1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
4  *
5  * Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
6  * Sylwester Nawrocki <s.nawrocki@samsung.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/errno.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/list.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/slab.h>
23 #include <linux/clk.h>
24 #include <media/v4l2-ioctl.h>
25 #include <media/videobuf2-v4l2.h>
26 #include <media/videobuf2-dma-contig.h>
27 
28 #include "fimc-core.h"
29 #include "fimc-reg.h"
30 #include "media-dev.h"
31 
32 static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
33 	"sclk_fimc", "fimc"
34 };
35 
36 static struct fimc_fmt fimc_formats[] = {
37 	{
38 		.fourcc		= V4L2_PIX_FMT_RGB565,
39 		.depth		= { 16 },
40 		.color		= FIMC_FMT_RGB565,
41 		.memplanes	= 1,
42 		.colplanes	= 1,
43 		.flags		= FMT_FLAGS_M2M,
44 	}, {
45 		.fourcc		= V4L2_PIX_FMT_BGR666,
46 		.depth		= { 32 },
47 		.color		= FIMC_FMT_RGB666,
48 		.memplanes	= 1,
49 		.colplanes	= 1,
50 		.flags		= FMT_FLAGS_M2M,
51 	}, {
52 		.fourcc		= V4L2_PIX_FMT_BGR32,
53 		.depth		= { 32 },
54 		.color		= FIMC_FMT_RGB888,
55 		.memplanes	= 1,
56 		.colplanes	= 1,
57 		.flags		= FMT_FLAGS_M2M | FMT_HAS_ALPHA,
58 	}, {
59 		.fourcc		= V4L2_PIX_FMT_RGB555,
60 		.depth		= { 16 },
61 		.color		= FIMC_FMT_RGB555,
62 		.memplanes	= 1,
63 		.colplanes	= 1,
64 		.flags		= FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
65 	}, {
66 		.fourcc		= V4L2_PIX_FMT_RGB444,
67 		.depth		= { 16 },
68 		.color		= FIMC_FMT_RGB444,
69 		.memplanes	= 1,
70 		.colplanes	= 1,
71 		.flags		= FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
72 	}, {
73 		.mbus_code	= MEDIA_BUS_FMT_YUV10_1X30,
74 		.flags		= FMT_FLAGS_WRITEBACK,
75 	}, {
76 		.fourcc		= V4L2_PIX_FMT_YUYV,
77 		.depth		= { 16 },
78 		.color		= FIMC_FMT_YCBYCR422,
79 		.memplanes	= 1,
80 		.colplanes	= 1,
81 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
82 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
83 	}, {
84 		.fourcc		= V4L2_PIX_FMT_UYVY,
85 		.depth		= { 16 },
86 		.color		= FIMC_FMT_CBYCRY422,
87 		.memplanes	= 1,
88 		.colplanes	= 1,
89 		.mbus_code	= MEDIA_BUS_FMT_UYVY8_2X8,
90 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
91 	}, {
92 		.fourcc		= V4L2_PIX_FMT_VYUY,
93 		.depth		= { 16 },
94 		.color		= FIMC_FMT_CRYCBY422,
95 		.memplanes	= 1,
96 		.colplanes	= 1,
97 		.mbus_code	= MEDIA_BUS_FMT_VYUY8_2X8,
98 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
99 	}, {
100 		.fourcc		= V4L2_PIX_FMT_YVYU,
101 		.depth		= { 16 },
102 		.color		= FIMC_FMT_YCRYCB422,
103 		.memplanes	= 1,
104 		.colplanes	= 1,
105 		.mbus_code	= MEDIA_BUS_FMT_YVYU8_2X8,
106 		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
107 	}, {
108 		.fourcc		= V4L2_PIX_FMT_YUV422P,
109 		.depth		= { 16 },
110 		.color		= FIMC_FMT_YCBYCR422,
111 		.memplanes	= 1,
112 		.colplanes	= 3,
113 		.flags		= FMT_FLAGS_M2M,
114 	}, {
115 		.fourcc		= V4L2_PIX_FMT_NV16,
116 		.depth		= { 16 },
117 		.color		= FIMC_FMT_YCBYCR422,
118 		.memplanes	= 1,
119 		.colplanes	= 2,
120 		.flags		= FMT_FLAGS_M2M,
121 	}, {
122 		.fourcc		= V4L2_PIX_FMT_NV61,
123 		.depth		= { 16 },
124 		.color		= FIMC_FMT_YCRYCB422,
125 		.memplanes	= 1,
126 		.colplanes	= 2,
127 		.flags		= FMT_FLAGS_M2M,
128 	}, {
129 		.fourcc		= V4L2_PIX_FMT_YUV420,
130 		.depth		= { 12 },
131 		.color		= FIMC_FMT_YCBCR420,
132 		.memplanes	= 1,
133 		.colplanes	= 3,
134 		.flags		= FMT_FLAGS_M2M,
135 	}, {
136 		.fourcc		= V4L2_PIX_FMT_NV12,
137 		.depth		= { 12 },
138 		.color		= FIMC_FMT_YCBCR420,
139 		.memplanes	= 1,
140 		.colplanes	= 2,
141 		.flags		= FMT_FLAGS_M2M,
142 	}, {
143 		.fourcc		= V4L2_PIX_FMT_NV12M,
144 		.color		= FIMC_FMT_YCBCR420,
145 		.depth		= { 8, 4 },
146 		.memplanes	= 2,
147 		.colplanes	= 2,
148 		.flags		= FMT_FLAGS_M2M,
149 	}, {
150 		.fourcc		= V4L2_PIX_FMT_YUV420M,
151 		.color		= FIMC_FMT_YCBCR420,
152 		.depth		= { 8, 2, 2 },
153 		.memplanes	= 3,
154 		.colplanes	= 3,
155 		.flags		= FMT_FLAGS_M2M,
156 	}, {
157 		.fourcc		= V4L2_PIX_FMT_NV12MT,
158 		.color		= FIMC_FMT_YCBCR420,
159 		.depth		= { 8, 4 },
160 		.memplanes	= 2,
161 		.colplanes	= 2,
162 		.flags		= FMT_FLAGS_M2M,
163 	}, {
164 		.fourcc		= V4L2_PIX_FMT_JPEG,
165 		.color		= FIMC_FMT_JPEG,
166 		.depth		= { 8 },
167 		.memplanes	= 1,
168 		.colplanes	= 1,
169 		.mbus_code	= MEDIA_BUS_FMT_JPEG_1X8,
170 		.flags		= FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
171 	}, {
172 		.fourcc		= V4L2_PIX_FMT_S5C_UYVY_JPG,
173 		.color		= FIMC_FMT_YUYV_JPEG,
174 		.depth		= { 8 },
175 		.memplanes	= 2,
176 		.colplanes	= 1,
177 		.mdataplanes	= 0x2, /* plane 1 holds frame meta data */
178 		.mbus_code	= MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8,
179 		.flags		= FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
180 	},
181 };
182 
183 struct fimc_fmt *fimc_get_format(unsigned int index)
184 {
185 	if (index >= ARRAY_SIZE(fimc_formats))
186 		return NULL;
187 
188 	return &fimc_formats[index];
189 }
190 
191 int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
192 			    int dw, int dh, int rotation)
193 {
194 	if (rotation == 90 || rotation == 270)
195 		swap(dw, dh);
196 
197 	if (!ctx->scaler.enabled)
198 		return (sw == dw && sh == dh) ? 0 : -EINVAL;
199 
200 	if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
207 {
208 	u32 sh = 6;
209 
210 	if (src >= 64 * tar)
211 		return -EINVAL;
212 
213 	while (sh--) {
214 		u32 tmp = 1 << sh;
215 		if (src >= tar * tmp) {
216 			*shift = sh;
217 			*ratio = tmp;
218 			return 0;
219 		}
220 	}
221 	*shift = 0;
222 	*ratio = 1;
223 	return 0;
224 }
225 
226 int fimc_set_scaler_info(struct fimc_ctx *ctx)
227 {
228 	const struct fimc_variant *variant = ctx->fimc_dev->variant;
229 	struct device *dev = &ctx->fimc_dev->pdev->dev;
230 	struct fimc_scaler *sc = &ctx->scaler;
231 	struct fimc_frame *s_frame = &ctx->s_frame;
232 	struct fimc_frame *d_frame = &ctx->d_frame;
233 	int tx, ty, sx, sy;
234 	int ret;
235 
236 	if (ctx->rotation == 90 || ctx->rotation == 270) {
237 		ty = d_frame->width;
238 		tx = d_frame->height;
239 	} else {
240 		tx = d_frame->width;
241 		ty = d_frame->height;
242 	}
243 	if (tx <= 0 || ty <= 0) {
244 		dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
245 		return -EINVAL;
246 	}
247 
248 	sx = s_frame->width;
249 	sy = s_frame->height;
250 	if (sx <= 0 || sy <= 0) {
251 		dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
252 		return -EINVAL;
253 	}
254 	sc->real_width = sx;
255 	sc->real_height = sy;
256 
257 	ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
258 	if (ret)
259 		return ret;
260 
261 	ret = fimc_get_scaler_factor(sy, ty,  &sc->pre_vratio, &sc->vfactor);
262 	if (ret)
263 		return ret;
264 
265 	sc->pre_dst_width = sx / sc->pre_hratio;
266 	sc->pre_dst_height = sy / sc->pre_vratio;
267 
268 	if (variant->has_mainscaler_ext) {
269 		sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
270 		sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
271 	} else {
272 		sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
273 		sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
274 
275 	}
276 
277 	sc->scaleup_h = (tx >= sx) ? 1 : 0;
278 	sc->scaleup_v = (ty >= sy) ? 1 : 0;
279 
280 	/* check to see if input and output size/format differ */
281 	if (s_frame->fmt->color == d_frame->fmt->color
282 		&& s_frame->width == d_frame->width
283 		&& s_frame->height == d_frame->height)
284 		sc->copy_mode = 1;
285 	else
286 		sc->copy_mode = 0;
287 
288 	return 0;
289 }
290 
291 static irqreturn_t fimc_irq_handler(int irq, void *priv)
292 {
293 	struct fimc_dev *fimc = priv;
294 	struct fimc_ctx *ctx;
295 
296 	fimc_hw_clear_irq(fimc);
297 
298 	spin_lock(&fimc->slock);
299 
300 	if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
301 		if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
302 			set_bit(ST_M2M_SUSPENDED, &fimc->state);
303 			wake_up(&fimc->irq_queue);
304 			goto out;
305 		}
306 		ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
307 		if (ctx != NULL) {
308 			spin_unlock(&fimc->slock);
309 			fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
310 
311 			if (ctx->state & FIMC_CTX_SHUT) {
312 				ctx->state &= ~FIMC_CTX_SHUT;
313 				wake_up(&fimc->irq_queue);
314 			}
315 			return IRQ_HANDLED;
316 		}
317 	} else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
318 		int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
319 				fimc->vid_cap.reqbufs_count == 1;
320 		fimc_capture_irq_handler(fimc, !last_buf);
321 	}
322 out:
323 	spin_unlock(&fimc->slock);
324 	return IRQ_HANDLED;
325 }
326 
327 /* The color format (colplanes, memplanes) must be already configured. */
328 int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
329 		      struct fimc_frame *frame, struct fimc_addr *addr)
330 {
331 	int ret = 0;
332 	u32 pix_size;
333 
334 	if (vb == NULL || frame == NULL)
335 		return -EINVAL;
336 
337 	pix_size = frame->width * frame->height;
338 
339 	dbg("memplanes= %d, colplanes= %d, pix_size= %d",
340 		frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
341 
342 	addr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
343 
344 	if (frame->fmt->memplanes == 1) {
345 		switch (frame->fmt->colplanes) {
346 		case 1:
347 			addr->cb = 0;
348 			addr->cr = 0;
349 			break;
350 		case 2:
351 			/* decompose Y into Y/Cb */
352 			addr->cb = (u32)(addr->y + pix_size);
353 			addr->cr = 0;
354 			break;
355 		case 3:
356 			addr->cb = (u32)(addr->y + pix_size);
357 			/* decompose Y into Y/Cb/Cr */
358 			if (FIMC_FMT_YCBCR420 == frame->fmt->color)
359 				addr->cr = (u32)(addr->cb + (pix_size >> 2));
360 			else /* 422 */
361 				addr->cr = (u32)(addr->cb + (pix_size >> 1));
362 			break;
363 		default:
364 			return -EINVAL;
365 		}
366 	} else if (!frame->fmt->mdataplanes) {
367 		if (frame->fmt->memplanes >= 2)
368 			addr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
369 
370 		if (frame->fmt->memplanes == 3)
371 			addr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
372 	}
373 
374 	dbg("DMA ADDR: y= 0x%X  cb= 0x%X cr= 0x%X ret= %d",
375 	    addr->y, addr->cb, addr->cr, ret);
376 
377 	return ret;
378 }
379 
380 /* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
381 void fimc_set_yuv_order(struct fimc_ctx *ctx)
382 {
383 	/* The one only mode supported in SoC. */
384 	ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
385 	ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
386 
387 	/* Set order for 1 plane input formats. */
388 	switch (ctx->s_frame.fmt->color) {
389 	case FIMC_FMT_YCRYCB422:
390 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
391 		break;
392 	case FIMC_FMT_CBYCRY422:
393 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
394 		break;
395 	case FIMC_FMT_CRYCBY422:
396 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
397 		break;
398 	case FIMC_FMT_YCBYCR422:
399 	default:
400 		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
401 		break;
402 	}
403 	dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
404 
405 	switch (ctx->d_frame.fmt->color) {
406 	case FIMC_FMT_YCRYCB422:
407 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
408 		break;
409 	case FIMC_FMT_CBYCRY422:
410 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
411 		break;
412 	case FIMC_FMT_CRYCBY422:
413 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
414 		break;
415 	case FIMC_FMT_YCBYCR422:
416 	default:
417 		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
418 		break;
419 	}
420 	dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
421 }
422 
423 void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
424 {
425 	bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
426 	u32 i, depth = 0;
427 
428 	for (i = 0; i < f->fmt->memplanes; i++)
429 		depth += f->fmt->depth[i];
430 
431 	f->dma_offset.y_h = f->offs_h;
432 	if (!pix_hoff)
433 		f->dma_offset.y_h *= (depth >> 3);
434 
435 	f->dma_offset.y_v = f->offs_v;
436 
437 	f->dma_offset.cb_h = f->offs_h;
438 	f->dma_offset.cb_v = f->offs_v;
439 
440 	f->dma_offset.cr_h = f->offs_h;
441 	f->dma_offset.cr_v = f->offs_v;
442 
443 	if (!pix_hoff) {
444 		if (f->fmt->colplanes == 3) {
445 			f->dma_offset.cb_h >>= 1;
446 			f->dma_offset.cr_h >>= 1;
447 		}
448 		if (f->fmt->color == FIMC_FMT_YCBCR420) {
449 			f->dma_offset.cb_v >>= 1;
450 			f->dma_offset.cr_v >>= 1;
451 		}
452 	}
453 
454 	dbg("in_offset: color= %d, y_h= %d, y_v= %d",
455 	    f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
456 }
457 
458 static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
459 {
460 	struct fimc_effect *effect = &ctx->effect;
461 
462 	switch (colorfx) {
463 	case V4L2_COLORFX_NONE:
464 		effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
465 		break;
466 	case V4L2_COLORFX_BW:
467 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
468 		effect->pat_cb = 128;
469 		effect->pat_cr = 128;
470 		break;
471 	case V4L2_COLORFX_SEPIA:
472 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
473 		effect->pat_cb = 115;
474 		effect->pat_cr = 145;
475 		break;
476 	case V4L2_COLORFX_NEGATIVE:
477 		effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
478 		break;
479 	case V4L2_COLORFX_EMBOSS:
480 		effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
481 		break;
482 	case V4L2_COLORFX_ART_FREEZE:
483 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
484 		break;
485 	case V4L2_COLORFX_SILHOUETTE:
486 		effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
487 		break;
488 	case V4L2_COLORFX_SET_CBCR:
489 		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
490 		effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
491 		effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
492 		break;
493 	default:
494 		return -EINVAL;
495 	}
496 
497 	return 0;
498 }
499 
500 /*
501  * V4L2 controls handling
502  */
503 #define ctrl_to_ctx(__ctrl) \
504 	container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
505 
506 static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
507 {
508 	struct fimc_dev *fimc = ctx->fimc_dev;
509 	const struct fimc_variant *variant = fimc->variant;
510 	int ret = 0;
511 
512 	if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
513 		return 0;
514 
515 	switch (ctrl->id) {
516 	case V4L2_CID_HFLIP:
517 		ctx->hflip = ctrl->val;
518 		break;
519 
520 	case V4L2_CID_VFLIP:
521 		ctx->vflip = ctrl->val;
522 		break;
523 
524 	case V4L2_CID_ROTATE:
525 		if (fimc_capture_pending(fimc)) {
526 			ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
527 					ctx->s_frame.height, ctx->d_frame.width,
528 					ctx->d_frame.height, ctrl->val);
529 			if (ret)
530 				return -EINVAL;
531 		}
532 		if ((ctrl->val == 90 || ctrl->val == 270) &&
533 		    !variant->has_out_rot)
534 			return -EINVAL;
535 
536 		ctx->rotation = ctrl->val;
537 		break;
538 
539 	case V4L2_CID_ALPHA_COMPONENT:
540 		ctx->d_frame.alpha = ctrl->val;
541 		break;
542 
543 	case V4L2_CID_COLORFX:
544 		ret = fimc_set_color_effect(ctx, ctrl->val);
545 		if (ret)
546 			return ret;
547 		break;
548 	}
549 
550 	ctx->state |= FIMC_PARAMS;
551 	set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
552 	return 0;
553 }
554 
555 static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
556 {
557 	struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
558 	unsigned long flags;
559 	int ret;
560 
561 	spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
562 	ret = __fimc_s_ctrl(ctx, ctrl);
563 	spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
564 
565 	return ret;
566 }
567 
568 static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
569 	.s_ctrl = fimc_s_ctrl,
570 };
571 
572 int fimc_ctrls_create(struct fimc_ctx *ctx)
573 {
574 	unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
575 	struct fimc_ctrls *ctrls = &ctx->ctrls;
576 	struct v4l2_ctrl_handler *handler = &ctrls->handler;
577 
578 	if (ctx->ctrls.ready)
579 		return 0;
580 
581 	v4l2_ctrl_handler_init(handler, 6);
582 
583 	ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
584 					V4L2_CID_ROTATE, 0, 270, 90, 0);
585 	ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
586 					V4L2_CID_HFLIP, 0, 1, 1, 0);
587 	ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
588 					V4L2_CID_VFLIP, 0, 1, 1, 0);
589 
590 	if (ctx->fimc_dev->drv_data->alpha_color)
591 		ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
592 					V4L2_CID_ALPHA_COMPONENT,
593 					0, max_alpha, 1, 0);
594 	else
595 		ctrls->alpha = NULL;
596 
597 	ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
598 				V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
599 				~0x983f, V4L2_COLORFX_NONE);
600 
601 	ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
602 				V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
603 
604 	ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
605 
606 	if (!handler->error) {
607 		v4l2_ctrl_cluster(2, &ctrls->colorfx);
608 		ctrls->ready = true;
609 	}
610 
611 	return handler->error;
612 }
613 
614 void fimc_ctrls_delete(struct fimc_ctx *ctx)
615 {
616 	struct fimc_ctrls *ctrls = &ctx->ctrls;
617 
618 	if (ctrls->ready) {
619 		v4l2_ctrl_handler_free(&ctrls->handler);
620 		ctrls->ready = false;
621 		ctrls->alpha = NULL;
622 	}
623 }
624 
625 void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
626 {
627 	unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
628 	struct fimc_ctrls *ctrls = &ctx->ctrls;
629 
630 	if (!ctrls->ready)
631 		return;
632 
633 	mutex_lock(ctrls->handler.lock);
634 	v4l2_ctrl_activate(ctrls->rotate, active);
635 	v4l2_ctrl_activate(ctrls->hflip, active);
636 	v4l2_ctrl_activate(ctrls->vflip, active);
637 	v4l2_ctrl_activate(ctrls->colorfx, active);
638 	if (ctrls->alpha)
639 		v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
640 
641 	if (active) {
642 		fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
643 		ctx->rotation = ctrls->rotate->val;
644 		ctx->hflip    = ctrls->hflip->val;
645 		ctx->vflip    = ctrls->vflip->val;
646 	} else {
647 		ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
648 		ctx->rotation = 0;
649 		ctx->hflip    = 0;
650 		ctx->vflip    = 0;
651 	}
652 	mutex_unlock(ctrls->handler.lock);
653 }
654 
655 /* Update maximum value of the alpha color control */
656 void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
657 {
658 	struct fimc_dev *fimc = ctx->fimc_dev;
659 	struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
660 
661 	if (ctrl == NULL || !fimc->drv_data->alpha_color)
662 		return;
663 
664 	v4l2_ctrl_lock(ctrl);
665 	ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
666 
667 	if (ctrl->cur.val > ctrl->maximum)
668 		ctrl->cur.val = ctrl->maximum;
669 
670 	v4l2_ctrl_unlock(ctrl);
671 }
672 
673 void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
674 {
675 	struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
676 	int i;
677 
678 	pixm->width = frame->o_width;
679 	pixm->height = frame->o_height;
680 	pixm->field = V4L2_FIELD_NONE;
681 	pixm->pixelformat = frame->fmt->fourcc;
682 	pixm->colorspace = V4L2_COLORSPACE_JPEG;
683 	pixm->num_planes = frame->fmt->memplanes;
684 
685 	for (i = 0; i < pixm->num_planes; ++i) {
686 		pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
687 		pixm->plane_fmt[i].sizeimage = frame->payload[i];
688 	}
689 }
690 
691 /**
692  * fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
693  * @fmt: fimc pixel format description (input)
694  * @width: requested pixel width
695  * @height: requested pixel height
696  * @pix: multi-plane format to adjust
697  */
698 void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
699 			       struct v4l2_pix_format_mplane *pix)
700 {
701 	u32 bytesperline = 0;
702 	int i;
703 
704 	pix->colorspace	= V4L2_COLORSPACE_JPEG;
705 	pix->field = V4L2_FIELD_NONE;
706 	pix->num_planes = fmt->memplanes;
707 	pix->pixelformat = fmt->fourcc;
708 	pix->height = height;
709 	pix->width = width;
710 
711 	for (i = 0; i < pix->num_planes; ++i) {
712 		struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
713 		u32 bpl = plane_fmt->bytesperline;
714 		u32 sizeimage;
715 
716 		if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
717 			bpl = pix->width; /* Planar */
718 
719 		if (fmt->colplanes == 1 && /* Packed */
720 		    (bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
721 			bpl = (pix->width * fmt->depth[0]) / 8;
722 		/*
723 		 * Currently bytesperline for each plane is same, except
724 		 * V4L2_PIX_FMT_YUV420M format. This calculation may need
725 		 * to be changed when other multi-planar formats are added
726 		 * to the fimc_formats[] array.
727 		 */
728 		if (i == 0)
729 			bytesperline = bpl;
730 		else if (i == 1 && fmt->memplanes == 3)
731 			bytesperline /= 2;
732 
733 		plane_fmt->bytesperline = bytesperline;
734 		sizeimage = pix->width * pix->height * fmt->depth[i] / 8;
735 
736 		/* Ensure full last row for tiled formats */
737 		if (tiled_fmt(fmt)) {
738 			/* 64 * 32 * plane_fmt->bytesperline / 64 */
739 			u32 row_size = plane_fmt->bytesperline * 32;
740 
741 			sizeimage = roundup(sizeimage, row_size);
742 		}
743 
744 		plane_fmt->sizeimage = max(sizeimage, plane_fmt->sizeimage);
745 	}
746 }
747 
748 /**
749  * fimc_find_format - lookup fimc color format by fourcc or media bus format
750  * @pixelformat: fourcc to match, ignored if null
751  * @mbus_code: media bus code to match, ignored if null
752  * @mask: the color flags to match
753  * @index: offset in the fimc_formats array, ignored if negative
754  */
755 struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
756 				  unsigned int mask, int index)
757 {
758 	struct fimc_fmt *fmt, *def_fmt = NULL;
759 	unsigned int i;
760 	int id = 0;
761 
762 	if (index >= (int)ARRAY_SIZE(fimc_formats))
763 		return NULL;
764 
765 	for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
766 		fmt = &fimc_formats[i];
767 		if (!(fmt->flags & mask))
768 			continue;
769 		if (pixelformat && fmt->fourcc == *pixelformat)
770 			return fmt;
771 		if (mbus_code && fmt->mbus_code == *mbus_code)
772 			return fmt;
773 		if (index == id)
774 			def_fmt = fmt;
775 		id++;
776 	}
777 	return def_fmt;
778 }
779 
780 static void fimc_clk_put(struct fimc_dev *fimc)
781 {
782 	int i;
783 	for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
784 		if (IS_ERR(fimc->clock[i]))
785 			continue;
786 		clk_unprepare(fimc->clock[i]);
787 		clk_put(fimc->clock[i]);
788 		fimc->clock[i] = ERR_PTR(-EINVAL);
789 	}
790 }
791 
792 static int fimc_clk_get(struct fimc_dev *fimc)
793 {
794 	int i, ret;
795 
796 	for (i = 0; i < MAX_FIMC_CLOCKS; i++)
797 		fimc->clock[i] = ERR_PTR(-EINVAL);
798 
799 	for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
800 		fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
801 		if (IS_ERR(fimc->clock[i])) {
802 			ret = PTR_ERR(fimc->clock[i]);
803 			goto err;
804 		}
805 		ret = clk_prepare(fimc->clock[i]);
806 		if (ret < 0) {
807 			clk_put(fimc->clock[i]);
808 			fimc->clock[i] = ERR_PTR(-EINVAL);
809 			goto err;
810 		}
811 	}
812 	return 0;
813 err:
814 	fimc_clk_put(fimc);
815 	dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
816 		fimc_clocks[i]);
817 	return -ENXIO;
818 }
819 
820 #ifdef CONFIG_PM
821 static int fimc_m2m_suspend(struct fimc_dev *fimc)
822 {
823 	unsigned long flags;
824 	int timeout;
825 
826 	spin_lock_irqsave(&fimc->slock, flags);
827 	if (!fimc_m2m_pending(fimc)) {
828 		spin_unlock_irqrestore(&fimc->slock, flags);
829 		return 0;
830 	}
831 	clear_bit(ST_M2M_SUSPENDED, &fimc->state);
832 	set_bit(ST_M2M_SUSPENDING, &fimc->state);
833 	spin_unlock_irqrestore(&fimc->slock, flags);
834 
835 	timeout = wait_event_timeout(fimc->irq_queue,
836 			     test_bit(ST_M2M_SUSPENDED, &fimc->state),
837 			     FIMC_SHUTDOWN_TIMEOUT);
838 
839 	clear_bit(ST_M2M_SUSPENDING, &fimc->state);
840 	return timeout == 0 ? -EAGAIN : 0;
841 }
842 
843 static int fimc_m2m_resume(struct fimc_dev *fimc)
844 {
845 	struct fimc_ctx *ctx;
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(&fimc->slock, flags);
849 	/* Clear for full H/W setup in first run after resume */
850 	ctx = fimc->m2m.ctx;
851 	fimc->m2m.ctx = NULL;
852 	spin_unlock_irqrestore(&fimc->slock, flags);
853 
854 	if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
855 		fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
856 
857 	return 0;
858 }
859 #endif /* CONFIG_PM */
860 
861 static const struct of_device_id fimc_of_match[];
862 
863 static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
864 {
865 	struct device *dev = &fimc->pdev->dev;
866 	struct device_node *node = dev->of_node;
867 	const struct of_device_id *of_id;
868 	struct fimc_variant *v;
869 	struct fimc_pix_limit *lim;
870 	u32 args[FIMC_PIX_LIMITS_MAX];
871 	int ret;
872 
873 	if (of_property_read_bool(node, "samsung,lcd-wb"))
874 		return -ENODEV;
875 
876 	v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
877 	if (!v)
878 		return -ENOMEM;
879 
880 	of_id = of_match_node(fimc_of_match, node);
881 	if (!of_id)
882 		return -EINVAL;
883 	fimc->drv_data = of_id->data;
884 	ret = of_property_read_u32_array(node, "samsung,pix-limits",
885 					 args, FIMC_PIX_LIMITS_MAX);
886 	if (ret < 0)
887 		return ret;
888 
889 	lim = (struct fimc_pix_limit *)&v[1];
890 
891 	lim->scaler_en_w = args[0];
892 	lim->scaler_dis_w = args[1];
893 	lim->out_rot_en_w = args[2];
894 	lim->out_rot_dis_w = args[3];
895 	v->pix_limit = lim;
896 
897 	ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
898 								args, 2);
899 	v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
900 	v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
901 	ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
902 								args, 2);
903 	v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
904 	v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
905 
906 	ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
907 	v->has_inp_rot = ret ? 1 : args[1] & 0x01;
908 	v->has_out_rot = ret ? 1 : args[1] & 0x10;
909 	v->has_mainscaler_ext = of_property_read_bool(node,
910 					"samsung,mainscaler-ext");
911 
912 	v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
913 	v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
914 	of_property_read_u32(node, "clock-frequency", clk_freq);
915 	fimc->id = of_alias_get_id(node, "fimc");
916 
917 	fimc->variant = v;
918 	return 0;
919 }
920 
921 static int fimc_probe(struct platform_device *pdev)
922 {
923 	struct device *dev = &pdev->dev;
924 	u32 lclk_freq = 0;
925 	struct fimc_dev *fimc;
926 	int ret = 0;
927 	int irq;
928 
929 	fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
930 	if (!fimc)
931 		return -ENOMEM;
932 
933 	fimc->pdev = pdev;
934 
935 	if (dev->of_node) {
936 		ret = fimc_parse_dt(fimc, &lclk_freq);
937 		if (ret < 0)
938 			return ret;
939 	} else {
940 		fimc->drv_data = fimc_get_drvdata(pdev);
941 		fimc->id = pdev->id;
942 	}
943 	if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
944 	    fimc->id < 0) {
945 		dev_err(dev, "Invalid driver data or device id (%d)\n",
946 			fimc->id);
947 		return -EINVAL;
948 	}
949 	if (!dev->of_node)
950 		fimc->variant = fimc->drv_data->variant[fimc->id];
951 
952 	init_waitqueue_head(&fimc->irq_queue);
953 	spin_lock_init(&fimc->slock);
954 	mutex_init(&fimc->lock);
955 
956 	if (fimc->variant->has_isp_wb) {
957 		fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
958 		if (IS_ERR(fimc->sysreg))
959 			return PTR_ERR(fimc->sysreg);
960 	}
961 
962 	fimc->regs = devm_platform_ioremap_resource(pdev, 0);
963 	if (IS_ERR(fimc->regs))
964 		return PTR_ERR(fimc->regs);
965 
966 	irq = platform_get_irq(pdev, 0);
967 	if (irq < 0)
968 		return irq;
969 
970 	ret = fimc_clk_get(fimc);
971 	if (ret)
972 		return ret;
973 
974 	if (lclk_freq == 0)
975 		lclk_freq = fimc->drv_data->lclk_frequency;
976 
977 	ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
978 	if (ret < 0)
979 		return ret;
980 
981 	ret = clk_enable(fimc->clock[CLK_BUS]);
982 	if (ret < 0)
983 		return ret;
984 
985 	ret = devm_request_irq(dev, irq, fimc_irq_handler,
986 			       0, dev_name(dev), fimc);
987 	if (ret < 0) {
988 		dev_err(dev, "failed to install irq (%d)\n", ret);
989 		goto err_sclk;
990 	}
991 
992 	ret = fimc_initialize_capture_subdev(fimc);
993 	if (ret < 0)
994 		goto err_sclk;
995 
996 	platform_set_drvdata(pdev, fimc);
997 	pm_runtime_enable(dev);
998 
999 	if (!pm_runtime_enabled(dev)) {
1000 		ret = clk_enable(fimc->clock[CLK_GATE]);
1001 		if (ret < 0)
1002 			goto err_sd;
1003 	}
1004 
1005 	vb2_dma_contig_set_max_seg_size(dev, DMA_BIT_MASK(32));
1006 
1007 	dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
1008 	return 0;
1009 
1010 err_sd:
1011 	fimc_unregister_capture_subdev(fimc);
1012 err_sclk:
1013 	clk_disable(fimc->clock[CLK_BUS]);
1014 	fimc_clk_put(fimc);
1015 	return ret;
1016 }
1017 
1018 #ifdef CONFIG_PM
1019 static int fimc_runtime_resume(struct device *dev)
1020 {
1021 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1022 
1023 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1024 
1025 	/* Enable clocks and perform basic initialization */
1026 	clk_enable(fimc->clock[CLK_GATE]);
1027 	fimc_hw_reset(fimc);
1028 
1029 	/* Resume the capture or mem-to-mem device */
1030 	if (fimc_capture_busy(fimc))
1031 		return fimc_capture_resume(fimc);
1032 
1033 	return fimc_m2m_resume(fimc);
1034 }
1035 
1036 static int fimc_runtime_suspend(struct device *dev)
1037 {
1038 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1039 	int ret = 0;
1040 
1041 	if (fimc_capture_busy(fimc))
1042 		ret = fimc_capture_suspend(fimc);
1043 	else
1044 		ret = fimc_m2m_suspend(fimc);
1045 	if (!ret)
1046 		clk_disable(fimc->clock[CLK_GATE]);
1047 
1048 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1049 	return ret;
1050 }
1051 #endif
1052 
1053 #ifdef CONFIG_PM_SLEEP
1054 static int fimc_resume(struct device *dev)
1055 {
1056 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1057 	unsigned long flags;
1058 
1059 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1060 
1061 	/* Do not resume if the device was idle before system suspend */
1062 	spin_lock_irqsave(&fimc->slock, flags);
1063 	if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
1064 	    (!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
1065 		spin_unlock_irqrestore(&fimc->slock, flags);
1066 		return 0;
1067 	}
1068 	fimc_hw_reset(fimc);
1069 	spin_unlock_irqrestore(&fimc->slock, flags);
1070 
1071 	if (fimc_capture_busy(fimc))
1072 		return fimc_capture_resume(fimc);
1073 
1074 	return fimc_m2m_resume(fimc);
1075 }
1076 
1077 static int fimc_suspend(struct device *dev)
1078 {
1079 	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1080 
1081 	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1082 
1083 	if (test_and_set_bit(ST_LPM, &fimc->state))
1084 		return 0;
1085 	if (fimc_capture_busy(fimc))
1086 		return fimc_capture_suspend(fimc);
1087 
1088 	return fimc_m2m_suspend(fimc);
1089 }
1090 #endif /* CONFIG_PM_SLEEP */
1091 
1092 static void fimc_remove(struct platform_device *pdev)
1093 {
1094 	struct fimc_dev *fimc = platform_get_drvdata(pdev);
1095 
1096 	pm_runtime_disable(&pdev->dev);
1097 	if (!pm_runtime_status_suspended(&pdev->dev))
1098 		clk_disable(fimc->clock[CLK_GATE]);
1099 	pm_runtime_set_suspended(&pdev->dev);
1100 
1101 	fimc_unregister_capture_subdev(fimc);
1102 	vb2_dma_contig_clear_max_seg_size(&pdev->dev);
1103 
1104 	clk_disable(fimc->clock[CLK_BUS]);
1105 	fimc_clk_put(fimc);
1106 
1107 	dev_info(&pdev->dev, "driver unloaded\n");
1108 }
1109 
1110 /* S5PV210, S5PC110 */
1111 static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
1112 	.num_entities	= 3,
1113 	.lclk_frequency	= 166000000UL,
1114 	.out_buf_count	= 4,
1115 	.dma_pix_hoff	= 1,
1116 };
1117 
1118 /* EXYNOS4210, S5PV310, S5PC210 */
1119 static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
1120 	.num_entities	= 4,
1121 	.lclk_frequency = 166000000UL,
1122 	.dma_pix_hoff	= 1,
1123 	.cistatus2	= 1,
1124 	.alpha_color	= 1,
1125 	.out_buf_count	= 32,
1126 };
1127 
1128 /* EXYNOS4212, EXYNOS4412 */
1129 static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
1130 	.num_entities	= 4,
1131 	.lclk_frequency	= 166000000UL,
1132 	.dma_pix_hoff	= 1,
1133 	.cistatus2	= 1,
1134 	.alpha_color	= 1,
1135 	.out_buf_count	= 32,
1136 };
1137 
1138 static const struct of_device_id fimc_of_match[] = {
1139 	{
1140 		.compatible = "samsung,s5pv210-fimc",
1141 		.data = &fimc_drvdata_s5pv210,
1142 	}, {
1143 		.compatible = "samsung,exynos4210-fimc",
1144 		.data = &fimc_drvdata_exynos4210,
1145 	}, {
1146 		.compatible = "samsung,exynos4212-fimc",
1147 		.data = &fimc_drvdata_exynos4x12,
1148 	},
1149 	{ /* sentinel */ },
1150 };
1151 
1152 static const struct dev_pm_ops fimc_pm_ops = {
1153 	SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
1154 	SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
1155 };
1156 
1157 static struct platform_driver fimc_driver = {
1158 	.probe		= fimc_probe,
1159 	.remove_new	= fimc_remove,
1160 	.driver = {
1161 		.of_match_table = fimc_of_match,
1162 		.name		= FIMC_DRIVER_NAME,
1163 		.pm		= &fimc_pm_ops,
1164 	}
1165 };
1166 
1167 int __init fimc_register_driver(void)
1168 {
1169 	return platform_driver_register(&fimc_driver);
1170 }
1171 
1172 void fimc_unregister_driver(void)
1173 {
1174 	platform_driver_unregister(&fimc_driver);
1175 }
1176