xref: /linux/drivers/media/rc/rc-main.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 114 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 114 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 125 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 100 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 110 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 110 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 110 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 125 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffffff, .repeat_period = 100 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 100 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 114 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 114 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 114 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 125 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 	[RC_PROTO_IMON] = { .name = "imon",
72 		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
74 		.scancode_bits = 0x00000fff, .repeat_period = 114 },
75 	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
76 		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
77 	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
78 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
79 	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
80 };
81 
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list);
84 static DEFINE_SPINLOCK(rc_map_lock);
85 static struct led_trigger *led_feedback;
86 
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida);
89 
90 static struct rc_map_list *seek_rc_map(const char *name)
91 {
92 	struct rc_map_list *map = NULL;
93 
94 	spin_lock(&rc_map_lock);
95 	list_for_each_entry(map, &rc_map_list, list) {
96 		if (!strcmp(name, map->map.name)) {
97 			spin_unlock(&rc_map_lock);
98 			return map;
99 		}
100 	}
101 	spin_unlock(&rc_map_lock);
102 
103 	return NULL;
104 }
105 
106 struct rc_map *rc_map_get(const char *name)
107 {
108 
109 	struct rc_map_list *map;
110 
111 	map = seek_rc_map(name);
112 #ifdef CONFIG_MODULES
113 	if (!map) {
114 		int rc = request_module("%s", name);
115 		if (rc < 0) {
116 			pr_err("Couldn't load IR keymap %s\n", name);
117 			return NULL;
118 		}
119 		msleep(20);	/* Give some time for IR to register */
120 
121 		map = seek_rc_map(name);
122 	}
123 #endif
124 	if (!map) {
125 		pr_err("IR keymap %s not found\n", name);
126 		return NULL;
127 	}
128 
129 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130 
131 	return &map->map;
132 }
133 EXPORT_SYMBOL_GPL(rc_map_get);
134 
135 int rc_map_register(struct rc_map_list *map)
136 {
137 	spin_lock(&rc_map_lock);
138 	list_add_tail(&map->list, &rc_map_list);
139 	spin_unlock(&rc_map_lock);
140 	return 0;
141 }
142 EXPORT_SYMBOL_GPL(rc_map_register);
143 
144 void rc_map_unregister(struct rc_map_list *map)
145 {
146 	spin_lock(&rc_map_lock);
147 	list_del(&map->list);
148 	spin_unlock(&rc_map_lock);
149 }
150 EXPORT_SYMBOL_GPL(rc_map_unregister);
151 
152 
153 static struct rc_map_table empty[] = {
154 	{ 0x2a, KEY_COFFEE },
155 };
156 
157 static struct rc_map_list empty_map = {
158 	.map = {
159 		.scan     = empty,
160 		.size     = ARRAY_SIZE(empty),
161 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
162 		.name     = RC_MAP_EMPTY,
163 	}
164 };
165 
166 /**
167  * ir_create_table() - initializes a scancode table
168  * @dev:	the rc_dev device
169  * @rc_map:	the rc_map to initialize
170  * @name:	name to assign to the table
171  * @rc_proto:	ir type to assign to the new table
172  * @size:	initial size of the table
173  *
174  * This routine will initialize the rc_map and will allocate
175  * memory to hold at least the specified number of elements.
176  *
177  * return:	zero on success or a negative error code
178  */
179 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
180 			   const char *name, u64 rc_proto, size_t size)
181 {
182 	rc_map->name = kstrdup(name, GFP_KERNEL);
183 	if (!rc_map->name)
184 		return -ENOMEM;
185 	rc_map->rc_proto = rc_proto;
186 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
187 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
188 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
189 	if (!rc_map->scan) {
190 		kfree(rc_map->name);
191 		rc_map->name = NULL;
192 		return -ENOMEM;
193 	}
194 
195 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
196 		rc_map->size, rc_map->alloc);
197 	return 0;
198 }
199 
200 /**
201  * ir_free_table() - frees memory allocated by a scancode table
202  * @rc_map:	the table whose mappings need to be freed
203  *
204  * This routine will free memory alloctaed for key mappings used by given
205  * scancode table.
206  */
207 static void ir_free_table(struct rc_map *rc_map)
208 {
209 	rc_map->size = 0;
210 	kfree(rc_map->name);
211 	rc_map->name = NULL;
212 	kfree(rc_map->scan);
213 	rc_map->scan = NULL;
214 }
215 
216 /**
217  * ir_resize_table() - resizes a scancode table if necessary
218  * @dev:	the rc_dev device
219  * @rc_map:	the rc_map to resize
220  * @gfp_flags:	gfp flags to use when allocating memory
221  *
222  * This routine will shrink the rc_map if it has lots of
223  * unused entries and grow it if it is full.
224  *
225  * return:	zero on success or a negative error code
226  */
227 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
228 			   gfp_t gfp_flags)
229 {
230 	unsigned int oldalloc = rc_map->alloc;
231 	unsigned int newalloc = oldalloc;
232 	struct rc_map_table *oldscan = rc_map->scan;
233 	struct rc_map_table *newscan;
234 
235 	if (rc_map->size == rc_map->len) {
236 		/* All entries in use -> grow keytable */
237 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
238 			return -ENOMEM;
239 
240 		newalloc *= 2;
241 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
242 	}
243 
244 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
245 		/* Less than 1/3 of entries in use -> shrink keytable */
246 		newalloc /= 2;
247 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
248 	}
249 
250 	if (newalloc == oldalloc)
251 		return 0;
252 
253 	newscan = kmalloc(newalloc, gfp_flags);
254 	if (!newscan)
255 		return -ENOMEM;
256 
257 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
258 	rc_map->scan = newscan;
259 	rc_map->alloc = newalloc;
260 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
261 	kfree(oldscan);
262 	return 0;
263 }
264 
265 /**
266  * ir_update_mapping() - set a keycode in the scancode->keycode table
267  * @dev:	the struct rc_dev device descriptor
268  * @rc_map:	scancode table to be adjusted
269  * @index:	index of the mapping that needs to be updated
270  * @new_keycode: the desired keycode
271  *
272  * This routine is used to update scancode->keycode mapping at given
273  * position.
274  *
275  * return:	previous keycode assigned to the mapping
276  *
277  */
278 static unsigned int ir_update_mapping(struct rc_dev *dev,
279 				      struct rc_map *rc_map,
280 				      unsigned int index,
281 				      unsigned int new_keycode)
282 {
283 	int old_keycode = rc_map->scan[index].keycode;
284 	int i;
285 
286 	/* Did the user wish to remove the mapping? */
287 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
288 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
289 			index, rc_map->scan[index].scancode);
290 		rc_map->len--;
291 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
292 			(rc_map->len - index) * sizeof(struct rc_map_table));
293 	} else {
294 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
295 			index,
296 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
297 			rc_map->scan[index].scancode, new_keycode);
298 		rc_map->scan[index].keycode = new_keycode;
299 		__set_bit(new_keycode, dev->input_dev->keybit);
300 	}
301 
302 	if (old_keycode != KEY_RESERVED) {
303 		/* A previous mapping was updated... */
304 		__clear_bit(old_keycode, dev->input_dev->keybit);
305 		/* ... but another scancode might use the same keycode */
306 		for (i = 0; i < rc_map->len; i++) {
307 			if (rc_map->scan[i].keycode == old_keycode) {
308 				__set_bit(old_keycode, dev->input_dev->keybit);
309 				break;
310 			}
311 		}
312 
313 		/* Possibly shrink the keytable, failure is not a problem */
314 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
315 	}
316 
317 	return old_keycode;
318 }
319 
320 /**
321  * ir_establish_scancode() - set a keycode in the scancode->keycode table
322  * @dev:	the struct rc_dev device descriptor
323  * @rc_map:	scancode table to be searched
324  * @scancode:	the desired scancode
325  * @resize:	controls whether we allowed to resize the table to
326  *		accommodate not yet present scancodes
327  *
328  * This routine is used to locate given scancode in rc_map.
329  * If scancode is not yet present the routine will allocate a new slot
330  * for it.
331  *
332  * return:	index of the mapping containing scancode in question
333  *		or -1U in case of failure.
334  */
335 static unsigned int ir_establish_scancode(struct rc_dev *dev,
336 					  struct rc_map *rc_map,
337 					  unsigned int scancode,
338 					  bool resize)
339 {
340 	unsigned int i;
341 
342 	/*
343 	 * Unfortunately, some hardware-based IR decoders don't provide
344 	 * all bits for the complete IR code. In general, they provide only
345 	 * the command part of the IR code. Yet, as it is possible to replace
346 	 * the provided IR with another one, it is needed to allow loading
347 	 * IR tables from other remotes. So, we support specifying a mask to
348 	 * indicate the valid bits of the scancodes.
349 	 */
350 	if (dev->scancode_mask)
351 		scancode &= dev->scancode_mask;
352 
353 	/* First check if we already have a mapping for this ir command */
354 	for (i = 0; i < rc_map->len; i++) {
355 		if (rc_map->scan[i].scancode == scancode)
356 			return i;
357 
358 		/* Keytable is sorted from lowest to highest scancode */
359 		if (rc_map->scan[i].scancode >= scancode)
360 			break;
361 	}
362 
363 	/* No previous mapping found, we might need to grow the table */
364 	if (rc_map->size == rc_map->len) {
365 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
366 			return -1U;
367 	}
368 
369 	/* i is the proper index to insert our new keycode */
370 	if (i < rc_map->len)
371 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
372 			(rc_map->len - i) * sizeof(struct rc_map_table));
373 	rc_map->scan[i].scancode = scancode;
374 	rc_map->scan[i].keycode = KEY_RESERVED;
375 	rc_map->len++;
376 
377 	return i;
378 }
379 
380 /**
381  * ir_setkeycode() - set a keycode in the scancode->keycode table
382  * @idev:	the struct input_dev device descriptor
383  * @ke:		Input keymap entry
384  * @old_keycode: result
385  *
386  * This routine is used to handle evdev EVIOCSKEY ioctl.
387  *
388  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
389  */
390 static int ir_setkeycode(struct input_dev *idev,
391 			 const struct input_keymap_entry *ke,
392 			 unsigned int *old_keycode)
393 {
394 	struct rc_dev *rdev = input_get_drvdata(idev);
395 	struct rc_map *rc_map = &rdev->rc_map;
396 	unsigned int index;
397 	unsigned int scancode;
398 	int retval = 0;
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&rc_map->lock, flags);
402 
403 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
404 		index = ke->index;
405 		if (index >= rc_map->len) {
406 			retval = -EINVAL;
407 			goto out;
408 		}
409 	} else {
410 		retval = input_scancode_to_scalar(ke, &scancode);
411 		if (retval)
412 			goto out;
413 
414 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
415 		if (index >= rc_map->len) {
416 			retval = -ENOMEM;
417 			goto out;
418 		}
419 	}
420 
421 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
422 
423 out:
424 	spin_unlock_irqrestore(&rc_map->lock, flags);
425 	return retval;
426 }
427 
428 /**
429  * ir_setkeytable() - sets several entries in the scancode->keycode table
430  * @dev:	the struct rc_dev device descriptor
431  * @from:	the struct rc_map to copy entries from
432  *
433  * This routine is used to handle table initialization.
434  *
435  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
436  */
437 static int ir_setkeytable(struct rc_dev *dev,
438 			  const struct rc_map *from)
439 {
440 	struct rc_map *rc_map = &dev->rc_map;
441 	unsigned int i, index;
442 	int rc;
443 
444 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
445 			     from->size);
446 	if (rc)
447 		return rc;
448 
449 	for (i = 0; i < from->size; i++) {
450 		index = ir_establish_scancode(dev, rc_map,
451 					      from->scan[i].scancode, false);
452 		if (index >= rc_map->len) {
453 			rc = -ENOMEM;
454 			break;
455 		}
456 
457 		ir_update_mapping(dev, rc_map, index,
458 				  from->scan[i].keycode);
459 	}
460 
461 	if (rc)
462 		ir_free_table(rc_map);
463 
464 	return rc;
465 }
466 
467 static int rc_map_cmp(const void *key, const void *elt)
468 {
469 	const unsigned int *scancode = key;
470 	const struct rc_map_table *e = elt;
471 
472 	if (*scancode < e->scancode)
473 		return -1;
474 	else if (*scancode > e->scancode)
475 		return 1;
476 	return 0;
477 }
478 
479 /**
480  * ir_lookup_by_scancode() - locate mapping by scancode
481  * @rc_map:	the struct rc_map to search
482  * @scancode:	scancode to look for in the table
483  *
484  * This routine performs binary search in RC keykeymap table for
485  * given scancode.
486  *
487  * return:	index in the table, -1U if not found
488  */
489 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
490 					  unsigned int scancode)
491 {
492 	struct rc_map_table *res;
493 
494 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
495 		      sizeof(struct rc_map_table), rc_map_cmp);
496 	if (!res)
497 		return -1U;
498 	else
499 		return res - rc_map->scan;
500 }
501 
502 /**
503  * ir_getkeycode() - get a keycode from the scancode->keycode table
504  * @idev:	the struct input_dev device descriptor
505  * @ke:		Input keymap entry
506  *
507  * This routine is used to handle evdev EVIOCGKEY ioctl.
508  *
509  * return:	always returns zero.
510  */
511 static int ir_getkeycode(struct input_dev *idev,
512 			 struct input_keymap_entry *ke)
513 {
514 	struct rc_dev *rdev = input_get_drvdata(idev);
515 	struct rc_map *rc_map = &rdev->rc_map;
516 	struct rc_map_table *entry;
517 	unsigned long flags;
518 	unsigned int index;
519 	unsigned int scancode;
520 	int retval;
521 
522 	spin_lock_irqsave(&rc_map->lock, flags);
523 
524 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
525 		index = ke->index;
526 	} else {
527 		retval = input_scancode_to_scalar(ke, &scancode);
528 		if (retval)
529 			goto out;
530 
531 		index = ir_lookup_by_scancode(rc_map, scancode);
532 	}
533 
534 	if (index < rc_map->len) {
535 		entry = &rc_map->scan[index];
536 
537 		ke->index = index;
538 		ke->keycode = entry->keycode;
539 		ke->len = sizeof(entry->scancode);
540 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
541 
542 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
543 		/*
544 		 * We do not really know the valid range of scancodes
545 		 * so let's respond with KEY_RESERVED to anything we
546 		 * do not have mapping for [yet].
547 		 */
548 		ke->index = index;
549 		ke->keycode = KEY_RESERVED;
550 	} else {
551 		retval = -EINVAL;
552 		goto out;
553 	}
554 
555 	retval = 0;
556 
557 out:
558 	spin_unlock_irqrestore(&rc_map->lock, flags);
559 	return retval;
560 }
561 
562 /**
563  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
564  * @dev:	the struct rc_dev descriptor of the device
565  * @scancode:	the scancode to look for
566  *
567  * This routine is used by drivers which need to convert a scancode to a
568  * keycode. Normally it should not be used since drivers should have no
569  * interest in keycodes.
570  *
571  * return:	the corresponding keycode, or KEY_RESERVED
572  */
573 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
574 {
575 	struct rc_map *rc_map = &dev->rc_map;
576 	unsigned int keycode;
577 	unsigned int index;
578 	unsigned long flags;
579 
580 	spin_lock_irqsave(&rc_map->lock, flags);
581 
582 	index = ir_lookup_by_scancode(rc_map, scancode);
583 	keycode = index < rc_map->len ?
584 			rc_map->scan[index].keycode : KEY_RESERVED;
585 
586 	spin_unlock_irqrestore(&rc_map->lock, flags);
587 
588 	if (keycode != KEY_RESERVED)
589 		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
590 			dev->device_name, scancode, keycode);
591 
592 	return keycode;
593 }
594 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
595 
596 /**
597  * ir_do_keyup() - internal function to signal the release of a keypress
598  * @dev:	the struct rc_dev descriptor of the device
599  * @sync:	whether or not to call input_sync
600  *
601  * This function is used internally to release a keypress, it must be
602  * called with keylock held.
603  */
604 static void ir_do_keyup(struct rc_dev *dev, bool sync)
605 {
606 	if (!dev->keypressed)
607 		return;
608 
609 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
610 	del_timer(&dev->timer_repeat);
611 	input_report_key(dev->input_dev, dev->last_keycode, 0);
612 	led_trigger_event(led_feedback, LED_OFF);
613 	if (sync)
614 		input_sync(dev->input_dev);
615 	dev->keypressed = false;
616 }
617 
618 /**
619  * rc_keyup() - signals the release of a keypress
620  * @dev:	the struct rc_dev descriptor of the device
621  *
622  * This routine is used to signal that a key has been released on the
623  * remote control.
624  */
625 void rc_keyup(struct rc_dev *dev)
626 {
627 	unsigned long flags;
628 
629 	spin_lock_irqsave(&dev->keylock, flags);
630 	ir_do_keyup(dev, true);
631 	spin_unlock_irqrestore(&dev->keylock, flags);
632 }
633 EXPORT_SYMBOL_GPL(rc_keyup);
634 
635 /**
636  * ir_timer_keyup() - generates a keyup event after a timeout
637  *
638  * @t:		a pointer to the struct timer_list
639  *
640  * This routine will generate a keyup event some time after a keydown event
641  * is generated when no further activity has been detected.
642  */
643 static void ir_timer_keyup(struct timer_list *t)
644 {
645 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
646 	unsigned long flags;
647 
648 	/*
649 	 * ir->keyup_jiffies is used to prevent a race condition if a
650 	 * hardware interrupt occurs at this point and the keyup timer
651 	 * event is moved further into the future as a result.
652 	 *
653 	 * The timer will then be reactivated and this function called
654 	 * again in the future. We need to exit gracefully in that case
655 	 * to allow the input subsystem to do its auto-repeat magic or
656 	 * a keyup event might follow immediately after the keydown.
657 	 */
658 	spin_lock_irqsave(&dev->keylock, flags);
659 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
660 		ir_do_keyup(dev, true);
661 	spin_unlock_irqrestore(&dev->keylock, flags);
662 }
663 
664 /**
665  * ir_timer_repeat() - generates a repeat event after a timeout
666  *
667  * @t:		a pointer to the struct timer_list
668  *
669  * This routine will generate a soft repeat event every REP_PERIOD
670  * milliseconds.
671  */
672 static void ir_timer_repeat(struct timer_list *t)
673 {
674 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
675 	struct input_dev *input = dev->input_dev;
676 	unsigned long flags;
677 
678 	spin_lock_irqsave(&dev->keylock, flags);
679 	if (dev->keypressed) {
680 		input_event(input, EV_KEY, dev->last_keycode, 2);
681 		input_sync(input);
682 		if (input->rep[REP_PERIOD])
683 			mod_timer(&dev->timer_repeat, jiffies +
684 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
685 	}
686 	spin_unlock_irqrestore(&dev->keylock, flags);
687 }
688 
689 static unsigned int repeat_period(int protocol)
690 {
691 	if (protocol >= ARRAY_SIZE(protocols))
692 		return 100;
693 
694 	return protocols[protocol].repeat_period;
695 }
696 
697 /**
698  * rc_repeat() - signals that a key is still pressed
699  * @dev:	the struct rc_dev descriptor of the device
700  *
701  * This routine is used by IR decoders when a repeat message which does
702  * not include the necessary bits to reproduce the scancode has been
703  * received.
704  */
705 void rc_repeat(struct rc_dev *dev)
706 {
707 	unsigned long flags;
708 	unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
709 		msecs_to_jiffies(repeat_period(dev->last_protocol));
710 	struct lirc_scancode sc = {
711 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
712 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
713 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
714 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
715 	};
716 
717 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
718 		ir_lirc_scancode_event(dev, &sc);
719 
720 	spin_lock_irqsave(&dev->keylock, flags);
721 
722 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
723 	input_sync(dev->input_dev);
724 
725 	if (dev->keypressed) {
726 		dev->keyup_jiffies = jiffies + timeout;
727 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
728 	}
729 
730 	spin_unlock_irqrestore(&dev->keylock, flags);
731 }
732 EXPORT_SYMBOL_GPL(rc_repeat);
733 
734 /**
735  * ir_do_keydown() - internal function to process a keypress
736  * @dev:	the struct rc_dev descriptor of the device
737  * @protocol:	the protocol of the keypress
738  * @scancode:   the scancode of the keypress
739  * @keycode:    the keycode of the keypress
740  * @toggle:     the toggle value of the keypress
741  *
742  * This function is used internally to register a keypress, it must be
743  * called with keylock held.
744  */
745 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
746 			  u32 scancode, u32 keycode, u8 toggle)
747 {
748 	bool new_event = (!dev->keypressed		 ||
749 			  dev->last_protocol != protocol ||
750 			  dev->last_scancode != scancode ||
751 			  dev->last_toggle   != toggle);
752 	struct lirc_scancode sc = {
753 		.scancode = scancode, .rc_proto = protocol,
754 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
755 		.keycode = keycode
756 	};
757 
758 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
759 		ir_lirc_scancode_event(dev, &sc);
760 
761 	if (new_event && dev->keypressed)
762 		ir_do_keyup(dev, false);
763 
764 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
765 
766 	dev->last_protocol = protocol;
767 	dev->last_scancode = scancode;
768 	dev->last_toggle = toggle;
769 	dev->last_keycode = keycode;
770 
771 	if (new_event && keycode != KEY_RESERVED) {
772 		/* Register a keypress */
773 		dev->keypressed = true;
774 
775 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
776 			dev->device_name, keycode, protocol, scancode);
777 		input_report_key(dev->input_dev, keycode, 1);
778 
779 		led_trigger_event(led_feedback, LED_FULL);
780 	}
781 
782 	/*
783 	 * For CEC, start sending repeat messages as soon as the first
784 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
785 	 * is non-zero. Otherwise, the input layer will generate repeat
786 	 * messages.
787 	 */
788 	if (!new_event && keycode != KEY_RESERVED &&
789 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
790 	    !timer_pending(&dev->timer_repeat) &&
791 	    dev->input_dev->rep[REP_PERIOD] &&
792 	    !dev->input_dev->rep[REP_DELAY]) {
793 		input_event(dev->input_dev, EV_KEY, keycode, 2);
794 		mod_timer(&dev->timer_repeat, jiffies +
795 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
796 	}
797 
798 	input_sync(dev->input_dev);
799 }
800 
801 /**
802  * rc_keydown() - generates input event for a key press
803  * @dev:	the struct rc_dev descriptor of the device
804  * @protocol:	the protocol for the keypress
805  * @scancode:	the scancode for the keypress
806  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
807  *              support toggle values, this should be set to zero)
808  *
809  * This routine is used to signal that a key has been pressed on the
810  * remote control.
811  */
812 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
813 		u8 toggle)
814 {
815 	unsigned long flags;
816 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
817 
818 	spin_lock_irqsave(&dev->keylock, flags);
819 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
820 
821 	if (dev->keypressed) {
822 		dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
823 			msecs_to_jiffies(repeat_period(protocol));
824 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
825 	}
826 	spin_unlock_irqrestore(&dev->keylock, flags);
827 }
828 EXPORT_SYMBOL_GPL(rc_keydown);
829 
830 /**
831  * rc_keydown_notimeout() - generates input event for a key press without
832  *                          an automatic keyup event at a later time
833  * @dev:	the struct rc_dev descriptor of the device
834  * @protocol:	the protocol for the keypress
835  * @scancode:	the scancode for the keypress
836  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
837  *              support toggle values, this should be set to zero)
838  *
839  * This routine is used to signal that a key has been pressed on the
840  * remote control. The driver must manually call rc_keyup() at a later stage.
841  */
842 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
843 			  u32 scancode, u8 toggle)
844 {
845 	unsigned long flags;
846 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
847 
848 	spin_lock_irqsave(&dev->keylock, flags);
849 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
850 	spin_unlock_irqrestore(&dev->keylock, flags);
851 }
852 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
853 
854 /**
855  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
856  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
857  * @proto:	protocol
858  * @scancode:	scancode
859  */
860 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
861 {
862 	switch (proto) {
863 	/*
864 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
865 	 * 8 bits inverted, then the address would match regular nec.
866 	 */
867 	case RC_PROTO_NECX:
868 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
869 			return false;
870 		break;
871 	/*
872 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
873 	 * of the command match the upper 8 bits inverted, then it would
874 	 * be either NEC or NECX.
875 	 */
876 	case RC_PROTO_NEC32:
877 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
878 			return false;
879 		break;
880 	/*
881 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
882 	 * is regular mode-6a 32 bit
883 	 */
884 	case RC_PROTO_RC6_MCE:
885 		if ((scancode & 0xffff0000) != 0x800f0000)
886 			return false;
887 		break;
888 	case RC_PROTO_RC6_6A_32:
889 		if ((scancode & 0xffff0000) == 0x800f0000)
890 			return false;
891 		break;
892 	default:
893 		break;
894 	}
895 
896 	return true;
897 }
898 
899 /**
900  * rc_validate_filter() - checks that the scancode and mask are valid and
901  *			  provides sensible defaults
902  * @dev:	the struct rc_dev descriptor of the device
903  * @filter:	the scancode and mask
904  *
905  * return:	0 or -EINVAL if the filter is not valid
906  */
907 static int rc_validate_filter(struct rc_dev *dev,
908 			      struct rc_scancode_filter *filter)
909 {
910 	u32 mask, s = filter->data;
911 	enum rc_proto protocol = dev->wakeup_protocol;
912 
913 	if (protocol >= ARRAY_SIZE(protocols))
914 		return -EINVAL;
915 
916 	mask = protocols[protocol].scancode_bits;
917 
918 	if (!rc_validate_scancode(protocol, s))
919 		return -EINVAL;
920 
921 	filter->data &= mask;
922 	filter->mask &= mask;
923 
924 	/*
925 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
926 	 */
927 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
928 		return -EINVAL;
929 
930 	return 0;
931 }
932 
933 int rc_open(struct rc_dev *rdev)
934 {
935 	int rval = 0;
936 
937 	if (!rdev)
938 		return -EINVAL;
939 
940 	mutex_lock(&rdev->lock);
941 
942 	if (!rdev->registered) {
943 		rval = -ENODEV;
944 	} else {
945 		if (!rdev->users++ && rdev->open)
946 			rval = rdev->open(rdev);
947 
948 		if (rval)
949 			rdev->users--;
950 	}
951 
952 	mutex_unlock(&rdev->lock);
953 
954 	return rval;
955 }
956 
957 static int ir_open(struct input_dev *idev)
958 {
959 	struct rc_dev *rdev = input_get_drvdata(idev);
960 
961 	return rc_open(rdev);
962 }
963 
964 void rc_close(struct rc_dev *rdev)
965 {
966 	if (rdev) {
967 		mutex_lock(&rdev->lock);
968 
969 		if (!--rdev->users && rdev->close && rdev->registered)
970 			rdev->close(rdev);
971 
972 		mutex_unlock(&rdev->lock);
973 	}
974 }
975 
976 static void ir_close(struct input_dev *idev)
977 {
978 	struct rc_dev *rdev = input_get_drvdata(idev);
979 	rc_close(rdev);
980 }
981 
982 /* class for /sys/class/rc */
983 static char *rc_devnode(struct device *dev, umode_t *mode)
984 {
985 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
986 }
987 
988 static struct class rc_class = {
989 	.name		= "rc",
990 	.devnode	= rc_devnode,
991 };
992 
993 /*
994  * These are the protocol textual descriptions that are
995  * used by the sysfs protocols file. Note that the order
996  * of the entries is relevant.
997  */
998 static const struct {
999 	u64	type;
1000 	const char	*name;
1001 	const char	*module_name;
1002 } proto_names[] = {
1003 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
1004 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
1005 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
1006 	{ RC_PROTO_BIT_RC5 |
1007 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
1008 	{ RC_PROTO_BIT_NEC |
1009 	  RC_PROTO_BIT_NECX |
1010 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1011 	{ RC_PROTO_BIT_RC6_0 |
1012 	  RC_PROTO_BIT_RC6_6A_20 |
1013 	  RC_PROTO_BIT_RC6_6A_24 |
1014 	  RC_PROTO_BIT_RC6_6A_32 |
1015 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1016 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1017 	{ RC_PROTO_BIT_SONY12 |
1018 	  RC_PROTO_BIT_SONY15 |
1019 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1020 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1021 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1022 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1023 	{ RC_PROTO_BIT_MCIR2_KBD |
1024 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1025 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1026 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1027 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1028 	{ RC_PROTO_BIT_RCMM12 |
1029 	  RC_PROTO_BIT_RCMM24 |
1030 	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
1031 	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
1032 };
1033 
1034 /**
1035  * struct rc_filter_attribute - Device attribute relating to a filter type.
1036  * @attr:	Device attribute.
1037  * @type:	Filter type.
1038  * @mask:	false for filter value, true for filter mask.
1039  */
1040 struct rc_filter_attribute {
1041 	struct device_attribute		attr;
1042 	enum rc_filter_type		type;
1043 	bool				mask;
1044 };
1045 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1046 
1047 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1048 	struct rc_filter_attribute dev_attr_##_name = {			\
1049 		.attr = __ATTR(_name, _mode, _show, _store),		\
1050 		.type = (_type),					\
1051 		.mask = (_mask),					\
1052 	}
1053 
1054 /**
1055  * show_protocols() - shows the current IR protocol(s)
1056  * @device:	the device descriptor
1057  * @mattr:	the device attribute struct
1058  * @buf:	a pointer to the output buffer
1059  *
1060  * This routine is a callback routine for input read the IR protocol type(s).
1061  * it is triggered by reading /sys/class/rc/rc?/protocols.
1062  * It returns the protocol names of supported protocols.
1063  * Enabled protocols are printed in brackets.
1064  *
1065  * dev->lock is taken to guard against races between
1066  * store_protocols and show_protocols.
1067  */
1068 static ssize_t show_protocols(struct device *device,
1069 			      struct device_attribute *mattr, char *buf)
1070 {
1071 	struct rc_dev *dev = to_rc_dev(device);
1072 	u64 allowed, enabled;
1073 	char *tmp = buf;
1074 	int i;
1075 
1076 	mutex_lock(&dev->lock);
1077 
1078 	enabled = dev->enabled_protocols;
1079 	allowed = dev->allowed_protocols;
1080 	if (dev->raw && !allowed)
1081 		allowed = ir_raw_get_allowed_protocols();
1082 
1083 	mutex_unlock(&dev->lock);
1084 
1085 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1086 		__func__, (long long)allowed, (long long)enabled);
1087 
1088 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1089 		if (allowed & enabled & proto_names[i].type)
1090 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1091 		else if (allowed & proto_names[i].type)
1092 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1093 
1094 		if (allowed & proto_names[i].type)
1095 			allowed &= ~proto_names[i].type;
1096 	}
1097 
1098 #ifdef CONFIG_LIRC
1099 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1100 		tmp += sprintf(tmp, "[lirc] ");
1101 #endif
1102 
1103 	if (tmp != buf)
1104 		tmp--;
1105 	*tmp = '\n';
1106 
1107 	return tmp + 1 - buf;
1108 }
1109 
1110 /**
1111  * parse_protocol_change() - parses a protocol change request
1112  * @dev:	rc_dev device
1113  * @protocols:	pointer to the bitmask of current protocols
1114  * @buf:	pointer to the buffer with a list of changes
1115  *
1116  * Writing "+proto" will add a protocol to the protocol mask.
1117  * Writing "-proto" will remove a protocol from protocol mask.
1118  * Writing "proto" will enable only "proto".
1119  * Writing "none" will disable all protocols.
1120  * Returns the number of changes performed or a negative error code.
1121  */
1122 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1123 				 const char *buf)
1124 {
1125 	const char *tmp;
1126 	unsigned count = 0;
1127 	bool enable, disable;
1128 	u64 mask;
1129 	int i;
1130 
1131 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1132 		if (!*tmp)
1133 			break;
1134 
1135 		if (*tmp == '+') {
1136 			enable = true;
1137 			disable = false;
1138 			tmp++;
1139 		} else if (*tmp == '-') {
1140 			enable = false;
1141 			disable = true;
1142 			tmp++;
1143 		} else {
1144 			enable = false;
1145 			disable = false;
1146 		}
1147 
1148 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1149 			if (!strcasecmp(tmp, proto_names[i].name)) {
1150 				mask = proto_names[i].type;
1151 				break;
1152 			}
1153 		}
1154 
1155 		if (i == ARRAY_SIZE(proto_names)) {
1156 			if (!strcasecmp(tmp, "lirc"))
1157 				mask = 0;
1158 			else {
1159 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1160 					tmp);
1161 				return -EINVAL;
1162 			}
1163 		}
1164 
1165 		count++;
1166 
1167 		if (enable)
1168 			*protocols |= mask;
1169 		else if (disable)
1170 			*protocols &= ~mask;
1171 		else
1172 			*protocols = mask;
1173 	}
1174 
1175 	if (!count) {
1176 		dev_dbg(&dev->dev, "Protocol not specified\n");
1177 		return -EINVAL;
1178 	}
1179 
1180 	return count;
1181 }
1182 
1183 void ir_raw_load_modules(u64 *protocols)
1184 {
1185 	u64 available;
1186 	int i, ret;
1187 
1188 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1189 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1190 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1191 					   RC_PROTO_BIT_UNKNOWN))
1192 			continue;
1193 
1194 		available = ir_raw_get_allowed_protocols();
1195 		if (!(*protocols & proto_names[i].type & ~available))
1196 			continue;
1197 
1198 		if (!proto_names[i].module_name) {
1199 			pr_err("Can't enable IR protocol %s\n",
1200 			       proto_names[i].name);
1201 			*protocols &= ~proto_names[i].type;
1202 			continue;
1203 		}
1204 
1205 		ret = request_module("%s", proto_names[i].module_name);
1206 		if (ret < 0) {
1207 			pr_err("Couldn't load IR protocol module %s\n",
1208 			       proto_names[i].module_name);
1209 			*protocols &= ~proto_names[i].type;
1210 			continue;
1211 		}
1212 		msleep(20);
1213 		available = ir_raw_get_allowed_protocols();
1214 		if (!(*protocols & proto_names[i].type & ~available))
1215 			continue;
1216 
1217 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1218 		       proto_names[i].module_name,
1219 		       proto_names[i].name);
1220 		*protocols &= ~proto_names[i].type;
1221 	}
1222 }
1223 
1224 /**
1225  * store_protocols() - changes the current/wakeup IR protocol(s)
1226  * @device:	the device descriptor
1227  * @mattr:	the device attribute struct
1228  * @buf:	a pointer to the input buffer
1229  * @len:	length of the input buffer
1230  *
1231  * This routine is for changing the IR protocol type.
1232  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1233  * See parse_protocol_change() for the valid commands.
1234  * Returns @len on success or a negative error code.
1235  *
1236  * dev->lock is taken to guard against races between
1237  * store_protocols and show_protocols.
1238  */
1239 static ssize_t store_protocols(struct device *device,
1240 			       struct device_attribute *mattr,
1241 			       const char *buf, size_t len)
1242 {
1243 	struct rc_dev *dev = to_rc_dev(device);
1244 	u64 *current_protocols;
1245 	struct rc_scancode_filter *filter;
1246 	u64 old_protocols, new_protocols;
1247 	ssize_t rc;
1248 
1249 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1250 	current_protocols = &dev->enabled_protocols;
1251 	filter = &dev->scancode_filter;
1252 
1253 	if (!dev->change_protocol) {
1254 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1255 		return -EINVAL;
1256 	}
1257 
1258 	mutex_lock(&dev->lock);
1259 
1260 	old_protocols = *current_protocols;
1261 	new_protocols = old_protocols;
1262 	rc = parse_protocol_change(dev, &new_protocols, buf);
1263 	if (rc < 0)
1264 		goto out;
1265 
1266 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1267 		ir_raw_load_modules(&new_protocols);
1268 
1269 	rc = dev->change_protocol(dev, &new_protocols);
1270 	if (rc < 0) {
1271 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1272 			(long long)new_protocols);
1273 		goto out;
1274 	}
1275 
1276 	if (new_protocols != old_protocols) {
1277 		*current_protocols = new_protocols;
1278 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1279 			(long long)new_protocols);
1280 	}
1281 
1282 	/*
1283 	 * If a protocol change was attempted the filter may need updating, even
1284 	 * if the actual protocol mask hasn't changed (since the driver may have
1285 	 * cleared the filter).
1286 	 * Try setting the same filter with the new protocol (if any).
1287 	 * Fall back to clearing the filter.
1288 	 */
1289 	if (dev->s_filter && filter->mask) {
1290 		if (new_protocols)
1291 			rc = dev->s_filter(dev, filter);
1292 		else
1293 			rc = -1;
1294 
1295 		if (rc < 0) {
1296 			filter->data = 0;
1297 			filter->mask = 0;
1298 			dev->s_filter(dev, filter);
1299 		}
1300 	}
1301 
1302 	rc = len;
1303 
1304 out:
1305 	mutex_unlock(&dev->lock);
1306 	return rc;
1307 }
1308 
1309 /**
1310  * show_filter() - shows the current scancode filter value or mask
1311  * @device:	the device descriptor
1312  * @attr:	the device attribute struct
1313  * @buf:	a pointer to the output buffer
1314  *
1315  * This routine is a callback routine to read a scancode filter value or mask.
1316  * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1317  * It prints the current scancode filter value or mask of the appropriate filter
1318  * type in hexadecimal into @buf and returns the size of the buffer.
1319  *
1320  * Bits of the filter value corresponding to set bits in the filter mask are
1321  * compared against input scancodes and non-matching scancodes are discarded.
1322  *
1323  * dev->lock is taken to guard against races between
1324  * store_filter and show_filter.
1325  */
1326 static ssize_t show_filter(struct device *device,
1327 			   struct device_attribute *attr,
1328 			   char *buf)
1329 {
1330 	struct rc_dev *dev = to_rc_dev(device);
1331 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1332 	struct rc_scancode_filter *filter;
1333 	u32 val;
1334 
1335 	mutex_lock(&dev->lock);
1336 
1337 	if (fattr->type == RC_FILTER_NORMAL)
1338 		filter = &dev->scancode_filter;
1339 	else
1340 		filter = &dev->scancode_wakeup_filter;
1341 
1342 	if (fattr->mask)
1343 		val = filter->mask;
1344 	else
1345 		val = filter->data;
1346 	mutex_unlock(&dev->lock);
1347 
1348 	return sprintf(buf, "%#x\n", val);
1349 }
1350 
1351 /**
1352  * store_filter() - changes the scancode filter value
1353  * @device:	the device descriptor
1354  * @attr:	the device attribute struct
1355  * @buf:	a pointer to the input buffer
1356  * @len:	length of the input buffer
1357  *
1358  * This routine is for changing a scancode filter value or mask.
1359  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1360  * Returns -EINVAL if an invalid filter value for the current protocol was
1361  * specified or if scancode filtering is not supported by the driver, otherwise
1362  * returns @len.
1363  *
1364  * Bits of the filter value corresponding to set bits in the filter mask are
1365  * compared against input scancodes and non-matching scancodes are discarded.
1366  *
1367  * dev->lock is taken to guard against races between
1368  * store_filter and show_filter.
1369  */
1370 static ssize_t store_filter(struct device *device,
1371 			    struct device_attribute *attr,
1372 			    const char *buf, size_t len)
1373 {
1374 	struct rc_dev *dev = to_rc_dev(device);
1375 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1376 	struct rc_scancode_filter new_filter, *filter;
1377 	int ret;
1378 	unsigned long val;
1379 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1380 
1381 	ret = kstrtoul(buf, 0, &val);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	if (fattr->type == RC_FILTER_NORMAL) {
1386 		set_filter = dev->s_filter;
1387 		filter = &dev->scancode_filter;
1388 	} else {
1389 		set_filter = dev->s_wakeup_filter;
1390 		filter = &dev->scancode_wakeup_filter;
1391 	}
1392 
1393 	if (!set_filter)
1394 		return -EINVAL;
1395 
1396 	mutex_lock(&dev->lock);
1397 
1398 	new_filter = *filter;
1399 	if (fattr->mask)
1400 		new_filter.mask = val;
1401 	else
1402 		new_filter.data = val;
1403 
1404 	if (fattr->type == RC_FILTER_WAKEUP) {
1405 		/*
1406 		 * Refuse to set a filter unless a protocol is enabled
1407 		 * and the filter is valid for that protocol
1408 		 */
1409 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1410 			ret = rc_validate_filter(dev, &new_filter);
1411 		else
1412 			ret = -EINVAL;
1413 
1414 		if (ret != 0)
1415 			goto unlock;
1416 	}
1417 
1418 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1419 	    val) {
1420 		/* refuse to set a filter unless a protocol is enabled */
1421 		ret = -EINVAL;
1422 		goto unlock;
1423 	}
1424 
1425 	ret = set_filter(dev, &new_filter);
1426 	if (ret < 0)
1427 		goto unlock;
1428 
1429 	*filter = new_filter;
1430 
1431 unlock:
1432 	mutex_unlock(&dev->lock);
1433 	return (ret < 0) ? ret : len;
1434 }
1435 
1436 /**
1437  * show_wakeup_protocols() - shows the wakeup IR protocol
1438  * @device:	the device descriptor
1439  * @mattr:	the device attribute struct
1440  * @buf:	a pointer to the output buffer
1441  *
1442  * This routine is a callback routine for input read the IR protocol type(s).
1443  * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1444  * It returns the protocol names of supported protocols.
1445  * The enabled protocols are printed in brackets.
1446  *
1447  * dev->lock is taken to guard against races between
1448  * store_wakeup_protocols and show_wakeup_protocols.
1449  */
1450 static ssize_t show_wakeup_protocols(struct device *device,
1451 				     struct device_attribute *mattr,
1452 				     char *buf)
1453 {
1454 	struct rc_dev *dev = to_rc_dev(device);
1455 	u64 allowed;
1456 	enum rc_proto enabled;
1457 	char *tmp = buf;
1458 	int i;
1459 
1460 	mutex_lock(&dev->lock);
1461 
1462 	allowed = dev->allowed_wakeup_protocols;
1463 	enabled = dev->wakeup_protocol;
1464 
1465 	mutex_unlock(&dev->lock);
1466 
1467 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1468 		__func__, (long long)allowed, enabled);
1469 
1470 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1471 		if (allowed & (1ULL << i)) {
1472 			if (i == enabled)
1473 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1474 			else
1475 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1476 		}
1477 	}
1478 
1479 	if (tmp != buf)
1480 		tmp--;
1481 	*tmp = '\n';
1482 
1483 	return tmp + 1 - buf;
1484 }
1485 
1486 /**
1487  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1488  * @device:	the device descriptor
1489  * @mattr:	the device attribute struct
1490  * @buf:	a pointer to the input buffer
1491  * @len:	length of the input buffer
1492  *
1493  * This routine is for changing the IR protocol type.
1494  * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1495  * Returns @len on success or a negative error code.
1496  *
1497  * dev->lock is taken to guard against races between
1498  * store_wakeup_protocols and show_wakeup_protocols.
1499  */
1500 static ssize_t store_wakeup_protocols(struct device *device,
1501 				      struct device_attribute *mattr,
1502 				      const char *buf, size_t len)
1503 {
1504 	struct rc_dev *dev = to_rc_dev(device);
1505 	enum rc_proto protocol = RC_PROTO_UNKNOWN;
1506 	ssize_t rc;
1507 	u64 allowed;
1508 	int i;
1509 
1510 	mutex_lock(&dev->lock);
1511 
1512 	allowed = dev->allowed_wakeup_protocols;
1513 
1514 	if (!sysfs_streq(buf, "none")) {
1515 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516 			if ((allowed & (1ULL << i)) &&
1517 			    sysfs_streq(buf, protocols[i].name)) {
1518 				protocol = i;
1519 				break;
1520 			}
1521 		}
1522 
1523 		if (i == ARRAY_SIZE(protocols)) {
1524 			rc = -EINVAL;
1525 			goto out;
1526 		}
1527 
1528 		if (dev->encode_wakeup) {
1529 			u64 mask = 1ULL << protocol;
1530 
1531 			ir_raw_load_modules(&mask);
1532 			if (!mask) {
1533 				rc = -EINVAL;
1534 				goto out;
1535 			}
1536 		}
1537 	}
1538 
1539 	if (dev->wakeup_protocol != protocol) {
1540 		dev->wakeup_protocol = protocol;
1541 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1542 
1543 		if (protocol == RC_PROTO_RC6_MCE)
1544 			dev->scancode_wakeup_filter.data = 0x800f0000;
1545 		else
1546 			dev->scancode_wakeup_filter.data = 0;
1547 		dev->scancode_wakeup_filter.mask = 0;
1548 
1549 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1550 		if (rc == 0)
1551 			rc = len;
1552 	} else {
1553 		rc = len;
1554 	}
1555 
1556 out:
1557 	mutex_unlock(&dev->lock);
1558 	return rc;
1559 }
1560 
1561 static void rc_dev_release(struct device *device)
1562 {
1563 	struct rc_dev *dev = to_rc_dev(device);
1564 
1565 	kfree(dev);
1566 }
1567 
1568 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1569 	do {								\
1570 		int err = add_uevent_var(env, fmt, val);		\
1571 		if (err)						\
1572 			return err;					\
1573 	} while (0)
1574 
1575 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1576 {
1577 	struct rc_dev *dev = to_rc_dev(device);
1578 
1579 	if (dev->rc_map.name)
1580 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1581 	if (dev->driver_name)
1582 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1583 	if (dev->device_name)
1584 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1585 
1586 	return 0;
1587 }
1588 
1589 /*
1590  * Static device attribute struct with the sysfs attributes for IR's
1591  */
1592 static struct device_attribute dev_attr_ro_protocols =
1593 __ATTR(protocols, 0444, show_protocols, NULL);
1594 static struct device_attribute dev_attr_rw_protocols =
1595 __ATTR(protocols, 0644, show_protocols, store_protocols);
1596 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1597 		   store_wakeup_protocols);
1598 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1599 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1600 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1601 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1602 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1603 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1604 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1605 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1606 
1607 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1608 	&dev_attr_rw_protocols.attr,
1609 	NULL,
1610 };
1611 
1612 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1613 	.attrs	= rc_dev_rw_protocol_attrs,
1614 };
1615 
1616 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1617 	&dev_attr_ro_protocols.attr,
1618 	NULL,
1619 };
1620 
1621 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1622 	.attrs	= rc_dev_ro_protocol_attrs,
1623 };
1624 
1625 static struct attribute *rc_dev_filter_attrs[] = {
1626 	&dev_attr_filter.attr.attr,
1627 	&dev_attr_filter_mask.attr.attr,
1628 	NULL,
1629 };
1630 
1631 static const struct attribute_group rc_dev_filter_attr_grp = {
1632 	.attrs	= rc_dev_filter_attrs,
1633 };
1634 
1635 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1636 	&dev_attr_wakeup_filter.attr.attr,
1637 	&dev_attr_wakeup_filter_mask.attr.attr,
1638 	&dev_attr_wakeup_protocols.attr,
1639 	NULL,
1640 };
1641 
1642 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1643 	.attrs	= rc_dev_wakeup_filter_attrs,
1644 };
1645 
1646 static const struct device_type rc_dev_type = {
1647 	.release	= rc_dev_release,
1648 	.uevent		= rc_dev_uevent,
1649 };
1650 
1651 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1652 {
1653 	struct rc_dev *dev;
1654 
1655 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1656 	if (!dev)
1657 		return NULL;
1658 
1659 	if (type != RC_DRIVER_IR_RAW_TX) {
1660 		dev->input_dev = input_allocate_device();
1661 		if (!dev->input_dev) {
1662 			kfree(dev);
1663 			return NULL;
1664 		}
1665 
1666 		dev->input_dev->getkeycode = ir_getkeycode;
1667 		dev->input_dev->setkeycode = ir_setkeycode;
1668 		input_set_drvdata(dev->input_dev, dev);
1669 
1670 		dev->timeout = IR_DEFAULT_TIMEOUT;
1671 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1672 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1673 
1674 		spin_lock_init(&dev->rc_map.lock);
1675 		spin_lock_init(&dev->keylock);
1676 	}
1677 	mutex_init(&dev->lock);
1678 
1679 	dev->dev.type = &rc_dev_type;
1680 	dev->dev.class = &rc_class;
1681 	device_initialize(&dev->dev);
1682 
1683 	dev->driver_type = type;
1684 
1685 	__module_get(THIS_MODULE);
1686 	return dev;
1687 }
1688 EXPORT_SYMBOL_GPL(rc_allocate_device);
1689 
1690 void rc_free_device(struct rc_dev *dev)
1691 {
1692 	if (!dev)
1693 		return;
1694 
1695 	input_free_device(dev->input_dev);
1696 
1697 	put_device(&dev->dev);
1698 
1699 	/* kfree(dev) will be called by the callback function
1700 	   rc_dev_release() */
1701 
1702 	module_put(THIS_MODULE);
1703 }
1704 EXPORT_SYMBOL_GPL(rc_free_device);
1705 
1706 static void devm_rc_alloc_release(struct device *dev, void *res)
1707 {
1708 	rc_free_device(*(struct rc_dev **)res);
1709 }
1710 
1711 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1712 				       enum rc_driver_type type)
1713 {
1714 	struct rc_dev **dr, *rc;
1715 
1716 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1717 	if (!dr)
1718 		return NULL;
1719 
1720 	rc = rc_allocate_device(type);
1721 	if (!rc) {
1722 		devres_free(dr);
1723 		return NULL;
1724 	}
1725 
1726 	rc->dev.parent = dev;
1727 	rc->managed_alloc = true;
1728 	*dr = rc;
1729 	devres_add(dev, dr);
1730 
1731 	return rc;
1732 }
1733 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1734 
1735 static int rc_prepare_rx_device(struct rc_dev *dev)
1736 {
1737 	int rc;
1738 	struct rc_map *rc_map;
1739 	u64 rc_proto;
1740 
1741 	if (!dev->map_name)
1742 		return -EINVAL;
1743 
1744 	rc_map = rc_map_get(dev->map_name);
1745 	if (!rc_map)
1746 		rc_map = rc_map_get(RC_MAP_EMPTY);
1747 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1748 		return -EINVAL;
1749 
1750 	rc = ir_setkeytable(dev, rc_map);
1751 	if (rc)
1752 		return rc;
1753 
1754 	rc_proto = BIT_ULL(rc_map->rc_proto);
1755 
1756 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1757 		dev->enabled_protocols = dev->allowed_protocols;
1758 
1759 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1760 		ir_raw_load_modules(&rc_proto);
1761 
1762 	if (dev->change_protocol) {
1763 		rc = dev->change_protocol(dev, &rc_proto);
1764 		if (rc < 0)
1765 			goto out_table;
1766 		dev->enabled_protocols = rc_proto;
1767 	}
1768 
1769 	/* Keyboard events */
1770 	set_bit(EV_KEY, dev->input_dev->evbit);
1771 	set_bit(EV_REP, dev->input_dev->evbit);
1772 	set_bit(EV_MSC, dev->input_dev->evbit);
1773 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1774 
1775 	/* Pointer/mouse events */
1776 	set_bit(EV_REL, dev->input_dev->evbit);
1777 	set_bit(REL_X, dev->input_dev->relbit);
1778 	set_bit(REL_Y, dev->input_dev->relbit);
1779 
1780 	if (dev->open)
1781 		dev->input_dev->open = ir_open;
1782 	if (dev->close)
1783 		dev->input_dev->close = ir_close;
1784 
1785 	dev->input_dev->dev.parent = &dev->dev;
1786 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1787 	dev->input_dev->phys = dev->input_phys;
1788 	dev->input_dev->name = dev->device_name;
1789 
1790 	return 0;
1791 
1792 out_table:
1793 	ir_free_table(&dev->rc_map);
1794 
1795 	return rc;
1796 }
1797 
1798 static int rc_setup_rx_device(struct rc_dev *dev)
1799 {
1800 	int rc;
1801 
1802 	/* rc_open will be called here */
1803 	rc = input_register_device(dev->input_dev);
1804 	if (rc)
1805 		return rc;
1806 
1807 	/*
1808 	 * Default delay of 250ms is too short for some protocols, especially
1809 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1810 	 * to avoid wrong repetition of the keycodes. Note that this must be
1811 	 * set after the call to input_register_device().
1812 	 */
1813 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1814 		dev->input_dev->rep[REP_DELAY] = 0;
1815 	else
1816 		dev->input_dev->rep[REP_DELAY] = 500;
1817 
1818 	/*
1819 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1820 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1821 	 * to do.
1822 	 */
1823 	dev->input_dev->rep[REP_PERIOD] = 125;
1824 
1825 	return 0;
1826 }
1827 
1828 static void rc_free_rx_device(struct rc_dev *dev)
1829 {
1830 	if (!dev)
1831 		return;
1832 
1833 	if (dev->input_dev) {
1834 		input_unregister_device(dev->input_dev);
1835 		dev->input_dev = NULL;
1836 	}
1837 
1838 	ir_free_table(&dev->rc_map);
1839 }
1840 
1841 int rc_register_device(struct rc_dev *dev)
1842 {
1843 	const char *path;
1844 	int attr = 0;
1845 	int minor;
1846 	int rc;
1847 
1848 	if (!dev)
1849 		return -EINVAL;
1850 
1851 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1852 	if (minor < 0)
1853 		return minor;
1854 
1855 	dev->minor = minor;
1856 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1857 	dev_set_drvdata(&dev->dev, dev);
1858 
1859 	dev->dev.groups = dev->sysfs_groups;
1860 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1861 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1862 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1863 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1864 	if (dev->s_filter)
1865 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1866 	if (dev->s_wakeup_filter)
1867 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1868 	dev->sysfs_groups[attr++] = NULL;
1869 
1870 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1871 		rc = ir_raw_event_prepare(dev);
1872 		if (rc < 0)
1873 			goto out_minor;
1874 	}
1875 
1876 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1877 		rc = rc_prepare_rx_device(dev);
1878 		if (rc)
1879 			goto out_raw;
1880 	}
1881 
1882 	rc = device_add(&dev->dev);
1883 	if (rc)
1884 		goto out_rx_free;
1885 
1886 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1887 	dev_info(&dev->dev, "%s as %s\n",
1888 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1889 	kfree(path);
1890 
1891 	dev->registered = true;
1892 
1893 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1894 		rc = rc_setup_rx_device(dev);
1895 		if (rc)
1896 			goto out_dev;
1897 	}
1898 
1899 	/* Ensure that the lirc kfifo is setup before we start the thread */
1900 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1901 		rc = ir_lirc_register(dev);
1902 		if (rc < 0)
1903 			goto out_rx;
1904 	}
1905 
1906 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1907 		rc = ir_raw_event_register(dev);
1908 		if (rc < 0)
1909 			goto out_lirc;
1910 	}
1911 
1912 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1913 		dev->driver_name ? dev->driver_name : "unknown");
1914 
1915 	return 0;
1916 
1917 out_lirc:
1918 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1919 		ir_lirc_unregister(dev);
1920 out_rx:
1921 	rc_free_rx_device(dev);
1922 out_dev:
1923 	device_del(&dev->dev);
1924 out_rx_free:
1925 	ir_free_table(&dev->rc_map);
1926 out_raw:
1927 	ir_raw_event_free(dev);
1928 out_minor:
1929 	ida_simple_remove(&rc_ida, minor);
1930 	return rc;
1931 }
1932 EXPORT_SYMBOL_GPL(rc_register_device);
1933 
1934 static void devm_rc_release(struct device *dev, void *res)
1935 {
1936 	rc_unregister_device(*(struct rc_dev **)res);
1937 }
1938 
1939 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1940 {
1941 	struct rc_dev **dr;
1942 	int ret;
1943 
1944 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1945 	if (!dr)
1946 		return -ENOMEM;
1947 
1948 	ret = rc_register_device(dev);
1949 	if (ret) {
1950 		devres_free(dr);
1951 		return ret;
1952 	}
1953 
1954 	*dr = dev;
1955 	devres_add(parent, dr);
1956 
1957 	return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1960 
1961 void rc_unregister_device(struct rc_dev *dev)
1962 {
1963 	if (!dev)
1964 		return;
1965 
1966 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1967 		ir_raw_event_unregister(dev);
1968 
1969 	del_timer_sync(&dev->timer_keyup);
1970 	del_timer_sync(&dev->timer_repeat);
1971 
1972 	rc_free_rx_device(dev);
1973 
1974 	mutex_lock(&dev->lock);
1975 	if (dev->users && dev->close)
1976 		dev->close(dev);
1977 	dev->registered = false;
1978 	mutex_unlock(&dev->lock);
1979 
1980 	/*
1981 	 * lirc device should be freed with dev->registered = false, so
1982 	 * that userspace polling will get notified.
1983 	 */
1984 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1985 		ir_lirc_unregister(dev);
1986 
1987 	device_del(&dev->dev);
1988 
1989 	ida_simple_remove(&rc_ida, dev->minor);
1990 
1991 	if (!dev->managed_alloc)
1992 		rc_free_device(dev);
1993 }
1994 
1995 EXPORT_SYMBOL_GPL(rc_unregister_device);
1996 
1997 /*
1998  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1999  */
2000 
2001 static int __init rc_core_init(void)
2002 {
2003 	int rc = class_register(&rc_class);
2004 	if (rc) {
2005 		pr_err("rc_core: unable to register rc class\n");
2006 		return rc;
2007 	}
2008 
2009 	rc = lirc_dev_init();
2010 	if (rc) {
2011 		pr_err("rc_core: unable to init lirc\n");
2012 		class_unregister(&rc_class);
2013 		return 0;
2014 	}
2015 
2016 	led_trigger_register_simple("rc-feedback", &led_feedback);
2017 	rc_map_register(&empty_map);
2018 
2019 	return 0;
2020 }
2021 
2022 static void __exit rc_core_exit(void)
2023 {
2024 	lirc_dev_exit();
2025 	class_unregister(&rc_class);
2026 	led_trigger_unregister_simple(led_feedback);
2027 	rc_map_unregister(&empty_map);
2028 }
2029 
2030 subsys_initcall(rc_core_init);
2031 module_exit(rc_core_exit);
2032 
2033 MODULE_AUTHOR("Mauro Carvalho Chehab");
2034 MODULE_LICENSE("GPL v2");
2035