xref: /linux/drivers/md/dm-writecache.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 #include <linux/delay.h>
19 #include "dm-io-tracker.h"
20 
21 #define DM_MSG_PREFIX "writecache"
22 
23 #define HIGH_WATERMARK			50
24 #define LOW_WATERMARK			45
25 #define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
26 #define ENDIO_LATENCY			16
27 #define WRITEBACK_LATENCY		64
28 #define AUTOCOMMIT_BLOCKS_SSD		65536
29 #define AUTOCOMMIT_BLOCKS_PMEM		64
30 #define AUTOCOMMIT_MSEC			1000
31 #define MAX_AGE_DIV			16
32 #define MAX_AGE_UNSPECIFIED		-1UL
33 #define PAUSE_WRITEBACK			(HZ * 3)
34 
35 #define BITMAP_GRANULARITY	65536
36 #if BITMAP_GRANULARITY < PAGE_SIZE
37 #undef BITMAP_GRANULARITY
38 #define BITMAP_GRANULARITY	PAGE_SIZE
39 #endif
40 
41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
42 #define DM_WRITECACHE_HAS_PMEM
43 #endif
44 
45 #ifdef DM_WRITECACHE_HAS_PMEM
46 #define pmem_assign(dest, src)					\
47 do {								\
48 	typeof(dest) uniq = (src);				\
49 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
50 } while (0)
51 #else
52 #define pmem_assign(dest, src)	((dest) = (src))
53 #endif
54 
55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
57 #endif
58 
59 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
60 #define MEMORY_SUPERBLOCK_VERSION	1
61 
62 struct wc_memory_entry {
63 	__le64 original_sector;
64 	__le64 seq_count;
65 };
66 
67 struct wc_memory_superblock {
68 	union {
69 		struct {
70 			__le32 magic;
71 			__le32 version;
72 			__le32 block_size;
73 			__le32 pad;
74 			__le64 n_blocks;
75 			__le64 seq_count;
76 		};
77 		__le64 padding[8];
78 	};
79 	struct wc_memory_entry entries[];
80 };
81 
82 struct wc_entry {
83 	struct rb_node rb_node;
84 	struct list_head lru;
85 	unsigned short wc_list_contiguous;
86 	bool write_in_progress
87 #if BITS_PER_LONG == 64
88 		:1
89 #endif
90 	;
91 	unsigned long index
92 #if BITS_PER_LONG == 64
93 		:47
94 #endif
95 	;
96 	unsigned long age;
97 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
98 	uint64_t original_sector;
99 	uint64_t seq_count;
100 #endif
101 };
102 
103 #ifdef DM_WRITECACHE_HAS_PMEM
104 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
105 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
106 #else
107 #define WC_MODE_PMEM(wc)			false
108 #define WC_MODE_FUA(wc)				false
109 #endif
110 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
111 
112 struct dm_writecache {
113 	struct mutex lock;
114 	struct list_head lru;
115 	union {
116 		struct list_head freelist;
117 		struct {
118 			struct rb_root freetree;
119 			struct wc_entry *current_free;
120 		};
121 	};
122 	struct rb_root tree;
123 
124 	size_t freelist_size;
125 	size_t writeback_size;
126 	size_t freelist_high_watermark;
127 	size_t freelist_low_watermark;
128 	unsigned long max_age;
129 	unsigned long pause;
130 
131 	unsigned uncommitted_blocks;
132 	unsigned autocommit_blocks;
133 	unsigned max_writeback_jobs;
134 
135 	int error;
136 
137 	unsigned long autocommit_jiffies;
138 	struct timer_list autocommit_timer;
139 	struct wait_queue_head freelist_wait;
140 
141 	struct timer_list max_age_timer;
142 
143 	atomic_t bio_in_progress[2];
144 	struct wait_queue_head bio_in_progress_wait[2];
145 
146 	struct dm_target *ti;
147 	struct dm_dev *dev;
148 	struct dm_dev *ssd_dev;
149 	sector_t start_sector;
150 	void *memory_map;
151 	uint64_t memory_map_size;
152 	size_t metadata_sectors;
153 	size_t n_blocks;
154 	uint64_t seq_count;
155 	sector_t data_device_sectors;
156 	void *block_start;
157 	struct wc_entry *entries;
158 	unsigned block_size;
159 	unsigned char block_size_bits;
160 
161 	bool pmem_mode:1;
162 	bool writeback_fua:1;
163 
164 	bool overwrote_committed:1;
165 	bool memory_vmapped:1;
166 
167 	bool start_sector_set:1;
168 	bool high_wm_percent_set:1;
169 	bool low_wm_percent_set:1;
170 	bool max_writeback_jobs_set:1;
171 	bool autocommit_blocks_set:1;
172 	bool autocommit_time_set:1;
173 	bool max_age_set:1;
174 	bool writeback_fua_set:1;
175 	bool flush_on_suspend:1;
176 	bool cleaner:1;
177 	bool cleaner_set:1;
178 	bool metadata_only:1;
179 	bool pause_set:1;
180 
181 	unsigned high_wm_percent_value;
182 	unsigned low_wm_percent_value;
183 	unsigned autocommit_time_value;
184 	unsigned max_age_value;
185 	unsigned pause_value;
186 
187 	unsigned writeback_all;
188 	struct workqueue_struct *writeback_wq;
189 	struct work_struct writeback_work;
190 	struct work_struct flush_work;
191 
192 	struct dm_io_tracker iot;
193 
194 	struct dm_io_client *dm_io;
195 
196 	raw_spinlock_t endio_list_lock;
197 	struct list_head endio_list;
198 	struct task_struct *endio_thread;
199 
200 	struct task_struct *flush_thread;
201 	struct bio_list flush_list;
202 
203 	struct dm_kcopyd_client *dm_kcopyd;
204 	unsigned long *dirty_bitmap;
205 	unsigned dirty_bitmap_size;
206 
207 	struct bio_set bio_set;
208 	mempool_t copy_pool;
209 
210 	struct {
211 		unsigned long long reads;
212 		unsigned long long read_hits;
213 		unsigned long long writes;
214 		unsigned long long write_hits_uncommitted;
215 		unsigned long long write_hits_committed;
216 		unsigned long long writes_around;
217 		unsigned long long writes_allocate;
218 		unsigned long long writes_blocked_on_freelist;
219 		unsigned long long flushes;
220 		unsigned long long discards;
221 	} stats;
222 };
223 
224 #define WB_LIST_INLINE		16
225 
226 struct writeback_struct {
227 	struct list_head endio_entry;
228 	struct dm_writecache *wc;
229 	struct wc_entry **wc_list;
230 	unsigned wc_list_n;
231 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
232 	struct bio bio;
233 };
234 
235 struct copy_struct {
236 	struct list_head endio_entry;
237 	struct dm_writecache *wc;
238 	struct wc_entry *e;
239 	unsigned n_entries;
240 	int error;
241 };
242 
243 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
244 					    "A percentage of time allocated for data copying");
245 
246 static void wc_lock(struct dm_writecache *wc)
247 {
248 	mutex_lock(&wc->lock);
249 }
250 
251 static void wc_unlock(struct dm_writecache *wc)
252 {
253 	mutex_unlock(&wc->lock);
254 }
255 
256 #ifdef DM_WRITECACHE_HAS_PMEM
257 static int persistent_memory_claim(struct dm_writecache *wc)
258 {
259 	int r;
260 	loff_t s;
261 	long p, da;
262 	pfn_t pfn;
263 	int id;
264 	struct page **pages;
265 	sector_t offset;
266 
267 	wc->memory_vmapped = false;
268 
269 	s = wc->memory_map_size;
270 	p = s >> PAGE_SHIFT;
271 	if (!p) {
272 		r = -EINVAL;
273 		goto err1;
274 	}
275 	if (p != s >> PAGE_SHIFT) {
276 		r = -EOVERFLOW;
277 		goto err1;
278 	}
279 
280 	offset = get_start_sect(wc->ssd_dev->bdev);
281 	if (offset & (PAGE_SIZE / 512 - 1)) {
282 		r = -EINVAL;
283 		goto err1;
284 	}
285 	offset >>= PAGE_SHIFT - 9;
286 
287 	id = dax_read_lock();
288 
289 	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
290 			&wc->memory_map, &pfn);
291 	if (da < 0) {
292 		wc->memory_map = NULL;
293 		r = da;
294 		goto err2;
295 	}
296 	if (!pfn_t_has_page(pfn)) {
297 		wc->memory_map = NULL;
298 		r = -EOPNOTSUPP;
299 		goto err2;
300 	}
301 	if (da != p) {
302 		long i;
303 		wc->memory_map = NULL;
304 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
305 		if (!pages) {
306 			r = -ENOMEM;
307 			goto err2;
308 		}
309 		i = 0;
310 		do {
311 			long daa;
312 			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
313 					p - i, DAX_ACCESS, NULL, &pfn);
314 			if (daa <= 0) {
315 				r = daa ? daa : -EINVAL;
316 				goto err3;
317 			}
318 			if (!pfn_t_has_page(pfn)) {
319 				r = -EOPNOTSUPP;
320 				goto err3;
321 			}
322 			while (daa-- && i < p) {
323 				pages[i++] = pfn_t_to_page(pfn);
324 				pfn.val++;
325 				if (!(i & 15))
326 					cond_resched();
327 			}
328 		} while (i < p);
329 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
330 		if (!wc->memory_map) {
331 			r = -ENOMEM;
332 			goto err3;
333 		}
334 		kvfree(pages);
335 		wc->memory_vmapped = true;
336 	}
337 
338 	dax_read_unlock(id);
339 
340 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
341 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
342 
343 	return 0;
344 err3:
345 	kvfree(pages);
346 err2:
347 	dax_read_unlock(id);
348 err1:
349 	return r;
350 }
351 #else
352 static int persistent_memory_claim(struct dm_writecache *wc)
353 {
354 	return -EOPNOTSUPP;
355 }
356 #endif
357 
358 static void persistent_memory_release(struct dm_writecache *wc)
359 {
360 	if (wc->memory_vmapped)
361 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
362 }
363 
364 static struct page *persistent_memory_page(void *addr)
365 {
366 	if (is_vmalloc_addr(addr))
367 		return vmalloc_to_page(addr);
368 	else
369 		return virt_to_page(addr);
370 }
371 
372 static unsigned persistent_memory_page_offset(void *addr)
373 {
374 	return (unsigned long)addr & (PAGE_SIZE - 1);
375 }
376 
377 static void persistent_memory_flush_cache(void *ptr, size_t size)
378 {
379 	if (is_vmalloc_addr(ptr))
380 		flush_kernel_vmap_range(ptr, size);
381 }
382 
383 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
384 {
385 	if (is_vmalloc_addr(ptr))
386 		invalidate_kernel_vmap_range(ptr, size);
387 }
388 
389 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
390 {
391 	return wc->memory_map;
392 }
393 
394 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
395 {
396 	return &sb(wc)->entries[e->index];
397 }
398 
399 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
400 {
401 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
402 }
403 
404 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
405 {
406 	return wc->start_sector + wc->metadata_sectors +
407 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
408 }
409 
410 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
411 {
412 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
413 	return e->original_sector;
414 #else
415 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
416 #endif
417 }
418 
419 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
420 {
421 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
422 	return e->seq_count;
423 #else
424 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
425 #endif
426 }
427 
428 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
429 {
430 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
431 	e->seq_count = -1;
432 #endif
433 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
434 }
435 
436 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
437 					    uint64_t original_sector, uint64_t seq_count)
438 {
439 	struct wc_memory_entry me;
440 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
441 	e->original_sector = original_sector;
442 	e->seq_count = seq_count;
443 #endif
444 	me.original_sector = cpu_to_le64(original_sector);
445 	me.seq_count = cpu_to_le64(seq_count);
446 	pmem_assign(*memory_entry(wc, e), me);
447 }
448 
449 #define writecache_error(wc, err, msg, arg...)				\
450 do {									\
451 	if (!cmpxchg(&(wc)->error, 0, err))				\
452 		DMERR(msg, ##arg);					\
453 	wake_up(&(wc)->freelist_wait);					\
454 } while (0)
455 
456 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
457 
458 static void writecache_flush_all_metadata(struct dm_writecache *wc)
459 {
460 	if (!WC_MODE_PMEM(wc))
461 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
462 }
463 
464 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
465 {
466 	if (!WC_MODE_PMEM(wc))
467 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
468 			  wc->dirty_bitmap);
469 }
470 
471 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
472 
473 struct io_notify {
474 	struct dm_writecache *wc;
475 	struct completion c;
476 	atomic_t count;
477 };
478 
479 static void writecache_notify_io(unsigned long error, void *context)
480 {
481 	struct io_notify *endio = context;
482 
483 	if (unlikely(error != 0))
484 		writecache_error(endio->wc, -EIO, "error writing metadata");
485 	BUG_ON(atomic_read(&endio->count) <= 0);
486 	if (atomic_dec_and_test(&endio->count))
487 		complete(&endio->c);
488 }
489 
490 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
491 {
492 	wait_event(wc->bio_in_progress_wait[direction],
493 		   !atomic_read(&wc->bio_in_progress[direction]));
494 }
495 
496 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
497 {
498 	struct dm_io_region region;
499 	struct dm_io_request req;
500 	struct io_notify endio = {
501 		wc,
502 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
503 		ATOMIC_INIT(1),
504 	};
505 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
506 	unsigned i = 0;
507 
508 	while (1) {
509 		unsigned j;
510 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
511 		if (unlikely(i == bitmap_bits))
512 			break;
513 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
514 
515 		region.bdev = wc->ssd_dev->bdev;
516 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
517 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
518 
519 		if (unlikely(region.sector >= wc->metadata_sectors))
520 			break;
521 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
522 			region.count = wc->metadata_sectors - region.sector;
523 
524 		region.sector += wc->start_sector;
525 		atomic_inc(&endio.count);
526 		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
527 		req.mem.type = DM_IO_VMA;
528 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
529 		req.client = wc->dm_io;
530 		req.notify.fn = writecache_notify_io;
531 		req.notify.context = &endio;
532 
533 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
534 	        (void) dm_io(&req, 1, &region, NULL);
535 		i = j;
536 	}
537 
538 	writecache_notify_io(0, &endio);
539 	wait_for_completion_io(&endio.c);
540 
541 	if (wait_for_ios)
542 		writecache_wait_for_ios(wc, WRITE);
543 
544 	writecache_disk_flush(wc, wc->ssd_dev);
545 
546 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
547 }
548 
549 static void ssd_commit_superblock(struct dm_writecache *wc)
550 {
551 	int r;
552 	struct dm_io_region region;
553 	struct dm_io_request req;
554 
555 	region.bdev = wc->ssd_dev->bdev;
556 	region.sector = 0;
557 	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
558 
559 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
560 		region.count = wc->metadata_sectors - region.sector;
561 
562 	region.sector += wc->start_sector;
563 
564 	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
565 	req.mem.type = DM_IO_VMA;
566 	req.mem.ptr.vma = (char *)wc->memory_map;
567 	req.client = wc->dm_io;
568 	req.notify.fn = NULL;
569 	req.notify.context = NULL;
570 
571 	r = dm_io(&req, 1, &region, NULL);
572 	if (unlikely(r))
573 		writecache_error(wc, r, "error writing superblock");
574 }
575 
576 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
577 {
578 	if (WC_MODE_PMEM(wc))
579 		pmem_wmb();
580 	else
581 		ssd_commit_flushed(wc, wait_for_ios);
582 }
583 
584 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
585 {
586 	int r;
587 	struct dm_io_region region;
588 	struct dm_io_request req;
589 
590 	region.bdev = dev->bdev;
591 	region.sector = 0;
592 	region.count = 0;
593 	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
594 	req.mem.type = DM_IO_KMEM;
595 	req.mem.ptr.addr = NULL;
596 	req.client = wc->dm_io;
597 	req.notify.fn = NULL;
598 
599 	r = dm_io(&req, 1, &region, NULL);
600 	if (unlikely(r))
601 		writecache_error(wc, r, "error flushing metadata: %d", r);
602 }
603 
604 #define WFE_RETURN_FOLLOWING	1
605 #define WFE_LOWEST_SEQ		2
606 
607 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
608 					      uint64_t block, int flags)
609 {
610 	struct wc_entry *e;
611 	struct rb_node *node = wc->tree.rb_node;
612 
613 	if (unlikely(!node))
614 		return NULL;
615 
616 	while (1) {
617 		e = container_of(node, struct wc_entry, rb_node);
618 		if (read_original_sector(wc, e) == block)
619 			break;
620 
621 		node = (read_original_sector(wc, e) >= block ?
622 			e->rb_node.rb_left : e->rb_node.rb_right);
623 		if (unlikely(!node)) {
624 			if (!(flags & WFE_RETURN_FOLLOWING))
625 				return NULL;
626 			if (read_original_sector(wc, e) >= block) {
627 				return e;
628 			} else {
629 				node = rb_next(&e->rb_node);
630 				if (unlikely(!node))
631 					return NULL;
632 				e = container_of(node, struct wc_entry, rb_node);
633 				return e;
634 			}
635 		}
636 	}
637 
638 	while (1) {
639 		struct wc_entry *e2;
640 		if (flags & WFE_LOWEST_SEQ)
641 			node = rb_prev(&e->rb_node);
642 		else
643 			node = rb_next(&e->rb_node);
644 		if (unlikely(!node))
645 			return e;
646 		e2 = container_of(node, struct wc_entry, rb_node);
647 		if (read_original_sector(wc, e2) != block)
648 			return e;
649 		e = e2;
650 	}
651 }
652 
653 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
654 {
655 	struct wc_entry *e;
656 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
657 
658 	while (*node) {
659 		e = container_of(*node, struct wc_entry, rb_node);
660 		parent = &e->rb_node;
661 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
662 			node = &parent->rb_left;
663 		else
664 			node = &parent->rb_right;
665 	}
666 	rb_link_node(&ins->rb_node, parent, node);
667 	rb_insert_color(&ins->rb_node, &wc->tree);
668 	list_add(&ins->lru, &wc->lru);
669 	ins->age = jiffies;
670 }
671 
672 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
673 {
674 	list_del(&e->lru);
675 	rb_erase(&e->rb_node, &wc->tree);
676 }
677 
678 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
679 {
680 	if (WC_MODE_SORT_FREELIST(wc)) {
681 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
682 		if (unlikely(!*node))
683 			wc->current_free = e;
684 		while (*node) {
685 			parent = *node;
686 			if (&e->rb_node < *node)
687 				node = &parent->rb_left;
688 			else
689 				node = &parent->rb_right;
690 		}
691 		rb_link_node(&e->rb_node, parent, node);
692 		rb_insert_color(&e->rb_node, &wc->freetree);
693 	} else {
694 		list_add_tail(&e->lru, &wc->freelist);
695 	}
696 	wc->freelist_size++;
697 }
698 
699 static inline void writecache_verify_watermark(struct dm_writecache *wc)
700 {
701 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
702 		queue_work(wc->writeback_wq, &wc->writeback_work);
703 }
704 
705 static void writecache_max_age_timer(struct timer_list *t)
706 {
707 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
708 
709 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
710 		queue_work(wc->writeback_wq, &wc->writeback_work);
711 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
712 	}
713 }
714 
715 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
716 {
717 	struct wc_entry *e;
718 
719 	if (WC_MODE_SORT_FREELIST(wc)) {
720 		struct rb_node *next;
721 		if (unlikely(!wc->current_free))
722 			return NULL;
723 		e = wc->current_free;
724 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
725 			return NULL;
726 		next = rb_next(&e->rb_node);
727 		rb_erase(&e->rb_node, &wc->freetree);
728 		if (unlikely(!next))
729 			next = rb_first(&wc->freetree);
730 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
731 	} else {
732 		if (unlikely(list_empty(&wc->freelist)))
733 			return NULL;
734 		e = container_of(wc->freelist.next, struct wc_entry, lru);
735 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
736 			return NULL;
737 		list_del(&e->lru);
738 	}
739 	wc->freelist_size--;
740 
741 	writecache_verify_watermark(wc);
742 
743 	return e;
744 }
745 
746 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
747 {
748 	writecache_unlink(wc, e);
749 	writecache_add_to_freelist(wc, e);
750 	clear_seq_count(wc, e);
751 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
752 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
753 		wake_up(&wc->freelist_wait);
754 }
755 
756 static void writecache_wait_on_freelist(struct dm_writecache *wc)
757 {
758 	DEFINE_WAIT(wait);
759 
760 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
761 	wc_unlock(wc);
762 	io_schedule();
763 	finish_wait(&wc->freelist_wait, &wait);
764 	wc_lock(wc);
765 }
766 
767 static void writecache_poison_lists(struct dm_writecache *wc)
768 {
769 	/*
770 	 * Catch incorrect access to these values while the device is suspended.
771 	 */
772 	memset(&wc->tree, -1, sizeof wc->tree);
773 	wc->lru.next = LIST_POISON1;
774 	wc->lru.prev = LIST_POISON2;
775 	wc->freelist.next = LIST_POISON1;
776 	wc->freelist.prev = LIST_POISON2;
777 }
778 
779 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
780 {
781 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
782 	if (WC_MODE_PMEM(wc))
783 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
784 }
785 
786 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
787 {
788 	return read_seq_count(wc, e) < wc->seq_count;
789 }
790 
791 static void writecache_flush(struct dm_writecache *wc)
792 {
793 	struct wc_entry *e, *e2;
794 	bool need_flush_after_free;
795 
796 	wc->uncommitted_blocks = 0;
797 	del_timer(&wc->autocommit_timer);
798 
799 	if (list_empty(&wc->lru))
800 		return;
801 
802 	e = container_of(wc->lru.next, struct wc_entry, lru);
803 	if (writecache_entry_is_committed(wc, e)) {
804 		if (wc->overwrote_committed) {
805 			writecache_wait_for_ios(wc, WRITE);
806 			writecache_disk_flush(wc, wc->ssd_dev);
807 			wc->overwrote_committed = false;
808 		}
809 		return;
810 	}
811 	while (1) {
812 		writecache_flush_entry(wc, e);
813 		if (unlikely(e->lru.next == &wc->lru))
814 			break;
815 		e2 = container_of(e->lru.next, struct wc_entry, lru);
816 		if (writecache_entry_is_committed(wc, e2))
817 			break;
818 		e = e2;
819 		cond_resched();
820 	}
821 	writecache_commit_flushed(wc, true);
822 
823 	wc->seq_count++;
824 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
825 	if (WC_MODE_PMEM(wc))
826 		writecache_commit_flushed(wc, false);
827 	else
828 		ssd_commit_superblock(wc);
829 
830 	wc->overwrote_committed = false;
831 
832 	need_flush_after_free = false;
833 	while (1) {
834 		/* Free another committed entry with lower seq-count */
835 		struct rb_node *rb_node = rb_prev(&e->rb_node);
836 
837 		if (rb_node) {
838 			e2 = container_of(rb_node, struct wc_entry, rb_node);
839 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
840 			    likely(!e2->write_in_progress)) {
841 				writecache_free_entry(wc, e2);
842 				need_flush_after_free = true;
843 			}
844 		}
845 		if (unlikely(e->lru.prev == &wc->lru))
846 			break;
847 		e = container_of(e->lru.prev, struct wc_entry, lru);
848 		cond_resched();
849 	}
850 
851 	if (need_flush_after_free)
852 		writecache_commit_flushed(wc, false);
853 }
854 
855 static void writecache_flush_work(struct work_struct *work)
856 {
857 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
858 
859 	wc_lock(wc);
860 	writecache_flush(wc);
861 	wc_unlock(wc);
862 }
863 
864 static void writecache_autocommit_timer(struct timer_list *t)
865 {
866 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
867 	if (!writecache_has_error(wc))
868 		queue_work(wc->writeback_wq, &wc->flush_work);
869 }
870 
871 static void writecache_schedule_autocommit(struct dm_writecache *wc)
872 {
873 	if (!timer_pending(&wc->autocommit_timer))
874 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
875 }
876 
877 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
878 {
879 	struct wc_entry *e;
880 	bool discarded_something = false;
881 
882 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
883 	if (unlikely(!e))
884 		return;
885 
886 	while (read_original_sector(wc, e) < end) {
887 		struct rb_node *node = rb_next(&e->rb_node);
888 
889 		if (likely(!e->write_in_progress)) {
890 			if (!discarded_something) {
891 				if (!WC_MODE_PMEM(wc)) {
892 					writecache_wait_for_ios(wc, READ);
893 					writecache_wait_for_ios(wc, WRITE);
894 				}
895 				discarded_something = true;
896 			}
897 			if (!writecache_entry_is_committed(wc, e))
898 				wc->uncommitted_blocks--;
899 			writecache_free_entry(wc, e);
900 		}
901 
902 		if (unlikely(!node))
903 			break;
904 
905 		e = container_of(node, struct wc_entry, rb_node);
906 	}
907 
908 	if (discarded_something)
909 		writecache_commit_flushed(wc, false);
910 }
911 
912 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
913 {
914 	if (wc->writeback_size) {
915 		writecache_wait_on_freelist(wc);
916 		return true;
917 	}
918 	return false;
919 }
920 
921 static void writecache_suspend(struct dm_target *ti)
922 {
923 	struct dm_writecache *wc = ti->private;
924 	bool flush_on_suspend;
925 
926 	del_timer_sync(&wc->autocommit_timer);
927 	del_timer_sync(&wc->max_age_timer);
928 
929 	wc_lock(wc);
930 	writecache_flush(wc);
931 	flush_on_suspend = wc->flush_on_suspend;
932 	if (flush_on_suspend) {
933 		wc->flush_on_suspend = false;
934 		wc->writeback_all++;
935 		queue_work(wc->writeback_wq, &wc->writeback_work);
936 	}
937 	wc_unlock(wc);
938 
939 	drain_workqueue(wc->writeback_wq);
940 
941 	wc_lock(wc);
942 	if (flush_on_suspend)
943 		wc->writeback_all--;
944 	while (writecache_wait_for_writeback(wc));
945 
946 	if (WC_MODE_PMEM(wc))
947 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
948 
949 	writecache_poison_lists(wc);
950 
951 	wc_unlock(wc);
952 }
953 
954 static int writecache_alloc_entries(struct dm_writecache *wc)
955 {
956 	size_t b;
957 
958 	if (wc->entries)
959 		return 0;
960 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
961 	if (!wc->entries)
962 		return -ENOMEM;
963 	for (b = 0; b < wc->n_blocks; b++) {
964 		struct wc_entry *e = &wc->entries[b];
965 		e->index = b;
966 		e->write_in_progress = false;
967 		cond_resched();
968 	}
969 
970 	return 0;
971 }
972 
973 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
974 {
975 	struct dm_io_region region;
976 	struct dm_io_request req;
977 
978 	region.bdev = wc->ssd_dev->bdev;
979 	region.sector = wc->start_sector;
980 	region.count = n_sectors;
981 	req.bi_opf = REQ_OP_READ | REQ_SYNC;
982 	req.mem.type = DM_IO_VMA;
983 	req.mem.ptr.vma = (char *)wc->memory_map;
984 	req.client = wc->dm_io;
985 	req.notify.fn = NULL;
986 
987 	return dm_io(&req, 1, &region, NULL);
988 }
989 
990 static void writecache_resume(struct dm_target *ti)
991 {
992 	struct dm_writecache *wc = ti->private;
993 	size_t b;
994 	bool need_flush = false;
995 	__le64 sb_seq_count;
996 	int r;
997 
998 	wc_lock(wc);
999 
1000 	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1001 
1002 	if (WC_MODE_PMEM(wc)) {
1003 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1004 	} else {
1005 		r = writecache_read_metadata(wc, wc->metadata_sectors);
1006 		if (r) {
1007 			size_t sb_entries_offset;
1008 			writecache_error(wc, r, "unable to read metadata: %d", r);
1009 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1010 			memset((char *)wc->memory_map + sb_entries_offset, -1,
1011 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1012 		}
1013 	}
1014 
1015 	wc->tree = RB_ROOT;
1016 	INIT_LIST_HEAD(&wc->lru);
1017 	if (WC_MODE_SORT_FREELIST(wc)) {
1018 		wc->freetree = RB_ROOT;
1019 		wc->current_free = NULL;
1020 	} else {
1021 		INIT_LIST_HEAD(&wc->freelist);
1022 	}
1023 	wc->freelist_size = 0;
1024 
1025 	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1026 			      sizeof(uint64_t));
1027 	if (r) {
1028 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1029 		sb_seq_count = cpu_to_le64(0);
1030 	}
1031 	wc->seq_count = le64_to_cpu(sb_seq_count);
1032 
1033 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1034 	for (b = 0; b < wc->n_blocks; b++) {
1035 		struct wc_entry *e = &wc->entries[b];
1036 		struct wc_memory_entry wme;
1037 		if (writecache_has_error(wc)) {
1038 			e->original_sector = -1;
1039 			e->seq_count = -1;
1040 			continue;
1041 		}
1042 		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1043 				      sizeof(struct wc_memory_entry));
1044 		if (r) {
1045 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1046 					 (unsigned long)b, r);
1047 			e->original_sector = -1;
1048 			e->seq_count = -1;
1049 		} else {
1050 			e->original_sector = le64_to_cpu(wme.original_sector);
1051 			e->seq_count = le64_to_cpu(wme.seq_count);
1052 		}
1053 		cond_resched();
1054 	}
1055 #endif
1056 	for (b = 0; b < wc->n_blocks; b++) {
1057 		struct wc_entry *e = &wc->entries[b];
1058 		if (!writecache_entry_is_committed(wc, e)) {
1059 			if (read_seq_count(wc, e) != -1) {
1060 erase_this:
1061 				clear_seq_count(wc, e);
1062 				need_flush = true;
1063 			}
1064 			writecache_add_to_freelist(wc, e);
1065 		} else {
1066 			struct wc_entry *old;
1067 
1068 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1069 			if (!old) {
1070 				writecache_insert_entry(wc, e);
1071 			} else {
1072 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1073 					writecache_error(wc, -EINVAL,
1074 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1075 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1076 						 (unsigned long long)read_seq_count(wc, e));
1077 				}
1078 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1079 					goto erase_this;
1080 				} else {
1081 					writecache_free_entry(wc, old);
1082 					writecache_insert_entry(wc, e);
1083 					need_flush = true;
1084 				}
1085 			}
1086 		}
1087 		cond_resched();
1088 	}
1089 
1090 	if (need_flush) {
1091 		writecache_flush_all_metadata(wc);
1092 		writecache_commit_flushed(wc, false);
1093 	}
1094 
1095 	writecache_verify_watermark(wc);
1096 
1097 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1098 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1099 
1100 	wc_unlock(wc);
1101 }
1102 
1103 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1104 {
1105 	if (argc != 1)
1106 		return -EINVAL;
1107 
1108 	wc_lock(wc);
1109 	if (dm_suspended(wc->ti)) {
1110 		wc_unlock(wc);
1111 		return -EBUSY;
1112 	}
1113 	if (writecache_has_error(wc)) {
1114 		wc_unlock(wc);
1115 		return -EIO;
1116 	}
1117 
1118 	writecache_flush(wc);
1119 	wc->writeback_all++;
1120 	queue_work(wc->writeback_wq, &wc->writeback_work);
1121 	wc_unlock(wc);
1122 
1123 	flush_workqueue(wc->writeback_wq);
1124 
1125 	wc_lock(wc);
1126 	wc->writeback_all--;
1127 	if (writecache_has_error(wc)) {
1128 		wc_unlock(wc);
1129 		return -EIO;
1130 	}
1131 	wc_unlock(wc);
1132 
1133 	return 0;
1134 }
1135 
1136 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1137 {
1138 	if (argc != 1)
1139 		return -EINVAL;
1140 
1141 	wc_lock(wc);
1142 	wc->flush_on_suspend = true;
1143 	wc_unlock(wc);
1144 
1145 	return 0;
1146 }
1147 
1148 static void activate_cleaner(struct dm_writecache *wc)
1149 {
1150 	wc->flush_on_suspend = true;
1151 	wc->cleaner = true;
1152 	wc->freelist_high_watermark = wc->n_blocks;
1153 	wc->freelist_low_watermark = wc->n_blocks;
1154 }
1155 
1156 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1157 {
1158 	if (argc != 1)
1159 		return -EINVAL;
1160 
1161 	wc_lock(wc);
1162 	activate_cleaner(wc);
1163 	if (!dm_suspended(wc->ti))
1164 		writecache_verify_watermark(wc);
1165 	wc_unlock(wc);
1166 
1167 	return 0;
1168 }
1169 
1170 static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1171 {
1172 	if (argc != 1)
1173 		return -EINVAL;
1174 
1175 	wc_lock(wc);
1176 	memset(&wc->stats, 0, sizeof wc->stats);
1177 	wc_unlock(wc);
1178 
1179 	return 0;
1180 }
1181 
1182 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1183 			      char *result, unsigned maxlen)
1184 {
1185 	int r = -EINVAL;
1186 	struct dm_writecache *wc = ti->private;
1187 
1188 	if (!strcasecmp(argv[0], "flush"))
1189 		r = process_flush_mesg(argc, argv, wc);
1190 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1191 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1192 	else if (!strcasecmp(argv[0], "cleaner"))
1193 		r = process_cleaner_mesg(argc, argv, wc);
1194 	else if (!strcasecmp(argv[0], "clear_stats"))
1195 		r = process_clear_stats_mesg(argc, argv, wc);
1196 	else
1197 		DMERR("unrecognised message received: %s", argv[0]);
1198 
1199 	return r;
1200 }
1201 
1202 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1203 {
1204 	/*
1205 	 * clflushopt performs better with block size 1024, 2048, 4096
1206 	 * non-temporal stores perform better with block size 512
1207 	 *
1208 	 * block size   512             1024            2048            4096
1209 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1210 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1211 	 *
1212 	 * We see that movnti performs better for 512-byte blocks, and
1213 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1214 	 * prefer clflushopt for sizes >= 768.
1215 	 *
1216 	 * NOTE: this happens to be the case now (with dm-writecache's single
1217 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1218 	 * enabled to use movdir64b which might invalidate this performance
1219 	 * advantage seen with cache-allocating-writes plus flushing.
1220 	 */
1221 #ifdef CONFIG_X86
1222 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1223 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1224 	    likely(size >= 768)) {
1225 		do {
1226 			memcpy((void *)dest, (void *)source, 64);
1227 			clflushopt((void *)dest);
1228 			dest += 64;
1229 			source += 64;
1230 			size -= 64;
1231 		} while (size >= 64);
1232 		return;
1233 	}
1234 #endif
1235 	memcpy_flushcache(dest, source, size);
1236 }
1237 
1238 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1239 {
1240 	void *buf;
1241 	unsigned size;
1242 	int rw = bio_data_dir(bio);
1243 	unsigned remaining_size = wc->block_size;
1244 
1245 	do {
1246 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1247 		buf = bvec_kmap_local(&bv);
1248 		size = bv.bv_len;
1249 		if (unlikely(size > remaining_size))
1250 			size = remaining_size;
1251 
1252 		if (rw == READ) {
1253 			int r;
1254 			r = copy_mc_to_kernel(buf, data, size);
1255 			flush_dcache_page(bio_page(bio));
1256 			if (unlikely(r)) {
1257 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1258 				bio->bi_status = BLK_STS_IOERR;
1259 			}
1260 		} else {
1261 			flush_dcache_page(bio_page(bio));
1262 			memcpy_flushcache_optimized(data, buf, size);
1263 		}
1264 
1265 		kunmap_local(buf);
1266 
1267 		data = (char *)data + size;
1268 		remaining_size -= size;
1269 		bio_advance(bio, size);
1270 	} while (unlikely(remaining_size));
1271 }
1272 
1273 static int writecache_flush_thread(void *data)
1274 {
1275 	struct dm_writecache *wc = data;
1276 
1277 	while (1) {
1278 		struct bio *bio;
1279 
1280 		wc_lock(wc);
1281 		bio = bio_list_pop(&wc->flush_list);
1282 		if (!bio) {
1283 			set_current_state(TASK_INTERRUPTIBLE);
1284 			wc_unlock(wc);
1285 
1286 			if (unlikely(kthread_should_stop())) {
1287 				set_current_state(TASK_RUNNING);
1288 				break;
1289 			}
1290 
1291 			schedule();
1292 			continue;
1293 		}
1294 
1295 		if (bio_op(bio) == REQ_OP_DISCARD) {
1296 			writecache_discard(wc, bio->bi_iter.bi_sector,
1297 					   bio_end_sector(bio));
1298 			wc_unlock(wc);
1299 			bio_set_dev(bio, wc->dev->bdev);
1300 			submit_bio_noacct(bio);
1301 		} else {
1302 			writecache_flush(wc);
1303 			wc_unlock(wc);
1304 			if (writecache_has_error(wc))
1305 				bio->bi_status = BLK_STS_IOERR;
1306 			bio_endio(bio);
1307 		}
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1314 {
1315 	if (bio_list_empty(&wc->flush_list))
1316 		wake_up_process(wc->flush_thread);
1317 	bio_list_add(&wc->flush_list, bio);
1318 }
1319 
1320 enum wc_map_op {
1321 	WC_MAP_SUBMIT,
1322 	WC_MAP_REMAP,
1323 	WC_MAP_REMAP_ORIGIN,
1324 	WC_MAP_RETURN,
1325 	WC_MAP_ERROR,
1326 };
1327 
1328 static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1329 					struct wc_entry *e)
1330 {
1331 	if (e) {
1332 		sector_t next_boundary =
1333 			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1334 		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1335 			dm_accept_partial_bio(bio, next_boundary);
1336 	}
1337 }
1338 
1339 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1340 {
1341 	enum wc_map_op map_op;
1342 	struct wc_entry *e;
1343 
1344 read_next_block:
1345 	wc->stats.reads++;
1346 	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1347 	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1348 		wc->stats.read_hits++;
1349 		if (WC_MODE_PMEM(wc)) {
1350 			bio_copy_block(wc, bio, memory_data(wc, e));
1351 			if (bio->bi_iter.bi_size)
1352 				goto read_next_block;
1353 			map_op = WC_MAP_SUBMIT;
1354 		} else {
1355 			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1356 			bio_set_dev(bio, wc->ssd_dev->bdev);
1357 			bio->bi_iter.bi_sector = cache_sector(wc, e);
1358 			if (!writecache_entry_is_committed(wc, e))
1359 				writecache_wait_for_ios(wc, WRITE);
1360 			map_op = WC_MAP_REMAP;
1361 		}
1362 	} else {
1363 		writecache_map_remap_origin(wc, bio, e);
1364 		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1365 		map_op = WC_MAP_REMAP_ORIGIN;
1366 	}
1367 
1368 	return map_op;
1369 }
1370 
1371 static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1372 				    struct wc_entry *e, bool search_used)
1373 {
1374 	unsigned bio_size = wc->block_size;
1375 	sector_t start_cache_sec = cache_sector(wc, e);
1376 	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1377 
1378 	while (bio_size < bio->bi_iter.bi_size) {
1379 		if (!search_used) {
1380 			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1381 			if (!f)
1382 				break;
1383 			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1384 							(bio_size >> SECTOR_SHIFT), wc->seq_count);
1385 			writecache_insert_entry(wc, f);
1386 			wc->uncommitted_blocks++;
1387 		} else {
1388 			struct wc_entry *f;
1389 			struct rb_node *next = rb_next(&e->rb_node);
1390 			if (!next)
1391 				break;
1392 			f = container_of(next, struct wc_entry, rb_node);
1393 			if (f != e + 1)
1394 				break;
1395 			if (read_original_sector(wc, f) !=
1396 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1397 				break;
1398 			if (unlikely(f->write_in_progress))
1399 				break;
1400 			if (writecache_entry_is_committed(wc, f))
1401 				wc->overwrote_committed = true;
1402 			e = f;
1403 		}
1404 		bio_size += wc->block_size;
1405 		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1406 	}
1407 
1408 	bio_set_dev(bio, wc->ssd_dev->bdev);
1409 	bio->bi_iter.bi_sector = start_cache_sec;
1410 	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1411 
1412 	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1413 	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1414 
1415 	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1416 		wc->uncommitted_blocks = 0;
1417 		queue_work(wc->writeback_wq, &wc->flush_work);
1418 	} else {
1419 		writecache_schedule_autocommit(wc);
1420 	}
1421 }
1422 
1423 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1424 {
1425 	struct wc_entry *e;
1426 
1427 	do {
1428 		bool found_entry = false;
1429 		bool search_used = false;
1430 		if (writecache_has_error(wc)) {
1431 			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1432 			return WC_MAP_ERROR;
1433 		}
1434 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1435 		if (e) {
1436 			if (!writecache_entry_is_committed(wc, e)) {
1437 				wc->stats.write_hits_uncommitted++;
1438 				search_used = true;
1439 				goto bio_copy;
1440 			}
1441 			wc->stats.write_hits_committed++;
1442 			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1443 				wc->overwrote_committed = true;
1444 				search_used = true;
1445 				goto bio_copy;
1446 			}
1447 			found_entry = true;
1448 		} else {
1449 			if (unlikely(wc->cleaner) ||
1450 			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1451 				goto direct_write;
1452 		}
1453 		e = writecache_pop_from_freelist(wc, (sector_t)-1);
1454 		if (unlikely(!e)) {
1455 			if (!WC_MODE_PMEM(wc) && !found_entry) {
1456 direct_write:
1457 				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1458 				writecache_map_remap_origin(wc, bio, e);
1459 				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1460 				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1461 				return WC_MAP_REMAP_ORIGIN;
1462 			}
1463 			wc->stats.writes_blocked_on_freelist++;
1464 			writecache_wait_on_freelist(wc);
1465 			continue;
1466 		}
1467 		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1468 		writecache_insert_entry(wc, e);
1469 		wc->uncommitted_blocks++;
1470 		wc->stats.writes_allocate++;
1471 bio_copy:
1472 		if (WC_MODE_PMEM(wc)) {
1473 			bio_copy_block(wc, bio, memory_data(wc, e));
1474 			wc->stats.writes++;
1475 		} else {
1476 			writecache_bio_copy_ssd(wc, bio, e, search_used);
1477 			return WC_MAP_REMAP;
1478 		}
1479 	} while (bio->bi_iter.bi_size);
1480 
1481 	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1482 		writecache_flush(wc);
1483 	else
1484 		writecache_schedule_autocommit(wc);
1485 
1486 	return WC_MAP_SUBMIT;
1487 }
1488 
1489 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1490 {
1491 	if (writecache_has_error(wc))
1492 		return WC_MAP_ERROR;
1493 
1494 	if (WC_MODE_PMEM(wc)) {
1495 		wc->stats.flushes++;
1496 		writecache_flush(wc);
1497 		if (writecache_has_error(wc))
1498 			return WC_MAP_ERROR;
1499 		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1500 			return WC_MAP_REMAP_ORIGIN;
1501 		return WC_MAP_SUBMIT;
1502 	}
1503 	/* SSD: */
1504 	if (dm_bio_get_target_bio_nr(bio))
1505 		return WC_MAP_REMAP_ORIGIN;
1506 	wc->stats.flushes++;
1507 	writecache_offload_bio(wc, bio);
1508 	return WC_MAP_RETURN;
1509 }
1510 
1511 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1512 {
1513 	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1514 
1515 	if (writecache_has_error(wc))
1516 		return WC_MAP_ERROR;
1517 
1518 	if (WC_MODE_PMEM(wc)) {
1519 		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1520 		return WC_MAP_REMAP_ORIGIN;
1521 	}
1522 	/* SSD: */
1523 	writecache_offload_bio(wc, bio);
1524 	return WC_MAP_RETURN;
1525 }
1526 
1527 static int writecache_map(struct dm_target *ti, struct bio *bio)
1528 {
1529 	struct dm_writecache *wc = ti->private;
1530 	enum wc_map_op map_op;
1531 
1532 	bio->bi_private = NULL;
1533 
1534 	wc_lock(wc);
1535 
1536 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537 		map_op = writecache_map_flush(wc, bio);
1538 		goto done;
1539 	}
1540 
1541 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1542 
1543 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1544 				(wc->block_size / 512 - 1)) != 0)) {
1545 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1546 		      (unsigned long long)bio->bi_iter.bi_sector,
1547 		      bio->bi_iter.bi_size, wc->block_size);
1548 		map_op = WC_MAP_ERROR;
1549 		goto done;
1550 	}
1551 
1552 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1553 		map_op = writecache_map_discard(wc, bio);
1554 		goto done;
1555 	}
1556 
1557 	if (bio_data_dir(bio) == READ)
1558 		map_op = writecache_map_read(wc, bio);
1559 	else
1560 		map_op = writecache_map_write(wc, bio);
1561 done:
1562 	switch (map_op) {
1563 	case WC_MAP_REMAP_ORIGIN:
1564 		if (likely(wc->pause != 0)) {
1565 			if (bio_op(bio) == REQ_OP_WRITE) {
1566 				dm_iot_io_begin(&wc->iot, 1);
1567 				bio->bi_private = (void *)2;
1568 			}
1569 		}
1570 		bio_set_dev(bio, wc->dev->bdev);
1571 		wc_unlock(wc);
1572 		return DM_MAPIO_REMAPPED;
1573 
1574 	case WC_MAP_REMAP:
1575 		/* make sure that writecache_end_io decrements bio_in_progress: */
1576 		bio->bi_private = (void *)1;
1577 		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1578 		wc_unlock(wc);
1579 		return DM_MAPIO_REMAPPED;
1580 
1581 	case WC_MAP_SUBMIT:
1582 		wc_unlock(wc);
1583 		bio_endio(bio);
1584 		return DM_MAPIO_SUBMITTED;
1585 
1586 	case WC_MAP_RETURN:
1587 		wc_unlock(wc);
1588 		return DM_MAPIO_SUBMITTED;
1589 
1590 	case WC_MAP_ERROR:
1591 		wc_unlock(wc);
1592 		bio_io_error(bio);
1593 		return DM_MAPIO_SUBMITTED;
1594 
1595 	default:
1596 		BUG();
1597 		wc_unlock(wc);
1598 		return DM_MAPIO_KILL;
1599 	}
1600 }
1601 
1602 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1603 {
1604 	struct dm_writecache *wc = ti->private;
1605 
1606 	if (bio->bi_private == (void *)1) {
1607 		int dir = bio_data_dir(bio);
1608 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1609 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1610 				wake_up(&wc->bio_in_progress_wait[dir]);
1611 	} else if (bio->bi_private == (void *)2) {
1612 		dm_iot_io_end(&wc->iot, 1);
1613 	}
1614 	return 0;
1615 }
1616 
1617 static int writecache_iterate_devices(struct dm_target *ti,
1618 				      iterate_devices_callout_fn fn, void *data)
1619 {
1620 	struct dm_writecache *wc = ti->private;
1621 
1622 	return fn(ti, wc->dev, 0, ti->len, data);
1623 }
1624 
1625 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1626 {
1627 	struct dm_writecache *wc = ti->private;
1628 
1629 	if (limits->logical_block_size < wc->block_size)
1630 		limits->logical_block_size = wc->block_size;
1631 
1632 	if (limits->physical_block_size < wc->block_size)
1633 		limits->physical_block_size = wc->block_size;
1634 
1635 	if (limits->io_min < wc->block_size)
1636 		limits->io_min = wc->block_size;
1637 }
1638 
1639 
1640 static void writecache_writeback_endio(struct bio *bio)
1641 {
1642 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1643 	struct dm_writecache *wc = wb->wc;
1644 	unsigned long flags;
1645 
1646 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1647 	if (unlikely(list_empty(&wc->endio_list)))
1648 		wake_up_process(wc->endio_thread);
1649 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1650 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1651 }
1652 
1653 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1654 {
1655 	struct copy_struct *c = ptr;
1656 	struct dm_writecache *wc = c->wc;
1657 
1658 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1659 
1660 	raw_spin_lock_irq(&wc->endio_list_lock);
1661 	if (unlikely(list_empty(&wc->endio_list)))
1662 		wake_up_process(wc->endio_thread);
1663 	list_add_tail(&c->endio_entry, &wc->endio_list);
1664 	raw_spin_unlock_irq(&wc->endio_list_lock);
1665 }
1666 
1667 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1668 {
1669 	unsigned i;
1670 	struct writeback_struct *wb;
1671 	struct wc_entry *e;
1672 	unsigned long n_walked = 0;
1673 
1674 	do {
1675 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1676 		list_del(&wb->endio_entry);
1677 
1678 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1679 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1680 					"write error %d", wb->bio.bi_status);
1681 		i = 0;
1682 		do {
1683 			e = wb->wc_list[i];
1684 			BUG_ON(!e->write_in_progress);
1685 			e->write_in_progress = false;
1686 			INIT_LIST_HEAD(&e->lru);
1687 			if (!writecache_has_error(wc))
1688 				writecache_free_entry(wc, e);
1689 			BUG_ON(!wc->writeback_size);
1690 			wc->writeback_size--;
1691 			n_walked++;
1692 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1693 				writecache_commit_flushed(wc, false);
1694 				wc_unlock(wc);
1695 				wc_lock(wc);
1696 				n_walked = 0;
1697 			}
1698 		} while (++i < wb->wc_list_n);
1699 
1700 		if (wb->wc_list != wb->wc_list_inline)
1701 			kfree(wb->wc_list);
1702 		bio_put(&wb->bio);
1703 	} while (!list_empty(list));
1704 }
1705 
1706 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1707 {
1708 	struct copy_struct *c;
1709 	struct wc_entry *e;
1710 
1711 	do {
1712 		c = list_entry(list->next, struct copy_struct, endio_entry);
1713 		list_del(&c->endio_entry);
1714 
1715 		if (unlikely(c->error))
1716 			writecache_error(wc, c->error, "copy error");
1717 
1718 		e = c->e;
1719 		do {
1720 			BUG_ON(!e->write_in_progress);
1721 			e->write_in_progress = false;
1722 			INIT_LIST_HEAD(&e->lru);
1723 			if (!writecache_has_error(wc))
1724 				writecache_free_entry(wc, e);
1725 
1726 			BUG_ON(!wc->writeback_size);
1727 			wc->writeback_size--;
1728 			e++;
1729 		} while (--c->n_entries);
1730 		mempool_free(c, &wc->copy_pool);
1731 	} while (!list_empty(list));
1732 }
1733 
1734 static int writecache_endio_thread(void *data)
1735 {
1736 	struct dm_writecache *wc = data;
1737 
1738 	while (1) {
1739 		struct list_head list;
1740 
1741 		raw_spin_lock_irq(&wc->endio_list_lock);
1742 		if (!list_empty(&wc->endio_list))
1743 			goto pop_from_list;
1744 		set_current_state(TASK_INTERRUPTIBLE);
1745 		raw_spin_unlock_irq(&wc->endio_list_lock);
1746 
1747 		if (unlikely(kthread_should_stop())) {
1748 			set_current_state(TASK_RUNNING);
1749 			break;
1750 		}
1751 
1752 		schedule();
1753 
1754 		continue;
1755 
1756 pop_from_list:
1757 		list = wc->endio_list;
1758 		list.next->prev = list.prev->next = &list;
1759 		INIT_LIST_HEAD(&wc->endio_list);
1760 		raw_spin_unlock_irq(&wc->endio_list_lock);
1761 
1762 		if (!WC_MODE_FUA(wc))
1763 			writecache_disk_flush(wc, wc->dev);
1764 
1765 		wc_lock(wc);
1766 
1767 		if (WC_MODE_PMEM(wc)) {
1768 			__writecache_endio_pmem(wc, &list);
1769 		} else {
1770 			__writecache_endio_ssd(wc, &list);
1771 			writecache_wait_for_ios(wc, READ);
1772 		}
1773 
1774 		writecache_commit_flushed(wc, false);
1775 
1776 		wc_unlock(wc);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1783 {
1784 	struct dm_writecache *wc = wb->wc;
1785 	unsigned block_size = wc->block_size;
1786 	void *address = memory_data(wc, e);
1787 
1788 	persistent_memory_flush_cache(address, block_size);
1789 
1790 	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1791 		return true;
1792 
1793 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1794 			    block_size, persistent_memory_page_offset(address)) != 0;
1795 }
1796 
1797 struct writeback_list {
1798 	struct list_head list;
1799 	size_t size;
1800 };
1801 
1802 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1803 {
1804 	if (unlikely(wc->max_writeback_jobs)) {
1805 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1806 			wc_lock(wc);
1807 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1808 				writecache_wait_on_freelist(wc);
1809 			wc_unlock(wc);
1810 		}
1811 	}
1812 	cond_resched();
1813 }
1814 
1815 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1816 {
1817 	struct wc_entry *e, *f;
1818 	struct bio *bio;
1819 	struct writeback_struct *wb;
1820 	unsigned max_pages;
1821 
1822 	while (wbl->size) {
1823 		wbl->size--;
1824 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1825 		list_del(&e->lru);
1826 
1827 		max_pages = e->wc_list_contiguous;
1828 
1829 		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1830 				       GFP_NOIO, &wc->bio_set);
1831 		wb = container_of(bio, struct writeback_struct, bio);
1832 		wb->wc = wc;
1833 		bio->bi_end_io = writecache_writeback_endio;
1834 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1835 		if (max_pages <= WB_LIST_INLINE ||
1836 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1837 							   GFP_NOIO | __GFP_NORETRY |
1838 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1839 			wb->wc_list = wb->wc_list_inline;
1840 			max_pages = WB_LIST_INLINE;
1841 		}
1842 
1843 		BUG_ON(!wc_add_block(wb, e));
1844 
1845 		wb->wc_list[0] = e;
1846 		wb->wc_list_n = 1;
1847 
1848 		while (wbl->size && wb->wc_list_n < max_pages) {
1849 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1850 			if (read_original_sector(wc, f) !=
1851 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1852 				break;
1853 			if (!wc_add_block(wb, f))
1854 				break;
1855 			wbl->size--;
1856 			list_del(&f->lru);
1857 			wb->wc_list[wb->wc_list_n++] = f;
1858 			e = f;
1859 		}
1860 		if (WC_MODE_FUA(wc))
1861 			bio->bi_opf |= REQ_FUA;
1862 		if (writecache_has_error(wc)) {
1863 			bio->bi_status = BLK_STS_IOERR;
1864 			bio_endio(bio);
1865 		} else if (unlikely(!bio_sectors(bio))) {
1866 			bio->bi_status = BLK_STS_OK;
1867 			bio_endio(bio);
1868 		} else {
1869 			submit_bio(bio);
1870 		}
1871 
1872 		__writeback_throttle(wc, wbl);
1873 	}
1874 }
1875 
1876 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1877 {
1878 	struct wc_entry *e, *f;
1879 	struct dm_io_region from, to;
1880 	struct copy_struct *c;
1881 
1882 	while (wbl->size) {
1883 		unsigned n_sectors;
1884 
1885 		wbl->size--;
1886 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1887 		list_del(&e->lru);
1888 
1889 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1890 
1891 		from.bdev = wc->ssd_dev->bdev;
1892 		from.sector = cache_sector(wc, e);
1893 		from.count = n_sectors;
1894 		to.bdev = wc->dev->bdev;
1895 		to.sector = read_original_sector(wc, e);
1896 		to.count = n_sectors;
1897 
1898 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1899 		c->wc = wc;
1900 		c->e = e;
1901 		c->n_entries = e->wc_list_contiguous;
1902 
1903 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1904 			wbl->size--;
1905 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1906 			BUG_ON(f != e + 1);
1907 			list_del(&f->lru);
1908 			e = f;
1909 		}
1910 
1911 		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1912 			if (to.sector >= wc->data_device_sectors) {
1913 				writecache_copy_endio(0, 0, c);
1914 				continue;
1915 			}
1916 			from.count = to.count = wc->data_device_sectors - to.sector;
1917 		}
1918 
1919 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1920 
1921 		__writeback_throttle(wc, wbl);
1922 	}
1923 }
1924 
1925 static void writecache_writeback(struct work_struct *work)
1926 {
1927 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1928 	struct blk_plug plug;
1929 	struct wc_entry *f, *g, *e = NULL;
1930 	struct rb_node *node, *next_node;
1931 	struct list_head skipped;
1932 	struct writeback_list wbl;
1933 	unsigned long n_walked;
1934 
1935 	if (!WC_MODE_PMEM(wc)) {
1936 		/* Wait for any active kcopyd work on behalf of ssd writeback */
1937 		dm_kcopyd_client_flush(wc->dm_kcopyd);
1938 	}
1939 
1940 	if (likely(wc->pause != 0)) {
1941 		while (1) {
1942 			unsigned long idle;
1943 			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1944 			    unlikely(dm_suspended(wc->ti)))
1945 				break;
1946 			idle = dm_iot_idle_time(&wc->iot);
1947 			if (idle >= wc->pause)
1948 				break;
1949 			idle = wc->pause - idle;
1950 			if (idle > HZ)
1951 				idle = HZ;
1952 			schedule_timeout_idle(idle);
1953 		}
1954 	}
1955 
1956 	wc_lock(wc);
1957 restart:
1958 	if (writecache_has_error(wc)) {
1959 		wc_unlock(wc);
1960 		return;
1961 	}
1962 
1963 	if (unlikely(wc->writeback_all)) {
1964 		if (writecache_wait_for_writeback(wc))
1965 			goto restart;
1966 	}
1967 
1968 	if (wc->overwrote_committed) {
1969 		writecache_wait_for_ios(wc, WRITE);
1970 	}
1971 
1972 	n_walked = 0;
1973 	INIT_LIST_HEAD(&skipped);
1974 	INIT_LIST_HEAD(&wbl.list);
1975 	wbl.size = 0;
1976 	while (!list_empty(&wc->lru) &&
1977 	       (wc->writeback_all ||
1978 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1979 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1980 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1981 
1982 		n_walked++;
1983 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1984 		    likely(!wc->writeback_all)) {
1985 			if (likely(!dm_suspended(wc->ti)))
1986 				queue_work(wc->writeback_wq, &wc->writeback_work);
1987 			break;
1988 		}
1989 
1990 		if (unlikely(wc->writeback_all)) {
1991 			if (unlikely(!e)) {
1992 				writecache_flush(wc);
1993 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1994 			} else
1995 				e = g;
1996 		} else
1997 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1998 		BUG_ON(e->write_in_progress);
1999 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
2000 			writecache_flush(wc);
2001 		}
2002 		node = rb_prev(&e->rb_node);
2003 		if (node) {
2004 			f = container_of(node, struct wc_entry, rb_node);
2005 			if (unlikely(read_original_sector(wc, f) ==
2006 				     read_original_sector(wc, e))) {
2007 				BUG_ON(!f->write_in_progress);
2008 				list_move(&e->lru, &skipped);
2009 				cond_resched();
2010 				continue;
2011 			}
2012 		}
2013 		wc->writeback_size++;
2014 		list_move(&e->lru, &wbl.list);
2015 		wbl.size++;
2016 		e->write_in_progress = true;
2017 		e->wc_list_contiguous = 1;
2018 
2019 		f = e;
2020 
2021 		while (1) {
2022 			next_node = rb_next(&f->rb_node);
2023 			if (unlikely(!next_node))
2024 				break;
2025 			g = container_of(next_node, struct wc_entry, rb_node);
2026 			if (unlikely(read_original_sector(wc, g) ==
2027 			    read_original_sector(wc, f))) {
2028 				f = g;
2029 				continue;
2030 			}
2031 			if (read_original_sector(wc, g) !=
2032 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2033 				break;
2034 			if (unlikely(g->write_in_progress))
2035 				break;
2036 			if (unlikely(!writecache_entry_is_committed(wc, g)))
2037 				break;
2038 
2039 			if (!WC_MODE_PMEM(wc)) {
2040 				if (g != f + 1)
2041 					break;
2042 			}
2043 
2044 			n_walked++;
2045 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2046 			//	break;
2047 
2048 			wc->writeback_size++;
2049 			list_move(&g->lru, &wbl.list);
2050 			wbl.size++;
2051 			g->write_in_progress = true;
2052 			g->wc_list_contiguous = BIO_MAX_VECS;
2053 			f = g;
2054 			e->wc_list_contiguous++;
2055 			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2056 				if (unlikely(wc->writeback_all)) {
2057 					next_node = rb_next(&f->rb_node);
2058 					if (likely(next_node))
2059 						g = container_of(next_node, struct wc_entry, rb_node);
2060 				}
2061 				break;
2062 			}
2063 		}
2064 		cond_resched();
2065 	}
2066 
2067 	if (!list_empty(&skipped)) {
2068 		list_splice_tail(&skipped, &wc->lru);
2069 		/*
2070 		 * If we didn't do any progress, we must wait until some
2071 		 * writeback finishes to avoid burning CPU in a loop
2072 		 */
2073 		if (unlikely(!wbl.size))
2074 			writecache_wait_for_writeback(wc);
2075 	}
2076 
2077 	wc_unlock(wc);
2078 
2079 	blk_start_plug(&plug);
2080 
2081 	if (WC_MODE_PMEM(wc))
2082 		__writecache_writeback_pmem(wc, &wbl);
2083 	else
2084 		__writecache_writeback_ssd(wc, &wbl);
2085 
2086 	blk_finish_plug(&plug);
2087 
2088 	if (unlikely(wc->writeback_all)) {
2089 		wc_lock(wc);
2090 		while (writecache_wait_for_writeback(wc));
2091 		wc_unlock(wc);
2092 	}
2093 }
2094 
2095 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2096 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2097 {
2098 	uint64_t n_blocks, offset;
2099 	struct wc_entry e;
2100 
2101 	n_blocks = device_size;
2102 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2103 
2104 	while (1) {
2105 		if (!n_blocks)
2106 			return -ENOSPC;
2107 		/* Verify the following entries[n_blocks] won't overflow */
2108 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2109 				 sizeof(struct wc_memory_entry)))
2110 			return -EFBIG;
2111 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2112 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2113 		if (offset + n_blocks * block_size <= device_size)
2114 			break;
2115 		n_blocks--;
2116 	}
2117 
2118 	/* check if the bit field overflows */
2119 	e.index = n_blocks;
2120 	if (e.index != n_blocks)
2121 		return -EFBIG;
2122 
2123 	if (n_blocks_p)
2124 		*n_blocks_p = n_blocks;
2125 	if (n_metadata_blocks_p)
2126 		*n_metadata_blocks_p = offset >> __ffs(block_size);
2127 	return 0;
2128 }
2129 
2130 static int init_memory(struct dm_writecache *wc)
2131 {
2132 	size_t b;
2133 	int r;
2134 
2135 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2136 	if (r)
2137 		return r;
2138 
2139 	r = writecache_alloc_entries(wc);
2140 	if (r)
2141 		return r;
2142 
2143 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2144 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2145 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2146 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2147 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2148 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2149 
2150 	for (b = 0; b < wc->n_blocks; b++) {
2151 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2152 		cond_resched();
2153 	}
2154 
2155 	writecache_flush_all_metadata(wc);
2156 	writecache_commit_flushed(wc, false);
2157 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2158 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2159 	writecache_commit_flushed(wc, false);
2160 
2161 	return 0;
2162 }
2163 
2164 static void writecache_dtr(struct dm_target *ti)
2165 {
2166 	struct dm_writecache *wc = ti->private;
2167 
2168 	if (!wc)
2169 		return;
2170 
2171 	if (wc->endio_thread)
2172 		kthread_stop(wc->endio_thread);
2173 
2174 	if (wc->flush_thread)
2175 		kthread_stop(wc->flush_thread);
2176 
2177 	bioset_exit(&wc->bio_set);
2178 
2179 	mempool_exit(&wc->copy_pool);
2180 
2181 	if (wc->writeback_wq)
2182 		destroy_workqueue(wc->writeback_wq);
2183 
2184 	if (wc->dev)
2185 		dm_put_device(ti, wc->dev);
2186 
2187 	if (wc->ssd_dev)
2188 		dm_put_device(ti, wc->ssd_dev);
2189 
2190 	vfree(wc->entries);
2191 
2192 	if (wc->memory_map) {
2193 		if (WC_MODE_PMEM(wc))
2194 			persistent_memory_release(wc);
2195 		else
2196 			vfree(wc->memory_map);
2197 	}
2198 
2199 	if (wc->dm_kcopyd)
2200 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2201 
2202 	if (wc->dm_io)
2203 		dm_io_client_destroy(wc->dm_io);
2204 
2205 	vfree(wc->dirty_bitmap);
2206 
2207 	kfree(wc);
2208 }
2209 
2210 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2211 {
2212 	struct dm_writecache *wc;
2213 	struct dm_arg_set as;
2214 	const char *string;
2215 	unsigned opt_params;
2216 	size_t offset, data_size;
2217 	int i, r;
2218 	char dummy;
2219 	int high_wm_percent = HIGH_WATERMARK;
2220 	int low_wm_percent = LOW_WATERMARK;
2221 	uint64_t x;
2222 	struct wc_memory_superblock s;
2223 
2224 	static struct dm_arg _args[] = {
2225 		{0, 18, "Invalid number of feature args"},
2226 	};
2227 
2228 	as.argc = argc;
2229 	as.argv = argv;
2230 
2231 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2232 	if (!wc) {
2233 		ti->error = "Cannot allocate writecache structure";
2234 		r = -ENOMEM;
2235 		goto bad;
2236 	}
2237 	ti->private = wc;
2238 	wc->ti = ti;
2239 
2240 	mutex_init(&wc->lock);
2241 	wc->max_age = MAX_AGE_UNSPECIFIED;
2242 	writecache_poison_lists(wc);
2243 	init_waitqueue_head(&wc->freelist_wait);
2244 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2245 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2246 
2247 	for (i = 0; i < 2; i++) {
2248 		atomic_set(&wc->bio_in_progress[i], 0);
2249 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2250 	}
2251 
2252 	wc->dm_io = dm_io_client_create();
2253 	if (IS_ERR(wc->dm_io)) {
2254 		r = PTR_ERR(wc->dm_io);
2255 		ti->error = "Unable to allocate dm-io client";
2256 		wc->dm_io = NULL;
2257 		goto bad;
2258 	}
2259 
2260 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2261 	if (!wc->writeback_wq) {
2262 		r = -ENOMEM;
2263 		ti->error = "Could not allocate writeback workqueue";
2264 		goto bad;
2265 	}
2266 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2267 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2268 
2269 	dm_iot_init(&wc->iot);
2270 
2271 	raw_spin_lock_init(&wc->endio_list_lock);
2272 	INIT_LIST_HEAD(&wc->endio_list);
2273 	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2274 	if (IS_ERR(wc->endio_thread)) {
2275 		r = PTR_ERR(wc->endio_thread);
2276 		wc->endio_thread = NULL;
2277 		ti->error = "Couldn't spawn endio thread";
2278 		goto bad;
2279 	}
2280 
2281 	/*
2282 	 * Parse the mode (pmem or ssd)
2283 	 */
2284 	string = dm_shift_arg(&as);
2285 	if (!string)
2286 		goto bad_arguments;
2287 
2288 	if (!strcasecmp(string, "s")) {
2289 		wc->pmem_mode = false;
2290 	} else if (!strcasecmp(string, "p")) {
2291 #ifdef DM_WRITECACHE_HAS_PMEM
2292 		wc->pmem_mode = true;
2293 		wc->writeback_fua = true;
2294 #else
2295 		/*
2296 		 * If the architecture doesn't support persistent memory or
2297 		 * the kernel doesn't support any DAX drivers, this driver can
2298 		 * only be used in SSD-only mode.
2299 		 */
2300 		r = -EOPNOTSUPP;
2301 		ti->error = "Persistent memory or DAX not supported on this system";
2302 		goto bad;
2303 #endif
2304 	} else {
2305 		goto bad_arguments;
2306 	}
2307 
2308 	if (WC_MODE_PMEM(wc)) {
2309 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2310 				offsetof(struct writeback_struct, bio),
2311 				BIOSET_NEED_BVECS);
2312 		if (r) {
2313 			ti->error = "Could not allocate bio set";
2314 			goto bad;
2315 		}
2316 	} else {
2317 		wc->pause = PAUSE_WRITEBACK;
2318 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2319 		if (r) {
2320 			ti->error = "Could not allocate mempool";
2321 			goto bad;
2322 		}
2323 	}
2324 
2325 	/*
2326 	 * Parse the origin data device
2327 	 */
2328 	string = dm_shift_arg(&as);
2329 	if (!string)
2330 		goto bad_arguments;
2331 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2332 	if (r) {
2333 		ti->error = "Origin data device lookup failed";
2334 		goto bad;
2335 	}
2336 
2337 	/*
2338 	 * Parse cache data device (be it pmem or ssd)
2339 	 */
2340 	string = dm_shift_arg(&as);
2341 	if (!string)
2342 		goto bad_arguments;
2343 
2344 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2345 	if (r) {
2346 		ti->error = "Cache data device lookup failed";
2347 		goto bad;
2348 	}
2349 	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2350 
2351 	/*
2352 	 * Parse the cache block size
2353 	 */
2354 	string = dm_shift_arg(&as);
2355 	if (!string)
2356 		goto bad_arguments;
2357 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2358 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2359 	    (wc->block_size & (wc->block_size - 1))) {
2360 		r = -EINVAL;
2361 		ti->error = "Invalid block size";
2362 		goto bad;
2363 	}
2364 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2365 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2366 		r = -EINVAL;
2367 		ti->error = "Block size is smaller than device logical block size";
2368 		goto bad;
2369 	}
2370 	wc->block_size_bits = __ffs(wc->block_size);
2371 
2372 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2373 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2374 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2375 
2376 	/*
2377 	 * Parse optional arguments
2378 	 */
2379 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2380 	if (r)
2381 		goto bad;
2382 
2383 	while (opt_params) {
2384 		string = dm_shift_arg(&as), opt_params--;
2385 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2386 			unsigned long long start_sector;
2387 			string = dm_shift_arg(&as), opt_params--;
2388 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2389 				goto invalid_optional;
2390 			wc->start_sector = start_sector;
2391 			wc->start_sector_set = true;
2392 			if (wc->start_sector != start_sector ||
2393 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2394 				goto invalid_optional;
2395 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2396 			string = dm_shift_arg(&as), opt_params--;
2397 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2398 				goto invalid_optional;
2399 			if (high_wm_percent < 0 || high_wm_percent > 100)
2400 				goto invalid_optional;
2401 			wc->high_wm_percent_value = high_wm_percent;
2402 			wc->high_wm_percent_set = true;
2403 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2404 			string = dm_shift_arg(&as), opt_params--;
2405 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2406 				goto invalid_optional;
2407 			if (low_wm_percent < 0 || low_wm_percent > 100)
2408 				goto invalid_optional;
2409 			wc->low_wm_percent_value = low_wm_percent;
2410 			wc->low_wm_percent_set = true;
2411 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2412 			string = dm_shift_arg(&as), opt_params--;
2413 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2414 				goto invalid_optional;
2415 			wc->max_writeback_jobs_set = true;
2416 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2417 			string = dm_shift_arg(&as), opt_params--;
2418 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2419 				goto invalid_optional;
2420 			wc->autocommit_blocks_set = true;
2421 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2422 			unsigned autocommit_msecs;
2423 			string = dm_shift_arg(&as), opt_params--;
2424 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2425 				goto invalid_optional;
2426 			if (autocommit_msecs > 3600000)
2427 				goto invalid_optional;
2428 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2429 			wc->autocommit_time_value = autocommit_msecs;
2430 			wc->autocommit_time_set = true;
2431 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2432 			unsigned max_age_msecs;
2433 			string = dm_shift_arg(&as), opt_params--;
2434 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2435 				goto invalid_optional;
2436 			if (max_age_msecs > 86400000)
2437 				goto invalid_optional;
2438 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2439 			wc->max_age_set = true;
2440 			wc->max_age_value = max_age_msecs;
2441 		} else if (!strcasecmp(string, "cleaner")) {
2442 			wc->cleaner_set = true;
2443 			wc->cleaner = true;
2444 		} else if (!strcasecmp(string, "fua")) {
2445 			if (WC_MODE_PMEM(wc)) {
2446 				wc->writeback_fua = true;
2447 				wc->writeback_fua_set = true;
2448 			} else goto invalid_optional;
2449 		} else if (!strcasecmp(string, "nofua")) {
2450 			if (WC_MODE_PMEM(wc)) {
2451 				wc->writeback_fua = false;
2452 				wc->writeback_fua_set = true;
2453 			} else goto invalid_optional;
2454 		} else if (!strcasecmp(string, "metadata_only")) {
2455 			wc->metadata_only = true;
2456 		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2457 			unsigned pause_msecs;
2458 			if (WC_MODE_PMEM(wc))
2459 				goto invalid_optional;
2460 			string = dm_shift_arg(&as), opt_params--;
2461 			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2462 				goto invalid_optional;
2463 			if (pause_msecs > 60000)
2464 				goto invalid_optional;
2465 			wc->pause = msecs_to_jiffies(pause_msecs);
2466 			wc->pause_set = true;
2467 			wc->pause_value = pause_msecs;
2468 		} else {
2469 invalid_optional:
2470 			r = -EINVAL;
2471 			ti->error = "Invalid optional argument";
2472 			goto bad;
2473 		}
2474 	}
2475 
2476 	if (high_wm_percent < low_wm_percent) {
2477 		r = -EINVAL;
2478 		ti->error = "High watermark must be greater than or equal to low watermark";
2479 		goto bad;
2480 	}
2481 
2482 	if (WC_MODE_PMEM(wc)) {
2483 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2484 			r = -EOPNOTSUPP;
2485 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2486 			goto bad;
2487 		}
2488 
2489 		r = persistent_memory_claim(wc);
2490 		if (r) {
2491 			ti->error = "Unable to map persistent memory for cache";
2492 			goto bad;
2493 		}
2494 	} else {
2495 		size_t n_blocks, n_metadata_blocks;
2496 		uint64_t n_bitmap_bits;
2497 
2498 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2499 
2500 		bio_list_init(&wc->flush_list);
2501 		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2502 		if (IS_ERR(wc->flush_thread)) {
2503 			r = PTR_ERR(wc->flush_thread);
2504 			wc->flush_thread = NULL;
2505 			ti->error = "Couldn't spawn flush thread";
2506 			goto bad;
2507 		}
2508 
2509 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2510 					  &n_blocks, &n_metadata_blocks);
2511 		if (r) {
2512 			ti->error = "Invalid device size";
2513 			goto bad;
2514 		}
2515 
2516 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2517 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2518 		/* this is limitation of test_bit functions */
2519 		if (n_bitmap_bits > 1U << 31) {
2520 			r = -EFBIG;
2521 			ti->error = "Invalid device size";
2522 			goto bad;
2523 		}
2524 
2525 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2526 		if (!wc->memory_map) {
2527 			r = -ENOMEM;
2528 			ti->error = "Unable to allocate memory for metadata";
2529 			goto bad;
2530 		}
2531 
2532 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2533 		if (IS_ERR(wc->dm_kcopyd)) {
2534 			r = PTR_ERR(wc->dm_kcopyd);
2535 			ti->error = "Unable to allocate dm-kcopyd client";
2536 			wc->dm_kcopyd = NULL;
2537 			goto bad;
2538 		}
2539 
2540 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2541 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2542 			BITS_PER_LONG * sizeof(unsigned long);
2543 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2544 		if (!wc->dirty_bitmap) {
2545 			r = -ENOMEM;
2546 			ti->error = "Unable to allocate dirty bitmap";
2547 			goto bad;
2548 		}
2549 
2550 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2551 		if (r) {
2552 			ti->error = "Unable to read first block of metadata";
2553 			goto bad;
2554 		}
2555 	}
2556 
2557 	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2558 	if (r) {
2559 		ti->error = "Hardware memory error when reading superblock";
2560 		goto bad;
2561 	}
2562 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2563 		r = init_memory(wc);
2564 		if (r) {
2565 			ti->error = "Unable to initialize device";
2566 			goto bad;
2567 		}
2568 		r = copy_mc_to_kernel(&s, sb(wc),
2569 				      sizeof(struct wc_memory_superblock));
2570 		if (r) {
2571 			ti->error = "Hardware memory error when reading superblock";
2572 			goto bad;
2573 		}
2574 	}
2575 
2576 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2577 		ti->error = "Invalid magic in the superblock";
2578 		r = -EINVAL;
2579 		goto bad;
2580 	}
2581 
2582 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2583 		ti->error = "Invalid version in the superblock";
2584 		r = -EINVAL;
2585 		goto bad;
2586 	}
2587 
2588 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2589 		ti->error = "Block size does not match superblock";
2590 		r = -EINVAL;
2591 		goto bad;
2592 	}
2593 
2594 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2595 
2596 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2597 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2598 overflow:
2599 		ti->error = "Overflow in size calculation";
2600 		r = -EINVAL;
2601 		goto bad;
2602 	}
2603 	offset += sizeof(struct wc_memory_superblock);
2604 	if (offset < sizeof(struct wc_memory_superblock))
2605 		goto overflow;
2606 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2607 	data_size = wc->n_blocks * (size_t)wc->block_size;
2608 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2609 	    (offset + data_size < offset))
2610 		goto overflow;
2611 	if (offset + data_size > wc->memory_map_size) {
2612 		ti->error = "Memory area is too small";
2613 		r = -EINVAL;
2614 		goto bad;
2615 	}
2616 
2617 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2618 	wc->block_start = (char *)sb(wc) + offset;
2619 
2620 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2621 	x += 50;
2622 	do_div(x, 100);
2623 	wc->freelist_high_watermark = x;
2624 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2625 	x += 50;
2626 	do_div(x, 100);
2627 	wc->freelist_low_watermark = x;
2628 
2629 	if (wc->cleaner)
2630 		activate_cleaner(wc);
2631 
2632 	r = writecache_alloc_entries(wc);
2633 	if (r) {
2634 		ti->error = "Cannot allocate memory";
2635 		goto bad;
2636 	}
2637 
2638 	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2639 	ti->flush_supported = true;
2640 	ti->num_discard_bios = 1;
2641 
2642 	if (WC_MODE_PMEM(wc))
2643 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2644 
2645 	return 0;
2646 
2647 bad_arguments:
2648 	r = -EINVAL;
2649 	ti->error = "Bad arguments";
2650 bad:
2651 	writecache_dtr(ti);
2652 	return r;
2653 }
2654 
2655 static void writecache_status(struct dm_target *ti, status_type_t type,
2656 			      unsigned status_flags, char *result, unsigned maxlen)
2657 {
2658 	struct dm_writecache *wc = ti->private;
2659 	unsigned extra_args;
2660 	unsigned sz = 0;
2661 
2662 	switch (type) {
2663 	case STATUSTYPE_INFO:
2664 		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2665 		       writecache_has_error(wc),
2666 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2667 		       (unsigned long long)wc->writeback_size,
2668 		       wc->stats.reads,
2669 		       wc->stats.read_hits,
2670 		       wc->stats.writes,
2671 		       wc->stats.write_hits_uncommitted,
2672 		       wc->stats.write_hits_committed,
2673 		       wc->stats.writes_around,
2674 		       wc->stats.writes_allocate,
2675 		       wc->stats.writes_blocked_on_freelist,
2676 		       wc->stats.flushes,
2677 		       wc->stats.discards);
2678 		break;
2679 	case STATUSTYPE_TABLE:
2680 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2681 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2682 		extra_args = 0;
2683 		if (wc->start_sector_set)
2684 			extra_args += 2;
2685 		if (wc->high_wm_percent_set)
2686 			extra_args += 2;
2687 		if (wc->low_wm_percent_set)
2688 			extra_args += 2;
2689 		if (wc->max_writeback_jobs_set)
2690 			extra_args += 2;
2691 		if (wc->autocommit_blocks_set)
2692 			extra_args += 2;
2693 		if (wc->autocommit_time_set)
2694 			extra_args += 2;
2695 		if (wc->max_age_set)
2696 			extra_args += 2;
2697 		if (wc->cleaner_set)
2698 			extra_args++;
2699 		if (wc->writeback_fua_set)
2700 			extra_args++;
2701 		if (wc->metadata_only)
2702 			extra_args++;
2703 		if (wc->pause_set)
2704 			extra_args += 2;
2705 
2706 		DMEMIT("%u", extra_args);
2707 		if (wc->start_sector_set)
2708 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2709 		if (wc->high_wm_percent_set)
2710 			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2711 		if (wc->low_wm_percent_set)
2712 			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2713 		if (wc->max_writeback_jobs_set)
2714 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2715 		if (wc->autocommit_blocks_set)
2716 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2717 		if (wc->autocommit_time_set)
2718 			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2719 		if (wc->max_age_set)
2720 			DMEMIT(" max_age %u", wc->max_age_value);
2721 		if (wc->cleaner_set)
2722 			DMEMIT(" cleaner");
2723 		if (wc->writeback_fua_set)
2724 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2725 		if (wc->metadata_only)
2726 			DMEMIT(" metadata_only");
2727 		if (wc->pause_set)
2728 			DMEMIT(" pause_writeback %u", wc->pause_value);
2729 		break;
2730 	case STATUSTYPE_IMA:
2731 		*result = '\0';
2732 		break;
2733 	}
2734 }
2735 
2736 static struct target_type writecache_target = {
2737 	.name			= "writecache",
2738 	.version		= {1, 6, 0},
2739 	.module			= THIS_MODULE,
2740 	.ctr			= writecache_ctr,
2741 	.dtr			= writecache_dtr,
2742 	.status			= writecache_status,
2743 	.postsuspend		= writecache_suspend,
2744 	.resume			= writecache_resume,
2745 	.message		= writecache_message,
2746 	.map			= writecache_map,
2747 	.end_io			= writecache_end_io,
2748 	.iterate_devices	= writecache_iterate_devices,
2749 	.io_hints		= writecache_io_hints,
2750 };
2751 
2752 static int __init dm_writecache_init(void)
2753 {
2754 	int r;
2755 
2756 	r = dm_register_target(&writecache_target);
2757 	if (r < 0) {
2758 		DMERR("register failed %d", r);
2759 		return r;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 static void __exit dm_writecache_exit(void)
2766 {
2767 	dm_unregister_target(&writecache_target);
2768 }
2769 
2770 module_init(dm_writecache_init);
2771 module_exit(dm_writecache_exit);
2772 
2773 MODULE_DESCRIPTION(DM_NAME " writecache target");
2774 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2775 MODULE_LICENSE("GPL");
2776