xref: /linux/drivers/misc/lkdtm/heap.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/kfence.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/sched.h>
11 
12 static struct kmem_cache *double_free_cache;
13 static struct kmem_cache *a_cache;
14 static struct kmem_cache *b_cache;
15 
16 /*
17  * Using volatile here means the compiler cannot ever make assumptions
18  * about this value. This means compile-time length checks involving
19  * this variable cannot be performed; only run-time checks.
20  */
21 static volatile int __offset = 1;
22 
23 /*
24  * If there aren't guard pages, it's likely that a consecutive allocation will
25  * let us overflow into the second allocation without overwriting something real.
26  *
27  * This should always be caught because there is an unconditional unmapped
28  * page after vmap allocations.
29  */
30 static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
31 {
32 	char *one, *two;
33 
34 	one = vzalloc(PAGE_SIZE);
35 	OPTIMIZER_HIDE_VAR(one);
36 	two = vzalloc(PAGE_SIZE);
37 
38 	pr_info("Attempting vmalloc linear overflow ...\n");
39 	memset(one, 0xAA, PAGE_SIZE + __offset);
40 
41 	vfree(two);
42 	vfree(one);
43 }
44 
45 /*
46  * This tries to stay within the next largest power-of-2 kmalloc cache
47  * to avoid actually overwriting anything important if it's not detected
48  * correctly.
49  *
50  * This should get caught by either memory tagging, KASan, or by using
51  * CONFIG_SLUB_DEBUG=y and slab_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
52  */
53 static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
54 {
55 	size_t len = 1020;
56 	u32 *data = kmalloc(len, GFP_KERNEL);
57 	if (!data)
58 		return;
59 
60 	pr_info("Attempting slab linear overflow ...\n");
61 	OPTIMIZER_HIDE_VAR(data);
62 	data[1024 / sizeof(u32)] = 0x12345678;
63 	kfree(data);
64 }
65 
66 static void lkdtm_WRITE_AFTER_FREE(void)
67 {
68 	int *base, *again;
69 	size_t len = 1024;
70 	/*
71 	 * The slub allocator uses the first word to store the free
72 	 * pointer in some configurations. Use the middle of the
73 	 * allocation to avoid running into the freelist
74 	 */
75 	size_t offset = (len / sizeof(*base)) / 2;
76 
77 	base = kmalloc(len, GFP_KERNEL);
78 	if (!base)
79 		return;
80 	pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
81 	pr_info("Attempting bad write to freed memory at %p\n",
82 		&base[offset]);
83 	kfree(base);
84 	base[offset] = 0x0abcdef0;
85 	/* Attempt to notice the overwrite. */
86 	again = kmalloc(len, GFP_KERNEL);
87 	kfree(again);
88 	if (again != base)
89 		pr_info("Hmm, didn't get the same memory range.\n");
90 }
91 
92 static void lkdtm_READ_AFTER_FREE(void)
93 {
94 	int *base, *val, saw;
95 	size_t len = 1024;
96 	/*
97 	 * The slub allocator will use the either the first word or
98 	 * the middle of the allocation to store the free pointer,
99 	 * depending on configurations. Store in the second word to
100 	 * avoid running into the freelist.
101 	 */
102 	size_t offset = sizeof(*base);
103 
104 	base = kmalloc(len, GFP_KERNEL);
105 	if (!base) {
106 		pr_info("Unable to allocate base memory.\n");
107 		return;
108 	}
109 
110 	val = kmalloc(len, GFP_KERNEL);
111 	if (!val) {
112 		pr_info("Unable to allocate val memory.\n");
113 		kfree(base);
114 		return;
115 	}
116 
117 	*val = 0x12345678;
118 	base[offset] = *val;
119 	pr_info("Value in memory before free: %x\n", base[offset]);
120 
121 	kfree(base);
122 
123 	pr_info("Attempting bad read from freed memory\n");
124 	saw = base[offset];
125 	if (saw != *val) {
126 		/* Good! Poisoning happened, so declare a win. */
127 		pr_info("Memory correctly poisoned (%x)\n", saw);
128 	} else {
129 		pr_err("FAIL: Memory was not poisoned!\n");
130 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
131 	}
132 
133 	kfree(val);
134 }
135 
136 static void lkdtm_KFENCE_READ_AFTER_FREE(void)
137 {
138 	int *base, val, saw;
139 	unsigned long timeout, resched_after;
140 	size_t len = 1024;
141 	/*
142 	 * The slub allocator will use the either the first word or
143 	 * the middle of the allocation to store the free pointer,
144 	 * depending on configurations. Store in the second word to
145 	 * avoid running into the freelist.
146 	 */
147 	size_t offset = sizeof(*base);
148 
149 	/*
150 	 * 100x the sample interval should be more than enough to ensure we get
151 	 * a KFENCE allocation eventually.
152 	 */
153 	timeout = jiffies + msecs_to_jiffies(100 * kfence_sample_interval);
154 	/*
155 	 * Especially for non-preemption kernels, ensure the allocation-gate
156 	 * timer can catch up: after @resched_after, every failed allocation
157 	 * attempt yields, to ensure the allocation-gate timer is scheduled.
158 	 */
159 	resched_after = jiffies + msecs_to_jiffies(kfence_sample_interval);
160 	do {
161 		base = kmalloc(len, GFP_KERNEL);
162 		if (!base) {
163 			pr_err("FAIL: Unable to allocate kfence memory!\n");
164 			return;
165 		}
166 
167 		if (is_kfence_address(base)) {
168 			val = 0x12345678;
169 			base[offset] = val;
170 			pr_info("Value in memory before free: %x\n", base[offset]);
171 
172 			kfree(base);
173 
174 			pr_info("Attempting bad read from freed memory\n");
175 			saw = base[offset];
176 			if (saw != val) {
177 				/* Good! Poisoning happened, so declare a win. */
178 				pr_info("Memory correctly poisoned (%x)\n", saw);
179 			} else {
180 				pr_err("FAIL: Memory was not poisoned!\n");
181 				pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
182 			}
183 			return;
184 		}
185 
186 		kfree(base);
187 		if (time_after(jiffies, resched_after))
188 			cond_resched();
189 	} while (time_before(jiffies, timeout));
190 
191 	pr_err("FAIL: kfence memory never allocated!\n");
192 }
193 
194 static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
195 {
196 	unsigned long p = __get_free_page(GFP_KERNEL);
197 	if (!p) {
198 		pr_info("Unable to allocate free page\n");
199 		return;
200 	}
201 
202 	pr_info("Writing to the buddy page before free\n");
203 	memset((void *)p, 0x3, PAGE_SIZE);
204 	free_page(p);
205 	schedule();
206 	pr_info("Attempting bad write to the buddy page after free\n");
207 	memset((void *)p, 0x78, PAGE_SIZE);
208 	/* Attempt to notice the overwrite. */
209 	p = __get_free_page(GFP_KERNEL);
210 	free_page(p);
211 	schedule();
212 }
213 
214 static void lkdtm_READ_BUDDY_AFTER_FREE(void)
215 {
216 	unsigned long p = __get_free_page(GFP_KERNEL);
217 	int saw, *val;
218 	int *base;
219 
220 	if (!p) {
221 		pr_info("Unable to allocate free page\n");
222 		return;
223 	}
224 
225 	val = kmalloc(1024, GFP_KERNEL);
226 	if (!val) {
227 		pr_info("Unable to allocate val memory.\n");
228 		free_page(p);
229 		return;
230 	}
231 
232 	base = (int *)p;
233 
234 	*val = 0x12345678;
235 	base[0] = *val;
236 	pr_info("Value in memory before free: %x\n", base[0]);
237 	free_page(p);
238 	pr_info("Attempting to read from freed memory\n");
239 	saw = base[0];
240 	if (saw != *val) {
241 		/* Good! Poisoning happened, so declare a win. */
242 		pr_info("Memory correctly poisoned (%x)\n", saw);
243 	} else {
244 		pr_err("FAIL: Buddy page was not poisoned!\n");
245 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
246 	}
247 
248 	kfree(val);
249 }
250 
251 static void lkdtm_SLAB_INIT_ON_ALLOC(void)
252 {
253 	u8 *first;
254 	u8 *val;
255 
256 	first = kmalloc(512, GFP_KERNEL);
257 	if (!first) {
258 		pr_info("Unable to allocate 512 bytes the first time.\n");
259 		return;
260 	}
261 
262 	memset(first, 0xAB, 512);
263 	kfree(first);
264 
265 	val = kmalloc(512, GFP_KERNEL);
266 	if (!val) {
267 		pr_info("Unable to allocate 512 bytes the second time.\n");
268 		return;
269 	}
270 	if (val != first) {
271 		pr_warn("Reallocation missed clobbered memory.\n");
272 	}
273 
274 	if (memchr(val, 0xAB, 512) == NULL) {
275 		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
276 	} else {
277 		pr_err("FAIL: Slab was not initialized\n");
278 		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
279 	}
280 	kfree(val);
281 }
282 
283 static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
284 {
285 	u8 *first;
286 	u8 *val;
287 
288 	first = (u8 *)__get_free_page(GFP_KERNEL);
289 	if (!first) {
290 		pr_info("Unable to allocate first free page\n");
291 		return;
292 	}
293 
294 	memset(first, 0xAB, PAGE_SIZE);
295 	free_page((unsigned long)first);
296 
297 	val = (u8 *)__get_free_page(GFP_KERNEL);
298 	if (!val) {
299 		pr_info("Unable to allocate second free page\n");
300 		return;
301 	}
302 
303 	if (val != first) {
304 		pr_warn("Reallocation missed clobbered memory.\n");
305 	}
306 
307 	if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
308 		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
309 	} else {
310 		pr_err("FAIL: Slab was not initialized\n");
311 		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
312 	}
313 	free_page((unsigned long)val);
314 }
315 
316 static void lkdtm_SLAB_FREE_DOUBLE(void)
317 {
318 	int *val;
319 
320 	val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
321 	if (!val) {
322 		pr_info("Unable to allocate double_free_cache memory.\n");
323 		return;
324 	}
325 
326 	/* Just make sure we got real memory. */
327 	*val = 0x12345678;
328 	pr_info("Attempting double slab free ...\n");
329 	kmem_cache_free(double_free_cache, val);
330 	kmem_cache_free(double_free_cache, val);
331 }
332 
333 static void lkdtm_SLAB_FREE_CROSS(void)
334 {
335 	int *val;
336 
337 	val = kmem_cache_alloc(a_cache, GFP_KERNEL);
338 	if (!val) {
339 		pr_info("Unable to allocate a_cache memory.\n");
340 		return;
341 	}
342 
343 	/* Just make sure we got real memory. */
344 	*val = 0x12345679;
345 	pr_info("Attempting cross-cache slab free ...\n");
346 	kmem_cache_free(b_cache, val);
347 }
348 
349 static void lkdtm_SLAB_FREE_PAGE(void)
350 {
351 	unsigned long p = __get_free_page(GFP_KERNEL);
352 
353 	pr_info("Attempting non-Slab slab free ...\n");
354 	kmem_cache_free(NULL, (void *)p);
355 	free_page(p);
356 }
357 
358 /*
359  * We have constructors to keep the caches distinctly separated without
360  * needing to boot with "slab_nomerge".
361  */
362 static void ctor_double_free(void *region)
363 { }
364 static void ctor_a(void *region)
365 { }
366 static void ctor_b(void *region)
367 { }
368 
369 void __init lkdtm_heap_init(void)
370 {
371 	double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
372 					      64, 0, 0, ctor_double_free);
373 	a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
374 	b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
375 }
376 
377 void __exit lkdtm_heap_exit(void)
378 {
379 	kmem_cache_destroy(double_free_cache);
380 	kmem_cache_destroy(a_cache);
381 	kmem_cache_destroy(b_cache);
382 }
383 
384 static struct crashtype crashtypes[] = {
385 	CRASHTYPE(SLAB_LINEAR_OVERFLOW),
386 	CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
387 	CRASHTYPE(WRITE_AFTER_FREE),
388 	CRASHTYPE(READ_AFTER_FREE),
389 	CRASHTYPE(KFENCE_READ_AFTER_FREE),
390 	CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
391 	CRASHTYPE(READ_BUDDY_AFTER_FREE),
392 	CRASHTYPE(SLAB_INIT_ON_ALLOC),
393 	CRASHTYPE(BUDDY_INIT_ON_ALLOC),
394 	CRASHTYPE(SLAB_FREE_DOUBLE),
395 	CRASHTYPE(SLAB_FREE_CROSS),
396 	CRASHTYPE(SLAB_FREE_PAGE),
397 };
398 
399 struct crashtype_category heap_crashtypes = {
400 	.crashtypes = crashtypes,
401 	.len	    = ARRAY_SIZE(crashtypes),
402 };
403