xref: /linux/drivers/mmc/core/block.c (revision f86fd32d)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	struct device	*parent;
104 	struct gendisk	*disk;
105 	struct mmc_queue queue;
106 	struct list_head part;
107 	struct list_head rpmbs;
108 
109 	unsigned int	flags;
110 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
112 
113 	unsigned int	usage;
114 	unsigned int	read_only;
115 	unsigned int	part_type;
116 	unsigned int	reset_done;
117 #define MMC_BLK_READ		BIT(0)
118 #define MMC_BLK_WRITE		BIT(1)
119 #define MMC_BLK_DISCARD		BIT(2)
120 #define MMC_BLK_SECDISCARD	BIT(3)
121 #define MMC_BLK_CQE_RECOVERY	BIT(4)
122 
123 	/*
124 	 * Only set in main mmc_blk_data associated
125 	 * with mmc_card with dev_set_drvdata, and keeps
126 	 * track of the current selected device partition.
127 	 */
128 	unsigned int	part_curr;
129 	struct device_attribute force_ro;
130 	struct device_attribute power_ro_lock;
131 	int	area_type;
132 
133 	/* debugfs files (only in main mmc_blk_data) */
134 	struct dentry *status_dentry;
135 	struct dentry *ext_csd_dentry;
136 };
137 
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
140 
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143 	.name = "mmc_rpmb",
144 };
145 
146 /**
147  * struct mmc_rpmb_data - special RPMB device type for these areas
148  * @dev: the device for the RPMB area
149  * @chrdev: character device for the RPMB area
150  * @id: unique device ID number
151  * @part_index: partition index (0 on first)
152  * @md: parent MMC block device
153  * @node: list item, so we can put this device on a list
154  */
155 struct mmc_rpmb_data {
156 	struct device dev;
157 	struct cdev chrdev;
158 	int id;
159 	unsigned int part_index;
160 	struct mmc_blk_data *md;
161 	struct list_head node;
162 };
163 
164 static DEFINE_MUTEX(open_lock);
165 
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168 
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 				      unsigned int part_type);
171 
172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
173 {
174 	struct mmc_blk_data *md;
175 
176 	mutex_lock(&open_lock);
177 	md = disk->private_data;
178 	if (md && md->usage == 0)
179 		md = NULL;
180 	if (md)
181 		md->usage++;
182 	mutex_unlock(&open_lock);
183 
184 	return md;
185 }
186 
187 static inline int mmc_get_devidx(struct gendisk *disk)
188 {
189 	int devidx = disk->first_minor / perdev_minors;
190 	return devidx;
191 }
192 
193 static void mmc_blk_put(struct mmc_blk_data *md)
194 {
195 	mutex_lock(&open_lock);
196 	md->usage--;
197 	if (md->usage == 0) {
198 		int devidx = mmc_get_devidx(md->disk);
199 		blk_put_queue(md->queue.queue);
200 		ida_simple_remove(&mmc_blk_ida, devidx);
201 		put_disk(md->disk);
202 		kfree(md);
203 	}
204 	mutex_unlock(&open_lock);
205 }
206 
207 static ssize_t power_ro_lock_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	int ret;
211 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
212 	struct mmc_card *card = md->queue.card;
213 	int locked = 0;
214 
215 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
216 		locked = 2;
217 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
218 		locked = 1;
219 
220 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
221 
222 	mmc_blk_put(md);
223 
224 	return ret;
225 }
226 
227 static ssize_t power_ro_lock_store(struct device *dev,
228 		struct device_attribute *attr, const char *buf, size_t count)
229 {
230 	int ret;
231 	struct mmc_blk_data *md, *part_md;
232 	struct mmc_queue *mq;
233 	struct request *req;
234 	unsigned long set;
235 
236 	if (kstrtoul(buf, 0, &set))
237 		return -EINVAL;
238 
239 	if (set != 1)
240 		return count;
241 
242 	md = mmc_blk_get(dev_to_disk(dev));
243 	mq = &md->queue;
244 
245 	/* Dispatch locking to the block layer */
246 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
247 	if (IS_ERR(req)) {
248 		count = PTR_ERR(req);
249 		goto out_put;
250 	}
251 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
252 	blk_execute_rq(mq->queue, NULL, req, 0);
253 	ret = req_to_mmc_queue_req(req)->drv_op_result;
254 	blk_put_request(req);
255 
256 	if (!ret) {
257 		pr_info("%s: Locking boot partition ro until next power on\n",
258 			md->disk->disk_name);
259 		set_disk_ro(md->disk, 1);
260 
261 		list_for_each_entry(part_md, &md->part, part)
262 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
263 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
264 				set_disk_ro(part_md->disk, 1);
265 			}
266 	}
267 out_put:
268 	mmc_blk_put(md);
269 	return count;
270 }
271 
272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
273 			     char *buf)
274 {
275 	int ret;
276 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277 
278 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
279 		       get_disk_ro(dev_to_disk(dev)) ^
280 		       md->read_only);
281 	mmc_blk_put(md);
282 	return ret;
283 }
284 
285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
286 			      const char *buf, size_t count)
287 {
288 	int ret;
289 	char *end;
290 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
291 	unsigned long set = simple_strtoul(buf, &end, 0);
292 	if (end == buf) {
293 		ret = -EINVAL;
294 		goto out;
295 	}
296 
297 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
298 	ret = count;
299 out:
300 	mmc_blk_put(md);
301 	return ret;
302 }
303 
304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
305 {
306 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
307 	int ret = -ENXIO;
308 
309 	mutex_lock(&block_mutex);
310 	if (md) {
311 		if (md->usage == 2)
312 			check_disk_change(bdev);
313 		ret = 0;
314 
315 		if ((mode & FMODE_WRITE) && md->read_only) {
316 			mmc_blk_put(md);
317 			ret = -EROFS;
318 		}
319 	}
320 	mutex_unlock(&block_mutex);
321 
322 	return ret;
323 }
324 
325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mmc_blk_data *md = disk->private_data;
328 
329 	mutex_lock(&block_mutex);
330 	mmc_blk_put(md);
331 	mutex_unlock(&block_mutex);
332 }
333 
334 static int
335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
336 {
337 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
338 	geo->heads = 4;
339 	geo->sectors = 16;
340 	return 0;
341 }
342 
343 struct mmc_blk_ioc_data {
344 	struct mmc_ioc_cmd ic;
345 	unsigned char *buf;
346 	u64 buf_bytes;
347 	struct mmc_rpmb_data *rpmb;
348 };
349 
350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
351 	struct mmc_ioc_cmd __user *user)
352 {
353 	struct mmc_blk_ioc_data *idata;
354 	int err;
355 
356 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
357 	if (!idata) {
358 		err = -ENOMEM;
359 		goto out;
360 	}
361 
362 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
363 		err = -EFAULT;
364 		goto idata_err;
365 	}
366 
367 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
368 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
369 		err = -EOVERFLOW;
370 		goto idata_err;
371 	}
372 
373 	if (!idata->buf_bytes) {
374 		idata->buf = NULL;
375 		return idata;
376 	}
377 
378 	idata->buf = memdup_user((void __user *)(unsigned long)
379 				 idata->ic.data_ptr, idata->buf_bytes);
380 	if (IS_ERR(idata->buf)) {
381 		err = PTR_ERR(idata->buf);
382 		goto idata_err;
383 	}
384 
385 	return idata;
386 
387 idata_err:
388 	kfree(idata);
389 out:
390 	return ERR_PTR(err);
391 }
392 
393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
394 				      struct mmc_blk_ioc_data *idata)
395 {
396 	struct mmc_ioc_cmd *ic = &idata->ic;
397 
398 	if (copy_to_user(&(ic_ptr->response), ic->response,
399 			 sizeof(ic->response)))
400 		return -EFAULT;
401 
402 	if (!idata->ic.write_flag) {
403 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
404 				 idata->buf, idata->buf_bytes))
405 			return -EFAULT;
406 	}
407 
408 	return 0;
409 }
410 
411 static int ioctl_do_sanitize(struct mmc_card *card)
412 {
413 	int err;
414 
415 	if (!mmc_can_sanitize(card)) {
416 			pr_warn("%s: %s - SANITIZE is not supported\n",
417 				mmc_hostname(card->host), __func__);
418 			err = -EOPNOTSUPP;
419 			goto out;
420 	}
421 
422 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
423 		mmc_hostname(card->host), __func__);
424 
425 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
426 					EXT_CSD_SANITIZE_START, 1,
427 					MMC_SANITIZE_REQ_TIMEOUT);
428 
429 	if (err)
430 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
431 		       mmc_hostname(card->host), __func__, err);
432 
433 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
434 					     __func__);
435 out:
436 	return err;
437 }
438 
439 static inline bool mmc_blk_in_tran_state(u32 status)
440 {
441 	/*
442 	 * Some cards mishandle the status bits, so make sure to check both the
443 	 * busy indication and the card state.
444 	 */
445 	return status & R1_READY_FOR_DATA &&
446 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
447 }
448 
449 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
450 			    u32 *resp_errs)
451 {
452 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
453 	int err = 0;
454 	u32 status;
455 
456 	do {
457 		bool done = time_after(jiffies, timeout);
458 
459 		err = __mmc_send_status(card, &status, 5);
460 		if (err) {
461 			dev_err(mmc_dev(card->host),
462 				"error %d requesting status\n", err);
463 			return err;
464 		}
465 
466 		/* Accumulate any response error bits seen */
467 		if (resp_errs)
468 			*resp_errs |= status;
469 
470 		/*
471 		 * Timeout if the device never becomes ready for data and never
472 		 * leaves the program state.
473 		 */
474 		if (done) {
475 			dev_err(mmc_dev(card->host),
476 				"Card stuck in wrong state! %s status: %#x\n",
477 				 __func__, status);
478 			return -ETIMEDOUT;
479 		}
480 
481 		/*
482 		 * Some cards mishandle the status bits,
483 		 * so make sure to check both the busy
484 		 * indication and the card state.
485 		 */
486 	} while (!mmc_blk_in_tran_state(status));
487 
488 	return err;
489 }
490 
491 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
492 			       struct mmc_blk_ioc_data *idata)
493 {
494 	struct mmc_command cmd = {}, sbc = {};
495 	struct mmc_data data = {};
496 	struct mmc_request mrq = {};
497 	struct scatterlist sg;
498 	int err;
499 	unsigned int target_part;
500 
501 	if (!card || !md || !idata)
502 		return -EINVAL;
503 
504 	/*
505 	 * The RPMB accesses comes in from the character device, so we
506 	 * need to target these explicitly. Else we just target the
507 	 * partition type for the block device the ioctl() was issued
508 	 * on.
509 	 */
510 	if (idata->rpmb) {
511 		/* Support multiple RPMB partitions */
512 		target_part = idata->rpmb->part_index;
513 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
514 	} else {
515 		target_part = md->part_type;
516 	}
517 
518 	cmd.opcode = idata->ic.opcode;
519 	cmd.arg = idata->ic.arg;
520 	cmd.flags = idata->ic.flags;
521 
522 	if (idata->buf_bytes) {
523 		data.sg = &sg;
524 		data.sg_len = 1;
525 		data.blksz = idata->ic.blksz;
526 		data.blocks = idata->ic.blocks;
527 
528 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
529 
530 		if (idata->ic.write_flag)
531 			data.flags = MMC_DATA_WRITE;
532 		else
533 			data.flags = MMC_DATA_READ;
534 
535 		/* data.flags must already be set before doing this. */
536 		mmc_set_data_timeout(&data, card);
537 
538 		/* Allow overriding the timeout_ns for empirical tuning. */
539 		if (idata->ic.data_timeout_ns)
540 			data.timeout_ns = idata->ic.data_timeout_ns;
541 
542 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
543 			/*
544 			 * Pretend this is a data transfer and rely on the
545 			 * host driver to compute timeout.  When all host
546 			 * drivers support cmd.cmd_timeout for R1B, this
547 			 * can be changed to:
548 			 *
549 			 *     mrq.data = NULL;
550 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
551 			 */
552 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
553 		}
554 
555 		mrq.data = &data;
556 	}
557 
558 	mrq.cmd = &cmd;
559 
560 	err = mmc_blk_part_switch(card, target_part);
561 	if (err)
562 		return err;
563 
564 	if (idata->ic.is_acmd) {
565 		err = mmc_app_cmd(card->host, card);
566 		if (err)
567 			return err;
568 	}
569 
570 	if (idata->rpmb) {
571 		sbc.opcode = MMC_SET_BLOCK_COUNT;
572 		/*
573 		 * We don't do any blockcount validation because the max size
574 		 * may be increased by a future standard. We just copy the
575 		 * 'Reliable Write' bit here.
576 		 */
577 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
578 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
579 		mrq.sbc = &sbc;
580 	}
581 
582 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
583 	    (cmd.opcode == MMC_SWITCH)) {
584 		err = ioctl_do_sanitize(card);
585 
586 		if (err)
587 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
588 			       __func__, err);
589 
590 		return err;
591 	}
592 
593 	mmc_wait_for_req(card->host, &mrq);
594 
595 	if (cmd.error) {
596 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
597 						__func__, cmd.error);
598 		return cmd.error;
599 	}
600 	if (data.error) {
601 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
602 						__func__, data.error);
603 		return data.error;
604 	}
605 
606 	/*
607 	 * Make sure the cache of the PARTITION_CONFIG register and
608 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
609 	 * changed it successfully.
610 	 */
611 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
612 	    (cmd.opcode == MMC_SWITCH)) {
613 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
614 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
615 
616 		/*
617 		 * Update cache so the next mmc_blk_part_switch call operates
618 		 * on up-to-date data.
619 		 */
620 		card->ext_csd.part_config = value;
621 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
622 	}
623 
624 	/*
625 	 * According to the SD specs, some commands require a delay after
626 	 * issuing the command.
627 	 */
628 	if (idata->ic.postsleep_min_us)
629 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
630 
631 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
632 
633 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
634 		/*
635 		 * Ensure RPMB/R1B command has completed by polling CMD13
636 		 * "Send Status".
637 		 */
638 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
639 	}
640 
641 	return err;
642 }
643 
644 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
645 			     struct mmc_ioc_cmd __user *ic_ptr,
646 			     struct mmc_rpmb_data *rpmb)
647 {
648 	struct mmc_blk_ioc_data *idata;
649 	struct mmc_blk_ioc_data *idatas[1];
650 	struct mmc_queue *mq;
651 	struct mmc_card *card;
652 	int err = 0, ioc_err = 0;
653 	struct request *req;
654 
655 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
656 	if (IS_ERR(idata))
657 		return PTR_ERR(idata);
658 	/* This will be NULL on non-RPMB ioctl():s */
659 	idata->rpmb = rpmb;
660 
661 	card = md->queue.card;
662 	if (IS_ERR(card)) {
663 		err = PTR_ERR(card);
664 		goto cmd_done;
665 	}
666 
667 	/*
668 	 * Dispatch the ioctl() into the block request queue.
669 	 */
670 	mq = &md->queue;
671 	req = blk_get_request(mq->queue,
672 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
673 	if (IS_ERR(req)) {
674 		err = PTR_ERR(req);
675 		goto cmd_done;
676 	}
677 	idatas[0] = idata;
678 	req_to_mmc_queue_req(req)->drv_op =
679 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
680 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
681 	req_to_mmc_queue_req(req)->ioc_count = 1;
682 	blk_execute_rq(mq->queue, NULL, req, 0);
683 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
685 	blk_put_request(req);
686 
687 cmd_done:
688 	kfree(idata->buf);
689 	kfree(idata);
690 	return ioc_err ? ioc_err : err;
691 }
692 
693 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
694 				   struct mmc_ioc_multi_cmd __user *user,
695 				   struct mmc_rpmb_data *rpmb)
696 {
697 	struct mmc_blk_ioc_data **idata = NULL;
698 	struct mmc_ioc_cmd __user *cmds = user->cmds;
699 	struct mmc_card *card;
700 	struct mmc_queue *mq;
701 	int i, err = 0, ioc_err = 0;
702 	__u64 num_of_cmds;
703 	struct request *req;
704 
705 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
706 			   sizeof(num_of_cmds)))
707 		return -EFAULT;
708 
709 	if (!num_of_cmds)
710 		return 0;
711 
712 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
713 		return -EINVAL;
714 
715 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
716 	if (!idata)
717 		return -ENOMEM;
718 
719 	for (i = 0; i < num_of_cmds; i++) {
720 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
721 		if (IS_ERR(idata[i])) {
722 			err = PTR_ERR(idata[i]);
723 			num_of_cmds = i;
724 			goto cmd_err;
725 		}
726 		/* This will be NULL on non-RPMB ioctl():s */
727 		idata[i]->rpmb = rpmb;
728 	}
729 
730 	card = md->queue.card;
731 	if (IS_ERR(card)) {
732 		err = PTR_ERR(card);
733 		goto cmd_err;
734 	}
735 
736 
737 	/*
738 	 * Dispatch the ioctl()s into the block request queue.
739 	 */
740 	mq = &md->queue;
741 	req = blk_get_request(mq->queue,
742 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
743 	if (IS_ERR(req)) {
744 		err = PTR_ERR(req);
745 		goto cmd_err;
746 	}
747 	req_to_mmc_queue_req(req)->drv_op =
748 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
749 	req_to_mmc_queue_req(req)->drv_op_data = idata;
750 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
751 	blk_execute_rq(mq->queue, NULL, req, 0);
752 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
753 
754 	/* copy to user if data and response */
755 	for (i = 0; i < num_of_cmds && !err; i++)
756 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
757 
758 	blk_put_request(req);
759 
760 cmd_err:
761 	for (i = 0; i < num_of_cmds; i++) {
762 		kfree(idata[i]->buf);
763 		kfree(idata[i]);
764 	}
765 	kfree(idata);
766 	return ioc_err ? ioc_err : err;
767 }
768 
769 static int mmc_blk_check_blkdev(struct block_device *bdev)
770 {
771 	/*
772 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
773 	 * whole block device, not on a partition.  This prevents overspray
774 	 * between sibling partitions.
775 	 */
776 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
777 		return -EPERM;
778 	return 0;
779 }
780 
781 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
782 	unsigned int cmd, unsigned long arg)
783 {
784 	struct mmc_blk_data *md;
785 	int ret;
786 
787 	switch (cmd) {
788 	case MMC_IOC_CMD:
789 		ret = mmc_blk_check_blkdev(bdev);
790 		if (ret)
791 			return ret;
792 		md = mmc_blk_get(bdev->bd_disk);
793 		if (!md)
794 			return -EINVAL;
795 		ret = mmc_blk_ioctl_cmd(md,
796 					(struct mmc_ioc_cmd __user *)arg,
797 					NULL);
798 		mmc_blk_put(md);
799 		return ret;
800 	case MMC_IOC_MULTI_CMD:
801 		ret = mmc_blk_check_blkdev(bdev);
802 		if (ret)
803 			return ret;
804 		md = mmc_blk_get(bdev->bd_disk);
805 		if (!md)
806 			return -EINVAL;
807 		ret = mmc_blk_ioctl_multi_cmd(md,
808 					(struct mmc_ioc_multi_cmd __user *)arg,
809 					NULL);
810 		mmc_blk_put(md);
811 		return ret;
812 	default:
813 		return -EINVAL;
814 	}
815 }
816 
817 #ifdef CONFIG_COMPAT
818 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
819 	unsigned int cmd, unsigned long arg)
820 {
821 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
822 }
823 #endif
824 
825 static const struct block_device_operations mmc_bdops = {
826 	.open			= mmc_blk_open,
827 	.release		= mmc_blk_release,
828 	.getgeo			= mmc_blk_getgeo,
829 	.owner			= THIS_MODULE,
830 	.ioctl			= mmc_blk_ioctl,
831 #ifdef CONFIG_COMPAT
832 	.compat_ioctl		= mmc_blk_compat_ioctl,
833 #endif
834 };
835 
836 static int mmc_blk_part_switch_pre(struct mmc_card *card,
837 				   unsigned int part_type)
838 {
839 	int ret = 0;
840 
841 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
842 		if (card->ext_csd.cmdq_en) {
843 			ret = mmc_cmdq_disable(card);
844 			if (ret)
845 				return ret;
846 		}
847 		mmc_retune_pause(card->host);
848 	}
849 
850 	return ret;
851 }
852 
853 static int mmc_blk_part_switch_post(struct mmc_card *card,
854 				    unsigned int part_type)
855 {
856 	int ret = 0;
857 
858 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
859 		mmc_retune_unpause(card->host);
860 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
861 			ret = mmc_cmdq_enable(card);
862 	}
863 
864 	return ret;
865 }
866 
867 static inline int mmc_blk_part_switch(struct mmc_card *card,
868 				      unsigned int part_type)
869 {
870 	int ret = 0;
871 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
872 
873 	if (main_md->part_curr == part_type)
874 		return 0;
875 
876 	if (mmc_card_mmc(card)) {
877 		u8 part_config = card->ext_csd.part_config;
878 
879 		ret = mmc_blk_part_switch_pre(card, part_type);
880 		if (ret)
881 			return ret;
882 
883 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
884 		part_config |= part_type;
885 
886 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
887 				 EXT_CSD_PART_CONFIG, part_config,
888 				 card->ext_csd.part_time);
889 		if (ret) {
890 			mmc_blk_part_switch_post(card, part_type);
891 			return ret;
892 		}
893 
894 		card->ext_csd.part_config = part_config;
895 
896 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
897 	}
898 
899 	main_md->part_curr = part_type;
900 	return ret;
901 }
902 
903 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
904 {
905 	int err;
906 	u32 result;
907 	__be32 *blocks;
908 
909 	struct mmc_request mrq = {};
910 	struct mmc_command cmd = {};
911 	struct mmc_data data = {};
912 
913 	struct scatterlist sg;
914 
915 	cmd.opcode = MMC_APP_CMD;
916 	cmd.arg = card->rca << 16;
917 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
918 
919 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
920 	if (err)
921 		return err;
922 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
923 		return -EIO;
924 
925 	memset(&cmd, 0, sizeof(struct mmc_command));
926 
927 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
928 	cmd.arg = 0;
929 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
930 
931 	data.blksz = 4;
932 	data.blocks = 1;
933 	data.flags = MMC_DATA_READ;
934 	data.sg = &sg;
935 	data.sg_len = 1;
936 	mmc_set_data_timeout(&data, card);
937 
938 	mrq.cmd = &cmd;
939 	mrq.data = &data;
940 
941 	blocks = kmalloc(4, GFP_KERNEL);
942 	if (!blocks)
943 		return -ENOMEM;
944 
945 	sg_init_one(&sg, blocks, 4);
946 
947 	mmc_wait_for_req(card->host, &mrq);
948 
949 	result = ntohl(*blocks);
950 	kfree(blocks);
951 
952 	if (cmd.error || data.error)
953 		return -EIO;
954 
955 	*written_blocks = result;
956 
957 	return 0;
958 }
959 
960 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
961 {
962 	if (host->actual_clock)
963 		return host->actual_clock / 1000;
964 
965 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
966 	if (host->ios.clock)
967 		return host->ios.clock / 2000;
968 
969 	/* How can there be no clock */
970 	WARN_ON_ONCE(1);
971 	return 100; /* 100 kHz is minimum possible value */
972 }
973 
974 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
975 					    struct mmc_data *data)
976 {
977 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
978 	unsigned int khz;
979 
980 	if (data->timeout_clks) {
981 		khz = mmc_blk_clock_khz(host);
982 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
983 	}
984 
985 	return ms;
986 }
987 
988 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
989 			 int type)
990 {
991 	int err;
992 
993 	if (md->reset_done & type)
994 		return -EEXIST;
995 
996 	md->reset_done |= type;
997 	err = mmc_hw_reset(host);
998 	/* Ensure we switch back to the correct partition */
999 	if (err != -EOPNOTSUPP) {
1000 		struct mmc_blk_data *main_md =
1001 			dev_get_drvdata(&host->card->dev);
1002 		int part_err;
1003 
1004 		main_md->part_curr = main_md->part_type;
1005 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1006 		if (part_err) {
1007 			/*
1008 			 * We have failed to get back into the correct
1009 			 * partition, so we need to abort the whole request.
1010 			 */
1011 			return -ENODEV;
1012 		}
1013 	}
1014 	return err;
1015 }
1016 
1017 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1018 {
1019 	md->reset_done &= ~type;
1020 }
1021 
1022 /*
1023  * The non-block commands come back from the block layer after it queued it and
1024  * processed it with all other requests and then they get issued in this
1025  * function.
1026  */
1027 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1028 {
1029 	struct mmc_queue_req *mq_rq;
1030 	struct mmc_card *card = mq->card;
1031 	struct mmc_blk_data *md = mq->blkdata;
1032 	struct mmc_blk_ioc_data **idata;
1033 	bool rpmb_ioctl;
1034 	u8 **ext_csd;
1035 	u32 status;
1036 	int ret;
1037 	int i;
1038 
1039 	mq_rq = req_to_mmc_queue_req(req);
1040 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1041 
1042 	switch (mq_rq->drv_op) {
1043 	case MMC_DRV_OP_IOCTL:
1044 	case MMC_DRV_OP_IOCTL_RPMB:
1045 		idata = mq_rq->drv_op_data;
1046 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1047 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1048 			if (ret)
1049 				break;
1050 		}
1051 		/* Always switch back to main area after RPMB access */
1052 		if (rpmb_ioctl)
1053 			mmc_blk_part_switch(card, 0);
1054 		break;
1055 	case MMC_DRV_OP_BOOT_WP:
1056 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1057 				 card->ext_csd.boot_ro_lock |
1058 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1059 				 card->ext_csd.part_time);
1060 		if (ret)
1061 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1062 			       md->disk->disk_name, ret);
1063 		else
1064 			card->ext_csd.boot_ro_lock |=
1065 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1066 		break;
1067 	case MMC_DRV_OP_GET_CARD_STATUS:
1068 		ret = mmc_send_status(card, &status);
1069 		if (!ret)
1070 			ret = status;
1071 		break;
1072 	case MMC_DRV_OP_GET_EXT_CSD:
1073 		ext_csd = mq_rq->drv_op_data;
1074 		ret = mmc_get_ext_csd(card, ext_csd);
1075 		break;
1076 	default:
1077 		pr_err("%s: unknown driver specific operation\n",
1078 		       md->disk->disk_name);
1079 		ret = -EINVAL;
1080 		break;
1081 	}
1082 	mq_rq->drv_op_result = ret;
1083 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1084 }
1085 
1086 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1087 {
1088 	struct mmc_blk_data *md = mq->blkdata;
1089 	struct mmc_card *card = md->queue.card;
1090 	unsigned int from, nr;
1091 	int err = 0, type = MMC_BLK_DISCARD;
1092 	blk_status_t status = BLK_STS_OK;
1093 
1094 	if (!mmc_can_erase(card)) {
1095 		status = BLK_STS_NOTSUPP;
1096 		goto fail;
1097 	}
1098 
1099 	from = blk_rq_pos(req);
1100 	nr = blk_rq_sectors(req);
1101 
1102 	do {
1103 		err = 0;
1104 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1105 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1106 					 INAND_CMD38_ARG_EXT_CSD,
1107 					 card->erase_arg == MMC_TRIM_ARG ?
1108 					 INAND_CMD38_ARG_TRIM :
1109 					 INAND_CMD38_ARG_ERASE,
1110 					 card->ext_csd.generic_cmd6_time);
1111 		}
1112 		if (!err)
1113 			err = mmc_erase(card, from, nr, card->erase_arg);
1114 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1115 	if (err)
1116 		status = BLK_STS_IOERR;
1117 	else
1118 		mmc_blk_reset_success(md, type);
1119 fail:
1120 	blk_mq_end_request(req, status);
1121 }
1122 
1123 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1124 				       struct request *req)
1125 {
1126 	struct mmc_blk_data *md = mq->blkdata;
1127 	struct mmc_card *card = md->queue.card;
1128 	unsigned int from, nr, arg;
1129 	int err = 0, type = MMC_BLK_SECDISCARD;
1130 	blk_status_t status = BLK_STS_OK;
1131 
1132 	if (!(mmc_can_secure_erase_trim(card))) {
1133 		status = BLK_STS_NOTSUPP;
1134 		goto out;
1135 	}
1136 
1137 	from = blk_rq_pos(req);
1138 	nr = blk_rq_sectors(req);
1139 
1140 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1141 		arg = MMC_SECURE_TRIM1_ARG;
1142 	else
1143 		arg = MMC_SECURE_ERASE_ARG;
1144 
1145 retry:
1146 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1147 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1148 				 INAND_CMD38_ARG_EXT_CSD,
1149 				 arg == MMC_SECURE_TRIM1_ARG ?
1150 				 INAND_CMD38_ARG_SECTRIM1 :
1151 				 INAND_CMD38_ARG_SECERASE,
1152 				 card->ext_csd.generic_cmd6_time);
1153 		if (err)
1154 			goto out_retry;
1155 	}
1156 
1157 	err = mmc_erase(card, from, nr, arg);
1158 	if (err == -EIO)
1159 		goto out_retry;
1160 	if (err) {
1161 		status = BLK_STS_IOERR;
1162 		goto out;
1163 	}
1164 
1165 	if (arg == MMC_SECURE_TRIM1_ARG) {
1166 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1167 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1168 					 INAND_CMD38_ARG_EXT_CSD,
1169 					 INAND_CMD38_ARG_SECTRIM2,
1170 					 card->ext_csd.generic_cmd6_time);
1171 			if (err)
1172 				goto out_retry;
1173 		}
1174 
1175 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1176 		if (err == -EIO)
1177 			goto out_retry;
1178 		if (err) {
1179 			status = BLK_STS_IOERR;
1180 			goto out;
1181 		}
1182 	}
1183 
1184 out_retry:
1185 	if (err && !mmc_blk_reset(md, card->host, type))
1186 		goto retry;
1187 	if (!err)
1188 		mmc_blk_reset_success(md, type);
1189 out:
1190 	blk_mq_end_request(req, status);
1191 }
1192 
1193 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1194 {
1195 	struct mmc_blk_data *md = mq->blkdata;
1196 	struct mmc_card *card = md->queue.card;
1197 	int ret = 0;
1198 
1199 	ret = mmc_flush_cache(card);
1200 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1201 }
1202 
1203 /*
1204  * Reformat current write as a reliable write, supporting
1205  * both legacy and the enhanced reliable write MMC cards.
1206  * In each transfer we'll handle only as much as a single
1207  * reliable write can handle, thus finish the request in
1208  * partial completions.
1209  */
1210 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1211 				    struct mmc_card *card,
1212 				    struct request *req)
1213 {
1214 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1215 		/* Legacy mode imposes restrictions on transfers. */
1216 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1217 			brq->data.blocks = 1;
1218 
1219 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1220 			brq->data.blocks = card->ext_csd.rel_sectors;
1221 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1222 			brq->data.blocks = 1;
1223 	}
1224 }
1225 
1226 #define CMD_ERRORS_EXCL_OOR						\
1227 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1228 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1229 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1230 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1231 	 R1_CC_ERROR |		/* Card controller error */		\
1232 	 R1_ERROR)		/* General/unknown error */
1233 
1234 #define CMD_ERRORS							\
1235 	(CMD_ERRORS_EXCL_OOR |						\
1236 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1237 
1238 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1239 {
1240 	u32 val;
1241 
1242 	/*
1243 	 * Per the SD specification(physical layer version 4.10)[1],
1244 	 * section 4.3.3, it explicitly states that "When the last
1245 	 * block of user area is read using CMD18, the host should
1246 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1247 	 * is correct". And JESD84-B51 for eMMC also has a similar
1248 	 * statement on section 6.8.3.
1249 	 *
1250 	 * Multiple block read/write could be done by either predefined
1251 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1252 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1253 	 *
1254 	 * However the spec[1] doesn't tell us whether we should also
1255 	 * ignore that for predefined method. But per the spec[1], section
1256 	 * 4.15 Set Block Count Command, it says"If illegal block count
1257 	 * is set, out of range error will be indicated during read/write
1258 	 * operation (For example, data transfer is stopped at user area
1259 	 * boundary)." In another word, we could expect a out of range error
1260 	 * in the response for the following CMD18/25. And if argument of
1261 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1262 	 * we could also expect to get a -ETIMEDOUT or any error number from
1263 	 * the host drivers due to missing data response(for write)/data(for
1264 	 * read), as the cards will stop the data transfer by itself per the
1265 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1266 	 */
1267 
1268 	if (!brq->stop.error) {
1269 		bool oor_with_open_end;
1270 		/* If there is no error yet, check R1 response */
1271 
1272 		val = brq->stop.resp[0] & CMD_ERRORS;
1273 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1274 
1275 		if (val && !oor_with_open_end)
1276 			brq->stop.error = -EIO;
1277 	}
1278 }
1279 
1280 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1281 			      int disable_multi, bool *do_rel_wr_p,
1282 			      bool *do_data_tag_p)
1283 {
1284 	struct mmc_blk_data *md = mq->blkdata;
1285 	struct mmc_card *card = md->queue.card;
1286 	struct mmc_blk_request *brq = &mqrq->brq;
1287 	struct request *req = mmc_queue_req_to_req(mqrq);
1288 	bool do_rel_wr, do_data_tag;
1289 
1290 	/*
1291 	 * Reliable writes are used to implement Forced Unit Access and
1292 	 * are supported only on MMCs.
1293 	 */
1294 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1295 		    rq_data_dir(req) == WRITE &&
1296 		    (md->flags & MMC_BLK_REL_WR);
1297 
1298 	memset(brq, 0, sizeof(struct mmc_blk_request));
1299 
1300 	brq->mrq.data = &brq->data;
1301 	brq->mrq.tag = req->tag;
1302 
1303 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1304 	brq->stop.arg = 0;
1305 
1306 	if (rq_data_dir(req) == READ) {
1307 		brq->data.flags = MMC_DATA_READ;
1308 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1309 	} else {
1310 		brq->data.flags = MMC_DATA_WRITE;
1311 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1312 	}
1313 
1314 	brq->data.blksz = 512;
1315 	brq->data.blocks = blk_rq_sectors(req);
1316 	brq->data.blk_addr = blk_rq_pos(req);
1317 
1318 	/*
1319 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1320 	 * The eMMC will give "high" priority tasks priority over "simple"
1321 	 * priority tasks. Here we always set "simple" priority by not setting
1322 	 * MMC_DATA_PRIO.
1323 	 */
1324 
1325 	/*
1326 	 * The block layer doesn't support all sector count
1327 	 * restrictions, so we need to be prepared for too big
1328 	 * requests.
1329 	 */
1330 	if (brq->data.blocks > card->host->max_blk_count)
1331 		brq->data.blocks = card->host->max_blk_count;
1332 
1333 	if (brq->data.blocks > 1) {
1334 		/*
1335 		 * Some SD cards in SPI mode return a CRC error or even lock up
1336 		 * completely when trying to read the last block using a
1337 		 * multiblock read command.
1338 		 */
1339 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1340 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1341 		     get_capacity(md->disk)))
1342 			brq->data.blocks--;
1343 
1344 		/*
1345 		 * After a read error, we redo the request one sector
1346 		 * at a time in order to accurately determine which
1347 		 * sectors can be read successfully.
1348 		 */
1349 		if (disable_multi)
1350 			brq->data.blocks = 1;
1351 
1352 		/*
1353 		 * Some controllers have HW issues while operating
1354 		 * in multiple I/O mode
1355 		 */
1356 		if (card->host->ops->multi_io_quirk)
1357 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1358 						(rq_data_dir(req) == READ) ?
1359 						MMC_DATA_READ : MMC_DATA_WRITE,
1360 						brq->data.blocks);
1361 	}
1362 
1363 	if (do_rel_wr) {
1364 		mmc_apply_rel_rw(brq, card, req);
1365 		brq->data.flags |= MMC_DATA_REL_WR;
1366 	}
1367 
1368 	/*
1369 	 * Data tag is used only during writing meta data to speed
1370 	 * up write and any subsequent read of this meta data
1371 	 */
1372 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1373 		      (req->cmd_flags & REQ_META) &&
1374 		      (rq_data_dir(req) == WRITE) &&
1375 		      ((brq->data.blocks * brq->data.blksz) >=
1376 		       card->ext_csd.data_tag_unit_size);
1377 
1378 	if (do_data_tag)
1379 		brq->data.flags |= MMC_DATA_DAT_TAG;
1380 
1381 	mmc_set_data_timeout(&brq->data, card);
1382 
1383 	brq->data.sg = mqrq->sg;
1384 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1385 
1386 	/*
1387 	 * Adjust the sg list so it is the same size as the
1388 	 * request.
1389 	 */
1390 	if (brq->data.blocks != blk_rq_sectors(req)) {
1391 		int i, data_size = brq->data.blocks << 9;
1392 		struct scatterlist *sg;
1393 
1394 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1395 			data_size -= sg->length;
1396 			if (data_size <= 0) {
1397 				sg->length += data_size;
1398 				i++;
1399 				break;
1400 			}
1401 		}
1402 		brq->data.sg_len = i;
1403 	}
1404 
1405 	if (do_rel_wr_p)
1406 		*do_rel_wr_p = do_rel_wr;
1407 
1408 	if (do_data_tag_p)
1409 		*do_data_tag_p = do_data_tag;
1410 }
1411 
1412 #define MMC_CQE_RETRIES 2
1413 
1414 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1415 {
1416 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1417 	struct mmc_request *mrq = &mqrq->brq.mrq;
1418 	struct request_queue *q = req->q;
1419 	struct mmc_host *host = mq->card->host;
1420 	unsigned long flags;
1421 	bool put_card;
1422 	int err;
1423 
1424 	mmc_cqe_post_req(host, mrq);
1425 
1426 	if (mrq->cmd && mrq->cmd->error)
1427 		err = mrq->cmd->error;
1428 	else if (mrq->data && mrq->data->error)
1429 		err = mrq->data->error;
1430 	else
1431 		err = 0;
1432 
1433 	if (err) {
1434 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1435 			blk_mq_requeue_request(req, true);
1436 		else
1437 			blk_mq_end_request(req, BLK_STS_IOERR);
1438 	} else if (mrq->data) {
1439 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1440 			blk_mq_requeue_request(req, true);
1441 		else
1442 			__blk_mq_end_request(req, BLK_STS_OK);
1443 	} else {
1444 		blk_mq_end_request(req, BLK_STS_OK);
1445 	}
1446 
1447 	spin_lock_irqsave(&mq->lock, flags);
1448 
1449 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1450 
1451 	put_card = (mmc_tot_in_flight(mq) == 0);
1452 
1453 	mmc_cqe_check_busy(mq);
1454 
1455 	spin_unlock_irqrestore(&mq->lock, flags);
1456 
1457 	if (!mq->cqe_busy)
1458 		blk_mq_run_hw_queues(q, true);
1459 
1460 	if (put_card)
1461 		mmc_put_card(mq->card, &mq->ctx);
1462 }
1463 
1464 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1465 {
1466 	struct mmc_card *card = mq->card;
1467 	struct mmc_host *host = card->host;
1468 	int err;
1469 
1470 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1471 
1472 	err = mmc_cqe_recovery(host);
1473 	if (err)
1474 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1475 	else
1476 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1477 
1478 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1479 }
1480 
1481 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1482 {
1483 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1484 						  brq.mrq);
1485 	struct request *req = mmc_queue_req_to_req(mqrq);
1486 	struct request_queue *q = req->q;
1487 	struct mmc_queue *mq = q->queuedata;
1488 
1489 	/*
1490 	 * Block layer timeouts race with completions which means the normal
1491 	 * completion path cannot be used during recovery.
1492 	 */
1493 	if (mq->in_recovery)
1494 		mmc_blk_cqe_complete_rq(mq, req);
1495 	else
1496 		blk_mq_complete_request(req);
1497 }
1498 
1499 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1500 {
1501 	mrq->done		= mmc_blk_cqe_req_done;
1502 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1503 
1504 	return mmc_cqe_start_req(host, mrq);
1505 }
1506 
1507 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1508 						 struct request *req)
1509 {
1510 	struct mmc_blk_request *brq = &mqrq->brq;
1511 
1512 	memset(brq, 0, sizeof(*brq));
1513 
1514 	brq->mrq.cmd = &brq->cmd;
1515 	brq->mrq.tag = req->tag;
1516 
1517 	return &brq->mrq;
1518 }
1519 
1520 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1521 {
1522 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1523 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1524 
1525 	mrq->cmd->opcode = MMC_SWITCH;
1526 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1527 			(EXT_CSD_FLUSH_CACHE << 16) |
1528 			(1 << 8) |
1529 			EXT_CSD_CMD_SET_NORMAL;
1530 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1531 
1532 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1533 }
1534 
1535 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1536 {
1537 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1538 
1539 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1540 
1541 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1542 }
1543 
1544 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1545 			       struct mmc_card *card,
1546 			       int disable_multi,
1547 			       struct mmc_queue *mq)
1548 {
1549 	u32 readcmd, writecmd;
1550 	struct mmc_blk_request *brq = &mqrq->brq;
1551 	struct request *req = mmc_queue_req_to_req(mqrq);
1552 	struct mmc_blk_data *md = mq->blkdata;
1553 	bool do_rel_wr, do_data_tag;
1554 
1555 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1556 
1557 	brq->mrq.cmd = &brq->cmd;
1558 
1559 	brq->cmd.arg = blk_rq_pos(req);
1560 	if (!mmc_card_blockaddr(card))
1561 		brq->cmd.arg <<= 9;
1562 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1563 
1564 	if (brq->data.blocks > 1 || do_rel_wr) {
1565 		/* SPI multiblock writes terminate using a special
1566 		 * token, not a STOP_TRANSMISSION request.
1567 		 */
1568 		if (!mmc_host_is_spi(card->host) ||
1569 		    rq_data_dir(req) == READ)
1570 			brq->mrq.stop = &brq->stop;
1571 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1572 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1573 	} else {
1574 		brq->mrq.stop = NULL;
1575 		readcmd = MMC_READ_SINGLE_BLOCK;
1576 		writecmd = MMC_WRITE_BLOCK;
1577 	}
1578 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1579 
1580 	/*
1581 	 * Pre-defined multi-block transfers are preferable to
1582 	 * open ended-ones (and necessary for reliable writes).
1583 	 * However, it is not sufficient to just send CMD23,
1584 	 * and avoid the final CMD12, as on an error condition
1585 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1586 	 * with Auto-CMD23 enhancements provided by some
1587 	 * hosts, means that the complexity of dealing
1588 	 * with this is best left to the host. If CMD23 is
1589 	 * supported by card and host, we'll fill sbc in and let
1590 	 * the host deal with handling it correctly. This means
1591 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1592 	 * change of behavior will be observed.
1593 	 *
1594 	 * N.B: Some MMC cards experience perf degradation.
1595 	 * We'll avoid using CMD23-bounded multiblock writes for
1596 	 * these, while retaining features like reliable writes.
1597 	 */
1598 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1599 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1600 	     do_data_tag)) {
1601 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1602 		brq->sbc.arg = brq->data.blocks |
1603 			(do_rel_wr ? (1 << 31) : 0) |
1604 			(do_data_tag ? (1 << 29) : 0);
1605 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1606 		brq->mrq.sbc = &brq->sbc;
1607 	}
1608 }
1609 
1610 #define MMC_MAX_RETRIES		5
1611 #define MMC_DATA_RETRIES	2
1612 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1613 
1614 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1615 {
1616 	struct mmc_command cmd = {
1617 		.opcode = MMC_STOP_TRANSMISSION,
1618 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1619 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1620 		.busy_timeout = timeout,
1621 	};
1622 
1623 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1624 }
1625 
1626 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1627 {
1628 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1629 	struct mmc_blk_request *brq = &mqrq->brq;
1630 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1631 	int err;
1632 
1633 	mmc_retune_hold_now(card->host);
1634 
1635 	mmc_blk_send_stop(card, timeout);
1636 
1637 	err = card_busy_detect(card, timeout, NULL);
1638 
1639 	mmc_retune_release(card->host);
1640 
1641 	return err;
1642 }
1643 
1644 #define MMC_READ_SINGLE_RETRIES	2
1645 
1646 /* Single sector read during recovery */
1647 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1648 {
1649 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1650 	struct mmc_request *mrq = &mqrq->brq.mrq;
1651 	struct mmc_card *card = mq->card;
1652 	struct mmc_host *host = card->host;
1653 	blk_status_t error = BLK_STS_OK;
1654 	int retries = 0;
1655 
1656 	do {
1657 		u32 status;
1658 		int err;
1659 
1660 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1661 
1662 		mmc_wait_for_req(host, mrq);
1663 
1664 		err = mmc_send_status(card, &status);
1665 		if (err)
1666 			goto error_exit;
1667 
1668 		if (!mmc_host_is_spi(host) &&
1669 		    !mmc_blk_in_tran_state(status)) {
1670 			err = mmc_blk_fix_state(card, req);
1671 			if (err)
1672 				goto error_exit;
1673 		}
1674 
1675 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1676 			continue;
1677 
1678 		retries = 0;
1679 
1680 		if (mrq->cmd->error ||
1681 		    mrq->data->error ||
1682 		    (!mmc_host_is_spi(host) &&
1683 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1684 			error = BLK_STS_IOERR;
1685 		else
1686 			error = BLK_STS_OK;
1687 
1688 	} while (blk_update_request(req, error, 512));
1689 
1690 	return;
1691 
1692 error_exit:
1693 	mrq->data->bytes_xfered = 0;
1694 	blk_update_request(req, BLK_STS_IOERR, 512);
1695 	/* Let it try the remaining request again */
1696 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1697 		mqrq->retries = MMC_MAX_RETRIES - 1;
1698 }
1699 
1700 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1701 {
1702 	return !!brq->mrq.sbc;
1703 }
1704 
1705 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1706 {
1707 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1708 }
1709 
1710 /*
1711  * Check for errors the host controller driver might not have seen such as
1712  * response mode errors or invalid card state.
1713  */
1714 static bool mmc_blk_status_error(struct request *req, u32 status)
1715 {
1716 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1717 	struct mmc_blk_request *brq = &mqrq->brq;
1718 	struct mmc_queue *mq = req->q->queuedata;
1719 	u32 stop_err_bits;
1720 
1721 	if (mmc_host_is_spi(mq->card->host))
1722 		return false;
1723 
1724 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1725 
1726 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1727 	       brq->stop.resp[0] & stop_err_bits ||
1728 	       status            & stop_err_bits ||
1729 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1730 }
1731 
1732 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1733 {
1734 	return !brq->sbc.error && !brq->cmd.error &&
1735 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1736 }
1737 
1738 /*
1739  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1740  * policy:
1741  * 1. A request that has transferred at least some data is considered
1742  * successful and will be requeued if there is remaining data to
1743  * transfer.
1744  * 2. Otherwise the number of retries is incremented and the request
1745  * will be requeued if there are remaining retries.
1746  * 3. Otherwise the request will be errored out.
1747  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1748  * mqrq->retries. So there are only 4 possible actions here:
1749  *	1. do not accept the bytes_xfered value i.e. set it to zero
1750  *	2. change mqrq->retries to determine the number of retries
1751  *	3. try to reset the card
1752  *	4. read one sector at a time
1753  */
1754 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1755 {
1756 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1757 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1758 	struct mmc_blk_request *brq = &mqrq->brq;
1759 	struct mmc_blk_data *md = mq->blkdata;
1760 	struct mmc_card *card = mq->card;
1761 	u32 status;
1762 	u32 blocks;
1763 	int err;
1764 
1765 	/*
1766 	 * Some errors the host driver might not have seen. Set the number of
1767 	 * bytes transferred to zero in that case.
1768 	 */
1769 	err = __mmc_send_status(card, &status, 0);
1770 	if (err || mmc_blk_status_error(req, status))
1771 		brq->data.bytes_xfered = 0;
1772 
1773 	mmc_retune_release(card->host);
1774 
1775 	/*
1776 	 * Try again to get the status. This also provides an opportunity for
1777 	 * re-tuning.
1778 	 */
1779 	if (err)
1780 		err = __mmc_send_status(card, &status, 0);
1781 
1782 	/*
1783 	 * Nothing more to do after the number of bytes transferred has been
1784 	 * updated and there is no card.
1785 	 */
1786 	if (err && mmc_detect_card_removed(card->host))
1787 		return;
1788 
1789 	/* Try to get back to "tran" state */
1790 	if (!mmc_host_is_spi(mq->card->host) &&
1791 	    (err || !mmc_blk_in_tran_state(status)))
1792 		err = mmc_blk_fix_state(mq->card, req);
1793 
1794 	/*
1795 	 * Special case for SD cards where the card might record the number of
1796 	 * blocks written.
1797 	 */
1798 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1799 	    rq_data_dir(req) == WRITE) {
1800 		if (mmc_sd_num_wr_blocks(card, &blocks))
1801 			brq->data.bytes_xfered = 0;
1802 		else
1803 			brq->data.bytes_xfered = blocks << 9;
1804 	}
1805 
1806 	/* Reset if the card is in a bad state */
1807 	if (!mmc_host_is_spi(mq->card->host) &&
1808 	    err && mmc_blk_reset(md, card->host, type)) {
1809 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1810 		mqrq->retries = MMC_NO_RETRIES;
1811 		return;
1812 	}
1813 
1814 	/*
1815 	 * If anything was done, just return and if there is anything remaining
1816 	 * on the request it will get requeued.
1817 	 */
1818 	if (brq->data.bytes_xfered)
1819 		return;
1820 
1821 	/* Reset before last retry */
1822 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1823 		mmc_blk_reset(md, card->host, type);
1824 
1825 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1826 	if (brq->sbc.error || brq->cmd.error)
1827 		return;
1828 
1829 	/* Reduce the remaining retries for data errors */
1830 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1831 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1832 		return;
1833 	}
1834 
1835 	/* FIXME: Missing single sector read for large sector size */
1836 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1837 	    brq->data.blocks > 1) {
1838 		/* Read one sector at a time */
1839 		mmc_blk_read_single(mq, req);
1840 		return;
1841 	}
1842 }
1843 
1844 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1845 {
1846 	mmc_blk_eval_resp_error(brq);
1847 
1848 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1849 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1850 }
1851 
1852 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1853 {
1854 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1855 	u32 status = 0;
1856 	int err;
1857 
1858 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1859 		return 0;
1860 
1861 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1862 
1863 	/*
1864 	 * Do not assume data transferred correctly if there are any error bits
1865 	 * set.
1866 	 */
1867 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1868 		mqrq->brq.data.bytes_xfered = 0;
1869 		err = err ? err : -EIO;
1870 	}
1871 
1872 	/* Copy the exception bit so it will be seen later on */
1873 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1874 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1875 
1876 	return err;
1877 }
1878 
1879 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1880 					    struct request *req)
1881 {
1882 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1883 
1884 	mmc_blk_reset_success(mq->blkdata, type);
1885 }
1886 
1887 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1888 {
1889 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1890 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1891 
1892 	if (nr_bytes) {
1893 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1894 			blk_mq_requeue_request(req, true);
1895 		else
1896 			__blk_mq_end_request(req, BLK_STS_OK);
1897 	} else if (!blk_rq_bytes(req)) {
1898 		__blk_mq_end_request(req, BLK_STS_IOERR);
1899 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1900 		blk_mq_requeue_request(req, true);
1901 	} else {
1902 		if (mmc_card_removed(mq->card))
1903 			req->rq_flags |= RQF_QUIET;
1904 		blk_mq_end_request(req, BLK_STS_IOERR);
1905 	}
1906 }
1907 
1908 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1909 					struct mmc_queue_req *mqrq)
1910 {
1911 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1912 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1913 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1914 }
1915 
1916 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1917 				 struct mmc_queue_req *mqrq)
1918 {
1919 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1920 		mmc_run_bkops(mq->card);
1921 }
1922 
1923 void mmc_blk_mq_complete(struct request *req)
1924 {
1925 	struct mmc_queue *mq = req->q->queuedata;
1926 
1927 	if (mq->use_cqe)
1928 		mmc_blk_cqe_complete_rq(mq, req);
1929 	else
1930 		mmc_blk_mq_complete_rq(mq, req);
1931 }
1932 
1933 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1934 				       struct request *req)
1935 {
1936 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1937 	struct mmc_host *host = mq->card->host;
1938 
1939 	if (mmc_blk_rq_error(&mqrq->brq) ||
1940 	    mmc_blk_card_busy(mq->card, req)) {
1941 		mmc_blk_mq_rw_recovery(mq, req);
1942 	} else {
1943 		mmc_blk_rw_reset_success(mq, req);
1944 		mmc_retune_release(host);
1945 	}
1946 
1947 	mmc_blk_urgent_bkops(mq, mqrq);
1948 }
1949 
1950 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1951 {
1952 	unsigned long flags;
1953 	bool put_card;
1954 
1955 	spin_lock_irqsave(&mq->lock, flags);
1956 
1957 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1958 
1959 	put_card = (mmc_tot_in_flight(mq) == 0);
1960 
1961 	spin_unlock_irqrestore(&mq->lock, flags);
1962 
1963 	if (put_card)
1964 		mmc_put_card(mq->card, &mq->ctx);
1965 }
1966 
1967 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1968 {
1969 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1970 	struct mmc_request *mrq = &mqrq->brq.mrq;
1971 	struct mmc_host *host = mq->card->host;
1972 
1973 	mmc_post_req(host, mrq, 0);
1974 
1975 	/*
1976 	 * Block layer timeouts race with completions which means the normal
1977 	 * completion path cannot be used during recovery.
1978 	 */
1979 	if (mq->in_recovery)
1980 		mmc_blk_mq_complete_rq(mq, req);
1981 	else
1982 		blk_mq_complete_request(req);
1983 
1984 	mmc_blk_mq_dec_in_flight(mq, req);
1985 }
1986 
1987 void mmc_blk_mq_recovery(struct mmc_queue *mq)
1988 {
1989 	struct request *req = mq->recovery_req;
1990 	struct mmc_host *host = mq->card->host;
1991 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1992 
1993 	mq->recovery_req = NULL;
1994 	mq->rw_wait = false;
1995 
1996 	if (mmc_blk_rq_error(&mqrq->brq)) {
1997 		mmc_retune_hold_now(host);
1998 		mmc_blk_mq_rw_recovery(mq, req);
1999 	}
2000 
2001 	mmc_blk_urgent_bkops(mq, mqrq);
2002 
2003 	mmc_blk_mq_post_req(mq, req);
2004 }
2005 
2006 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2007 					 struct request **prev_req)
2008 {
2009 	if (mmc_host_done_complete(mq->card->host))
2010 		return;
2011 
2012 	mutex_lock(&mq->complete_lock);
2013 
2014 	if (!mq->complete_req)
2015 		goto out_unlock;
2016 
2017 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2018 
2019 	if (prev_req)
2020 		*prev_req = mq->complete_req;
2021 	else
2022 		mmc_blk_mq_post_req(mq, mq->complete_req);
2023 
2024 	mq->complete_req = NULL;
2025 
2026 out_unlock:
2027 	mutex_unlock(&mq->complete_lock);
2028 }
2029 
2030 void mmc_blk_mq_complete_work(struct work_struct *work)
2031 {
2032 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2033 					    complete_work);
2034 
2035 	mmc_blk_mq_complete_prev_req(mq, NULL);
2036 }
2037 
2038 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2039 {
2040 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2041 						  brq.mrq);
2042 	struct request *req = mmc_queue_req_to_req(mqrq);
2043 	struct request_queue *q = req->q;
2044 	struct mmc_queue *mq = q->queuedata;
2045 	struct mmc_host *host = mq->card->host;
2046 	unsigned long flags;
2047 
2048 	if (!mmc_host_done_complete(host)) {
2049 		bool waiting;
2050 
2051 		/*
2052 		 * We cannot complete the request in this context, so record
2053 		 * that there is a request to complete, and that a following
2054 		 * request does not need to wait (although it does need to
2055 		 * complete complete_req first).
2056 		 */
2057 		spin_lock_irqsave(&mq->lock, flags);
2058 		mq->complete_req = req;
2059 		mq->rw_wait = false;
2060 		waiting = mq->waiting;
2061 		spin_unlock_irqrestore(&mq->lock, flags);
2062 
2063 		/*
2064 		 * If 'waiting' then the waiting task will complete this
2065 		 * request, otherwise queue a work to do it. Note that
2066 		 * complete_work may still race with the dispatch of a following
2067 		 * request.
2068 		 */
2069 		if (waiting)
2070 			wake_up(&mq->wait);
2071 		else
2072 			queue_work(mq->card->complete_wq, &mq->complete_work);
2073 
2074 		return;
2075 	}
2076 
2077 	/* Take the recovery path for errors or urgent background operations */
2078 	if (mmc_blk_rq_error(&mqrq->brq) ||
2079 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2080 		spin_lock_irqsave(&mq->lock, flags);
2081 		mq->recovery_needed = true;
2082 		mq->recovery_req = req;
2083 		spin_unlock_irqrestore(&mq->lock, flags);
2084 		wake_up(&mq->wait);
2085 		schedule_work(&mq->recovery_work);
2086 		return;
2087 	}
2088 
2089 	mmc_blk_rw_reset_success(mq, req);
2090 
2091 	mq->rw_wait = false;
2092 	wake_up(&mq->wait);
2093 
2094 	mmc_blk_mq_post_req(mq, req);
2095 }
2096 
2097 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2098 {
2099 	unsigned long flags;
2100 	bool done;
2101 
2102 	/*
2103 	 * Wait while there is another request in progress, but not if recovery
2104 	 * is needed. Also indicate whether there is a request waiting to start.
2105 	 */
2106 	spin_lock_irqsave(&mq->lock, flags);
2107 	if (mq->recovery_needed) {
2108 		*err = -EBUSY;
2109 		done = true;
2110 	} else {
2111 		done = !mq->rw_wait;
2112 	}
2113 	mq->waiting = !done;
2114 	spin_unlock_irqrestore(&mq->lock, flags);
2115 
2116 	return done;
2117 }
2118 
2119 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2120 {
2121 	int err = 0;
2122 
2123 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2124 
2125 	/* Always complete the previous request if there is one */
2126 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2127 
2128 	return err;
2129 }
2130 
2131 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2132 				  struct request *req)
2133 {
2134 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2135 	struct mmc_host *host = mq->card->host;
2136 	struct request *prev_req = NULL;
2137 	int err = 0;
2138 
2139 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2140 
2141 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2142 
2143 	mmc_pre_req(host, &mqrq->brq.mrq);
2144 
2145 	err = mmc_blk_rw_wait(mq, &prev_req);
2146 	if (err)
2147 		goto out_post_req;
2148 
2149 	mq->rw_wait = true;
2150 
2151 	err = mmc_start_request(host, &mqrq->brq.mrq);
2152 
2153 	if (prev_req)
2154 		mmc_blk_mq_post_req(mq, prev_req);
2155 
2156 	if (err)
2157 		mq->rw_wait = false;
2158 
2159 	/* Release re-tuning here where there is no synchronization required */
2160 	if (err || mmc_host_done_complete(host))
2161 		mmc_retune_release(host);
2162 
2163 out_post_req:
2164 	if (err)
2165 		mmc_post_req(host, &mqrq->brq.mrq, err);
2166 
2167 	return err;
2168 }
2169 
2170 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2171 {
2172 	if (mq->use_cqe)
2173 		return host->cqe_ops->cqe_wait_for_idle(host);
2174 
2175 	return mmc_blk_rw_wait(mq, NULL);
2176 }
2177 
2178 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2179 {
2180 	struct mmc_blk_data *md = mq->blkdata;
2181 	struct mmc_card *card = md->queue.card;
2182 	struct mmc_host *host = card->host;
2183 	int ret;
2184 
2185 	ret = mmc_blk_part_switch(card, md->part_type);
2186 	if (ret)
2187 		return MMC_REQ_FAILED_TO_START;
2188 
2189 	switch (mmc_issue_type(mq, req)) {
2190 	case MMC_ISSUE_SYNC:
2191 		ret = mmc_blk_wait_for_idle(mq, host);
2192 		if (ret)
2193 			return MMC_REQ_BUSY;
2194 		switch (req_op(req)) {
2195 		case REQ_OP_DRV_IN:
2196 		case REQ_OP_DRV_OUT:
2197 			mmc_blk_issue_drv_op(mq, req);
2198 			break;
2199 		case REQ_OP_DISCARD:
2200 			mmc_blk_issue_discard_rq(mq, req);
2201 			break;
2202 		case REQ_OP_SECURE_ERASE:
2203 			mmc_blk_issue_secdiscard_rq(mq, req);
2204 			break;
2205 		case REQ_OP_FLUSH:
2206 			mmc_blk_issue_flush(mq, req);
2207 			break;
2208 		default:
2209 			WARN_ON_ONCE(1);
2210 			return MMC_REQ_FAILED_TO_START;
2211 		}
2212 		return MMC_REQ_FINISHED;
2213 	case MMC_ISSUE_DCMD:
2214 	case MMC_ISSUE_ASYNC:
2215 		switch (req_op(req)) {
2216 		case REQ_OP_FLUSH:
2217 			ret = mmc_blk_cqe_issue_flush(mq, req);
2218 			break;
2219 		case REQ_OP_READ:
2220 		case REQ_OP_WRITE:
2221 			if (mq->use_cqe)
2222 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2223 			else
2224 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2225 			break;
2226 		default:
2227 			WARN_ON_ONCE(1);
2228 			ret = -EINVAL;
2229 		}
2230 		if (!ret)
2231 			return MMC_REQ_STARTED;
2232 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2233 	default:
2234 		WARN_ON_ONCE(1);
2235 		return MMC_REQ_FAILED_TO_START;
2236 	}
2237 }
2238 
2239 static inline int mmc_blk_readonly(struct mmc_card *card)
2240 {
2241 	return mmc_card_readonly(card) ||
2242 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2243 }
2244 
2245 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2246 					      struct device *parent,
2247 					      sector_t size,
2248 					      bool default_ro,
2249 					      const char *subname,
2250 					      int area_type)
2251 {
2252 	struct mmc_blk_data *md;
2253 	int devidx, ret;
2254 
2255 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2256 	if (devidx < 0) {
2257 		/*
2258 		 * We get -ENOSPC because there are no more any available
2259 		 * devidx. The reason may be that, either userspace haven't yet
2260 		 * unmounted the partitions, which postpones mmc_blk_release()
2261 		 * from being called, or the device has more partitions than
2262 		 * what we support.
2263 		 */
2264 		if (devidx == -ENOSPC)
2265 			dev_err(mmc_dev(card->host),
2266 				"no more device IDs available\n");
2267 
2268 		return ERR_PTR(devidx);
2269 	}
2270 
2271 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2272 	if (!md) {
2273 		ret = -ENOMEM;
2274 		goto out;
2275 	}
2276 
2277 	md->area_type = area_type;
2278 
2279 	/*
2280 	 * Set the read-only status based on the supported commands
2281 	 * and the write protect switch.
2282 	 */
2283 	md->read_only = mmc_blk_readonly(card);
2284 
2285 	md->disk = alloc_disk(perdev_minors);
2286 	if (md->disk == NULL) {
2287 		ret = -ENOMEM;
2288 		goto err_kfree;
2289 	}
2290 
2291 	INIT_LIST_HEAD(&md->part);
2292 	INIT_LIST_HEAD(&md->rpmbs);
2293 	md->usage = 1;
2294 
2295 	ret = mmc_init_queue(&md->queue, card);
2296 	if (ret)
2297 		goto err_putdisk;
2298 
2299 	md->queue.blkdata = md;
2300 
2301 	/*
2302 	 * Keep an extra reference to the queue so that we can shutdown the
2303 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2304 	 * references to the 'md'. The corresponding blk_put_queue() is in
2305 	 * mmc_blk_put().
2306 	 */
2307 	if (!blk_get_queue(md->queue.queue)) {
2308 		mmc_cleanup_queue(&md->queue);
2309 		ret = -ENODEV;
2310 		goto err_putdisk;
2311 	}
2312 
2313 	md->disk->major	= MMC_BLOCK_MAJOR;
2314 	md->disk->first_minor = devidx * perdev_minors;
2315 	md->disk->fops = &mmc_bdops;
2316 	md->disk->private_data = md;
2317 	md->disk->queue = md->queue.queue;
2318 	md->parent = parent;
2319 	set_disk_ro(md->disk, md->read_only || default_ro);
2320 	md->disk->flags = GENHD_FL_EXT_DEVT;
2321 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2322 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2323 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2324 
2325 	/*
2326 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2327 	 *
2328 	 * - be set for removable media with permanent block devices
2329 	 * - be unset for removable block devices with permanent media
2330 	 *
2331 	 * Since MMC block devices clearly fall under the second
2332 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2333 	 * should use the block device creation/destruction hotplug
2334 	 * messages to tell when the card is present.
2335 	 */
2336 
2337 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2338 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2339 
2340 	set_capacity(md->disk, size);
2341 
2342 	if (mmc_host_cmd23(card->host)) {
2343 		if ((mmc_card_mmc(card) &&
2344 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2345 		    (mmc_card_sd(card) &&
2346 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2347 			md->flags |= MMC_BLK_CMD23;
2348 	}
2349 
2350 	if (mmc_card_mmc(card) &&
2351 	    md->flags & MMC_BLK_CMD23 &&
2352 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2353 	     card->ext_csd.rel_sectors)) {
2354 		md->flags |= MMC_BLK_REL_WR;
2355 		blk_queue_write_cache(md->queue.queue, true, true);
2356 	}
2357 
2358 	return md;
2359 
2360  err_putdisk:
2361 	put_disk(md->disk);
2362  err_kfree:
2363 	kfree(md);
2364  out:
2365 	ida_simple_remove(&mmc_blk_ida, devidx);
2366 	return ERR_PTR(ret);
2367 }
2368 
2369 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2370 {
2371 	sector_t size;
2372 
2373 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2374 		/*
2375 		 * The EXT_CSD sector count is in number or 512 byte
2376 		 * sectors.
2377 		 */
2378 		size = card->ext_csd.sectors;
2379 	} else {
2380 		/*
2381 		 * The CSD capacity field is in units of read_blkbits.
2382 		 * set_capacity takes units of 512 bytes.
2383 		 */
2384 		size = (typeof(sector_t))card->csd.capacity
2385 			<< (card->csd.read_blkbits - 9);
2386 	}
2387 
2388 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2389 					MMC_BLK_DATA_AREA_MAIN);
2390 }
2391 
2392 static int mmc_blk_alloc_part(struct mmc_card *card,
2393 			      struct mmc_blk_data *md,
2394 			      unsigned int part_type,
2395 			      sector_t size,
2396 			      bool default_ro,
2397 			      const char *subname,
2398 			      int area_type)
2399 {
2400 	char cap_str[10];
2401 	struct mmc_blk_data *part_md;
2402 
2403 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2404 				    subname, area_type);
2405 	if (IS_ERR(part_md))
2406 		return PTR_ERR(part_md);
2407 	part_md->part_type = part_type;
2408 	list_add(&part_md->part, &md->part);
2409 
2410 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2411 			cap_str, sizeof(cap_str));
2412 	pr_info("%s: %s %s partition %u %s\n",
2413 	       part_md->disk->disk_name, mmc_card_id(card),
2414 	       mmc_card_name(card), part_md->part_type, cap_str);
2415 	return 0;
2416 }
2417 
2418 /**
2419  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2420  * @filp: the character device file
2421  * @cmd: the ioctl() command
2422  * @arg: the argument from userspace
2423  *
2424  * This will essentially just redirect the ioctl()s coming in over to
2425  * the main block device spawning the RPMB character device.
2426  */
2427 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2428 			   unsigned long arg)
2429 {
2430 	struct mmc_rpmb_data *rpmb = filp->private_data;
2431 	int ret;
2432 
2433 	switch (cmd) {
2434 	case MMC_IOC_CMD:
2435 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2436 					(struct mmc_ioc_cmd __user *)arg,
2437 					rpmb);
2438 		break;
2439 	case MMC_IOC_MULTI_CMD:
2440 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2441 					(struct mmc_ioc_multi_cmd __user *)arg,
2442 					rpmb);
2443 		break;
2444 	default:
2445 		ret = -EINVAL;
2446 		break;
2447 	}
2448 
2449 	return ret;
2450 }
2451 
2452 #ifdef CONFIG_COMPAT
2453 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2454 			      unsigned long arg)
2455 {
2456 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2457 }
2458 #endif
2459 
2460 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2461 {
2462 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2463 						  struct mmc_rpmb_data, chrdev);
2464 
2465 	get_device(&rpmb->dev);
2466 	filp->private_data = rpmb;
2467 	mmc_blk_get(rpmb->md->disk);
2468 
2469 	return nonseekable_open(inode, filp);
2470 }
2471 
2472 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2473 {
2474 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2475 						  struct mmc_rpmb_data, chrdev);
2476 
2477 	put_device(&rpmb->dev);
2478 	mmc_blk_put(rpmb->md);
2479 
2480 	return 0;
2481 }
2482 
2483 static const struct file_operations mmc_rpmb_fileops = {
2484 	.release = mmc_rpmb_chrdev_release,
2485 	.open = mmc_rpmb_chrdev_open,
2486 	.owner = THIS_MODULE,
2487 	.llseek = no_llseek,
2488 	.unlocked_ioctl = mmc_rpmb_ioctl,
2489 #ifdef CONFIG_COMPAT
2490 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2491 #endif
2492 };
2493 
2494 static void mmc_blk_rpmb_device_release(struct device *dev)
2495 {
2496 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2497 
2498 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2499 	kfree(rpmb);
2500 }
2501 
2502 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2503 				   struct mmc_blk_data *md,
2504 				   unsigned int part_index,
2505 				   sector_t size,
2506 				   const char *subname)
2507 {
2508 	int devidx, ret;
2509 	char rpmb_name[DISK_NAME_LEN];
2510 	char cap_str[10];
2511 	struct mmc_rpmb_data *rpmb;
2512 
2513 	/* This creates the minor number for the RPMB char device */
2514 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2515 	if (devidx < 0)
2516 		return devidx;
2517 
2518 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2519 	if (!rpmb) {
2520 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2521 		return -ENOMEM;
2522 	}
2523 
2524 	snprintf(rpmb_name, sizeof(rpmb_name),
2525 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2526 
2527 	rpmb->id = devidx;
2528 	rpmb->part_index = part_index;
2529 	rpmb->dev.init_name = rpmb_name;
2530 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2531 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2532 	rpmb->dev.parent = &card->dev;
2533 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2534 	device_initialize(&rpmb->dev);
2535 	dev_set_drvdata(&rpmb->dev, rpmb);
2536 	rpmb->md = md;
2537 
2538 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2539 	rpmb->chrdev.owner = THIS_MODULE;
2540 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2541 	if (ret) {
2542 		pr_err("%s: could not add character device\n", rpmb_name);
2543 		goto out_put_device;
2544 	}
2545 
2546 	list_add(&rpmb->node, &md->rpmbs);
2547 
2548 	string_get_size((u64)size, 512, STRING_UNITS_2,
2549 			cap_str, sizeof(cap_str));
2550 
2551 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2552 		rpmb_name, mmc_card_id(card),
2553 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2554 		MAJOR(mmc_rpmb_devt), rpmb->id);
2555 
2556 	return 0;
2557 
2558 out_put_device:
2559 	put_device(&rpmb->dev);
2560 	return ret;
2561 }
2562 
2563 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2564 
2565 {
2566 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2567 	put_device(&rpmb->dev);
2568 }
2569 
2570 /* MMC Physical partitions consist of two boot partitions and
2571  * up to four general purpose partitions.
2572  * For each partition enabled in EXT_CSD a block device will be allocatedi
2573  * to provide access to the partition.
2574  */
2575 
2576 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2577 {
2578 	int idx, ret;
2579 
2580 	if (!mmc_card_mmc(card))
2581 		return 0;
2582 
2583 	for (idx = 0; idx < card->nr_parts; idx++) {
2584 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2585 			/*
2586 			 * RPMB partitions does not provide block access, they
2587 			 * are only accessed using ioctl():s. Thus create
2588 			 * special RPMB block devices that do not have a
2589 			 * backing block queue for these.
2590 			 */
2591 			ret = mmc_blk_alloc_rpmb_part(card, md,
2592 				card->part[idx].part_cfg,
2593 				card->part[idx].size >> 9,
2594 				card->part[idx].name);
2595 			if (ret)
2596 				return ret;
2597 		} else if (card->part[idx].size) {
2598 			ret = mmc_blk_alloc_part(card, md,
2599 				card->part[idx].part_cfg,
2600 				card->part[idx].size >> 9,
2601 				card->part[idx].force_ro,
2602 				card->part[idx].name,
2603 				card->part[idx].area_type);
2604 			if (ret)
2605 				return ret;
2606 		}
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2613 {
2614 	struct mmc_card *card;
2615 
2616 	if (md) {
2617 		/*
2618 		 * Flush remaining requests and free queues. It
2619 		 * is freeing the queue that stops new requests
2620 		 * from being accepted.
2621 		 */
2622 		card = md->queue.card;
2623 		if (md->disk->flags & GENHD_FL_UP) {
2624 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2625 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2626 					card->ext_csd.boot_ro_lockable)
2627 				device_remove_file(disk_to_dev(md->disk),
2628 					&md->power_ro_lock);
2629 
2630 			del_gendisk(md->disk);
2631 		}
2632 		mmc_cleanup_queue(&md->queue);
2633 		mmc_blk_put(md);
2634 	}
2635 }
2636 
2637 static void mmc_blk_remove_parts(struct mmc_card *card,
2638 				 struct mmc_blk_data *md)
2639 {
2640 	struct list_head *pos, *q;
2641 	struct mmc_blk_data *part_md;
2642 	struct mmc_rpmb_data *rpmb;
2643 
2644 	/* Remove RPMB partitions */
2645 	list_for_each_safe(pos, q, &md->rpmbs) {
2646 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2647 		list_del(pos);
2648 		mmc_blk_remove_rpmb_part(rpmb);
2649 	}
2650 	/* Remove block partitions */
2651 	list_for_each_safe(pos, q, &md->part) {
2652 		part_md = list_entry(pos, struct mmc_blk_data, part);
2653 		list_del(pos);
2654 		mmc_blk_remove_req(part_md);
2655 	}
2656 }
2657 
2658 static int mmc_add_disk(struct mmc_blk_data *md)
2659 {
2660 	int ret;
2661 	struct mmc_card *card = md->queue.card;
2662 
2663 	device_add_disk(md->parent, md->disk, NULL);
2664 	md->force_ro.show = force_ro_show;
2665 	md->force_ro.store = force_ro_store;
2666 	sysfs_attr_init(&md->force_ro.attr);
2667 	md->force_ro.attr.name = "force_ro";
2668 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2669 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2670 	if (ret)
2671 		goto force_ro_fail;
2672 
2673 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2674 	     card->ext_csd.boot_ro_lockable) {
2675 		umode_t mode;
2676 
2677 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2678 			mode = S_IRUGO;
2679 		else
2680 			mode = S_IRUGO | S_IWUSR;
2681 
2682 		md->power_ro_lock.show = power_ro_lock_show;
2683 		md->power_ro_lock.store = power_ro_lock_store;
2684 		sysfs_attr_init(&md->power_ro_lock.attr);
2685 		md->power_ro_lock.attr.mode = mode;
2686 		md->power_ro_lock.attr.name =
2687 					"ro_lock_until_next_power_on";
2688 		ret = device_create_file(disk_to_dev(md->disk),
2689 				&md->power_ro_lock);
2690 		if (ret)
2691 			goto power_ro_lock_fail;
2692 	}
2693 	return ret;
2694 
2695 power_ro_lock_fail:
2696 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2697 force_ro_fail:
2698 	del_gendisk(md->disk);
2699 
2700 	return ret;
2701 }
2702 
2703 #ifdef CONFIG_DEBUG_FS
2704 
2705 static int mmc_dbg_card_status_get(void *data, u64 *val)
2706 {
2707 	struct mmc_card *card = data;
2708 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2709 	struct mmc_queue *mq = &md->queue;
2710 	struct request *req;
2711 	int ret;
2712 
2713 	/* Ask the block layer about the card status */
2714 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2715 	if (IS_ERR(req))
2716 		return PTR_ERR(req);
2717 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2718 	blk_execute_rq(mq->queue, NULL, req, 0);
2719 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2720 	if (ret >= 0) {
2721 		*val = ret;
2722 		ret = 0;
2723 	}
2724 	blk_put_request(req);
2725 
2726 	return ret;
2727 }
2728 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2729 			 NULL, "%08llx\n");
2730 
2731 /* That is two digits * 512 + 1 for newline */
2732 #define EXT_CSD_STR_LEN 1025
2733 
2734 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2735 {
2736 	struct mmc_card *card = inode->i_private;
2737 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2738 	struct mmc_queue *mq = &md->queue;
2739 	struct request *req;
2740 	char *buf;
2741 	ssize_t n = 0;
2742 	u8 *ext_csd;
2743 	int err, i;
2744 
2745 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2746 	if (!buf)
2747 		return -ENOMEM;
2748 
2749 	/* Ask the block layer for the EXT CSD */
2750 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2751 	if (IS_ERR(req)) {
2752 		err = PTR_ERR(req);
2753 		goto out_free;
2754 	}
2755 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2756 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2757 	blk_execute_rq(mq->queue, NULL, req, 0);
2758 	err = req_to_mmc_queue_req(req)->drv_op_result;
2759 	blk_put_request(req);
2760 	if (err) {
2761 		pr_err("FAILED %d\n", err);
2762 		goto out_free;
2763 	}
2764 
2765 	for (i = 0; i < 512; i++)
2766 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2767 	n += sprintf(buf + n, "\n");
2768 
2769 	if (n != EXT_CSD_STR_LEN) {
2770 		err = -EINVAL;
2771 		kfree(ext_csd);
2772 		goto out_free;
2773 	}
2774 
2775 	filp->private_data = buf;
2776 	kfree(ext_csd);
2777 	return 0;
2778 
2779 out_free:
2780 	kfree(buf);
2781 	return err;
2782 }
2783 
2784 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2785 				size_t cnt, loff_t *ppos)
2786 {
2787 	char *buf = filp->private_data;
2788 
2789 	return simple_read_from_buffer(ubuf, cnt, ppos,
2790 				       buf, EXT_CSD_STR_LEN);
2791 }
2792 
2793 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2794 {
2795 	kfree(file->private_data);
2796 	return 0;
2797 }
2798 
2799 static const struct file_operations mmc_dbg_ext_csd_fops = {
2800 	.open		= mmc_ext_csd_open,
2801 	.read		= mmc_ext_csd_read,
2802 	.release	= mmc_ext_csd_release,
2803 	.llseek		= default_llseek,
2804 };
2805 
2806 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2807 {
2808 	struct dentry *root;
2809 
2810 	if (!card->debugfs_root)
2811 		return 0;
2812 
2813 	root = card->debugfs_root;
2814 
2815 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2816 		md->status_dentry =
2817 			debugfs_create_file_unsafe("status", 0400, root,
2818 						   card,
2819 						   &mmc_dbg_card_status_fops);
2820 		if (!md->status_dentry)
2821 			return -EIO;
2822 	}
2823 
2824 	if (mmc_card_mmc(card)) {
2825 		md->ext_csd_dentry =
2826 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2827 					    &mmc_dbg_ext_csd_fops);
2828 		if (!md->ext_csd_dentry)
2829 			return -EIO;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2836 				   struct mmc_blk_data *md)
2837 {
2838 	if (!card->debugfs_root)
2839 		return;
2840 
2841 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2842 		debugfs_remove(md->status_dentry);
2843 		md->status_dentry = NULL;
2844 	}
2845 
2846 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2847 		debugfs_remove(md->ext_csd_dentry);
2848 		md->ext_csd_dentry = NULL;
2849 	}
2850 }
2851 
2852 #else
2853 
2854 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2855 {
2856 	return 0;
2857 }
2858 
2859 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2860 				   struct mmc_blk_data *md)
2861 {
2862 }
2863 
2864 #endif /* CONFIG_DEBUG_FS */
2865 
2866 static int mmc_blk_probe(struct mmc_card *card)
2867 {
2868 	struct mmc_blk_data *md, *part_md;
2869 	char cap_str[10];
2870 
2871 	/*
2872 	 * Check that the card supports the command class(es) we need.
2873 	 */
2874 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2875 		return -ENODEV;
2876 
2877 	mmc_fixup_device(card, mmc_blk_fixups);
2878 
2879 	card->complete_wq = alloc_workqueue("mmc_complete",
2880 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2881 	if (unlikely(!card->complete_wq)) {
2882 		pr_err("Failed to create mmc completion workqueue");
2883 		return -ENOMEM;
2884 	}
2885 
2886 	md = mmc_blk_alloc(card);
2887 	if (IS_ERR(md))
2888 		return PTR_ERR(md);
2889 
2890 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2891 			cap_str, sizeof(cap_str));
2892 	pr_info("%s: %s %s %s %s\n",
2893 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2894 		cap_str, md->read_only ? "(ro)" : "");
2895 
2896 	if (mmc_blk_alloc_parts(card, md))
2897 		goto out;
2898 
2899 	dev_set_drvdata(&card->dev, md);
2900 
2901 	if (mmc_add_disk(md))
2902 		goto out;
2903 
2904 	list_for_each_entry(part_md, &md->part, part) {
2905 		if (mmc_add_disk(part_md))
2906 			goto out;
2907 	}
2908 
2909 	/* Add two debugfs entries */
2910 	mmc_blk_add_debugfs(card, md);
2911 
2912 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2913 	pm_runtime_use_autosuspend(&card->dev);
2914 
2915 	/*
2916 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2917 	 * decision to be taken during the SDIO init sequence instead.
2918 	 */
2919 	if (card->type != MMC_TYPE_SD_COMBO) {
2920 		pm_runtime_set_active(&card->dev);
2921 		pm_runtime_enable(&card->dev);
2922 	}
2923 
2924 	return 0;
2925 
2926  out:
2927 	mmc_blk_remove_parts(card, md);
2928 	mmc_blk_remove_req(md);
2929 	return 0;
2930 }
2931 
2932 static void mmc_blk_remove(struct mmc_card *card)
2933 {
2934 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2935 
2936 	mmc_blk_remove_debugfs(card, md);
2937 	mmc_blk_remove_parts(card, md);
2938 	pm_runtime_get_sync(&card->dev);
2939 	if (md->part_curr != md->part_type) {
2940 		mmc_claim_host(card->host);
2941 		mmc_blk_part_switch(card, md->part_type);
2942 		mmc_release_host(card->host);
2943 	}
2944 	if (card->type != MMC_TYPE_SD_COMBO)
2945 		pm_runtime_disable(&card->dev);
2946 	pm_runtime_put_noidle(&card->dev);
2947 	mmc_blk_remove_req(md);
2948 	dev_set_drvdata(&card->dev, NULL);
2949 	destroy_workqueue(card->complete_wq);
2950 }
2951 
2952 static int _mmc_blk_suspend(struct mmc_card *card)
2953 {
2954 	struct mmc_blk_data *part_md;
2955 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2956 
2957 	if (md) {
2958 		mmc_queue_suspend(&md->queue);
2959 		list_for_each_entry(part_md, &md->part, part) {
2960 			mmc_queue_suspend(&part_md->queue);
2961 		}
2962 	}
2963 	return 0;
2964 }
2965 
2966 static void mmc_blk_shutdown(struct mmc_card *card)
2967 {
2968 	_mmc_blk_suspend(card);
2969 }
2970 
2971 #ifdef CONFIG_PM_SLEEP
2972 static int mmc_blk_suspend(struct device *dev)
2973 {
2974 	struct mmc_card *card = mmc_dev_to_card(dev);
2975 
2976 	return _mmc_blk_suspend(card);
2977 }
2978 
2979 static int mmc_blk_resume(struct device *dev)
2980 {
2981 	struct mmc_blk_data *part_md;
2982 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2983 
2984 	if (md) {
2985 		/*
2986 		 * Resume involves the card going into idle state,
2987 		 * so current partition is always the main one.
2988 		 */
2989 		md->part_curr = md->part_type;
2990 		mmc_queue_resume(&md->queue);
2991 		list_for_each_entry(part_md, &md->part, part) {
2992 			mmc_queue_resume(&part_md->queue);
2993 		}
2994 	}
2995 	return 0;
2996 }
2997 #endif
2998 
2999 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3000 
3001 static struct mmc_driver mmc_driver = {
3002 	.drv		= {
3003 		.name	= "mmcblk",
3004 		.pm	= &mmc_blk_pm_ops,
3005 	},
3006 	.probe		= mmc_blk_probe,
3007 	.remove		= mmc_blk_remove,
3008 	.shutdown	= mmc_blk_shutdown,
3009 };
3010 
3011 static int __init mmc_blk_init(void)
3012 {
3013 	int res;
3014 
3015 	res  = bus_register(&mmc_rpmb_bus_type);
3016 	if (res < 0) {
3017 		pr_err("mmcblk: could not register RPMB bus type\n");
3018 		return res;
3019 	}
3020 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3021 	if (res < 0) {
3022 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3023 		goto out_bus_unreg;
3024 	}
3025 
3026 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3027 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3028 
3029 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3030 
3031 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3032 	if (res)
3033 		goto out_chrdev_unreg;
3034 
3035 	res = mmc_register_driver(&mmc_driver);
3036 	if (res)
3037 		goto out_blkdev_unreg;
3038 
3039 	return 0;
3040 
3041 out_blkdev_unreg:
3042 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3043 out_chrdev_unreg:
3044 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3045 out_bus_unreg:
3046 	bus_unregister(&mmc_rpmb_bus_type);
3047 	return res;
3048 }
3049 
3050 static void __exit mmc_blk_exit(void)
3051 {
3052 	mmc_unregister_driver(&mmc_driver);
3053 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3054 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3055 	bus_unregister(&mmc_rpmb_bus_type);
3056 }
3057 
3058 module_init(mmc_blk_init);
3059 module_exit(mmc_blk_exit);
3060 
3061 MODULE_LICENSE("GPL");
3062 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3063 
3064