1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
4  *
5  * Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
6  * Sylwester Nawrocki <s.nawrocki@samsung.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/errno.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/list.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/slab.h>
24 #include <linux/clk.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/videobuf2-v4l2.h>
27 #include <media/videobuf2-dma-contig.h>
28 
29 #include "fimc-core.h"
30 #include "fimc-reg.h"
31 #include "media-dev.h"
32 
33 static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
34 	"sclk_fimc", "fimc"
35 };
36 
37 static struct fimc_fmt fimc_formats[] = {
38 	{
39 		.fourcc		= V4L2_PIX_FMT_RGB565,
40 		.depth		= { 16 },
41 		.color		= FIMC_FMT_RGB565,
42 		.memplanes	= 1,
43 		.colplanes	= 1,
44 		.flags		= FMT_FLAGS_M2M,
45 	}, {
46 		.fourcc		= V4L2_PIX_FMT_BGR666,
47 		.depth		= { 32 },
48 		.color		= FIMC_FMT_RGB666,
49 		.memplanes	= 1,
50 		.colplanes	= 1,
51 		.flags		= FMT_FLAGS_M2M,
52 	}, {
53 		.fourcc		= V4L2_PIX_FMT_BGR32,
54 		.depth		= { 32 },
55 		.color		= FIMC_FMT_RGB888,
56 		.memplanes	= 1,
57 		.colplanes	= 1,
58 		.flags		= FMT_FLAGS_M2M | FMT_HAS_ALPHA,
59 	}, {
60 		.fourcc		= V4L2_PIX_FMT_RGB555,
61 		.depth		= { 16 },
62 		.color		= FIMC_FMT_RGB555,
63 		.memplanes	= 1,
64 		.colplanes	= 1,
65 		.flags		= FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
66 	}, {
67 		.fourcc		= V4L2_PIX_FMT_RGB444,
68 		.depth		= { 16 },
69 		.color		= FIMC_FMT_RGB444,
70 		.memplanes	= 1,
71 		.colplanes	= 1,
72 		.flags		= FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
73 	}, {
74 		.mbus_code	= MEDIA_BUS_FMT_YUV10_1X30,
75 		.flags		= FMT_FLAGS_WRITEBACK,
76 	}, {
77 		.fourcc		= V4L2_PIX_FMT_YUYV,
78 		.depth		= { 16 },
79 		.color		= FIMC_FMT_YCBYCR422,
80 		.memplanes	= 1,
81 		.colplanes	= 1,
82 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
83 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
84 	}, {
85 		.fourcc		= V4L2_PIX_FMT_UYVY,
86 		.depth		= { 16 },
87 		.color		= FIMC_FMT_CBYCRY422,
88 		.memplanes	= 1,
89 		.colplanes	= 1,
90 		.mbus_code	= MEDIA_BUS_FMT_UYVY8_2X8,
91 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
92 	}, {
93 		.fourcc		= V4L2_PIX_FMT_VYUY,
94 		.depth		= { 16 },
95 		.color		= FIMC_FMT_CRYCBY422,
96 		.memplanes	= 1,
97 		.colplanes	= 1,
98 		.mbus_code	= MEDIA_BUS_FMT_VYUY8_2X8,
99 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
100 	}, {
101 		.fourcc		= V4L2_PIX_FMT_YVYU,
102 		.depth		= { 16 },
103 		.color		= FIMC_FMT_YCRYCB422,
104 		.memplanes	= 1,
105 		.colplanes	= 1,
106 		.mbus_code	= MEDIA_BUS_FMT_YVYU8_2X8,
107 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
108 	}, {
109 		.fourcc		= V4L2_PIX_FMT_YUV422P,
110 		.depth		= { 16 },
111 		.color		= FIMC_FMT_YCBYCR422,
112 		.memplanes	= 1,
113 		.colplanes	= 3,
114 		.flags		= FMT_FLAGS_M2M,
115 	}, {
116 		.fourcc		= V4L2_PIX_FMT_NV16,
117 		.depth		= { 16 },
118 		.color		= FIMC_FMT_YCBYCR422,
119 		.memplanes	= 1,
120 		.colplanes	= 2,
121 		.flags		= FMT_FLAGS_M2M,
122 	}, {
123 		.fourcc		= V4L2_PIX_FMT_NV61,
124 		.depth		= { 16 },
125 		.color		= FIMC_FMT_YCRYCB422,
126 		.memplanes	= 1,
127 		.colplanes	= 2,
128 		.flags		= FMT_FLAGS_M2M,
129 	}, {
130 		.fourcc		= V4L2_PIX_FMT_YUV420,
131 		.depth		= { 12 },
132 		.color		= FIMC_FMT_YCBCR420,
133 		.memplanes	= 1,
134 		.colplanes	= 3,
135 		.flags		= FMT_FLAGS_M2M,
136 	}, {
137 		.fourcc		= V4L2_PIX_FMT_NV12,
138 		.depth		= { 12 },
139 		.color		= FIMC_FMT_YCBCR420,
140 		.memplanes	= 1,
141 		.colplanes	= 2,
142 		.flags		= FMT_FLAGS_M2M,
143 	}, {
144 		.fourcc		= V4L2_PIX_FMT_NV12M,
145 		.color		= FIMC_FMT_YCBCR420,
146 		.depth		= { 8, 4 },
147 		.memplanes	= 2,
148 		.colplanes	= 2,
149 		.flags		= FMT_FLAGS_M2M,
150 	}, {
151 		.fourcc		= V4L2_PIX_FMT_YUV420M,
152 		.color		= FIMC_FMT_YCBCR420,
153 		.depth		= { 8, 2, 2 },
154 		.memplanes	= 3,
155 		.colplanes	= 3,
156 		.flags		= FMT_FLAGS_M2M,
157 	}, {
158 		.fourcc		= V4L2_PIX_FMT_NV12MT,
159 		.color		= FIMC_FMT_YCBCR420,
160 		.depth		= { 8, 4 },
161 		.memplanes	= 2,
162 		.colplanes	= 2,
163 		.flags		= FMT_FLAGS_M2M,
164 	}, {
165 		.fourcc		= V4L2_PIX_FMT_JPEG,
166 		.color		= FIMC_FMT_JPEG,
167 		.depth		= { 8 },
168 		.memplanes	= 1,
169 		.colplanes	= 1,
170 		.mbus_code	= MEDIA_BUS_FMT_JPEG_1X8,
171 		.flags		= FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
172 	}, {
173 		.fourcc		= V4L2_PIX_FMT_S5C_UYVY_JPG,
174 		.color		= FIMC_FMT_YUYV_JPEG,
175 		.depth		= { 8 },
176 		.memplanes	= 2,
177 		.colplanes	= 1,
178 		.mdataplanes	= 0x2, /* plane 1 holds frame meta data */
179 		.mbus_code	= MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8,
180 		.flags		= FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
181 	},
182 };
183 
184 struct fimc_fmt *fimc_get_format(unsigned int index)
185 {
186 	if (index >= ARRAY_SIZE(fimc_formats))
187 		return NULL;
188 
189 	return &fimc_formats[index];
190 }
191 
192 int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
193 			    int dw, int dh, int rotation)
194 {
195 	if (rotation == 90 || rotation == 270)
196 		swap(dw, dh);
197 
198 	if (!ctx->scaler.enabled)
199 		return (sw == dw && sh == dh) ? 0 : -EINVAL;
200 
201 	if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
208 {
209 	u32 sh = 6;
210 
211 	if (src >= 64 * tar)
212 		return -EINVAL;
213 
214 	while (sh--) {
215 		u32 tmp = 1 << sh;
216 		if (src >= tar * tmp) {
217 			*shift = sh;
218 			*ratio = tmp;
219 			return 0;
220 		}
221 	}
222 	*shift = 0;
223 	*ratio = 1;
224 	return 0;
225 }
226 
227 int fimc_set_scaler_info(struct fimc_ctx *ctx)
228 {
229 	const struct fimc_variant *variant = ctx->fimc_dev->variant;
230 	struct device *dev = &ctx->fimc_dev->pdev->dev;
231 	struct fimc_scaler *sc = &ctx->scaler;
232 	struct fimc_frame *s_frame = &ctx->s_frame;
233 	struct fimc_frame *d_frame = &ctx->d_frame;
234 	int tx, ty, sx, sy;
235 	int ret;
236 
237 	if (ctx->rotation == 90 || ctx->rotation == 270) {
238 		ty = d_frame->width;
239 		tx = d_frame->height;
240 	} else {
241 		tx = d_frame->width;
242 		ty = d_frame->height;
243 	}
244 	if (tx <= 0 || ty <= 0) {
245 		dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
246 		return -EINVAL;
247 	}
248 
249 	sx = s_frame->width;
250 	sy = s_frame->height;
251 	if (sx <= 0 || sy <= 0) {
252 		dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
253 		return -EINVAL;
254 	}
255 	sc->real_width = sx;
256 	sc->real_height = sy;
257 
258 	ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
259 	if (ret)
260 		return ret;
261 
262 	ret = fimc_get_scaler_factor(sy, ty,  &sc->pre_vratio, &sc->vfactor);
263 	if (ret)
264 		return ret;
265 
266 	sc->pre_dst_width = sx / sc->pre_hratio;
267 	sc->pre_dst_height = sy / sc->pre_vratio;
268 
269 	if (variant->has_mainscaler_ext) {
270 		sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
271 		sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
272 	} else {
273 		sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
274 		sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
275 
276 	}
277 
278 	sc->scaleup_h = (tx >= sx) ? 1 : 0;
279 	sc->scaleup_v = (ty >= sy) ? 1 : 0;
280 
281 	/* check to see if input and output size/format differ */
282 	if (s_frame->fmt->color == d_frame->fmt->color
283 		&& s_frame->width == d_frame->width
284 		&& s_frame->height == d_frame->height)
285 		sc->copy_mode = 1;
286 	else
287 		sc->copy_mode = 0;
288 
289 	return 0;
290 }
291 
292 static irqreturn_t fimc_irq_handler(int irq, void *priv)
293 {
294 	struct fimc_dev *fimc = priv;
295 	struct fimc_ctx *ctx;
296 
297 	fimc_hw_clear_irq(fimc);
298 
299 	spin_lock(&fimc->slock);
300 
301 	if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
302 		if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
303 			set_bit(ST_M2M_SUSPENDED, &fimc->state);
304 			wake_up(&fimc->irq_queue);
305 			goto out;
306 		}
307 		ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
308 		if (ctx != NULL) {
309 			spin_unlock(&fimc->slock);
310 			fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
311 
312 			if (ctx->state & FIMC_CTX_SHUT) {
313 				ctx->state &= ~FIMC_CTX_SHUT;
314 				wake_up(&fimc->irq_queue);
315 			}
316 			return IRQ_HANDLED;
317 		}
318 	} else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
319 		int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
320 				fimc->vid_cap.reqbufs_count == 1;
321 		fimc_capture_irq_handler(fimc, !last_buf);
322 	}
323 out:
324 	spin_unlock(&fimc->slock);
325 	return IRQ_HANDLED;
326 }
327 
328 /* The color format (colplanes, memplanes) must be already configured. */
329 int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
330 		      struct fimc_frame *frame, struct fimc_addr *addr)
331 {
332 	int ret = 0;
333 	u32 pix_size;
334 
335 	if (vb == NULL || frame == NULL)
336 		return -EINVAL;
337 
338 	pix_size = frame->width * frame->height;
339 
340 	dbg("memplanes= %d, colplanes= %d, pix_size= %d",
341 		frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
342 
343 	addr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
344 
345 	if (frame->fmt->memplanes == 1) {
346 		switch (frame->fmt->colplanes) {
347 		case 1:
348 			addr->cb = 0;
349 			addr->cr = 0;
350 			break;
351 		case 2:
352 			/* decompose Y into Y/Cb */
353 			addr->cb = (u32)(addr->y + pix_size);
354 			addr->cr = 0;
355 			break;
356 		case 3:
357 			addr->cb = (u32)(addr->y + pix_size);
358 			/* decompose Y into Y/Cb/Cr */
359 			if (FIMC_FMT_YCBCR420 == frame->fmt->color)
360 				addr->cr = (u32)(addr->cb + (pix_size >> 2));
361 			else /* 422 */
362 				addr->cr = (u32)(addr->cb + (pix_size >> 1));
363 			break;
364 		default:
365 			return -EINVAL;
366 		}
367 	} else if (!frame->fmt->mdataplanes) {
368 		if (frame->fmt->memplanes >= 2)
369 			addr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
370 
371 		if (frame->fmt->memplanes == 3)
372 			addr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
373 	}
374 
375 	dbg("DMA ADDR: y= 0x%X  cb= 0x%X cr= 0x%X ret= %d",
376 	    addr->y, addr->cb, addr->cr, ret);
377 
378 	return ret;
379 }
380 
381 /* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
382 void fimc_set_yuv_order(struct fimc_ctx *ctx)
383 {
384 	/* The one only mode supported in SoC. */
385 	ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
386 	ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
387 
388 	/* Set order for 1 plane input formats. */
389 	switch (ctx->s_frame.fmt->color) {
390 	case FIMC_FMT_YCRYCB422:
391 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
392 		break;
393 	case FIMC_FMT_CBYCRY422:
394 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
395 		break;
396 	case FIMC_FMT_CRYCBY422:
397 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
398 		break;
399 	case FIMC_FMT_YCBYCR422:
400 	default:
401 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
402 		break;
403 	}
404 	dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
405 
406 	switch (ctx->d_frame.fmt->color) {
407 	case FIMC_FMT_YCRYCB422:
408 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
409 		break;
410 	case FIMC_FMT_CBYCRY422:
411 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
412 		break;
413 	case FIMC_FMT_CRYCBY422:
414 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
415 		break;
416 	case FIMC_FMT_YCBYCR422:
417 	default:
418 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
419 		break;
420 	}
421 	dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
422 }
423 
424 void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
425 {
426 	bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
427 	u32 i, depth = 0;
428 
429 	for (i = 0; i < f->fmt->memplanes; i++)
430 		depth += f->fmt->depth[i];
431 
432 	f->dma_offset.y_h = f->offs_h;
433 	if (!pix_hoff)
434 		f->dma_offset.y_h *= (depth >> 3);
435 
436 	f->dma_offset.y_v = f->offs_v;
437 
438 	f->dma_offset.cb_h = f->offs_h;
439 	f->dma_offset.cb_v = f->offs_v;
440 
441 	f->dma_offset.cr_h = f->offs_h;
442 	f->dma_offset.cr_v = f->offs_v;
443 
444 	if (!pix_hoff) {
445 		if (f->fmt->colplanes == 3) {
446 			f->dma_offset.cb_h >>= 1;
447 			f->dma_offset.cr_h >>= 1;
448 		}
449 		if (f->fmt->color == FIMC_FMT_YCBCR420) {
450 			f->dma_offset.cb_v >>= 1;
451 			f->dma_offset.cr_v >>= 1;
452 		}
453 	}
454 
455 	dbg("in_offset: color= %d, y_h= %d, y_v= %d",
456 	    f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
457 }
458 
459 static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
460 {
461 	struct fimc_effect *effect = &ctx->effect;
462 
463 	switch (colorfx) {
464 	case V4L2_COLORFX_NONE:
465 		effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
466 		break;
467 	case V4L2_COLORFX_BW:
468 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
469 		effect->pat_cb = 128;
470 		effect->pat_cr = 128;
471 		break;
472 	case V4L2_COLORFX_SEPIA:
473 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
474 		effect->pat_cb = 115;
475 		effect->pat_cr = 145;
476 		break;
477 	case V4L2_COLORFX_NEGATIVE:
478 		effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
479 		break;
480 	case V4L2_COLORFX_EMBOSS:
481 		effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
482 		break;
483 	case V4L2_COLORFX_ART_FREEZE:
484 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
485 		break;
486 	case V4L2_COLORFX_SILHOUETTE:
487 		effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
488 		break;
489 	case V4L2_COLORFX_SET_CBCR:
490 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
491 		effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
492 		effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
493 		break;
494 	default:
495 		return -EINVAL;
496 	}
497 
498 	return 0;
499 }
500 
501 /*
502  * V4L2 controls handling
503  */
504 #define ctrl_to_ctx(__ctrl) \
505 	container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
506 
507 static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
508 {
509 	struct fimc_dev *fimc = ctx->fimc_dev;
510 	const struct fimc_variant *variant = fimc->variant;
511 	int ret = 0;
512 
513 	if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
514 		return 0;
515 
516 	switch (ctrl->id) {
517 	case V4L2_CID_HFLIP:
518 		ctx->hflip = ctrl->val;
519 		break;
520 
521 	case V4L2_CID_VFLIP:
522 		ctx->vflip = ctrl->val;
523 		break;
524 
525 	case V4L2_CID_ROTATE:
526 		if (fimc_capture_pending(fimc)) {
527 			ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
528 					ctx->s_frame.height, ctx->d_frame.width,
529 					ctx->d_frame.height, ctrl->val);
530 			if (ret)
531 				return -EINVAL;
532 		}
533 		if ((ctrl->val == 90 || ctrl->val == 270) &&
534 		    !variant->has_out_rot)
535 			return -EINVAL;
536 
537 		ctx->rotation = ctrl->val;
538 		break;
539 
540 	case V4L2_CID_ALPHA_COMPONENT:
541 		ctx->d_frame.alpha = ctrl->val;
542 		break;
543 
544 	case V4L2_CID_COLORFX:
545 		ret = fimc_set_color_effect(ctx, ctrl->val);
546 		if (ret)
547 			return ret;
548 		break;
549 	}
550 
551 	ctx->state |= FIMC_PARAMS;
552 	set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
553 	return 0;
554 }
555 
556 static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
557 {
558 	struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
559 	unsigned long flags;
560 	int ret;
561 
562 	spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
563 	ret = __fimc_s_ctrl(ctx, ctrl);
564 	spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
565 
566 	return ret;
567 }
568 
569 static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
570 	.s_ctrl = fimc_s_ctrl,
571 };
572 
573 int fimc_ctrls_create(struct fimc_ctx *ctx)
574 {
575 	unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
576 	struct fimc_ctrls *ctrls = &ctx->ctrls;
577 	struct v4l2_ctrl_handler *handler = &ctrls->handler;
578 
579 	if (ctx->ctrls.ready)
580 		return 0;
581 
582 	v4l2_ctrl_handler_init(handler, 6);
583 
584 	ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
585 					V4L2_CID_ROTATE, 0, 270, 90, 0);
586 	ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
587 					V4L2_CID_HFLIP, 0, 1, 1, 0);
588 	ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
589 					V4L2_CID_VFLIP, 0, 1, 1, 0);
590 
591 	if (ctx->fimc_dev->drv_data->alpha_color)
592 		ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
593 					V4L2_CID_ALPHA_COMPONENT,
594 					0, max_alpha, 1, 0);
595 	else
596 		ctrls->alpha = NULL;
597 
598 	ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
599 				V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
600 				~0x983f, V4L2_COLORFX_NONE);
601 
602 	ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
603 				V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
604 
605 	ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
606 
607 	if (!handler->error) {
608 		v4l2_ctrl_cluster(2, &ctrls->colorfx);
609 		ctrls->ready = true;
610 	}
611 
612 	return handler->error;
613 }
614 
615 void fimc_ctrls_delete(struct fimc_ctx *ctx)
616 {
617 	struct fimc_ctrls *ctrls = &ctx->ctrls;
618 
619 	if (ctrls->ready) {
620 		v4l2_ctrl_handler_free(&ctrls->handler);
621 		ctrls->ready = false;
622 		ctrls->alpha = NULL;
623 	}
624 }
625 
626 void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
627 {
628 	unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
629 	struct fimc_ctrls *ctrls = &ctx->ctrls;
630 
631 	if (!ctrls->ready)
632 		return;
633 
634 	mutex_lock(ctrls->handler.lock);
635 	v4l2_ctrl_activate(ctrls->rotate, active);
636 	v4l2_ctrl_activate(ctrls->hflip, active);
637 	v4l2_ctrl_activate(ctrls->vflip, active);
638 	v4l2_ctrl_activate(ctrls->colorfx, active);
639 	if (ctrls->alpha)
640 		v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
641 
642 	if (active) {
643 		fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
644 		ctx->rotation = ctrls->rotate->val;
645 		ctx->hflip    = ctrls->hflip->val;
646 		ctx->vflip    = ctrls->vflip->val;
647 	} else {
648 		ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
649 		ctx->rotation = 0;
650 		ctx->hflip    = 0;
651 		ctx->vflip    = 0;
652 	}
653 	mutex_unlock(ctrls->handler.lock);
654 }
655 
656 /* Update maximum value of the alpha color control */
657 void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
658 {
659 	struct fimc_dev *fimc = ctx->fimc_dev;
660 	struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
661 
662 	if (ctrl == NULL || !fimc->drv_data->alpha_color)
663 		return;
664 
665 	v4l2_ctrl_lock(ctrl);
666 	ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
667 
668 	if (ctrl->cur.val > ctrl->maximum)
669 		ctrl->cur.val = ctrl->maximum;
670 
671 	v4l2_ctrl_unlock(ctrl);
672 }
673 
674 void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
675 {
676 	struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
677 	int i;
678 
679 	pixm->width = frame->o_width;
680 	pixm->height = frame->o_height;
681 	pixm->field = V4L2_FIELD_NONE;
682 	pixm->pixelformat = frame->fmt->fourcc;
683 	pixm->colorspace = V4L2_COLORSPACE_JPEG;
684 	pixm->num_planes = frame->fmt->memplanes;
685 
686 	for (i = 0; i < pixm->num_planes; ++i) {
687 		pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
688 		pixm->plane_fmt[i].sizeimage = frame->payload[i];
689 	}
690 }
691 
692 /**
693  * fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
694  * @fmt: fimc pixel format description (input)
695  * @width: requested pixel width
696  * @height: requested pixel height
697  * @pix: multi-plane format to adjust
698  */
699 void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
700 			       struct v4l2_pix_format_mplane *pix)
701 {
702 	u32 bytesperline = 0;
703 	int i;
704 
705 	pix->colorspace	= V4L2_COLORSPACE_JPEG;
706 	pix->field = V4L2_FIELD_NONE;
707 	pix->num_planes = fmt->memplanes;
708 	pix->pixelformat = fmt->fourcc;
709 	pix->height = height;
710 	pix->width = width;
711 
712 	for (i = 0; i < pix->num_planes; ++i) {
713 		struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
714 		u32 bpl = plane_fmt->bytesperline;
715 		u32 sizeimage;
716 
717 		if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
718 			bpl = pix->width; /* Planar */
719 
720 		if (fmt->colplanes == 1 && /* Packed */
721 		    (bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
722 			bpl = (pix->width * fmt->depth[0]) / 8;
723 		/*
724 		 * Currently bytesperline for each plane is same, except
725 		 * V4L2_PIX_FMT_YUV420M format. This calculation may need
726 		 * to be changed when other multi-planar formats are added
727 		 * to the fimc_formats[] array.
728 		 */
729 		if (i == 0)
730 			bytesperline = bpl;
731 		else if (i == 1 && fmt->memplanes == 3)
732 			bytesperline /= 2;
733 
734 		plane_fmt->bytesperline = bytesperline;
735 		sizeimage = pix->width * pix->height * fmt->depth[i] / 8;
736 
737 		/* Ensure full last row for tiled formats */
738 		if (tiled_fmt(fmt)) {
739 			/* 64 * 32 * plane_fmt->bytesperline / 64 */
740 			u32 row_size = plane_fmt->bytesperline * 32;
741 
742 			sizeimage = roundup(sizeimage, row_size);
743 		}
744 
745 		plane_fmt->sizeimage = max(sizeimage, plane_fmt->sizeimage);
746 	}
747 }
748 
749 /**
750  * fimc_find_format - lookup fimc color format by fourcc or media bus format
751  * @pixelformat: fourcc to match, ignored if null
752  * @mbus_code: media bus code to match, ignored if null
753  * @mask: the color flags to match
754  * @index: offset in the fimc_formats array, ignored if negative
755  */
756 struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
757 				  unsigned int mask, int index)
758 {
759 	struct fimc_fmt *fmt, *def_fmt = NULL;
760 	unsigned int i;
761 	int id = 0;
762 
763 	if (index >= (int)ARRAY_SIZE(fimc_formats))
764 		return NULL;
765 
766 	for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
767 		fmt = &fimc_formats[i];
768 		if (!(fmt->flags & mask))
769 			continue;
770 		if (pixelformat && fmt->fourcc == *pixelformat)
771 			return fmt;
772 		if (mbus_code && fmt->mbus_code == *mbus_code)
773 			return fmt;
774 		if (index == id)
775 			def_fmt = fmt;
776 		id++;
777 	}
778 	return def_fmt;
779 }
780 
781 static void fimc_clk_put(struct fimc_dev *fimc)
782 {
783 	int i;
784 	for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
785 		if (IS_ERR(fimc->clock[i]))
786 			continue;
787 		clk_unprepare(fimc->clock[i]);
788 		clk_put(fimc->clock[i]);
789 		fimc->clock[i] = ERR_PTR(-EINVAL);
790 	}
791 }
792 
793 static int fimc_clk_get(struct fimc_dev *fimc)
794 {
795 	int i, ret;
796 
797 	for (i = 0; i < MAX_FIMC_CLOCKS; i++)
798 		fimc->clock[i] = ERR_PTR(-EINVAL);
799 
800 	for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
801 		fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
802 		if (IS_ERR(fimc->clock[i])) {
803 			ret = PTR_ERR(fimc->clock[i]);
804 			goto err;
805 		}
806 		ret = clk_prepare(fimc->clock[i]);
807 		if (ret < 0) {
808 			clk_put(fimc->clock[i]);
809 			fimc->clock[i] = ERR_PTR(-EINVAL);
810 			goto err;
811 		}
812 	}
813 	return 0;
814 err:
815 	fimc_clk_put(fimc);
816 	dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
817 		fimc_clocks[i]);
818 	return -ENXIO;
819 }
820 
821 #ifdef CONFIG_PM
822 static int fimc_m2m_suspend(struct fimc_dev *fimc)
823 {
824 	unsigned long flags;
825 	int timeout;
826 
827 	spin_lock_irqsave(&fimc->slock, flags);
828 	if (!fimc_m2m_pending(fimc)) {
829 		spin_unlock_irqrestore(&fimc->slock, flags);
830 		return 0;
831 	}
832 	clear_bit(ST_M2M_SUSPENDED, &fimc->state);
833 	set_bit(ST_M2M_SUSPENDING, &fimc->state);
834 	spin_unlock_irqrestore(&fimc->slock, flags);
835 
836 	timeout = wait_event_timeout(fimc->irq_queue,
837 			     test_bit(ST_M2M_SUSPENDED, &fimc->state),
838 			     FIMC_SHUTDOWN_TIMEOUT);
839 
840 	clear_bit(ST_M2M_SUSPENDING, &fimc->state);
841 	return timeout == 0 ? -EAGAIN : 0;
842 }
843 
844 static int fimc_m2m_resume(struct fimc_dev *fimc)
845 {
846 	struct fimc_ctx *ctx;
847 	unsigned long flags;
848 
849 	spin_lock_irqsave(&fimc->slock, flags);
850 	/* Clear for full H/W setup in first run after resume */
851 	ctx = fimc->m2m.ctx;
852 	fimc->m2m.ctx = NULL;
853 	spin_unlock_irqrestore(&fimc->slock, flags);
854 
855 	if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
856 		fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
857 
858 	return 0;
859 }
860 #endif /* CONFIG_PM */
861 
862 static const struct of_device_id fimc_of_match[];
863 
864 static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
865 {
866 	struct device *dev = &fimc->pdev->dev;
867 	struct device_node *node = dev->of_node;
868 	const struct of_device_id *of_id;
869 	struct fimc_variant *v;
870 	struct fimc_pix_limit *lim;
871 	u32 args[FIMC_PIX_LIMITS_MAX];
872 	int ret;
873 
874 	if (of_property_read_bool(node, "samsung,lcd-wb"))
875 		return -ENODEV;
876 
877 	v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
878 	if (!v)
879 		return -ENOMEM;
880 
881 	of_id = of_match_node(fimc_of_match, node);
882 	if (!of_id)
883 		return -EINVAL;
884 	fimc->drv_data = of_id->data;
885 	ret = of_property_read_u32_array(node, "samsung,pix-limits",
886 					 args, FIMC_PIX_LIMITS_MAX);
887 	if (ret < 0)
888 		return ret;
889 
890 	lim = (struct fimc_pix_limit *)&v[1];
891 
892 	lim->scaler_en_w = args[0];
893 	lim->scaler_dis_w = args[1];
894 	lim->out_rot_en_w = args[2];
895 	lim->out_rot_dis_w = args[3];
896 	v->pix_limit = lim;
897 
898 	ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
899 								args, 2);
900 	v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
901 	v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
902 	ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
903 								args, 2);
904 	v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
905 	v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
906 
907 	ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
908 	v->has_inp_rot = ret ? 1 : args[1] & 0x01;
909 	v->has_out_rot = ret ? 1 : args[1] & 0x10;
910 	v->has_mainscaler_ext = of_property_read_bool(node,
911 					"samsung,mainscaler-ext");
912 
913 	v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
914 	v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
915 	of_property_read_u32(node, "clock-frequency", clk_freq);
916 	fimc->id = of_alias_get_id(node, "fimc");
917 
918 	fimc->variant = v;
919 	return 0;
920 }
921 
922 static int fimc_probe(struct platform_device *pdev)
923 {
924 	struct device *dev = &pdev->dev;
925 	u32 lclk_freq = 0;
926 	struct fimc_dev *fimc;
927 	struct resource *res;
928 	int ret = 0;
929 	int irq;
930 
931 	fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
932 	if (!fimc)
933 		return -ENOMEM;
934 
935 	fimc->pdev = pdev;
936 
937 	if (dev->of_node) {
938 		ret = fimc_parse_dt(fimc, &lclk_freq);
939 		if (ret < 0)
940 			return ret;
941 	} else {
942 		fimc->drv_data = fimc_get_drvdata(pdev);
943 		fimc->id = pdev->id;
944 	}
945 	if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
946 	    fimc->id < 0) {
947 		dev_err(dev, "Invalid driver data or device id (%d)\n",
948 			fimc->id);
949 		return -EINVAL;
950 	}
951 	if (!dev->of_node)
952 		fimc->variant = fimc->drv_data->variant[fimc->id];
953 
954 	init_waitqueue_head(&fimc->irq_queue);
955 	spin_lock_init(&fimc->slock);
956 	mutex_init(&fimc->lock);
957 
958 	if (fimc->variant->has_isp_wb) {
959 		fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
960 		if (IS_ERR(fimc->sysreg))
961 			return PTR_ERR(fimc->sysreg);
962 	}
963 
964 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
965 	fimc->regs = devm_ioremap_resource(dev, res);
966 	if (IS_ERR(fimc->regs))
967 		return PTR_ERR(fimc->regs);
968 
969 	irq = platform_get_irq(pdev, 0);
970 	if (irq < 0)
971 		return irq;
972 
973 	ret = fimc_clk_get(fimc);
974 	if (ret)
975 		return ret;
976 
977 	if (lclk_freq == 0)
978 		lclk_freq = fimc->drv_data->lclk_frequency;
979 
980 	ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
981 	if (ret < 0)
982 		return ret;
983 
984 	ret = clk_enable(fimc->clock[CLK_BUS]);
985 	if (ret < 0)
986 		return ret;
987 
988 	ret = devm_request_irq(dev, irq, fimc_irq_handler,
989 			       0, dev_name(dev), fimc);
990 	if (ret < 0) {
991 		dev_err(dev, "failed to install irq (%d)\n", ret);
992 		goto err_sclk;
993 	}
994 
995 	ret = fimc_initialize_capture_subdev(fimc);
996 	if (ret < 0)
997 		goto err_sclk;
998 
999 	platform_set_drvdata(pdev, fimc);
1000 	pm_runtime_enable(dev);
1001 
1002 	if (!pm_runtime_enabled(dev)) {
1003 		ret = clk_enable(fimc->clock[CLK_GATE]);
1004 		if (ret < 0)
1005 			goto err_sd;
1006 	}
1007 
1008 	vb2_dma_contig_set_max_seg_size(dev, DMA_BIT_MASK(32));
1009 
1010 	dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
1011 	return 0;
1012 
1013 err_sd:
1014 	fimc_unregister_capture_subdev(fimc);
1015 err_sclk:
1016 	clk_disable(fimc->clock[CLK_BUS]);
1017 	fimc_clk_put(fimc);
1018 	return ret;
1019 }
1020 
1021 #ifdef CONFIG_PM
1022 static int fimc_runtime_resume(struct device *dev)
1023 {
1024 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1025 
1026 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1027 
1028 	/* Enable clocks and perform basic initialization */
1029 	clk_enable(fimc->clock[CLK_GATE]);
1030 	fimc_hw_reset(fimc);
1031 
1032 	/* Resume the capture or mem-to-mem device */
1033 	if (fimc_capture_busy(fimc))
1034 		return fimc_capture_resume(fimc);
1035 
1036 	return fimc_m2m_resume(fimc);
1037 }
1038 
1039 static int fimc_runtime_suspend(struct device *dev)
1040 {
1041 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1042 	int ret = 0;
1043 
1044 	if (fimc_capture_busy(fimc))
1045 		ret = fimc_capture_suspend(fimc);
1046 	else
1047 		ret = fimc_m2m_suspend(fimc);
1048 	if (!ret)
1049 		clk_disable(fimc->clock[CLK_GATE]);
1050 
1051 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1052 	return ret;
1053 }
1054 #endif
1055 
1056 #ifdef CONFIG_PM_SLEEP
1057 static int fimc_resume(struct device *dev)
1058 {
1059 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1060 	unsigned long flags;
1061 
1062 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1063 
1064 	/* Do not resume if the device was idle before system suspend */
1065 	spin_lock_irqsave(&fimc->slock, flags);
1066 	if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
1067 	    (!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
1068 		spin_unlock_irqrestore(&fimc->slock, flags);
1069 		return 0;
1070 	}
1071 	fimc_hw_reset(fimc);
1072 	spin_unlock_irqrestore(&fimc->slock, flags);
1073 
1074 	if (fimc_capture_busy(fimc))
1075 		return fimc_capture_resume(fimc);
1076 
1077 	return fimc_m2m_resume(fimc);
1078 }
1079 
1080 static int fimc_suspend(struct device *dev)
1081 {
1082 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1083 
1084 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1085 
1086 	if (test_and_set_bit(ST_LPM, &fimc->state))
1087 		return 0;
1088 	if (fimc_capture_busy(fimc))
1089 		return fimc_capture_suspend(fimc);
1090 
1091 	return fimc_m2m_suspend(fimc);
1092 }
1093 #endif /* CONFIG_PM_SLEEP */
1094 
1095 static int fimc_remove(struct platform_device *pdev)
1096 {
1097 	struct fimc_dev *fimc = platform_get_drvdata(pdev);
1098 
1099 	pm_runtime_disable(&pdev->dev);
1100 	if (!pm_runtime_status_suspended(&pdev->dev))
1101 		clk_disable(fimc->clock[CLK_GATE]);
1102 	pm_runtime_set_suspended(&pdev->dev);
1103 
1104 	fimc_unregister_capture_subdev(fimc);
1105 	vb2_dma_contig_clear_max_seg_size(&pdev->dev);
1106 
1107 	clk_disable(fimc->clock[CLK_BUS]);
1108 	fimc_clk_put(fimc);
1109 
1110 	dev_info(&pdev->dev, "driver unloaded\n");
1111 	return 0;
1112 }
1113 
1114 /* S5PV210, S5PC110 */
1115 static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
1116 	.num_entities	= 3,
1117 	.lclk_frequency	= 166000000UL,
1118 	.out_buf_count	= 4,
1119 	.dma_pix_hoff	= 1,
1120 };
1121 
1122 /* EXYNOS4210, S5PV310, S5PC210 */
1123 static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
1124 	.num_entities	= 4,
1125 	.lclk_frequency = 166000000UL,
1126 	.dma_pix_hoff	= 1,
1127 	.cistatus2	= 1,
1128 	.alpha_color	= 1,
1129 	.out_buf_count	= 32,
1130 };
1131 
1132 /* EXYNOS4412 */
1133 static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
1134 	.num_entities	= 4,
1135 	.lclk_frequency	= 166000000UL,
1136 	.dma_pix_hoff	= 1,
1137 	.cistatus2	= 1,
1138 	.alpha_color	= 1,
1139 	.out_buf_count	= 32,
1140 };
1141 
1142 static const struct of_device_id fimc_of_match[] = {
1143 	{
1144 		.compatible = "samsung,s5pv210-fimc",
1145 		.data = &fimc_drvdata_s5pv210,
1146 	}, {
1147 		.compatible = "samsung,exynos4210-fimc",
1148 		.data = &fimc_drvdata_exynos4210,
1149 	}, {
1150 		.compatible = "samsung,exynos4212-fimc",
1151 		.data = &fimc_drvdata_exynos4x12,
1152 	},
1153 	{ /* sentinel */ },
1154 };
1155 
1156 static const struct dev_pm_ops fimc_pm_ops = {
1157 	SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
1158 	SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
1159 };
1160 
1161 static struct platform_driver fimc_driver = {
1162 	.probe		= fimc_probe,
1163 	.remove		= fimc_remove,
1164 	.driver = {
1165 		.of_match_table = fimc_of_match,
1166 		.name		= FIMC_DRIVER_NAME,
1167 		.pm		= &fimc_pm_ops,
1168 	}
1169 };
1170 
1171 int __init fimc_register_driver(void)
1172 {
1173 	return platform_driver_register(&fimc_driver);
1174 }
1175 
1176 void __exit fimc_unregister_driver(void)
1177 {
1178 	platform_driver_unregister(&fimc_driver);
1179 }
1180