1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_entity.c  --  R-Car VSP1 Base Entity
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/device.h>
11 #include <linux/gfp.h>
12 
13 #include <media/media-entity.h>
14 #include <media/v4l2-ctrls.h>
15 #include <media/v4l2-subdev.h>
16 
17 #include "vsp1.h"
18 #include "vsp1_dl.h"
19 #include "vsp1_entity.h"
20 #include "vsp1_pipe.h"
21 #include "vsp1_rwpf.h"
22 
23 void vsp1_entity_route_setup(struct vsp1_entity *entity,
24 			     struct vsp1_pipeline *pipe,
25 			     struct vsp1_dl_body *dlb)
26 {
27 	struct vsp1_entity *source;
28 	u32 route;
29 
30 	if (entity->type == VSP1_ENTITY_HGO) {
31 		u32 smppt;
32 
33 		/*
34 		 * The HGO is a special case, its routing is configured on the
35 		 * sink pad.
36 		 */
37 		source = entity->sources[0];
38 		smppt = (pipe->output->entity.index << VI6_DPR_SMPPT_TGW_SHIFT)
39 		      | (source->route->output << VI6_DPR_SMPPT_PT_SHIFT);
40 
41 		vsp1_dl_body_write(dlb, VI6_DPR_HGO_SMPPT, smppt);
42 		return;
43 	} else if (entity->type == VSP1_ENTITY_HGT) {
44 		u32 smppt;
45 
46 		/*
47 		 * The HGT is a special case, its routing is configured on the
48 		 * sink pad.
49 		 */
50 		source = entity->sources[0];
51 		smppt = (pipe->output->entity.index << VI6_DPR_SMPPT_TGW_SHIFT)
52 		      | (source->route->output << VI6_DPR_SMPPT_PT_SHIFT);
53 
54 		vsp1_dl_body_write(dlb, VI6_DPR_HGT_SMPPT, smppt);
55 		return;
56 	}
57 
58 	source = entity;
59 	if (source->route->reg == 0)
60 		return;
61 
62 	route = source->sink->route->inputs[source->sink_pad];
63 	/*
64 	 * The ILV and BRS share the same data path route. The extra BRSSEL bit
65 	 * selects between the ILV and BRS.
66 	 */
67 	if (source->type == VSP1_ENTITY_BRS)
68 		route |= VI6_DPR_ROUTE_BRSSEL;
69 	vsp1_dl_body_write(dlb, source->route->reg, route);
70 }
71 
72 void vsp1_entity_configure_stream(struct vsp1_entity *entity,
73 				  struct vsp1_pipeline *pipe,
74 				  struct vsp1_dl_list *dl,
75 				  struct vsp1_dl_body *dlb)
76 {
77 	if (entity->ops->configure_stream)
78 		entity->ops->configure_stream(entity, pipe, dl, dlb);
79 }
80 
81 void vsp1_entity_configure_frame(struct vsp1_entity *entity,
82 				 struct vsp1_pipeline *pipe,
83 				 struct vsp1_dl_list *dl,
84 				 struct vsp1_dl_body *dlb)
85 {
86 	if (entity->ops->configure_frame)
87 		entity->ops->configure_frame(entity, pipe, dl, dlb);
88 }
89 
90 void vsp1_entity_configure_partition(struct vsp1_entity *entity,
91 				     struct vsp1_pipeline *pipe,
92 				     struct vsp1_dl_list *dl,
93 				     struct vsp1_dl_body *dlb)
94 {
95 	if (entity->ops->configure_partition)
96 		entity->ops->configure_partition(entity, pipe, dl, dlb);
97 }
98 
99 /* -----------------------------------------------------------------------------
100  * V4L2 Subdevice Operations
101  */
102 
103 /**
104  * vsp1_entity_get_state - Get the subdev state for an entity
105  * @entity: the entity
106  * @sd_state: the TRY state
107  * @which: state selector (ACTIVE or TRY)
108  *
109  * When called with which set to V4L2_SUBDEV_FORMAT_ACTIVE the caller must hold
110  * the entity lock to access the returned configuration.
111  *
112  * Return the subdev state requested by the which argument. The TRY state is
113  * passed explicitly to the function through the sd_state argument and simply
114  * returned when requested. The ACTIVE state comes from the entity structure.
115  */
116 struct v4l2_subdev_state *
117 vsp1_entity_get_state(struct vsp1_entity *entity,
118 		      struct v4l2_subdev_state *sd_state,
119 		      enum v4l2_subdev_format_whence which)
120 {
121 	switch (which) {
122 	case V4L2_SUBDEV_FORMAT_ACTIVE:
123 		return entity->state;
124 	case V4L2_SUBDEV_FORMAT_TRY:
125 	default:
126 		return sd_state;
127 	}
128 }
129 
130 /**
131  * vsp1_entity_get_pad_format - Get a pad format from storage for an entity
132  * @entity: the entity
133  * @sd_state: the state storage
134  * @pad: the pad number
135  *
136  * Return the format stored in the given configuration for an entity's pad. The
137  * configuration can be an ACTIVE or TRY configuration.
138  */
139 struct v4l2_mbus_framefmt *
140 vsp1_entity_get_pad_format(struct vsp1_entity *entity,
141 			   struct v4l2_subdev_state *sd_state,
142 			   unsigned int pad)
143 {
144 	return v4l2_subdev_state_get_format(sd_state, pad);
145 }
146 
147 /**
148  * vsp1_entity_get_pad_selection - Get a pad selection from storage for entity
149  * @entity: the entity
150  * @sd_state: the state storage
151  * @pad: the pad number
152  * @target: the selection target
153  *
154  * Return the selection rectangle stored in the given configuration for an
155  * entity's pad. The configuration can be an ACTIVE or TRY configuration. The
156  * selection target can be COMPOSE or CROP.
157  */
158 struct v4l2_rect *
159 vsp1_entity_get_pad_selection(struct vsp1_entity *entity,
160 			      struct v4l2_subdev_state *sd_state,
161 			      unsigned int pad, unsigned int target)
162 {
163 	switch (target) {
164 	case V4L2_SEL_TGT_COMPOSE:
165 		return v4l2_subdev_state_get_compose(sd_state, pad);
166 	case V4L2_SEL_TGT_CROP:
167 		return v4l2_subdev_state_get_crop(sd_state, pad);
168 	default:
169 		return NULL;
170 	}
171 }
172 
173 /*
174  * vsp1_subdev_get_pad_format - Subdev pad get_fmt handler
175  * @subdev: V4L2 subdevice
176  * @sd_state: V4L2 subdev state
177  * @fmt: V4L2 subdev format
178  *
179  * This function implements the subdev get_fmt pad operation. It can be used as
180  * a direct drop-in for the operation handler.
181  */
182 int vsp1_subdev_get_pad_format(struct v4l2_subdev *subdev,
183 			       struct v4l2_subdev_state *sd_state,
184 			       struct v4l2_subdev_format *fmt)
185 {
186 	struct vsp1_entity *entity = to_vsp1_entity(subdev);
187 	struct v4l2_subdev_state *state;
188 
189 	state = vsp1_entity_get_state(entity, sd_state, fmt->which);
190 	if (!state)
191 		return -EINVAL;
192 
193 	mutex_lock(&entity->lock);
194 	fmt->format = *vsp1_entity_get_pad_format(entity, state, fmt->pad);
195 	mutex_unlock(&entity->lock);
196 
197 	return 0;
198 }
199 
200 /*
201  * vsp1_subdev_enum_mbus_code - Subdev pad enum_mbus_code handler
202  * @subdev: V4L2 subdevice
203  * @sd_state: V4L2 subdev state
204  * @code: Media bus code enumeration
205  * @codes: Array of supported media bus codes
206  * @ncodes: Number of supported media bus codes
207  *
208  * This function implements the subdev enum_mbus_code pad operation for entities
209  * that do not support format conversion. It enumerates the given supported
210  * media bus codes on the sink pad and reports a source pad format identical to
211  * the sink pad.
212  */
213 int vsp1_subdev_enum_mbus_code(struct v4l2_subdev *subdev,
214 			       struct v4l2_subdev_state *sd_state,
215 			       struct v4l2_subdev_mbus_code_enum *code,
216 			       const unsigned int *codes, unsigned int ncodes)
217 {
218 	struct vsp1_entity *entity = to_vsp1_entity(subdev);
219 
220 	if (code->pad == 0) {
221 		if (code->index >= ncodes)
222 			return -EINVAL;
223 
224 		code->code = codes[code->index];
225 	} else {
226 		struct v4l2_subdev_state *state;
227 		struct v4l2_mbus_framefmt *format;
228 
229 		/*
230 		 * The entity can't perform format conversion, the sink format
231 		 * is always identical to the source format.
232 		 */
233 		if (code->index)
234 			return -EINVAL;
235 
236 		state = vsp1_entity_get_state(entity, sd_state, code->which);
237 		if (!state)
238 			return -EINVAL;
239 
240 		mutex_lock(&entity->lock);
241 		format = vsp1_entity_get_pad_format(entity, state, 0);
242 		code->code = format->code;
243 		mutex_unlock(&entity->lock);
244 	}
245 
246 	return 0;
247 }
248 
249 /*
250  * vsp1_subdev_enum_frame_size - Subdev pad enum_frame_size handler
251  * @subdev: V4L2 subdevice
252  * @sd_state: V4L2 subdev state
253  * @fse: Frame size enumeration
254  * @min_width: Minimum image width
255  * @min_height: Minimum image height
256  * @max_width: Maximum image width
257  * @max_height: Maximum image height
258  *
259  * This function implements the subdev enum_frame_size pad operation for
260  * entities that do not support scaling or cropping. It reports the given
261  * minimum and maximum frame width and height on the sink pad, and a fixed
262  * source pad size identical to the sink pad.
263  */
264 int vsp1_subdev_enum_frame_size(struct v4l2_subdev *subdev,
265 				struct v4l2_subdev_state *sd_state,
266 				struct v4l2_subdev_frame_size_enum *fse,
267 				unsigned int min_width, unsigned int min_height,
268 				unsigned int max_width, unsigned int max_height)
269 {
270 	struct vsp1_entity *entity = to_vsp1_entity(subdev);
271 	struct v4l2_subdev_state *state;
272 	struct v4l2_mbus_framefmt *format;
273 	int ret = 0;
274 
275 	state = vsp1_entity_get_state(entity, sd_state, fse->which);
276 	if (!state)
277 		return -EINVAL;
278 
279 	format = vsp1_entity_get_pad_format(entity, state, fse->pad);
280 
281 	mutex_lock(&entity->lock);
282 
283 	if (fse->index || fse->code != format->code) {
284 		ret = -EINVAL;
285 		goto done;
286 	}
287 
288 	if (fse->pad == 0) {
289 		fse->min_width = min_width;
290 		fse->max_width = max_width;
291 		fse->min_height = min_height;
292 		fse->max_height = max_height;
293 	} else {
294 		/*
295 		 * The size on the source pad are fixed and always identical to
296 		 * the size on the sink pad.
297 		 */
298 		fse->min_width = format->width;
299 		fse->max_width = format->width;
300 		fse->min_height = format->height;
301 		fse->max_height = format->height;
302 	}
303 
304 done:
305 	mutex_unlock(&entity->lock);
306 	return ret;
307 }
308 
309 /*
310  * vsp1_subdev_set_pad_format - Subdev pad set_fmt handler
311  * @subdev: V4L2 subdevice
312  * @sd_state: V4L2 subdev state
313  * @fmt: V4L2 subdev format
314  * @codes: Array of supported media bus codes
315  * @ncodes: Number of supported media bus codes
316  * @min_width: Minimum image width
317  * @min_height: Minimum image height
318  * @max_width: Maximum image width
319  * @max_height: Maximum image height
320  *
321  * This function implements the subdev set_fmt pad operation for entities that
322  * do not support scaling or cropping. It defaults to the first supplied media
323  * bus code if the requested code isn't supported, clamps the size to the
324  * supplied minimum and maximum, and propagates the sink pad format to the
325  * source pad.
326  */
327 int vsp1_subdev_set_pad_format(struct v4l2_subdev *subdev,
328 			       struct v4l2_subdev_state *sd_state,
329 			       struct v4l2_subdev_format *fmt,
330 			       const unsigned int *codes, unsigned int ncodes,
331 			       unsigned int min_width, unsigned int min_height,
332 			       unsigned int max_width, unsigned int max_height)
333 {
334 	struct vsp1_entity *entity = to_vsp1_entity(subdev);
335 	struct v4l2_subdev_state *state;
336 	struct v4l2_mbus_framefmt *format;
337 	struct v4l2_rect *selection;
338 	unsigned int i;
339 	int ret = 0;
340 
341 	mutex_lock(&entity->lock);
342 
343 	state = vsp1_entity_get_state(entity, sd_state, fmt->which);
344 	if (!state) {
345 		ret = -EINVAL;
346 		goto done;
347 	}
348 
349 	format = vsp1_entity_get_pad_format(entity, state, fmt->pad);
350 
351 	if (fmt->pad == entity->source_pad) {
352 		/* The output format can't be modified. */
353 		fmt->format = *format;
354 		goto done;
355 	}
356 
357 	/*
358 	 * Default to the first media bus code if the requested format is not
359 	 * supported.
360 	 */
361 	for (i = 0; i < ncodes; ++i) {
362 		if (fmt->format.code == codes[i])
363 			break;
364 	}
365 
366 	format->code = i < ncodes ? codes[i] : codes[0];
367 	format->width = clamp_t(unsigned int, fmt->format.width,
368 				min_width, max_width);
369 	format->height = clamp_t(unsigned int, fmt->format.height,
370 				 min_height, max_height);
371 	format->field = V4L2_FIELD_NONE;
372 	format->colorspace = V4L2_COLORSPACE_SRGB;
373 
374 	fmt->format = *format;
375 
376 	/* Propagate the format to the source pad. */
377 	format = vsp1_entity_get_pad_format(entity, state, entity->source_pad);
378 	*format = fmt->format;
379 
380 	/* Reset the crop and compose rectangles. */
381 	selection = vsp1_entity_get_pad_selection(entity, state, fmt->pad,
382 						  V4L2_SEL_TGT_CROP);
383 	selection->left = 0;
384 	selection->top = 0;
385 	selection->width = format->width;
386 	selection->height = format->height;
387 
388 	selection = vsp1_entity_get_pad_selection(entity, state, fmt->pad,
389 						  V4L2_SEL_TGT_COMPOSE);
390 	selection->left = 0;
391 	selection->top = 0;
392 	selection->width = format->width;
393 	selection->height = format->height;
394 
395 done:
396 	mutex_unlock(&entity->lock);
397 	return ret;
398 }
399 
400 static int vsp1_entity_init_state(struct v4l2_subdev *subdev,
401 				  struct v4l2_subdev_state *sd_state)
402 {
403 	unsigned int pad;
404 
405 	/* Initialize all pad formats with default values. */
406 	for (pad = 0; pad < subdev->entity.num_pads - 1; ++pad) {
407 		struct v4l2_subdev_format format = {
408 			.pad = pad,
409 			.which = sd_state ? V4L2_SUBDEV_FORMAT_TRY
410 			       : V4L2_SUBDEV_FORMAT_ACTIVE,
411 		};
412 
413 		v4l2_subdev_call(subdev, pad, set_fmt, sd_state, &format);
414 	}
415 
416 	return 0;
417 }
418 
419 static const struct v4l2_subdev_internal_ops vsp1_entity_internal_ops = {
420 	.init_state = vsp1_entity_init_state,
421 };
422 
423 /* -----------------------------------------------------------------------------
424  * Media Operations
425  */
426 
427 static inline struct vsp1_entity *
428 media_entity_to_vsp1_entity(struct media_entity *entity)
429 {
430 	return container_of(entity, struct vsp1_entity, subdev.entity);
431 }
432 
433 static int vsp1_entity_link_setup_source(const struct media_pad *source_pad,
434 					 const struct media_pad *sink_pad,
435 					 u32 flags)
436 {
437 	struct vsp1_entity *source;
438 
439 	source = media_entity_to_vsp1_entity(source_pad->entity);
440 
441 	if (!source->route)
442 		return 0;
443 
444 	if (flags & MEDIA_LNK_FL_ENABLED) {
445 		struct vsp1_entity *sink
446 			= media_entity_to_vsp1_entity(sink_pad->entity);
447 
448 		/*
449 		 * Fan-out is limited to one for the normal data path plus
450 		 * optional HGO and HGT. We ignore the HGO and HGT here.
451 		 */
452 		if (sink->type != VSP1_ENTITY_HGO &&
453 		    sink->type != VSP1_ENTITY_HGT) {
454 			if (source->sink)
455 				return -EBUSY;
456 			source->sink = sink;
457 			source->sink_pad = sink_pad->index;
458 		}
459 	} else {
460 		source->sink = NULL;
461 		source->sink_pad = 0;
462 	}
463 
464 	return 0;
465 }
466 
467 static int vsp1_entity_link_setup_sink(const struct media_pad *source_pad,
468 				       const struct media_pad *sink_pad,
469 				       u32 flags)
470 {
471 	struct vsp1_entity *sink;
472 	struct vsp1_entity *source;
473 
474 	sink = media_entity_to_vsp1_entity(sink_pad->entity);
475 	source = media_entity_to_vsp1_entity(source_pad->entity);
476 
477 	if (flags & MEDIA_LNK_FL_ENABLED) {
478 		/* Fan-in is limited to one. */
479 		if (sink->sources[sink_pad->index])
480 			return -EBUSY;
481 
482 		sink->sources[sink_pad->index] = source;
483 	} else {
484 		sink->sources[sink_pad->index] = NULL;
485 	}
486 
487 	return 0;
488 }
489 
490 int vsp1_entity_link_setup(struct media_entity *entity,
491 			   const struct media_pad *local,
492 			   const struct media_pad *remote, u32 flags)
493 {
494 	if (local->flags & MEDIA_PAD_FL_SOURCE)
495 		return vsp1_entity_link_setup_source(local, remote, flags);
496 	else
497 		return vsp1_entity_link_setup_sink(remote, local, flags);
498 }
499 
500 /**
501  * vsp1_entity_remote_pad - Find the pad at the remote end of a link
502  * @pad: Pad at the local end of the link
503  *
504  * Search for a remote pad connected to the given pad by iterating over all
505  * links originating or terminating at that pad until an enabled link is found.
506  *
507  * Our link setup implementation guarantees that the output fan-out will not be
508  * higher than one for the data pipelines, except for the links to the HGO and
509  * HGT that can be enabled in addition to a regular data link. When traversing
510  * outgoing links this function ignores HGO and HGT entities and should thus be
511  * used in place of the generic media_pad_remote_pad_first() function to
512  * traverse data pipelines.
513  *
514  * Return a pointer to the pad at the remote end of the first found enabled
515  * link, or NULL if no enabled link has been found.
516  */
517 struct media_pad *vsp1_entity_remote_pad(struct media_pad *pad)
518 {
519 	struct media_link *link;
520 
521 	list_for_each_entry(link, &pad->entity->links, list) {
522 		struct vsp1_entity *entity;
523 
524 		if (!(link->flags & MEDIA_LNK_FL_ENABLED))
525 			continue;
526 
527 		/* If we're the sink the source will never be an HGO or HGT. */
528 		if (link->sink == pad)
529 			return link->source;
530 
531 		if (link->source != pad)
532 			continue;
533 
534 		/* If the sink isn't a subdevice it can't be an HGO or HGT. */
535 		if (!is_media_entity_v4l2_subdev(link->sink->entity))
536 			return link->sink;
537 
538 		entity = media_entity_to_vsp1_entity(link->sink->entity);
539 		if (entity->type != VSP1_ENTITY_HGO &&
540 		    entity->type != VSP1_ENTITY_HGT)
541 			return link->sink;
542 	}
543 
544 	return NULL;
545 
546 }
547 
548 /* -----------------------------------------------------------------------------
549  * Initialization
550  */
551 
552 #define VSP1_ENTITY_ROUTE(ent)						\
553 	{ VSP1_ENTITY_##ent, 0, VI6_DPR_##ent##_ROUTE,			\
554 	  { VI6_DPR_NODE_##ent }, VI6_DPR_NODE_##ent }
555 
556 #define VSP1_ENTITY_ROUTE_RPF(idx)					\
557 	{ VSP1_ENTITY_RPF, idx, VI6_DPR_RPF_ROUTE(idx),			\
558 	  { 0, }, VI6_DPR_NODE_RPF(idx) }
559 
560 #define VSP1_ENTITY_ROUTE_UDS(idx)					\
561 	{ VSP1_ENTITY_UDS, idx, VI6_DPR_UDS_ROUTE(idx),			\
562 	  { VI6_DPR_NODE_UDS(idx) }, VI6_DPR_NODE_UDS(idx) }
563 
564 #define VSP1_ENTITY_ROUTE_UIF(idx)					\
565 	{ VSP1_ENTITY_UIF, idx, VI6_DPR_UIF_ROUTE(idx),			\
566 	  { VI6_DPR_NODE_UIF(idx) }, VI6_DPR_NODE_UIF(idx) }
567 
568 #define VSP1_ENTITY_ROUTE_WPF(idx)					\
569 	{ VSP1_ENTITY_WPF, idx, 0,					\
570 	  { VI6_DPR_NODE_WPF(idx) }, VI6_DPR_NODE_WPF(idx) }
571 
572 static const struct vsp1_route vsp1_routes[] = {
573 	{ VSP1_ENTITY_BRS, 0, VI6_DPR_ILV_BRS_ROUTE,
574 	  { VI6_DPR_NODE_BRS_IN(0), VI6_DPR_NODE_BRS_IN(1) }, 0 },
575 	{ VSP1_ENTITY_BRU, 0, VI6_DPR_BRU_ROUTE,
576 	  { VI6_DPR_NODE_BRU_IN(0), VI6_DPR_NODE_BRU_IN(1),
577 	    VI6_DPR_NODE_BRU_IN(2), VI6_DPR_NODE_BRU_IN(3),
578 	    VI6_DPR_NODE_BRU_IN(4) }, VI6_DPR_NODE_BRU_OUT },
579 	VSP1_ENTITY_ROUTE(CLU),
580 	{ VSP1_ENTITY_HGO, 0, 0, { 0, }, 0 },
581 	{ VSP1_ENTITY_HGT, 0, 0, { 0, }, 0 },
582 	VSP1_ENTITY_ROUTE(HSI),
583 	VSP1_ENTITY_ROUTE(HST),
584 	{ VSP1_ENTITY_LIF, 0, 0, { 0, }, 0 },
585 	{ VSP1_ENTITY_LIF, 1, 0, { 0, }, 0 },
586 	VSP1_ENTITY_ROUTE(LUT),
587 	VSP1_ENTITY_ROUTE_RPF(0),
588 	VSP1_ENTITY_ROUTE_RPF(1),
589 	VSP1_ENTITY_ROUTE_RPF(2),
590 	VSP1_ENTITY_ROUTE_RPF(3),
591 	VSP1_ENTITY_ROUTE_RPF(4),
592 	VSP1_ENTITY_ROUTE(SRU),
593 	VSP1_ENTITY_ROUTE_UDS(0),
594 	VSP1_ENTITY_ROUTE_UDS(1),
595 	VSP1_ENTITY_ROUTE_UDS(2),
596 	VSP1_ENTITY_ROUTE_UIF(0),	/* Named UIF4 in the documentation */
597 	VSP1_ENTITY_ROUTE_UIF(1),	/* Named UIF5 in the documentation */
598 	VSP1_ENTITY_ROUTE_WPF(0),
599 	VSP1_ENTITY_ROUTE_WPF(1),
600 	VSP1_ENTITY_ROUTE_WPF(2),
601 	VSP1_ENTITY_ROUTE_WPF(3),
602 };
603 
604 int vsp1_entity_init(struct vsp1_device *vsp1, struct vsp1_entity *entity,
605 		     const char *name, unsigned int num_pads,
606 		     const struct v4l2_subdev_ops *ops, u32 function)
607 {
608 	static struct lock_class_key key;
609 	struct v4l2_subdev *subdev;
610 	unsigned int i;
611 	int ret;
612 
613 	for (i = 0; i < ARRAY_SIZE(vsp1_routes); ++i) {
614 		if (vsp1_routes[i].type == entity->type &&
615 		    vsp1_routes[i].index == entity->index) {
616 			entity->route = &vsp1_routes[i];
617 			break;
618 		}
619 	}
620 
621 	if (i == ARRAY_SIZE(vsp1_routes))
622 		return -EINVAL;
623 
624 	mutex_init(&entity->lock);
625 
626 	entity->vsp1 = vsp1;
627 	entity->source_pad = num_pads - 1;
628 
629 	/* Allocate and initialize pads. */
630 	entity->pads = devm_kcalloc(vsp1->dev,
631 				    num_pads, sizeof(*entity->pads),
632 				    GFP_KERNEL);
633 	if (entity->pads == NULL)
634 		return -ENOMEM;
635 
636 	for (i = 0; i < num_pads - 1; ++i)
637 		entity->pads[i].flags = MEDIA_PAD_FL_SINK;
638 
639 	entity->sources = devm_kcalloc(vsp1->dev, max(num_pads - 1, 1U),
640 				       sizeof(*entity->sources), GFP_KERNEL);
641 	if (entity->sources == NULL)
642 		return -ENOMEM;
643 
644 	/* Single-pad entities only have a sink. */
645 	entity->pads[num_pads - 1].flags = num_pads > 1 ? MEDIA_PAD_FL_SOURCE
646 					 : MEDIA_PAD_FL_SINK;
647 
648 	/* Initialize the media entity. */
649 	ret = media_entity_pads_init(&entity->subdev.entity, num_pads,
650 				     entity->pads);
651 	if (ret < 0)
652 		return ret;
653 
654 	/* Initialize the V4L2 subdev. */
655 	subdev = &entity->subdev;
656 	v4l2_subdev_init(subdev, ops);
657 	subdev->internal_ops = &vsp1_entity_internal_ops;
658 
659 	subdev->entity.function = function;
660 	subdev->entity.ops = &vsp1->media_ops;
661 	subdev->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
662 
663 	snprintf(subdev->name, sizeof(subdev->name), "%s %s",
664 		 dev_name(vsp1->dev), name);
665 
666 	vsp1_entity_init_state(subdev, NULL);
667 
668 	/*
669 	 * Allocate the subdev state to store formats and selection
670 	 * rectangles.
671 	 */
672 	/*
673 	 * FIXME: Drop this call, drivers are not supposed to use
674 	 * __v4l2_subdev_state_alloc().
675 	 */
676 	entity->state = __v4l2_subdev_state_alloc(&entity->subdev,
677 						  "vsp1:state->lock", &key);
678 	if (IS_ERR(entity->state)) {
679 		media_entity_cleanup(&entity->subdev.entity);
680 		return PTR_ERR(entity->state);
681 	}
682 
683 	return 0;
684 }
685 
686 void vsp1_entity_destroy(struct vsp1_entity *entity)
687 {
688 	if (entity->ops && entity->ops->destroy)
689 		entity->ops->destroy(entity);
690 	if (entity->subdev.ctrl_handler)
691 		v4l2_ctrl_handler_free(entity->subdev.ctrl_handler);
692 	__v4l2_subdev_state_free(entity->state);
693 	media_entity_cleanup(&entity->subdev.entity);
694 }
695