xref: /linux/drivers/md/dm.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static inline bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496 {
497 	/*
498 	 * If REQ_PREFLUSH set, don't account payload, it will be
499 	 * submitted (and accounted) after this flush completes.
500 	 */
501 	if (bio_is_flush_with_data(bio))
502 		return 0;
503 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 		return io->sectors;
505 	return bio_sectors(bio);
506 }
507 
508 static void dm_io_acct(struct dm_io *io, bool end)
509 {
510 	struct bio *bio = io->orig_bio;
511 
512 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 		if (!end)
514 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 					   io->start_time);
516 		else
517 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 					 dm_io_sectors(io, bio),
519 					 io->start_time);
520 	}
521 
522 	if (static_branch_unlikely(&stats_enabled) &&
523 	    unlikely(dm_stats_used(&io->md->stats))) {
524 		sector_t sector;
525 
526 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 		else
529 			sector = bio->bi_iter.bi_sector;
530 
531 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 				    sector, dm_io_sectors(io, bio),
533 				    end, io->start_time, &io->stats_aux);
534 	}
535 }
536 
537 static void __dm_start_io_acct(struct dm_io *io)
538 {
539 	dm_io_acct(io, false);
540 }
541 
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 {
544 	/*
545 	 * Ensure IO accounting is only ever started once.
546 	 */
547 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 		return;
549 
550 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 	} else {
554 		unsigned long flags;
555 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 		spin_lock_irqsave(&io->lock, flags);
557 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 			spin_unlock_irqrestore(&io->lock, flags);
559 			return;
560 		}
561 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 		spin_unlock_irqrestore(&io->lock, flags);
563 	}
564 
565 	__dm_start_io_acct(io);
566 }
567 
568 static void dm_end_io_acct(struct dm_io *io)
569 {
570 	dm_io_acct(io, true);
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574 {
575 	struct dm_io *io;
576 	struct dm_target_io *tio;
577 	struct bio *clone;
578 
579 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580 	if (unlikely(!clone))
581 		return NULL;
582 	tio = clone_to_tio(clone);
583 	tio->flags = 0;
584 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 	tio->io = NULL;
586 
587 	io = container_of(tio, struct dm_io, tio);
588 	io->magic = DM_IO_MAGIC;
589 	io->status = BLK_STS_OK;
590 
591 	/* one ref is for submission, the other is for completion */
592 	atomic_set(&io->io_count, 2);
593 	this_cpu_inc(*md->pending_io);
594 	io->orig_bio = bio;
595 	io->md = md;
596 	spin_lock_init(&io->lock);
597 	io->start_time = jiffies;
598 	io->flags = 0;
599 	if (blk_queue_io_stat(md->queue))
600 		dm_io_set_flag(io, DM_IO_BLK_STAT);
601 
602 	if (static_branch_unlikely(&stats_enabled) &&
603 	    unlikely(dm_stats_used(&md->stats)))
604 		dm_stats_record_start(&md->stats, &io->stats_aux);
605 
606 	return io;
607 }
608 
609 static void free_io(struct dm_io *io)
610 {
611 	bio_put(&io->tio.clone);
612 }
613 
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616 {
617 	struct mapped_device *md = ci->io->md;
618 	struct dm_target_io *tio;
619 	struct bio *clone;
620 
621 	if (!ci->io->tio.io) {
622 		/* the dm_target_io embedded in ci->io is available */
623 		tio = &ci->io->tio;
624 		/* alloc_io() already initialized embedded clone */
625 		clone = &tio->clone;
626 	} else {
627 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628 					&md->mempools->bs);
629 		if (!clone)
630 			return NULL;
631 
632 		/* REQ_DM_POLL_LIST shouldn't be inherited */
633 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634 
635 		tio = clone_to_tio(clone);
636 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 	}
638 
639 	tio->magic = DM_TIO_MAGIC;
640 	tio->io = ci->io;
641 	tio->ti = ti;
642 	tio->target_bio_nr = target_bio_nr;
643 	tio->len_ptr = len;
644 	tio->old_sector = 0;
645 
646 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647 	clone->bi_bdev = md->disk->part0;
648 	if (unlikely(ti->needs_bio_set_dev))
649 		bio_set_dev(clone, md->disk->part0);
650 
651 	if (len) {
652 		clone->bi_iter.bi_size = to_bytes(*len);
653 		if (bio_integrity(clone))
654 			bio_integrity_trim(clone);
655 	}
656 
657 	return clone;
658 }
659 
660 static void free_tio(struct bio *clone)
661 {
662 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663 		return;
664 	bio_put(clone);
665 }
666 
667 /*
668  * Add the bio to the list of deferred io.
669  */
670 static void queue_io(struct mapped_device *md, struct bio *bio)
671 {
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&md->deferred_lock, flags);
675 	bio_list_add(&md->deferred, bio);
676 	spin_unlock_irqrestore(&md->deferred_lock, flags);
677 	queue_work(md->wq, &md->work);
678 }
679 
680 /*
681  * Everyone (including functions in this file), should use this
682  * function to access the md->map field, and make sure they call
683  * dm_put_live_table() when finished.
684  */
685 struct dm_table *dm_get_live_table(struct mapped_device *md,
686 				   int *srcu_idx) __acquires(md->io_barrier)
687 {
688 	*srcu_idx = srcu_read_lock(&md->io_barrier);
689 
690 	return srcu_dereference(md->map, &md->io_barrier);
691 }
692 
693 void dm_put_live_table(struct mapped_device *md,
694 		       int srcu_idx) __releases(md->io_barrier)
695 {
696 	srcu_read_unlock(&md->io_barrier, srcu_idx);
697 }
698 
699 void dm_sync_table(struct mapped_device *md)
700 {
701 	synchronize_srcu(&md->io_barrier);
702 	synchronize_rcu_expedited();
703 }
704 
705 /*
706  * A fast alternative to dm_get_live_table/dm_put_live_table.
707  * The caller must not block between these two functions.
708  */
709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710 {
711 	rcu_read_lock();
712 	return rcu_dereference(md->map);
713 }
714 
715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716 {
717 	rcu_read_unlock();
718 }
719 
720 static char *_dm_claim_ptr = "I belong to device-mapper";
721 
722 /*
723  * Open a table device so we can use it as a map destination.
724  */
725 static struct table_device *open_table_device(struct mapped_device *md,
726 		dev_t dev, blk_mode_t mode)
727 {
728 	struct table_device *td;
729 	struct file *bdev_file;
730 	struct block_device *bdev;
731 	u64 part_off;
732 	int r;
733 
734 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735 	if (!td)
736 		return ERR_PTR(-ENOMEM);
737 	refcount_set(&td->count, 1);
738 
739 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740 	if (IS_ERR(bdev_file)) {
741 		r = PTR_ERR(bdev_file);
742 		goto out_free_td;
743 	}
744 
745 	bdev = file_bdev(bdev_file);
746 
747 	/*
748 	 * We can be called before the dm disk is added.  In that case we can't
749 	 * register the holder relation here.  It will be done once add_disk was
750 	 * called.
751 	 */
752 	if (md->disk->slave_dir) {
753 		r = bd_link_disk_holder(bdev, md->disk);
754 		if (r)
755 			goto out_blkdev_put;
756 	}
757 
758 	td->dm_dev.mode = mode;
759 	td->dm_dev.bdev = bdev;
760 	td->dm_dev.bdev_file = bdev_file;
761 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762 						NULL, NULL);
763 	format_dev_t(td->dm_dev.name, dev);
764 	list_add(&td->list, &md->table_devices);
765 	return td;
766 
767 out_blkdev_put:
768 	fput(bdev_file);
769 out_free_td:
770 	kfree(td);
771 	return ERR_PTR(r);
772 }
773 
774 /*
775  * Close a table device that we've been using.
776  */
777 static void close_table_device(struct table_device *td, struct mapped_device *md)
778 {
779 	if (md->disk->slave_dir)
780 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781 	fput(td->dm_dev.bdev_file);
782 	put_dax(td->dm_dev.dax_dev);
783 	list_del(&td->list);
784 	kfree(td);
785 }
786 
787 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
788 					      blk_mode_t mode)
789 {
790 	struct table_device *td;
791 
792 	list_for_each_entry(td, l, list)
793 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
794 			return td;
795 
796 	return NULL;
797 }
798 
799 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
800 			struct dm_dev **result)
801 {
802 	struct table_device *td;
803 
804 	mutex_lock(&md->table_devices_lock);
805 	td = find_table_device(&md->table_devices, dev, mode);
806 	if (!td) {
807 		td = open_table_device(md, dev, mode);
808 		if (IS_ERR(td)) {
809 			mutex_unlock(&md->table_devices_lock);
810 			return PTR_ERR(td);
811 		}
812 	} else {
813 		refcount_inc(&td->count);
814 	}
815 	mutex_unlock(&md->table_devices_lock);
816 
817 	*result = &td->dm_dev;
818 	return 0;
819 }
820 
821 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
822 {
823 	struct table_device *td = container_of(d, struct table_device, dm_dev);
824 
825 	mutex_lock(&md->table_devices_lock);
826 	if (refcount_dec_and_test(&td->count))
827 		close_table_device(td, md);
828 	mutex_unlock(&md->table_devices_lock);
829 }
830 
831 /*
832  * Get the geometry associated with a dm device
833  */
834 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
835 {
836 	*geo = md->geometry;
837 
838 	return 0;
839 }
840 
841 /*
842  * Set the geometry of a device.
843  */
844 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
845 {
846 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
847 
848 	if (geo->start > sz) {
849 		DMERR("Start sector is beyond the geometry limits.");
850 		return -EINVAL;
851 	}
852 
853 	md->geometry = *geo;
854 
855 	return 0;
856 }
857 
858 static int __noflush_suspending(struct mapped_device *md)
859 {
860 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
861 }
862 
863 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
864 {
865 	struct mapped_device *md = io->md;
866 
867 	if (first_stage) {
868 		struct dm_io *next = md->requeue_list;
869 
870 		md->requeue_list = io;
871 		io->next = next;
872 	} else {
873 		bio_list_add_head(&md->deferred, io->orig_bio);
874 	}
875 }
876 
877 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
878 {
879 	if (first_stage)
880 		queue_work(md->wq, &md->requeue_work);
881 	else
882 		queue_work(md->wq, &md->work);
883 }
884 
885 /*
886  * Return true if the dm_io's original bio is requeued.
887  * io->status is updated with error if requeue disallowed.
888  */
889 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
890 {
891 	struct bio *bio = io->orig_bio;
892 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
893 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
894 				     (bio->bi_opf & REQ_POLLED));
895 	struct mapped_device *md = io->md;
896 	bool requeued = false;
897 
898 	if (handle_requeue || handle_polled_eagain) {
899 		unsigned long flags;
900 
901 		if (bio->bi_opf & REQ_POLLED) {
902 			/*
903 			 * Upper layer won't help us poll split bio
904 			 * (io->orig_bio may only reflect a subset of the
905 			 * pre-split original) so clear REQ_POLLED.
906 			 */
907 			bio_clear_polled(bio);
908 		}
909 
910 		/*
911 		 * Target requested pushing back the I/O or
912 		 * polled IO hit BLK_STS_AGAIN.
913 		 */
914 		spin_lock_irqsave(&md->deferred_lock, flags);
915 		if ((__noflush_suspending(md) &&
916 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
917 		    handle_polled_eagain || first_stage) {
918 			dm_requeue_add_io(io, first_stage);
919 			requeued = true;
920 		} else {
921 			/*
922 			 * noflush suspend was interrupted or this is
923 			 * a write to a zoned target.
924 			 */
925 			io->status = BLK_STS_IOERR;
926 		}
927 		spin_unlock_irqrestore(&md->deferred_lock, flags);
928 	}
929 
930 	if (requeued)
931 		dm_kick_requeue(md, first_stage);
932 
933 	return requeued;
934 }
935 
936 static void __dm_io_complete(struct dm_io *io, bool first_stage)
937 {
938 	struct bio *bio = io->orig_bio;
939 	struct mapped_device *md = io->md;
940 	blk_status_t io_error;
941 	bool requeued;
942 
943 	requeued = dm_handle_requeue(io, first_stage);
944 	if (requeued && first_stage)
945 		return;
946 
947 	io_error = io->status;
948 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
949 		dm_end_io_acct(io);
950 	else if (!io_error) {
951 		/*
952 		 * Must handle target that DM_MAPIO_SUBMITTED only to
953 		 * then bio_endio() rather than dm_submit_bio_remap()
954 		 */
955 		__dm_start_io_acct(io);
956 		dm_end_io_acct(io);
957 	}
958 	free_io(io);
959 	smp_wmb();
960 	this_cpu_dec(*md->pending_io);
961 
962 	/* nudge anyone waiting on suspend queue */
963 	if (unlikely(wq_has_sleeper(&md->wait)))
964 		wake_up(&md->wait);
965 
966 	/* Return early if the original bio was requeued */
967 	if (requeued)
968 		return;
969 
970 	if (bio_is_flush_with_data(bio)) {
971 		/*
972 		 * Preflush done for flush with data, reissue
973 		 * without REQ_PREFLUSH.
974 		 */
975 		bio->bi_opf &= ~REQ_PREFLUSH;
976 		queue_io(md, bio);
977 	} else {
978 		/* done with normal IO or empty flush */
979 		if (io_error)
980 			bio->bi_status = io_error;
981 		bio_endio(bio);
982 	}
983 }
984 
985 static void dm_wq_requeue_work(struct work_struct *work)
986 {
987 	struct mapped_device *md = container_of(work, struct mapped_device,
988 						requeue_work);
989 	unsigned long flags;
990 	struct dm_io *io;
991 
992 	/* reuse deferred lock to simplify dm_handle_requeue */
993 	spin_lock_irqsave(&md->deferred_lock, flags);
994 	io = md->requeue_list;
995 	md->requeue_list = NULL;
996 	spin_unlock_irqrestore(&md->deferred_lock, flags);
997 
998 	while (io) {
999 		struct dm_io *next = io->next;
1000 
1001 		dm_io_rewind(io, &md->disk->bio_split);
1002 
1003 		io->next = NULL;
1004 		__dm_io_complete(io, false);
1005 		io = next;
1006 		cond_resched();
1007 	}
1008 }
1009 
1010 /*
1011  * Two staged requeue:
1012  *
1013  * 1) io->orig_bio points to the real original bio, and the part mapped to
1014  *    this io must be requeued, instead of other parts of the original bio.
1015  *
1016  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1017  */
1018 static void dm_io_complete(struct dm_io *io)
1019 {
1020 	bool first_requeue;
1021 
1022 	/*
1023 	 * Only dm_io that has been split needs two stage requeue, otherwise
1024 	 * we may run into long bio clone chain during suspend and OOM could
1025 	 * be triggered.
1026 	 *
1027 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1028 	 * also aren't handled via the first stage requeue.
1029 	 */
1030 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1031 		first_requeue = true;
1032 	else
1033 		first_requeue = false;
1034 
1035 	__dm_io_complete(io, first_requeue);
1036 }
1037 
1038 /*
1039  * Decrements the number of outstanding ios that a bio has been
1040  * cloned into, completing the original io if necc.
1041  */
1042 static inline void __dm_io_dec_pending(struct dm_io *io)
1043 {
1044 	if (atomic_dec_and_test(&io->io_count))
1045 		dm_io_complete(io);
1046 }
1047 
1048 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1049 {
1050 	unsigned long flags;
1051 
1052 	/* Push-back supersedes any I/O errors */
1053 	spin_lock_irqsave(&io->lock, flags);
1054 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1055 	      __noflush_suspending(io->md))) {
1056 		io->status = error;
1057 	}
1058 	spin_unlock_irqrestore(&io->lock, flags);
1059 }
1060 
1061 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1062 {
1063 	if (unlikely(error))
1064 		dm_io_set_error(io, error);
1065 
1066 	__dm_io_dec_pending(io);
1067 }
1068 
1069 /*
1070  * The queue_limits are only valid as long as you have a reference
1071  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1072  */
1073 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1074 {
1075 	return &md->queue->limits;
1076 }
1077 
1078 void disable_discard(struct mapped_device *md)
1079 {
1080 	struct queue_limits *limits = dm_get_queue_limits(md);
1081 
1082 	/* device doesn't really support DISCARD, disable it */
1083 	limits->max_discard_sectors = 0;
1084 }
1085 
1086 void disable_write_zeroes(struct mapped_device *md)
1087 {
1088 	struct queue_limits *limits = dm_get_queue_limits(md);
1089 
1090 	/* device doesn't really support WRITE ZEROES, disable it */
1091 	limits->max_write_zeroes_sectors = 0;
1092 }
1093 
1094 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1095 {
1096 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1097 }
1098 
1099 static void clone_endio(struct bio *bio)
1100 {
1101 	blk_status_t error = bio->bi_status;
1102 	struct dm_target_io *tio = clone_to_tio(bio);
1103 	struct dm_target *ti = tio->ti;
1104 	dm_endio_fn endio = ti->type->end_io;
1105 	struct dm_io *io = tio->io;
1106 	struct mapped_device *md = io->md;
1107 
1108 	if (unlikely(error == BLK_STS_TARGET)) {
1109 		if (bio_op(bio) == REQ_OP_DISCARD &&
1110 		    !bdev_max_discard_sectors(bio->bi_bdev))
1111 			disable_discard(md);
1112 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1113 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1114 			disable_write_zeroes(md);
1115 	}
1116 
1117 	if (static_branch_unlikely(&zoned_enabled) &&
1118 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1119 		dm_zone_endio(io, bio);
1120 
1121 	if (endio) {
1122 		int r = endio(ti, bio, &error);
1123 
1124 		switch (r) {
1125 		case DM_ENDIO_REQUEUE:
1126 			if (static_branch_unlikely(&zoned_enabled)) {
1127 				/*
1128 				 * Requeuing writes to a sequential zone of a zoned
1129 				 * target will break the sequential write pattern:
1130 				 * fail such IO.
1131 				 */
1132 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1133 					error = BLK_STS_IOERR;
1134 				else
1135 					error = BLK_STS_DM_REQUEUE;
1136 			} else
1137 				error = BLK_STS_DM_REQUEUE;
1138 			fallthrough;
1139 		case DM_ENDIO_DONE:
1140 			break;
1141 		case DM_ENDIO_INCOMPLETE:
1142 			/* The target will handle the io */
1143 			return;
1144 		default:
1145 			DMCRIT("unimplemented target endio return value: %d", r);
1146 			BUG();
1147 		}
1148 	}
1149 
1150 	if (static_branch_unlikely(&swap_bios_enabled) &&
1151 	    unlikely(swap_bios_limit(ti, bio)))
1152 		up(&md->swap_bios_semaphore);
1153 
1154 	free_tio(bio);
1155 	dm_io_dec_pending(io, error);
1156 }
1157 
1158 /*
1159  * Return maximum size of I/O possible at the supplied sector up to the current
1160  * target boundary.
1161  */
1162 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1163 						  sector_t target_offset)
1164 {
1165 	return ti->len - target_offset;
1166 }
1167 
1168 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1169 			     unsigned int max_granularity,
1170 			     unsigned int max_sectors)
1171 {
1172 	sector_t target_offset = dm_target_offset(ti, sector);
1173 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1174 
1175 	/*
1176 	 * Does the target need to split IO even further?
1177 	 * - varied (per target) IO splitting is a tenet of DM; this
1178 	 *   explains why stacked chunk_sectors based splitting via
1179 	 *   bio_split_to_limits() isn't possible here.
1180 	 */
1181 	if (!max_granularity)
1182 		return len;
1183 	return min_t(sector_t, len,
1184 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1185 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1186 }
1187 
1188 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1189 {
1190 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1191 }
1192 
1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1194 {
1195 	if (len > UINT_MAX) {
1196 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197 		      (unsigned long long)len, UINT_MAX);
1198 		ti->error = "Maximum size of target IO is too large";
1199 		return -EINVAL;
1200 	}
1201 
1202 	ti->max_io_len = (uint32_t) len;
1203 
1204 	return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1207 
1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209 						sector_t sector, int *srcu_idx)
1210 	__acquires(md->io_barrier)
1211 {
1212 	struct dm_table *map;
1213 	struct dm_target *ti;
1214 
1215 	map = dm_get_live_table(md, srcu_idx);
1216 	if (!map)
1217 		return NULL;
1218 
1219 	ti = dm_table_find_target(map, sector);
1220 	if (!ti)
1221 		return NULL;
1222 
1223 	return ti;
1224 }
1225 
1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1228 		pfn_t *pfn)
1229 {
1230 	struct mapped_device *md = dax_get_private(dax_dev);
1231 	sector_t sector = pgoff * PAGE_SECTORS;
1232 	struct dm_target *ti;
1233 	long len, ret = -EIO;
1234 	int srcu_idx;
1235 
1236 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237 
1238 	if (!ti)
1239 		goto out;
1240 	if (!ti->type->direct_access)
1241 		goto out;
1242 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1243 	if (len < 1)
1244 		goto out;
1245 	nr_pages = min(len, nr_pages);
1246 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1247 
1248  out:
1249 	dm_put_live_table(md, srcu_idx);
1250 
1251 	return ret;
1252 }
1253 
1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1255 				  size_t nr_pages)
1256 {
1257 	struct mapped_device *md = dax_get_private(dax_dev);
1258 	sector_t sector = pgoff * PAGE_SECTORS;
1259 	struct dm_target *ti;
1260 	int ret = -EIO;
1261 	int srcu_idx;
1262 
1263 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264 
1265 	if (!ti)
1266 		goto out;
1267 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1268 		/*
1269 		 * ->zero_page_range() is mandatory dax operation. If we are
1270 		 *  here, something is wrong.
1271 		 */
1272 		goto out;
1273 	}
1274 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1275  out:
1276 	dm_put_live_table(md, srcu_idx);
1277 
1278 	return ret;
1279 }
1280 
1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282 		void *addr, size_t bytes, struct iov_iter *i)
1283 {
1284 	struct mapped_device *md = dax_get_private(dax_dev);
1285 	sector_t sector = pgoff * PAGE_SECTORS;
1286 	struct dm_target *ti;
1287 	int srcu_idx;
1288 	long ret = 0;
1289 
1290 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291 	if (!ti || !ti->type->dax_recovery_write)
1292 		goto out;
1293 
1294 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1295 out:
1296 	dm_put_live_table(md, srcu_idx);
1297 	return ret;
1298 }
1299 
1300 /*
1301  * A target may call dm_accept_partial_bio only from the map routine.  It is
1302  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304  * __send_duplicate_bios().
1305  *
1306  * dm_accept_partial_bio informs the dm that the target only wants to process
1307  * additional n_sectors sectors of the bio and the rest of the data should be
1308  * sent in a next bio.
1309  *
1310  * A diagram that explains the arithmetics:
1311  * +--------------------+---------------+-------+
1312  * |         1          |       2       |   3   |
1313  * +--------------------+---------------+-------+
1314  *
1315  * <-------------- *tio->len_ptr --------------->
1316  *                      <----- bio_sectors ----->
1317  *                      <-- n_sectors -->
1318  *
1319  * Region 1 was already iterated over with bio_advance or similar function.
1320  *	(it may be empty if the target doesn't use bio_advance)
1321  * Region 2 is the remaining bio size that the target wants to process.
1322  *	(it may be empty if region 1 is non-empty, although there is no reason
1323  *	 to make it empty)
1324  * The target requires that region 3 is to be sent in the next bio.
1325  *
1326  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327  * the partially processed part (the sum of regions 1+2) must be the same for all
1328  * copies of the bio.
1329  */
1330 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1331 {
1332 	struct dm_target_io *tio = clone_to_tio(bio);
1333 	struct dm_io *io = tio->io;
1334 	unsigned int bio_sectors = bio_sectors(bio);
1335 
1336 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339 	BUG_ON(bio_sectors > *tio->len_ptr);
1340 	BUG_ON(n_sectors > bio_sectors);
1341 
1342 	*tio->len_ptr -= bio_sectors - n_sectors;
1343 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1344 
1345 	/*
1346 	 * __split_and_process_bio() may have already saved mapped part
1347 	 * for accounting but it is being reduced so update accordingly.
1348 	 */
1349 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350 	io->sectors = n_sectors;
1351 	io->sector_offset = bio_sectors(io->orig_bio);
1352 }
1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1354 
1355 /*
1356  * @clone: clone bio that DM core passed to target's .map function
1357  * @tgt_clone: clone of @clone bio that target needs submitted
1358  *
1359  * Targets should use this interface to submit bios they take
1360  * ownership of when returning DM_MAPIO_SUBMITTED.
1361  *
1362  * Target should also enable ti->accounts_remapped_io
1363  */
1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1365 {
1366 	struct dm_target_io *tio = clone_to_tio(clone);
1367 	struct dm_io *io = tio->io;
1368 
1369 	/* establish bio that will get submitted */
1370 	if (!tgt_clone)
1371 		tgt_clone = clone;
1372 
1373 	/*
1374 	 * Account io->origin_bio to DM dev on behalf of target
1375 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1376 	 */
1377 	dm_start_io_acct(io, clone);
1378 
1379 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1380 			      tio->old_sector);
1381 	submit_bio_noacct(tgt_clone);
1382 }
1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1384 
1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1386 {
1387 	mutex_lock(&md->swap_bios_lock);
1388 	while (latch < md->swap_bios) {
1389 		cond_resched();
1390 		down(&md->swap_bios_semaphore);
1391 		md->swap_bios--;
1392 	}
1393 	while (latch > md->swap_bios) {
1394 		cond_resched();
1395 		up(&md->swap_bios_semaphore);
1396 		md->swap_bios++;
1397 	}
1398 	mutex_unlock(&md->swap_bios_lock);
1399 }
1400 
1401 static void __map_bio(struct bio *clone)
1402 {
1403 	struct dm_target_io *tio = clone_to_tio(clone);
1404 	struct dm_target *ti = tio->ti;
1405 	struct dm_io *io = tio->io;
1406 	struct mapped_device *md = io->md;
1407 	int r;
1408 
1409 	clone->bi_end_io = clone_endio;
1410 
1411 	/*
1412 	 * Map the clone.
1413 	 */
1414 	tio->old_sector = clone->bi_iter.bi_sector;
1415 
1416 	if (static_branch_unlikely(&swap_bios_enabled) &&
1417 	    unlikely(swap_bios_limit(ti, clone))) {
1418 		int latch = get_swap_bios();
1419 
1420 		if (unlikely(latch != md->swap_bios))
1421 			__set_swap_bios_limit(md, latch);
1422 		down(&md->swap_bios_semaphore);
1423 	}
1424 
1425 	if (static_branch_unlikely(&zoned_enabled)) {
1426 		/*
1427 		 * Check if the IO needs a special mapping due to zone append
1428 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1429 		 * calls the target map operation.
1430 		 */
1431 		if (unlikely(dm_emulate_zone_append(md)))
1432 			r = dm_zone_map_bio(tio);
1433 		else
1434 			goto do_map;
1435 	} else {
1436 do_map:
1437 		if (likely(ti->type->map == linear_map))
1438 			r = linear_map(ti, clone);
1439 		else if (ti->type->map == stripe_map)
1440 			r = stripe_map(ti, clone);
1441 		else
1442 			r = ti->type->map(ti, clone);
1443 	}
1444 
1445 	switch (r) {
1446 	case DM_MAPIO_SUBMITTED:
1447 		/* target has assumed ownership of this io */
1448 		if (!ti->accounts_remapped_io)
1449 			dm_start_io_acct(io, clone);
1450 		break;
1451 	case DM_MAPIO_REMAPPED:
1452 		dm_submit_bio_remap(clone, NULL);
1453 		break;
1454 	case DM_MAPIO_KILL:
1455 	case DM_MAPIO_REQUEUE:
1456 		if (static_branch_unlikely(&swap_bios_enabled) &&
1457 		    unlikely(swap_bios_limit(ti, clone)))
1458 			up(&md->swap_bios_semaphore);
1459 		free_tio(clone);
1460 		if (r == DM_MAPIO_KILL)
1461 			dm_io_dec_pending(io, BLK_STS_IOERR);
1462 		else
1463 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1464 		break;
1465 	default:
1466 		DMCRIT("unimplemented target map return value: %d", r);
1467 		BUG();
1468 	}
1469 }
1470 
1471 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1472 {
1473 	struct dm_io *io = ci->io;
1474 
1475 	if (ci->sector_count > len) {
1476 		/*
1477 		 * Split needed, save the mapped part for accounting.
1478 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1479 		 */
1480 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1481 		io->sectors = len;
1482 		io->sector_offset = bio_sectors(ci->bio);
1483 	}
1484 }
1485 
1486 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1487 				struct dm_target *ti, unsigned int num_bios,
1488 				unsigned *len, gfp_t gfp_flag)
1489 {
1490 	struct bio *bio;
1491 	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1492 
1493 	for (; try < 2; try++) {
1494 		int bio_nr;
1495 
1496 		if (try && num_bios > 1)
1497 			mutex_lock(&ci->io->md->table_devices_lock);
1498 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1499 			bio = alloc_tio(ci, ti, bio_nr, len,
1500 					try ? GFP_NOIO : GFP_NOWAIT);
1501 			if (!bio)
1502 				break;
1503 
1504 			bio_list_add(blist, bio);
1505 		}
1506 		if (try && num_bios > 1)
1507 			mutex_unlock(&ci->io->md->table_devices_lock);
1508 		if (bio_nr == num_bios)
1509 			return;
1510 
1511 		while ((bio = bio_list_pop(blist)))
1512 			free_tio(bio);
1513 	}
1514 }
1515 
1516 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1517 					  unsigned int num_bios, unsigned int *len,
1518 					  gfp_t gfp_flag)
1519 {
1520 	struct bio_list blist = BIO_EMPTY_LIST;
1521 	struct bio *clone;
1522 	unsigned int ret = 0;
1523 
1524 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1525 		return 0;
1526 
1527 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1528 	if (len)
1529 		setup_split_accounting(ci, *len);
1530 
1531 	/*
1532 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1533 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1534 	 */
1535 	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1536 	while ((clone = bio_list_pop(&blist))) {
1537 		if (num_bios > 1)
1538 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1539 		__map_bio(clone);
1540 		ret += 1;
1541 	}
1542 
1543 	return ret;
1544 }
1545 
1546 static void __send_empty_flush(struct clone_info *ci)
1547 {
1548 	struct dm_table *t = ci->map;
1549 	struct bio flush_bio;
1550 
1551 	/*
1552 	 * Use an on-stack bio for this, it's safe since we don't
1553 	 * need to reference it after submit. It's just used as
1554 	 * the basis for the clone(s).
1555 	 */
1556 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1557 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1558 
1559 	ci->bio = &flush_bio;
1560 	ci->sector_count = 0;
1561 	ci->io->tio.clone.bi_iter.bi_size = 0;
1562 
1563 	for (unsigned int i = 0; i < t->num_targets; i++) {
1564 		unsigned int bios;
1565 		struct dm_target *ti = dm_table_get_target(t, i);
1566 
1567 		if (unlikely(ti->num_flush_bios == 0))
1568 			continue;
1569 
1570 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1571 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1572 					     NULL, GFP_NOWAIT);
1573 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1574 	}
1575 
1576 	/*
1577 	 * alloc_io() takes one extra reference for submission, so the
1578 	 * reference won't reach 0 without the following subtraction
1579 	 */
1580 	atomic_sub(1, &ci->io->io_count);
1581 
1582 	bio_uninit(ci->bio);
1583 }
1584 
1585 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1586 			       unsigned int num_bios, unsigned int max_granularity,
1587 			       unsigned int max_sectors)
1588 {
1589 	unsigned int len, bios;
1590 
1591 	len = min_t(sector_t, ci->sector_count,
1592 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1593 
1594 	atomic_add(num_bios, &ci->io->io_count);
1595 	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1596 	/*
1597 	 * alloc_io() takes one extra reference for submission, so the
1598 	 * reference won't reach 0 without the following (+1) subtraction
1599 	 */
1600 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1601 
1602 	ci->sector += len;
1603 	ci->sector_count -= len;
1604 }
1605 
1606 static bool is_abnormal_io(struct bio *bio)
1607 {
1608 	enum req_op op = bio_op(bio);
1609 
1610 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1611 		switch (op) {
1612 		case REQ_OP_DISCARD:
1613 		case REQ_OP_SECURE_ERASE:
1614 		case REQ_OP_WRITE_ZEROES:
1615 			return true;
1616 		default:
1617 			break;
1618 		}
1619 	}
1620 
1621 	return false;
1622 }
1623 
1624 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1625 					  struct dm_target *ti)
1626 {
1627 	unsigned int num_bios = 0;
1628 	unsigned int max_granularity = 0;
1629 	unsigned int max_sectors = 0;
1630 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1631 
1632 	switch (bio_op(ci->bio)) {
1633 	case REQ_OP_DISCARD:
1634 		num_bios = ti->num_discard_bios;
1635 		max_sectors = limits->max_discard_sectors;
1636 		if (ti->max_discard_granularity)
1637 			max_granularity = max_sectors;
1638 		break;
1639 	case REQ_OP_SECURE_ERASE:
1640 		num_bios = ti->num_secure_erase_bios;
1641 		max_sectors = limits->max_secure_erase_sectors;
1642 		if (ti->max_secure_erase_granularity)
1643 			max_granularity = max_sectors;
1644 		break;
1645 	case REQ_OP_WRITE_ZEROES:
1646 		num_bios = ti->num_write_zeroes_bios;
1647 		max_sectors = limits->max_write_zeroes_sectors;
1648 		if (ti->max_write_zeroes_granularity)
1649 			max_granularity = max_sectors;
1650 		break;
1651 	default:
1652 		break;
1653 	}
1654 
1655 	/*
1656 	 * Even though the device advertised support for this type of
1657 	 * request, that does not mean every target supports it, and
1658 	 * reconfiguration might also have changed that since the
1659 	 * check was performed.
1660 	 */
1661 	if (unlikely(!num_bios))
1662 		return BLK_STS_NOTSUPP;
1663 
1664 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1665 
1666 	return BLK_STS_OK;
1667 }
1668 
1669 /*
1670  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1671  * associated with this bio, and this bio's bi_private needs to be
1672  * stored in dm_io->data before the reuse.
1673  *
1674  * bio->bi_private is owned by fs or upper layer, so block layer won't
1675  * touch it after splitting. Meantime it won't be changed by anyone after
1676  * bio is submitted. So this reuse is safe.
1677  */
1678 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1679 {
1680 	return (struct dm_io **)&bio->bi_private;
1681 }
1682 
1683 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1684 {
1685 	struct dm_io **head = dm_poll_list_head(bio);
1686 
1687 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1688 		bio->bi_opf |= REQ_DM_POLL_LIST;
1689 		/*
1690 		 * Save .bi_private into dm_io, so that we can reuse
1691 		 * .bi_private as dm_io list head for storing dm_io list
1692 		 */
1693 		io->data = bio->bi_private;
1694 
1695 		/* tell block layer to poll for completion */
1696 		bio->bi_cookie = ~BLK_QC_T_NONE;
1697 
1698 		io->next = NULL;
1699 	} else {
1700 		/*
1701 		 * bio recursed due to split, reuse original poll list,
1702 		 * and save bio->bi_private too.
1703 		 */
1704 		io->data = (*head)->data;
1705 		io->next = *head;
1706 	}
1707 
1708 	*head = io;
1709 }
1710 
1711 /*
1712  * Select the correct strategy for processing a non-flush bio.
1713  */
1714 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1715 {
1716 	struct bio *clone;
1717 	struct dm_target *ti;
1718 	unsigned int len;
1719 
1720 	ti = dm_table_find_target(ci->map, ci->sector);
1721 	if (unlikely(!ti))
1722 		return BLK_STS_IOERR;
1723 
1724 	if (unlikely(ci->is_abnormal_io))
1725 		return __process_abnormal_io(ci, ti);
1726 
1727 	/*
1728 	 * Only support bio polling for normal IO, and the target io is
1729 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1730 	 */
1731 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1732 
1733 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1734 	setup_split_accounting(ci, len);
1735 
1736 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1737 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1738 			return BLK_STS_NOTSUPP;
1739 
1740 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1741 		if (unlikely(!clone))
1742 			return BLK_STS_AGAIN;
1743 	} else {
1744 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1745 	}
1746 	__map_bio(clone);
1747 
1748 	ci->sector += len;
1749 	ci->sector_count -= len;
1750 
1751 	return BLK_STS_OK;
1752 }
1753 
1754 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1755 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1756 {
1757 	ci->map = map;
1758 	ci->io = io;
1759 	ci->bio = bio;
1760 	ci->is_abnormal_io = is_abnormal;
1761 	ci->submit_as_polled = false;
1762 	ci->sector = bio->bi_iter.bi_sector;
1763 	ci->sector_count = bio_sectors(bio);
1764 
1765 	/* Shouldn't happen but sector_count was being set to 0 so... */
1766 	if (static_branch_unlikely(&zoned_enabled) &&
1767 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1768 		ci->sector_count = 0;
1769 }
1770 
1771 /*
1772  * Entry point to split a bio into clones and submit them to the targets.
1773  */
1774 static void dm_split_and_process_bio(struct mapped_device *md,
1775 				     struct dm_table *map, struct bio *bio)
1776 {
1777 	struct clone_info ci;
1778 	struct dm_io *io;
1779 	blk_status_t error = BLK_STS_OK;
1780 	bool is_abnormal;
1781 
1782 	is_abnormal = is_abnormal_io(bio);
1783 	if (unlikely(is_abnormal)) {
1784 		/*
1785 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1786 		 * otherwise associated queue_limits won't be imposed.
1787 		 */
1788 		bio = bio_split_to_limits(bio);
1789 		if (!bio)
1790 			return;
1791 	}
1792 
1793 	/* Only support nowait for normal IO */
1794 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1795 		io = alloc_io(md, bio, GFP_NOWAIT);
1796 		if (unlikely(!io)) {
1797 			/* Unable to do anything without dm_io. */
1798 			bio_wouldblock_error(bio);
1799 			return;
1800 		}
1801 	} else {
1802 		io = alloc_io(md, bio, GFP_NOIO);
1803 	}
1804 	init_clone_info(&ci, io, map, bio, is_abnormal);
1805 
1806 	if (bio->bi_opf & REQ_PREFLUSH) {
1807 		__send_empty_flush(&ci);
1808 		/* dm_io_complete submits any data associated with flush */
1809 		goto out;
1810 	}
1811 
1812 	error = __split_and_process_bio(&ci);
1813 	if (error || !ci.sector_count)
1814 		goto out;
1815 	/*
1816 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1817 	 * *after* bios already submitted have been completely processed.
1818 	 */
1819 	bio_trim(bio, io->sectors, ci.sector_count);
1820 	trace_block_split(bio, bio->bi_iter.bi_sector);
1821 	bio_inc_remaining(bio);
1822 	submit_bio_noacct(bio);
1823 out:
1824 	/*
1825 	 * Drop the extra reference count for non-POLLED bio, and hold one
1826 	 * reference for POLLED bio, which will be released in dm_poll_bio
1827 	 *
1828 	 * Add every dm_io instance into the dm_io list head which is stored
1829 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1830 	 */
1831 	if (error || !ci.submit_as_polled) {
1832 		/*
1833 		 * In case of submission failure, the extra reference for
1834 		 * submitting io isn't consumed yet
1835 		 */
1836 		if (error)
1837 			atomic_dec(&io->io_count);
1838 		dm_io_dec_pending(io, error);
1839 	} else
1840 		dm_queue_poll_io(bio, io);
1841 }
1842 
1843 static void dm_submit_bio(struct bio *bio)
1844 {
1845 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1846 	int srcu_idx;
1847 	struct dm_table *map;
1848 
1849 	map = dm_get_live_table(md, &srcu_idx);
1850 
1851 	/* If suspended, or map not yet available, queue this IO for later */
1852 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1853 	    unlikely(!map)) {
1854 		if (bio->bi_opf & REQ_NOWAIT)
1855 			bio_wouldblock_error(bio);
1856 		else if (bio->bi_opf & REQ_RAHEAD)
1857 			bio_io_error(bio);
1858 		else
1859 			queue_io(md, bio);
1860 		goto out;
1861 	}
1862 
1863 	dm_split_and_process_bio(md, map, bio);
1864 out:
1865 	dm_put_live_table(md, srcu_idx);
1866 }
1867 
1868 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1869 			  unsigned int flags)
1870 {
1871 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1872 
1873 	/* don't poll if the mapped io is done */
1874 	if (atomic_read(&io->io_count) > 1)
1875 		bio_poll(&io->tio.clone, iob, flags);
1876 
1877 	/* bio_poll holds the last reference */
1878 	return atomic_read(&io->io_count) == 1;
1879 }
1880 
1881 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1882 		       unsigned int flags)
1883 {
1884 	struct dm_io **head = dm_poll_list_head(bio);
1885 	struct dm_io *list = *head;
1886 	struct dm_io *tmp = NULL;
1887 	struct dm_io *curr, *next;
1888 
1889 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1890 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1891 		return 0;
1892 
1893 	WARN_ON_ONCE(!list);
1894 
1895 	/*
1896 	 * Restore .bi_private before possibly completing dm_io.
1897 	 *
1898 	 * bio_poll() is only possible once @bio has been completely
1899 	 * submitted via submit_bio_noacct()'s depth-first submission.
1900 	 * So there is no dm_queue_poll_io() race associated with
1901 	 * clearing REQ_DM_POLL_LIST here.
1902 	 */
1903 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1904 	bio->bi_private = list->data;
1905 
1906 	for (curr = list, next = curr->next; curr; curr = next, next =
1907 			curr ? curr->next : NULL) {
1908 		if (dm_poll_dm_io(curr, iob, flags)) {
1909 			/*
1910 			 * clone_endio() has already occurred, so no
1911 			 * error handling is needed here.
1912 			 */
1913 			__dm_io_dec_pending(curr);
1914 		} else {
1915 			curr->next = tmp;
1916 			tmp = curr;
1917 		}
1918 	}
1919 
1920 	/* Not done? */
1921 	if (tmp) {
1922 		bio->bi_opf |= REQ_DM_POLL_LIST;
1923 		/* Reset bio->bi_private to dm_io list head */
1924 		*head = tmp;
1925 		return 0;
1926 	}
1927 	return 1;
1928 }
1929 
1930 /*
1931  *---------------------------------------------------------------
1932  * An IDR is used to keep track of allocated minor numbers.
1933  *---------------------------------------------------------------
1934  */
1935 static void free_minor(int minor)
1936 {
1937 	spin_lock(&_minor_lock);
1938 	idr_remove(&_minor_idr, minor);
1939 	spin_unlock(&_minor_lock);
1940 }
1941 
1942 /*
1943  * See if the device with a specific minor # is free.
1944  */
1945 static int specific_minor(int minor)
1946 {
1947 	int r;
1948 
1949 	if (minor >= (1 << MINORBITS))
1950 		return -EINVAL;
1951 
1952 	idr_preload(GFP_KERNEL);
1953 	spin_lock(&_minor_lock);
1954 
1955 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1956 
1957 	spin_unlock(&_minor_lock);
1958 	idr_preload_end();
1959 	if (r < 0)
1960 		return r == -ENOSPC ? -EBUSY : r;
1961 	return 0;
1962 }
1963 
1964 static int next_free_minor(int *minor)
1965 {
1966 	int r;
1967 
1968 	idr_preload(GFP_KERNEL);
1969 	spin_lock(&_minor_lock);
1970 
1971 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1972 
1973 	spin_unlock(&_minor_lock);
1974 	idr_preload_end();
1975 	if (r < 0)
1976 		return r;
1977 	*minor = r;
1978 	return 0;
1979 }
1980 
1981 static const struct block_device_operations dm_blk_dops;
1982 static const struct block_device_operations dm_rq_blk_dops;
1983 static const struct dax_operations dm_dax_ops;
1984 
1985 static void dm_wq_work(struct work_struct *work);
1986 
1987 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1988 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1989 {
1990 	dm_destroy_crypto_profile(q->crypto_profile);
1991 }
1992 
1993 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1994 
1995 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1996 {
1997 }
1998 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1999 
2000 static void cleanup_mapped_device(struct mapped_device *md)
2001 {
2002 	if (md->wq)
2003 		destroy_workqueue(md->wq);
2004 	dm_free_md_mempools(md->mempools);
2005 
2006 	if (md->dax_dev) {
2007 		dax_remove_host(md->disk);
2008 		kill_dax(md->dax_dev);
2009 		put_dax(md->dax_dev);
2010 		md->dax_dev = NULL;
2011 	}
2012 
2013 	dm_cleanup_zoned_dev(md);
2014 	if (md->disk) {
2015 		spin_lock(&_minor_lock);
2016 		md->disk->private_data = NULL;
2017 		spin_unlock(&_minor_lock);
2018 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2019 			struct table_device *td;
2020 
2021 			dm_sysfs_exit(md);
2022 			list_for_each_entry(td, &md->table_devices, list) {
2023 				bd_unlink_disk_holder(td->dm_dev.bdev,
2024 						      md->disk);
2025 			}
2026 
2027 			/*
2028 			 * Hold lock to make sure del_gendisk() won't concurrent
2029 			 * with open/close_table_device().
2030 			 */
2031 			mutex_lock(&md->table_devices_lock);
2032 			del_gendisk(md->disk);
2033 			mutex_unlock(&md->table_devices_lock);
2034 		}
2035 		dm_queue_destroy_crypto_profile(md->queue);
2036 		put_disk(md->disk);
2037 	}
2038 
2039 	if (md->pending_io) {
2040 		free_percpu(md->pending_io);
2041 		md->pending_io = NULL;
2042 	}
2043 
2044 	cleanup_srcu_struct(&md->io_barrier);
2045 
2046 	mutex_destroy(&md->suspend_lock);
2047 	mutex_destroy(&md->type_lock);
2048 	mutex_destroy(&md->table_devices_lock);
2049 	mutex_destroy(&md->swap_bios_lock);
2050 
2051 	dm_mq_cleanup_mapped_device(md);
2052 }
2053 
2054 /*
2055  * Allocate and initialise a blank device with a given minor.
2056  */
2057 static struct mapped_device *alloc_dev(int minor)
2058 {
2059 	int r, numa_node_id = dm_get_numa_node();
2060 	struct dax_device *dax_dev;
2061 	struct mapped_device *md;
2062 	void *old_md;
2063 
2064 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2065 	if (!md) {
2066 		DMERR("unable to allocate device, out of memory.");
2067 		return NULL;
2068 	}
2069 
2070 	if (!try_module_get(THIS_MODULE))
2071 		goto bad_module_get;
2072 
2073 	/* get a minor number for the dev */
2074 	if (minor == DM_ANY_MINOR)
2075 		r = next_free_minor(&minor);
2076 	else
2077 		r = specific_minor(minor);
2078 	if (r < 0)
2079 		goto bad_minor;
2080 
2081 	r = init_srcu_struct(&md->io_barrier);
2082 	if (r < 0)
2083 		goto bad_io_barrier;
2084 
2085 	md->numa_node_id = numa_node_id;
2086 	md->init_tio_pdu = false;
2087 	md->type = DM_TYPE_NONE;
2088 	mutex_init(&md->suspend_lock);
2089 	mutex_init(&md->type_lock);
2090 	mutex_init(&md->table_devices_lock);
2091 	spin_lock_init(&md->deferred_lock);
2092 	atomic_set(&md->holders, 1);
2093 	atomic_set(&md->open_count, 0);
2094 	atomic_set(&md->event_nr, 0);
2095 	atomic_set(&md->uevent_seq, 0);
2096 	INIT_LIST_HEAD(&md->uevent_list);
2097 	INIT_LIST_HEAD(&md->table_devices);
2098 	spin_lock_init(&md->uevent_lock);
2099 
2100 	/*
2101 	 * default to bio-based until DM table is loaded and md->type
2102 	 * established. If request-based table is loaded: blk-mq will
2103 	 * override accordingly.
2104 	 */
2105 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2106 	if (IS_ERR(md->disk))
2107 		goto bad;
2108 	md->queue = md->disk->queue;
2109 
2110 	init_waitqueue_head(&md->wait);
2111 	INIT_WORK(&md->work, dm_wq_work);
2112 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2113 	init_waitqueue_head(&md->eventq);
2114 	init_completion(&md->kobj_holder.completion);
2115 
2116 	md->requeue_list = NULL;
2117 	md->swap_bios = get_swap_bios();
2118 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2119 	mutex_init(&md->swap_bios_lock);
2120 
2121 	md->disk->major = _major;
2122 	md->disk->first_minor = minor;
2123 	md->disk->minors = 1;
2124 	md->disk->flags |= GENHD_FL_NO_PART;
2125 	md->disk->fops = &dm_blk_dops;
2126 	md->disk->private_data = md;
2127 	sprintf(md->disk->disk_name, "dm-%d", minor);
2128 
2129 	dax_dev = alloc_dax(md, &dm_dax_ops);
2130 	if (IS_ERR(dax_dev)) {
2131 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2132 			goto bad;
2133 	} else {
2134 		set_dax_nocache(dax_dev);
2135 		set_dax_nomc(dax_dev);
2136 		md->dax_dev = dax_dev;
2137 		if (dax_add_host(dax_dev, md->disk))
2138 			goto bad;
2139 	}
2140 
2141 	format_dev_t(md->name, MKDEV(_major, minor));
2142 
2143 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2144 	if (!md->wq)
2145 		goto bad;
2146 
2147 	md->pending_io = alloc_percpu(unsigned long);
2148 	if (!md->pending_io)
2149 		goto bad;
2150 
2151 	r = dm_stats_init(&md->stats);
2152 	if (r < 0)
2153 		goto bad;
2154 
2155 	/* Populate the mapping, nobody knows we exist yet */
2156 	spin_lock(&_minor_lock);
2157 	old_md = idr_replace(&_minor_idr, md, minor);
2158 	spin_unlock(&_minor_lock);
2159 
2160 	BUG_ON(old_md != MINOR_ALLOCED);
2161 
2162 	return md;
2163 
2164 bad:
2165 	cleanup_mapped_device(md);
2166 bad_io_barrier:
2167 	free_minor(minor);
2168 bad_minor:
2169 	module_put(THIS_MODULE);
2170 bad_module_get:
2171 	kvfree(md);
2172 	return NULL;
2173 }
2174 
2175 static void unlock_fs(struct mapped_device *md);
2176 
2177 static void free_dev(struct mapped_device *md)
2178 {
2179 	int minor = MINOR(disk_devt(md->disk));
2180 
2181 	unlock_fs(md);
2182 
2183 	cleanup_mapped_device(md);
2184 
2185 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2186 	dm_stats_cleanup(&md->stats);
2187 	free_minor(minor);
2188 
2189 	module_put(THIS_MODULE);
2190 	kvfree(md);
2191 }
2192 
2193 /*
2194  * Bind a table to the device.
2195  */
2196 static void event_callback(void *context)
2197 {
2198 	unsigned long flags;
2199 	LIST_HEAD(uevents);
2200 	struct mapped_device *md = context;
2201 
2202 	spin_lock_irqsave(&md->uevent_lock, flags);
2203 	list_splice_init(&md->uevent_list, &uevents);
2204 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2205 
2206 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2207 
2208 	atomic_inc(&md->event_nr);
2209 	wake_up(&md->eventq);
2210 	dm_issue_global_event();
2211 }
2212 
2213 /*
2214  * Returns old map, which caller must destroy.
2215  */
2216 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2217 			       struct queue_limits *limits)
2218 {
2219 	struct dm_table *old_map;
2220 	sector_t size;
2221 	int ret;
2222 
2223 	lockdep_assert_held(&md->suspend_lock);
2224 
2225 	size = dm_table_get_size(t);
2226 
2227 	/*
2228 	 * Wipe any geometry if the size of the table changed.
2229 	 */
2230 	if (size != dm_get_size(md))
2231 		memset(&md->geometry, 0, sizeof(md->geometry));
2232 
2233 	set_capacity(md->disk, size);
2234 
2235 	dm_table_event_callback(t, event_callback, md);
2236 
2237 	if (dm_table_request_based(t)) {
2238 		/*
2239 		 * Leverage the fact that request-based DM targets are
2240 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2241 		 */
2242 		md->immutable_target = dm_table_get_immutable_target(t);
2243 
2244 		/*
2245 		 * There is no need to reload with request-based dm because the
2246 		 * size of front_pad doesn't change.
2247 		 *
2248 		 * Note for future: If you are to reload bioset, prep-ed
2249 		 * requests in the queue may refer to bio from the old bioset,
2250 		 * so you must walk through the queue to unprep.
2251 		 */
2252 		if (!md->mempools) {
2253 			md->mempools = t->mempools;
2254 			t->mempools = NULL;
2255 		}
2256 	} else {
2257 		/*
2258 		 * The md may already have mempools that need changing.
2259 		 * If so, reload bioset because front_pad may have changed
2260 		 * because a different table was loaded.
2261 		 */
2262 		dm_free_md_mempools(md->mempools);
2263 		md->mempools = t->mempools;
2264 		t->mempools = NULL;
2265 	}
2266 
2267 	ret = dm_table_set_restrictions(t, md->queue, limits);
2268 	if (ret) {
2269 		old_map = ERR_PTR(ret);
2270 		goto out;
2271 	}
2272 
2273 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2274 	rcu_assign_pointer(md->map, (void *)t);
2275 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2276 
2277 	if (old_map)
2278 		dm_sync_table(md);
2279 out:
2280 	return old_map;
2281 }
2282 
2283 /*
2284  * Returns unbound table for the caller to free.
2285  */
2286 static struct dm_table *__unbind(struct mapped_device *md)
2287 {
2288 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2289 
2290 	if (!map)
2291 		return NULL;
2292 
2293 	dm_table_event_callback(map, NULL, NULL);
2294 	RCU_INIT_POINTER(md->map, NULL);
2295 	dm_sync_table(md);
2296 
2297 	return map;
2298 }
2299 
2300 /*
2301  * Constructor for a new device.
2302  */
2303 int dm_create(int minor, struct mapped_device **result)
2304 {
2305 	struct mapped_device *md;
2306 
2307 	md = alloc_dev(minor);
2308 	if (!md)
2309 		return -ENXIO;
2310 
2311 	dm_ima_reset_data(md);
2312 
2313 	*result = md;
2314 	return 0;
2315 }
2316 
2317 /*
2318  * Functions to manage md->type.
2319  * All are required to hold md->type_lock.
2320  */
2321 void dm_lock_md_type(struct mapped_device *md)
2322 {
2323 	mutex_lock(&md->type_lock);
2324 }
2325 
2326 void dm_unlock_md_type(struct mapped_device *md)
2327 {
2328 	mutex_unlock(&md->type_lock);
2329 }
2330 
2331 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2332 {
2333 	BUG_ON(!mutex_is_locked(&md->type_lock));
2334 	md->type = type;
2335 }
2336 
2337 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2338 {
2339 	return md->type;
2340 }
2341 
2342 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2343 {
2344 	return md->immutable_target_type;
2345 }
2346 
2347 /*
2348  * Setup the DM device's queue based on md's type
2349  */
2350 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2351 {
2352 	enum dm_queue_mode type = dm_table_get_type(t);
2353 	struct queue_limits limits;
2354 	struct table_device *td;
2355 	int r;
2356 
2357 	switch (type) {
2358 	case DM_TYPE_REQUEST_BASED:
2359 		md->disk->fops = &dm_rq_blk_dops;
2360 		r = dm_mq_init_request_queue(md, t);
2361 		if (r) {
2362 			DMERR("Cannot initialize queue for request-based dm mapped device");
2363 			return r;
2364 		}
2365 		break;
2366 	case DM_TYPE_BIO_BASED:
2367 	case DM_TYPE_DAX_BIO_BASED:
2368 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2369 		break;
2370 	case DM_TYPE_NONE:
2371 		WARN_ON_ONCE(true);
2372 		break;
2373 	}
2374 
2375 	r = dm_calculate_queue_limits(t, &limits);
2376 	if (r) {
2377 		DMERR("Cannot calculate initial queue limits");
2378 		return r;
2379 	}
2380 	r = dm_table_set_restrictions(t, md->queue, &limits);
2381 	if (r)
2382 		return r;
2383 
2384 	/*
2385 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2386 	 * with open_table_device() and close_table_device().
2387 	 */
2388 	mutex_lock(&md->table_devices_lock);
2389 	r = add_disk(md->disk);
2390 	mutex_unlock(&md->table_devices_lock);
2391 	if (r)
2392 		return r;
2393 
2394 	/*
2395 	 * Register the holder relationship for devices added before the disk
2396 	 * was live.
2397 	 */
2398 	list_for_each_entry(td, &md->table_devices, list) {
2399 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2400 		if (r)
2401 			goto out_undo_holders;
2402 	}
2403 
2404 	r = dm_sysfs_init(md);
2405 	if (r)
2406 		goto out_undo_holders;
2407 
2408 	md->type = type;
2409 	return 0;
2410 
2411 out_undo_holders:
2412 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2413 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2414 	mutex_lock(&md->table_devices_lock);
2415 	del_gendisk(md->disk);
2416 	mutex_unlock(&md->table_devices_lock);
2417 	return r;
2418 }
2419 
2420 struct mapped_device *dm_get_md(dev_t dev)
2421 {
2422 	struct mapped_device *md;
2423 	unsigned int minor = MINOR(dev);
2424 
2425 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2426 		return NULL;
2427 
2428 	spin_lock(&_minor_lock);
2429 
2430 	md = idr_find(&_minor_idr, minor);
2431 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2432 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2433 		md = NULL;
2434 		goto out;
2435 	}
2436 	dm_get(md);
2437 out:
2438 	spin_unlock(&_minor_lock);
2439 
2440 	return md;
2441 }
2442 EXPORT_SYMBOL_GPL(dm_get_md);
2443 
2444 void *dm_get_mdptr(struct mapped_device *md)
2445 {
2446 	return md->interface_ptr;
2447 }
2448 
2449 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2450 {
2451 	md->interface_ptr = ptr;
2452 }
2453 
2454 void dm_get(struct mapped_device *md)
2455 {
2456 	atomic_inc(&md->holders);
2457 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2458 }
2459 
2460 int dm_hold(struct mapped_device *md)
2461 {
2462 	spin_lock(&_minor_lock);
2463 	if (test_bit(DMF_FREEING, &md->flags)) {
2464 		spin_unlock(&_minor_lock);
2465 		return -EBUSY;
2466 	}
2467 	dm_get(md);
2468 	spin_unlock(&_minor_lock);
2469 	return 0;
2470 }
2471 EXPORT_SYMBOL_GPL(dm_hold);
2472 
2473 const char *dm_device_name(struct mapped_device *md)
2474 {
2475 	return md->name;
2476 }
2477 EXPORT_SYMBOL_GPL(dm_device_name);
2478 
2479 static void __dm_destroy(struct mapped_device *md, bool wait)
2480 {
2481 	struct dm_table *map;
2482 	int srcu_idx;
2483 
2484 	might_sleep();
2485 
2486 	spin_lock(&_minor_lock);
2487 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2488 	set_bit(DMF_FREEING, &md->flags);
2489 	spin_unlock(&_minor_lock);
2490 
2491 	blk_mark_disk_dead(md->disk);
2492 
2493 	/*
2494 	 * Take suspend_lock so that presuspend and postsuspend methods
2495 	 * do not race with internal suspend.
2496 	 */
2497 	mutex_lock(&md->suspend_lock);
2498 	map = dm_get_live_table(md, &srcu_idx);
2499 	if (!dm_suspended_md(md)) {
2500 		dm_table_presuspend_targets(map);
2501 		set_bit(DMF_SUSPENDED, &md->flags);
2502 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2503 		dm_table_postsuspend_targets(map);
2504 	}
2505 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2506 	dm_put_live_table(md, srcu_idx);
2507 	mutex_unlock(&md->suspend_lock);
2508 
2509 	/*
2510 	 * Rare, but there may be I/O requests still going to complete,
2511 	 * for example.  Wait for all references to disappear.
2512 	 * No one should increment the reference count of the mapped_device,
2513 	 * after the mapped_device state becomes DMF_FREEING.
2514 	 */
2515 	if (wait)
2516 		while (atomic_read(&md->holders))
2517 			fsleep(1000);
2518 	else if (atomic_read(&md->holders))
2519 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2520 		       dm_device_name(md), atomic_read(&md->holders));
2521 
2522 	dm_table_destroy(__unbind(md));
2523 	free_dev(md);
2524 }
2525 
2526 void dm_destroy(struct mapped_device *md)
2527 {
2528 	__dm_destroy(md, true);
2529 }
2530 
2531 void dm_destroy_immediate(struct mapped_device *md)
2532 {
2533 	__dm_destroy(md, false);
2534 }
2535 
2536 void dm_put(struct mapped_device *md)
2537 {
2538 	atomic_dec(&md->holders);
2539 }
2540 EXPORT_SYMBOL_GPL(dm_put);
2541 
2542 static bool dm_in_flight_bios(struct mapped_device *md)
2543 {
2544 	int cpu;
2545 	unsigned long sum = 0;
2546 
2547 	for_each_possible_cpu(cpu)
2548 		sum += *per_cpu_ptr(md->pending_io, cpu);
2549 
2550 	return sum != 0;
2551 }
2552 
2553 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2554 {
2555 	int r = 0;
2556 	DEFINE_WAIT(wait);
2557 
2558 	while (true) {
2559 		prepare_to_wait(&md->wait, &wait, task_state);
2560 
2561 		if (!dm_in_flight_bios(md))
2562 			break;
2563 
2564 		if (signal_pending_state(task_state, current)) {
2565 			r = -EINTR;
2566 			break;
2567 		}
2568 
2569 		io_schedule();
2570 	}
2571 	finish_wait(&md->wait, &wait);
2572 
2573 	smp_rmb();
2574 
2575 	return r;
2576 }
2577 
2578 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2579 {
2580 	int r = 0;
2581 
2582 	if (!queue_is_mq(md->queue))
2583 		return dm_wait_for_bios_completion(md, task_state);
2584 
2585 	while (true) {
2586 		if (!blk_mq_queue_inflight(md->queue))
2587 			break;
2588 
2589 		if (signal_pending_state(task_state, current)) {
2590 			r = -EINTR;
2591 			break;
2592 		}
2593 
2594 		fsleep(5000);
2595 	}
2596 
2597 	return r;
2598 }
2599 
2600 /*
2601  * Process the deferred bios
2602  */
2603 static void dm_wq_work(struct work_struct *work)
2604 {
2605 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2606 	struct bio *bio;
2607 
2608 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2609 		spin_lock_irq(&md->deferred_lock);
2610 		bio = bio_list_pop(&md->deferred);
2611 		spin_unlock_irq(&md->deferred_lock);
2612 
2613 		if (!bio)
2614 			break;
2615 
2616 		submit_bio_noacct(bio);
2617 		cond_resched();
2618 	}
2619 }
2620 
2621 static void dm_queue_flush(struct mapped_device *md)
2622 {
2623 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624 	smp_mb__after_atomic();
2625 	queue_work(md->wq, &md->work);
2626 }
2627 
2628 /*
2629  * Swap in a new table, returning the old one for the caller to destroy.
2630  */
2631 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2632 {
2633 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2634 	struct queue_limits limits;
2635 	int r;
2636 
2637 	mutex_lock(&md->suspend_lock);
2638 
2639 	/* device must be suspended */
2640 	if (!dm_suspended_md(md))
2641 		goto out;
2642 
2643 	/*
2644 	 * If the new table has no data devices, retain the existing limits.
2645 	 * This helps multipath with queue_if_no_path if all paths disappear,
2646 	 * then new I/O is queued based on these limits, and then some paths
2647 	 * reappear.
2648 	 */
2649 	if (dm_table_has_no_data_devices(table)) {
2650 		live_map = dm_get_live_table_fast(md);
2651 		if (live_map)
2652 			limits = md->queue->limits;
2653 		dm_put_live_table_fast(md);
2654 	}
2655 
2656 	if (!live_map) {
2657 		r = dm_calculate_queue_limits(table, &limits);
2658 		if (r) {
2659 			map = ERR_PTR(r);
2660 			goto out;
2661 		}
2662 	}
2663 
2664 	map = __bind(md, table, &limits);
2665 	dm_issue_global_event();
2666 
2667 out:
2668 	mutex_unlock(&md->suspend_lock);
2669 	return map;
2670 }
2671 
2672 /*
2673  * Functions to lock and unlock any filesystem running on the
2674  * device.
2675  */
2676 static int lock_fs(struct mapped_device *md)
2677 {
2678 	int r;
2679 
2680 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2681 
2682 	r = bdev_freeze(md->disk->part0);
2683 	if (!r)
2684 		set_bit(DMF_FROZEN, &md->flags);
2685 	return r;
2686 }
2687 
2688 static void unlock_fs(struct mapped_device *md)
2689 {
2690 	if (!test_bit(DMF_FROZEN, &md->flags))
2691 		return;
2692 	bdev_thaw(md->disk->part0);
2693 	clear_bit(DMF_FROZEN, &md->flags);
2694 }
2695 
2696 /*
2697  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2698  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2699  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2700  *
2701  * If __dm_suspend returns 0, the device is completely quiescent
2702  * now. There is no request-processing activity. All new requests
2703  * are being added to md->deferred list.
2704  */
2705 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2706 			unsigned int suspend_flags, unsigned int task_state,
2707 			int dmf_suspended_flag)
2708 {
2709 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2710 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2711 	int r;
2712 
2713 	lockdep_assert_held(&md->suspend_lock);
2714 
2715 	/*
2716 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2717 	 * This flag is cleared before dm_suspend returns.
2718 	 */
2719 	if (noflush)
2720 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2721 	else
2722 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2723 
2724 	/*
2725 	 * This gets reverted if there's an error later and the targets
2726 	 * provide the .presuspend_undo hook.
2727 	 */
2728 	dm_table_presuspend_targets(map);
2729 
2730 	/*
2731 	 * Flush I/O to the device.
2732 	 * Any I/O submitted after lock_fs() may not be flushed.
2733 	 * noflush takes precedence over do_lockfs.
2734 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2735 	 */
2736 	if (!noflush && do_lockfs) {
2737 		r = lock_fs(md);
2738 		if (r) {
2739 			dm_table_presuspend_undo_targets(map);
2740 			return r;
2741 		}
2742 	}
2743 
2744 	/*
2745 	 * Here we must make sure that no processes are submitting requests
2746 	 * to target drivers i.e. no one may be executing
2747 	 * dm_split_and_process_bio from dm_submit_bio.
2748 	 *
2749 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2750 	 * we take the write lock. To prevent any process from reentering
2751 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2752 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2753 	 * flush_workqueue(md->wq).
2754 	 */
2755 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2756 	if (map)
2757 		synchronize_srcu(&md->io_barrier);
2758 
2759 	/*
2760 	 * Stop md->queue before flushing md->wq in case request-based
2761 	 * dm defers requests to md->wq from md->queue.
2762 	 */
2763 	if (dm_request_based(md))
2764 		dm_stop_queue(md->queue);
2765 
2766 	flush_workqueue(md->wq);
2767 
2768 	/*
2769 	 * At this point no more requests are entering target request routines.
2770 	 * We call dm_wait_for_completion to wait for all existing requests
2771 	 * to finish.
2772 	 */
2773 	r = dm_wait_for_completion(md, task_state);
2774 	if (!r)
2775 		set_bit(dmf_suspended_flag, &md->flags);
2776 
2777 	if (noflush)
2778 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2779 	if (map)
2780 		synchronize_srcu(&md->io_barrier);
2781 
2782 	/* were we interrupted ? */
2783 	if (r < 0) {
2784 		dm_queue_flush(md);
2785 
2786 		if (dm_request_based(md))
2787 			dm_start_queue(md->queue);
2788 
2789 		unlock_fs(md);
2790 		dm_table_presuspend_undo_targets(map);
2791 		/* pushback list is already flushed, so skip flush */
2792 	}
2793 
2794 	return r;
2795 }
2796 
2797 /*
2798  * We need to be able to change a mapping table under a mounted
2799  * filesystem.  For example we might want to move some data in
2800  * the background.  Before the table can be swapped with
2801  * dm_bind_table, dm_suspend must be called to flush any in
2802  * flight bios and ensure that any further io gets deferred.
2803  */
2804 /*
2805  * Suspend mechanism in request-based dm.
2806  *
2807  * 1. Flush all I/Os by lock_fs() if needed.
2808  * 2. Stop dispatching any I/O by stopping the request_queue.
2809  * 3. Wait for all in-flight I/Os to be completed or requeued.
2810  *
2811  * To abort suspend, start the request_queue.
2812  */
2813 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2814 {
2815 	struct dm_table *map = NULL;
2816 	int r = 0;
2817 
2818 retry:
2819 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2820 
2821 	if (dm_suspended_md(md)) {
2822 		r = -EINVAL;
2823 		goto out_unlock;
2824 	}
2825 
2826 	if (dm_suspended_internally_md(md)) {
2827 		/* already internally suspended, wait for internal resume */
2828 		mutex_unlock(&md->suspend_lock);
2829 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2830 		if (r)
2831 			return r;
2832 		goto retry;
2833 	}
2834 
2835 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2836 	if (!map) {
2837 		/* avoid deadlock with fs/namespace.c:do_mount() */
2838 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2839 	}
2840 
2841 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2842 	if (r)
2843 		goto out_unlock;
2844 
2845 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2846 	dm_table_postsuspend_targets(map);
2847 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2848 
2849 out_unlock:
2850 	mutex_unlock(&md->suspend_lock);
2851 	return r;
2852 }
2853 
2854 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2855 {
2856 	if (map) {
2857 		int r = dm_table_resume_targets(map);
2858 
2859 		if (r)
2860 			return r;
2861 	}
2862 
2863 	dm_queue_flush(md);
2864 
2865 	/*
2866 	 * Flushing deferred I/Os must be done after targets are resumed
2867 	 * so that mapping of targets can work correctly.
2868 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2869 	 */
2870 	if (dm_request_based(md))
2871 		dm_start_queue(md->queue);
2872 
2873 	unlock_fs(md);
2874 
2875 	return 0;
2876 }
2877 
2878 int dm_resume(struct mapped_device *md)
2879 {
2880 	int r;
2881 	struct dm_table *map = NULL;
2882 
2883 retry:
2884 	r = -EINVAL;
2885 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2886 
2887 	if (!dm_suspended_md(md))
2888 		goto out;
2889 
2890 	if (dm_suspended_internally_md(md)) {
2891 		/* already internally suspended, wait for internal resume */
2892 		mutex_unlock(&md->suspend_lock);
2893 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2894 		if (r)
2895 			return r;
2896 		goto retry;
2897 	}
2898 
2899 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2900 	if (!map || !dm_table_get_size(map))
2901 		goto out;
2902 
2903 	r = __dm_resume(md, map);
2904 	if (r)
2905 		goto out;
2906 
2907 	clear_bit(DMF_SUSPENDED, &md->flags);
2908 out:
2909 	mutex_unlock(&md->suspend_lock);
2910 
2911 	return r;
2912 }
2913 
2914 /*
2915  * Internal suspend/resume works like userspace-driven suspend. It waits
2916  * until all bios finish and prevents issuing new bios to the target drivers.
2917  * It may be used only from the kernel.
2918  */
2919 
2920 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2921 {
2922 	struct dm_table *map = NULL;
2923 
2924 	lockdep_assert_held(&md->suspend_lock);
2925 
2926 	if (md->internal_suspend_count++)
2927 		return; /* nested internal suspend */
2928 
2929 	if (dm_suspended_md(md)) {
2930 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2931 		return; /* nest suspend */
2932 	}
2933 
2934 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2935 
2936 	/*
2937 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2938 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2939 	 * would require changing .presuspend to return an error -- avoid this
2940 	 * until there is a need for more elaborate variants of internal suspend.
2941 	 */
2942 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2943 			    DMF_SUSPENDED_INTERNALLY);
2944 
2945 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2946 	dm_table_postsuspend_targets(map);
2947 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2948 }
2949 
2950 static void __dm_internal_resume(struct mapped_device *md)
2951 {
2952 	int r;
2953 	struct dm_table *map;
2954 
2955 	BUG_ON(!md->internal_suspend_count);
2956 
2957 	if (--md->internal_suspend_count)
2958 		return; /* resume from nested internal suspend */
2959 
2960 	if (dm_suspended_md(md))
2961 		goto done; /* resume from nested suspend */
2962 
2963 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2964 	r = __dm_resume(md, map);
2965 	if (r) {
2966 		/*
2967 		 * If a preresume method of some target failed, we are in a
2968 		 * tricky situation. We can't return an error to the caller. We
2969 		 * can't fake success because then the "resume" and
2970 		 * "postsuspend" methods would not be paired correctly, and it
2971 		 * would break various targets, for example it would cause list
2972 		 * corruption in the "origin" target.
2973 		 *
2974 		 * So, we fake normal suspend here, to make sure that the
2975 		 * "resume" and "postsuspend" methods will be paired correctly.
2976 		 */
2977 		DMERR("Preresume method failed: %d", r);
2978 		set_bit(DMF_SUSPENDED, &md->flags);
2979 	}
2980 done:
2981 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2982 	smp_mb__after_atomic();
2983 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2984 }
2985 
2986 void dm_internal_suspend_noflush(struct mapped_device *md)
2987 {
2988 	mutex_lock(&md->suspend_lock);
2989 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2990 	mutex_unlock(&md->suspend_lock);
2991 }
2992 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2993 
2994 void dm_internal_resume(struct mapped_device *md)
2995 {
2996 	mutex_lock(&md->suspend_lock);
2997 	__dm_internal_resume(md);
2998 	mutex_unlock(&md->suspend_lock);
2999 }
3000 EXPORT_SYMBOL_GPL(dm_internal_resume);
3001 
3002 /*
3003  * Fast variants of internal suspend/resume hold md->suspend_lock,
3004  * which prevents interaction with userspace-driven suspend.
3005  */
3006 
3007 void dm_internal_suspend_fast(struct mapped_device *md)
3008 {
3009 	mutex_lock(&md->suspend_lock);
3010 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3011 		return;
3012 
3013 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3014 	synchronize_srcu(&md->io_barrier);
3015 	flush_workqueue(md->wq);
3016 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3017 }
3018 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3019 
3020 void dm_internal_resume_fast(struct mapped_device *md)
3021 {
3022 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3023 		goto done;
3024 
3025 	dm_queue_flush(md);
3026 
3027 done:
3028 	mutex_unlock(&md->suspend_lock);
3029 }
3030 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3031 
3032 /*
3033  *---------------------------------------------------------------
3034  * Event notification.
3035  *---------------------------------------------------------------
3036  */
3037 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3038 		      unsigned int cookie, bool need_resize_uevent)
3039 {
3040 	int r;
3041 	unsigned int noio_flag;
3042 	char udev_cookie[DM_COOKIE_LENGTH];
3043 	char *envp[3] = { NULL, NULL, NULL };
3044 	char **envpp = envp;
3045 	if (cookie) {
3046 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3047 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3048 		*envpp++ = udev_cookie;
3049 	}
3050 	if (need_resize_uevent) {
3051 		*envpp++ = "RESIZE=1";
3052 	}
3053 
3054 	noio_flag = memalloc_noio_save();
3055 
3056 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3057 
3058 	memalloc_noio_restore(noio_flag);
3059 
3060 	return r;
3061 }
3062 
3063 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3064 {
3065 	return atomic_add_return(1, &md->uevent_seq);
3066 }
3067 
3068 uint32_t dm_get_event_nr(struct mapped_device *md)
3069 {
3070 	return atomic_read(&md->event_nr);
3071 }
3072 
3073 int dm_wait_event(struct mapped_device *md, int event_nr)
3074 {
3075 	return wait_event_interruptible(md->eventq,
3076 			(event_nr != atomic_read(&md->event_nr)));
3077 }
3078 
3079 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3080 {
3081 	unsigned long flags;
3082 
3083 	spin_lock_irqsave(&md->uevent_lock, flags);
3084 	list_add(elist, &md->uevent_list);
3085 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3086 }
3087 
3088 /*
3089  * The gendisk is only valid as long as you have a reference
3090  * count on 'md'.
3091  */
3092 struct gendisk *dm_disk(struct mapped_device *md)
3093 {
3094 	return md->disk;
3095 }
3096 EXPORT_SYMBOL_GPL(dm_disk);
3097 
3098 struct kobject *dm_kobject(struct mapped_device *md)
3099 {
3100 	return &md->kobj_holder.kobj;
3101 }
3102 
3103 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3104 {
3105 	struct mapped_device *md;
3106 
3107 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3108 
3109 	spin_lock(&_minor_lock);
3110 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3111 		md = NULL;
3112 		goto out;
3113 	}
3114 	dm_get(md);
3115 out:
3116 	spin_unlock(&_minor_lock);
3117 
3118 	return md;
3119 }
3120 
3121 int dm_suspended_md(struct mapped_device *md)
3122 {
3123 	return test_bit(DMF_SUSPENDED, &md->flags);
3124 }
3125 
3126 static int dm_post_suspending_md(struct mapped_device *md)
3127 {
3128 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3129 }
3130 
3131 int dm_suspended_internally_md(struct mapped_device *md)
3132 {
3133 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3134 }
3135 
3136 int dm_test_deferred_remove_flag(struct mapped_device *md)
3137 {
3138 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3139 }
3140 
3141 int dm_suspended(struct dm_target *ti)
3142 {
3143 	return dm_suspended_md(ti->table->md);
3144 }
3145 EXPORT_SYMBOL_GPL(dm_suspended);
3146 
3147 int dm_post_suspending(struct dm_target *ti)
3148 {
3149 	return dm_post_suspending_md(ti->table->md);
3150 }
3151 EXPORT_SYMBOL_GPL(dm_post_suspending);
3152 
3153 int dm_noflush_suspending(struct dm_target *ti)
3154 {
3155 	return __noflush_suspending(ti->table->md);
3156 }
3157 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3158 
3159 void dm_free_md_mempools(struct dm_md_mempools *pools)
3160 {
3161 	if (!pools)
3162 		return;
3163 
3164 	bioset_exit(&pools->bs);
3165 	bioset_exit(&pools->io_bs);
3166 
3167 	kfree(pools);
3168 }
3169 
3170 struct dm_pr {
3171 	u64	old_key;
3172 	u64	new_key;
3173 	u32	flags;
3174 	bool	abort;
3175 	bool	fail_early;
3176 	int	ret;
3177 	enum pr_type type;
3178 	struct pr_keys *read_keys;
3179 	struct pr_held_reservation *rsv;
3180 };
3181 
3182 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3183 		      struct dm_pr *pr)
3184 {
3185 	struct mapped_device *md = bdev->bd_disk->private_data;
3186 	struct dm_table *table;
3187 	struct dm_target *ti;
3188 	int ret = -ENOTTY, srcu_idx;
3189 
3190 	table = dm_get_live_table(md, &srcu_idx);
3191 	if (!table || !dm_table_get_size(table))
3192 		goto out;
3193 
3194 	/* We only support devices that have a single target */
3195 	if (table->num_targets != 1)
3196 		goto out;
3197 	ti = dm_table_get_target(table, 0);
3198 
3199 	if (dm_suspended_md(md)) {
3200 		ret = -EAGAIN;
3201 		goto out;
3202 	}
3203 
3204 	ret = -EINVAL;
3205 	if (!ti->type->iterate_devices)
3206 		goto out;
3207 
3208 	ti->type->iterate_devices(ti, fn, pr);
3209 	ret = 0;
3210 out:
3211 	dm_put_live_table(md, srcu_idx);
3212 	return ret;
3213 }
3214 
3215 /*
3216  * For register / unregister we need to manually call out to every path.
3217  */
3218 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3219 			    sector_t start, sector_t len, void *data)
3220 {
3221 	struct dm_pr *pr = data;
3222 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3223 	int ret;
3224 
3225 	if (!ops || !ops->pr_register) {
3226 		pr->ret = -EOPNOTSUPP;
3227 		return -1;
3228 	}
3229 
3230 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3231 	if (!ret)
3232 		return 0;
3233 
3234 	if (!pr->ret)
3235 		pr->ret = ret;
3236 
3237 	if (pr->fail_early)
3238 		return -1;
3239 
3240 	return 0;
3241 }
3242 
3243 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3244 			  u32 flags)
3245 {
3246 	struct dm_pr pr = {
3247 		.old_key	= old_key,
3248 		.new_key	= new_key,
3249 		.flags		= flags,
3250 		.fail_early	= true,
3251 		.ret		= 0,
3252 	};
3253 	int ret;
3254 
3255 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3256 	if (ret) {
3257 		/* Didn't even get to register a path */
3258 		return ret;
3259 	}
3260 
3261 	if (!pr.ret)
3262 		return 0;
3263 	ret = pr.ret;
3264 
3265 	if (!new_key)
3266 		return ret;
3267 
3268 	/* unregister all paths if we failed to register any path */
3269 	pr.old_key = new_key;
3270 	pr.new_key = 0;
3271 	pr.flags = 0;
3272 	pr.fail_early = false;
3273 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3274 	return ret;
3275 }
3276 
3277 
3278 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3279 			   sector_t start, sector_t len, void *data)
3280 {
3281 	struct dm_pr *pr = data;
3282 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3283 
3284 	if (!ops || !ops->pr_reserve) {
3285 		pr->ret = -EOPNOTSUPP;
3286 		return -1;
3287 	}
3288 
3289 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3290 	if (!pr->ret)
3291 		return -1;
3292 
3293 	return 0;
3294 }
3295 
3296 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3297 			 u32 flags)
3298 {
3299 	struct dm_pr pr = {
3300 		.old_key	= key,
3301 		.flags		= flags,
3302 		.type		= type,
3303 		.fail_early	= false,
3304 		.ret		= 0,
3305 	};
3306 	int ret;
3307 
3308 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3309 	if (ret)
3310 		return ret;
3311 
3312 	return pr.ret;
3313 }
3314 
3315 /*
3316  * If there is a non-All Registrants type of reservation, the release must be
3317  * sent down the holding path. For the cases where there is no reservation or
3318  * the path is not the holder the device will also return success, so we must
3319  * try each path to make sure we got the correct path.
3320  */
3321 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3322 			   sector_t start, sector_t len, void *data)
3323 {
3324 	struct dm_pr *pr = data;
3325 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3326 
3327 	if (!ops || !ops->pr_release) {
3328 		pr->ret = -EOPNOTSUPP;
3329 		return -1;
3330 	}
3331 
3332 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3333 	if (pr->ret)
3334 		return -1;
3335 
3336 	return 0;
3337 }
3338 
3339 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3340 {
3341 	struct dm_pr pr = {
3342 		.old_key	= key,
3343 		.type		= type,
3344 		.fail_early	= false,
3345 	};
3346 	int ret;
3347 
3348 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3349 	if (ret)
3350 		return ret;
3351 
3352 	return pr.ret;
3353 }
3354 
3355 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3356 			   sector_t start, sector_t len, void *data)
3357 {
3358 	struct dm_pr *pr = data;
3359 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3360 
3361 	if (!ops || !ops->pr_preempt) {
3362 		pr->ret = -EOPNOTSUPP;
3363 		return -1;
3364 	}
3365 
3366 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3367 				  pr->abort);
3368 	if (!pr->ret)
3369 		return -1;
3370 
3371 	return 0;
3372 }
3373 
3374 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3375 			 enum pr_type type, bool abort)
3376 {
3377 	struct dm_pr pr = {
3378 		.new_key	= new_key,
3379 		.old_key	= old_key,
3380 		.type		= type,
3381 		.fail_early	= false,
3382 	};
3383 	int ret;
3384 
3385 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3386 	if (ret)
3387 		return ret;
3388 
3389 	return pr.ret;
3390 }
3391 
3392 static int dm_pr_clear(struct block_device *bdev, u64 key)
3393 {
3394 	struct mapped_device *md = bdev->bd_disk->private_data;
3395 	const struct pr_ops *ops;
3396 	int r, srcu_idx;
3397 
3398 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3399 	if (r < 0)
3400 		goto out;
3401 
3402 	ops = bdev->bd_disk->fops->pr_ops;
3403 	if (ops && ops->pr_clear)
3404 		r = ops->pr_clear(bdev, key);
3405 	else
3406 		r = -EOPNOTSUPP;
3407 out:
3408 	dm_unprepare_ioctl(md, srcu_idx);
3409 	return r;
3410 }
3411 
3412 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3413 			     sector_t start, sector_t len, void *data)
3414 {
3415 	struct dm_pr *pr = data;
3416 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3417 
3418 	if (!ops || !ops->pr_read_keys) {
3419 		pr->ret = -EOPNOTSUPP;
3420 		return -1;
3421 	}
3422 
3423 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3424 	if (!pr->ret)
3425 		return -1;
3426 
3427 	return 0;
3428 }
3429 
3430 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3431 {
3432 	struct dm_pr pr = {
3433 		.read_keys = keys,
3434 	};
3435 	int ret;
3436 
3437 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3438 	if (ret)
3439 		return ret;
3440 
3441 	return pr.ret;
3442 }
3443 
3444 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3445 				    sector_t start, sector_t len, void *data)
3446 {
3447 	struct dm_pr *pr = data;
3448 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3449 
3450 	if (!ops || !ops->pr_read_reservation) {
3451 		pr->ret = -EOPNOTSUPP;
3452 		return -1;
3453 	}
3454 
3455 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3456 	if (!pr->ret)
3457 		return -1;
3458 
3459 	return 0;
3460 }
3461 
3462 static int dm_pr_read_reservation(struct block_device *bdev,
3463 				  struct pr_held_reservation *rsv)
3464 {
3465 	struct dm_pr pr = {
3466 		.rsv = rsv,
3467 	};
3468 	int ret;
3469 
3470 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3471 	if (ret)
3472 		return ret;
3473 
3474 	return pr.ret;
3475 }
3476 
3477 static const struct pr_ops dm_pr_ops = {
3478 	.pr_register	= dm_pr_register,
3479 	.pr_reserve	= dm_pr_reserve,
3480 	.pr_release	= dm_pr_release,
3481 	.pr_preempt	= dm_pr_preempt,
3482 	.pr_clear	= dm_pr_clear,
3483 	.pr_read_keys	= dm_pr_read_keys,
3484 	.pr_read_reservation = dm_pr_read_reservation,
3485 };
3486 
3487 static const struct block_device_operations dm_blk_dops = {
3488 	.submit_bio = dm_submit_bio,
3489 	.poll_bio = dm_poll_bio,
3490 	.open = dm_blk_open,
3491 	.release = dm_blk_close,
3492 	.ioctl = dm_blk_ioctl,
3493 	.getgeo = dm_blk_getgeo,
3494 	.report_zones = dm_blk_report_zones,
3495 	.pr_ops = &dm_pr_ops,
3496 	.owner = THIS_MODULE
3497 };
3498 
3499 static const struct block_device_operations dm_rq_blk_dops = {
3500 	.open = dm_blk_open,
3501 	.release = dm_blk_close,
3502 	.ioctl = dm_blk_ioctl,
3503 	.getgeo = dm_blk_getgeo,
3504 	.pr_ops = &dm_pr_ops,
3505 	.owner = THIS_MODULE
3506 };
3507 
3508 static const struct dax_operations dm_dax_ops = {
3509 	.direct_access = dm_dax_direct_access,
3510 	.zero_page_range = dm_dax_zero_page_range,
3511 	.recovery_write = dm_dax_recovery_write,
3512 };
3513 
3514 /*
3515  * module hooks
3516  */
3517 module_init(dm_init);
3518 module_exit(dm_exit);
3519 
3520 module_param(major, uint, 0);
3521 MODULE_PARM_DESC(major, "The major number of the device mapper");
3522 
3523 module_param(reserved_bio_based_ios, uint, 0644);
3524 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3525 
3526 module_param(dm_numa_node, int, 0644);
3527 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3528 
3529 module_param(swap_bios, int, 0644);
3530 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3531 
3532 MODULE_DESCRIPTION(DM_NAME " driver");
3533 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3534 MODULE_LICENSE("GPL");
3535