1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Samsung S5P Multi Format Codec v 5.1
4  *
5  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
6  * Kamil Debski, <k.debski@samsung.com>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/videodev2.h>
18 #include <media/v4l2-event.h>
19 #include <linux/workqueue.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_reserved_mem.h>
23 #include <media/videobuf2-v4l2.h>
24 #include "s5p_mfc_common.h"
25 #include "s5p_mfc_ctrl.h"
26 #include "s5p_mfc_debug.h"
27 #include "s5p_mfc_dec.h"
28 #include "s5p_mfc_enc.h"
29 #include "s5p_mfc_intr.h"
30 #include "s5p_mfc_iommu.h"
31 #include "s5p_mfc_opr.h"
32 #include "s5p_mfc_cmd.h"
33 #include "s5p_mfc_pm.h"
34 
35 #define S5P_MFC_DEC_NAME	"s5p-mfc-dec"
36 #define S5P_MFC_ENC_NAME	"s5p-mfc-enc"
37 
38 int mfc_debug_level;
39 module_param_named(debug, mfc_debug_level, int, 0644);
40 MODULE_PARM_DESC(debug, "Debug level - higher value produces more verbose messages");
41 
42 static char *mfc_mem_size;
43 module_param_named(mem, mfc_mem_size, charp, 0644);
44 MODULE_PARM_DESC(mem, "Preallocated memory size for the firmware and context buffers");
45 
46 /* Helper functions for interrupt processing */
47 
48 /* Remove from hw execution round robin */
49 void clear_work_bit(struct s5p_mfc_ctx *ctx)
50 {
51 	struct s5p_mfc_dev *dev = ctx->dev;
52 
53 	spin_lock(&dev->condlock);
54 	__clear_bit(ctx->num, &dev->ctx_work_bits);
55 	spin_unlock(&dev->condlock);
56 }
57 
58 /* Add to hw execution round robin */
59 void set_work_bit(struct s5p_mfc_ctx *ctx)
60 {
61 	struct s5p_mfc_dev *dev = ctx->dev;
62 
63 	spin_lock(&dev->condlock);
64 	__set_bit(ctx->num, &dev->ctx_work_bits);
65 	spin_unlock(&dev->condlock);
66 }
67 
68 /* Remove from hw execution round robin */
69 void clear_work_bit_irqsave(struct s5p_mfc_ctx *ctx)
70 {
71 	struct s5p_mfc_dev *dev = ctx->dev;
72 	unsigned long flags;
73 
74 	spin_lock_irqsave(&dev->condlock, flags);
75 	__clear_bit(ctx->num, &dev->ctx_work_bits);
76 	spin_unlock_irqrestore(&dev->condlock, flags);
77 }
78 
79 /* Add to hw execution round robin */
80 void set_work_bit_irqsave(struct s5p_mfc_ctx *ctx)
81 {
82 	struct s5p_mfc_dev *dev = ctx->dev;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&dev->condlock, flags);
86 	__set_bit(ctx->num, &dev->ctx_work_bits);
87 	spin_unlock_irqrestore(&dev->condlock, flags);
88 }
89 
90 int s5p_mfc_get_new_ctx(struct s5p_mfc_dev *dev)
91 {
92 	unsigned long flags;
93 	int ctx;
94 
95 	spin_lock_irqsave(&dev->condlock, flags);
96 	ctx = dev->curr_ctx;
97 	do {
98 		ctx = (ctx + 1) % MFC_NUM_CONTEXTS;
99 		if (ctx == dev->curr_ctx) {
100 			if (!test_bit(ctx, &dev->ctx_work_bits))
101 				ctx = -EAGAIN;
102 			break;
103 		}
104 	} while (!test_bit(ctx, &dev->ctx_work_bits));
105 	spin_unlock_irqrestore(&dev->condlock, flags);
106 
107 	return ctx;
108 }
109 
110 /* Wake up context wait_queue */
111 static void wake_up_ctx(struct s5p_mfc_ctx *ctx, unsigned int reason,
112 			unsigned int err)
113 {
114 	ctx->int_cond = 1;
115 	ctx->int_type = reason;
116 	ctx->int_err = err;
117 	wake_up(&ctx->queue);
118 }
119 
120 /* Wake up device wait_queue */
121 static void wake_up_dev(struct s5p_mfc_dev *dev, unsigned int reason,
122 			unsigned int err)
123 {
124 	dev->int_cond = 1;
125 	dev->int_type = reason;
126 	dev->int_err = err;
127 	wake_up(&dev->queue);
128 }
129 
130 void s5p_mfc_cleanup_queue(struct list_head *lh, struct vb2_queue *vq)
131 {
132 	struct s5p_mfc_buf *b;
133 	int i;
134 
135 	while (!list_empty(lh)) {
136 		b = list_entry(lh->next, struct s5p_mfc_buf, list);
137 		for (i = 0; i < b->b->vb2_buf.num_planes; i++)
138 			vb2_set_plane_payload(&b->b->vb2_buf, i, 0);
139 		vb2_buffer_done(&b->b->vb2_buf, VB2_BUF_STATE_ERROR);
140 		list_del(&b->list);
141 	}
142 }
143 
144 static void s5p_mfc_watchdog(struct timer_list *t)
145 {
146 	struct s5p_mfc_dev *dev = from_timer(dev, t, watchdog_timer);
147 
148 	if (test_bit(0, &dev->hw_lock))
149 		atomic_inc(&dev->watchdog_cnt);
150 	if (atomic_read(&dev->watchdog_cnt) >= MFC_WATCHDOG_CNT) {
151 		/*
152 		 * This means that hw is busy and no interrupts were
153 		 * generated by hw for the Nth time of running this
154 		 * watchdog timer. This usually means a serious hw
155 		 * error. Now it is time to kill all instances and
156 		 * reset the MFC.
157 		 */
158 		mfc_err("Time out during waiting for HW\n");
159 		schedule_work(&dev->watchdog_work);
160 	}
161 	dev->watchdog_timer.expires = jiffies +
162 					msecs_to_jiffies(MFC_WATCHDOG_INTERVAL);
163 	add_timer(&dev->watchdog_timer);
164 }
165 
166 static void s5p_mfc_watchdog_worker(struct work_struct *work)
167 {
168 	struct s5p_mfc_dev *dev;
169 	struct s5p_mfc_ctx *ctx;
170 	unsigned long flags;
171 	int mutex_locked;
172 	int i, ret;
173 
174 	dev = container_of(work, struct s5p_mfc_dev, watchdog_work);
175 
176 	mfc_err("Driver timeout error handling\n");
177 	/*
178 	 * Lock the mutex that protects open and release.
179 	 * This is necessary as they may load and unload firmware.
180 	 */
181 	mutex_locked = mutex_trylock(&dev->mfc_mutex);
182 	if (!mutex_locked)
183 		mfc_err("Error: some instance may be closing/opening\n");
184 	spin_lock_irqsave(&dev->irqlock, flags);
185 
186 	s5p_mfc_clock_off();
187 
188 	for (i = 0; i < MFC_NUM_CONTEXTS; i++) {
189 		ctx = dev->ctx[i];
190 		if (!ctx)
191 			continue;
192 		ctx->state = MFCINST_ERROR;
193 		s5p_mfc_cleanup_queue(&ctx->dst_queue, &ctx->vq_dst);
194 		s5p_mfc_cleanup_queue(&ctx->src_queue, &ctx->vq_src);
195 		clear_work_bit(ctx);
196 		wake_up_ctx(ctx, S5P_MFC_R2H_CMD_ERR_RET, 0);
197 	}
198 	clear_bit(0, &dev->hw_lock);
199 	spin_unlock_irqrestore(&dev->irqlock, flags);
200 
201 	/* De-init MFC */
202 	s5p_mfc_deinit_hw(dev);
203 
204 	/*
205 	 * Double check if there is at least one instance running.
206 	 * If no instance is in memory than no firmware should be present
207 	 */
208 	if (dev->num_inst > 0) {
209 		ret = s5p_mfc_load_firmware(dev);
210 		if (ret) {
211 			mfc_err("Failed to reload FW\n");
212 			goto unlock;
213 		}
214 		s5p_mfc_clock_on();
215 		ret = s5p_mfc_init_hw(dev);
216 		s5p_mfc_clock_off();
217 		if (ret)
218 			mfc_err("Failed to reinit FW\n");
219 	}
220 unlock:
221 	if (mutex_locked)
222 		mutex_unlock(&dev->mfc_mutex);
223 }
224 
225 static void s5p_mfc_handle_frame_all_extracted(struct s5p_mfc_ctx *ctx)
226 {
227 	struct s5p_mfc_buf *dst_buf;
228 	struct s5p_mfc_dev *dev = ctx->dev;
229 
230 	ctx->state = MFCINST_FINISHED;
231 	ctx->sequence++;
232 	while (!list_empty(&ctx->dst_queue)) {
233 		dst_buf = list_entry(ctx->dst_queue.next,
234 				     struct s5p_mfc_buf, list);
235 		mfc_debug(2, "Cleaning up buffer: %d\n",
236 					  dst_buf->b->vb2_buf.index);
237 		vb2_set_plane_payload(&dst_buf->b->vb2_buf, 0, 0);
238 		vb2_set_plane_payload(&dst_buf->b->vb2_buf, 1, 0);
239 		list_del(&dst_buf->list);
240 		dst_buf->flags |= MFC_BUF_FLAG_EOS;
241 		ctx->dst_queue_cnt--;
242 		dst_buf->b->sequence = (ctx->sequence++);
243 
244 		if (s5p_mfc_hw_call(dev->mfc_ops, get_pic_type_top, ctx) ==
245 			s5p_mfc_hw_call(dev->mfc_ops, get_pic_type_bot, ctx))
246 			dst_buf->b->field = V4L2_FIELD_NONE;
247 		else
248 			dst_buf->b->field = V4L2_FIELD_INTERLACED;
249 		dst_buf->b->flags |= V4L2_BUF_FLAG_LAST;
250 
251 		ctx->dec_dst_flag &= ~(1 << dst_buf->b->vb2_buf.index);
252 		vb2_buffer_done(&dst_buf->b->vb2_buf, VB2_BUF_STATE_DONE);
253 	}
254 }
255 
256 static void s5p_mfc_handle_frame_copy_time(struct s5p_mfc_ctx *ctx)
257 {
258 	struct s5p_mfc_dev *dev = ctx->dev;
259 	struct s5p_mfc_buf *dst_buf, *src_buf;
260 	u32 dec_y_addr;
261 	unsigned int frame_type;
262 
263 	/* Make sure we actually have a new frame before continuing. */
264 	frame_type = s5p_mfc_hw_call(dev->mfc_ops, get_dec_frame_type, dev);
265 	if (frame_type == S5P_FIMV_DECODE_FRAME_SKIPPED)
266 		return;
267 	dec_y_addr = (u32)s5p_mfc_hw_call(dev->mfc_ops, get_dec_y_adr, dev);
268 
269 	/*
270 	 * Copy timestamp / timecode from decoded src to dst and set
271 	 * appropriate flags.
272 	 */
273 	src_buf = list_entry(ctx->src_queue.next, struct s5p_mfc_buf, list);
274 	list_for_each_entry(dst_buf, &ctx->dst_queue, list) {
275 		u32 addr = (u32)vb2_dma_contig_plane_dma_addr(&dst_buf->b->vb2_buf, 0);
276 
277 		if (addr == dec_y_addr) {
278 			dst_buf->b->timecode = src_buf->b->timecode;
279 			dst_buf->b->vb2_buf.timestamp =
280 						src_buf->b->vb2_buf.timestamp;
281 			dst_buf->b->flags &=
282 				~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
283 			dst_buf->b->flags |=
284 				src_buf->b->flags
285 				& V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
286 			switch (frame_type) {
287 			case S5P_FIMV_DECODE_FRAME_I_FRAME:
288 				dst_buf->b->flags |=
289 						V4L2_BUF_FLAG_KEYFRAME;
290 				break;
291 			case S5P_FIMV_DECODE_FRAME_P_FRAME:
292 				dst_buf->b->flags |=
293 						V4L2_BUF_FLAG_PFRAME;
294 				break;
295 			case S5P_FIMV_DECODE_FRAME_B_FRAME:
296 				dst_buf->b->flags |=
297 						V4L2_BUF_FLAG_BFRAME;
298 				break;
299 			default:
300 				/*
301 				 * Don't know how to handle
302 				 * S5P_FIMV_DECODE_FRAME_OTHER_FRAME.
303 				 */
304 				mfc_debug(2, "Unexpected frame type: %d\n",
305 						frame_type);
306 			}
307 			break;
308 		}
309 	}
310 }
311 
312 static void s5p_mfc_handle_frame_new(struct s5p_mfc_ctx *ctx, unsigned int err)
313 {
314 	struct s5p_mfc_dev *dev = ctx->dev;
315 	struct s5p_mfc_buf  *dst_buf;
316 	u32 dspl_y_addr;
317 	unsigned int frame_type;
318 
319 	dspl_y_addr = (u32)s5p_mfc_hw_call(dev->mfc_ops, get_dspl_y_adr, dev);
320 	if (IS_MFCV6_PLUS(dev))
321 		frame_type = s5p_mfc_hw_call(dev->mfc_ops,
322 			get_disp_frame_type, ctx);
323 	else
324 		frame_type = s5p_mfc_hw_call(dev->mfc_ops,
325 			get_dec_frame_type, dev);
326 
327 	/* If frame is same as previous then skip and do not dequeue */
328 	if (frame_type == S5P_FIMV_DECODE_FRAME_SKIPPED) {
329 		if (!ctx->after_packed_pb)
330 			ctx->sequence++;
331 		ctx->after_packed_pb = 0;
332 		return;
333 	}
334 	ctx->sequence++;
335 	/*
336 	 * The MFC returns address of the buffer, now we have to
337 	 * check which vb2_buffer does it correspond to
338 	 */
339 	list_for_each_entry(dst_buf, &ctx->dst_queue, list) {
340 		u32 addr = (u32)vb2_dma_contig_plane_dma_addr(&dst_buf->b->vb2_buf, 0);
341 
342 		/* Check if this is the buffer we're looking for */
343 		if (addr == dspl_y_addr) {
344 			list_del(&dst_buf->list);
345 			ctx->dst_queue_cnt--;
346 			dst_buf->b->sequence = ctx->sequence;
347 			if (s5p_mfc_hw_call(dev->mfc_ops,
348 					get_pic_type_top, ctx) ==
349 				s5p_mfc_hw_call(dev->mfc_ops,
350 					get_pic_type_bot, ctx))
351 				dst_buf->b->field = V4L2_FIELD_NONE;
352 			else
353 				dst_buf->b->field =
354 							V4L2_FIELD_INTERLACED;
355 			vb2_set_plane_payload(&dst_buf->b->vb2_buf, 0,
356 						ctx->luma_size);
357 			vb2_set_plane_payload(&dst_buf->b->vb2_buf, 1,
358 						ctx->chroma_size);
359 			clear_bit(dst_buf->b->vb2_buf.index,
360 							&ctx->dec_dst_flag);
361 
362 			vb2_buffer_done(&dst_buf->b->vb2_buf, err ?
363 				VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
364 
365 			break;
366 		}
367 	}
368 }
369 
370 /* Handle frame decoding interrupt */
371 static void s5p_mfc_handle_frame(struct s5p_mfc_ctx *ctx,
372 					unsigned int reason, unsigned int err)
373 {
374 	struct s5p_mfc_dev *dev = ctx->dev;
375 	unsigned int dst_frame_status;
376 	unsigned int dec_frame_status;
377 	struct s5p_mfc_buf *src_buf;
378 	unsigned int res_change;
379 
380 	dst_frame_status = s5p_mfc_hw_call(dev->mfc_ops, get_dspl_status, dev)
381 				& S5P_FIMV_DEC_STATUS_DECODING_STATUS_MASK;
382 	dec_frame_status = s5p_mfc_hw_call(dev->mfc_ops, get_dec_status, dev)
383 				& S5P_FIMV_DEC_STATUS_DECODING_STATUS_MASK;
384 	res_change = (s5p_mfc_hw_call(dev->mfc_ops, get_dspl_status, dev)
385 				& S5P_FIMV_DEC_STATUS_RESOLUTION_MASK)
386 				>> S5P_FIMV_DEC_STATUS_RESOLUTION_SHIFT;
387 	mfc_debug(2, "Frame Status: %x\n", dst_frame_status);
388 	if (ctx->state == MFCINST_RES_CHANGE_INIT)
389 		ctx->state = MFCINST_RES_CHANGE_FLUSH;
390 	if (res_change == S5P_FIMV_RES_INCREASE ||
391 		res_change == S5P_FIMV_RES_DECREASE) {
392 		ctx->state = MFCINST_RES_CHANGE_INIT;
393 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
394 		wake_up_ctx(ctx, reason, err);
395 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
396 		s5p_mfc_clock_off();
397 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
398 		return;
399 	}
400 	if (ctx->dpb_flush_flag)
401 		ctx->dpb_flush_flag = 0;
402 
403 	/* All frames remaining in the buffer have been extracted  */
404 	if (dst_frame_status == S5P_FIMV_DEC_STATUS_DECODING_EMPTY) {
405 		if (ctx->state == MFCINST_RES_CHANGE_FLUSH) {
406 			static const struct v4l2_event ev_src_ch = {
407 				.type = V4L2_EVENT_SOURCE_CHANGE,
408 				.u.src_change.changes =
409 					V4L2_EVENT_SRC_CH_RESOLUTION,
410 			};
411 
412 			s5p_mfc_handle_frame_all_extracted(ctx);
413 			ctx->state = MFCINST_RES_CHANGE_END;
414 			v4l2_event_queue_fh(&ctx->fh, &ev_src_ch);
415 
416 			goto leave_handle_frame;
417 		} else {
418 			s5p_mfc_handle_frame_all_extracted(ctx);
419 		}
420 	}
421 
422 	if (dec_frame_status == S5P_FIMV_DEC_STATUS_DECODING_DISPLAY)
423 		s5p_mfc_handle_frame_copy_time(ctx);
424 
425 	/* A frame has been decoded and is in the buffer  */
426 	if (dst_frame_status == S5P_FIMV_DEC_STATUS_DISPLAY_ONLY ||
427 	    dst_frame_status == S5P_FIMV_DEC_STATUS_DECODING_DISPLAY) {
428 		s5p_mfc_handle_frame_new(ctx, err);
429 	} else {
430 		mfc_debug(2, "No frame decode\n");
431 	}
432 	/* Mark source buffer as complete */
433 	if (dst_frame_status != S5P_FIMV_DEC_STATUS_DISPLAY_ONLY
434 		&& !list_empty(&ctx->src_queue)) {
435 		src_buf = list_entry(ctx->src_queue.next, struct s5p_mfc_buf,
436 								list);
437 		ctx->consumed_stream += s5p_mfc_hw_call(dev->mfc_ops,
438 						get_consumed_stream, dev);
439 		if (ctx->codec_mode != S5P_MFC_CODEC_H264_DEC &&
440 			ctx->codec_mode != S5P_MFC_CODEC_VP8_DEC &&
441 			ctx->consumed_stream + STUFF_BYTE <
442 			src_buf->b->vb2_buf.planes[0].bytesused) {
443 			/* Run MFC again on the same buffer */
444 			mfc_debug(2, "Running again the same buffer\n");
445 			ctx->after_packed_pb = 1;
446 		} else {
447 			mfc_debug(2, "MFC needs next buffer\n");
448 			ctx->consumed_stream = 0;
449 			if (src_buf->flags & MFC_BUF_FLAG_EOS)
450 				ctx->state = MFCINST_FINISHING;
451 			list_del(&src_buf->list);
452 			ctx->src_queue_cnt--;
453 			if (s5p_mfc_hw_call(dev->mfc_ops, err_dec, err) > 0)
454 				vb2_buffer_done(&src_buf->b->vb2_buf,
455 						VB2_BUF_STATE_ERROR);
456 			else
457 				vb2_buffer_done(&src_buf->b->vb2_buf,
458 						VB2_BUF_STATE_DONE);
459 		}
460 	}
461 leave_handle_frame:
462 	if ((ctx->src_queue_cnt == 0 && ctx->state != MFCINST_FINISHING)
463 				    || ctx->dst_queue_cnt < ctx->pb_count)
464 		clear_work_bit(ctx);
465 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
466 	wake_up_ctx(ctx, reason, err);
467 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
468 	s5p_mfc_clock_off();
469 	/* if suspending, wake up device and do not try_run again*/
470 	if (test_bit(0, &dev->enter_suspend))
471 		wake_up_dev(dev, reason, err);
472 	else
473 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
474 }
475 
476 /* Error handling for interrupt */
477 static void s5p_mfc_handle_error(struct s5p_mfc_dev *dev,
478 		struct s5p_mfc_ctx *ctx, unsigned int reason, unsigned int err)
479 {
480 	mfc_err("Interrupt Error: %08x\n", err);
481 
482 	if (ctx) {
483 		/* Error recovery is dependent on the state of context */
484 		switch (ctx->state) {
485 		case MFCINST_RES_CHANGE_INIT:
486 		case MFCINST_RES_CHANGE_FLUSH:
487 		case MFCINST_RES_CHANGE_END:
488 		case MFCINST_FINISHING:
489 		case MFCINST_FINISHED:
490 		case MFCINST_RUNNING:
491 			/*
492 			 * It is highly probable that an error occurred
493 			 * while decoding a frame
494 			 */
495 			clear_work_bit(ctx);
496 			ctx->state = MFCINST_ERROR;
497 			/* Mark all dst buffers as having an error */
498 			s5p_mfc_cleanup_queue(&ctx->dst_queue, &ctx->vq_dst);
499 			/* Mark all src buffers as having an error */
500 			s5p_mfc_cleanup_queue(&ctx->src_queue, &ctx->vq_src);
501 			wake_up_ctx(ctx, reason, err);
502 			break;
503 		default:
504 			clear_work_bit(ctx);
505 			ctx->state = MFCINST_ERROR;
506 			wake_up_ctx(ctx, reason, err);
507 			break;
508 		}
509 	}
510 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
511 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
512 	s5p_mfc_clock_off();
513 	wake_up_dev(dev, reason, err);
514 }
515 
516 /* Header parsing interrupt handling */
517 static void s5p_mfc_handle_seq_done(struct s5p_mfc_ctx *ctx,
518 				 unsigned int reason, unsigned int err)
519 {
520 	struct s5p_mfc_dev *dev;
521 
522 	if (!ctx)
523 		return;
524 	dev = ctx->dev;
525 	if (ctx->c_ops->post_seq_start) {
526 		if (ctx->c_ops->post_seq_start(ctx))
527 			mfc_err("post_seq_start() failed\n");
528 	} else {
529 		ctx->img_width = s5p_mfc_hw_call(dev->mfc_ops, get_img_width,
530 				dev);
531 		ctx->img_height = s5p_mfc_hw_call(dev->mfc_ops, get_img_height,
532 				dev);
533 
534 		s5p_mfc_hw_call(dev->mfc_ops, dec_calc_dpb_size, ctx);
535 
536 		ctx->pb_count = s5p_mfc_hw_call(dev->mfc_ops, get_dpb_count,
537 				dev);
538 		ctx->mv_count = s5p_mfc_hw_call(dev->mfc_ops, get_mv_count,
539 				dev);
540 		if (FW_HAS_E_MIN_SCRATCH_BUF(dev))
541 			ctx->scratch_buf_size = s5p_mfc_hw_call(dev->mfc_ops,
542 						get_min_scratch_buf_size, dev);
543 		if (ctx->img_width == 0 || ctx->img_height == 0)
544 			ctx->state = MFCINST_ERROR;
545 		else
546 			ctx->state = MFCINST_HEAD_PARSED;
547 
548 		if ((ctx->codec_mode == S5P_MFC_CODEC_H264_DEC ||
549 			ctx->codec_mode == S5P_MFC_CODEC_H264_MVC_DEC) &&
550 				!list_empty(&ctx->src_queue)) {
551 			struct s5p_mfc_buf *src_buf;
552 
553 			src_buf = list_entry(ctx->src_queue.next,
554 					struct s5p_mfc_buf, list);
555 			if (s5p_mfc_hw_call(dev->mfc_ops, get_consumed_stream,
556 						dev) <
557 					src_buf->b->vb2_buf.planes[0].bytesused)
558 				ctx->head_processed = 0;
559 			else
560 				ctx->head_processed = 1;
561 		} else {
562 			ctx->head_processed = 1;
563 		}
564 	}
565 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
566 	clear_work_bit(ctx);
567 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
568 	s5p_mfc_clock_off();
569 	s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
570 	wake_up_ctx(ctx, reason, err);
571 }
572 
573 /* Header parsing interrupt handling */
574 static void s5p_mfc_handle_init_buffers(struct s5p_mfc_ctx *ctx,
575 				 unsigned int reason, unsigned int err)
576 {
577 	struct s5p_mfc_buf *src_buf;
578 	struct s5p_mfc_dev *dev;
579 
580 	if (!ctx)
581 		return;
582 	dev = ctx->dev;
583 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
584 	ctx->int_type = reason;
585 	ctx->int_err = err;
586 	ctx->int_cond = 1;
587 	clear_work_bit(ctx);
588 	if (err == 0) {
589 		ctx->state = MFCINST_RUNNING;
590 		if (!ctx->dpb_flush_flag && ctx->head_processed) {
591 			if (!list_empty(&ctx->src_queue)) {
592 				src_buf = list_entry(ctx->src_queue.next,
593 					     struct s5p_mfc_buf, list);
594 				list_del(&src_buf->list);
595 				ctx->src_queue_cnt--;
596 				vb2_buffer_done(&src_buf->b->vb2_buf,
597 						VB2_BUF_STATE_DONE);
598 			}
599 		} else {
600 			ctx->dpb_flush_flag = 0;
601 		}
602 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
603 
604 		s5p_mfc_clock_off();
605 
606 		wake_up(&ctx->queue);
607 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
608 	} else {
609 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
610 
611 		s5p_mfc_clock_off();
612 
613 		wake_up(&ctx->queue);
614 	}
615 }
616 
617 static void s5p_mfc_handle_stream_complete(struct s5p_mfc_ctx *ctx)
618 {
619 	struct s5p_mfc_dev *dev = ctx->dev;
620 	struct s5p_mfc_buf *mb_entry;
621 
622 	mfc_debug(2, "Stream completed\n");
623 
624 	ctx->state = MFCINST_FINISHED;
625 
626 	if (!list_empty(&ctx->dst_queue)) {
627 		mb_entry = list_entry(ctx->dst_queue.next, struct s5p_mfc_buf,
628 									list);
629 		list_del(&mb_entry->list);
630 		ctx->dst_queue_cnt--;
631 		vb2_set_plane_payload(&mb_entry->b->vb2_buf, 0, 0);
632 		vb2_buffer_done(&mb_entry->b->vb2_buf, VB2_BUF_STATE_DONE);
633 	}
634 
635 	clear_work_bit(ctx);
636 
637 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
638 
639 	s5p_mfc_clock_off();
640 	wake_up(&ctx->queue);
641 	s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
642 }
643 
644 /* Interrupt processing */
645 static irqreturn_t s5p_mfc_irq(int irq, void *priv)
646 {
647 	struct s5p_mfc_dev *dev = priv;
648 	struct s5p_mfc_ctx *ctx;
649 	unsigned int reason;
650 	unsigned int err;
651 
652 	mfc_debug_enter();
653 	/* Reset the timeout watchdog */
654 	atomic_set(&dev->watchdog_cnt, 0);
655 	spin_lock(&dev->irqlock);
656 	ctx = dev->ctx[dev->curr_ctx];
657 	/* Get the reason of interrupt and the error code */
658 	reason = s5p_mfc_hw_call(dev->mfc_ops, get_int_reason, dev);
659 	err = s5p_mfc_hw_call(dev->mfc_ops, get_int_err, dev);
660 	mfc_debug(1, "Int reason: %d (err: %08x)\n", reason, err);
661 	switch (reason) {
662 	case S5P_MFC_R2H_CMD_ERR_RET:
663 		/* An error has occurred */
664 		if (ctx->state == MFCINST_RUNNING &&
665 			(s5p_mfc_hw_call(dev->mfc_ops, err_dec, err) >=
666 				dev->warn_start ||
667 				err == S5P_FIMV_ERR_NO_VALID_SEQ_HDR ||
668 				err == S5P_FIMV_ERR_INCOMPLETE_FRAME ||
669 				err == S5P_FIMV_ERR_TIMEOUT))
670 			s5p_mfc_handle_frame(ctx, reason, err);
671 		else
672 			s5p_mfc_handle_error(dev, ctx, reason, err);
673 		clear_bit(0, &dev->enter_suspend);
674 		break;
675 
676 	case S5P_MFC_R2H_CMD_SLICE_DONE_RET:
677 	case S5P_MFC_R2H_CMD_FIELD_DONE_RET:
678 	case S5P_MFC_R2H_CMD_FRAME_DONE_RET:
679 		if (ctx->c_ops->post_frame_start) {
680 			if (ctx->c_ops->post_frame_start(ctx))
681 				mfc_err("post_frame_start() failed\n");
682 
683 			if (ctx->state == MFCINST_FINISHING &&
684 						list_empty(&ctx->ref_queue)) {
685 				s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
686 				s5p_mfc_handle_stream_complete(ctx);
687 				break;
688 			}
689 			s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
690 			WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
691 			s5p_mfc_clock_off();
692 			wake_up_ctx(ctx, reason, err);
693 			s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
694 		} else {
695 			s5p_mfc_handle_frame(ctx, reason, err);
696 		}
697 		break;
698 
699 	case S5P_MFC_R2H_CMD_SEQ_DONE_RET:
700 		s5p_mfc_handle_seq_done(ctx, reason, err);
701 		break;
702 
703 	case S5P_MFC_R2H_CMD_OPEN_INSTANCE_RET:
704 		ctx->inst_no = s5p_mfc_hw_call(dev->mfc_ops, get_inst_no, dev);
705 		ctx->state = MFCINST_GOT_INST;
706 		goto irq_cleanup_hw;
707 
708 	case S5P_MFC_R2H_CMD_CLOSE_INSTANCE_RET:
709 		ctx->inst_no = MFC_NO_INSTANCE_SET;
710 		ctx->state = MFCINST_FREE;
711 		goto irq_cleanup_hw;
712 
713 	case S5P_MFC_R2H_CMD_SYS_INIT_RET:
714 	case S5P_MFC_R2H_CMD_FW_STATUS_RET:
715 	case S5P_MFC_R2H_CMD_SLEEP_RET:
716 	case S5P_MFC_R2H_CMD_WAKEUP_RET:
717 		if (ctx)
718 			clear_work_bit(ctx);
719 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
720 		clear_bit(0, &dev->hw_lock);
721 		clear_bit(0, &dev->enter_suspend);
722 		wake_up_dev(dev, reason, err);
723 		break;
724 
725 	case S5P_MFC_R2H_CMD_INIT_BUFFERS_RET:
726 		s5p_mfc_handle_init_buffers(ctx, reason, err);
727 		break;
728 
729 	case S5P_MFC_R2H_CMD_COMPLETE_SEQ_RET:
730 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
731 		ctx->int_type = reason;
732 		ctx->int_err = err;
733 		s5p_mfc_handle_stream_complete(ctx);
734 		break;
735 
736 	case S5P_MFC_R2H_CMD_DPB_FLUSH_RET:
737 		ctx->state = MFCINST_RUNNING;
738 		goto irq_cleanup_hw;
739 
740 	default:
741 		mfc_debug(2, "Unknown int reason\n");
742 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
743 	}
744 	spin_unlock(&dev->irqlock);
745 	mfc_debug_leave();
746 	return IRQ_HANDLED;
747 irq_cleanup_hw:
748 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
749 	ctx->int_type = reason;
750 	ctx->int_err = err;
751 	ctx->int_cond = 1;
752 	if (test_and_clear_bit(0, &dev->hw_lock) == 0)
753 		mfc_err("Failed to unlock hw\n");
754 
755 	s5p_mfc_clock_off();
756 	clear_work_bit(ctx);
757 	wake_up(&ctx->queue);
758 
759 	s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
760 	spin_unlock(&dev->irqlock);
761 	mfc_debug(2, "Exit via irq_cleanup_hw\n");
762 	return IRQ_HANDLED;
763 }
764 
765 /* Open an MFC node */
766 static int s5p_mfc_open(struct file *file)
767 {
768 	struct video_device *vdev = video_devdata(file);
769 	struct s5p_mfc_dev *dev = video_drvdata(file);
770 	struct s5p_mfc_ctx *ctx = NULL;
771 	struct vb2_queue *q;
772 	int ret = 0;
773 
774 	mfc_debug_enter();
775 	if (mutex_lock_interruptible(&dev->mfc_mutex))
776 		return -ERESTARTSYS;
777 	dev->num_inst++;	/* It is guarded by mfc_mutex in vfd */
778 	/* Allocate memory for context */
779 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
780 	if (!ctx) {
781 		ret = -ENOMEM;
782 		goto err_alloc;
783 	}
784 	init_waitqueue_head(&ctx->queue);
785 	v4l2_fh_init(&ctx->fh, vdev);
786 	file->private_data = &ctx->fh;
787 	v4l2_fh_add(&ctx->fh);
788 	ctx->dev = dev;
789 	INIT_LIST_HEAD(&ctx->src_queue);
790 	INIT_LIST_HEAD(&ctx->dst_queue);
791 	ctx->src_queue_cnt = 0;
792 	ctx->dst_queue_cnt = 0;
793 	/* Get context number */
794 	ctx->num = 0;
795 	while (dev->ctx[ctx->num]) {
796 		ctx->num++;
797 		if (ctx->num >= MFC_NUM_CONTEXTS) {
798 			mfc_debug(2, "Too many open contexts\n");
799 			ret = -EBUSY;
800 			goto err_no_ctx;
801 		}
802 	}
803 	/* Mark context as idle */
804 	clear_work_bit_irqsave(ctx);
805 	dev->ctx[ctx->num] = ctx;
806 	if (vdev == dev->vfd_dec) {
807 		ctx->type = MFCINST_DECODER;
808 		ctx->c_ops = get_dec_codec_ops();
809 		s5p_mfc_dec_init(ctx);
810 		/* Setup ctrl handler */
811 		ret = s5p_mfc_dec_ctrls_setup(ctx);
812 		if (ret) {
813 			mfc_err("Failed to setup mfc controls\n");
814 			goto err_ctrls_setup;
815 		}
816 	} else if (vdev == dev->vfd_enc) {
817 		ctx->type = MFCINST_ENCODER;
818 		ctx->c_ops = get_enc_codec_ops();
819 		/* only for encoder */
820 		INIT_LIST_HEAD(&ctx->ref_queue);
821 		ctx->ref_queue_cnt = 0;
822 		s5p_mfc_enc_init(ctx);
823 		/* Setup ctrl handler */
824 		ret = s5p_mfc_enc_ctrls_setup(ctx);
825 		if (ret) {
826 			mfc_err("Failed to setup mfc controls\n");
827 			goto err_ctrls_setup;
828 		}
829 	} else {
830 		ret = -ENOENT;
831 		goto err_bad_node;
832 	}
833 	ctx->fh.ctrl_handler = &ctx->ctrl_handler;
834 	ctx->inst_no = MFC_NO_INSTANCE_SET;
835 	/* Load firmware if this is the first instance */
836 	if (dev->num_inst == 1) {
837 		dev->watchdog_timer.expires = jiffies +
838 					msecs_to_jiffies(MFC_WATCHDOG_INTERVAL);
839 		add_timer(&dev->watchdog_timer);
840 		ret = s5p_mfc_power_on();
841 		if (ret < 0) {
842 			mfc_err("power on failed\n");
843 			goto err_pwr_enable;
844 		}
845 		s5p_mfc_clock_on();
846 		ret = s5p_mfc_load_firmware(dev);
847 		if (ret) {
848 			s5p_mfc_clock_off();
849 			goto err_load_fw;
850 		}
851 		/* Init the FW */
852 		ret = s5p_mfc_init_hw(dev);
853 		s5p_mfc_clock_off();
854 		if (ret)
855 			goto err_init_hw;
856 	}
857 	/* Init videobuf2 queue for CAPTURE */
858 	q = &ctx->vq_dst;
859 	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
860 	q->drv_priv = &ctx->fh;
861 	q->lock = &dev->mfc_mutex;
862 	if (vdev == dev->vfd_dec) {
863 		q->io_modes = VB2_MMAP;
864 		q->ops = get_dec_queue_ops();
865 	} else if (vdev == dev->vfd_enc) {
866 		q->io_modes = VB2_MMAP | VB2_USERPTR;
867 		q->ops = get_enc_queue_ops();
868 	} else {
869 		ret = -ENOENT;
870 		goto err_queue_init;
871 	}
872 	/*
873 	 * We'll do mostly sequential access, so sacrifice TLB efficiency for
874 	 * faster allocation.
875 	 */
876 	q->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES;
877 	q->mem_ops = &vb2_dma_contig_memops;
878 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
879 	ret = vb2_queue_init(q);
880 	if (ret) {
881 		mfc_err("Failed to initialize videobuf2 queue(capture)\n");
882 		goto err_queue_init;
883 	}
884 	/* Init videobuf2 queue for OUTPUT */
885 	q = &ctx->vq_src;
886 	q->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
887 	q->drv_priv = &ctx->fh;
888 	q->lock = &dev->mfc_mutex;
889 	if (vdev == dev->vfd_dec) {
890 		q->io_modes = VB2_MMAP;
891 		q->ops = get_dec_queue_ops();
892 	} else if (vdev == dev->vfd_enc) {
893 		q->io_modes = VB2_MMAP | VB2_USERPTR;
894 		q->ops = get_enc_queue_ops();
895 	} else {
896 		ret = -ENOENT;
897 		goto err_queue_init;
898 	}
899 	/* One way to indicate end-of-stream for MFC is to set the
900 	 * bytesused == 0. However by default videobuf2 handles bytesused
901 	 * equal to 0 as a special case and changes its value to the size
902 	 * of the buffer. Set the allow_zero_bytesused flag so that videobuf2
903 	 * will keep the value of bytesused intact.
904 	 */
905 	q->allow_zero_bytesused = 1;
906 
907 	/*
908 	 * We'll do mostly sequential access, so sacrifice TLB efficiency for
909 	 * faster allocation.
910 	 */
911 	q->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES;
912 	q->mem_ops = &vb2_dma_contig_memops;
913 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
914 	ret = vb2_queue_init(q);
915 	if (ret) {
916 		mfc_err("Failed to initialize videobuf2 queue(output)\n");
917 		goto err_queue_init;
918 	}
919 	mutex_unlock(&dev->mfc_mutex);
920 	mfc_debug_leave();
921 	return ret;
922 	/* Deinit when failure occurred */
923 err_queue_init:
924 	if (dev->num_inst == 1)
925 		s5p_mfc_deinit_hw(dev);
926 err_init_hw:
927 err_load_fw:
928 err_pwr_enable:
929 	if (dev->num_inst == 1) {
930 		if (s5p_mfc_power_off() < 0)
931 			mfc_err("power off failed\n");
932 		del_timer_sync(&dev->watchdog_timer);
933 	}
934 err_ctrls_setup:
935 	s5p_mfc_dec_ctrls_delete(ctx);
936 err_bad_node:
937 	dev->ctx[ctx->num] = NULL;
938 err_no_ctx:
939 	v4l2_fh_del(&ctx->fh);
940 	v4l2_fh_exit(&ctx->fh);
941 	kfree(ctx);
942 err_alloc:
943 	dev->num_inst--;
944 	mutex_unlock(&dev->mfc_mutex);
945 	mfc_debug_leave();
946 	return ret;
947 }
948 
949 /* Release MFC context */
950 static int s5p_mfc_release(struct file *file)
951 {
952 	struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
953 	struct s5p_mfc_dev *dev = ctx->dev;
954 
955 	/* if dev is null, do cleanup that doesn't need dev */
956 	mfc_debug_enter();
957 	if (dev)
958 		mutex_lock(&dev->mfc_mutex);
959 	vb2_queue_release(&ctx->vq_src);
960 	vb2_queue_release(&ctx->vq_dst);
961 	if (dev) {
962 		s5p_mfc_clock_on();
963 
964 		/* Mark context as idle */
965 		clear_work_bit_irqsave(ctx);
966 		/*
967 		 * If instance was initialised and not yet freed,
968 		 * return instance and free resources
969 		 */
970 		if (ctx->state != MFCINST_FREE && ctx->state != MFCINST_INIT) {
971 			mfc_debug(2, "Has to free instance\n");
972 			s5p_mfc_close_mfc_inst(dev, ctx);
973 		}
974 		/* hardware locking scheme */
975 		if (dev->curr_ctx == ctx->num)
976 			clear_bit(0, &dev->hw_lock);
977 		dev->num_inst--;
978 		if (dev->num_inst == 0) {
979 			mfc_debug(2, "Last instance\n");
980 			s5p_mfc_deinit_hw(dev);
981 			del_timer_sync(&dev->watchdog_timer);
982 			s5p_mfc_clock_off();
983 			if (s5p_mfc_power_off() < 0)
984 				mfc_err("Power off failed\n");
985 		} else {
986 			mfc_debug(2, "Shutting down clock\n");
987 			s5p_mfc_clock_off();
988 		}
989 	}
990 	if (dev)
991 		dev->ctx[ctx->num] = NULL;
992 	s5p_mfc_dec_ctrls_delete(ctx);
993 	v4l2_fh_del(&ctx->fh);
994 	/* vdev is gone if dev is null */
995 	if (dev)
996 		v4l2_fh_exit(&ctx->fh);
997 	kfree(ctx);
998 	mfc_debug_leave();
999 	if (dev)
1000 		mutex_unlock(&dev->mfc_mutex);
1001 
1002 	return 0;
1003 }
1004 
1005 /* Poll */
1006 static __poll_t s5p_mfc_poll(struct file *file,
1007 				 struct poll_table_struct *wait)
1008 {
1009 	struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
1010 	struct s5p_mfc_dev *dev = ctx->dev;
1011 	struct vb2_queue *src_q, *dst_q;
1012 	struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
1013 	__poll_t rc = 0;
1014 	unsigned long flags;
1015 
1016 	mutex_lock(&dev->mfc_mutex);
1017 	src_q = &ctx->vq_src;
1018 	dst_q = &ctx->vq_dst;
1019 	/*
1020 	 * There has to be at least one buffer queued on each queued_list, which
1021 	 * means either in driver already or waiting for driver to claim it
1022 	 * and start processing.
1023 	 */
1024 	if ((!vb2_is_streaming(src_q) || list_empty(&src_q->queued_list)) &&
1025 	    (!vb2_is_streaming(dst_q) || list_empty(&dst_q->queued_list))) {
1026 		rc = EPOLLERR;
1027 		goto end;
1028 	}
1029 	mutex_unlock(&dev->mfc_mutex);
1030 	poll_wait(file, &ctx->fh.wait, wait);
1031 	poll_wait(file, &src_q->done_wq, wait);
1032 	poll_wait(file, &dst_q->done_wq, wait);
1033 	mutex_lock(&dev->mfc_mutex);
1034 	if (v4l2_event_pending(&ctx->fh))
1035 		rc |= EPOLLPRI;
1036 	spin_lock_irqsave(&src_q->done_lock, flags);
1037 	if (!list_empty(&src_q->done_list))
1038 		src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
1039 								done_entry);
1040 	if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
1041 				|| src_vb->state == VB2_BUF_STATE_ERROR))
1042 		rc |= EPOLLOUT | EPOLLWRNORM;
1043 	spin_unlock_irqrestore(&src_q->done_lock, flags);
1044 	spin_lock_irqsave(&dst_q->done_lock, flags);
1045 	if (!list_empty(&dst_q->done_list))
1046 		dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
1047 								done_entry);
1048 	if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
1049 				|| dst_vb->state == VB2_BUF_STATE_ERROR))
1050 		rc |= EPOLLIN | EPOLLRDNORM;
1051 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
1052 end:
1053 	mutex_unlock(&dev->mfc_mutex);
1054 	return rc;
1055 }
1056 
1057 /* Mmap */
1058 static int s5p_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1059 {
1060 	struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
1061 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1062 	int ret;
1063 
1064 	if (offset < DST_QUEUE_OFF_BASE) {
1065 		mfc_debug(2, "mmapping source\n");
1066 		ret = vb2_mmap(&ctx->vq_src, vma);
1067 	} else {		/* capture */
1068 		mfc_debug(2, "mmapping destination\n");
1069 		vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
1070 		ret = vb2_mmap(&ctx->vq_dst, vma);
1071 	}
1072 	return ret;
1073 }
1074 
1075 /* v4l2 ops */
1076 static const struct v4l2_file_operations s5p_mfc_fops = {
1077 	.owner = THIS_MODULE,
1078 	.open = s5p_mfc_open,
1079 	.release = s5p_mfc_release,
1080 	.poll = s5p_mfc_poll,
1081 	.unlocked_ioctl = video_ioctl2,
1082 	.mmap = s5p_mfc_mmap,
1083 };
1084 
1085 /* DMA memory related helper functions */
1086 static void s5p_mfc_memdev_release(struct device *dev)
1087 {
1088 	of_reserved_mem_device_release(dev);
1089 }
1090 
1091 static struct device *s5p_mfc_alloc_memdev(struct device *dev,
1092 					   const char *name, unsigned int idx)
1093 {
1094 	struct device *child;
1095 	int ret;
1096 
1097 	child = devm_kzalloc(dev, sizeof(*child), GFP_KERNEL);
1098 	if (!child)
1099 		return NULL;
1100 
1101 	device_initialize(child);
1102 	dev_set_name(child, "%s:%s", dev_name(dev), name);
1103 	child->parent = dev;
1104 	child->coherent_dma_mask = dev->coherent_dma_mask;
1105 	child->dma_mask = dev->dma_mask;
1106 	child->release = s5p_mfc_memdev_release;
1107 	child->dma_parms = devm_kzalloc(dev, sizeof(*child->dma_parms),
1108 					GFP_KERNEL);
1109 	if (!child->dma_parms)
1110 		goto err;
1111 
1112 	/*
1113 	 * The memdevs are not proper OF platform devices, so in order for them
1114 	 * to be treated as valid DMA masters we need a bit of a hack to force
1115 	 * them to inherit the MFC node's DMA configuration.
1116 	 */
1117 	of_dma_configure(child, dev->of_node, true);
1118 
1119 	if (device_add(child) == 0) {
1120 		ret = of_reserved_mem_device_init_by_idx(child, dev->of_node,
1121 							 idx);
1122 		if (ret == 0)
1123 			return child;
1124 		device_del(child);
1125 	}
1126 err:
1127 	put_device(child);
1128 	return NULL;
1129 }
1130 
1131 static int s5p_mfc_configure_2port_memory(struct s5p_mfc_dev *mfc_dev)
1132 {
1133 	struct device *dev = &mfc_dev->plat_dev->dev;
1134 	void *bank2_virt;
1135 	dma_addr_t bank2_dma_addr;
1136 	unsigned long align_size = 1 << MFC_BASE_ALIGN_ORDER;
1137 	int ret;
1138 
1139 	/*
1140 	 * Create and initialize virtual devices for accessing
1141 	 * reserved memory regions.
1142 	 */
1143 	mfc_dev->mem_dev[BANK_L_CTX] = s5p_mfc_alloc_memdev(dev, "left",
1144 							   BANK_L_CTX);
1145 	if (!mfc_dev->mem_dev[BANK_L_CTX])
1146 		return -ENODEV;
1147 	mfc_dev->mem_dev[BANK_R_CTX] = s5p_mfc_alloc_memdev(dev, "right",
1148 							   BANK_R_CTX);
1149 	if (!mfc_dev->mem_dev[BANK_R_CTX]) {
1150 		device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1151 		return -ENODEV;
1152 	}
1153 
1154 	/* Allocate memory for firmware and initialize both banks addresses */
1155 	ret = s5p_mfc_alloc_firmware(mfc_dev);
1156 	if (ret) {
1157 		device_unregister(mfc_dev->mem_dev[BANK_R_CTX]);
1158 		device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1159 		return ret;
1160 	}
1161 
1162 	mfc_dev->dma_base[BANK_L_CTX] = mfc_dev->fw_buf.dma;
1163 
1164 	bank2_virt = dma_alloc_coherent(mfc_dev->mem_dev[BANK_R_CTX],
1165 				       align_size, &bank2_dma_addr, GFP_KERNEL);
1166 	if (!bank2_virt) {
1167 		s5p_mfc_release_firmware(mfc_dev);
1168 		device_unregister(mfc_dev->mem_dev[BANK_R_CTX]);
1169 		device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1170 		return -ENOMEM;
1171 	}
1172 
1173 	/* Valid buffers passed to MFC encoder with LAST_FRAME command
1174 	 * should not have address of bank2 - MFC will treat it as a null frame.
1175 	 * To avoid such situation we set bank2 address below the pool address.
1176 	 */
1177 	mfc_dev->dma_base[BANK_R_CTX] = bank2_dma_addr - align_size;
1178 
1179 	dma_free_coherent(mfc_dev->mem_dev[BANK_R_CTX], align_size, bank2_virt,
1180 			  bank2_dma_addr);
1181 
1182 	vb2_dma_contig_set_max_seg_size(mfc_dev->mem_dev[BANK_L_CTX],
1183 					DMA_BIT_MASK(32));
1184 	vb2_dma_contig_set_max_seg_size(mfc_dev->mem_dev[BANK_R_CTX],
1185 					DMA_BIT_MASK(32));
1186 
1187 	return 0;
1188 }
1189 
1190 static void s5p_mfc_unconfigure_2port_memory(struct s5p_mfc_dev *mfc_dev)
1191 {
1192 	device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1193 	device_unregister(mfc_dev->mem_dev[BANK_R_CTX]);
1194 	vb2_dma_contig_clear_max_seg_size(mfc_dev->mem_dev[BANK_L_CTX]);
1195 	vb2_dma_contig_clear_max_seg_size(mfc_dev->mem_dev[BANK_R_CTX]);
1196 }
1197 
1198 static int s5p_mfc_configure_common_memory(struct s5p_mfc_dev *mfc_dev)
1199 {
1200 	struct device *dev = &mfc_dev->plat_dev->dev;
1201 	unsigned long mem_size = SZ_4M;
1202 
1203 	if (IS_ENABLED(CONFIG_DMA_CMA) || exynos_is_iommu_available(dev))
1204 		mem_size = SZ_8M;
1205 
1206 	if (mfc_mem_size)
1207 		mem_size = memparse(mfc_mem_size, NULL);
1208 
1209 	mfc_dev->mem_bitmap = bitmap_zalloc(mem_size >> PAGE_SHIFT, GFP_KERNEL);
1210 	if (!mfc_dev->mem_bitmap)
1211 		return -ENOMEM;
1212 
1213 	mfc_dev->mem_virt = dma_alloc_coherent(dev, mem_size,
1214 					       &mfc_dev->mem_base, GFP_KERNEL);
1215 	if (!mfc_dev->mem_virt) {
1216 		bitmap_free(mfc_dev->mem_bitmap);
1217 		dev_err(dev, "failed to preallocate %ld MiB for the firmware and context buffers\n",
1218 			(mem_size / SZ_1M));
1219 		return -ENOMEM;
1220 	}
1221 	mfc_dev->mem_size = mem_size;
1222 	mfc_dev->dma_base[BANK_L_CTX] = mfc_dev->mem_base;
1223 	mfc_dev->dma_base[BANK_R_CTX] = mfc_dev->mem_base;
1224 
1225 	/*
1226 	 * MFC hardware cannot handle 0 as a base address, so mark first 128K
1227 	 * as used (to keep required base alignment) and adjust base address
1228 	 */
1229 	if (mfc_dev->mem_base == (dma_addr_t)0) {
1230 		unsigned int offset = 1 << MFC_BASE_ALIGN_ORDER;
1231 
1232 		bitmap_set(mfc_dev->mem_bitmap, 0, offset >> PAGE_SHIFT);
1233 		mfc_dev->dma_base[BANK_L_CTX] += offset;
1234 		mfc_dev->dma_base[BANK_R_CTX] += offset;
1235 	}
1236 
1237 	/* Firmware allocation cannot fail in this case */
1238 	s5p_mfc_alloc_firmware(mfc_dev);
1239 
1240 	mfc_dev->mem_dev[BANK_L_CTX] = mfc_dev->mem_dev[BANK_R_CTX] = dev;
1241 	vb2_dma_contig_set_max_seg_size(dev, DMA_BIT_MASK(32));
1242 
1243 	dev_info(dev, "preallocated %ld MiB buffer for the firmware and context buffers\n",
1244 		 (mem_size / SZ_1M));
1245 
1246 	return 0;
1247 }
1248 
1249 static void s5p_mfc_unconfigure_common_memory(struct s5p_mfc_dev *mfc_dev)
1250 {
1251 	struct device *dev = &mfc_dev->plat_dev->dev;
1252 
1253 	dma_free_coherent(dev, mfc_dev->mem_size, mfc_dev->mem_virt,
1254 			  mfc_dev->mem_base);
1255 	bitmap_free(mfc_dev->mem_bitmap);
1256 	vb2_dma_contig_clear_max_seg_size(dev);
1257 }
1258 
1259 static int s5p_mfc_configure_dma_memory(struct s5p_mfc_dev *mfc_dev)
1260 {
1261 	struct device *dev = &mfc_dev->plat_dev->dev;
1262 
1263 	if (exynos_is_iommu_available(dev) || !IS_TWOPORT(mfc_dev))
1264 		return s5p_mfc_configure_common_memory(mfc_dev);
1265 	else
1266 		return s5p_mfc_configure_2port_memory(mfc_dev);
1267 }
1268 
1269 static void s5p_mfc_unconfigure_dma_memory(struct s5p_mfc_dev *mfc_dev)
1270 {
1271 	struct device *dev = &mfc_dev->plat_dev->dev;
1272 
1273 	s5p_mfc_release_firmware(mfc_dev);
1274 	if (exynos_is_iommu_available(dev) || !IS_TWOPORT(mfc_dev))
1275 		s5p_mfc_unconfigure_common_memory(mfc_dev);
1276 	else
1277 		s5p_mfc_unconfigure_2port_memory(mfc_dev);
1278 }
1279 
1280 /* MFC probe function */
1281 static int s5p_mfc_probe(struct platform_device *pdev)
1282 {
1283 	struct s5p_mfc_dev *dev;
1284 	struct video_device *vfd;
1285 	int ret;
1286 
1287 	pr_debug("%s++\n", __func__);
1288 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1289 	if (!dev)
1290 		return -ENOMEM;
1291 
1292 	spin_lock_init(&dev->irqlock);
1293 	spin_lock_init(&dev->condlock);
1294 	dev->plat_dev = pdev;
1295 	if (!dev->plat_dev) {
1296 		mfc_err("No platform data specified\n");
1297 		return -ENODEV;
1298 	}
1299 
1300 	dev->variant = of_device_get_match_data(&pdev->dev);
1301 	if (!dev->variant) {
1302 		dev_err(&pdev->dev, "Failed to get device MFC hardware variant information\n");
1303 		return -ENOENT;
1304 	}
1305 
1306 	dev->regs_base = devm_platform_ioremap_resource(pdev, 0);
1307 	if (IS_ERR(dev->regs_base))
1308 		return PTR_ERR(dev->regs_base);
1309 
1310 	ret = platform_get_irq(pdev, 0);
1311 	if (ret < 0)
1312 		return ret;
1313 	dev->irq = ret;
1314 	ret = devm_request_irq(&pdev->dev, dev->irq, s5p_mfc_irq,
1315 					0, pdev->name, dev);
1316 	if (ret) {
1317 		dev_err(&pdev->dev, "Failed to install irq (%d)\n", ret);
1318 		return ret;
1319 	}
1320 
1321 	ret = s5p_mfc_configure_dma_memory(dev);
1322 	if (ret < 0) {
1323 		dev_err(&pdev->dev, "failed to configure DMA memory\n");
1324 		return ret;
1325 	}
1326 
1327 	ret = s5p_mfc_init_pm(dev);
1328 	if (ret < 0) {
1329 		dev_err(&pdev->dev, "failed to get mfc clock source\n");
1330 		goto err_dma;
1331 	}
1332 
1333 	/*
1334 	 * Load fails if fs isn't mounted. Try loading anyway.
1335 	 * _open() will load it, it fails now. Ignore failure.
1336 	 */
1337 	s5p_mfc_load_firmware(dev);
1338 
1339 	mutex_init(&dev->mfc_mutex);
1340 	init_waitqueue_head(&dev->queue);
1341 	dev->hw_lock = 0;
1342 	INIT_WORK(&dev->watchdog_work, s5p_mfc_watchdog_worker);
1343 	atomic_set(&dev->watchdog_cnt, 0);
1344 	timer_setup(&dev->watchdog_timer, s5p_mfc_watchdog, 0);
1345 
1346 	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
1347 	if (ret)
1348 		goto err_v4l2_dev_reg;
1349 
1350 	/* decoder */
1351 	vfd = video_device_alloc();
1352 	if (!vfd) {
1353 		v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
1354 		ret = -ENOMEM;
1355 		goto err_dec_alloc;
1356 	}
1357 	vfd->fops	= &s5p_mfc_fops;
1358 	vfd->ioctl_ops	= get_dec_v4l2_ioctl_ops();
1359 	vfd->release	= video_device_release;
1360 	vfd->lock	= &dev->mfc_mutex;
1361 	vfd->v4l2_dev	= &dev->v4l2_dev;
1362 	vfd->vfl_dir	= VFL_DIR_M2M;
1363 	vfd->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1364 	set_bit(V4L2_FL_QUIRK_INVERTED_CROP, &vfd->flags);
1365 	snprintf(vfd->name, sizeof(vfd->name), "%s", S5P_MFC_DEC_NAME);
1366 	dev->vfd_dec	= vfd;
1367 	video_set_drvdata(vfd, dev);
1368 
1369 	/* encoder */
1370 	vfd = video_device_alloc();
1371 	if (!vfd) {
1372 		v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
1373 		ret = -ENOMEM;
1374 		goto err_enc_alloc;
1375 	}
1376 	vfd->fops	= &s5p_mfc_fops;
1377 	vfd->ioctl_ops	= get_enc_v4l2_ioctl_ops();
1378 	vfd->release	= video_device_release;
1379 	vfd->lock	= &dev->mfc_mutex;
1380 	vfd->v4l2_dev	= &dev->v4l2_dev;
1381 	vfd->vfl_dir	= VFL_DIR_M2M;
1382 	vfd->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1383 	snprintf(vfd->name, sizeof(vfd->name), "%s", S5P_MFC_ENC_NAME);
1384 	dev->vfd_enc	= vfd;
1385 	video_set_drvdata(vfd, dev);
1386 	platform_set_drvdata(pdev, dev);
1387 
1388 	/* Initialize HW ops and commands based on MFC version */
1389 	s5p_mfc_init_hw_ops(dev);
1390 	s5p_mfc_init_hw_cmds(dev);
1391 	s5p_mfc_init_regs(dev);
1392 
1393 	/* Register decoder and encoder */
1394 	ret = video_register_device(dev->vfd_dec, VFL_TYPE_VIDEO, 0);
1395 	if (ret) {
1396 		v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
1397 		goto err_dec_reg;
1398 	}
1399 	v4l2_info(&dev->v4l2_dev,
1400 		  "decoder registered as /dev/video%d\n", dev->vfd_dec->num);
1401 
1402 	ret = video_register_device(dev->vfd_enc, VFL_TYPE_VIDEO, 0);
1403 	if (ret) {
1404 		v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
1405 		goto err_enc_reg;
1406 	}
1407 	v4l2_info(&dev->v4l2_dev,
1408 		  "encoder registered as /dev/video%d\n", dev->vfd_enc->num);
1409 
1410 	pr_debug("%s--\n", __func__);
1411 	return 0;
1412 
1413 /* Deinit MFC if probe had failed */
1414 err_enc_reg:
1415 	video_unregister_device(dev->vfd_dec);
1416 	dev->vfd_dec = NULL;
1417 err_dec_reg:
1418 	video_device_release(dev->vfd_enc);
1419 err_enc_alloc:
1420 	video_device_release(dev->vfd_dec);
1421 err_dec_alloc:
1422 	v4l2_device_unregister(&dev->v4l2_dev);
1423 err_v4l2_dev_reg:
1424 	s5p_mfc_final_pm(dev);
1425 err_dma:
1426 	s5p_mfc_unconfigure_dma_memory(dev);
1427 
1428 	pr_debug("%s-- with error\n", __func__);
1429 	return ret;
1430 
1431 }
1432 
1433 /* Remove the driver */
1434 static void s5p_mfc_remove(struct platform_device *pdev)
1435 {
1436 	struct s5p_mfc_dev *dev = platform_get_drvdata(pdev);
1437 	struct s5p_mfc_ctx *ctx;
1438 	int i;
1439 
1440 	v4l2_info(&dev->v4l2_dev, "Removing %s\n", pdev->name);
1441 
1442 	/*
1443 	 * Clear ctx dev pointer to avoid races between s5p_mfc_remove()
1444 	 * and s5p_mfc_release() and s5p_mfc_release() accessing ctx->dev
1445 	 * after s5p_mfc_remove() is run during unbind.
1446 	 */
1447 	mutex_lock(&dev->mfc_mutex);
1448 	for (i = 0; i < MFC_NUM_CONTEXTS; i++) {
1449 		ctx = dev->ctx[i];
1450 		if (!ctx)
1451 			continue;
1452 		/* clear ctx->dev */
1453 		ctx->dev = NULL;
1454 	}
1455 	mutex_unlock(&dev->mfc_mutex);
1456 
1457 	del_timer_sync(&dev->watchdog_timer);
1458 	flush_work(&dev->watchdog_work);
1459 
1460 	video_unregister_device(dev->vfd_enc);
1461 	video_unregister_device(dev->vfd_dec);
1462 	v4l2_device_unregister(&dev->v4l2_dev);
1463 	s5p_mfc_unconfigure_dma_memory(dev);
1464 
1465 	s5p_mfc_final_pm(dev);
1466 }
1467 
1468 #ifdef CONFIG_PM_SLEEP
1469 
1470 static int s5p_mfc_suspend(struct device *dev)
1471 {
1472 	struct s5p_mfc_dev *m_dev = dev_get_drvdata(dev);
1473 	int ret;
1474 
1475 	if (m_dev->num_inst == 0)
1476 		return 0;
1477 
1478 	if (test_and_set_bit(0, &m_dev->enter_suspend) != 0) {
1479 		mfc_err("Error: going to suspend for a second time\n");
1480 		return -EIO;
1481 	}
1482 
1483 	/* Check if we're processing then wait if it necessary. */
1484 	while (test_and_set_bit(0, &m_dev->hw_lock) != 0) {
1485 		/* Try and lock the HW */
1486 		/* Wait on the interrupt waitqueue */
1487 		ret = wait_event_interruptible_timeout(m_dev->queue,
1488 			m_dev->int_cond, msecs_to_jiffies(MFC_INT_TIMEOUT));
1489 		if (ret == 0) {
1490 			mfc_err("Waiting for hardware to finish timed out\n");
1491 			clear_bit(0, &m_dev->enter_suspend);
1492 			return -EIO;
1493 		}
1494 	}
1495 
1496 	ret = s5p_mfc_sleep(m_dev);
1497 	if (ret) {
1498 		clear_bit(0, &m_dev->enter_suspend);
1499 		clear_bit(0, &m_dev->hw_lock);
1500 	}
1501 	return ret;
1502 }
1503 
1504 static int s5p_mfc_resume(struct device *dev)
1505 {
1506 	struct s5p_mfc_dev *m_dev = dev_get_drvdata(dev);
1507 
1508 	if (m_dev->num_inst == 0)
1509 		return 0;
1510 	return s5p_mfc_wakeup(m_dev);
1511 }
1512 #endif
1513 
1514 /* Power management */
1515 static const struct dev_pm_ops s5p_mfc_pm_ops = {
1516 	SET_SYSTEM_SLEEP_PM_OPS(s5p_mfc_suspend, s5p_mfc_resume)
1517 };
1518 
1519 static struct s5p_mfc_buf_size_v5 mfc_buf_size_v5 = {
1520 	.h264_ctx	= MFC_H264_CTX_BUF_SIZE,
1521 	.non_h264_ctx	= MFC_CTX_BUF_SIZE,
1522 	.dsc		= DESC_BUF_SIZE,
1523 	.shm		= SHARED_BUF_SIZE,
1524 };
1525 
1526 static struct s5p_mfc_buf_size buf_size_v5 = {
1527 	.fw	= MAX_FW_SIZE,
1528 	.cpb	= MAX_CPB_SIZE,
1529 	.priv	= &mfc_buf_size_v5,
1530 };
1531 
1532 static struct s5p_mfc_variant mfc_drvdata_v5 = {
1533 	.version	= MFC_VERSION,
1534 	.version_bit	= MFC_V5_BIT,
1535 	.port_num	= MFC_NUM_PORTS,
1536 	.buf_size	= &buf_size_v5,
1537 	.fw_name[0]	= "s5p-mfc.fw",
1538 	.clk_names	= {"mfc", "sclk_mfc"},
1539 	.num_clocks	= 2,
1540 	.use_clock_gating = true,
1541 };
1542 
1543 static struct s5p_mfc_buf_size_v6 mfc_buf_size_v6 = {
1544 	.dev_ctx	= MFC_CTX_BUF_SIZE_V6,
1545 	.h264_dec_ctx	= MFC_H264_DEC_CTX_BUF_SIZE_V6,
1546 	.other_dec_ctx	= MFC_OTHER_DEC_CTX_BUF_SIZE_V6,
1547 	.h264_enc_ctx	= MFC_H264_ENC_CTX_BUF_SIZE_V6,
1548 	.other_enc_ctx	= MFC_OTHER_ENC_CTX_BUF_SIZE_V6,
1549 };
1550 
1551 static struct s5p_mfc_buf_size buf_size_v6 = {
1552 	.fw	= MAX_FW_SIZE_V6,
1553 	.cpb	= MAX_CPB_SIZE_V6,
1554 	.priv	= &mfc_buf_size_v6,
1555 };
1556 
1557 static struct s5p_mfc_variant mfc_drvdata_v6 = {
1558 	.version	= MFC_VERSION_V6,
1559 	.version_bit	= MFC_V6_BIT,
1560 	.port_num	= MFC_NUM_PORTS_V6,
1561 	.buf_size	= &buf_size_v6,
1562 	.fw_name[0]     = "s5p-mfc-v6.fw",
1563 	/*
1564 	 * v6-v2 firmware contains bug fixes and interface change
1565 	 * for init buffer command
1566 	 */
1567 	.fw_name[1]     = "s5p-mfc-v6-v2.fw",
1568 	.clk_names	= {"mfc"},
1569 	.num_clocks	= 1,
1570 };
1571 
1572 static struct s5p_mfc_buf_size_v6 mfc_buf_size_v7 = {
1573 	.dev_ctx	= MFC_CTX_BUF_SIZE_V7,
1574 	.h264_dec_ctx	= MFC_H264_DEC_CTX_BUF_SIZE_V7,
1575 	.other_dec_ctx	= MFC_OTHER_DEC_CTX_BUF_SIZE_V7,
1576 	.h264_enc_ctx	= MFC_H264_ENC_CTX_BUF_SIZE_V7,
1577 	.other_enc_ctx	= MFC_OTHER_ENC_CTX_BUF_SIZE_V7,
1578 };
1579 
1580 static struct s5p_mfc_buf_size buf_size_v7 = {
1581 	.fw	= MAX_FW_SIZE_V7,
1582 	.cpb	= MAX_CPB_SIZE_V7,
1583 	.priv	= &mfc_buf_size_v7,
1584 };
1585 
1586 static struct s5p_mfc_variant mfc_drvdata_v7 = {
1587 	.version	= MFC_VERSION_V7,
1588 	.version_bit	= MFC_V7_BIT,
1589 	.port_num	= MFC_NUM_PORTS_V7,
1590 	.buf_size	= &buf_size_v7,
1591 	.fw_name[0]     = "s5p-mfc-v7.fw",
1592 	.clk_names	= {"mfc"},
1593 	.num_clocks	= 1,
1594 };
1595 
1596 static struct s5p_mfc_variant mfc_drvdata_v7_3250 = {
1597 	.version        = MFC_VERSION_V7,
1598 	.version_bit    = MFC_V7_BIT,
1599 	.port_num       = MFC_NUM_PORTS_V7,
1600 	.buf_size       = &buf_size_v7,
1601 	.fw_name[0]     = "s5p-mfc-v7.fw",
1602 	.clk_names      = {"mfc", "sclk_mfc"},
1603 	.num_clocks     = 2,
1604 };
1605 
1606 static struct s5p_mfc_buf_size_v6 mfc_buf_size_v8 = {
1607 	.dev_ctx	= MFC_CTX_BUF_SIZE_V8,
1608 	.h264_dec_ctx	= MFC_H264_DEC_CTX_BUF_SIZE_V8,
1609 	.other_dec_ctx	= MFC_OTHER_DEC_CTX_BUF_SIZE_V8,
1610 	.h264_enc_ctx	= MFC_H264_ENC_CTX_BUF_SIZE_V8,
1611 	.other_enc_ctx	= MFC_OTHER_ENC_CTX_BUF_SIZE_V8,
1612 };
1613 
1614 static struct s5p_mfc_buf_size buf_size_v8 = {
1615 	.fw	= MAX_FW_SIZE_V8,
1616 	.cpb	= MAX_CPB_SIZE_V8,
1617 	.priv	= &mfc_buf_size_v8,
1618 };
1619 
1620 static struct s5p_mfc_variant mfc_drvdata_v8 = {
1621 	.version	= MFC_VERSION_V8,
1622 	.version_bit	= MFC_V8_BIT,
1623 	.port_num	= MFC_NUM_PORTS_V8,
1624 	.buf_size	= &buf_size_v8,
1625 	.fw_name[0]     = "s5p-mfc-v8.fw",
1626 	.clk_names	= {"mfc"},
1627 	.num_clocks	= 1,
1628 };
1629 
1630 static struct s5p_mfc_variant mfc_drvdata_v8_5433 = {
1631 	.version	= MFC_VERSION_V8,
1632 	.version_bit	= MFC_V8_BIT,
1633 	.port_num	= MFC_NUM_PORTS_V8,
1634 	.buf_size	= &buf_size_v8,
1635 	.fw_name[0]     = "s5p-mfc-v8.fw",
1636 	.clk_names	= {"pclk", "aclk", "aclk_xiu"},
1637 	.num_clocks	= 3,
1638 };
1639 
1640 static struct s5p_mfc_buf_size_v6 mfc_buf_size_v10 = {
1641 	.dev_ctx        = MFC_CTX_BUF_SIZE_V10,
1642 	.h264_dec_ctx   = MFC_H264_DEC_CTX_BUF_SIZE_V10,
1643 	.other_dec_ctx  = MFC_OTHER_DEC_CTX_BUF_SIZE_V10,
1644 	.h264_enc_ctx   = MFC_H264_ENC_CTX_BUF_SIZE_V10,
1645 	.hevc_enc_ctx   = MFC_HEVC_ENC_CTX_BUF_SIZE_V10,
1646 	.other_enc_ctx  = MFC_OTHER_ENC_CTX_BUF_SIZE_V10,
1647 };
1648 
1649 static struct s5p_mfc_buf_size buf_size_v10 = {
1650 	.fw     = MAX_FW_SIZE_V10,
1651 	.cpb    = MAX_CPB_SIZE_V10,
1652 	.priv   = &mfc_buf_size_v10,
1653 };
1654 
1655 static struct s5p_mfc_variant mfc_drvdata_v10 = {
1656 	.version        = MFC_VERSION_V10,
1657 	.version_bit    = MFC_V10_BIT,
1658 	.port_num       = MFC_NUM_PORTS_V10,
1659 	.buf_size       = &buf_size_v10,
1660 	.fw_name[0]     = "s5p-mfc-v10.fw",
1661 };
1662 
1663 static const struct of_device_id exynos_mfc_match[] = {
1664 	{
1665 		.compatible = "samsung,mfc-v5",
1666 		.data = &mfc_drvdata_v5,
1667 	}, {
1668 		.compatible = "samsung,mfc-v6",
1669 		.data = &mfc_drvdata_v6,
1670 	}, {
1671 		.compatible = "samsung,mfc-v7",
1672 		.data = &mfc_drvdata_v7,
1673 	}, {
1674 		.compatible = "samsung,exynos3250-mfc",
1675 		.data = &mfc_drvdata_v7_3250,
1676 	}, {
1677 		.compatible = "samsung,mfc-v8",
1678 		.data = &mfc_drvdata_v8,
1679 	}, {
1680 		.compatible = "samsung,exynos5433-mfc",
1681 		.data = &mfc_drvdata_v8_5433,
1682 	}, {
1683 		.compatible = "samsung,mfc-v10",
1684 		.data = &mfc_drvdata_v10,
1685 	},
1686 	{},
1687 };
1688 MODULE_DEVICE_TABLE(of, exynos_mfc_match);
1689 
1690 static struct platform_driver s5p_mfc_driver = {
1691 	.probe		= s5p_mfc_probe,
1692 	.remove_new	= s5p_mfc_remove,
1693 	.driver	= {
1694 		.name	= S5P_MFC_NAME,
1695 		.pm	= &s5p_mfc_pm_ops,
1696 		.of_match_table = exynos_mfc_match,
1697 	},
1698 };
1699 
1700 module_platform_driver(s5p_mfc_driver);
1701 
1702 MODULE_LICENSE("GPL");
1703 MODULE_AUTHOR("Kamil Debski <k.debski@samsung.com>");
1704 MODULE_DESCRIPTION("Samsung S5P Multi Format Codec V4L2 driver");
1705 
1706