xref: /linux/drivers/media/pci/intel/ipu-bridge.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Author: Dan Scally <djrscally@gmail.com> */
3 
4 #include <linux/acpi.h>
5 #include <linux/cleanup.h>
6 #include <linux/device.h>
7 #include <linux/i2c.h>
8 #include <linux/mei_cl_bus.h>
9 #include <linux/platform_device.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/property.h>
12 #include <linux/string.h>
13 #include <linux/workqueue.h>
14 
15 #include <media/ipu-bridge.h>
16 #include <media/v4l2-fwnode.h>
17 
18 /*
19  * 92335fcf-3203-4472-af93-7b4453ac29da
20  *
21  * Used to build MEI CSI device name to lookup MEI CSI device by
22  * device_find_child_by_name().
23  */
24 #define MEI_CSI_UUID							\
25 	UUID_LE(0x92335FCF, 0x3203, 0x4472,				\
26 		0xAF, 0x93, 0x7B, 0x44, 0x53, 0xAC, 0x29, 0xDA)
27 
28 /*
29  * IVSC device name
30  *
31  * Used to match IVSC device by ipu_bridge_match_ivsc_dev()
32  */
33 #define IVSC_DEV_NAME "intel_vsc"
34 
35 /*
36  * Extend this array with ACPI Hardware IDs of devices known to be working
37  * plus the number of link-frequencies expected by their drivers, along with
38  * the frequency values in hertz. This is somewhat opportunistic way of adding
39  * support for this for now in the hopes of a better source for the information
40  * (possibly some encoded value in the SSDB buffer that we're unaware of)
41  * becoming apparent in the future.
42  *
43  * Do not add an entry for a sensor that is not actually supported.
44  */
45 static const struct ipu_sensor_config ipu_supported_sensors[] = {
46 	/* Omnivision OV5693 */
47 	IPU_SENSOR_CONFIG("INT33BE", 1, 419200000),
48 	/* Omnivision OV8865 */
49 	IPU_SENSOR_CONFIG("INT347A", 1, 360000000),
50 	/* Omnivision OV7251 */
51 	IPU_SENSOR_CONFIG("INT347E", 1, 319200000),
52 	/* Omnivision OV2680 */
53 	IPU_SENSOR_CONFIG("OVTI2680", 1, 331200000),
54 	/* Omnivision ov8856 */
55 	IPU_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
56 	/* Omnivision ov2740 */
57 	IPU_SENSOR_CONFIG("INT3474", 1, 180000000),
58 	/* Hynix hi556 */
59 	IPU_SENSOR_CONFIG("INT3537", 1, 437000000),
60 	/* Omnivision ov13b10 */
61 	IPU_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
62 	/* GalaxyCore GC0310 */
63 	IPU_SENSOR_CONFIG("INT0310", 0),
64 	/* Omnivision ov01a10 */
65 	IPU_SENSOR_CONFIG("OVTI01A0", 1, 400000000),
66 };
67 
68 static const struct ipu_property_names prop_names = {
69 	.clock_frequency = "clock-frequency",
70 	.rotation = "rotation",
71 	.orientation = "orientation",
72 	.bus_type = "bus-type",
73 	.data_lanes = "data-lanes",
74 	.remote_endpoint = "remote-endpoint",
75 	.link_frequencies = "link-frequencies",
76 };
77 
78 static const char * const ipu_vcm_types[] = {
79 	"ad5823",
80 	"dw9714",
81 	"ad5816",
82 	"dw9719",
83 	"dw9718",
84 	"dw9806b",
85 	"wv517s",
86 	"lc898122xa",
87 	"lc898212axb",
88 };
89 
90 /*
91  * Used to figure out IVSC acpi device by ipu_bridge_get_ivsc_acpi_dev()
92  * instead of device and driver match to probe IVSC device.
93  */
94 static const struct acpi_device_id ivsc_acpi_ids[] = {
95 	{ "INTC1059" },
96 	{ "INTC1095" },
97 	{ "INTC100A" },
98 	{ "INTC10CF" },
99 };
100 
101 static struct acpi_device *ipu_bridge_get_ivsc_acpi_dev(struct acpi_device *adev)
102 {
103 	acpi_handle handle = acpi_device_handle(adev);
104 	struct acpi_device *consumer, *ivsc_adev;
105 	unsigned int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(ivsc_acpi_ids); i++) {
108 		const struct acpi_device_id *acpi_id = &ivsc_acpi_ids[i];
109 
110 		for_each_acpi_dev_match(ivsc_adev, acpi_id->id, NULL, -1)
111 			/* camera sensor depends on IVSC in DSDT if exist */
112 			for_each_acpi_consumer_dev(ivsc_adev, consumer)
113 				if (consumer->handle == handle) {
114 					acpi_dev_put(consumer);
115 					return ivsc_adev;
116 				}
117 	}
118 
119 	return NULL;
120 }
121 
122 static int ipu_bridge_match_ivsc_dev(struct device *dev, const void *adev)
123 {
124 	if (ACPI_COMPANION(dev) != adev)
125 		return 0;
126 
127 	if (!sysfs_streq(dev_name(dev), IVSC_DEV_NAME))
128 		return 0;
129 
130 	return 1;
131 }
132 
133 static struct device *ipu_bridge_get_ivsc_csi_dev(struct acpi_device *adev)
134 {
135 	struct device *dev, *csi_dev;
136 	uuid_le uuid = MEI_CSI_UUID;
137 	char name[64];
138 
139 	/* IVSC device on platform bus */
140 	dev = bus_find_device(&platform_bus_type, NULL, adev,
141 			      ipu_bridge_match_ivsc_dev);
142 	if (dev) {
143 		snprintf(name, sizeof(name), "%s-%pUl", dev_name(dev), &uuid);
144 
145 		csi_dev = device_find_child_by_name(dev, name);
146 
147 		put_device(dev);
148 
149 		return csi_dev;
150 	}
151 
152 	return NULL;
153 }
154 
155 static int ipu_bridge_check_ivsc_dev(struct ipu_sensor *sensor,
156 				     struct acpi_device *sensor_adev)
157 {
158 	struct acpi_device *adev;
159 	struct device *csi_dev;
160 
161 	adev = ipu_bridge_get_ivsc_acpi_dev(sensor_adev);
162 	if (adev) {
163 		csi_dev = ipu_bridge_get_ivsc_csi_dev(adev);
164 		if (!csi_dev) {
165 			acpi_dev_put(adev);
166 			dev_err(&adev->dev, "Failed to find MEI CSI dev\n");
167 			return -ENODEV;
168 		}
169 
170 		sensor->csi_dev = csi_dev;
171 		sensor->ivsc_adev = adev;
172 	}
173 
174 	return 0;
175 }
176 
177 static int ipu_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
178 				       void *data, u32 size)
179 {
180 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
181 	union acpi_object *obj;
182 	acpi_status status;
183 	int ret = 0;
184 
185 	status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
186 	if (ACPI_FAILURE(status))
187 		return -ENODEV;
188 
189 	obj = buffer.pointer;
190 	if (!obj) {
191 		dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
192 		return -ENODEV;
193 	}
194 
195 	if (obj->type != ACPI_TYPE_BUFFER) {
196 		dev_err(&adev->dev, "Not an ACPI buffer\n");
197 		ret = -ENODEV;
198 		goto out_free_buff;
199 	}
200 
201 	if (obj->buffer.length > size) {
202 		dev_err(&adev->dev, "Given buffer is too small\n");
203 		ret = -EINVAL;
204 		goto out_free_buff;
205 	}
206 
207 	memcpy(data, obj->buffer.pointer, obj->buffer.length);
208 
209 out_free_buff:
210 	kfree(buffer.pointer);
211 	return ret;
212 }
213 
214 static u32 ipu_bridge_parse_rotation(struct acpi_device *adev,
215 				     struct ipu_sensor_ssdb *ssdb)
216 {
217 	switch (ssdb->degree) {
218 	case IPU_SENSOR_ROTATION_NORMAL:
219 		return 0;
220 	case IPU_SENSOR_ROTATION_INVERTED:
221 		return 180;
222 	default:
223 		dev_warn(&adev->dev,
224 			 "Unknown rotation %d. Assume 0 degree rotation\n",
225 			 ssdb->degree);
226 		return 0;
227 	}
228 }
229 
230 static enum v4l2_fwnode_orientation ipu_bridge_parse_orientation(struct acpi_device *adev)
231 {
232 	enum v4l2_fwnode_orientation orientation;
233 	struct acpi_pld_info *pld;
234 	acpi_status status;
235 
236 	status = acpi_get_physical_device_location(adev->handle, &pld);
237 	if (ACPI_FAILURE(status)) {
238 		dev_warn(&adev->dev, "_PLD call failed, using default orientation\n");
239 		return V4L2_FWNODE_ORIENTATION_EXTERNAL;
240 	}
241 
242 	switch (pld->panel) {
243 	case ACPI_PLD_PANEL_FRONT:
244 		orientation = V4L2_FWNODE_ORIENTATION_FRONT;
245 		break;
246 	case ACPI_PLD_PANEL_BACK:
247 		orientation = V4L2_FWNODE_ORIENTATION_BACK;
248 		break;
249 	case ACPI_PLD_PANEL_TOP:
250 	case ACPI_PLD_PANEL_LEFT:
251 	case ACPI_PLD_PANEL_RIGHT:
252 	case ACPI_PLD_PANEL_UNKNOWN:
253 		orientation = V4L2_FWNODE_ORIENTATION_EXTERNAL;
254 		break;
255 	default:
256 		dev_warn(&adev->dev, "Unknown _PLD panel val %d\n", pld->panel);
257 		orientation = V4L2_FWNODE_ORIENTATION_EXTERNAL;
258 		break;
259 	}
260 
261 	ACPI_FREE(pld);
262 	return orientation;
263 }
264 
265 int ipu_bridge_parse_ssdb(struct acpi_device *adev, struct ipu_sensor *sensor)
266 {
267 	struct ipu_sensor_ssdb ssdb = {};
268 	int ret;
269 
270 	ret = ipu_bridge_read_acpi_buffer(adev, "SSDB", &ssdb, sizeof(ssdb));
271 	if (ret)
272 		return ret;
273 
274 	if (ssdb.vcmtype > ARRAY_SIZE(ipu_vcm_types)) {
275 		dev_warn(&adev->dev, "Unknown VCM type %d\n", ssdb.vcmtype);
276 		ssdb.vcmtype = 0;
277 	}
278 
279 	if (ssdb.lanes > IPU_MAX_LANES) {
280 		dev_err(&adev->dev, "Number of lanes in SSDB is invalid\n");
281 		return -EINVAL;
282 	}
283 
284 	sensor->link = ssdb.link;
285 	sensor->lanes = ssdb.lanes;
286 	sensor->mclkspeed = ssdb.mclkspeed;
287 	sensor->rotation = ipu_bridge_parse_rotation(adev, &ssdb);
288 	sensor->orientation = ipu_bridge_parse_orientation(adev);
289 
290 	if (ssdb.vcmtype)
291 		sensor->vcm_type = ipu_vcm_types[ssdb.vcmtype - 1];
292 
293 	return 0;
294 }
295 EXPORT_SYMBOL_NS_GPL(ipu_bridge_parse_ssdb, INTEL_IPU_BRIDGE);
296 
297 static void ipu_bridge_create_fwnode_properties(
298 	struct ipu_sensor *sensor,
299 	struct ipu_bridge *bridge,
300 	const struct ipu_sensor_config *cfg)
301 {
302 	struct ipu_property_names *names = &sensor->prop_names;
303 	struct software_node *nodes = sensor->swnodes;
304 
305 	sensor->prop_names = prop_names;
306 
307 	if (sensor->csi_dev) {
308 		sensor->local_ref[0] =
309 			SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IVSC_SENSOR_ENDPOINT]);
310 		sensor->remote_ref[0] =
311 			SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IVSC_IPU_ENDPOINT]);
312 		sensor->ivsc_sensor_ref[0] =
313 			SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_SENSOR_ENDPOINT]);
314 		sensor->ivsc_ipu_ref[0] =
315 			SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IPU_ENDPOINT]);
316 
317 		sensor->ivsc_sensor_ep_properties[0] =
318 			PROPERTY_ENTRY_U32(names->bus_type,
319 					   V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
320 		sensor->ivsc_sensor_ep_properties[1] =
321 			PROPERTY_ENTRY_U32_ARRAY_LEN(names->data_lanes,
322 						     bridge->data_lanes,
323 						     sensor->lanes);
324 		sensor->ivsc_sensor_ep_properties[2] =
325 			PROPERTY_ENTRY_REF_ARRAY(names->remote_endpoint,
326 						 sensor->ivsc_sensor_ref);
327 
328 		sensor->ivsc_ipu_ep_properties[0] =
329 			PROPERTY_ENTRY_U32(names->bus_type,
330 					   V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
331 		sensor->ivsc_ipu_ep_properties[1] =
332 			PROPERTY_ENTRY_U32_ARRAY_LEN(names->data_lanes,
333 						     bridge->data_lanes,
334 						     sensor->lanes);
335 		sensor->ivsc_ipu_ep_properties[2] =
336 			PROPERTY_ENTRY_REF_ARRAY(names->remote_endpoint,
337 						 sensor->ivsc_ipu_ref);
338 	} else {
339 		sensor->local_ref[0] =
340 			SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IPU_ENDPOINT]);
341 		sensor->remote_ref[0] =
342 			SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_SENSOR_ENDPOINT]);
343 	}
344 
345 	sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
346 					sensor->prop_names.clock_frequency,
347 					sensor->mclkspeed);
348 	sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
349 					sensor->prop_names.rotation,
350 					sensor->rotation);
351 	sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
352 					sensor->prop_names.orientation,
353 					sensor->orientation);
354 	if (sensor->vcm_type) {
355 		sensor->vcm_ref[0] =
356 			SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
357 		sensor->dev_properties[3] =
358 			PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
359 	}
360 
361 	sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
362 					sensor->prop_names.bus_type,
363 					V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
364 	sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
365 					sensor->prop_names.data_lanes,
366 					bridge->data_lanes, sensor->lanes);
367 	sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
368 					sensor->prop_names.remote_endpoint,
369 					sensor->local_ref);
370 
371 	if (cfg->nr_link_freqs > 0)
372 		sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
373 			sensor->prop_names.link_frequencies,
374 			cfg->link_freqs,
375 			cfg->nr_link_freqs);
376 
377 	sensor->ipu_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
378 					sensor->prop_names.data_lanes,
379 					bridge->data_lanes, sensor->lanes);
380 	sensor->ipu_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
381 					sensor->prop_names.remote_endpoint,
382 					sensor->remote_ref);
383 }
384 
385 static void ipu_bridge_init_swnode_names(struct ipu_sensor *sensor)
386 {
387 	snprintf(sensor->node_names.remote_port,
388 		 sizeof(sensor->node_names.remote_port),
389 		 SWNODE_GRAPH_PORT_NAME_FMT, sensor->link);
390 	snprintf(sensor->node_names.port,
391 		 sizeof(sensor->node_names.port),
392 		 SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
393 	snprintf(sensor->node_names.endpoint,
394 		 sizeof(sensor->node_names.endpoint),
395 		 SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
396 	if (sensor->vcm_type) {
397 		/* append link to distinguish nodes with same model VCM */
398 		snprintf(sensor->node_names.vcm, sizeof(sensor->node_names.vcm),
399 			 "%s-%u", sensor->vcm_type, sensor->link);
400 	}
401 
402 	if (sensor->csi_dev) {
403 		snprintf(sensor->node_names.ivsc_sensor_port,
404 			 sizeof(sensor->node_names.ivsc_sensor_port),
405 			 SWNODE_GRAPH_PORT_NAME_FMT, 0);
406 		snprintf(sensor->node_names.ivsc_ipu_port,
407 			 sizeof(sensor->node_names.ivsc_ipu_port),
408 			 SWNODE_GRAPH_PORT_NAME_FMT, 1);
409 	}
410 }
411 
412 static void ipu_bridge_init_swnode_group(struct ipu_sensor *sensor)
413 {
414 	struct software_node *nodes = sensor->swnodes;
415 
416 	sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
417 	sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
418 	sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
419 	sensor->group[SWNODE_IPU_PORT] = &nodes[SWNODE_IPU_PORT];
420 	sensor->group[SWNODE_IPU_ENDPOINT] = &nodes[SWNODE_IPU_ENDPOINT];
421 	if (sensor->vcm_type)
422 		sensor->group[SWNODE_VCM] =  &nodes[SWNODE_VCM];
423 
424 	if (sensor->csi_dev) {
425 		sensor->group[SWNODE_IVSC_HID] =
426 					&nodes[SWNODE_IVSC_HID];
427 		sensor->group[SWNODE_IVSC_SENSOR_PORT] =
428 					&nodes[SWNODE_IVSC_SENSOR_PORT];
429 		sensor->group[SWNODE_IVSC_SENSOR_ENDPOINT] =
430 					&nodes[SWNODE_IVSC_SENSOR_ENDPOINT];
431 		sensor->group[SWNODE_IVSC_IPU_PORT] =
432 					&nodes[SWNODE_IVSC_IPU_PORT];
433 		sensor->group[SWNODE_IVSC_IPU_ENDPOINT] =
434 					&nodes[SWNODE_IVSC_IPU_ENDPOINT];
435 
436 		if (sensor->vcm_type)
437 			sensor->group[SWNODE_VCM] = &nodes[SWNODE_VCM];
438 	} else {
439 		if (sensor->vcm_type)
440 			sensor->group[SWNODE_IVSC_HID] = &nodes[SWNODE_VCM];
441 	}
442 }
443 
444 static void ipu_bridge_create_connection_swnodes(struct ipu_bridge *bridge,
445 						 struct ipu_sensor *sensor)
446 {
447 	struct ipu_node_names *names = &sensor->node_names;
448 	struct software_node *nodes = sensor->swnodes;
449 
450 	ipu_bridge_init_swnode_names(sensor);
451 
452 	nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
453 					       sensor->dev_properties);
454 	nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
455 					      &nodes[SWNODE_SENSOR_HID]);
456 	nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
457 						sensor->node_names.endpoint,
458 						&nodes[SWNODE_SENSOR_PORT],
459 						sensor->ep_properties);
460 	nodes[SWNODE_IPU_PORT] = NODE_PORT(sensor->node_names.remote_port,
461 					   &bridge->ipu_hid_node);
462 	nodes[SWNODE_IPU_ENDPOINT] = NODE_ENDPOINT(
463 						sensor->node_names.endpoint,
464 						&nodes[SWNODE_IPU_PORT],
465 						sensor->ipu_properties);
466 
467 	if (sensor->csi_dev) {
468 		snprintf(sensor->ivsc_name, sizeof(sensor->ivsc_name), "%s-%u",
469 			 acpi_device_hid(sensor->ivsc_adev), sensor->link);
470 
471 		nodes[SWNODE_IVSC_HID] = NODE_SENSOR(sensor->ivsc_name,
472 						     sensor->ivsc_properties);
473 		nodes[SWNODE_IVSC_SENSOR_PORT] =
474 				NODE_PORT(names->ivsc_sensor_port,
475 					  &nodes[SWNODE_IVSC_HID]);
476 		nodes[SWNODE_IVSC_SENSOR_ENDPOINT] =
477 				NODE_ENDPOINT(names->endpoint,
478 					      &nodes[SWNODE_IVSC_SENSOR_PORT],
479 					      sensor->ivsc_sensor_ep_properties);
480 		nodes[SWNODE_IVSC_IPU_PORT] =
481 				NODE_PORT(names->ivsc_ipu_port,
482 					  &nodes[SWNODE_IVSC_HID]);
483 		nodes[SWNODE_IVSC_IPU_ENDPOINT] =
484 				NODE_ENDPOINT(names->endpoint,
485 					      &nodes[SWNODE_IVSC_IPU_PORT],
486 					      sensor->ivsc_ipu_ep_properties);
487 	}
488 
489 	nodes[SWNODE_VCM] = NODE_VCM(sensor->node_names.vcm);
490 
491 	ipu_bridge_init_swnode_group(sensor);
492 }
493 
494 /*
495  * The actual instantiation must be done from a workqueue to avoid
496  * a deadlock on taking list_lock from v4l2-async twice.
497  */
498 struct ipu_bridge_instantiate_vcm_work_data {
499 	struct work_struct work;
500 	struct device *sensor;
501 	char name[16];
502 	struct i2c_board_info board_info;
503 };
504 
505 static void ipu_bridge_instantiate_vcm_work(struct work_struct *work)
506 {
507 	struct ipu_bridge_instantiate_vcm_work_data *data =
508 		container_of(work, struct ipu_bridge_instantiate_vcm_work_data,
509 			     work);
510 	struct acpi_device *adev = ACPI_COMPANION(data->sensor);
511 	struct i2c_client *vcm_client;
512 	bool put_fwnode = true;
513 	int ret;
514 
515 	/*
516 	 * The client may get probed before the device_link gets added below
517 	 * make sure the sensor is powered-up during probe.
518 	 */
519 	ret = pm_runtime_get_sync(data->sensor);
520 	if (ret < 0) {
521 		dev_err(data->sensor, "Error %d runtime-resuming sensor, cannot instantiate VCM\n",
522 			ret);
523 		goto out_pm_put;
524 	}
525 
526 	/*
527 	 * Note the client is created only once and then kept around
528 	 * even after a rmmod, just like the software-nodes.
529 	 */
530 	vcm_client = i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(adev),
531 						   1, &data->board_info);
532 	if (IS_ERR(vcm_client)) {
533 		dev_err(data->sensor, "Error instantiating VCM client: %ld\n",
534 			PTR_ERR(vcm_client));
535 		goto out_pm_put;
536 	}
537 
538 	device_link_add(&vcm_client->dev, data->sensor, DL_FLAG_PM_RUNTIME);
539 
540 	dev_info(data->sensor, "Instantiated %s VCM\n", data->board_info.type);
541 	put_fwnode = false; /* Ownership has passed to the i2c-client */
542 
543 out_pm_put:
544 	pm_runtime_put(data->sensor);
545 	put_device(data->sensor);
546 	if (put_fwnode)
547 		fwnode_handle_put(data->board_info.fwnode);
548 	kfree(data);
549 }
550 
551 int ipu_bridge_instantiate_vcm(struct device *sensor)
552 {
553 	struct ipu_bridge_instantiate_vcm_work_data *data;
554 	struct fwnode_handle *vcm_fwnode;
555 	struct i2c_client *vcm_client;
556 	struct acpi_device *adev;
557 	char *sep;
558 
559 	adev = ACPI_COMPANION(sensor);
560 	if (!adev)
561 		return 0;
562 
563 	vcm_fwnode = fwnode_find_reference(dev_fwnode(sensor), "lens-focus", 0);
564 	if (IS_ERR(vcm_fwnode))
565 		return 0;
566 
567 	/* When reloading modules the client will already exist */
568 	vcm_client = i2c_find_device_by_fwnode(vcm_fwnode);
569 	if (vcm_client) {
570 		fwnode_handle_put(vcm_fwnode);
571 		put_device(&vcm_client->dev);
572 		return 0;
573 	}
574 
575 	data = kzalloc(sizeof(*data), GFP_KERNEL);
576 	if (!data) {
577 		fwnode_handle_put(vcm_fwnode);
578 		return -ENOMEM;
579 	}
580 
581 	INIT_WORK(&data->work, ipu_bridge_instantiate_vcm_work);
582 	data->sensor = get_device(sensor);
583 	snprintf(data->name, sizeof(data->name), "%s-VCM",
584 		 acpi_dev_name(adev));
585 	data->board_info.dev_name = data->name;
586 	data->board_info.fwnode = vcm_fwnode;
587 	snprintf(data->board_info.type, sizeof(data->board_info.type),
588 		 "%pfwP", vcm_fwnode);
589 	/* Strip "-<link>" postfix */
590 	sep = strchrnul(data->board_info.type, '-');
591 	*sep = 0;
592 
593 	queue_work(system_long_wq, &data->work);
594 
595 	return 0;
596 }
597 EXPORT_SYMBOL_NS_GPL(ipu_bridge_instantiate_vcm, INTEL_IPU_BRIDGE);
598 
599 static int ipu_bridge_instantiate_ivsc(struct ipu_sensor *sensor)
600 {
601 	struct fwnode_handle *fwnode;
602 
603 	if (!sensor->csi_dev)
604 		return 0;
605 
606 	fwnode = software_node_fwnode(&sensor->swnodes[SWNODE_IVSC_HID]);
607 	if (!fwnode)
608 		return -ENODEV;
609 
610 	set_secondary_fwnode(sensor->csi_dev, fwnode);
611 
612 	return 0;
613 }
614 
615 static void ipu_bridge_unregister_sensors(struct ipu_bridge *bridge)
616 {
617 	struct ipu_sensor *sensor;
618 	unsigned int i;
619 
620 	for (i = 0; i < bridge->n_sensors; i++) {
621 		sensor = &bridge->sensors[i];
622 		software_node_unregister_node_group(sensor->group);
623 		acpi_dev_put(sensor->adev);
624 		put_device(sensor->csi_dev);
625 		acpi_dev_put(sensor->ivsc_adev);
626 	}
627 }
628 
629 static int ipu_bridge_connect_sensor(const struct ipu_sensor_config *cfg,
630 				     struct ipu_bridge *bridge)
631 {
632 	struct fwnode_handle *fwnode, *primary;
633 	struct ipu_sensor *sensor;
634 	struct acpi_device *adev;
635 	int ret;
636 
637 	for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
638 		if (!adev->status.enabled)
639 			continue;
640 
641 		if (bridge->n_sensors >= IPU_MAX_PORTS) {
642 			acpi_dev_put(adev);
643 			dev_err(bridge->dev, "Exceeded available IPU ports\n");
644 			return -EINVAL;
645 		}
646 
647 		sensor = &bridge->sensors[bridge->n_sensors];
648 
649 		ret = bridge->parse_sensor_fwnode(adev, sensor);
650 		if (ret)
651 			goto err_put_adev;
652 
653 		snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
654 			 cfg->hid, sensor->link);
655 
656 		ret = ipu_bridge_check_ivsc_dev(sensor, adev);
657 		if (ret)
658 			goto err_put_adev;
659 
660 		ipu_bridge_create_fwnode_properties(sensor, bridge, cfg);
661 		ipu_bridge_create_connection_swnodes(bridge, sensor);
662 
663 		ret = software_node_register_node_group(sensor->group);
664 		if (ret)
665 			goto err_put_ivsc;
666 
667 		fwnode = software_node_fwnode(&sensor->swnodes[
668 						      SWNODE_SENSOR_HID]);
669 		if (!fwnode) {
670 			ret = -ENODEV;
671 			goto err_free_swnodes;
672 		}
673 
674 		sensor->adev = acpi_dev_get(adev);
675 
676 		primary = acpi_fwnode_handle(adev);
677 		primary->secondary = fwnode;
678 
679 		ret = ipu_bridge_instantiate_ivsc(sensor);
680 		if (ret)
681 			goto err_free_swnodes;
682 
683 		dev_info(bridge->dev, "Found supported sensor %s\n",
684 			 acpi_dev_name(adev));
685 
686 		bridge->n_sensors++;
687 	}
688 
689 	return 0;
690 
691 err_free_swnodes:
692 	software_node_unregister_node_group(sensor->group);
693 err_put_ivsc:
694 	put_device(sensor->csi_dev);
695 	acpi_dev_put(sensor->ivsc_adev);
696 err_put_adev:
697 	acpi_dev_put(adev);
698 	return ret;
699 }
700 
701 static int ipu_bridge_connect_sensors(struct ipu_bridge *bridge)
702 {
703 	unsigned int i;
704 	int ret;
705 
706 	for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
707 		const struct ipu_sensor_config *cfg =
708 			&ipu_supported_sensors[i];
709 
710 		ret = ipu_bridge_connect_sensor(cfg, bridge);
711 		if (ret)
712 			goto err_unregister_sensors;
713 	}
714 
715 	return 0;
716 
717 err_unregister_sensors:
718 	ipu_bridge_unregister_sensors(bridge);
719 	return ret;
720 }
721 
722 static int ipu_bridge_ivsc_is_ready(void)
723 {
724 	struct acpi_device *sensor_adev, *adev;
725 	struct device *csi_dev;
726 	bool ready = true;
727 	unsigned int i;
728 
729 	for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
730 		const struct ipu_sensor_config *cfg =
731 			&ipu_supported_sensors[i];
732 
733 		for_each_acpi_dev_match(sensor_adev, cfg->hid, NULL, -1) {
734 			if (!sensor_adev->status.enabled)
735 				continue;
736 
737 			adev = ipu_bridge_get_ivsc_acpi_dev(sensor_adev);
738 			if (!adev)
739 				continue;
740 
741 			csi_dev = ipu_bridge_get_ivsc_csi_dev(adev);
742 			if (!csi_dev)
743 				ready = false;
744 
745 			put_device(csi_dev);
746 			acpi_dev_put(adev);
747 		}
748 	}
749 
750 	return ready;
751 }
752 
753 static int ipu_bridge_check_fwnode_graph(struct fwnode_handle *fwnode)
754 {
755 	struct fwnode_handle *endpoint;
756 
757 	if (IS_ERR_OR_NULL(fwnode))
758 		return -EINVAL;
759 
760 	endpoint = fwnode_graph_get_next_endpoint(fwnode, NULL);
761 	if (endpoint) {
762 		fwnode_handle_put(endpoint);
763 		return 0;
764 	}
765 
766 	return ipu_bridge_check_fwnode_graph(fwnode->secondary);
767 }
768 
769 static DEFINE_MUTEX(ipu_bridge_mutex);
770 
771 int ipu_bridge_init(struct device *dev,
772 		    ipu_parse_sensor_fwnode_t parse_sensor_fwnode)
773 {
774 	struct fwnode_handle *fwnode;
775 	struct ipu_bridge *bridge;
776 	unsigned int i;
777 	int ret;
778 
779 	guard(mutex)(&ipu_bridge_mutex);
780 
781 	if (!ipu_bridge_check_fwnode_graph(dev_fwnode(dev)))
782 		return 0;
783 
784 	if (!ipu_bridge_ivsc_is_ready())
785 		return -EPROBE_DEFER;
786 
787 	bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
788 	if (!bridge)
789 		return -ENOMEM;
790 
791 	strscpy(bridge->ipu_node_name, IPU_HID,
792 		sizeof(bridge->ipu_node_name));
793 	bridge->ipu_hid_node.name = bridge->ipu_node_name;
794 	bridge->dev = dev;
795 	bridge->parse_sensor_fwnode = parse_sensor_fwnode;
796 
797 	ret = software_node_register(&bridge->ipu_hid_node);
798 	if (ret < 0) {
799 		dev_err(dev, "Failed to register the IPU HID node\n");
800 		goto err_free_bridge;
801 	}
802 
803 	/*
804 	 * Map the lane arrangement, which is fixed for the IPU3 (meaning we
805 	 * only need one, rather than one per sensor). We include it as a
806 	 * member of the struct ipu_bridge rather than a global variable so
807 	 * that it survives if the module is unloaded along with the rest of
808 	 * the struct.
809 	 */
810 	for (i = 0; i < IPU_MAX_LANES; i++)
811 		bridge->data_lanes[i] = i + 1;
812 
813 	ret = ipu_bridge_connect_sensors(bridge);
814 	if (ret || bridge->n_sensors == 0)
815 		goto err_unregister_ipu;
816 
817 	dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
818 
819 	fwnode = software_node_fwnode(&bridge->ipu_hid_node);
820 	if (!fwnode) {
821 		dev_err(dev, "Error getting fwnode from ipu software_node\n");
822 		ret = -ENODEV;
823 		goto err_unregister_sensors;
824 	}
825 
826 	set_secondary_fwnode(dev, fwnode);
827 
828 	return 0;
829 
830 err_unregister_sensors:
831 	ipu_bridge_unregister_sensors(bridge);
832 err_unregister_ipu:
833 	software_node_unregister(&bridge->ipu_hid_node);
834 err_free_bridge:
835 	kfree(bridge);
836 
837 	return ret;
838 }
839 EXPORT_SYMBOL_NS_GPL(ipu_bridge_init, INTEL_IPU_BRIDGE);
840 
841 MODULE_LICENSE("GPL");
842 MODULE_DESCRIPTION("Intel IPU Sensors Bridge driver");
843