xref: /linux/drivers/media/v4l2-core/v4l2-fwnode.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * V4L2 fwnode binding parsing library
4  *
5  * The origins of the V4L2 fwnode library are in V4L2 OF library that
6  * formerly was located in v4l2-of.c.
7  *
8  * Copyright (c) 2016 Intel Corporation.
9  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13  *
14  * Copyright (C) 2012 Renesas Electronics Corp.
15  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16  */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30 
31 #include "v4l2-subdev-priv.h"
32 
33 static const struct v4l2_fwnode_bus_conv {
34 	enum v4l2_fwnode_bus_type fwnode_bus_type;
35 	enum v4l2_mbus_type mbus_type;
36 	const char *name;
37 } buses[] = {
38 	{
39 		V4L2_FWNODE_BUS_TYPE_GUESS,
40 		V4L2_MBUS_UNKNOWN,
41 		"not specified",
42 	}, {
43 		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
44 		V4L2_MBUS_CSI2_CPHY,
45 		"MIPI CSI-2 C-PHY",
46 	}, {
47 		V4L2_FWNODE_BUS_TYPE_CSI1,
48 		V4L2_MBUS_CSI1,
49 		"MIPI CSI-1",
50 	}, {
51 		V4L2_FWNODE_BUS_TYPE_CCP2,
52 		V4L2_MBUS_CCP2,
53 		"compact camera port 2",
54 	}, {
55 		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
56 		V4L2_MBUS_CSI2_DPHY,
57 		"MIPI CSI-2 D-PHY",
58 	}, {
59 		V4L2_FWNODE_BUS_TYPE_PARALLEL,
60 		V4L2_MBUS_PARALLEL,
61 		"parallel",
62 	}, {
63 		V4L2_FWNODE_BUS_TYPE_BT656,
64 		V4L2_MBUS_BT656,
65 		"Bt.656",
66 	}, {
67 		V4L2_FWNODE_BUS_TYPE_DPI,
68 		V4L2_MBUS_DPI,
69 		"DPI",
70 	}
71 };
72 
73 static const struct v4l2_fwnode_bus_conv *
74 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
75 {
76 	unsigned int i;
77 
78 	for (i = 0; i < ARRAY_SIZE(buses); i++)
79 		if (buses[i].fwnode_bus_type == type)
80 			return &buses[i];
81 
82 	return NULL;
83 }
84 
85 static enum v4l2_mbus_type
86 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
87 {
88 	const struct v4l2_fwnode_bus_conv *conv =
89 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
90 
91 	return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
92 }
93 
94 static const char *
95 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
96 {
97 	const struct v4l2_fwnode_bus_conv *conv =
98 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
99 
100 	return conv ? conv->name : "not found";
101 }
102 
103 static const struct v4l2_fwnode_bus_conv *
104 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
105 {
106 	unsigned int i;
107 
108 	for (i = 0; i < ARRAY_SIZE(buses); i++)
109 		if (buses[i].mbus_type == type)
110 			return &buses[i];
111 
112 	return NULL;
113 }
114 
115 static const char *
116 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
117 {
118 	const struct v4l2_fwnode_bus_conv *conv =
119 		get_v4l2_fwnode_bus_conv_by_mbus(type);
120 
121 	return conv ? conv->name : "not found";
122 }
123 
124 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
125 					       struct v4l2_fwnode_endpoint *vep,
126 					       enum v4l2_mbus_type bus_type)
127 {
128 	struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
129 	bool have_clk_lane = false, have_data_lanes = false,
130 		have_lane_polarities = false;
131 	unsigned int flags = 0, lanes_used = 0;
132 	u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
133 	u32 clock_lane = 0;
134 	unsigned int num_data_lanes = 0;
135 	bool use_default_lane_mapping = false;
136 	unsigned int i;
137 	u32 v;
138 	int rval;
139 
140 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
141 	    bus_type == V4L2_MBUS_CSI2_CPHY) {
142 		use_default_lane_mapping = true;
143 
144 		num_data_lanes = min_t(u32, bus->num_data_lanes,
145 				       V4L2_MBUS_CSI2_MAX_DATA_LANES);
146 
147 		clock_lane = bus->clock_lane;
148 		if (clock_lane)
149 			use_default_lane_mapping = false;
150 
151 		for (i = 0; i < num_data_lanes; i++) {
152 			array[i] = bus->data_lanes[i];
153 			if (array[i])
154 				use_default_lane_mapping = false;
155 		}
156 
157 		if (use_default_lane_mapping)
158 			pr_debug("no lane mapping given, using defaults\n");
159 	}
160 
161 	rval = fwnode_property_count_u32(fwnode, "data-lanes");
162 	if (rval > 0) {
163 		num_data_lanes =
164 			min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
165 
166 		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
167 					       num_data_lanes);
168 
169 		have_data_lanes = true;
170 		if (use_default_lane_mapping) {
171 			pr_debug("data-lanes property exists; disabling default mapping\n");
172 			use_default_lane_mapping = false;
173 		}
174 	}
175 
176 	for (i = 0; i < num_data_lanes; i++) {
177 		if (lanes_used & BIT(array[i])) {
178 			if (have_data_lanes || !use_default_lane_mapping)
179 				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
180 					array[i]);
181 			use_default_lane_mapping = true;
182 		}
183 		lanes_used |= BIT(array[i]);
184 
185 		if (have_data_lanes)
186 			pr_debug("lane %u position %u\n", i, array[i]);
187 	}
188 
189 	rval = fwnode_property_count_u32(fwnode, "lane-polarities");
190 	if (rval > 0) {
191 		if (rval != 1 + num_data_lanes /* clock+data */) {
192 			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
193 				1 + num_data_lanes, rval);
194 			return -EINVAL;
195 		}
196 
197 		have_lane_polarities = true;
198 	}
199 
200 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
201 		clock_lane = v;
202 		pr_debug("clock lane position %u\n", v);
203 		have_clk_lane = true;
204 	}
205 
206 	if (have_clk_lane && lanes_used & BIT(clock_lane) &&
207 	    !use_default_lane_mapping) {
208 		pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
209 			v);
210 		use_default_lane_mapping = true;
211 	}
212 
213 	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
214 		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
215 		pr_debug("non-continuous clock\n");
216 	}
217 
218 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
219 	    bus_type == V4L2_MBUS_CSI2_CPHY ||
220 	    lanes_used || have_clk_lane || flags) {
221 		/* Only D-PHY has a clock lane. */
222 		unsigned int dfl_data_lane_index =
223 			bus_type == V4L2_MBUS_CSI2_DPHY;
224 
225 		bus->flags = flags;
226 		if (bus_type == V4L2_MBUS_UNKNOWN)
227 			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
228 		bus->num_data_lanes = num_data_lanes;
229 
230 		if (use_default_lane_mapping) {
231 			bus->clock_lane = 0;
232 			for (i = 0; i < num_data_lanes; i++)
233 				bus->data_lanes[i] = dfl_data_lane_index + i;
234 		} else {
235 			bus->clock_lane = clock_lane;
236 			for (i = 0; i < num_data_lanes; i++)
237 				bus->data_lanes[i] = array[i];
238 		}
239 
240 		if (have_lane_polarities) {
241 			fwnode_property_read_u32_array(fwnode,
242 						       "lane-polarities", array,
243 						       1 + num_data_lanes);
244 
245 			for (i = 0; i < 1 + num_data_lanes; i++) {
246 				bus->lane_polarities[i] = array[i];
247 				pr_debug("lane %u polarity %sinverted",
248 					 i, array[i] ? "" : "not ");
249 			}
250 		} else {
251 			pr_debug("no lane polarities defined, assuming not inverted\n");
252 		}
253 	}
254 
255 	return 0;
256 }
257 
258 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
259 			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
260 			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
261 			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
262 			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
263 			     V4L2_MBUS_FIELD_EVEN_LOW)
264 
265 static void
266 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
267 					struct v4l2_fwnode_endpoint *vep,
268 					enum v4l2_mbus_type bus_type)
269 {
270 	struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
271 	unsigned int flags = 0;
272 	u32 v;
273 
274 	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
275 		flags = bus->flags;
276 
277 	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
278 		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
279 			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
280 		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
281 			V4L2_MBUS_HSYNC_ACTIVE_LOW;
282 		pr_debug("hsync-active %s\n", v ? "high" : "low");
283 	}
284 
285 	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
286 		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
287 			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
288 		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
289 			V4L2_MBUS_VSYNC_ACTIVE_LOW;
290 		pr_debug("vsync-active %s\n", v ? "high" : "low");
291 	}
292 
293 	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
294 		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
295 			   V4L2_MBUS_FIELD_EVEN_LOW);
296 		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
297 			V4L2_MBUS_FIELD_EVEN_LOW;
298 		pr_debug("field-even-active %s\n", v ? "high" : "low");
299 	}
300 
301 	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
302 		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
303 			   V4L2_MBUS_PCLK_SAMPLE_FALLING |
304 			   V4L2_MBUS_PCLK_SAMPLE_DUALEDGE);
305 		switch (v) {
306 		case 0:
307 			flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
308 			pr_debug("pclk-sample low\n");
309 			break;
310 		case 1:
311 			flags |= V4L2_MBUS_PCLK_SAMPLE_RISING;
312 			pr_debug("pclk-sample high\n");
313 			break;
314 		case 2:
315 			flags |= V4L2_MBUS_PCLK_SAMPLE_DUALEDGE;
316 			pr_debug("pclk-sample dual edge\n");
317 			break;
318 		default:
319 			pr_warn("invalid argument for pclk-sample");
320 			break;
321 		}
322 	}
323 
324 	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
325 		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
326 			   V4L2_MBUS_DATA_ACTIVE_LOW);
327 		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
328 			V4L2_MBUS_DATA_ACTIVE_LOW;
329 		pr_debug("data-active %s\n", v ? "high" : "low");
330 	}
331 
332 	if (fwnode_property_present(fwnode, "slave-mode")) {
333 		pr_debug("slave mode\n");
334 		flags &= ~V4L2_MBUS_MASTER;
335 		flags |= V4L2_MBUS_SLAVE;
336 	} else {
337 		flags &= ~V4L2_MBUS_SLAVE;
338 		flags |= V4L2_MBUS_MASTER;
339 	}
340 
341 	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
342 		bus->bus_width = v;
343 		pr_debug("bus-width %u\n", v);
344 	}
345 
346 	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
347 		bus->data_shift = v;
348 		pr_debug("data-shift %u\n", v);
349 	}
350 
351 	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
352 		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
353 			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
354 		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
355 			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
356 		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
357 	}
358 
359 	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
360 		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
361 			   V4L2_MBUS_DATA_ENABLE_LOW);
362 		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
363 			V4L2_MBUS_DATA_ENABLE_LOW;
364 		pr_debug("data-enable-active %s\n", v ? "high" : "low");
365 	}
366 
367 	switch (bus_type) {
368 	default:
369 		bus->flags = flags;
370 		if (flags & PARALLEL_MBUS_FLAGS)
371 			vep->bus_type = V4L2_MBUS_PARALLEL;
372 		else
373 			vep->bus_type = V4L2_MBUS_BT656;
374 		break;
375 	case V4L2_MBUS_PARALLEL:
376 		vep->bus_type = V4L2_MBUS_PARALLEL;
377 		bus->flags = flags;
378 		break;
379 	case V4L2_MBUS_BT656:
380 		vep->bus_type = V4L2_MBUS_BT656;
381 		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
382 		break;
383 	}
384 }
385 
386 static void
387 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
388 				    struct v4l2_fwnode_endpoint *vep,
389 				    enum v4l2_mbus_type bus_type)
390 {
391 	struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
392 	u32 v;
393 
394 	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
395 		bus->clock_inv = v;
396 		pr_debug("clock-inv %u\n", v);
397 	}
398 
399 	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
400 		bus->strobe = v;
401 		pr_debug("strobe %u\n", v);
402 	}
403 
404 	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
405 		bus->data_lane = v;
406 		pr_debug("data-lanes %u\n", v);
407 	}
408 
409 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
410 		bus->clock_lane = v;
411 		pr_debug("clock-lanes %u\n", v);
412 	}
413 
414 	if (bus_type == V4L2_MBUS_CCP2)
415 		vep->bus_type = V4L2_MBUS_CCP2;
416 	else
417 		vep->bus_type = V4L2_MBUS_CSI1;
418 }
419 
420 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
421 					struct v4l2_fwnode_endpoint *vep)
422 {
423 	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
424 	enum v4l2_mbus_type mbus_type;
425 	int rval;
426 
427 	pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
428 
429 	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
430 	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
431 		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
432 		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
433 		 vep->bus_type);
434 	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
435 	if (mbus_type == V4L2_MBUS_INVALID) {
436 		pr_debug("unsupported bus type %u\n", bus_type);
437 		return -EINVAL;
438 	}
439 
440 	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
441 		if (mbus_type != V4L2_MBUS_UNKNOWN &&
442 		    vep->bus_type != mbus_type) {
443 			pr_debug("expecting bus type %s\n",
444 				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
445 			return -ENXIO;
446 		}
447 	} else {
448 		vep->bus_type = mbus_type;
449 	}
450 
451 	switch (vep->bus_type) {
452 	case V4L2_MBUS_UNKNOWN:
453 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454 							   V4L2_MBUS_UNKNOWN);
455 		if (rval)
456 			return rval;
457 
458 		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
459 			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
460 								V4L2_MBUS_UNKNOWN);
461 
462 		pr_debug("assuming media bus type %s (%u)\n",
463 			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
464 			 vep->bus_type);
465 
466 		break;
467 	case V4L2_MBUS_CCP2:
468 	case V4L2_MBUS_CSI1:
469 		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
470 
471 		break;
472 	case V4L2_MBUS_CSI2_DPHY:
473 	case V4L2_MBUS_CSI2_CPHY:
474 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
475 							   vep->bus_type);
476 		if (rval)
477 			return rval;
478 
479 		break;
480 	case V4L2_MBUS_PARALLEL:
481 	case V4L2_MBUS_BT656:
482 		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
483 							vep->bus_type);
484 
485 		break;
486 	default:
487 		pr_warn("unsupported bus type %u\n", mbus_type);
488 		return -EINVAL;
489 	}
490 
491 	fwnode_graph_parse_endpoint(fwnode, &vep->base);
492 
493 	return 0;
494 }
495 
496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
497 			       struct v4l2_fwnode_endpoint *vep)
498 {
499 	int ret;
500 
501 	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
502 
503 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
504 
505 	return ret;
506 }
507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
508 
509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
510 {
511 	if (IS_ERR_OR_NULL(vep))
512 		return;
513 
514 	kfree(vep->link_frequencies);
515 	vep->link_frequencies = NULL;
516 }
517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
518 
519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
520 				     struct v4l2_fwnode_endpoint *vep)
521 {
522 	int rval;
523 
524 	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
525 	if (rval < 0)
526 		return rval;
527 
528 	rval = fwnode_property_count_u64(fwnode, "link-frequencies");
529 	if (rval > 0) {
530 		unsigned int i;
531 
532 		vep->link_frequencies =
533 			kmalloc_array(rval, sizeof(*vep->link_frequencies),
534 				      GFP_KERNEL);
535 		if (!vep->link_frequencies)
536 			return -ENOMEM;
537 
538 		vep->nr_of_link_frequencies = rval;
539 
540 		rval = fwnode_property_read_u64_array(fwnode,
541 						      "link-frequencies",
542 						      vep->link_frequencies,
543 						      vep->nr_of_link_frequencies);
544 		if (rval < 0) {
545 			v4l2_fwnode_endpoint_free(vep);
546 			return rval;
547 		}
548 
549 		for (i = 0; i < vep->nr_of_link_frequencies; i++)
550 			pr_debug("link-frequencies %u value %llu\n", i,
551 				 vep->link_frequencies[i]);
552 	}
553 
554 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
559 
560 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
561 			   struct v4l2_fwnode_link *link)
562 {
563 	struct fwnode_endpoint fwep;
564 
565 	memset(link, 0, sizeof(*link));
566 
567 	fwnode_graph_parse_endpoint(fwnode, &fwep);
568 	link->local_id = fwep.id;
569 	link->local_port = fwep.port;
570 	link->local_node = fwnode_graph_get_port_parent(fwnode);
571 
572 	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
573 	if (!fwnode) {
574 		fwnode_handle_put(fwnode);
575 		return -ENOLINK;
576 	}
577 
578 	fwnode_graph_parse_endpoint(fwnode, &fwep);
579 	link->remote_id = fwep.id;
580 	link->remote_port = fwep.port;
581 	link->remote_node = fwnode_graph_get_port_parent(fwnode);
582 
583 	return 0;
584 }
585 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
586 
587 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
588 {
589 	fwnode_handle_put(link->local_node);
590 	fwnode_handle_put(link->remote_node);
591 }
592 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
593 
594 static const struct v4l2_fwnode_connector_conv {
595 	enum v4l2_connector_type type;
596 	const char *compatible;
597 } connectors[] = {
598 	{
599 		.type = V4L2_CONN_COMPOSITE,
600 		.compatible = "composite-video-connector",
601 	}, {
602 		.type = V4L2_CONN_SVIDEO,
603 		.compatible = "svideo-connector",
604 	},
605 };
606 
607 static enum v4l2_connector_type
608 v4l2_fwnode_string_to_connector_type(const char *con_str)
609 {
610 	unsigned int i;
611 
612 	for (i = 0; i < ARRAY_SIZE(connectors); i++)
613 		if (!strcmp(con_str, connectors[i].compatible))
614 			return connectors[i].type;
615 
616 	return V4L2_CONN_UNKNOWN;
617 }
618 
619 static void
620 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
621 				   struct v4l2_fwnode_connector *vc)
622 {
623 	u32 stds;
624 	int ret;
625 
626 	ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
627 
628 	/* The property is optional. */
629 	vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
630 }
631 
632 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
633 {
634 	struct v4l2_connector_link *link, *tmp;
635 
636 	if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
637 		return;
638 
639 	list_for_each_entry_safe(link, tmp, &connector->links, head) {
640 		v4l2_fwnode_put_link(&link->fwnode_link);
641 		list_del(&link->head);
642 		kfree(link);
643 	}
644 
645 	kfree(connector->label);
646 	connector->label = NULL;
647 	connector->type = V4L2_CONN_UNKNOWN;
648 }
649 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
650 
651 static enum v4l2_connector_type
652 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
653 {
654 	const char *type_name;
655 	int err;
656 
657 	if (!fwnode)
658 		return V4L2_CONN_UNKNOWN;
659 
660 	/* The connector-type is stored within the compatible string. */
661 	err = fwnode_property_read_string(fwnode, "compatible", &type_name);
662 	if (err)
663 		return V4L2_CONN_UNKNOWN;
664 
665 	return v4l2_fwnode_string_to_connector_type(type_name);
666 }
667 
668 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
669 				struct v4l2_fwnode_connector *connector)
670 {
671 	struct fwnode_handle *connector_node;
672 	enum v4l2_connector_type connector_type;
673 	const char *label;
674 	int err;
675 
676 	if (!fwnode)
677 		return -EINVAL;
678 
679 	memset(connector, 0, sizeof(*connector));
680 
681 	INIT_LIST_HEAD(&connector->links);
682 
683 	connector_node = fwnode_graph_get_port_parent(fwnode);
684 	connector_type = v4l2_fwnode_get_connector_type(connector_node);
685 	if (connector_type == V4L2_CONN_UNKNOWN) {
686 		fwnode_handle_put(connector_node);
687 		connector_node = fwnode_graph_get_remote_port_parent(fwnode);
688 		connector_type = v4l2_fwnode_get_connector_type(connector_node);
689 	}
690 
691 	if (connector_type == V4L2_CONN_UNKNOWN) {
692 		pr_err("Unknown connector type\n");
693 		err = -ENOTCONN;
694 		goto out;
695 	}
696 
697 	connector->type = connector_type;
698 	connector->name = fwnode_get_name(connector_node);
699 	err = fwnode_property_read_string(connector_node, "label", &label);
700 	connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
701 
702 	/* Parse the connector specific properties. */
703 	switch (connector->type) {
704 	case V4L2_CONN_COMPOSITE:
705 	case V4L2_CONN_SVIDEO:
706 		v4l2_fwnode_connector_parse_analog(connector_node, connector);
707 		break;
708 	/* Avoid compiler warnings */
709 	case V4L2_CONN_UNKNOWN:
710 		break;
711 	}
712 
713 out:
714 	fwnode_handle_put(connector_node);
715 
716 	return err;
717 }
718 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
719 
720 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
721 				   struct v4l2_fwnode_connector *connector)
722 {
723 	struct fwnode_handle *connector_ep;
724 	struct v4l2_connector_link *link;
725 	int err;
726 
727 	if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
728 		return -EINVAL;
729 
730 	connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
731 	if (!connector_ep)
732 		return -ENOTCONN;
733 
734 	link = kzalloc(sizeof(*link), GFP_KERNEL);
735 	if (!link) {
736 		err = -ENOMEM;
737 		goto err;
738 	}
739 
740 	err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
741 	if (err)
742 		goto err;
743 
744 	fwnode_handle_put(connector_ep);
745 
746 	list_add(&link->head, &connector->links);
747 	connector->nr_of_links++;
748 
749 	return 0;
750 
751 err:
752 	kfree(link);
753 	fwnode_handle_put(connector_ep);
754 
755 	return err;
756 }
757 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
758 
759 int v4l2_fwnode_device_parse(struct device *dev,
760 			     struct v4l2_fwnode_device_properties *props)
761 {
762 	struct fwnode_handle *fwnode = dev_fwnode(dev);
763 	u32 val;
764 	int ret;
765 
766 	memset(props, 0, sizeof(*props));
767 
768 	props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
769 	ret = fwnode_property_read_u32(fwnode, "orientation", &val);
770 	if (!ret) {
771 		switch (val) {
772 		case V4L2_FWNODE_ORIENTATION_FRONT:
773 		case V4L2_FWNODE_ORIENTATION_BACK:
774 		case V4L2_FWNODE_ORIENTATION_EXTERNAL:
775 			break;
776 		default:
777 			dev_warn(dev, "Unsupported device orientation: %u\n", val);
778 			return -EINVAL;
779 		}
780 
781 		props->orientation = val;
782 		dev_dbg(dev, "device orientation: %u\n", val);
783 	}
784 
785 	props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
786 	ret = fwnode_property_read_u32(fwnode, "rotation", &val);
787 	if (!ret) {
788 		if (val >= 360) {
789 			dev_warn(dev, "Unsupported device rotation: %u\n", val);
790 			return -EINVAL;
791 		}
792 
793 		props->rotation = val;
794 		dev_dbg(dev, "device rotation: %u\n", val);
795 	}
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
800 
801 static int
802 v4l2_async_nf_fwnode_parse_endpoint(struct device *dev,
803 				    struct v4l2_async_notifier *notifier,
804 				    struct fwnode_handle *endpoint,
805 				    unsigned int asd_struct_size,
806 				    parse_endpoint_func parse_endpoint)
807 {
808 	struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
809 	struct v4l2_async_subdev *asd;
810 	int ret;
811 
812 	asd = kzalloc(asd_struct_size, GFP_KERNEL);
813 	if (!asd)
814 		return -ENOMEM;
815 
816 	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
817 	asd->match.fwnode =
818 		fwnode_graph_get_remote_port_parent(endpoint);
819 	if (!asd->match.fwnode) {
820 		dev_dbg(dev, "no remote endpoint found\n");
821 		ret = -ENOTCONN;
822 		goto out_err;
823 	}
824 
825 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
826 	if (ret) {
827 		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
828 			 ret);
829 		goto out_err;
830 	}
831 
832 	ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
833 	if (ret == -ENOTCONN)
834 		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
835 			vep.base.id);
836 	else if (ret < 0)
837 		dev_warn(dev,
838 			 "driver could not parse port@%u/endpoint@%u (%d)\n",
839 			 vep.base.port, vep.base.id, ret);
840 	v4l2_fwnode_endpoint_free(&vep);
841 	if (ret < 0)
842 		goto out_err;
843 
844 	ret = __v4l2_async_nf_add_subdev(notifier, asd);
845 	if (ret < 0) {
846 		/* not an error if asd already exists */
847 		if (ret == -EEXIST)
848 			ret = 0;
849 		goto out_err;
850 	}
851 
852 	return 0;
853 
854 out_err:
855 	fwnode_handle_put(asd->match.fwnode);
856 	kfree(asd);
857 
858 	return ret == -ENOTCONN ? 0 : ret;
859 }
860 
861 int
862 v4l2_async_nf_parse_fwnode_endpoints(struct device *dev,
863 				     struct v4l2_async_notifier *notifier,
864 				     size_t asd_struct_size,
865 				     parse_endpoint_func parse_endpoint)
866 {
867 	struct fwnode_handle *fwnode;
868 	int ret = 0;
869 
870 	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
871 		return -EINVAL;
872 
873 	fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
874 		struct fwnode_handle *dev_fwnode;
875 		bool is_available;
876 
877 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
878 		is_available = fwnode_device_is_available(dev_fwnode);
879 		fwnode_handle_put(dev_fwnode);
880 		if (!is_available)
881 			continue;
882 
883 
884 		ret = v4l2_async_nf_fwnode_parse_endpoint(dev, notifier,
885 							  fwnode,
886 							  asd_struct_size,
887 							  parse_endpoint);
888 		if (ret < 0)
889 			break;
890 	}
891 
892 	fwnode_handle_put(fwnode);
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(v4l2_async_nf_parse_fwnode_endpoints);
897 
898 /*
899  * v4l2_fwnode_reference_parse - parse references for async sub-devices
900  * @dev: the device node the properties of which are parsed for references
901  * @notifier: the async notifier where the async subdevs will be added
902  * @prop: the name of the property
903  *
904  * Return: 0 on success
905  *	   -ENOENT if no entries were found
906  *	   -ENOMEM if memory allocation failed
907  *	   -EINVAL if property parsing failed
908  */
909 static int v4l2_fwnode_reference_parse(struct device *dev,
910 				       struct v4l2_async_notifier *notifier,
911 				       const char *prop)
912 {
913 	struct fwnode_reference_args args;
914 	unsigned int index;
915 	int ret;
916 
917 	for (index = 0;
918 	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
919 							NULL, 0, index, &args));
920 	     index++) {
921 		struct v4l2_async_subdev *asd;
922 
923 		asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
924 					       struct v4l2_async_subdev);
925 		fwnode_handle_put(args.fwnode);
926 		if (IS_ERR(asd)) {
927 			/* not an error if asd already exists */
928 			if (PTR_ERR(asd) == -EEXIST)
929 				continue;
930 
931 			return PTR_ERR(asd);
932 		}
933 	}
934 
935 	/* -ENOENT here means successful parsing */
936 	if (ret != -ENOENT)
937 		return ret;
938 
939 	/* Return -ENOENT if no references were found */
940 	return index ? 0 : -ENOENT;
941 }
942 
943 /*
944  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
945  *					arguments
946  * @fwnode: fwnode to read @prop from
947  * @notifier: notifier for @dev
948  * @prop: the name of the property
949  * @index: the index of the reference to get
950  * @props: the array of integer property names
951  * @nprops: the number of integer property names in @nprops
952  *
953  * First find an fwnode referred to by the reference at @index in @prop.
954  *
955  * Then under that fwnode, @nprops times, for each property in @props,
956  * iteratively follow child nodes starting from fwnode such that they have the
957  * property in @props array at the index of the child node distance from the
958  * root node and the value of that property matching with the integer argument
959  * of the reference, at the same index.
960  *
961  * The child fwnode reached at the end of the iteration is then returned to the
962  * caller.
963  *
964  * The core reason for this is that you cannot refer to just any node in ACPI.
965  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
966  * provide a list of (property name, property value) tuples where each tuple
967  * uniquely identifies a child node. The first tuple identifies a child directly
968  * underneath the device fwnode, the next tuple identifies a child node
969  * underneath the fwnode identified by the previous tuple, etc. until you
970  * reached the fwnode you need.
971  *
972  * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
973  * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
974  * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
975  * data-node-references.txt and leds.txt .
976  *
977  *	Scope (\_SB.PCI0.I2C2)
978  *	{
979  *		Device (CAM0)
980  *		{
981  *			Name (_DSD, Package () {
982  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
983  *				Package () {
984  *					Package () {
985  *						"compatible",
986  *						Package () { "nokia,smia" }
987  *					},
988  *				},
989  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
990  *				Package () {
991  *					Package () { "port0", "PRT0" },
992  *				}
993  *			})
994  *			Name (PRT0, Package() {
995  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
996  *				Package () {
997  *					Package () { "port", 0 },
998  *				},
999  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1000  *				Package () {
1001  *					Package () { "endpoint0", "EP00" },
1002  *				}
1003  *			})
1004  *			Name (EP00, Package() {
1005  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1006  *				Package () {
1007  *					Package () { "endpoint", 0 },
1008  *					Package () {
1009  *						"remote-endpoint",
1010  *						Package() {
1011  *							\_SB.PCI0.ISP, 4, 0
1012  *						}
1013  *					},
1014  *				}
1015  *			})
1016  *		}
1017  *	}
1018  *
1019  *	Scope (\_SB.PCI0)
1020  *	{
1021  *		Device (ISP)
1022  *		{
1023  *			Name (_DSD, Package () {
1024  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1025  *				Package () {
1026  *					Package () { "port4", "PRT4" },
1027  *				}
1028  *			})
1029  *
1030  *			Name (PRT4, Package() {
1031  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1032  *				Package () {
1033  *					Package () { "port", 4 },
1034  *				},
1035  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1036  *				Package () {
1037  *					Package () { "endpoint0", "EP40" },
1038  *				}
1039  *			})
1040  *
1041  *			Name (EP40, Package() {
1042  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1043  *				Package () {
1044  *					Package () { "endpoint", 0 },
1045  *					Package () {
1046  *						"remote-endpoint",
1047  *						Package () {
1048  *							\_SB.PCI0.I2C2.CAM0,
1049  *							0, 0
1050  *						}
1051  *					},
1052  *				}
1053  *			})
1054  *		}
1055  *	}
1056  *
1057  * From the EP40 node under ISP device, you could parse the graph remote
1058  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1059  *
1060  *  @fwnode: fwnode referring to EP40 under ISP.
1061  *  @prop: "remote-endpoint"
1062  *  @index: 0
1063  *  @props: "port", "endpoint"
1064  *  @nprops: 2
1065  *
1066  * And you'd get back fwnode referring to EP00 under CAM0.
1067  *
1068  * The same works the other way around: if you use EP00 under CAM0 as the
1069  * fwnode, you'll get fwnode referring to EP40 under ISP.
1070  *
1071  * The same example in DT syntax would look like this:
1072  *
1073  * cam: cam0 {
1074  *	compatible = "nokia,smia";
1075  *
1076  *	port {
1077  *		port = <0>;
1078  *		endpoint {
1079  *			endpoint = <0>;
1080  *			remote-endpoint = <&isp 4 0>;
1081  *		};
1082  *	};
1083  * };
1084  *
1085  * isp: isp {
1086  *	ports {
1087  *		port@4 {
1088  *			port = <4>;
1089  *			endpoint {
1090  *				endpoint = <0>;
1091  *				remote-endpoint = <&cam 0 0>;
1092  *			};
1093  *		};
1094  *	};
1095  * };
1096  *
1097  * Return: 0 on success
1098  *	   -ENOENT if no entries (or the property itself) were found
1099  *	   -EINVAL if property parsing otherwise failed
1100  *	   -ENOMEM if memory allocation failed
1101  */
1102 static struct fwnode_handle *
1103 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1104 				   const char *prop,
1105 				   unsigned int index,
1106 				   const char * const *props,
1107 				   unsigned int nprops)
1108 {
1109 	struct fwnode_reference_args fwnode_args;
1110 	u64 *args = fwnode_args.args;
1111 	struct fwnode_handle *child;
1112 	int ret;
1113 
1114 	/*
1115 	 * Obtain remote fwnode as well as the integer arguments.
1116 	 *
1117 	 * Note that right now both -ENODATA and -ENOENT may signal
1118 	 * out-of-bounds access. Return -ENOENT in that case.
1119 	 */
1120 	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1121 						 index, &fwnode_args);
1122 	if (ret)
1123 		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1124 
1125 	/*
1126 	 * Find a node in the tree under the referred fwnode corresponding to
1127 	 * the integer arguments.
1128 	 */
1129 	fwnode = fwnode_args.fwnode;
1130 	while (nprops--) {
1131 		u32 val;
1132 
1133 		/* Loop over all child nodes under fwnode. */
1134 		fwnode_for_each_child_node(fwnode, child) {
1135 			if (fwnode_property_read_u32(child, *props, &val))
1136 				continue;
1137 
1138 			/* Found property, see if its value matches. */
1139 			if (val == *args)
1140 				break;
1141 		}
1142 
1143 		fwnode_handle_put(fwnode);
1144 
1145 		/* No property found; return an error here. */
1146 		if (!child) {
1147 			fwnode = ERR_PTR(-ENOENT);
1148 			break;
1149 		}
1150 
1151 		props++;
1152 		args++;
1153 		fwnode = child;
1154 	}
1155 
1156 	return fwnode;
1157 }
1158 
1159 struct v4l2_fwnode_int_props {
1160 	const char *name;
1161 	const char * const *props;
1162 	unsigned int nprops;
1163 };
1164 
1165 /*
1166  * v4l2_fwnode_reference_parse_int_props - parse references for async
1167  *					   sub-devices
1168  * @dev: struct device pointer
1169  * @notifier: notifier for @dev
1170  * @prop: the name of the property
1171  * @props: the array of integer property names
1172  * @nprops: the number of integer properties
1173  *
1174  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1175  * property @prop with integer arguments with child nodes matching in properties
1176  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1177  * accordingly.
1178  *
1179  * While it is technically possible to use this function on DT, it is only
1180  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1181  * on ACPI the references are limited to devices.
1182  *
1183  * Return: 0 on success
1184  *	   -ENOENT if no entries (or the property itself) were found
1185  *	   -EINVAL if property parsing otherwisefailed
1186  *	   -ENOMEM if memory allocation failed
1187  */
1188 static int
1189 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1190 				      struct v4l2_async_notifier *notifier,
1191 				      const struct v4l2_fwnode_int_props *p)
1192 {
1193 	struct fwnode_handle *fwnode;
1194 	unsigned int index;
1195 	int ret;
1196 	const char *prop = p->name;
1197 	const char * const *props = p->props;
1198 	unsigned int nprops = p->nprops;
1199 
1200 	index = 0;
1201 	do {
1202 		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1203 							    prop, index,
1204 							    props, nprops);
1205 		if (IS_ERR(fwnode)) {
1206 			/*
1207 			 * Note that right now both -ENODATA and -ENOENT may
1208 			 * signal out-of-bounds access. Return the error in
1209 			 * cases other than that.
1210 			 */
1211 			if (PTR_ERR(fwnode) != -ENOENT &&
1212 			    PTR_ERR(fwnode) != -ENODATA)
1213 				return PTR_ERR(fwnode);
1214 			break;
1215 		}
1216 		fwnode_handle_put(fwnode);
1217 		index++;
1218 	} while (1);
1219 
1220 	for (index = 0;
1221 	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1222 								  prop, index,
1223 								  props,
1224 								  nprops)));
1225 	     index++) {
1226 		struct v4l2_async_subdev *asd;
1227 
1228 		asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1229 					       struct v4l2_async_subdev);
1230 		fwnode_handle_put(fwnode);
1231 		if (IS_ERR(asd)) {
1232 			ret = PTR_ERR(asd);
1233 			/* not an error if asd already exists */
1234 			if (ret == -EEXIST)
1235 				continue;
1236 
1237 			return PTR_ERR(asd);
1238 		}
1239 	}
1240 
1241 	return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1242 }
1243 
1244 /**
1245  * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1246  *					     sensors for async sub-devices
1247  * @dev: the device node the properties of which are parsed for references
1248  * @notifier: the async notifier where the async subdevs will be added
1249  *
1250  * Parse common sensor properties for remote devices related to the
1251  * sensor and set up async sub-devices for them.
1252  *
1253  * Any notifier populated using this function must be released with a call to
1254  * v4l2_async_nf_release() after it has been unregistered and the async
1255  * sub-devices are no longer in use, even in the case the function returned an
1256  * error.
1257  *
1258  * Return: 0 on success
1259  *	   -ENOMEM if memory allocation failed
1260  *	   -EINVAL if property parsing failed
1261  */
1262 static int
1263 v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1264 				  struct v4l2_async_notifier *notifier)
1265 {
1266 	static const char * const led_props[] = { "led" };
1267 	static const struct v4l2_fwnode_int_props props[] = {
1268 		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1269 		{ "lens-focus", NULL, 0 },
1270 	};
1271 	unsigned int i;
1272 
1273 	for (i = 0; i < ARRAY_SIZE(props); i++) {
1274 		int ret;
1275 
1276 		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1277 			ret = v4l2_fwnode_reference_parse_int_props(dev,
1278 								    notifier,
1279 								    &props[i]);
1280 		else
1281 			ret = v4l2_fwnode_reference_parse(dev, notifier,
1282 							  props[i].name);
1283 		if (ret && ret != -ENOENT) {
1284 			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1285 				 props[i].name, ret);
1286 			return ret;
1287 		}
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1294 {
1295 	struct v4l2_async_notifier *notifier;
1296 	int ret;
1297 
1298 	if (WARN_ON(!sd->dev))
1299 		return -ENODEV;
1300 
1301 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1302 	if (!notifier)
1303 		return -ENOMEM;
1304 
1305 	v4l2_async_nf_init(notifier);
1306 
1307 	ret = v4l2_subdev_get_privacy_led(sd);
1308 	if (ret < 0)
1309 		goto out_cleanup;
1310 
1311 	ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1312 	if (ret < 0)
1313 		goto out_cleanup;
1314 
1315 	ret = v4l2_async_subdev_nf_register(sd, notifier);
1316 	if (ret < 0)
1317 		goto out_cleanup;
1318 
1319 	ret = v4l2_async_register_subdev(sd);
1320 	if (ret < 0)
1321 		goto out_unregister;
1322 
1323 	sd->subdev_notifier = notifier;
1324 
1325 	return 0;
1326 
1327 out_unregister:
1328 	v4l2_async_nf_unregister(notifier);
1329 
1330 out_cleanup:
1331 	v4l2_subdev_put_privacy_led(sd);
1332 	v4l2_async_nf_cleanup(notifier);
1333 	kfree(notifier);
1334 
1335 	return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1338 
1339 MODULE_LICENSE("GPL");
1340 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1341 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1342 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1343