
2421 release_flush_bios:
2422 	while (flushes) {
2423 		struct bio *next = flushes->bi_next;
2424 
2425 		flushes->bi_next = NULL;
2426 		do_endio(ic, flushes);
2427 		flushes = next;
2428 	}
2429 }
2430 
2431 static void complete_copy_from_journal(unsigned long error, void *context)
2432 {
2433 	struct journal_io *io = context;
2434 	struct journal_completion *comp = io->comp;
2435 	struct dm_integrity_c *ic = comp->ic;
2436 
2437 	remove_range(ic, &io->range);
2438 	mempool_free(io, &ic->journal_io_mempool);
2439 	if (unlikely(error != 0))
2440 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2441 	complete_journal_op(comp);
2442 }
2443 
2444 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2445 			       struct journal_entry *je)
2446 {
2447 	unsigned int s = 0;
2448 
2449 	do {
2450 		js->commit_id = je->last_bytes[s];
2451 		js++;
2452 	} while (++s < ic->sectors_per_block);
2453 }
2454 
2455 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2456 			     unsigned int write_sections, bool from_replay)
2457 {
2458 	unsigned int i, j, n;
2459 	struct journal_completion comp;
2460 	struct blk_plug plug;
2461 
2462 	blk_start_plug(&plug);
2463 
2464 	comp.ic = ic;
2465 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2466 	init_completion(&comp.comp);
2467 
2468 	i = write_start;
2469 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2470 #ifndef INTERNAL_VERIFY
2471 		if (unlikely(from_replay))
2472 #endif
2473 			rw_section_mac(ic, i, false);
2474 		for (j = 0; j < ic->journal_section_entries; j++) {
2475 			struct journal_entry *je = access_journal_entry(ic, i, j);
2476 			sector_t sec, area, offset;
2477 			unsigned int k, l, next_loop;
2478 			sector_t metadata_block;
2479 			unsigned int metadata_offset;
2480 			struct journal_io *io;
2481 
2482 			if (journal_entry_is_unused(je))
2483 				continue;
2484 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2485 			sec = journal_entry_get_sector(je);
2486 			if (unlikely(from_replay)) {
2487 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2488 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2489 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2490 				}
2491 				if (unlikely(sec >= ic->provided_data_sectors)) {
2492 					journal_entry_set_unused(je);
2493 					continue;
2494 				}
2495 			}
2496 			get_area_and_offset(ic, sec, &area, &offset);
2497 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2498 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2499 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2500 				sector_t sec2, area2, offset2;
2501 
2502 				if (journal_entry_is_unused(je2))
2503 					break;
2504 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2505 				sec2 = journal_entry_get_sector(je2);
2506 				if (unlikely(sec2 >= ic->provided_data_sectors))
2507 					break;
2508 				get_area_and_offset(ic, sec2, &area2, &offset2);
2509 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2510 					break;
2511 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2512 			}
2513 			next_loop = k - 1;
2514 
2515 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2516 			io->comp = &comp;
2517 			io->range.logical_sector = sec;
2518 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2519 
2520 			spin_lock_irq(&ic->endio_wait.lock);
2521 			add_new_range_and_wait(ic, &io->range);
2522 
2523 			if (likely(!from_replay)) {
2524 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2525 
2526 				/* don't write if there is newer committed sector */
2527 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2528 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2529 
2530 					journal_entry_set_unused(je2);
2531 					remove_journal_node(ic, &section_node[j]);
2532 					j++;
2533 					sec += ic->sectors_per_block;
2534 					offset += ic->sectors_per_block;
2535 				}
2536 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2537 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2538 
2539 					journal_entry_set_unused(je2);
2540 					remove_journal_node(ic, &section_node[k - 1]);
2541 					k--;
2542 				}
2543 				if (j == k) {
2544 					remove_range_unlocked(ic, &io->range);
2545 					spin_unlock_irq(&ic->endio_wait.lock);
2546 					mempool_free(io, &ic->journal_io_mempool);
2547 					goto skip_io;
2548 				}
2549 				for (l = j; l < k; l++)
2550 					remove_journal_node(ic, &section_node[l]);
2551 			}
2552 			spin_unlock_irq(&ic->endio_wait.lock);
2553 
2554 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2555 			for (l = j; l < k; l++) {
2556 				int r;
2557 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2558 
2559 				if (
2560 #ifndef INTERNAL_VERIFY
2561 				    unlikely(from_replay) &&
2562 #endif
2563 				    ic->internal_hash) {
2564 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2565 
2566 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2567 								  (char *)access_journal_data(ic, i, l), test_tag);
2568 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2569 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2570 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2571 					}
2572 				}
2573 
2574 				journal_entry_set_unused(je2);
2575 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2576 							ic->tag_size, TAG_WRITE);
2577 				if (unlikely(r))
2578 					dm_integrity_io_error(ic, "reading tags", r);
2579 			}
2580 
2581 			atomic_inc(&comp.in_flight);
2582 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2583 					  (k - j) << ic->sb->log2_sectors_per_block,
2584 					  get_data_sector(ic, area, offset),
2585 					  complete_copy_from_journal, io);
2586 skip_io:
2587 			j = next_loop;
2588 		}
2589 	}
2590 
2591 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2592 
2593 	blk_finish_plug(&plug);
2594 
2595 	complete_journal_op(&comp);
2596 	wait_for_completion_io(&comp.comp);
2597 
2598 	dm_integrity_flush_buffers(ic, true);
2599 }
2600 
2601 static void integrity_writer(struct work_struct *w)
2602 {
2603 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2604 	unsigned int write_start, write_sections;
2605 	unsigned int prev_free_sectors;
2606 
2607 	spin_lock_irq(&ic->endio_wait.lock);
2608 	write_start = ic->committed_section;
2609 	write_sections = ic->n_committed_sections;
2610 	spin_unlock_irq(&ic->endio_wait.lock);
2611 
2612 	if (!write_sections)
2613 		return;
2614 
2615 	do_journal_write(ic, write_start, write_sections, false);
2616 
2617 	spin_lock_irq(&ic->endio_wait.lock);
2618 
2619 	ic->committed_section += write_sections;
2620 	wraparound_section(ic, &ic->committed_section);
2621 	ic->n_committed_sections -= write_sections;
2622 
2623 	prev_free_sectors = ic->free_sectors;
2624 	ic->free_sectors += write_sections * ic->journal_section_entries;
2625 	if (unlikely(!prev_free_sectors))
2626 		wake_up_locked(&ic->endio_wait);
2627 
2628 	spin_unlock_irq(&ic->endio_wait.lock);
2629 }
2630 
2631 static void recalc_write_super(struct dm_integrity_c *ic)
2632 {
2633 	int r;
2634 
2635 	dm_integrity_flush_buffers(ic, false);
2636 	if (dm_integrity_failed(ic))
2637 		return;
2638 
2639 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2640 	if (unlikely(r))
2641 		dm_integrity_io_error(ic, "writing superblock", r);
2642 }
2643 
2644 static void integrity_recalc(struct work_struct *w)
2645 {
2646 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2647 	size_t recalc_tags_size;
2648 	u8 *recalc_buffer = NULL;
2649 	u8 *recalc_tags = NULL;
2650 	struct dm_integrity_range range;
2651 	struct dm_io_request io_req;
2652 	struct dm_io_region io_loc;
2653 	sector_t area, offset;
2654 	sector_t metadata_block;
2655 	unsigned int metadata_offset;
2656 	sector_t logical_sector, n_sectors;
2657 	__u8 *t;
2658 	unsigned int i;
2659 	int r;
2660 	unsigned int super_counter = 0;
2661 	unsigned recalc_sectors = RECALC_SECTORS;
2662 
2663 retry:
2664 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2665 	if (!recalc_buffer) {
2666 oom:
2667 		recalc_sectors >>= 1;
2668 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2669 			goto retry;
2670 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2671 		goto free_ret;
2672 	}
2673 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2674 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2675 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2676 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2677 	if (!recalc_tags) {
2678 		vfree(recalc_buffer);
2679 		recalc_buffer = NULL;
2680 		goto oom;
2681 	}
2682 
2683 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2684 
2685 	spin_lock_irq(&ic->endio_wait.lock);
2686 
2687 next_chunk:
2688 
2689 	if (unlikely(dm_post_suspending(ic->ti)))
2690 		goto unlock_ret;
2691 
2692 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2693 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2694 		if (ic->mode == 'B') {
2695 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2696 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2697 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2698 		}
2699 		goto unlock_ret;
2700 	}
2701 
2702 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2703 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2704 	if (!ic->meta_dev)
2705 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2706 
2707 	add_new_range_and_wait(ic, &range);
2708 	spin_unlock_irq(&ic->endio_wait.lock);
2709 	logical_sector = range.logical_sector;
2710 	n_sectors = range.n_sectors;
2711 
2712 	if (ic->mode == 'B') {
2713 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2714 			goto advance_and_next;
2715 
2716 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2717 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2718 			logical_sector += ic->sectors_per_block;
2719 			n_sectors -= ic->sectors_per_block;
2720 			cond_resched();
2721 		}
2722 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2723 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2724 			n_sectors -= ic->sectors_per_block;
2725 			cond_resched();
2726 		}
2727 		get_area_and_offset(ic, logical_sector, &area, &offset);
2728 	}
2729 
2730 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2731 
2732 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2733 		recalc_write_super(ic);
2734 		if (ic->mode == 'B')
2735 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2736 
2737 		super_counter = 0;
2738 	}
2739 
2740 	if (unlikely(dm_integrity_failed(ic)))
2741 		goto err;
2742 
2743 	io_req.bi_opf = REQ_OP_READ;
2744 	io_req.mem.type = DM_IO_VMA;
2745 	io_req.mem.ptr.addr = recalc_buffer;
2746 	io_req.notify.fn = NULL;
2747 	io_req.client = ic->io;
2748 	io_loc.bdev = ic->dev->bdev;
2749 	io_loc.sector = get_data_sector(ic, area, offset);
2750 	io_loc.count = n_sectors;
2751 
2752 	r = dm_io(&io_req, 1, &io_loc, NULL);
2753 	if (unlikely(r)) {
2754 		dm_integrity_io_error(ic, "reading data", r);
2755 		goto err;
2756 	}
2757 
2758 	t = recalc_tags;
2759 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2760 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2761 		t += ic->tag_size;
2762 	}
2763 
2764 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2765 
2766 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2767 	if (unlikely(r)) {
2768 		dm_integrity_io_error(ic, "writing tags", r);
2769 		goto err;
2770 	}
2771 
2772 	if (ic->mode == 'B') {
2773 		sector_t start, end;
2774 
2775 		start = (range.logical_sector >>
2776 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2777 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2778 		end = ((range.logical_sector + range.n_sectors) >>
2779 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2780 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2781 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2782 	}
2783 
2784 advance_and_next:
2785 	cond_resched();
2786 
2787 	spin_lock_irq(&ic->endio_wait.lock);
2788 	remove_range_unlocked(ic, &range);
2789 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2790 	goto next_chunk;
2791 
2792 err:
2793 	remove_range(ic, &range);
2794 	goto free_ret;
2795 
2796 unlock_ret:
2797 	spin_unlock_irq(&ic->endio_wait.lock);
2798 
2799 	recalc_write_super(ic);
2800 
2801 free_ret:
2802 	vfree(recalc_buffer);
2803 	kvfree(recalc_tags);
2804 }
2805 
2806 static void bitmap_block_work(struct work_struct *w)
2807 {
2808 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2809 	struct dm_integrity_c *ic = bbs->ic;
2810 	struct bio *bio;
2811 	struct bio_list bio_queue;
2812 	struct bio_list waiting;
2813 
2814 	bio_list_init(&waiting);
2815 
2816 	spin_lock(&bbs->bio_queue_lock);
2817 	bio_queue = bbs->bio_queue;
2818 	bio_list_init(&bbs->bio_queue);
2819 	spin_unlock(&bbs->bio_queue_lock);
2820 
2821 	while ((bio = bio_list_pop(&bio_queue))) {
2822 		struct dm_integrity_io *dio;
2823 
2824 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2825 
2826 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2827 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2828 			remove_range(ic, &dio->range);
2829 			INIT_WORK(&dio->work, integrity_bio_wait);
2830 			queue_work(ic->offload_wq, &dio->work);
2831 		} else {
2832 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2833 					dio->range.n_sectors, BITMAP_OP_SET);
2834 			bio_list_add(&waiting, bio);
2835 		}
2836 	}
2837 
2838 	if (bio_list_empty(&waiting))
2839 		return;
2840 
2841 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2842 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2843 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2844 
2845 	while ((bio = bio_list_pop(&waiting))) {
2846 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2847 
2848 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2849 				dio->range.n_sectors, BITMAP_OP_SET);
2850 
2851 		remove_range(ic, &dio->range);
2852 		INIT_WORK(&dio->work, integrity_bio_wait);
2853 		queue_work(ic->offload_wq, &dio->work);
2854 	}
2855 
2856 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2857 }
2858 
2859 static void bitmap_flush_work(struct work_struct *work)
2860 {
2861 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2862 	struct dm_integrity_range range;
2863 	unsigned long limit;
2864 	struct bio *bio;
2865 
2866 	dm_integrity_flush_buffers(ic, false);
2867 
2868 	range.logical_sector = 0;
2869 	range.n_sectors = ic->provided_data_sectors;
2870 
2871 	spin_lock_irq(&ic->endio_wait.lock);
2872 	add_new_range_and_wait(ic, &range);
2873 	spin_unlock_irq(&ic->endio_wait.lock);
2874 
2875 	dm_integrity_flush_buffers(ic, true);
2876 
2877 	limit = ic->provided_data_sectors;
2878 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2879 		limit = le64_to_cpu(ic->sb->recalc_sector)
2880 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2881 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2882 	}
2883 	/*DEBUG_print("zeroing journal\n");*/
2884 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2885 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2886 
2887 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2888 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2889 
2890 	spin_lock_irq(&ic->endio_wait.lock);
2891 	remove_range_unlocked(ic, &range);
2892 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2893 		bio_endio(bio);
2894 		spin_unlock_irq(&ic->endio_wait.lock);
2895 		spin_lock_irq(&ic->endio_wait.lock);
2896 	}
2897 	spin_unlock_irq(&ic->endio_wait.lock);
2898 }
2899 
2900 
2901 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2902 			 unsigned int n_sections, unsigned char commit_seq)
2903 {
2904 	unsigned int i, j, n;
2905 
2906 	if (!n_sections)
2907 		return;
2908 
2909 	for (n = 0; n < n_sections; n++) {
2910 		i = start_section + n;
2911 		wraparound_section(ic, &i);
2912 		for (j = 0; j < ic->journal_section_sectors; j++) {
2913 			struct journal_sector *js = access_journal(ic, i, j);
2914 
2915 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2916 			memset(&js->sectors, 0, sizeof(js->sectors));
2917 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2918 		}
2919 		for (j = 0; j < ic->journal_section_entries; j++) {
2920 			struct journal_entry *je = access_journal_entry(ic, i, j);
2921 
2922 			journal_entry_set_unused(je);
2923 		}
2924 	}
2925 
2926 	write_journal(ic, start_section, n_sections);
2927 }
2928 
2929 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2930 {
2931 	unsigned char k;
2932 
2933 	for (k = 0; k < N_COMMIT_IDS; k++) {
2934 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2935 			return k;
2936 	}
2937 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2938 	return -EIO;
2939 }
2940 
2941 static void replay_journal(struct dm_integrity_c *ic)
2942 {
2943 	unsigned int i, j;
2944 	bool used_commit_ids[N_COMMIT_IDS];
2945 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
2946 	unsigned int write_start, write_sections;
2947 	unsigned int continue_section;
2948 	bool journal_empty;
2949 	unsigned char unused, last_used, want_commit_seq;
2950 
2951 	if (ic->mode == 'R')
2952 		return;
2953 
2954 	if (ic->journal_uptodate)
2955 		return;
2956 
2957 	last_used = 0;
2958 	write_start = 0;
2959 
2960 	if (!ic->just_formatted) {
2961 		DEBUG_print("reading journal\n");
2962 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2963 		if (ic->journal_io)
2964 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2965 		if (ic->journal_io) {
2966 			struct journal_completion crypt_comp;
2967 
2968 			crypt_comp.ic = ic;
2969 			init_completion(&crypt_comp.comp);
2970 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2971 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2972 			wait_for_completion(&crypt_comp.comp);
2973 		}
2974 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2975 	}
2976 
2977 	if (dm_integrity_failed(ic))
2978 		goto clear_journal;
2979 
2980 	journal_empty = true;
2981 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
2982 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2983 	for (i = 0; i < ic->journal_sections; i++) {
2984 		for (j = 0; j < ic->journal_section_sectors; j++) {
2985 			int k;
2986 			struct journal_sector *js = access_journal(ic, i, j);
2987 
2988 			k = find_commit_seq(ic, i, j, js->commit_id);
2989 			if (k < 0)
2990 				goto clear_journal;
2991 			used_commit_ids[k] = true;
2992 			max_commit_id_sections[k] = i;
2993 		}
2994 		if (journal_empty) {
2995 			for (j = 0; j < ic->journal_section_entries; j++) {
2996 				struct journal_entry *je = access_journal_entry(ic, i, j);
2997 
2998 				if (!journal_entry_is_unused(je)) {
2999 					journal_empty = false;
3000 					break;
3001 				}
3002 			}
3003 		}
3004 	}
3005 
3006 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3007 		unused = N_COMMIT_IDS - 1;
3008 		while (unused && !used_commit_ids[unused - 1])
3009 			unused--;
3010 	} else {
3011 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3012 			if (!used_commit_ids[unused])
3013 				break;
3014 		if (unused == N_COMMIT_IDS) {
3015 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3016 			goto clear_journal;
3017 		}
3018 	}
3019 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3020 		    unused, used_commit_ids[0], used_commit_ids[1],
3021 		    used_commit_ids[2], used_commit_ids[3]);
3022 
3023 	last_used = prev_commit_seq(unused);
3024 	want_commit_seq = prev_commit_seq(last_used);
3025 
3026 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3027 		journal_empty = true;
3028 
3029 	write_start = max_commit_id_sections[last_used] + 1;
3030 	if (unlikely(write_start >= ic->journal_sections))
3031 		want_commit_seq = next_commit_seq(want_commit_seq);
3032 	wraparound_section(ic, &write_start);
3033 
3034 	i = write_start;
3035 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3036 		for (j = 0; j < ic->journal_section_sectors; j++) {
3037 			struct journal_sector *js = access_journal(ic, i, j);
3038 
3039 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3040 				/*
3041 				 * This could be caused by crash during writing.
3042 				 * We won't replay the inconsistent part of the
3043 				 * journal.
3044 				 */
3045 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3046 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3047 				goto brk;
3048 			}
3049 		}
3050 		i++;
3051 		if (unlikely(i >= ic->journal_sections))
3052 			want_commit_seq = next_commit_seq(want_commit_seq);
3053 		wraparound_section(ic, &i);
3054 	}
3055 brk:
3056 
3057 	if (!journal_empty) {
3058 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3059 			    write_sections, write_start, want_commit_seq);
3060 		do_journal_write(ic, write_start, write_sections, true);
3061 	}
3062 
3063 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3064 		continue_section = write_start;
3065 		ic->commit_seq = want_commit_seq;
3066 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3067 	} else {
3068 		unsigned int s;
3069 		unsigned char erase_seq;
3070 
3071 clear_journal:
3072 		DEBUG_print("clearing journal\n");
3073 
3074 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3075 		s = write_start;
3076 		init_journal(ic, s, 1, erase_seq);
3077 		s++;
3078 		wraparound_section(ic, &s);
3079 		if (ic->journal_sections >= 2) {
3080 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3081 			s += ic->journal_sections - 2;
3082 			wraparound_section(ic, &s);
3083 			init_journal(ic, s, 1, erase_seq);
3084 		}
3085 
3086 		continue_section = 0;
3087 		ic->commit_seq = next_commit_seq(erase_seq);
3088 	}
3089 
3090 	ic->committed_section = continue_section;
3091 	ic->n_committed_sections = 0;
3092 
3093 	ic->uncommitted_section = continue_section;
3094 	ic->n_uncommitted_sections = 0;
3095 
3096 	ic->free_section = continue_section;
3097 	ic->free_section_entry = 0;
3098 	ic->free_sectors = ic->journal_entries;
3099 
3100 	ic->journal_tree_root = RB_ROOT;
3101 	for (i = 0; i < ic->journal_entries; i++)
3102 		init_journal_node(&ic->journal_tree[i]);
3103 }
3104 
3105 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3106 {
3107 	DEBUG_print("%s\n", __func__);
3108 
3109 	if (ic->mode == 'B') {
3110 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3111 		ic->synchronous_mode = 1;
3112 
3113 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3114 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3115 		flush_workqueue(ic->commit_wq);
3116 	}
3117 }
3118 
3119 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3120 {
3121 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3122 
3123 	DEBUG_print("%s\n", __func__);
3124 
3125 	dm_integrity_enter_synchronous_mode(ic);
3126 
3127 	return NOTIFY_DONE;
3128 }
3129 
3130 static void dm_integrity_postsuspend(struct dm_target *ti)
3131 {
3132 	struct dm_integrity_c *ic = ti->private;
3133 	int r;
3134 
3135 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3136 
3137 	del_timer_sync(&ic->autocommit_timer);
3138 
3139 	if (ic->recalc_wq)
3140 		drain_workqueue(ic->recalc_wq);
3141 
3142 	if (ic->mode == 'B')
3143 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3144 
3145 	queue_work(ic->commit_wq, &ic->commit_work);
3146 	drain_workqueue(ic->commit_wq);
3147 
3148 	if (ic->mode == 'J') {
3149 		queue_work(ic->writer_wq, &ic->writer_work);
3150 		drain_workqueue(ic->writer_wq);
3151 		dm_integrity_flush_buffers(ic, true);
3152 		if (ic->wrote_to_journal) {
3153 			init_journal(ic, ic->free_section,
3154 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3155 			if (ic->free_section) {
3156 				init_journal(ic, 0, ic->free_section,
3157 					     next_commit_seq(ic->commit_seq));
3158 			}
3159 		}
3160 	}
3161 
3162 	if (ic->mode == 'B') {
3163 		dm_integrity_flush_buffers(ic, true);
3164 #if 1
3165 		/* set to 0 to test bitmap replay code */
3166 		init_journal(ic, 0, ic->journal_sections, 0);
3167 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3168 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3169 		if (unlikely(r))
3170 			dm_integrity_io_error(ic, "writing superblock", r);
3171 #endif
3172 	}
3173 
3174 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3175 
3176 	ic->journal_uptodate = true;
3177 }
3178 
3179 static void dm_integrity_resume(struct dm_target *ti)
3180 {
3181 	struct dm_integrity_c *ic = ti->private;
3182 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3183 	int r;
3184 
3185 	DEBUG_print("resume\n");
3186 
3187 	ic->wrote_to_journal = false;
3188 
3189 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3190 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3191 		    ic->mode == 'B' &&
3192 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3193 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3194 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3195 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3196 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3197 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3198 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3199 		}
3200 
3201 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3202 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3203 		if (unlikely(r))
3204 			dm_integrity_io_error(ic, "writing superblock", r);
3205 	}
3206 
3207 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3208 		DEBUG_print("resume dirty_bitmap\n");
3209 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3210 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3211 		if (ic->mode == 'B') {
3212 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3213 			    !ic->reset_recalculate_flag) {
3214 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3215 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3216 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3217 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3218 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3219 					ic->sb->recalc_sector = cpu_to_le64(0);
3220 				}
3221 			} else {
3222 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3223 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3224 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3225 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3226 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3227 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3228 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3229 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3230 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3231 				ic->sb->recalc_sector = cpu_to_le64(0);
3232 			}
3233 		} else {
3234 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3235 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3236 			    ic->reset_recalculate_flag) {
3237 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3238 				ic->sb->recalc_sector = cpu_to_le64(0);
3239 			}
3240 			init_journal(ic, 0, ic->journal_sections, 0);
3241 			replay_journal(ic);
3242 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3243 		}
3244 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3245 		if (unlikely(r))
3246 			dm_integrity_io_error(ic, "writing superblock", r);
3247 	} else {
3248 		replay_journal(ic);
3249 		if (ic->reset_recalculate_flag) {
3250 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3251 			ic->sb->recalc_sector = cpu_to_le64(0);
3252 		}
3253 		if (ic->mode == 'B') {
3254 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3255 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3256 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3257 			if (unlikely(r))
3258 				dm_integrity_io_error(ic, "writing superblock", r);
3259 
3260 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3261 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3262 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3263 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3264 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3265 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3266 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3267 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3268 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3269 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3270 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3271 			}
3272 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3273 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3274 		}
3275 	}
3276 
3277 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3278 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3279 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3280 
3281 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3282 		if (recalc_pos < ic->provided_data_sectors) {
3283 			queue_work(ic->recalc_wq, &ic->recalc_work);
3284 		} else if (recalc_pos > ic->provided_data_sectors) {
3285 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3286 			recalc_write_super(ic);
3287 		}
3288 	}
3289 
3290 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3291 	ic->reboot_notifier.next = NULL;
3292 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3293 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3294 
3295 #if 0
3296 	/* set to 1 to stress test synchronous mode */
3297 	dm_integrity_enter_synchronous_mode(ic);
3298 #endif
3299 }
3300 
3301 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3302 				unsigned int status_flags, char *result, unsigned int maxlen)
3303 {
3304 	struct dm_integrity_c *ic = ti->private;
3305 	unsigned int arg_count;
3306 	size_t sz = 0;
3307 
3308 	switch (type) {
3309 	case STATUSTYPE_INFO:
3310 		DMEMIT("%llu %llu",
3311 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3312 			ic->provided_data_sectors);
3313 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3314 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3315 		else
3316 			DMEMIT(" -");
3317 		break;
3318 
3319 	case STATUSTYPE_TABLE: {
3320 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3321 
3322 		watermark_percentage += ic->journal_entries / 2;
3323 		do_div(watermark_percentage, ic->journal_entries);
3324 		arg_count = 3;
3325 		arg_count += !!ic->meta_dev;
3326 		arg_count += ic->sectors_per_block != 1;
3327 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3328 		arg_count += ic->reset_recalculate_flag;
3329 		arg_count += ic->discard;
3330 		arg_count += ic->mode == 'J';
3331 		arg_count += ic->mode == 'J';
3332 		arg_count += ic->mode == 'B';
3333 		arg_count += ic->mode == 'B';
3334 		arg_count += !!ic->internal_hash_alg.alg_string;
3335 		arg_count += !!ic->journal_crypt_alg.alg_string;
3336 		arg_count += !!ic->journal_mac_alg.alg_string;
3337 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3338 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3339 		arg_count += ic->legacy_recalculate;
3340 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3341 		       ic->tag_size, ic->mode, arg_count);
3342 		if (ic->meta_dev)
3343 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3344 		if (ic->sectors_per_block != 1)
3345 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3346 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3347 			DMEMIT(" recalculate");
3348 		if (ic->reset_recalculate_flag)
3349 			DMEMIT(" reset_recalculate");
3350 		if (ic->discard)
3351 			DMEMIT(" allow_discards");
3352 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3353 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3354 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3355 		if (ic->mode == 'J') {
3356 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3357 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3358 		}
3359 		if (ic->mode == 'B') {
3360 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3361 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3362 		}
3363 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3364 			DMEMIT(" fix_padding");
3365 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3366 			DMEMIT(" fix_hmac");
3367 		if (ic->legacy_recalculate)
3368 			DMEMIT(" legacy_recalculate");
3369 
3370 #define EMIT_ALG(a, n)							\
3371 		do {							\
3372 			if (ic->a.alg_string) {				\
3373 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3374 				if (ic->a.key_string)			\
3375 					DMEMIT(":%s", ic->a.key_string);\
3376 			}						\
3377 		} while (0)
3378 		EMIT_ALG(internal_hash_alg, "internal_hash");
3379 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3380 		EMIT_ALG(journal_mac_alg, "journal_mac");
3381 		break;
3382 	}
3383 	case STATUSTYPE_IMA:
3384 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3385 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3386 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3387 
3388 		if (ic->meta_dev)
3389 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3390 		if (ic->sectors_per_block != 1)
3391 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3392 
3393 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3394 		       'y' : 'n');
3395 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3396 		DMEMIT(",fix_padding=%c",
3397 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3398 		DMEMIT(",fix_hmac=%c",
3399 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3400 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3401 
3402 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3403 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3404 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3405 		DMEMIT(";");
3406 		break;
3407 	}
3408 }
3409 
3410 static int dm_integrity_iterate_devices(struct dm_target *ti,
3411 					iterate_devices_callout_fn fn, void *data)
3412 {
3413 	struct dm_integrity_c *ic = ti->private;
3414 
3415 	if (!ic->meta_dev)
3416 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3417 	else
3418 		return fn(ti, ic->dev, 0, ti->len, data);
3419 }
3420 
3421 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3422 {
3423 	struct dm_integrity_c *ic = ti->private;
3424 
3425 	if (ic->sectors_per_block > 1) {
3426 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3427 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3428 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3429 		limits->dma_alignment = limits->logical_block_size - 1;
3430 	}
3431 }
3432 
3433 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3434 {
3435 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3436 
3437 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3438 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3439 					 JOURNAL_ENTRY_ROUNDUP);
3440 
3441 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3442 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3443 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3444 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3445 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3446 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3447 }
3448 
3449 static int calculate_device_limits(struct dm_integrity_c *ic)
3450 {
3451 	__u64 initial_sectors;
3452 
3453 	calculate_journal_section_size(ic);
3454 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3455 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3456 		return -EINVAL;
3457 	ic->initial_sectors = initial_sectors;
3458 
3459 	if (!ic->meta_dev) {
3460 		sector_t last_sector, last_area, last_offset;
3461 
3462 		/* we have to maintain excessive padding for compatibility with existing volumes */
3463 		__u64 metadata_run_padding =
3464 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3465 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3466 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3467 
3468 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3469 					    metadata_run_padding) >> SECTOR_SHIFT;
3470 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3471 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3472 		else
3473 			ic->log2_metadata_run = -1;
3474 
3475 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3476 		last_sector = get_data_sector(ic, last_area, last_offset);
3477 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3478 			return -EINVAL;
3479 	} else {
3480 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3481 
3482 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3483 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3484 		meta_size <<= ic->log2_buffer_sectors;
3485 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3486 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3487 			return -EINVAL;
3488 		ic->metadata_run = 1;
3489 		ic->log2_metadata_run = 0;
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3496 {
3497 	if (!ic->meta_dev) {
3498 		int test_bit;
3499 
3500 		ic->provided_data_sectors = 0;
3501 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3502 			__u64 prev_data_sectors = ic->provided_data_sectors;
3503 
3504 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3505 			if (calculate_device_limits(ic))
3506 				ic->provided_data_sectors = prev_data_sectors;
3507 		}
3508 	} else {
3509 		ic->provided_data_sectors = ic->data_device_sectors;
3510 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3511 	}
3512 }
3513 
3514 static int initialize_superblock(struct dm_integrity_c *ic,
3515 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3516 {
3517 	unsigned int journal_sections;
3518 	int test_bit;
3519 
3520 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3521 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3522 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3523 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3524 	if (ic->journal_mac_alg.alg_string)
3525 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3526 
3527 	calculate_journal_section_size(ic);
3528 	journal_sections = journal_sectors / ic->journal_section_sectors;
3529 	if (!journal_sections)
3530 		journal_sections = 1;
3531 
3532 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3533 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3534 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3535 	}
3536 
3537 	if (!ic->meta_dev) {
3538 		if (ic->fix_padding)
3539 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3540 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3541 		if (!interleave_sectors)
3542 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3543 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3544 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3545 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3546 
3547 		get_provided_data_sectors(ic);
3548 		if (!ic->provided_data_sectors)
3549 			return -EINVAL;
3550 	} else {
3551 		ic->sb->log2_interleave_sectors = 0;
3552 
3553 		get_provided_data_sectors(ic);
3554 		if (!ic->provided_data_sectors)
3555 			return -EINVAL;
3556 
3557 try_smaller_buffer:
3558 		ic->sb->journal_sections = cpu_to_le32(0);
3559 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3560 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3561 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3562 
3563 			if (test_journal_sections > journal_sections)
3564 				continue;
3565 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3566 			if (calculate_device_limits(ic))
3567 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3568 
3569 		}
3570 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3571 			if (ic->log2_buffer_sectors > 3) {
3572 				ic->log2_buffer_sectors--;
3573 				goto try_smaller_buffer;
3574 			}
3575 			return -EINVAL;
3576 		}
3577 	}
3578 
3579 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3580 
3581 	sb_set_version(ic);
3582 
3583 	return 0;
3584 }
3585 
3586 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3587 {
3588 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3589 	struct blk_integrity bi;
3590 
3591 	memset(&bi, 0, sizeof(bi));
3592 	bi.profile = &dm_integrity_profile;
3593 	bi.tuple_size = ic->tag_size;
3594 	bi.tag_size = bi.tuple_size;
3595 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3596 
3597 	blk_integrity_register(disk, &bi);
3598 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3599 }
3600 
3601 static void dm_integrity_free_page_list(struct page_list *pl)
3602 {
3603 	unsigned int i;
3604 
3605 	if (!pl)
3606 		return;
3607 	for (i = 0; pl[i].page; i++)
3608 		__free_page(pl[i].page);
3609 	kvfree(pl);
3610 }
3611 
3612 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3613 {
3614 	struct page_list *pl;
3615 	unsigned int i;
3616 
3617 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3618 	if (!pl)
3619 		return NULL;
3620 
3621 	for (i = 0; i < n_pages; i++) {
3622 		pl[i].page = alloc_page(GFP_KERNEL);
3623 		if (!pl[i].page) {
3624 			dm_integrity_free_page_list(pl);
3625 			return NULL;
3626 		}
3627 		if (i)
3628 			pl[i - 1].next = &pl[i];
3629 	}
3630 	pl[i].page = NULL;
3631 	pl[i].next = NULL;
3632 
3633 	return pl;
3634 }
3635 
3636 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3637 {
3638 	unsigned int i;
3639 
3640 	for (i = 0; i < ic->journal_sections; i++)
3641 		kvfree(sl[i]);
3642 	kvfree(sl);
3643 }
3644 
3645 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3646 								   struct page_list *pl)
3647 {
3648 	struct scatterlist **sl;
3649 	unsigned int i;
3650 
3651 	sl = kvmalloc_array(ic->journal_sections,
3652 			    sizeof(struct scatterlist *),
3653 			    GFP_KERNEL | __GFP_ZERO);
3654 	if (!sl)
3655 		return NULL;
3656 
3657 	for (i = 0; i < ic->journal_sections; i++) {
3658 		struct scatterlist *s;
3659 		unsigned int start_index, start_offset;
3660 		unsigned int end_index, end_offset;
3661 		unsigned int n_pages;
3662 		unsigned int idx;
3663 
3664 		page_list_location(ic, i, 0, &start_index, &start_offset);
3665 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3666 				   &end_index, &end_offset);
3667 
3668 		n_pages = (end_index - start_index + 1);
3669 
3670 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3671 				   GFP_KERNEL);
3672 		if (!s) {
3673 			dm_integrity_free_journal_scatterlist(ic, sl);
3674 			return NULL;
3675 		}
3676 
3677 		sg_init_table(s, n_pages);
3678 		for (idx = start_index; idx <= end_index; idx++) {
3679 			char *va = lowmem_page_address(pl[idx].page);
3680 			unsigned int start = 0, end = PAGE_SIZE;
3681 
3682 			if (idx == start_index)
3683 				start = start_offset;
3684 			if (idx == end_index)
3685 				end = end_offset + (1 << SECTOR_SHIFT);
3686 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3687 		}
3688 
3689 		sl[i] = s;
3690 	}
3691 
3692 	return sl;
3693 }
3694 
3695 static void free_alg(struct alg_spec *a)
3696 {
3697 	kfree_sensitive(a->alg_string);
3698 	kfree_sensitive(a->key);
3699 	memset(a, 0, sizeof(*a));
3700 }
3701 
3702 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3703 {
3704 	char *k;
3705 
3706 	free_alg(a);
3707 
3708 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3709 	if (!a->alg_string)
3710 		goto nomem;
3711 
3712 	k = strchr(a->alg_string, ':');
3713 	if (k) {
3714 		*k = 0;
3715 		a->key_string = k + 1;
3716 		if (strlen(a->key_string) & 1)
3717 			goto inval;
3718 
3719 		a->key_size = strlen(a->key_string) / 2;
3720 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3721 		if (!a->key)
3722 			goto nomem;
3723 		if (hex2bin(a->key, a->key_string, a->key_size))
3724 			goto inval;
3725 	}
3726 
3727 	return 0;
3728 inval:
3729 	*error = error_inval;
3730 	return -EINVAL;
3731 nomem:
3732 	*error = "Out of memory for an argument";
3733 	return -ENOMEM;
3734 }
3735 
3736 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3737 		   char *error_alg, char *error_key)
3738 {
3739 	int r;
3740 
3741 	if (a->alg_string) {
3742 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3743 		if (IS_ERR(*hash)) {
3744 			*error = error_alg;
3745 			r = PTR_ERR(*hash);
3746 			*hash = NULL;
3747 			return r;
3748 		}
3749 
3750 		if (a->key) {
3751 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3752 			if (r) {
3753 				*error = error_key;
3754 				return r;
3755 			}
3756 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3757 			*error = error_key;
3758 			return -ENOKEY;
3759 		}
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 static int create_journal(struct dm_integrity_c *ic, char **error)
3766 {
3767 	int r = 0;
3768 	unsigned int i;
3769 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3770 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3771 	struct skcipher_request *req = NULL;
3772 
3773 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3774 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3775 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3776 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3777 
3778 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3779 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3780 	journal_desc_size = journal_pages * sizeof(struct page_list);
3781 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3782 		*error = "Journal doesn't fit into memory";
3783 		r = -ENOMEM;
3784 		goto bad;
3785 	}
3786 	ic->journal_pages = journal_pages;
3787 
3788 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3789 	if (!ic->journal) {
3790 		*error = "Could not allocate memory for journal";
3791 		r = -ENOMEM;
3792 		goto bad;
3793 	}
3794 	if (ic->journal_crypt_alg.alg_string) {
3795 		unsigned int ivsize, blocksize;
3796 		struct journal_completion comp;
3797 
3798 		comp.ic = ic;
3799 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800 		if (IS_ERR(ic->journal_crypt)) {
3801 			*error = "Invalid journal cipher";
3802 			r = PTR_ERR(ic->journal_crypt);
3803 			ic->journal_crypt = NULL;
3804 			goto bad;
3805 		}
3806 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3807 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3808 
3809 		if (ic->journal_crypt_alg.key) {
3810 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3811 						   ic->journal_crypt_alg.key_size);
3812 			if (r) {
3813 				*error = "Error setting encryption key";
3814 				goto bad;
3815 			}
3816 		}
3817 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3818 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3819 
3820 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3821 		if (!ic->journal_io) {
3822 			*error = "Could not allocate memory for journal io";
3823 			r = -ENOMEM;
3824 			goto bad;
3825 		}
3826 
3827 		if (blocksize == 1) {
3828 			struct scatterlist *sg;
3829 
3830 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3831 			if (!req) {
3832 				*error = "Could not allocate crypt request";
3833 				r = -ENOMEM;
3834 				goto bad;
3835 			}
3836 
3837 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3838 			if (!crypt_iv) {
3839 				*error = "Could not allocate iv";
3840 				r = -ENOMEM;
3841 				goto bad;
3842 			}
3843 
3844 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3845 			if (!ic->journal_xor) {
3846 				*error = "Could not allocate memory for journal xor";
3847 				r = -ENOMEM;
3848 				goto bad;
3849 			}
3850 
3851 			sg = kvmalloc_array(ic->journal_pages + 1,
3852 					    sizeof(struct scatterlist),
3853 					    GFP_KERNEL);
3854 			if (!sg) {
3855 				*error = "Unable to allocate sg list";
3856 				r = -ENOMEM;
3857 				goto bad;
3858 			}
3859 			sg_init_table(sg, ic->journal_pages + 1);
3860 			for (i = 0; i < ic->journal_pages; i++) {
3861 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3862 
3863 				clear_page(va);
3864 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3865 			}
3866 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3867 
3868 			skcipher_request_set_crypt(req, sg, sg,
3869 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3870 			init_completion(&comp.comp);
3871 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3872 			if (do_crypt(true, req, &comp))
3873 				wait_for_completion(&comp.comp);
3874 			kvfree(sg);
3875 			r = dm_integrity_failed(ic);
3876 			if (r) {
3877 				*error = "Unable to encrypt journal";
3878 				goto bad;
3879 			}
3880 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3881 
3882 			crypto_free_skcipher(ic->journal_crypt);
3883 			ic->journal_crypt = NULL;
3884 		} else {
3885 			unsigned int crypt_len = roundup(ivsize, blocksize);
3886 
3887 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888 			if (!req) {
3889 				*error = "Could not allocate crypt request";
3890 				r = -ENOMEM;
3891 				goto bad;
3892 			}
3893 
3894 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3895 			if (!crypt_iv) {
3896 				*error = "Could not allocate iv";
3897 				r = -ENOMEM;
3898 				goto bad;
3899 			}
3900 
3901 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3902 			if (!crypt_data) {
3903 				*error = "Unable to allocate crypt data";
3904 				r = -ENOMEM;
3905 				goto bad;
3906 			}
3907 
3908 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3909 			if (!ic->journal_scatterlist) {
3910 				*error = "Unable to allocate sg list";
3911 				r = -ENOMEM;
3912 				goto bad;
3913 			}
3914 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3915 			if (!ic->journal_io_scatterlist) {
3916 				*error = "Unable to allocate sg list";
3917 				r = -ENOMEM;
3918 				goto bad;
3919 			}
3920 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3921 							 sizeof(struct skcipher_request *),
3922 							 GFP_KERNEL | __GFP_ZERO);
3923 			if (!ic->sk_requests) {
3924 				*error = "Unable to allocate sk requests";
3925 				r = -ENOMEM;
3926 				goto bad;
3927 			}
3928 			for (i = 0; i < ic->journal_sections; i++) {
3929 				struct scatterlist sg;
3930 				struct skcipher_request *section_req;
3931 				__le32 section_le = cpu_to_le32(i);
3932 
3933 				memset(crypt_iv, 0x00, ivsize);
3934 				memset(crypt_data, 0x00, crypt_len);
3935 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3936 
3937 				sg_init_one(&sg, crypt_data, crypt_len);
3938 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3939 				init_completion(&comp.comp);
3940 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3941 				if (do_crypt(true, req, &comp))
3942 					wait_for_completion(&comp.comp);
3943 
3944 				r = dm_integrity_failed(ic);
3945 				if (r) {
3946 					*error = "Unable to generate iv";
3947 					goto bad;
3948 				}
3949 
3950 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3951 				if (!section_req) {
3952 					*error = "Unable to allocate crypt request";
3953 					r = -ENOMEM;
3954 					goto bad;
3955 				}
3956 				section_req->iv = kmalloc_array(ivsize, 2,
3957 								GFP_KERNEL);
3958 				if (!section_req->iv) {
3959 					skcipher_request_free(section_req);
3960 					*error = "Unable to allocate iv";
3961 					r = -ENOMEM;
3962 					goto bad;
3963 				}
3964 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3965 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3966 				ic->sk_requests[i] = section_req;
3967 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3968 			}
3969 		}
3970 	}
3971 
3972 	for (i = 0; i < N_COMMIT_IDS; i++) {
3973 		unsigned int j;
3974 
3975 retest_commit_id:
3976 		for (j = 0; j < i; j++) {
3977 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3978 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3979 				goto retest_commit_id;
3980 			}
3981 		}
3982 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3983 	}
3984 
3985 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3986 	if (journal_tree_size > ULONG_MAX) {
3987 		*error = "Journal doesn't fit into memory";
3988 		r = -ENOMEM;
3989 		goto bad;
3990 	}
3991 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3992 	if (!ic->journal_tree) {
3993 		*error = "Could not allocate memory for journal tree";
3994 		r = -ENOMEM;
3995 	}
3996 bad:
3997 	kfree(crypt_data);
3998 	kfree(crypt_iv);
3999 	skcipher_request_free(req);
4000 
4001 	return r;
4002 }
4003 
4004 /*
4005  * Construct a integrity mapping
4006  *
4007  * Arguments:
4008  *	device
4009  *	offset from the start of the device
4010  *	tag size
4011  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4012  *	number of optional arguments
4013  *	optional arguments:
4014  *		journal_sectors
4015  *		interleave_sectors
4016  *		buffer_sectors
4017  *		journal_watermark
4018  *		commit_time
4019  *		meta_device
4020  *		block_size
4021  *		sectors_per_bit
4022  *		bitmap_flush_interval
4023  *		internal_hash
4024  *		journal_crypt
4025  *		journal_mac
4026  *		recalculate
4027  */
4028 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4029 {
4030 	struct dm_integrity_c *ic;
4031 	char dummy;
4032 	int r;
4033 	unsigned int extra_args;
4034 	struct dm_arg_set as;
4035 	static const struct dm_arg _args[] = {
4036 		{0, 18, "Invalid number of feature args"},
4037 	};
4038 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4039 	bool should_write_sb;
4040 	__u64 threshold;
4041 	unsigned long long start;
4042 	__s8 log2_sectors_per_bitmap_bit = -1;
4043 	__s8 log2_blocks_per_bitmap_bit;
4044 	__u64 bits_in_journal;
4045 	__u64 n_bitmap_bits;
4046 
4047 #define DIRECT_ARGUMENTS	4
4048 
4049 	if (argc <= DIRECT_ARGUMENTS) {
4050 		ti->error = "Invalid argument count";
4051 		return -EINVAL;
4052 	}
4053 
4054 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4055 	if (!ic) {
4056 		ti->error = "Cannot allocate integrity context";
4057 		return -ENOMEM;
4058 	}
4059 	ti->private = ic;
4060 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4061 	ic->ti = ti;
4062 
4063 	ic->in_progress = RB_ROOT;
4064 	INIT_LIST_HEAD(&ic->wait_list);
4065 	init_waitqueue_head(&ic->endio_wait);
4066 	bio_list_init(&ic->flush_bio_list);
4067 	init_waitqueue_head(&ic->copy_to_journal_wait);
4068 	init_completion(&ic->crypto_backoff);
4069 	atomic64_set(&ic->number_of_mismatches, 0);
4070 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4071 
4072 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4073 	if (r) {
4074 		ti->error = "Device lookup failed";
4075 		goto bad;
4076 	}
4077 
4078 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4079 		ti->error = "Invalid starting offset";
4080 		r = -EINVAL;
4081 		goto bad;
4082 	}
4083 	ic->start = start;
4084 
4085 	if (strcmp(argv[2], "-")) {
4086 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4087 			ti->error = "Invalid tag size";
4088 			r = -EINVAL;
4089 			goto bad;
4090 		}
4091 	}
4092 
4093 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4094 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4095 		ic->mode = argv[3][0];
4096 	} else {
4097 		ti->error = "Invalid mode (expecting J, B, D, R)";
4098 		r = -EINVAL;
4099 		goto bad;
4100 	}
4101 
4102 	journal_sectors = 0;
4103 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4104 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4105 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4106 	sync_msec = DEFAULT_SYNC_MSEC;
4107 	ic->sectors_per_block = 1;
4108 
4109 	as.argc = argc - DIRECT_ARGUMENTS;
4110 	as.argv = argv + DIRECT_ARGUMENTS;
4111 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4112 	if (r)
4113 		goto bad;
4114 
4115 	while (extra_args--) {
4116 		const char *opt_string;
4117 		unsigned int val;
4118 		unsigned long long llval;
4119 
4120 		opt_string = dm_shift_arg(&as);
4121 		if (!opt_string) {
4122 			r = -EINVAL;
4123 			ti->error = "Not enough feature arguments";
4124 			goto bad;
4125 		}
4126 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4127 			journal_sectors = val ? val : 1;
4128 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4129 			interleave_sectors = val;
4130 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4131 			buffer_sectors = val;
4132 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4133 			journal_watermark = val;
4134 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4135 			sync_msec = val;
4136 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4137 			if (ic->meta_dev) {
4138 				dm_put_device(ti, ic->meta_dev);
4139 				ic->meta_dev = NULL;
4140 			}
4141 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4142 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4143 			if (r) {
4144 				ti->error = "Device lookup failed";
4145 				goto bad;
4146 			}
4147 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4148 			if (val < 1 << SECTOR_SHIFT ||
4149 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4150 			    (val & (val - 1))) {
4151 				r = -EINVAL;
4152 				ti->error = "Invalid block_size argument";
4153 				goto bad;
4154 			}
4155 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4156 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4157 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4158 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4159 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4160 				r = -EINVAL;
4161 				ti->error = "Invalid bitmap_flush_interval argument";
4162 				goto bad;
4163 			}
4164 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4165 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4166 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4167 					    "Invalid internal_hash argument");
4168 			if (r)
4169 				goto bad;
4170 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4171 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4172 					    "Invalid journal_crypt argument");
4173 			if (r)
4174 				goto bad;
4175 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4176 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4177 					    "Invalid journal_mac argument");
4178 			if (r)
4179 				goto bad;
4180 		} else if (!strcmp(opt_string, "recalculate")) {
4181 			ic->recalculate_flag = true;
4182 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4183 			ic->recalculate_flag = true;
4184 			ic->reset_recalculate_flag = true;
4185 		} else if (!strcmp(opt_string, "allow_discards")) {
4186 			ic->discard = true;
4187 		} else if (!strcmp(opt_string, "fix_padding")) {
4188 			ic->fix_padding = true;
4189 		} else if (!strcmp(opt_string, "fix_hmac")) {
4190 			ic->fix_hmac = true;
4191 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4192 			ic->legacy_recalculate = true;
4193 		} else {
4194 			r = -EINVAL;
4195 			ti->error = "Invalid argument";
4196 			goto bad;
4197 		}
4198 	}
4199 
4200 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4201 	if (!ic->meta_dev)
4202 		ic->meta_device_sectors = ic->data_device_sectors;
4203 	else
4204 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4205 
4206 	if (!journal_sectors) {
4207 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4208 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4209 	}
4210 
4211 	if (!buffer_sectors)
4212 		buffer_sectors = 1;
4213 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4214 
4215 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4216 		    "Invalid internal hash", "Error setting internal hash key");
4217 	if (r)
4218 		goto bad;
4219 
4220 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4221 		    "Invalid journal mac", "Error setting journal mac key");
4222 	if (r)
4223 		goto bad;
4224 
4225 	if (!ic->tag_size) {
4226 		if (!ic->internal_hash) {
4227 			ti->error = "Unknown tag size";
4228 			r = -EINVAL;
4229 			goto bad;
4230 		}
4231 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4232 	}
4233 	if (ic->tag_size > MAX_TAG_SIZE) {
4234 		ti->error = "Too big tag size";
4235 		r = -EINVAL;
4236 		goto bad;
4237 	}
4238 	if (!(ic->tag_size & (ic->tag_size - 1)))
4239 		ic->log2_tag_size = __ffs(ic->tag_size);
4240 	else
4241 		ic->log2_tag_size = -1;
4242 
4243 	if (ic->mode == 'B' && !ic->internal_hash) {
4244 		r = -EINVAL;
4245 		ti->error = "Bitmap mode can be only used with internal hash";
4246 		goto bad;
4247 	}
4248 
4249 	if (ic->discard && !ic->internal_hash) {
4250 		r = -EINVAL;
4251 		ti->error = "Discard can be only used with internal hash";
4252 		goto bad;
4253 	}
4254 
4255 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4256 	ic->autocommit_msec = sync_msec;
4257 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4258 
4259 	ic->io = dm_io_client_create();
4260 	if (IS_ERR(ic->io)) {
4261 		r = PTR_ERR(ic->io);
4262 		ic->io = NULL;
4263 		ti->error = "Cannot allocate dm io";
4264 		goto bad;
4265 	}
4266 
4267 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4268 	if (r) {
4269 		ti->error = "Cannot allocate mempool";
4270 		goto bad;
4271 	}
4272 
4273 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4274 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4275 	if (!ic->metadata_wq) {
4276 		ti->error = "Cannot allocate workqueue";
4277 		r = -ENOMEM;
4278 		goto bad;
4279 	}
4280 
4281 	/*
4282 	 * If this workqueue weren't ordered, it would cause bio reordering
4283 	 * and reduced performance.
4284 	 */
4285 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4286 	if (!ic->wait_wq) {
4287 		ti->error = "Cannot allocate workqueue";
4288 		r = -ENOMEM;
4289 		goto bad;
4290 	}
4291 
4292 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4293 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4294 	if (!ic->offload_wq) {
4295 		ti->error = "Cannot allocate workqueue";
4296 		r = -ENOMEM;
4297 		goto bad;
4298 	}
4299 
4300 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4301 	if (!ic->commit_wq) {
4302 		ti->error = "Cannot allocate workqueue";
4303 		r = -ENOMEM;
4304 		goto bad;
4305 	}
4306 	INIT_WORK(&ic->commit_work, integrity_commit);
4307 
4308 	if (ic->mode == 'J' || ic->mode == 'B') {
4309 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4310 		if (!ic->writer_wq) {
4311 			ti->error = "Cannot allocate workqueue";
4312 			r = -ENOMEM;
4313 			goto bad;
4314 		}
4315 		INIT_WORK(&ic->writer_work, integrity_writer);
4316 	}
4317 
4318 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4319 	if (!ic->sb) {
4320 		r = -ENOMEM;
4321 		ti->error = "Cannot allocate superblock area";
4322 		goto bad;
4323 	}
4324 
4325 	r = sync_rw_sb(ic, REQ_OP_READ);
4326 	if (r) {
4327 		ti->error = "Error reading superblock";
4328 		goto bad;
4329 	}
4330 	should_write_sb = false;
4331 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4332 		if (ic->mode != 'R') {
4333 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4334 				r = -EINVAL;
4335 				ti->error = "The device is not initialized";
4336 				goto bad;
4337 			}
4338 		}
4339 
4340 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4341 		if (r) {
4342 			ti->error = "Could not initialize superblock";
4343 			goto bad;
4344 		}
4345 		if (ic->mode != 'R')
4346 			should_write_sb = true;
4347 	}
4348 
4349 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4350 		r = -EINVAL;
4351 		ti->error = "Unknown version";
4352 		goto bad;
4353 	}
4354 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4355 		r = -EINVAL;
4356 		ti->error = "Tag size doesn't match the information in superblock";
4357 		goto bad;
4358 	}
4359 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4360 		r = -EINVAL;
4361 		ti->error = "Block size doesn't match the information in superblock";
4362 		goto bad;
4363 	}
4364 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4365 		r = -EINVAL;
4366 		ti->error = "Corrupted superblock, journal_sections is 0";
4367 		goto bad;
4368 	}
4369 	/* make sure that ti->max_io_len doesn't overflow */
4370 	if (!ic->meta_dev) {
4371 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4372 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4373 			r = -EINVAL;
4374 			ti->error = "Invalid interleave_sectors in the superblock";
4375 			goto bad;
4376 		}
4377 	} else {
4378 		if (ic->sb->log2_interleave_sectors) {
4379 			r = -EINVAL;
4380 			ti->error = "Invalid interleave_sectors in the superblock";
4381 			goto bad;
4382 		}
4383 	}
4384 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4385 		r = -EINVAL;
4386 		ti->error = "Journal mac mismatch";
4387 		goto bad;
4388 	}
4389 
4390 	get_provided_data_sectors(ic);
4391 	if (!ic->provided_data_sectors) {
4392 		r = -EINVAL;
4393 		ti->error = "The device is too small";
4394 		goto bad;
4395 	}
4396 
4397 try_smaller_buffer:
4398 	r = calculate_device_limits(ic);
4399 	if (r) {
4400 		if (ic->meta_dev) {
4401 			if (ic->log2_buffer_sectors > 3) {
4402 				ic->log2_buffer_sectors--;
4403 				goto try_smaller_buffer;
4404 			}
4405 		}
4406 		ti->error = "The device is too small";
4407 		goto bad;
4408 	}
4409 
4410 	if (log2_sectors_per_bitmap_bit < 0)
4411 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4412 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4413 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4414 
4415 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4416 	if (bits_in_journal > UINT_MAX)
4417 		bits_in_journal = UINT_MAX;
4418 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4419 		log2_sectors_per_bitmap_bit++;
4420 
4421 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4422 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4423 	if (should_write_sb)
4424 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4425 
4426 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4427 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4428 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4429 
4430 	if (!ic->meta_dev)
4431 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4432 
4433 	if (ti->len > ic->provided_data_sectors) {
4434 		r = -EINVAL;
4435 		ti->error = "Not enough provided sectors for requested mapping size";
4436 		goto bad;
4437 	}
4438 
4439 
4440 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4441 	threshold += 50;
4442 	do_div(threshold, 100);
4443 	ic->free_sectors_threshold = threshold;
4444 
4445 	DEBUG_print("initialized:\n");
4446 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4447 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4448 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4449 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4450 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4451 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4452 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4453 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4454 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4455 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4456 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4457 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4458 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4459 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4460 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4461 
4462 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4463 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4464 		ic->sb->recalc_sector = cpu_to_le64(0);
4465 	}
4466 
4467 	if (ic->internal_hash) {
4468 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4469 		if (!ic->recalc_wq) {
4470 			ti->error = "Cannot allocate workqueue";
4471 			r = -ENOMEM;
4472 			goto bad;
4473 		}
4474 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4475 	} else {
4476 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4477 			ti->error = "Recalculate can only be specified with internal_hash";
4478 			r = -EINVAL;
4479 			goto bad;
4480 		}
4481 	}
4482 
4483 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4484 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4485 	    dm_integrity_disable_recalculate(ic)) {
4486 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4487 		r = -EOPNOTSUPP;
4488 		goto bad;
4489 	}
4490 
4491 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4492 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4493 	if (IS_ERR(ic->bufio)) {
4494 		r = PTR_ERR(ic->bufio);
4495 		ti->error = "Cannot initialize dm-bufio";
4496 		ic->bufio = NULL;
4497 		goto bad;
4498 	}
4499 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4500 
4501 	if (ic->mode != 'R') {
4502 		r = create_journal(ic, &ti->error);
4503 		if (r)
4504 			goto bad;
4505 
4506 	}
4507 
4508 	if (ic->mode == 'B') {
4509 		unsigned int i;
4510 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4511 
4512 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4513 		if (!ic->recalc_bitmap) {
4514 			r = -ENOMEM;
4515 			goto bad;
4516 		}
4517 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4518 		if (!ic->may_write_bitmap) {
4519 			r = -ENOMEM;
4520 			goto bad;
4521 		}
4522 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4523 		if (!ic->bbs) {
4524 			r = -ENOMEM;
4525 			goto bad;
4526 		}
4527 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4528 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4529 			struct bitmap_block_status *bbs = &ic->bbs[i];
4530 			unsigned int sector, pl_index, pl_offset;
4531 
4532 			INIT_WORK(&bbs->work, bitmap_block_work);
4533 			bbs->ic = ic;
4534 			bbs->idx = i;
4535 			bio_list_init(&bbs->bio_queue);
4536 			spin_lock_init(&bbs->bio_queue_lock);
4537 
4538 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4539 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4540 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4541 
4542 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4543 		}
4544 	}
4545 
4546 	if (should_write_sb) {
4547 		init_journal(ic, 0, ic->journal_sections, 0);
4548 		r = dm_integrity_failed(ic);
4549 		if (unlikely(r)) {
4550 			ti->error = "Error initializing journal";
4551 			goto bad;
4552 		}
4553 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4554 		if (r) {
4555 			ti->error = "Error initializing superblock";
4556 			goto bad;
4557 		}
4558 		ic->just_formatted = true;
4559 	}
4560 
4561 	if (!ic->meta_dev) {
4562 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4563 		if (r)
4564 			goto bad;
4565 	}
4566 	if (ic->mode == 'B') {
4567 		unsigned int max_io_len;
4568 
4569 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4570 		if (!max_io_len)
4571 			max_io_len = 1U << 31;
4572 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4573 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4574 			r = dm_set_target_max_io_len(ti, max_io_len);
4575 			if (r)
4576 				goto bad;
4577 		}
4578 	}
4579 
4580 	if (!ic->internal_hash)
4581 		dm_integrity_set(ti, ic);
4582 
4583 	ti->num_flush_bios = 1;
4584 	ti->flush_supported = true;
4585 	if (ic->discard)
4586 		ti->num_discard_bios = 1;
4587 
4588 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4589 	return 0;
4590 
4591 bad:
4592 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4593 	dm_integrity_dtr(ti);
4594 	return r;
4595 }
4596 
4597 static void dm_integrity_dtr(struct dm_target *ti)
4598 {
4599 	struct dm_integrity_c *ic = ti->private;
4600 
4601 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4602 	BUG_ON(!list_empty(&ic->wait_list));
4603 
4604 	if (ic->mode == 'B')
4605 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4606 	if (ic->metadata_wq)
4607 		destroy_workqueue(ic->metadata_wq);
4608 	if (ic->wait_wq)
4609 		destroy_workqueue(ic->wait_wq);
4610 	if (ic->offload_wq)
4611 		destroy_workqueue(ic->offload_wq);
4612 	if (ic->commit_wq)
4613 		destroy_workqueue(ic->commit_wq);
4614 	if (ic->writer_wq)
4615 		destroy_workqueue(ic->writer_wq);
4616 	if (ic->recalc_wq)
4617 		destroy_workqueue(ic->recalc_wq);
4618 	kvfree(ic->bbs);
4619 	if (ic->bufio)
4620 		dm_bufio_client_destroy(ic->bufio);
4621 	mempool_exit(&ic->journal_io_mempool);
4622 	if (ic->io)
4623 		dm_io_client_destroy(ic->io);
4624 	if (ic->dev)
4625 		dm_put_device(ti, ic->dev);
4626 	if (ic->meta_dev)
4627 		dm_put_device(ti, ic->meta_dev);
4628 	dm_integrity_free_page_list(ic->journal);
4629 	dm_integrity_free_page_list(ic->journal_io);
4630 	dm_integrity_free_page_list(ic->journal_xor);
4631 	dm_integrity_free_page_list(ic->recalc_bitmap);
4632 	dm_integrity_free_page_list(ic->may_write_bitmap);
4633 	if (ic->journal_scatterlist)
4634 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4635 	if (ic->journal_io_scatterlist)
4636 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4637 	if (ic->sk_requests) {
4638 		unsigned int i;
4639 
4640 		for (i = 0; i < ic->journal_sections; i++) {
4641 			struct skcipher_request *req;
4642 
4643 			req = ic->sk_requests[i];
4644 			if (req) {
4645 				kfree_sensitive(req->iv);
4646 				skcipher_request_free(req);
4647 			}
4648 		}
4649 		kvfree(ic->sk_requests);
4650 	}
4651 	kvfree(ic->journal_tree);
4652 	if (ic->sb)
4653 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4654 
4655 	if (ic->internal_hash)
4656 		crypto_free_shash(ic->internal_hash);
4657 	free_alg(&ic->internal_hash_alg);
4658 
4659 	if (ic->journal_crypt)
4660 		crypto_free_skcipher(ic->journal_crypt);
4661 	free_alg(&ic->journal_crypt_alg);
4662 
4663 	if (ic->journal_mac)
4664 		crypto_free_shash(ic->journal_mac);
4665 	free_alg(&ic->journal_mac_alg);
4666 
4667 	kfree(ic);
4668 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4669 }
4670 
4671 static struct target_type integrity_target = {
4672 	.name			= "integrity",
4673 	.version		= {1, 10, 0},
4674 	.module			= THIS_MODULE,
4675 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4676 	.ctr			= dm_integrity_ctr,
4677 	.dtr			= dm_integrity_dtr,
4678 	.map			= dm_integrity_map,
4679 	.postsuspend		= dm_integrity_postsuspend,
4680 	.resume			= dm_integrity_resume,
4681 	.status			= dm_integrity_status,
4682 	.iterate_devices	= dm_integrity_iterate_devices,
4683 	.io_hints		= dm_integrity_io_hints,
4684 };
4685 
4686 static int __init dm_integrity_init(void)
4687 {
4688 	int r;
4689 
4690 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4691 					     sizeof(struct journal_io), 0, 0, NULL);
4692 	if (!journal_io_cache) {
4693 		DMERR("can't allocate journal io cache");
4694 		return -ENOMEM;
4695 	}
4696 
4697 	r = dm_register_target(&integrity_target);
4698 	if (r < 0) {
4699 		kmem_cache_destroy(journal_io_cache);
4700 		return r;
4701 	}
4702 
4703 	return 0;
4704 }
4705 
4706 static void __exit dm_integrity_exit(void)
4707 {
4708 	dm_unregister_target(&integrity_target);
4709 	kmem_cache_destroy(journal_io_cache);
4710 }
4711 
4712 module_init(dm_integrity_init);
4713 module_exit(dm_integrity_exit);
4714 
4715 MODULE_AUTHOR("Milan Broz");
4716 MODULE_AUTHOR("Mikulas Patocka");
4717 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4718 MODULE_LICENSE("GPL");
4719