xref: /linux/drivers/media/pci/cx88/cx88-dsp.c (revision e318e584)
1 /*
2  *
3  *  Stereo and SAP detection for cx88
4  *
5  *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/slab.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/jiffies.h>
26 #include <asm/div64.h>
27 
28 #include "cx88.h"
29 #include "cx88-reg.h"
30 
31 #define INT_PI			((s32)(3.141592653589 * 32768.0))
32 
33 #define compat_remainder(a, b) \
34 	 ((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0)
35 
36 #define baseband_freq(carrier, srate, tone) ((s32)( \
37 	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
38 
39 /* We calculate the baseband frequencies of the carrier and the pilot tones
40  * based on the the sampling rate of the audio rds fifo. */
41 
42 #define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
43 #define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
44 #define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
45 
46 /* The frequencies below are from the reference driver. They probably need
47  * further adjustments, because they are not tested at all. You may even need
48  * to play a bit with the registers of the chip to select the proper signal
49  * for the input of the audio rds fifo, and measure it's sampling rate to
50  * calculate the proper baseband frequencies... */
51 
52 #define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
53 #define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
54 #define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
55 
56 #define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
57 #define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
58 #define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
59 
60 #define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
61 #define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
62 
63 #define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
64 #define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
65 
66 /* The spectrum of the signal should be empty between these frequencies. */
67 #define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
68 #define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
69 
70 static unsigned int dsp_debug;
71 module_param(dsp_debug, int, 0644);
72 MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
73 
74 #define dprintk(level, fmt, arg...)	if (dsp_debug >= level) \
75 	printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg)
76 
77 static s32 int_cos(u32 x)
78 {
79 	u32 t2, t4, t6, t8;
80 	s32 ret;
81 	u16 period = x / INT_PI;
82 	if (period % 2)
83 		return -int_cos(x - INT_PI);
84 	x = x % INT_PI;
85 	if (x > INT_PI/2)
86 		return -int_cos(INT_PI/2 - (x % (INT_PI/2)));
87 	/* Now x is between 0 and INT_PI/2.
88 	 * To calculate cos(x) we use it's Taylor polinom. */
89 	t2 = x*x/32768/2;
90 	t4 = t2*x/32768*x/32768/3/4;
91 	t6 = t4*x/32768*x/32768/5/6;
92 	t8 = t6*x/32768*x/32768/7/8;
93 	ret = 32768-t2+t4-t6+t8;
94 	return ret;
95 }
96 
97 static u32 int_goertzel(s16 x[], u32 N, u32 freq)
98 {
99 	/* We use the Goertzel algorithm to determine the power of the
100 	 * given frequency in the signal */
101 	s32 s_prev = 0;
102 	s32 s_prev2 = 0;
103 	s32 coeff = 2*int_cos(freq);
104 	u32 i;
105 
106 	u64 tmp;
107 	u32 divisor;
108 
109 	for (i = 0; i < N; i++) {
110 		s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2;
111 		s_prev2 = s_prev;
112 		s_prev = s;
113 	}
114 
115 	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
116 		      (s64)coeff * s_prev2 * s_prev / 32768;
117 
118 	/* XXX: N must be low enough so that N*N fits in s32.
119 	 * Else we need two divisions. */
120 	divisor = N * N;
121 	do_div(tmp, divisor);
122 
123 	return (u32) tmp;
124 }
125 
126 static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
127 {
128 	u32 sum = int_goertzel(x, N, freq);
129 	return (u32)int_sqrt(sum);
130 }
131 
132 static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
133 {
134 	int i;
135 	u32 sum = 0;
136 	u32 freq_step;
137 	int samples = 5;
138 
139 	if (N > 192) {
140 		/* The last 192 samples are enough for noise detection */
141 		x += (N-192);
142 		N = 192;
143 	}
144 
145 	freq_step = (freq_end - freq_start) / (samples - 1);
146 
147 	for (i = 0; i < samples; i++) {
148 		sum += int_goertzel(x, N, freq_start);
149 		freq_start += freq_step;
150 	}
151 
152 	return (u32)int_sqrt(sum / samples);
153 }
154 
155 static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
156 {
157 	s32 carrier, stereo, dual, noise;
158 	s32 carrier_freq, stereo_freq, dual_freq;
159 	s32 ret;
160 
161 	switch (core->tvaudio) {
162 	case WW_BG:
163 	case WW_DK:
164 		carrier_freq = FREQ_A2_CARRIER;
165 		stereo_freq = FREQ_A2_STEREO;
166 		dual_freq = FREQ_A2_DUAL;
167 		break;
168 	case WW_M:
169 		carrier_freq = FREQ_A2M_CARRIER;
170 		stereo_freq = FREQ_A2M_STEREO;
171 		dual_freq = FREQ_A2M_DUAL;
172 		break;
173 	case WW_EIAJ:
174 		carrier_freq = FREQ_EIAJ_CARRIER;
175 		stereo_freq = FREQ_EIAJ_STEREO;
176 		dual_freq = FREQ_EIAJ_DUAL;
177 		break;
178 	default:
179 		printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n",
180 		       core->name, core->tvaudio, __func__);
181 		return UNSET;
182 	}
183 
184 	carrier = freq_magnitude(x, N, carrier_freq);
185 	stereo  = freq_magnitude(x, N, stereo_freq);
186 	dual    = freq_magnitude(x, N, dual_freq);
187 	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
188 
189 	dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
190 		carrier, stereo, dual, noise);
191 
192 	if (stereo > dual)
193 		ret = V4L2_TUNER_SUB_STEREO;
194 	else
195 		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
196 
197 	if (core->tvaudio == WW_EIAJ) {
198 		/* EIAJ checks may need adjustments */
199 		if ((carrier > max(stereo, dual)*2) &&
200 		    (carrier < max(stereo, dual)*6) &&
201 		    (carrier > 20 && carrier < 200) &&
202 		    (max(stereo, dual) > min(stereo, dual))) {
203 			/* For EIAJ the carrier is always present,
204 			   so we probably don't need noise detection */
205 			return ret;
206 		}
207 	} else {
208 		if ((carrier > max(stereo, dual)*2) &&
209 		    (carrier < max(stereo, dual)*8) &&
210 		    (carrier > 20 && carrier < 200) &&
211 		    (noise < 10) &&
212 		    (max(stereo, dual) > min(stereo, dual)*2)) {
213 			return ret;
214 		}
215 	}
216 	return V4L2_TUNER_SUB_MONO;
217 }
218 
219 static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
220 {
221 	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
222 	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
223 	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
224 	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
225 	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
226 		dual_ref, dual, sap_ref, sap);
227 	/* FIXME: Currently not supported */
228 	return UNSET;
229 }
230 
231 static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
232 {
233 	const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
234 	s16 *samples;
235 
236 	unsigned int i;
237 	unsigned int bpl = srch->fifo_size/AUD_RDS_LINES;
238 	unsigned int spl = bpl/4;
239 	unsigned int sample_count = spl*(AUD_RDS_LINES-1);
240 
241 	u32 current_address = cx_read(srch->ptr1_reg);
242 	u32 offset = (current_address - srch->fifo_start + bpl);
243 
244 	dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
245 		current_address,
246 		current_address - srch->fifo_start, sample_count,
247 		cx_read(MO_AUD_INTSTAT));
248 
249 	samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL);
250 	if (!samples)
251 		return NULL;
252 
253 	*N = sample_count;
254 
255 	for (i = 0; i < sample_count; i++)  {
256 		offset = offset % (AUD_RDS_LINES*bpl);
257 		samples[i] = cx_read(srch->fifo_start + offset);
258 		offset += 4;
259 	}
260 
261 	if (dsp_debug >= 2) {
262 		dprintk(2, "RDS samples dump: ");
263 		for (i = 0; i < sample_count; i++)
264 			printk("%hd ", samples[i]);
265 		printk(".\n");
266 	}
267 
268 	return samples;
269 }
270 
271 s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
272 {
273 	s16 *samples;
274 	u32 N = 0;
275 	s32 ret = UNSET;
276 
277 	/* If audio RDS fifo is disabled, we can't read the samples */
278 	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
279 		return ret;
280 	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
281 		return ret;
282 
283 	/* Wait at least 500 ms after an audio standard change */
284 	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
285 		return ret;
286 
287 	samples = read_rds_samples(core, &N);
288 
289 	if (!samples)
290 		return ret;
291 
292 	switch (core->tvaudio) {
293 	case WW_BG:
294 	case WW_DK:
295 	case WW_EIAJ:
296 	case WW_M:
297 		ret = detect_a2_a2m_eiaj(core, samples, N);
298 		break;
299 	case WW_BTSC:
300 		ret = detect_btsc(core, samples, N);
301 		break;
302 	case WW_NONE:
303 	case WW_I:
304 	case WW_L:
305 	case WW_I2SPT:
306 	case WW_FM:
307 	case WW_I2SADC:
308 		break;
309 	}
310 
311 	kfree(samples);
312 
313 	if (UNSET != ret)
314 		dprintk(1, "stereo/sap detection result:%s%s%s\n",
315 			   (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
316 			   (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
317 			   (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
318 
319 	return ret;
320 }
321 EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
322 
323