xref: /linux/drivers/md/dm.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static inline bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496 {
497 	/*
498 	 * If REQ_PREFLUSH set, don't account payload, it will be
499 	 * submitted (and accounted) after this flush completes.
500 	 */
501 	if (bio_is_flush_with_data(bio))
502 		return 0;
503 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 		return io->sectors;
505 	return bio_sectors(bio);
506 }
507 
508 static void dm_io_acct(struct dm_io *io, bool end)
509 {
510 	struct bio *bio = io->orig_bio;
511 
512 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 		if (!end)
514 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 					   io->start_time);
516 		else
517 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 					 dm_io_sectors(io, bio),
519 					 io->start_time);
520 	}
521 
522 	if (static_branch_unlikely(&stats_enabled) &&
523 	    unlikely(dm_stats_used(&io->md->stats))) {
524 		sector_t sector;
525 
526 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 		else
529 			sector = bio->bi_iter.bi_sector;
530 
531 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 				    sector, dm_io_sectors(io, bio),
533 				    end, io->start_time, &io->stats_aux);
534 	}
535 }
536 
537 static void __dm_start_io_acct(struct dm_io *io)
538 {
539 	dm_io_acct(io, false);
540 }
541 
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 {
544 	/*
545 	 * Ensure IO accounting is only ever started once.
546 	 */
547 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 		return;
549 
550 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 	} else {
554 		unsigned long flags;
555 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 		spin_lock_irqsave(&io->lock, flags);
557 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 			spin_unlock_irqrestore(&io->lock, flags);
559 			return;
560 		}
561 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 		spin_unlock_irqrestore(&io->lock, flags);
563 	}
564 
565 	__dm_start_io_acct(io);
566 }
567 
568 static void dm_end_io_acct(struct dm_io *io)
569 {
570 	dm_io_acct(io, true);
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574 {
575 	struct dm_io *io;
576 	struct dm_target_io *tio;
577 	struct bio *clone;
578 
579 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580 	if (unlikely(!clone))
581 		return NULL;
582 	tio = clone_to_tio(clone);
583 	tio->flags = 0;
584 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 	tio->io = NULL;
586 
587 	io = container_of(tio, struct dm_io, tio);
588 	io->magic = DM_IO_MAGIC;
589 	io->status = BLK_STS_OK;
590 
591 	/* one ref is for submission, the other is for completion */
592 	atomic_set(&io->io_count, 2);
593 	this_cpu_inc(*md->pending_io);
594 	io->orig_bio = bio;
595 	io->md = md;
596 	spin_lock_init(&io->lock);
597 	io->start_time = jiffies;
598 	io->flags = 0;
599 	if (blk_queue_io_stat(md->queue))
600 		dm_io_set_flag(io, DM_IO_BLK_STAT);
601 
602 	if (static_branch_unlikely(&stats_enabled) &&
603 	    unlikely(dm_stats_used(&md->stats)))
604 		dm_stats_record_start(&md->stats, &io->stats_aux);
605 
606 	return io;
607 }
608 
609 static void free_io(struct dm_io *io)
610 {
611 	bio_put(&io->tio.clone);
612 }
613 
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616 {
617 	struct mapped_device *md = ci->io->md;
618 	struct dm_target_io *tio;
619 	struct bio *clone;
620 
621 	if (!ci->io->tio.io) {
622 		/* the dm_target_io embedded in ci->io is available */
623 		tio = &ci->io->tio;
624 		/* alloc_io() already initialized embedded clone */
625 		clone = &tio->clone;
626 	} else {
627 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628 					&md->mempools->bs);
629 		if (!clone)
630 			return NULL;
631 
632 		/* REQ_DM_POLL_LIST shouldn't be inherited */
633 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634 
635 		tio = clone_to_tio(clone);
636 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 	}
638 
639 	tio->magic = DM_TIO_MAGIC;
640 	tio->io = ci->io;
641 	tio->ti = ti;
642 	tio->target_bio_nr = target_bio_nr;
643 	tio->len_ptr = len;
644 	tio->old_sector = 0;
645 
646 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647 	clone->bi_bdev = md->disk->part0;
648 	if (unlikely(ti->needs_bio_set_dev))
649 		bio_set_dev(clone, md->disk->part0);
650 
651 	if (len) {
652 		clone->bi_iter.bi_size = to_bytes(*len);
653 		if (bio_integrity(clone))
654 			bio_integrity_trim(clone);
655 	}
656 
657 	return clone;
658 }
659 
660 static void free_tio(struct bio *clone)
661 {
662 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663 		return;
664 	bio_put(clone);
665 }
666 
667 /*
668  * Add the bio to the list of deferred io.
669  */
670 static void queue_io(struct mapped_device *md, struct bio *bio)
671 {
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&md->deferred_lock, flags);
675 	bio_list_add(&md->deferred, bio);
676 	spin_unlock_irqrestore(&md->deferred_lock, flags);
677 	queue_work(md->wq, &md->work);
678 }
679 
680 /*
681  * Everyone (including functions in this file), should use this
682  * function to access the md->map field, and make sure they call
683  * dm_put_live_table() when finished.
684  */
685 struct dm_table *dm_get_live_table(struct mapped_device *md,
686 				   int *srcu_idx) __acquires(md->io_barrier)
687 {
688 	*srcu_idx = srcu_read_lock(&md->io_barrier);
689 
690 	return srcu_dereference(md->map, &md->io_barrier);
691 }
692 
693 void dm_put_live_table(struct mapped_device *md,
694 		       int srcu_idx) __releases(md->io_barrier)
695 {
696 	srcu_read_unlock(&md->io_barrier, srcu_idx);
697 }
698 
699 void dm_sync_table(struct mapped_device *md)
700 {
701 	synchronize_srcu(&md->io_barrier);
702 	synchronize_rcu_expedited();
703 }
704 
705 /*
706  * A fast alternative to dm_get_live_table/dm_put_live_table.
707  * The caller must not block between these two functions.
708  */
709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710 {
711 	rcu_read_lock();
712 	return rcu_dereference(md->map);
713 }
714 
715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716 {
717 	rcu_read_unlock();
718 }
719 
720 static char *_dm_claim_ptr = "I belong to device-mapper";
721 
722 /*
723  * Open a table device so we can use it as a map destination.
724  */
725 static struct table_device *open_table_device(struct mapped_device *md,
726 		dev_t dev, blk_mode_t mode)
727 {
728 	struct table_device *td;
729 	struct bdev_handle *bdev_handle;
730 	u64 part_off;
731 	int r;
732 
733 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
734 	if (!td)
735 		return ERR_PTR(-ENOMEM);
736 	refcount_set(&td->count, 1);
737 
738 	bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
739 	if (IS_ERR(bdev_handle)) {
740 		r = PTR_ERR(bdev_handle);
741 		goto out_free_td;
742 	}
743 
744 	/*
745 	 * We can be called before the dm disk is added.  In that case we can't
746 	 * register the holder relation here.  It will be done once add_disk was
747 	 * called.
748 	 */
749 	if (md->disk->slave_dir) {
750 		r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
751 		if (r)
752 			goto out_blkdev_put;
753 	}
754 
755 	td->dm_dev.mode = mode;
756 	td->dm_dev.bdev = bdev_handle->bdev;
757 	td->dm_dev.bdev_handle = bdev_handle;
758 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
759 						NULL, NULL);
760 	format_dev_t(td->dm_dev.name, dev);
761 	list_add(&td->list, &md->table_devices);
762 	return td;
763 
764 out_blkdev_put:
765 	bdev_release(bdev_handle);
766 out_free_td:
767 	kfree(td);
768 	return ERR_PTR(r);
769 }
770 
771 /*
772  * Close a table device that we've been using.
773  */
774 static void close_table_device(struct table_device *td, struct mapped_device *md)
775 {
776 	if (md->disk->slave_dir)
777 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
778 	bdev_release(td->dm_dev.bdev_handle);
779 	put_dax(td->dm_dev.dax_dev);
780 	list_del(&td->list);
781 	kfree(td);
782 }
783 
784 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
785 					      blk_mode_t mode)
786 {
787 	struct table_device *td;
788 
789 	list_for_each_entry(td, l, list)
790 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
791 			return td;
792 
793 	return NULL;
794 }
795 
796 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
797 			struct dm_dev **result)
798 {
799 	struct table_device *td;
800 
801 	mutex_lock(&md->table_devices_lock);
802 	td = find_table_device(&md->table_devices, dev, mode);
803 	if (!td) {
804 		td = open_table_device(md, dev, mode);
805 		if (IS_ERR(td)) {
806 			mutex_unlock(&md->table_devices_lock);
807 			return PTR_ERR(td);
808 		}
809 	} else {
810 		refcount_inc(&td->count);
811 	}
812 	mutex_unlock(&md->table_devices_lock);
813 
814 	*result = &td->dm_dev;
815 	return 0;
816 }
817 
818 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
819 {
820 	struct table_device *td = container_of(d, struct table_device, dm_dev);
821 
822 	mutex_lock(&md->table_devices_lock);
823 	if (refcount_dec_and_test(&td->count))
824 		close_table_device(td, md);
825 	mutex_unlock(&md->table_devices_lock);
826 }
827 
828 /*
829  * Get the geometry associated with a dm device
830  */
831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 	*geo = md->geometry;
834 
835 	return 0;
836 }
837 
838 /*
839  * Set the geometry of a device.
840  */
841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
842 {
843 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
844 
845 	if (geo->start > sz) {
846 		DMERR("Start sector is beyond the geometry limits.");
847 		return -EINVAL;
848 	}
849 
850 	md->geometry = *geo;
851 
852 	return 0;
853 }
854 
855 static int __noflush_suspending(struct mapped_device *md)
856 {
857 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
858 }
859 
860 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
861 {
862 	struct mapped_device *md = io->md;
863 
864 	if (first_stage) {
865 		struct dm_io *next = md->requeue_list;
866 
867 		md->requeue_list = io;
868 		io->next = next;
869 	} else {
870 		bio_list_add_head(&md->deferred, io->orig_bio);
871 	}
872 }
873 
874 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
875 {
876 	if (first_stage)
877 		queue_work(md->wq, &md->requeue_work);
878 	else
879 		queue_work(md->wq, &md->work);
880 }
881 
882 /*
883  * Return true if the dm_io's original bio is requeued.
884  * io->status is updated with error if requeue disallowed.
885  */
886 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
887 {
888 	struct bio *bio = io->orig_bio;
889 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
890 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
891 				     (bio->bi_opf & REQ_POLLED));
892 	struct mapped_device *md = io->md;
893 	bool requeued = false;
894 
895 	if (handle_requeue || handle_polled_eagain) {
896 		unsigned long flags;
897 
898 		if (bio->bi_opf & REQ_POLLED) {
899 			/*
900 			 * Upper layer won't help us poll split bio
901 			 * (io->orig_bio may only reflect a subset of the
902 			 * pre-split original) so clear REQ_POLLED.
903 			 */
904 			bio_clear_polled(bio);
905 		}
906 
907 		/*
908 		 * Target requested pushing back the I/O or
909 		 * polled IO hit BLK_STS_AGAIN.
910 		 */
911 		spin_lock_irqsave(&md->deferred_lock, flags);
912 		if ((__noflush_suspending(md) &&
913 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
914 		    handle_polled_eagain || first_stage) {
915 			dm_requeue_add_io(io, first_stage);
916 			requeued = true;
917 		} else {
918 			/*
919 			 * noflush suspend was interrupted or this is
920 			 * a write to a zoned target.
921 			 */
922 			io->status = BLK_STS_IOERR;
923 		}
924 		spin_unlock_irqrestore(&md->deferred_lock, flags);
925 	}
926 
927 	if (requeued)
928 		dm_kick_requeue(md, first_stage);
929 
930 	return requeued;
931 }
932 
933 static void __dm_io_complete(struct dm_io *io, bool first_stage)
934 {
935 	struct bio *bio = io->orig_bio;
936 	struct mapped_device *md = io->md;
937 	blk_status_t io_error;
938 	bool requeued;
939 
940 	requeued = dm_handle_requeue(io, first_stage);
941 	if (requeued && first_stage)
942 		return;
943 
944 	io_error = io->status;
945 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
946 		dm_end_io_acct(io);
947 	else if (!io_error) {
948 		/*
949 		 * Must handle target that DM_MAPIO_SUBMITTED only to
950 		 * then bio_endio() rather than dm_submit_bio_remap()
951 		 */
952 		__dm_start_io_acct(io);
953 		dm_end_io_acct(io);
954 	}
955 	free_io(io);
956 	smp_wmb();
957 	this_cpu_dec(*md->pending_io);
958 
959 	/* nudge anyone waiting on suspend queue */
960 	if (unlikely(wq_has_sleeper(&md->wait)))
961 		wake_up(&md->wait);
962 
963 	/* Return early if the original bio was requeued */
964 	if (requeued)
965 		return;
966 
967 	if (bio_is_flush_with_data(bio)) {
968 		/*
969 		 * Preflush done for flush with data, reissue
970 		 * without REQ_PREFLUSH.
971 		 */
972 		bio->bi_opf &= ~REQ_PREFLUSH;
973 		queue_io(md, bio);
974 	} else {
975 		/* done with normal IO or empty flush */
976 		if (io_error)
977 			bio->bi_status = io_error;
978 		bio_endio(bio);
979 	}
980 }
981 
982 static void dm_wq_requeue_work(struct work_struct *work)
983 {
984 	struct mapped_device *md = container_of(work, struct mapped_device,
985 						requeue_work);
986 	unsigned long flags;
987 	struct dm_io *io;
988 
989 	/* reuse deferred lock to simplify dm_handle_requeue */
990 	spin_lock_irqsave(&md->deferred_lock, flags);
991 	io = md->requeue_list;
992 	md->requeue_list = NULL;
993 	spin_unlock_irqrestore(&md->deferred_lock, flags);
994 
995 	while (io) {
996 		struct dm_io *next = io->next;
997 
998 		dm_io_rewind(io, &md->disk->bio_split);
999 
1000 		io->next = NULL;
1001 		__dm_io_complete(io, false);
1002 		io = next;
1003 		cond_resched();
1004 	}
1005 }
1006 
1007 /*
1008  * Two staged requeue:
1009  *
1010  * 1) io->orig_bio points to the real original bio, and the part mapped to
1011  *    this io must be requeued, instead of other parts of the original bio.
1012  *
1013  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1014  */
1015 static void dm_io_complete(struct dm_io *io)
1016 {
1017 	bool first_requeue;
1018 
1019 	/*
1020 	 * Only dm_io that has been split needs two stage requeue, otherwise
1021 	 * we may run into long bio clone chain during suspend and OOM could
1022 	 * be triggered.
1023 	 *
1024 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025 	 * also aren't handled via the first stage requeue.
1026 	 */
1027 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028 		first_requeue = true;
1029 	else
1030 		first_requeue = false;
1031 
1032 	__dm_io_complete(io, first_requeue);
1033 }
1034 
1035 /*
1036  * Decrements the number of outstanding ios that a bio has been
1037  * cloned into, completing the original io if necc.
1038  */
1039 static inline void __dm_io_dec_pending(struct dm_io *io)
1040 {
1041 	if (atomic_dec_and_test(&io->io_count))
1042 		dm_io_complete(io);
1043 }
1044 
1045 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1046 {
1047 	unsigned long flags;
1048 
1049 	/* Push-back supersedes any I/O errors */
1050 	spin_lock_irqsave(&io->lock, flags);
1051 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1052 	      __noflush_suspending(io->md))) {
1053 		io->status = error;
1054 	}
1055 	spin_unlock_irqrestore(&io->lock, flags);
1056 }
1057 
1058 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1059 {
1060 	if (unlikely(error))
1061 		dm_io_set_error(io, error);
1062 
1063 	__dm_io_dec_pending(io);
1064 }
1065 
1066 /*
1067  * The queue_limits are only valid as long as you have a reference
1068  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1069  */
1070 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1071 {
1072 	return &md->queue->limits;
1073 }
1074 
1075 void disable_discard(struct mapped_device *md)
1076 {
1077 	struct queue_limits *limits = dm_get_queue_limits(md);
1078 
1079 	/* device doesn't really support DISCARD, disable it */
1080 	limits->max_discard_sectors = 0;
1081 }
1082 
1083 void disable_write_zeroes(struct mapped_device *md)
1084 {
1085 	struct queue_limits *limits = dm_get_queue_limits(md);
1086 
1087 	/* device doesn't really support WRITE ZEROES, disable it */
1088 	limits->max_write_zeroes_sectors = 0;
1089 }
1090 
1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092 {
1093 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094 }
1095 
1096 static void clone_endio(struct bio *bio)
1097 {
1098 	blk_status_t error = bio->bi_status;
1099 	struct dm_target_io *tio = clone_to_tio(bio);
1100 	struct dm_target *ti = tio->ti;
1101 	dm_endio_fn endio = ti->type->end_io;
1102 	struct dm_io *io = tio->io;
1103 	struct mapped_device *md = io->md;
1104 
1105 	if (unlikely(error == BLK_STS_TARGET)) {
1106 		if (bio_op(bio) == REQ_OP_DISCARD &&
1107 		    !bdev_max_discard_sectors(bio->bi_bdev))
1108 			disable_discard(md);
1109 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 			disable_write_zeroes(md);
1112 	}
1113 
1114 	if (static_branch_unlikely(&zoned_enabled) &&
1115 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 		dm_zone_endio(io, bio);
1117 
1118 	if (endio) {
1119 		int r = endio(ti, bio, &error);
1120 
1121 		switch (r) {
1122 		case DM_ENDIO_REQUEUE:
1123 			if (static_branch_unlikely(&zoned_enabled)) {
1124 				/*
1125 				 * Requeuing writes to a sequential zone of a zoned
1126 				 * target will break the sequential write pattern:
1127 				 * fail such IO.
1128 				 */
1129 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 					error = BLK_STS_IOERR;
1131 				else
1132 					error = BLK_STS_DM_REQUEUE;
1133 			} else
1134 				error = BLK_STS_DM_REQUEUE;
1135 			fallthrough;
1136 		case DM_ENDIO_DONE:
1137 			break;
1138 		case DM_ENDIO_INCOMPLETE:
1139 			/* The target will handle the io */
1140 			return;
1141 		default:
1142 			DMCRIT("unimplemented target endio return value: %d", r);
1143 			BUG();
1144 		}
1145 	}
1146 
1147 	if (static_branch_unlikely(&swap_bios_enabled) &&
1148 	    unlikely(swap_bios_limit(ti, bio)))
1149 		up(&md->swap_bios_semaphore);
1150 
1151 	free_tio(bio);
1152 	dm_io_dec_pending(io, error);
1153 }
1154 
1155 /*
1156  * Return maximum size of I/O possible at the supplied sector up to the current
1157  * target boundary.
1158  */
1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 						  sector_t target_offset)
1161 {
1162 	return ti->len - target_offset;
1163 }
1164 
1165 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166 			     unsigned int max_granularity,
1167 			     unsigned int max_sectors)
1168 {
1169 	sector_t target_offset = dm_target_offset(ti, sector);
1170 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1171 
1172 	/*
1173 	 * Does the target need to split IO even further?
1174 	 * - varied (per target) IO splitting is a tenet of DM; this
1175 	 *   explains why stacked chunk_sectors based splitting via
1176 	 *   bio_split_to_limits() isn't possible here.
1177 	 */
1178 	if (!max_granularity)
1179 		return len;
1180 	return min_t(sector_t, len,
1181 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1183 }
1184 
1185 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1186 {
1187 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1188 }
1189 
1190 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1191 {
1192 	if (len > UINT_MAX) {
1193 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194 		      (unsigned long long)len, UINT_MAX);
1195 		ti->error = "Maximum size of target IO is too large";
1196 		return -EINVAL;
1197 	}
1198 
1199 	ti->max_io_len = (uint32_t) len;
1200 
1201 	return 0;
1202 }
1203 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1204 
1205 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206 						sector_t sector, int *srcu_idx)
1207 	__acquires(md->io_barrier)
1208 {
1209 	struct dm_table *map;
1210 	struct dm_target *ti;
1211 
1212 	map = dm_get_live_table(md, srcu_idx);
1213 	if (!map)
1214 		return NULL;
1215 
1216 	ti = dm_table_find_target(map, sector);
1217 	if (!ti)
1218 		return NULL;
1219 
1220 	return ti;
1221 }
1222 
1223 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1225 		pfn_t *pfn)
1226 {
1227 	struct mapped_device *md = dax_get_private(dax_dev);
1228 	sector_t sector = pgoff * PAGE_SECTORS;
1229 	struct dm_target *ti;
1230 	long len, ret = -EIO;
1231 	int srcu_idx;
1232 
1233 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1234 
1235 	if (!ti)
1236 		goto out;
1237 	if (!ti->type->direct_access)
1238 		goto out;
1239 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1240 	if (len < 1)
1241 		goto out;
1242 	nr_pages = min(len, nr_pages);
1243 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1244 
1245  out:
1246 	dm_put_live_table(md, srcu_idx);
1247 
1248 	return ret;
1249 }
1250 
1251 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1252 				  size_t nr_pages)
1253 {
1254 	struct mapped_device *md = dax_get_private(dax_dev);
1255 	sector_t sector = pgoff * PAGE_SECTORS;
1256 	struct dm_target *ti;
1257 	int ret = -EIO;
1258 	int srcu_idx;
1259 
1260 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1261 
1262 	if (!ti)
1263 		goto out;
1264 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1265 		/*
1266 		 * ->zero_page_range() is mandatory dax operation. If we are
1267 		 *  here, something is wrong.
1268 		 */
1269 		goto out;
1270 	}
1271 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1272  out:
1273 	dm_put_live_table(md, srcu_idx);
1274 
1275 	return ret;
1276 }
1277 
1278 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279 		void *addr, size_t bytes, struct iov_iter *i)
1280 {
1281 	struct mapped_device *md = dax_get_private(dax_dev);
1282 	sector_t sector = pgoff * PAGE_SECTORS;
1283 	struct dm_target *ti;
1284 	int srcu_idx;
1285 	long ret = 0;
1286 
1287 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288 	if (!ti || !ti->type->dax_recovery_write)
1289 		goto out;
1290 
1291 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1292 out:
1293 	dm_put_live_table(md, srcu_idx);
1294 	return ret;
1295 }
1296 
1297 /*
1298  * A target may call dm_accept_partial_bio only from the map routine.  It is
1299  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301  * __send_duplicate_bios().
1302  *
1303  * dm_accept_partial_bio informs the dm that the target only wants to process
1304  * additional n_sectors sectors of the bio and the rest of the data should be
1305  * sent in a next bio.
1306  *
1307  * A diagram that explains the arithmetics:
1308  * +--------------------+---------------+-------+
1309  * |         1          |       2       |   3   |
1310  * +--------------------+---------------+-------+
1311  *
1312  * <-------------- *tio->len_ptr --------------->
1313  *                      <----- bio_sectors ----->
1314  *                      <-- n_sectors -->
1315  *
1316  * Region 1 was already iterated over with bio_advance or similar function.
1317  *	(it may be empty if the target doesn't use bio_advance)
1318  * Region 2 is the remaining bio size that the target wants to process.
1319  *	(it may be empty if region 1 is non-empty, although there is no reason
1320  *	 to make it empty)
1321  * The target requires that region 3 is to be sent in the next bio.
1322  *
1323  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324  * the partially processed part (the sum of regions 1+2) must be the same for all
1325  * copies of the bio.
1326  */
1327 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1328 {
1329 	struct dm_target_io *tio = clone_to_tio(bio);
1330 	struct dm_io *io = tio->io;
1331 	unsigned int bio_sectors = bio_sectors(bio);
1332 
1333 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336 	BUG_ON(bio_sectors > *tio->len_ptr);
1337 	BUG_ON(n_sectors > bio_sectors);
1338 
1339 	*tio->len_ptr -= bio_sectors - n_sectors;
1340 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1341 
1342 	/*
1343 	 * __split_and_process_bio() may have already saved mapped part
1344 	 * for accounting but it is being reduced so update accordingly.
1345 	 */
1346 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347 	io->sectors = n_sectors;
1348 	io->sector_offset = bio_sectors(io->orig_bio);
1349 }
1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351 
1352 /*
1353  * @clone: clone bio that DM core passed to target's .map function
1354  * @tgt_clone: clone of @clone bio that target needs submitted
1355  *
1356  * Targets should use this interface to submit bios they take
1357  * ownership of when returning DM_MAPIO_SUBMITTED.
1358  *
1359  * Target should also enable ti->accounts_remapped_io
1360  */
1361 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1362 {
1363 	struct dm_target_io *tio = clone_to_tio(clone);
1364 	struct dm_io *io = tio->io;
1365 
1366 	/* establish bio that will get submitted */
1367 	if (!tgt_clone)
1368 		tgt_clone = clone;
1369 
1370 	/*
1371 	 * Account io->origin_bio to DM dev on behalf of target
1372 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1373 	 */
1374 	dm_start_io_acct(io, clone);
1375 
1376 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1377 			      tio->old_sector);
1378 	submit_bio_noacct(tgt_clone);
1379 }
1380 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1381 
1382 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1383 {
1384 	mutex_lock(&md->swap_bios_lock);
1385 	while (latch < md->swap_bios) {
1386 		cond_resched();
1387 		down(&md->swap_bios_semaphore);
1388 		md->swap_bios--;
1389 	}
1390 	while (latch > md->swap_bios) {
1391 		cond_resched();
1392 		up(&md->swap_bios_semaphore);
1393 		md->swap_bios++;
1394 	}
1395 	mutex_unlock(&md->swap_bios_lock);
1396 }
1397 
1398 static void __map_bio(struct bio *clone)
1399 {
1400 	struct dm_target_io *tio = clone_to_tio(clone);
1401 	struct dm_target *ti = tio->ti;
1402 	struct dm_io *io = tio->io;
1403 	struct mapped_device *md = io->md;
1404 	int r;
1405 
1406 	clone->bi_end_io = clone_endio;
1407 
1408 	/*
1409 	 * Map the clone.
1410 	 */
1411 	tio->old_sector = clone->bi_iter.bi_sector;
1412 
1413 	if (static_branch_unlikely(&swap_bios_enabled) &&
1414 	    unlikely(swap_bios_limit(ti, clone))) {
1415 		int latch = get_swap_bios();
1416 
1417 		if (unlikely(latch != md->swap_bios))
1418 			__set_swap_bios_limit(md, latch);
1419 		down(&md->swap_bios_semaphore);
1420 	}
1421 
1422 	if (static_branch_unlikely(&zoned_enabled)) {
1423 		/*
1424 		 * Check if the IO needs a special mapping due to zone append
1425 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1426 		 * calls the target map operation.
1427 		 */
1428 		if (unlikely(dm_emulate_zone_append(md)))
1429 			r = dm_zone_map_bio(tio);
1430 		else
1431 			goto do_map;
1432 	} else {
1433 do_map:
1434 		if (likely(ti->type->map == linear_map))
1435 			r = linear_map(ti, clone);
1436 		else if (ti->type->map == stripe_map)
1437 			r = stripe_map(ti, clone);
1438 		else
1439 			r = ti->type->map(ti, clone);
1440 	}
1441 
1442 	switch (r) {
1443 	case DM_MAPIO_SUBMITTED:
1444 		/* target has assumed ownership of this io */
1445 		if (!ti->accounts_remapped_io)
1446 			dm_start_io_acct(io, clone);
1447 		break;
1448 	case DM_MAPIO_REMAPPED:
1449 		dm_submit_bio_remap(clone, NULL);
1450 		break;
1451 	case DM_MAPIO_KILL:
1452 	case DM_MAPIO_REQUEUE:
1453 		if (static_branch_unlikely(&swap_bios_enabled) &&
1454 		    unlikely(swap_bios_limit(ti, clone)))
1455 			up(&md->swap_bios_semaphore);
1456 		free_tio(clone);
1457 		if (r == DM_MAPIO_KILL)
1458 			dm_io_dec_pending(io, BLK_STS_IOERR);
1459 		else
1460 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1461 		break;
1462 	default:
1463 		DMCRIT("unimplemented target map return value: %d", r);
1464 		BUG();
1465 	}
1466 }
1467 
1468 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1469 {
1470 	struct dm_io *io = ci->io;
1471 
1472 	if (ci->sector_count > len) {
1473 		/*
1474 		 * Split needed, save the mapped part for accounting.
1475 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1476 		 */
1477 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1478 		io->sectors = len;
1479 		io->sector_offset = bio_sectors(ci->bio);
1480 	}
1481 }
1482 
1483 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484 				struct dm_target *ti, unsigned int num_bios,
1485 				unsigned *len, gfp_t gfp_flag)
1486 {
1487 	struct bio *bio;
1488 	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1489 
1490 	for (; try < 2; try++) {
1491 		int bio_nr;
1492 
1493 		if (try && num_bios > 1)
1494 			mutex_lock(&ci->io->md->table_devices_lock);
1495 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496 			bio = alloc_tio(ci, ti, bio_nr, len,
1497 					try ? GFP_NOIO : GFP_NOWAIT);
1498 			if (!bio)
1499 				break;
1500 
1501 			bio_list_add(blist, bio);
1502 		}
1503 		if (try && num_bios > 1)
1504 			mutex_unlock(&ci->io->md->table_devices_lock);
1505 		if (bio_nr == num_bios)
1506 			return;
1507 
1508 		while ((bio = bio_list_pop(blist)))
1509 			free_tio(bio);
1510 	}
1511 }
1512 
1513 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514 					  unsigned int num_bios, unsigned int *len,
1515 					  gfp_t gfp_flag)
1516 {
1517 	struct bio_list blist = BIO_EMPTY_LIST;
1518 	struct bio *clone;
1519 	unsigned int ret = 0;
1520 
1521 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1522 		return 0;
1523 
1524 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1525 	if (len)
1526 		setup_split_accounting(ci, *len);
1527 
1528 	/*
1529 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1531 	 */
1532 	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533 	while ((clone = bio_list_pop(&blist))) {
1534 		if (num_bios > 1)
1535 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1536 		__map_bio(clone);
1537 		ret += 1;
1538 	}
1539 
1540 	return ret;
1541 }
1542 
1543 static void __send_empty_flush(struct clone_info *ci)
1544 {
1545 	struct dm_table *t = ci->map;
1546 	struct bio flush_bio;
1547 
1548 	/*
1549 	 * Use an on-stack bio for this, it's safe since we don't
1550 	 * need to reference it after submit. It's just used as
1551 	 * the basis for the clone(s).
1552 	 */
1553 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1555 
1556 	ci->bio = &flush_bio;
1557 	ci->sector_count = 0;
1558 	ci->io->tio.clone.bi_iter.bi_size = 0;
1559 
1560 	for (unsigned int i = 0; i < t->num_targets; i++) {
1561 		unsigned int bios;
1562 		struct dm_target *ti = dm_table_get_target(t, i);
1563 
1564 		if (unlikely(ti->num_flush_bios == 0))
1565 			continue;
1566 
1567 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1569 					     NULL, GFP_NOWAIT);
1570 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1571 	}
1572 
1573 	/*
1574 	 * alloc_io() takes one extra reference for submission, so the
1575 	 * reference won't reach 0 without the following subtraction
1576 	 */
1577 	atomic_sub(1, &ci->io->io_count);
1578 
1579 	bio_uninit(ci->bio);
1580 }
1581 
1582 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583 			       unsigned int num_bios, unsigned int max_granularity,
1584 			       unsigned int max_sectors)
1585 {
1586 	unsigned int len, bios;
1587 
1588 	len = min_t(sector_t, ci->sector_count,
1589 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1590 
1591 	atomic_add(num_bios, &ci->io->io_count);
1592 	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1593 	/*
1594 	 * alloc_io() takes one extra reference for submission, so the
1595 	 * reference won't reach 0 without the following (+1) subtraction
1596 	 */
1597 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1598 
1599 	ci->sector += len;
1600 	ci->sector_count -= len;
1601 }
1602 
1603 static bool is_abnormal_io(struct bio *bio)
1604 {
1605 	enum req_op op = bio_op(bio);
1606 
1607 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608 		switch (op) {
1609 		case REQ_OP_DISCARD:
1610 		case REQ_OP_SECURE_ERASE:
1611 		case REQ_OP_WRITE_ZEROES:
1612 			return true;
1613 		default:
1614 			break;
1615 		}
1616 	}
1617 
1618 	return false;
1619 }
1620 
1621 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622 					  struct dm_target *ti)
1623 {
1624 	unsigned int num_bios = 0;
1625 	unsigned int max_granularity = 0;
1626 	unsigned int max_sectors = 0;
1627 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1628 
1629 	switch (bio_op(ci->bio)) {
1630 	case REQ_OP_DISCARD:
1631 		num_bios = ti->num_discard_bios;
1632 		max_sectors = limits->max_discard_sectors;
1633 		if (ti->max_discard_granularity)
1634 			max_granularity = max_sectors;
1635 		break;
1636 	case REQ_OP_SECURE_ERASE:
1637 		num_bios = ti->num_secure_erase_bios;
1638 		max_sectors = limits->max_secure_erase_sectors;
1639 		if (ti->max_secure_erase_granularity)
1640 			max_granularity = max_sectors;
1641 		break;
1642 	case REQ_OP_WRITE_ZEROES:
1643 		num_bios = ti->num_write_zeroes_bios;
1644 		max_sectors = limits->max_write_zeroes_sectors;
1645 		if (ti->max_write_zeroes_granularity)
1646 			max_granularity = max_sectors;
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 
1652 	/*
1653 	 * Even though the device advertised support for this type of
1654 	 * request, that does not mean every target supports it, and
1655 	 * reconfiguration might also have changed that since the
1656 	 * check was performed.
1657 	 */
1658 	if (unlikely(!num_bios))
1659 		return BLK_STS_NOTSUPP;
1660 
1661 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1662 
1663 	return BLK_STS_OK;
1664 }
1665 
1666 /*
1667  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668  * associated with this bio, and this bio's bi_private needs to be
1669  * stored in dm_io->data before the reuse.
1670  *
1671  * bio->bi_private is owned by fs or upper layer, so block layer won't
1672  * touch it after splitting. Meantime it won't be changed by anyone after
1673  * bio is submitted. So this reuse is safe.
1674  */
1675 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1676 {
1677 	return (struct dm_io **)&bio->bi_private;
1678 }
1679 
1680 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1681 {
1682 	struct dm_io **head = dm_poll_list_head(bio);
1683 
1684 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685 		bio->bi_opf |= REQ_DM_POLL_LIST;
1686 		/*
1687 		 * Save .bi_private into dm_io, so that we can reuse
1688 		 * .bi_private as dm_io list head for storing dm_io list
1689 		 */
1690 		io->data = bio->bi_private;
1691 
1692 		/* tell block layer to poll for completion */
1693 		bio->bi_cookie = ~BLK_QC_T_NONE;
1694 
1695 		io->next = NULL;
1696 	} else {
1697 		/*
1698 		 * bio recursed due to split, reuse original poll list,
1699 		 * and save bio->bi_private too.
1700 		 */
1701 		io->data = (*head)->data;
1702 		io->next = *head;
1703 	}
1704 
1705 	*head = io;
1706 }
1707 
1708 /*
1709  * Select the correct strategy for processing a non-flush bio.
1710  */
1711 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1712 {
1713 	struct bio *clone;
1714 	struct dm_target *ti;
1715 	unsigned int len;
1716 
1717 	ti = dm_table_find_target(ci->map, ci->sector);
1718 	if (unlikely(!ti))
1719 		return BLK_STS_IOERR;
1720 
1721 	if (unlikely(ci->is_abnormal_io))
1722 		return __process_abnormal_io(ci, ti);
1723 
1724 	/*
1725 	 * Only support bio polling for normal IO, and the target io is
1726 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1727 	 */
1728 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1729 
1730 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731 	setup_split_accounting(ci, len);
1732 
1733 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1735 			return BLK_STS_NOTSUPP;
1736 
1737 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738 		if (unlikely(!clone))
1739 			return BLK_STS_AGAIN;
1740 	} else {
1741 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1742 	}
1743 	__map_bio(clone);
1744 
1745 	ci->sector += len;
1746 	ci->sector_count -= len;
1747 
1748 	return BLK_STS_OK;
1749 }
1750 
1751 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1753 {
1754 	ci->map = map;
1755 	ci->io = io;
1756 	ci->bio = bio;
1757 	ci->is_abnormal_io = is_abnormal;
1758 	ci->submit_as_polled = false;
1759 	ci->sector = bio->bi_iter.bi_sector;
1760 	ci->sector_count = bio_sectors(bio);
1761 
1762 	/* Shouldn't happen but sector_count was being set to 0 so... */
1763 	if (static_branch_unlikely(&zoned_enabled) &&
1764 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765 		ci->sector_count = 0;
1766 }
1767 
1768 /*
1769  * Entry point to split a bio into clones and submit them to the targets.
1770  */
1771 static void dm_split_and_process_bio(struct mapped_device *md,
1772 				     struct dm_table *map, struct bio *bio)
1773 {
1774 	struct clone_info ci;
1775 	struct dm_io *io;
1776 	blk_status_t error = BLK_STS_OK;
1777 	bool is_abnormal;
1778 
1779 	is_abnormal = is_abnormal_io(bio);
1780 	if (unlikely(is_abnormal)) {
1781 		/*
1782 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783 		 * otherwise associated queue_limits won't be imposed.
1784 		 */
1785 		bio = bio_split_to_limits(bio);
1786 		if (!bio)
1787 			return;
1788 	}
1789 
1790 	/* Only support nowait for normal IO */
1791 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792 		io = alloc_io(md, bio, GFP_NOWAIT);
1793 		if (unlikely(!io)) {
1794 			/* Unable to do anything without dm_io. */
1795 			bio_wouldblock_error(bio);
1796 			return;
1797 		}
1798 	} else {
1799 		io = alloc_io(md, bio, GFP_NOIO);
1800 	}
1801 	init_clone_info(&ci, io, map, bio, is_abnormal);
1802 
1803 	if (bio->bi_opf & REQ_PREFLUSH) {
1804 		__send_empty_flush(&ci);
1805 		/* dm_io_complete submits any data associated with flush */
1806 		goto out;
1807 	}
1808 
1809 	error = __split_and_process_bio(&ci);
1810 	if (error || !ci.sector_count)
1811 		goto out;
1812 	/*
1813 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814 	 * *after* bios already submitted have been completely processed.
1815 	 */
1816 	bio_trim(bio, io->sectors, ci.sector_count);
1817 	trace_block_split(bio, bio->bi_iter.bi_sector);
1818 	bio_inc_remaining(bio);
1819 	submit_bio_noacct(bio);
1820 out:
1821 	/*
1822 	 * Drop the extra reference count for non-POLLED bio, and hold one
1823 	 * reference for POLLED bio, which will be released in dm_poll_bio
1824 	 *
1825 	 * Add every dm_io instance into the dm_io list head which is stored
1826 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1827 	 */
1828 	if (error || !ci.submit_as_polled) {
1829 		/*
1830 		 * In case of submission failure, the extra reference for
1831 		 * submitting io isn't consumed yet
1832 		 */
1833 		if (error)
1834 			atomic_dec(&io->io_count);
1835 		dm_io_dec_pending(io, error);
1836 	} else
1837 		dm_queue_poll_io(bio, io);
1838 }
1839 
1840 static void dm_submit_bio(struct bio *bio)
1841 {
1842 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1843 	int srcu_idx;
1844 	struct dm_table *map;
1845 
1846 	map = dm_get_live_table(md, &srcu_idx);
1847 
1848 	/* If suspended, or map not yet available, queue this IO for later */
1849 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1850 	    unlikely(!map)) {
1851 		if (bio->bi_opf & REQ_NOWAIT)
1852 			bio_wouldblock_error(bio);
1853 		else if (bio->bi_opf & REQ_RAHEAD)
1854 			bio_io_error(bio);
1855 		else
1856 			queue_io(md, bio);
1857 		goto out;
1858 	}
1859 
1860 	dm_split_and_process_bio(md, map, bio);
1861 out:
1862 	dm_put_live_table(md, srcu_idx);
1863 }
1864 
1865 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1866 			  unsigned int flags)
1867 {
1868 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1869 
1870 	/* don't poll if the mapped io is done */
1871 	if (atomic_read(&io->io_count) > 1)
1872 		bio_poll(&io->tio.clone, iob, flags);
1873 
1874 	/* bio_poll holds the last reference */
1875 	return atomic_read(&io->io_count) == 1;
1876 }
1877 
1878 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1879 		       unsigned int flags)
1880 {
1881 	struct dm_io **head = dm_poll_list_head(bio);
1882 	struct dm_io *list = *head;
1883 	struct dm_io *tmp = NULL;
1884 	struct dm_io *curr, *next;
1885 
1886 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1888 		return 0;
1889 
1890 	WARN_ON_ONCE(!list);
1891 
1892 	/*
1893 	 * Restore .bi_private before possibly completing dm_io.
1894 	 *
1895 	 * bio_poll() is only possible once @bio has been completely
1896 	 * submitted via submit_bio_noacct()'s depth-first submission.
1897 	 * So there is no dm_queue_poll_io() race associated with
1898 	 * clearing REQ_DM_POLL_LIST here.
1899 	 */
1900 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901 	bio->bi_private = list->data;
1902 
1903 	for (curr = list, next = curr->next; curr; curr = next, next =
1904 			curr ? curr->next : NULL) {
1905 		if (dm_poll_dm_io(curr, iob, flags)) {
1906 			/*
1907 			 * clone_endio() has already occurred, so no
1908 			 * error handling is needed here.
1909 			 */
1910 			__dm_io_dec_pending(curr);
1911 		} else {
1912 			curr->next = tmp;
1913 			tmp = curr;
1914 		}
1915 	}
1916 
1917 	/* Not done? */
1918 	if (tmp) {
1919 		bio->bi_opf |= REQ_DM_POLL_LIST;
1920 		/* Reset bio->bi_private to dm_io list head */
1921 		*head = tmp;
1922 		return 0;
1923 	}
1924 	return 1;
1925 }
1926 
1927 /*
1928  *---------------------------------------------------------------
1929  * An IDR is used to keep track of allocated minor numbers.
1930  *---------------------------------------------------------------
1931  */
1932 static void free_minor(int minor)
1933 {
1934 	spin_lock(&_minor_lock);
1935 	idr_remove(&_minor_idr, minor);
1936 	spin_unlock(&_minor_lock);
1937 }
1938 
1939 /*
1940  * See if the device with a specific minor # is free.
1941  */
1942 static int specific_minor(int minor)
1943 {
1944 	int r;
1945 
1946 	if (minor >= (1 << MINORBITS))
1947 		return -EINVAL;
1948 
1949 	idr_preload(GFP_KERNEL);
1950 	spin_lock(&_minor_lock);
1951 
1952 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1953 
1954 	spin_unlock(&_minor_lock);
1955 	idr_preload_end();
1956 	if (r < 0)
1957 		return r == -ENOSPC ? -EBUSY : r;
1958 	return 0;
1959 }
1960 
1961 static int next_free_minor(int *minor)
1962 {
1963 	int r;
1964 
1965 	idr_preload(GFP_KERNEL);
1966 	spin_lock(&_minor_lock);
1967 
1968 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1969 
1970 	spin_unlock(&_minor_lock);
1971 	idr_preload_end();
1972 	if (r < 0)
1973 		return r;
1974 	*minor = r;
1975 	return 0;
1976 }
1977 
1978 static const struct block_device_operations dm_blk_dops;
1979 static const struct block_device_operations dm_rq_blk_dops;
1980 static const struct dax_operations dm_dax_ops;
1981 
1982 static void dm_wq_work(struct work_struct *work);
1983 
1984 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1986 {
1987 	dm_destroy_crypto_profile(q->crypto_profile);
1988 }
1989 
1990 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1991 
1992 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1993 {
1994 }
1995 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1996 
1997 static void cleanup_mapped_device(struct mapped_device *md)
1998 {
1999 	if (md->wq)
2000 		destroy_workqueue(md->wq);
2001 	dm_free_md_mempools(md->mempools);
2002 
2003 	if (md->dax_dev) {
2004 		dax_remove_host(md->disk);
2005 		kill_dax(md->dax_dev);
2006 		put_dax(md->dax_dev);
2007 		md->dax_dev = NULL;
2008 	}
2009 
2010 	dm_cleanup_zoned_dev(md);
2011 	if (md->disk) {
2012 		spin_lock(&_minor_lock);
2013 		md->disk->private_data = NULL;
2014 		spin_unlock(&_minor_lock);
2015 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016 			struct table_device *td;
2017 
2018 			dm_sysfs_exit(md);
2019 			list_for_each_entry(td, &md->table_devices, list) {
2020 				bd_unlink_disk_holder(td->dm_dev.bdev,
2021 						      md->disk);
2022 			}
2023 
2024 			/*
2025 			 * Hold lock to make sure del_gendisk() won't concurrent
2026 			 * with open/close_table_device().
2027 			 */
2028 			mutex_lock(&md->table_devices_lock);
2029 			del_gendisk(md->disk);
2030 			mutex_unlock(&md->table_devices_lock);
2031 		}
2032 		dm_queue_destroy_crypto_profile(md->queue);
2033 		put_disk(md->disk);
2034 	}
2035 
2036 	if (md->pending_io) {
2037 		free_percpu(md->pending_io);
2038 		md->pending_io = NULL;
2039 	}
2040 
2041 	cleanup_srcu_struct(&md->io_barrier);
2042 
2043 	mutex_destroy(&md->suspend_lock);
2044 	mutex_destroy(&md->type_lock);
2045 	mutex_destroy(&md->table_devices_lock);
2046 	mutex_destroy(&md->swap_bios_lock);
2047 
2048 	dm_mq_cleanup_mapped_device(md);
2049 }
2050 
2051 /*
2052  * Allocate and initialise a blank device with a given minor.
2053  */
2054 static struct mapped_device *alloc_dev(int minor)
2055 {
2056 	int r, numa_node_id = dm_get_numa_node();
2057 	struct mapped_device *md;
2058 	void *old_md;
2059 
2060 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2061 	if (!md) {
2062 		DMERR("unable to allocate device, out of memory.");
2063 		return NULL;
2064 	}
2065 
2066 	if (!try_module_get(THIS_MODULE))
2067 		goto bad_module_get;
2068 
2069 	/* get a minor number for the dev */
2070 	if (minor == DM_ANY_MINOR)
2071 		r = next_free_minor(&minor);
2072 	else
2073 		r = specific_minor(minor);
2074 	if (r < 0)
2075 		goto bad_minor;
2076 
2077 	r = init_srcu_struct(&md->io_barrier);
2078 	if (r < 0)
2079 		goto bad_io_barrier;
2080 
2081 	md->numa_node_id = numa_node_id;
2082 	md->init_tio_pdu = false;
2083 	md->type = DM_TYPE_NONE;
2084 	mutex_init(&md->suspend_lock);
2085 	mutex_init(&md->type_lock);
2086 	mutex_init(&md->table_devices_lock);
2087 	spin_lock_init(&md->deferred_lock);
2088 	atomic_set(&md->holders, 1);
2089 	atomic_set(&md->open_count, 0);
2090 	atomic_set(&md->event_nr, 0);
2091 	atomic_set(&md->uevent_seq, 0);
2092 	INIT_LIST_HEAD(&md->uevent_list);
2093 	INIT_LIST_HEAD(&md->table_devices);
2094 	spin_lock_init(&md->uevent_lock);
2095 
2096 	/*
2097 	 * default to bio-based until DM table is loaded and md->type
2098 	 * established. If request-based table is loaded: blk-mq will
2099 	 * override accordingly.
2100 	 */
2101 	md->disk = blk_alloc_disk(md->numa_node_id);
2102 	if (!md->disk)
2103 		goto bad;
2104 	md->queue = md->disk->queue;
2105 
2106 	init_waitqueue_head(&md->wait);
2107 	INIT_WORK(&md->work, dm_wq_work);
2108 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109 	init_waitqueue_head(&md->eventq);
2110 	init_completion(&md->kobj_holder.completion);
2111 
2112 	md->requeue_list = NULL;
2113 	md->swap_bios = get_swap_bios();
2114 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115 	mutex_init(&md->swap_bios_lock);
2116 
2117 	md->disk->major = _major;
2118 	md->disk->first_minor = minor;
2119 	md->disk->minors = 1;
2120 	md->disk->flags |= GENHD_FL_NO_PART;
2121 	md->disk->fops = &dm_blk_dops;
2122 	md->disk->private_data = md;
2123 	sprintf(md->disk->disk_name, "dm-%d", minor);
2124 
2125 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2126 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127 		if (IS_ERR(md->dax_dev)) {
2128 			md->dax_dev = NULL;
2129 			goto bad;
2130 		}
2131 		set_dax_nocache(md->dax_dev);
2132 		set_dax_nomc(md->dax_dev);
2133 		if (dax_add_host(md->dax_dev, md->disk))
2134 			goto bad;
2135 	}
2136 
2137 	format_dev_t(md->name, MKDEV(_major, minor));
2138 
2139 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2140 	if (!md->wq)
2141 		goto bad;
2142 
2143 	md->pending_io = alloc_percpu(unsigned long);
2144 	if (!md->pending_io)
2145 		goto bad;
2146 
2147 	r = dm_stats_init(&md->stats);
2148 	if (r < 0)
2149 		goto bad;
2150 
2151 	/* Populate the mapping, nobody knows we exist yet */
2152 	spin_lock(&_minor_lock);
2153 	old_md = idr_replace(&_minor_idr, md, minor);
2154 	spin_unlock(&_minor_lock);
2155 
2156 	BUG_ON(old_md != MINOR_ALLOCED);
2157 
2158 	return md;
2159 
2160 bad:
2161 	cleanup_mapped_device(md);
2162 bad_io_barrier:
2163 	free_minor(minor);
2164 bad_minor:
2165 	module_put(THIS_MODULE);
2166 bad_module_get:
2167 	kvfree(md);
2168 	return NULL;
2169 }
2170 
2171 static void unlock_fs(struct mapped_device *md);
2172 
2173 static void free_dev(struct mapped_device *md)
2174 {
2175 	int minor = MINOR(disk_devt(md->disk));
2176 
2177 	unlock_fs(md);
2178 
2179 	cleanup_mapped_device(md);
2180 
2181 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2182 	dm_stats_cleanup(&md->stats);
2183 	free_minor(minor);
2184 
2185 	module_put(THIS_MODULE);
2186 	kvfree(md);
2187 }
2188 
2189 /*
2190  * Bind a table to the device.
2191  */
2192 static void event_callback(void *context)
2193 {
2194 	unsigned long flags;
2195 	LIST_HEAD(uevents);
2196 	struct mapped_device *md = context;
2197 
2198 	spin_lock_irqsave(&md->uevent_lock, flags);
2199 	list_splice_init(&md->uevent_list, &uevents);
2200 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2201 
2202 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2203 
2204 	atomic_inc(&md->event_nr);
2205 	wake_up(&md->eventq);
2206 	dm_issue_global_event();
2207 }
2208 
2209 /*
2210  * Returns old map, which caller must destroy.
2211  */
2212 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213 			       struct queue_limits *limits)
2214 {
2215 	struct dm_table *old_map;
2216 	sector_t size;
2217 	int ret;
2218 
2219 	lockdep_assert_held(&md->suspend_lock);
2220 
2221 	size = dm_table_get_size(t);
2222 
2223 	/*
2224 	 * Wipe any geometry if the size of the table changed.
2225 	 */
2226 	if (size != dm_get_size(md))
2227 		memset(&md->geometry, 0, sizeof(md->geometry));
2228 
2229 	set_capacity(md->disk, size);
2230 
2231 	dm_table_event_callback(t, event_callback, md);
2232 
2233 	if (dm_table_request_based(t)) {
2234 		/*
2235 		 * Leverage the fact that request-based DM targets are
2236 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2237 		 */
2238 		md->immutable_target = dm_table_get_immutable_target(t);
2239 
2240 		/*
2241 		 * There is no need to reload with request-based dm because the
2242 		 * size of front_pad doesn't change.
2243 		 *
2244 		 * Note for future: If you are to reload bioset, prep-ed
2245 		 * requests in the queue may refer to bio from the old bioset,
2246 		 * so you must walk through the queue to unprep.
2247 		 */
2248 		if (!md->mempools) {
2249 			md->mempools = t->mempools;
2250 			t->mempools = NULL;
2251 		}
2252 	} else {
2253 		/*
2254 		 * The md may already have mempools that need changing.
2255 		 * If so, reload bioset because front_pad may have changed
2256 		 * because a different table was loaded.
2257 		 */
2258 		dm_free_md_mempools(md->mempools);
2259 		md->mempools = t->mempools;
2260 		t->mempools = NULL;
2261 	}
2262 
2263 	ret = dm_table_set_restrictions(t, md->queue, limits);
2264 	if (ret) {
2265 		old_map = ERR_PTR(ret);
2266 		goto out;
2267 	}
2268 
2269 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270 	rcu_assign_pointer(md->map, (void *)t);
2271 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272 
2273 	if (old_map)
2274 		dm_sync_table(md);
2275 out:
2276 	return old_map;
2277 }
2278 
2279 /*
2280  * Returns unbound table for the caller to free.
2281  */
2282 static struct dm_table *__unbind(struct mapped_device *md)
2283 {
2284 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2285 
2286 	if (!map)
2287 		return NULL;
2288 
2289 	dm_table_event_callback(map, NULL, NULL);
2290 	RCU_INIT_POINTER(md->map, NULL);
2291 	dm_sync_table(md);
2292 
2293 	return map;
2294 }
2295 
2296 /*
2297  * Constructor for a new device.
2298  */
2299 int dm_create(int minor, struct mapped_device **result)
2300 {
2301 	struct mapped_device *md;
2302 
2303 	md = alloc_dev(minor);
2304 	if (!md)
2305 		return -ENXIO;
2306 
2307 	dm_ima_reset_data(md);
2308 
2309 	*result = md;
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Functions to manage md->type.
2315  * All are required to hold md->type_lock.
2316  */
2317 void dm_lock_md_type(struct mapped_device *md)
2318 {
2319 	mutex_lock(&md->type_lock);
2320 }
2321 
2322 void dm_unlock_md_type(struct mapped_device *md)
2323 {
2324 	mutex_unlock(&md->type_lock);
2325 }
2326 
2327 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2328 {
2329 	BUG_ON(!mutex_is_locked(&md->type_lock));
2330 	md->type = type;
2331 }
2332 
2333 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2334 {
2335 	return md->type;
2336 }
2337 
2338 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2339 {
2340 	return md->immutable_target_type;
2341 }
2342 
2343 /*
2344  * Setup the DM device's queue based on md's type
2345  */
2346 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2347 {
2348 	enum dm_queue_mode type = dm_table_get_type(t);
2349 	struct queue_limits limits;
2350 	struct table_device *td;
2351 	int r;
2352 
2353 	switch (type) {
2354 	case DM_TYPE_REQUEST_BASED:
2355 		md->disk->fops = &dm_rq_blk_dops;
2356 		r = dm_mq_init_request_queue(md, t);
2357 		if (r) {
2358 			DMERR("Cannot initialize queue for request-based dm mapped device");
2359 			return r;
2360 		}
2361 		break;
2362 	case DM_TYPE_BIO_BASED:
2363 	case DM_TYPE_DAX_BIO_BASED:
2364 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2365 		break;
2366 	case DM_TYPE_NONE:
2367 		WARN_ON_ONCE(true);
2368 		break;
2369 	}
2370 
2371 	r = dm_calculate_queue_limits(t, &limits);
2372 	if (r) {
2373 		DMERR("Cannot calculate initial queue limits");
2374 		return r;
2375 	}
2376 	r = dm_table_set_restrictions(t, md->queue, &limits);
2377 	if (r)
2378 		return r;
2379 
2380 	/*
2381 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382 	 * with open_table_device() and close_table_device().
2383 	 */
2384 	mutex_lock(&md->table_devices_lock);
2385 	r = add_disk(md->disk);
2386 	mutex_unlock(&md->table_devices_lock);
2387 	if (r)
2388 		return r;
2389 
2390 	/*
2391 	 * Register the holder relationship for devices added before the disk
2392 	 * was live.
2393 	 */
2394 	list_for_each_entry(td, &md->table_devices, list) {
2395 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2396 		if (r)
2397 			goto out_undo_holders;
2398 	}
2399 
2400 	r = dm_sysfs_init(md);
2401 	if (r)
2402 		goto out_undo_holders;
2403 
2404 	md->type = type;
2405 	return 0;
2406 
2407 out_undo_holders:
2408 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410 	mutex_lock(&md->table_devices_lock);
2411 	del_gendisk(md->disk);
2412 	mutex_unlock(&md->table_devices_lock);
2413 	return r;
2414 }
2415 
2416 struct mapped_device *dm_get_md(dev_t dev)
2417 {
2418 	struct mapped_device *md;
2419 	unsigned int minor = MINOR(dev);
2420 
2421 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2422 		return NULL;
2423 
2424 	spin_lock(&_minor_lock);
2425 
2426 	md = idr_find(&_minor_idr, minor);
2427 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2429 		md = NULL;
2430 		goto out;
2431 	}
2432 	dm_get(md);
2433 out:
2434 	spin_unlock(&_minor_lock);
2435 
2436 	return md;
2437 }
2438 EXPORT_SYMBOL_GPL(dm_get_md);
2439 
2440 void *dm_get_mdptr(struct mapped_device *md)
2441 {
2442 	return md->interface_ptr;
2443 }
2444 
2445 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2446 {
2447 	md->interface_ptr = ptr;
2448 }
2449 
2450 void dm_get(struct mapped_device *md)
2451 {
2452 	atomic_inc(&md->holders);
2453 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2454 }
2455 
2456 int dm_hold(struct mapped_device *md)
2457 {
2458 	spin_lock(&_minor_lock);
2459 	if (test_bit(DMF_FREEING, &md->flags)) {
2460 		spin_unlock(&_minor_lock);
2461 		return -EBUSY;
2462 	}
2463 	dm_get(md);
2464 	spin_unlock(&_minor_lock);
2465 	return 0;
2466 }
2467 EXPORT_SYMBOL_GPL(dm_hold);
2468 
2469 const char *dm_device_name(struct mapped_device *md)
2470 {
2471 	return md->name;
2472 }
2473 EXPORT_SYMBOL_GPL(dm_device_name);
2474 
2475 static void __dm_destroy(struct mapped_device *md, bool wait)
2476 {
2477 	struct dm_table *map;
2478 	int srcu_idx;
2479 
2480 	might_sleep();
2481 
2482 	spin_lock(&_minor_lock);
2483 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484 	set_bit(DMF_FREEING, &md->flags);
2485 	spin_unlock(&_minor_lock);
2486 
2487 	blk_mark_disk_dead(md->disk);
2488 
2489 	/*
2490 	 * Take suspend_lock so that presuspend and postsuspend methods
2491 	 * do not race with internal suspend.
2492 	 */
2493 	mutex_lock(&md->suspend_lock);
2494 	map = dm_get_live_table(md, &srcu_idx);
2495 	if (!dm_suspended_md(md)) {
2496 		dm_table_presuspend_targets(map);
2497 		set_bit(DMF_SUSPENDED, &md->flags);
2498 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2499 		dm_table_postsuspend_targets(map);
2500 	}
2501 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502 	dm_put_live_table(md, srcu_idx);
2503 	mutex_unlock(&md->suspend_lock);
2504 
2505 	/*
2506 	 * Rare, but there may be I/O requests still going to complete,
2507 	 * for example.  Wait for all references to disappear.
2508 	 * No one should increment the reference count of the mapped_device,
2509 	 * after the mapped_device state becomes DMF_FREEING.
2510 	 */
2511 	if (wait)
2512 		while (atomic_read(&md->holders))
2513 			fsleep(1000);
2514 	else if (atomic_read(&md->holders))
2515 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516 		       dm_device_name(md), atomic_read(&md->holders));
2517 
2518 	dm_table_destroy(__unbind(md));
2519 	free_dev(md);
2520 }
2521 
2522 void dm_destroy(struct mapped_device *md)
2523 {
2524 	__dm_destroy(md, true);
2525 }
2526 
2527 void dm_destroy_immediate(struct mapped_device *md)
2528 {
2529 	__dm_destroy(md, false);
2530 }
2531 
2532 void dm_put(struct mapped_device *md)
2533 {
2534 	atomic_dec(&md->holders);
2535 }
2536 EXPORT_SYMBOL_GPL(dm_put);
2537 
2538 static bool dm_in_flight_bios(struct mapped_device *md)
2539 {
2540 	int cpu;
2541 	unsigned long sum = 0;
2542 
2543 	for_each_possible_cpu(cpu)
2544 		sum += *per_cpu_ptr(md->pending_io, cpu);
2545 
2546 	return sum != 0;
2547 }
2548 
2549 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2550 {
2551 	int r = 0;
2552 	DEFINE_WAIT(wait);
2553 
2554 	while (true) {
2555 		prepare_to_wait(&md->wait, &wait, task_state);
2556 
2557 		if (!dm_in_flight_bios(md))
2558 			break;
2559 
2560 		if (signal_pending_state(task_state, current)) {
2561 			r = -EINTR;
2562 			break;
2563 		}
2564 
2565 		io_schedule();
2566 	}
2567 	finish_wait(&md->wait, &wait);
2568 
2569 	smp_rmb();
2570 
2571 	return r;
2572 }
2573 
2574 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2575 {
2576 	int r = 0;
2577 
2578 	if (!queue_is_mq(md->queue))
2579 		return dm_wait_for_bios_completion(md, task_state);
2580 
2581 	while (true) {
2582 		if (!blk_mq_queue_inflight(md->queue))
2583 			break;
2584 
2585 		if (signal_pending_state(task_state, current)) {
2586 			r = -EINTR;
2587 			break;
2588 		}
2589 
2590 		fsleep(5000);
2591 	}
2592 
2593 	return r;
2594 }
2595 
2596 /*
2597  * Process the deferred bios
2598  */
2599 static void dm_wq_work(struct work_struct *work)
2600 {
2601 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2602 	struct bio *bio;
2603 
2604 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605 		spin_lock_irq(&md->deferred_lock);
2606 		bio = bio_list_pop(&md->deferred);
2607 		spin_unlock_irq(&md->deferred_lock);
2608 
2609 		if (!bio)
2610 			break;
2611 
2612 		submit_bio_noacct(bio);
2613 		cond_resched();
2614 	}
2615 }
2616 
2617 static void dm_queue_flush(struct mapped_device *md)
2618 {
2619 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620 	smp_mb__after_atomic();
2621 	queue_work(md->wq, &md->work);
2622 }
2623 
2624 /*
2625  * Swap in a new table, returning the old one for the caller to destroy.
2626  */
2627 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2628 {
2629 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630 	struct queue_limits limits;
2631 	int r;
2632 
2633 	mutex_lock(&md->suspend_lock);
2634 
2635 	/* device must be suspended */
2636 	if (!dm_suspended_md(md))
2637 		goto out;
2638 
2639 	/*
2640 	 * If the new table has no data devices, retain the existing limits.
2641 	 * This helps multipath with queue_if_no_path if all paths disappear,
2642 	 * then new I/O is queued based on these limits, and then some paths
2643 	 * reappear.
2644 	 */
2645 	if (dm_table_has_no_data_devices(table)) {
2646 		live_map = dm_get_live_table_fast(md);
2647 		if (live_map)
2648 			limits = md->queue->limits;
2649 		dm_put_live_table_fast(md);
2650 	}
2651 
2652 	if (!live_map) {
2653 		r = dm_calculate_queue_limits(table, &limits);
2654 		if (r) {
2655 			map = ERR_PTR(r);
2656 			goto out;
2657 		}
2658 	}
2659 
2660 	map = __bind(md, table, &limits);
2661 	dm_issue_global_event();
2662 
2663 out:
2664 	mutex_unlock(&md->suspend_lock);
2665 	return map;
2666 }
2667 
2668 /*
2669  * Functions to lock and unlock any filesystem running on the
2670  * device.
2671  */
2672 static int lock_fs(struct mapped_device *md)
2673 {
2674 	int r;
2675 
2676 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2677 
2678 	r = freeze_bdev(md->disk->part0);
2679 	if (!r)
2680 		set_bit(DMF_FROZEN, &md->flags);
2681 	return r;
2682 }
2683 
2684 static void unlock_fs(struct mapped_device *md)
2685 {
2686 	if (!test_bit(DMF_FROZEN, &md->flags))
2687 		return;
2688 	thaw_bdev(md->disk->part0);
2689 	clear_bit(DMF_FROZEN, &md->flags);
2690 }
2691 
2692 /*
2693  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2696  *
2697  * If __dm_suspend returns 0, the device is completely quiescent
2698  * now. There is no request-processing activity. All new requests
2699  * are being added to md->deferred list.
2700  */
2701 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702 			unsigned int suspend_flags, unsigned int task_state,
2703 			int dmf_suspended_flag)
2704 {
2705 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2707 	int r;
2708 
2709 	lockdep_assert_held(&md->suspend_lock);
2710 
2711 	/*
2712 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713 	 * This flag is cleared before dm_suspend returns.
2714 	 */
2715 	if (noflush)
2716 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2717 	else
2718 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2719 
2720 	/*
2721 	 * This gets reverted if there's an error later and the targets
2722 	 * provide the .presuspend_undo hook.
2723 	 */
2724 	dm_table_presuspend_targets(map);
2725 
2726 	/*
2727 	 * Flush I/O to the device.
2728 	 * Any I/O submitted after lock_fs() may not be flushed.
2729 	 * noflush takes precedence over do_lockfs.
2730 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2731 	 */
2732 	if (!noflush && do_lockfs) {
2733 		r = lock_fs(md);
2734 		if (r) {
2735 			dm_table_presuspend_undo_targets(map);
2736 			return r;
2737 		}
2738 	}
2739 
2740 	/*
2741 	 * Here we must make sure that no processes are submitting requests
2742 	 * to target drivers i.e. no one may be executing
2743 	 * dm_split_and_process_bio from dm_submit_bio.
2744 	 *
2745 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746 	 * we take the write lock. To prevent any process from reentering
2747 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749 	 * flush_workqueue(md->wq).
2750 	 */
2751 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2752 	if (map)
2753 		synchronize_srcu(&md->io_barrier);
2754 
2755 	/*
2756 	 * Stop md->queue before flushing md->wq in case request-based
2757 	 * dm defers requests to md->wq from md->queue.
2758 	 */
2759 	if (dm_request_based(md))
2760 		dm_stop_queue(md->queue);
2761 
2762 	flush_workqueue(md->wq);
2763 
2764 	/*
2765 	 * At this point no more requests are entering target request routines.
2766 	 * We call dm_wait_for_completion to wait for all existing requests
2767 	 * to finish.
2768 	 */
2769 	r = dm_wait_for_completion(md, task_state);
2770 	if (!r)
2771 		set_bit(dmf_suspended_flag, &md->flags);
2772 
2773 	if (noflush)
2774 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2775 	if (map)
2776 		synchronize_srcu(&md->io_barrier);
2777 
2778 	/* were we interrupted ? */
2779 	if (r < 0) {
2780 		dm_queue_flush(md);
2781 
2782 		if (dm_request_based(md))
2783 			dm_start_queue(md->queue);
2784 
2785 		unlock_fs(md);
2786 		dm_table_presuspend_undo_targets(map);
2787 		/* pushback list is already flushed, so skip flush */
2788 	}
2789 
2790 	return r;
2791 }
2792 
2793 /*
2794  * We need to be able to change a mapping table under a mounted
2795  * filesystem.  For example we might want to move some data in
2796  * the background.  Before the table can be swapped with
2797  * dm_bind_table, dm_suspend must be called to flush any in
2798  * flight bios and ensure that any further io gets deferred.
2799  */
2800 /*
2801  * Suspend mechanism in request-based dm.
2802  *
2803  * 1. Flush all I/Os by lock_fs() if needed.
2804  * 2. Stop dispatching any I/O by stopping the request_queue.
2805  * 3. Wait for all in-flight I/Os to be completed or requeued.
2806  *
2807  * To abort suspend, start the request_queue.
2808  */
2809 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2810 {
2811 	struct dm_table *map = NULL;
2812 	int r = 0;
2813 
2814 retry:
2815 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2816 
2817 	if (dm_suspended_md(md)) {
2818 		r = -EINVAL;
2819 		goto out_unlock;
2820 	}
2821 
2822 	if (dm_suspended_internally_md(md)) {
2823 		/* already internally suspended, wait for internal resume */
2824 		mutex_unlock(&md->suspend_lock);
2825 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2826 		if (r)
2827 			return r;
2828 		goto retry;
2829 	}
2830 
2831 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2832 	if (!map) {
2833 		/* avoid deadlock with fs/namespace.c:do_mount() */
2834 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2835 	}
2836 
2837 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2838 	if (r)
2839 		goto out_unlock;
2840 
2841 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2842 	dm_table_postsuspend_targets(map);
2843 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2844 
2845 out_unlock:
2846 	mutex_unlock(&md->suspend_lock);
2847 	return r;
2848 }
2849 
2850 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2851 {
2852 	if (map) {
2853 		int r = dm_table_resume_targets(map);
2854 
2855 		if (r)
2856 			return r;
2857 	}
2858 
2859 	dm_queue_flush(md);
2860 
2861 	/*
2862 	 * Flushing deferred I/Os must be done after targets are resumed
2863 	 * so that mapping of targets can work correctly.
2864 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2865 	 */
2866 	if (dm_request_based(md))
2867 		dm_start_queue(md->queue);
2868 
2869 	unlock_fs(md);
2870 
2871 	return 0;
2872 }
2873 
2874 int dm_resume(struct mapped_device *md)
2875 {
2876 	int r;
2877 	struct dm_table *map = NULL;
2878 
2879 retry:
2880 	r = -EINVAL;
2881 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2882 
2883 	if (!dm_suspended_md(md))
2884 		goto out;
2885 
2886 	if (dm_suspended_internally_md(md)) {
2887 		/* already internally suspended, wait for internal resume */
2888 		mutex_unlock(&md->suspend_lock);
2889 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890 		if (r)
2891 			return r;
2892 		goto retry;
2893 	}
2894 
2895 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896 	if (!map || !dm_table_get_size(map))
2897 		goto out;
2898 
2899 	r = __dm_resume(md, map);
2900 	if (r)
2901 		goto out;
2902 
2903 	clear_bit(DMF_SUSPENDED, &md->flags);
2904 out:
2905 	mutex_unlock(&md->suspend_lock);
2906 
2907 	return r;
2908 }
2909 
2910 /*
2911  * Internal suspend/resume works like userspace-driven suspend. It waits
2912  * until all bios finish and prevents issuing new bios to the target drivers.
2913  * It may be used only from the kernel.
2914  */
2915 
2916 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2917 {
2918 	struct dm_table *map = NULL;
2919 
2920 	lockdep_assert_held(&md->suspend_lock);
2921 
2922 	if (md->internal_suspend_count++)
2923 		return; /* nested internal suspend */
2924 
2925 	if (dm_suspended_md(md)) {
2926 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927 		return; /* nest suspend */
2928 	}
2929 
2930 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2931 
2932 	/*
2933 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935 	 * would require changing .presuspend to return an error -- avoid this
2936 	 * until there is a need for more elaborate variants of internal suspend.
2937 	 */
2938 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939 			    DMF_SUSPENDED_INTERNALLY);
2940 
2941 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2942 	dm_table_postsuspend_targets(map);
2943 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2944 }
2945 
2946 static void __dm_internal_resume(struct mapped_device *md)
2947 {
2948 	BUG_ON(!md->internal_suspend_count);
2949 
2950 	if (--md->internal_suspend_count)
2951 		return; /* resume from nested internal suspend */
2952 
2953 	if (dm_suspended_md(md))
2954 		goto done; /* resume from nested suspend */
2955 
2956 	/*
2957 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2958 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2959 	 */
2960 	(void) __dm_resume(md, NULL);
2961 
2962 done:
2963 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964 	smp_mb__after_atomic();
2965 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2966 }
2967 
2968 void dm_internal_suspend_noflush(struct mapped_device *md)
2969 {
2970 	mutex_lock(&md->suspend_lock);
2971 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972 	mutex_unlock(&md->suspend_lock);
2973 }
2974 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2975 
2976 void dm_internal_resume(struct mapped_device *md)
2977 {
2978 	mutex_lock(&md->suspend_lock);
2979 	__dm_internal_resume(md);
2980 	mutex_unlock(&md->suspend_lock);
2981 }
2982 EXPORT_SYMBOL_GPL(dm_internal_resume);
2983 
2984 /*
2985  * Fast variants of internal suspend/resume hold md->suspend_lock,
2986  * which prevents interaction with userspace-driven suspend.
2987  */
2988 
2989 void dm_internal_suspend_fast(struct mapped_device *md)
2990 {
2991 	mutex_lock(&md->suspend_lock);
2992 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2993 		return;
2994 
2995 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996 	synchronize_srcu(&md->io_barrier);
2997 	flush_workqueue(md->wq);
2998 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2999 }
3000 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3001 
3002 void dm_internal_resume_fast(struct mapped_device *md)
3003 {
3004 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3005 		goto done;
3006 
3007 	dm_queue_flush(md);
3008 
3009 done:
3010 	mutex_unlock(&md->suspend_lock);
3011 }
3012 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3013 
3014 /*
3015  *---------------------------------------------------------------
3016  * Event notification.
3017  *---------------------------------------------------------------
3018  */
3019 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020 		      unsigned int cookie, bool need_resize_uevent)
3021 {
3022 	int r;
3023 	unsigned int noio_flag;
3024 	char udev_cookie[DM_COOKIE_LENGTH];
3025 	char *envp[3] = { NULL, NULL, NULL };
3026 	char **envpp = envp;
3027 	if (cookie) {
3028 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3030 		*envpp++ = udev_cookie;
3031 	}
3032 	if (need_resize_uevent) {
3033 		*envpp++ = "RESIZE=1";
3034 	}
3035 
3036 	noio_flag = memalloc_noio_save();
3037 
3038 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3039 
3040 	memalloc_noio_restore(noio_flag);
3041 
3042 	return r;
3043 }
3044 
3045 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3046 {
3047 	return atomic_add_return(1, &md->uevent_seq);
3048 }
3049 
3050 uint32_t dm_get_event_nr(struct mapped_device *md)
3051 {
3052 	return atomic_read(&md->event_nr);
3053 }
3054 
3055 int dm_wait_event(struct mapped_device *md, int event_nr)
3056 {
3057 	return wait_event_interruptible(md->eventq,
3058 			(event_nr != atomic_read(&md->event_nr)));
3059 }
3060 
3061 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3062 {
3063 	unsigned long flags;
3064 
3065 	spin_lock_irqsave(&md->uevent_lock, flags);
3066 	list_add(elist, &md->uevent_list);
3067 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3068 }
3069 
3070 /*
3071  * The gendisk is only valid as long as you have a reference
3072  * count on 'md'.
3073  */
3074 struct gendisk *dm_disk(struct mapped_device *md)
3075 {
3076 	return md->disk;
3077 }
3078 EXPORT_SYMBOL_GPL(dm_disk);
3079 
3080 struct kobject *dm_kobject(struct mapped_device *md)
3081 {
3082 	return &md->kobj_holder.kobj;
3083 }
3084 
3085 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3086 {
3087 	struct mapped_device *md;
3088 
3089 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3090 
3091 	spin_lock(&_minor_lock);
3092 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3093 		md = NULL;
3094 		goto out;
3095 	}
3096 	dm_get(md);
3097 out:
3098 	spin_unlock(&_minor_lock);
3099 
3100 	return md;
3101 }
3102 
3103 int dm_suspended_md(struct mapped_device *md)
3104 {
3105 	return test_bit(DMF_SUSPENDED, &md->flags);
3106 }
3107 
3108 static int dm_post_suspending_md(struct mapped_device *md)
3109 {
3110 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3111 }
3112 
3113 int dm_suspended_internally_md(struct mapped_device *md)
3114 {
3115 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116 }
3117 
3118 int dm_test_deferred_remove_flag(struct mapped_device *md)
3119 {
3120 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3121 }
3122 
3123 int dm_suspended(struct dm_target *ti)
3124 {
3125 	return dm_suspended_md(ti->table->md);
3126 }
3127 EXPORT_SYMBOL_GPL(dm_suspended);
3128 
3129 int dm_post_suspending(struct dm_target *ti)
3130 {
3131 	return dm_post_suspending_md(ti->table->md);
3132 }
3133 EXPORT_SYMBOL_GPL(dm_post_suspending);
3134 
3135 int dm_noflush_suspending(struct dm_target *ti)
3136 {
3137 	return __noflush_suspending(ti->table->md);
3138 }
3139 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3140 
3141 void dm_free_md_mempools(struct dm_md_mempools *pools)
3142 {
3143 	if (!pools)
3144 		return;
3145 
3146 	bioset_exit(&pools->bs);
3147 	bioset_exit(&pools->io_bs);
3148 
3149 	kfree(pools);
3150 }
3151 
3152 struct dm_pr {
3153 	u64	old_key;
3154 	u64	new_key;
3155 	u32	flags;
3156 	bool	abort;
3157 	bool	fail_early;
3158 	int	ret;
3159 	enum pr_type type;
3160 	struct pr_keys *read_keys;
3161 	struct pr_held_reservation *rsv;
3162 };
3163 
3164 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3165 		      struct dm_pr *pr)
3166 {
3167 	struct mapped_device *md = bdev->bd_disk->private_data;
3168 	struct dm_table *table;
3169 	struct dm_target *ti;
3170 	int ret = -ENOTTY, srcu_idx;
3171 
3172 	table = dm_get_live_table(md, &srcu_idx);
3173 	if (!table || !dm_table_get_size(table))
3174 		goto out;
3175 
3176 	/* We only support devices that have a single target */
3177 	if (table->num_targets != 1)
3178 		goto out;
3179 	ti = dm_table_get_target(table, 0);
3180 
3181 	if (dm_suspended_md(md)) {
3182 		ret = -EAGAIN;
3183 		goto out;
3184 	}
3185 
3186 	ret = -EINVAL;
3187 	if (!ti->type->iterate_devices)
3188 		goto out;
3189 
3190 	ti->type->iterate_devices(ti, fn, pr);
3191 	ret = 0;
3192 out:
3193 	dm_put_live_table(md, srcu_idx);
3194 	return ret;
3195 }
3196 
3197 /*
3198  * For register / unregister we need to manually call out to every path.
3199  */
3200 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201 			    sector_t start, sector_t len, void *data)
3202 {
3203 	struct dm_pr *pr = data;
3204 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3205 	int ret;
3206 
3207 	if (!ops || !ops->pr_register) {
3208 		pr->ret = -EOPNOTSUPP;
3209 		return -1;
3210 	}
3211 
3212 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3213 	if (!ret)
3214 		return 0;
3215 
3216 	if (!pr->ret)
3217 		pr->ret = ret;
3218 
3219 	if (pr->fail_early)
3220 		return -1;
3221 
3222 	return 0;
3223 }
3224 
3225 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3226 			  u32 flags)
3227 {
3228 	struct dm_pr pr = {
3229 		.old_key	= old_key,
3230 		.new_key	= new_key,
3231 		.flags		= flags,
3232 		.fail_early	= true,
3233 		.ret		= 0,
3234 	};
3235 	int ret;
3236 
3237 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3238 	if (ret) {
3239 		/* Didn't even get to register a path */
3240 		return ret;
3241 	}
3242 
3243 	if (!pr.ret)
3244 		return 0;
3245 	ret = pr.ret;
3246 
3247 	if (!new_key)
3248 		return ret;
3249 
3250 	/* unregister all paths if we failed to register any path */
3251 	pr.old_key = new_key;
3252 	pr.new_key = 0;
3253 	pr.flags = 0;
3254 	pr.fail_early = false;
3255 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3256 	return ret;
3257 }
3258 
3259 
3260 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261 			   sector_t start, sector_t len, void *data)
3262 {
3263 	struct dm_pr *pr = data;
3264 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265 
3266 	if (!ops || !ops->pr_reserve) {
3267 		pr->ret = -EOPNOTSUPP;
3268 		return -1;
3269 	}
3270 
3271 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3272 	if (!pr->ret)
3273 		return -1;
3274 
3275 	return 0;
3276 }
3277 
3278 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3279 			 u32 flags)
3280 {
3281 	struct dm_pr pr = {
3282 		.old_key	= key,
3283 		.flags		= flags,
3284 		.type		= type,
3285 		.fail_early	= false,
3286 		.ret		= 0,
3287 	};
3288 	int ret;
3289 
3290 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3291 	if (ret)
3292 		return ret;
3293 
3294 	return pr.ret;
3295 }
3296 
3297 /*
3298  * If there is a non-All Registrants type of reservation, the release must be
3299  * sent down the holding path. For the cases where there is no reservation or
3300  * the path is not the holder the device will also return success, so we must
3301  * try each path to make sure we got the correct path.
3302  */
3303 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304 			   sector_t start, sector_t len, void *data)
3305 {
3306 	struct dm_pr *pr = data;
3307 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3308 
3309 	if (!ops || !ops->pr_release) {
3310 		pr->ret = -EOPNOTSUPP;
3311 		return -1;
3312 	}
3313 
3314 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3315 	if (pr->ret)
3316 		return -1;
3317 
3318 	return 0;
3319 }
3320 
3321 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3322 {
3323 	struct dm_pr pr = {
3324 		.old_key	= key,
3325 		.type		= type,
3326 		.fail_early	= false,
3327 	};
3328 	int ret;
3329 
3330 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3331 	if (ret)
3332 		return ret;
3333 
3334 	return pr.ret;
3335 }
3336 
3337 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338 			   sector_t start, sector_t len, void *data)
3339 {
3340 	struct dm_pr *pr = data;
3341 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3342 
3343 	if (!ops || !ops->pr_preempt) {
3344 		pr->ret = -EOPNOTSUPP;
3345 		return -1;
3346 	}
3347 
3348 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3349 				  pr->abort);
3350 	if (!pr->ret)
3351 		return -1;
3352 
3353 	return 0;
3354 }
3355 
3356 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357 			 enum pr_type type, bool abort)
3358 {
3359 	struct dm_pr pr = {
3360 		.new_key	= new_key,
3361 		.old_key	= old_key,
3362 		.type		= type,
3363 		.fail_early	= false,
3364 	};
3365 	int ret;
3366 
3367 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3368 	if (ret)
3369 		return ret;
3370 
3371 	return pr.ret;
3372 }
3373 
3374 static int dm_pr_clear(struct block_device *bdev, u64 key)
3375 {
3376 	struct mapped_device *md = bdev->bd_disk->private_data;
3377 	const struct pr_ops *ops;
3378 	int r, srcu_idx;
3379 
3380 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3381 	if (r < 0)
3382 		goto out;
3383 
3384 	ops = bdev->bd_disk->fops->pr_ops;
3385 	if (ops && ops->pr_clear)
3386 		r = ops->pr_clear(bdev, key);
3387 	else
3388 		r = -EOPNOTSUPP;
3389 out:
3390 	dm_unprepare_ioctl(md, srcu_idx);
3391 	return r;
3392 }
3393 
3394 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395 			     sector_t start, sector_t len, void *data)
3396 {
3397 	struct dm_pr *pr = data;
3398 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3399 
3400 	if (!ops || !ops->pr_read_keys) {
3401 		pr->ret = -EOPNOTSUPP;
3402 		return -1;
3403 	}
3404 
3405 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3406 	if (!pr->ret)
3407 		return -1;
3408 
3409 	return 0;
3410 }
3411 
3412 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3413 {
3414 	struct dm_pr pr = {
3415 		.read_keys = keys,
3416 	};
3417 	int ret;
3418 
3419 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3420 	if (ret)
3421 		return ret;
3422 
3423 	return pr.ret;
3424 }
3425 
3426 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427 				    sector_t start, sector_t len, void *data)
3428 {
3429 	struct dm_pr *pr = data;
3430 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3431 
3432 	if (!ops || !ops->pr_read_reservation) {
3433 		pr->ret = -EOPNOTSUPP;
3434 		return -1;
3435 	}
3436 
3437 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3438 	if (!pr->ret)
3439 		return -1;
3440 
3441 	return 0;
3442 }
3443 
3444 static int dm_pr_read_reservation(struct block_device *bdev,
3445 				  struct pr_held_reservation *rsv)
3446 {
3447 	struct dm_pr pr = {
3448 		.rsv = rsv,
3449 	};
3450 	int ret;
3451 
3452 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3453 	if (ret)
3454 		return ret;
3455 
3456 	return pr.ret;
3457 }
3458 
3459 static const struct pr_ops dm_pr_ops = {
3460 	.pr_register	= dm_pr_register,
3461 	.pr_reserve	= dm_pr_reserve,
3462 	.pr_release	= dm_pr_release,
3463 	.pr_preempt	= dm_pr_preempt,
3464 	.pr_clear	= dm_pr_clear,
3465 	.pr_read_keys	= dm_pr_read_keys,
3466 	.pr_read_reservation = dm_pr_read_reservation,
3467 };
3468 
3469 static const struct block_device_operations dm_blk_dops = {
3470 	.submit_bio = dm_submit_bio,
3471 	.poll_bio = dm_poll_bio,
3472 	.open = dm_blk_open,
3473 	.release = dm_blk_close,
3474 	.ioctl = dm_blk_ioctl,
3475 	.getgeo = dm_blk_getgeo,
3476 	.report_zones = dm_blk_report_zones,
3477 	.pr_ops = &dm_pr_ops,
3478 	.owner = THIS_MODULE
3479 };
3480 
3481 static const struct block_device_operations dm_rq_blk_dops = {
3482 	.open = dm_blk_open,
3483 	.release = dm_blk_close,
3484 	.ioctl = dm_blk_ioctl,
3485 	.getgeo = dm_blk_getgeo,
3486 	.pr_ops = &dm_pr_ops,
3487 	.owner = THIS_MODULE
3488 };
3489 
3490 static const struct dax_operations dm_dax_ops = {
3491 	.direct_access = dm_dax_direct_access,
3492 	.zero_page_range = dm_dax_zero_page_range,
3493 	.recovery_write = dm_dax_recovery_write,
3494 };
3495 
3496 /*
3497  * module hooks
3498  */
3499 module_init(dm_init);
3500 module_exit(dm_exit);
3501 
3502 module_param(major, uint, 0);
3503 MODULE_PARM_DESC(major, "The major number of the device mapper");
3504 
3505 module_param(reserved_bio_based_ios, uint, 0644);
3506 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3507 
3508 module_param(dm_numa_node, int, 0644);
3509 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3510 
3511 module_param(swap_bios, int, 0644);
3512 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3513 
3514 MODULE_DESCRIPTION(DM_NAME " driver");
3515 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3516 MODULE_LICENSE("GPL");
3517