xref: /linux/drivers/mtd/devices/docg3.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handles the M-Systems DiskOnChip G3 chip
4  *
5  * Copyright (C) 2011 Robert Jarzmik
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/errno.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/string.h>
14 #include <linux/slab.h>
15 #include <linux/io.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/bitmap.h>
20 #include <linux/bitrev.h>
21 #include <linux/bch.h>
22 
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "docg3.h"
28 
29 /*
30  * This driver handles the DiskOnChip G3 flash memory.
31  *
32  * As no specification is available from M-Systems/Sandisk, this drivers lacks
33  * several functions available on the chip, as :
34  *  - IPL write
35  *
36  * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
37  * the driver assumes a 16bits data bus.
38  *
39  * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
40  *  - a 1 byte Hamming code stored in the OOB for each page
41  *  - a 7 bytes BCH code stored in the OOB for each page
42  * The BCH ECC is :
43  *  - BCH is in GF(2^14)
44  *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
45  *                                   + 1 hamming byte)
46  *  - BCH can correct up to 4 bits (t = 4)
47  *  - BCH syndroms are calculated in hardware, and checked in hardware as well
48  *
49  */
50 
51 static unsigned int reliable_mode;
52 module_param(reliable_mode, uint, 0);
53 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
54 		 "2=reliable) : MLC normal operations are in normal mode");
55 
56 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
57 			       struct mtd_oob_region *oobregion)
58 {
59 	if (section)
60 		return -ERANGE;
61 
62 	/* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
63 	oobregion->offset = 7;
64 	oobregion->length = 8;
65 
66 	return 0;
67 }
68 
69 static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
70 				struct mtd_oob_region *oobregion)
71 {
72 	if (section > 1)
73 		return -ERANGE;
74 
75 	/* free bytes: byte 0 until byte 6, byte 15 */
76 	if (!section) {
77 		oobregion->offset = 0;
78 		oobregion->length = 7;
79 	} else {
80 		oobregion->offset = 15;
81 		oobregion->length = 1;
82 	}
83 
84 	return 0;
85 }
86 
87 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
88 	.ecc = docg3_ooblayout_ecc,
89 	.free = docg3_ooblayout_free,
90 };
91 
92 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
93 {
94 	u8 val = readb(docg3->cascade->base + reg);
95 
96 	trace_docg3_io(0, 8, reg, (int)val);
97 	return val;
98 }
99 
100 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
101 {
102 	u16 val = readw(docg3->cascade->base + reg);
103 
104 	trace_docg3_io(0, 16, reg, (int)val);
105 	return val;
106 }
107 
108 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
109 {
110 	writeb(val, docg3->cascade->base + reg);
111 	trace_docg3_io(1, 8, reg, val);
112 }
113 
114 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
115 {
116 	writew(val, docg3->cascade->base + reg);
117 	trace_docg3_io(1, 16, reg, val);
118 }
119 
120 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
121 {
122 	doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
123 }
124 
125 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
126 {
127 	doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
128 }
129 
130 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
131 {
132 	doc_writeb(docg3, addr, DOC_FLASHADDRESS);
133 }
134 
135 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
136 
137 static int doc_register_readb(struct docg3 *docg3, int reg)
138 {
139 	u8 val;
140 
141 	doc_writew(docg3, reg, DOC_READADDRESS);
142 	val = doc_readb(docg3, reg);
143 	doc_vdbg("Read register %04x : %02x\n", reg, val);
144 	return val;
145 }
146 
147 static int doc_register_readw(struct docg3 *docg3, int reg)
148 {
149 	u16 val;
150 
151 	doc_writew(docg3, reg, DOC_READADDRESS);
152 	val = doc_readw(docg3, reg);
153 	doc_vdbg("Read register %04x : %04x\n", reg, val);
154 	return val;
155 }
156 
157 /**
158  * doc_delay - delay docg3 operations
159  * @docg3: the device
160  * @nbNOPs: the number of NOPs to issue
161  *
162  * As no specification is available, the right timings between chip commands are
163  * unknown. The only available piece of information are the observed nops on a
164  * working docg3 chip.
165  * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
166  * friendlier msleep() functions or blocking mdelay().
167  */
168 static void doc_delay(struct docg3 *docg3, int nbNOPs)
169 {
170 	int i;
171 
172 	doc_vdbg("NOP x %d\n", nbNOPs);
173 	for (i = 0; i < nbNOPs; i++)
174 		doc_writeb(docg3, 0, DOC_NOP);
175 }
176 
177 static int is_prot_seq_error(struct docg3 *docg3)
178 {
179 	int ctrl;
180 
181 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
182 	return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
183 }
184 
185 static int doc_is_ready(struct docg3 *docg3)
186 {
187 	int ctrl;
188 
189 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
190 	return ctrl & DOC_CTRL_FLASHREADY;
191 }
192 
193 static int doc_wait_ready(struct docg3 *docg3)
194 {
195 	int maxWaitCycles = 100;
196 
197 	do {
198 		doc_delay(docg3, 4);
199 		cpu_relax();
200 	} while (!doc_is_ready(docg3) && maxWaitCycles--);
201 	doc_delay(docg3, 2);
202 	if (maxWaitCycles > 0)
203 		return 0;
204 	else
205 		return -EIO;
206 }
207 
208 static int doc_reset_seq(struct docg3 *docg3)
209 {
210 	int ret;
211 
212 	doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
213 	doc_flash_sequence(docg3, DOC_SEQ_RESET);
214 	doc_flash_command(docg3, DOC_CMD_RESET);
215 	doc_delay(docg3, 2);
216 	ret = doc_wait_ready(docg3);
217 
218 	doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
219 	return ret;
220 }
221 
222 /**
223  * doc_read_data_area - Read data from data area
224  * @docg3: the device
225  * @buf: the buffer to fill in (might be NULL is dummy reads)
226  * @len: the length to read
227  * @first: first time read, DOC_READADDRESS should be set
228  *
229  * Reads bytes from flash data. Handles the single byte / even bytes reads.
230  */
231 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
232 			       int first)
233 {
234 	int i, cdr, len4;
235 	u16 data16, *dst16;
236 	u8 data8, *dst8;
237 
238 	doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
239 	cdr = len & 0x1;
240 	len4 = len - cdr;
241 
242 	if (first)
243 		doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
244 	dst16 = buf;
245 	for (i = 0; i < len4; i += 2) {
246 		data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
247 		if (dst16) {
248 			*dst16 = data16;
249 			dst16++;
250 		}
251 	}
252 
253 	if (cdr) {
254 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
255 			   DOC_READADDRESS);
256 		doc_delay(docg3, 1);
257 		dst8 = (u8 *)dst16;
258 		for (i = 0; i < cdr; i++) {
259 			data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
260 			if (dst8) {
261 				*dst8 = data8;
262 				dst8++;
263 			}
264 		}
265 	}
266 }
267 
268 /**
269  * doc_write_data_area - Write data into data area
270  * @docg3: the device
271  * @buf: the buffer to get input bytes from
272  * @len: the length to write
273  *
274  * Writes bytes into flash data. Handles the single byte / even bytes writes.
275  */
276 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
277 {
278 	int i, cdr, len4;
279 	u16 *src16;
280 	u8 *src8;
281 
282 	doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
283 	cdr = len & 0x3;
284 	len4 = len - cdr;
285 
286 	doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
287 	src16 = (u16 *)buf;
288 	for (i = 0; i < len4; i += 2) {
289 		doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
290 		src16++;
291 	}
292 
293 	src8 = (u8 *)src16;
294 	for (i = 0; i < cdr; i++) {
295 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
296 			   DOC_READADDRESS);
297 		doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
298 		src8++;
299 	}
300 }
301 
302 /**
303  * doc_set_data_mode - Sets the flash to normal or reliable data mode
304  * @docg3: the device
305  *
306  * The reliable data mode is a bit slower than the fast mode, but less errors
307  * occur.  Entering the reliable mode cannot be done without entering the fast
308  * mode first.
309  *
310  * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
311  * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
312  * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
313  * result, which is a logical and between bytes from page 0 and page 1 (which is
314  * consistent with the fact that writing to a page is _clearing_ bits of that
315  * page).
316  */
317 static void doc_set_reliable_mode(struct docg3 *docg3)
318 {
319 	static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
320 
321 	doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
322 	switch (docg3->reliable) {
323 	case 0:
324 		break;
325 	case 1:
326 		doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
327 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
328 		break;
329 	case 2:
330 		doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
331 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
332 		doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
333 		break;
334 	default:
335 		doc_err("doc_set_reliable_mode(): invalid mode\n");
336 		break;
337 	}
338 	doc_delay(docg3, 2);
339 }
340 
341 /**
342  * doc_set_asic_mode - Set the ASIC mode
343  * @docg3: the device
344  * @mode: the mode
345  *
346  * The ASIC can work in 3 modes :
347  *  - RESET: all registers are zeroed
348  *  - NORMAL: receives and handles commands
349  *  - POWERDOWN: minimal poweruse, flash parts shut off
350  */
351 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
352 {
353 	int i;
354 
355 	for (i = 0; i < 12; i++)
356 		doc_readb(docg3, DOC_IOSPACE_IPL);
357 
358 	mode |= DOC_ASICMODE_MDWREN;
359 	doc_dbg("doc_set_asic_mode(%02x)\n", mode);
360 	doc_writeb(docg3, mode, DOC_ASICMODE);
361 	doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
362 	doc_delay(docg3, 1);
363 }
364 
365 /**
366  * doc_set_device_id - Sets the devices id for cascaded G3 chips
367  * @docg3: the device
368  * @id: the chip to select (amongst 0, 1, 2, 3)
369  *
370  * There can be 4 cascaded G3 chips. This function selects the one which will
371  * should be the active one.
372  */
373 static void doc_set_device_id(struct docg3 *docg3, int id)
374 {
375 	u8 ctrl;
376 
377 	doc_dbg("doc_set_device_id(%d)\n", id);
378 	doc_writeb(docg3, id, DOC_DEVICESELECT);
379 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
380 
381 	ctrl &= ~DOC_CTRL_VIOLATION;
382 	ctrl |= DOC_CTRL_CE;
383 	doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
384 }
385 
386 /**
387  * doc_set_extra_page_mode - Change flash page layout
388  * @docg3: the device
389  *
390  * Normally, the flash page is split into the data (512 bytes) and the out of
391  * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
392  * leveling counters are stored.  To access this last area of 4 bytes, a special
393  * mode must be input to the flash ASIC.
394  *
395  * Returns 0 if no error occurred, -EIO else.
396  */
397 static int doc_set_extra_page_mode(struct docg3 *docg3)
398 {
399 	int fctrl;
400 
401 	doc_dbg("doc_set_extra_page_mode()\n");
402 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
403 	doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
404 	doc_delay(docg3, 2);
405 
406 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
407 	if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
408 		return -EIO;
409 	else
410 		return 0;
411 }
412 
413 /**
414  * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
415  * @docg3: the device
416  * @sector: the sector
417  */
418 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
419 {
420 	doc_delay(docg3, 1);
421 	doc_flash_address(docg3, sector & 0xff);
422 	doc_flash_address(docg3, (sector >> 8) & 0xff);
423 	doc_flash_address(docg3, (sector >> 16) & 0xff);
424 	doc_delay(docg3, 1);
425 }
426 
427 /**
428  * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
429  * @docg3: the device
430  * @sector: the sector
431  * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
432  */
433 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
434 {
435 	ofs = ofs >> 2;
436 	doc_delay(docg3, 1);
437 	doc_flash_address(docg3, ofs & 0xff);
438 	doc_flash_address(docg3, sector & 0xff);
439 	doc_flash_address(docg3, (sector >> 8) & 0xff);
440 	doc_flash_address(docg3, (sector >> 16) & 0xff);
441 	doc_delay(docg3, 1);
442 }
443 
444 /**
445  * doc_seek - Set both flash planes to the specified block, page for reading
446  * @docg3: the device
447  * @block0: the first plane block index
448  * @block1: the second plane block index
449  * @page: the page index within the block
450  * @wear: if true, read will occur on the 4 extra bytes of the wear area
451  * @ofs: offset in page to read
452  *
453  * Programs the flash even and odd planes to the specific block and page.
454  * Alternatively, programs the flash to the wear area of the specified page.
455  */
456 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
457 			 int wear, int ofs)
458 {
459 	int sector, ret = 0;
460 
461 	doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
462 		block0, block1, page, ofs, wear);
463 
464 	if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
465 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
466 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
467 		doc_delay(docg3, 2);
468 	} else {
469 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
470 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
471 		doc_delay(docg3, 2);
472 	}
473 
474 	doc_set_reliable_mode(docg3);
475 	if (wear)
476 		ret = doc_set_extra_page_mode(docg3);
477 	if (ret)
478 		goto out;
479 
480 	doc_flash_sequence(docg3, DOC_SEQ_READ);
481 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
482 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
483 	doc_setup_addr_sector(docg3, sector);
484 
485 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
486 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
487 	doc_setup_addr_sector(docg3, sector);
488 	doc_delay(docg3, 1);
489 
490 out:
491 	return ret;
492 }
493 
494 /**
495  * doc_write_seek - Set both flash planes to the specified block, page for writing
496  * @docg3: the device
497  * @block0: the first plane block index
498  * @block1: the second plane block index
499  * @page: the page index within the block
500  * @ofs: offset in page to write
501  *
502  * Programs the flash even and odd planes to the specific block and page.
503  * Alternatively, programs the flash to the wear area of the specified page.
504  */
505 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
506 			 int ofs)
507 {
508 	int ret = 0, sector;
509 
510 	doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
511 		block0, block1, page, ofs);
512 
513 	doc_set_reliable_mode(docg3);
514 
515 	if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
516 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
517 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
518 		doc_delay(docg3, 2);
519 	} else {
520 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
521 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
522 		doc_delay(docg3, 2);
523 	}
524 
525 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
526 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
527 
528 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
529 	doc_setup_writeaddr_sector(docg3, sector, ofs);
530 
531 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
532 	doc_delay(docg3, 2);
533 	ret = doc_wait_ready(docg3);
534 	if (ret)
535 		goto out;
536 
537 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
538 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
539 	doc_setup_writeaddr_sector(docg3, sector, ofs);
540 	doc_delay(docg3, 1);
541 
542 out:
543 	return ret;
544 }
545 
546 
547 /**
548  * doc_read_page_ecc_init - Initialize hardware ECC engine
549  * @docg3: the device
550  * @len: the number of bytes covered by the ECC (BCH covered)
551  *
552  * The function does initialize the hardware ECC engine to compute the Hamming
553  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
554  *
555  * Return 0 if succeeded, -EIO on error
556  */
557 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
558 {
559 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE
560 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
561 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
562 		   DOC_ECCCONF0);
563 	doc_delay(docg3, 4);
564 	doc_register_readb(docg3, DOC_FLASHCONTROL);
565 	return doc_wait_ready(docg3);
566 }
567 
568 /**
569  * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
570  * @docg3: the device
571  * @len: the number of bytes covered by the ECC (BCH covered)
572  *
573  * The function does initialize the hardware ECC engine to compute the Hamming
574  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
575  *
576  * Return 0 if succeeded, -EIO on error
577  */
578 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
579 {
580 	doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
581 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
582 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
583 		   DOC_ECCCONF0);
584 	doc_delay(docg3, 4);
585 	doc_register_readb(docg3, DOC_FLASHCONTROL);
586 	return doc_wait_ready(docg3);
587 }
588 
589 /**
590  * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
591  * @docg3: the device
592  *
593  * Disables the hardware ECC generator and checker, for unchecked reads (as when
594  * reading OOB only or write status byte).
595  */
596 static void doc_ecc_disable(struct docg3 *docg3)
597 {
598 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
599 	doc_delay(docg3, 4);
600 }
601 
602 /**
603  * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
604  * @docg3: the device
605  * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
606  *
607  * This function programs the ECC hardware to compute the hamming code on the
608  * last provided N bytes to the hardware generator.
609  */
610 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
611 {
612 	u8 ecc_conf1;
613 
614 	ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
615 	ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
616 	ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
617 	doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
618 }
619 
620 /**
621  * doc_ecc_bch_fix_data - Fix if need be read data from flash
622  * @docg3: the device
623  * @buf: the buffer of read data (512 + 7 + 1 bytes)
624  * @hwecc: the hardware calculated ECC.
625  *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
626  *         area data, and calc_ecc the ECC calculated by the hardware generator.
627  *
628  * Checks if the received data matches the ECC, and if an error is detected,
629  * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
630  * understands the (data, ecc, syndroms) in an inverted order in comparison to
631  * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
632  * bit6 and bit 1, ...) for all ECC data.
633  *
634  * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
635  * algorithm is used to decode this.  However the hw operates on page
636  * data in a bit order that is the reverse of that of the bch alg,
637  * requiring that the bits be reversed on the result.  Thanks to Ivan
638  * Djelic for his analysis.
639  *
640  * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
641  * errors were detected and cannot be fixed.
642  */
643 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
644 {
645 	u8 ecc[DOC_ECC_BCH_SIZE];
646 	int errorpos[DOC_ECC_BCH_T], i, numerrs;
647 
648 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
649 		ecc[i] = bitrev8(hwecc[i]);
650 	numerrs = bch_decode(docg3->cascade->bch, NULL,
651 			     DOC_ECC_BCH_COVERED_BYTES,
652 			     NULL, ecc, NULL, errorpos);
653 	BUG_ON(numerrs == -EINVAL);
654 	if (numerrs < 0)
655 		goto out;
656 
657 	for (i = 0; i < numerrs; i++)
658 		errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
659 	for (i = 0; i < numerrs; i++)
660 		if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
661 			/* error is located in data, correct it */
662 			change_bit(errorpos[i], buf);
663 out:
664 	doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
665 	return numerrs;
666 }
667 
668 
669 /**
670  * doc_read_page_prepare - Prepares reading data from a flash page
671  * @docg3: the device
672  * @block0: the first plane block index on flash memory
673  * @block1: the second plane block index on flash memory
674  * @page: the page index in the block
675  * @offset: the offset in the page (must be a multiple of 4)
676  *
677  * Prepares the page to be read in the flash memory :
678  *   - tell ASIC to map the flash pages
679  *   - tell ASIC to be in read mode
680  *
681  * After a call to this method, a call to doc_read_page_finish is mandatory,
682  * to end the read cycle of the flash.
683  *
684  * Read data from a flash page. The length to be read must be between 0 and
685  * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
686  * the extra bytes reading is not implemented).
687  *
688  * As pages are grouped by 2 (in 2 planes), reading from a page must be done
689  * in two steps:
690  *  - one read of 512 bytes at offset 0
691  *  - one read of 512 bytes at offset 512 + 16
692  *
693  * Returns 0 if successful, -EIO if a read error occurred.
694  */
695 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
696 				 int page, int offset)
697 {
698 	int wear_area = 0, ret = 0;
699 
700 	doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
701 		block0, block1, page, offset);
702 	if (offset >= DOC_LAYOUT_WEAR_OFFSET)
703 		wear_area = 1;
704 	if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
705 		return -EINVAL;
706 
707 	doc_set_device_id(docg3, docg3->device_id);
708 	ret = doc_reset_seq(docg3);
709 	if (ret)
710 		goto err;
711 
712 	/* Program the flash address block and page */
713 	ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
714 	if (ret)
715 		goto err;
716 
717 	doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
718 	doc_delay(docg3, 2);
719 	doc_wait_ready(docg3);
720 
721 	doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
722 	doc_delay(docg3, 1);
723 	if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
724 		offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
725 	doc_flash_address(docg3, offset >> 2);
726 	doc_delay(docg3, 1);
727 	doc_wait_ready(docg3);
728 
729 	doc_flash_command(docg3, DOC_CMD_READ_FLASH);
730 
731 	return 0;
732 err:
733 	doc_writeb(docg3, 0, DOC_DATAEND);
734 	doc_delay(docg3, 2);
735 	return -EIO;
736 }
737 
738 /**
739  * doc_read_page_getbytes - Reads bytes from a prepared page
740  * @docg3: the device
741  * @len: the number of bytes to be read (must be a multiple of 4)
742  * @buf: the buffer to be filled in (or NULL is forget bytes)
743  * @first: 1 if first time read, DOC_READADDRESS should be set
744  * @last_odd: 1 if last read ended up on an odd byte
745  *
746  * Reads bytes from a prepared page. There is a trickery here : if the last read
747  * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
748  * planes, the first byte must be read apart. If a word (16bit) read was used,
749  * the read would return the byte of plane 2 as low *and* high endian, which
750  * will mess the read.
751  *
752  */
753 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
754 				  int first, int last_odd)
755 {
756 	if (last_odd && len > 0) {
757 		doc_read_data_area(docg3, buf, 1, first);
758 		doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
759 	} else {
760 		doc_read_data_area(docg3, buf, len, first);
761 	}
762 	doc_delay(docg3, 2);
763 	return len;
764 }
765 
766 /**
767  * doc_write_page_putbytes - Writes bytes into a prepared page
768  * @docg3: the device
769  * @len: the number of bytes to be written
770  * @buf: the buffer of input bytes
771  *
772  */
773 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
774 				    const u_char *buf)
775 {
776 	doc_write_data_area(docg3, buf, len);
777 	doc_delay(docg3, 2);
778 }
779 
780 /**
781  * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
782  * @docg3: the device
783  * @hwecc:  the array of 7 integers where the hardware ecc will be stored
784  */
785 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
786 {
787 	int i;
788 
789 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
790 		hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
791 }
792 
793 /**
794  * doc_page_finish - Ends reading/writing of a flash page
795  * @docg3: the device
796  */
797 static void doc_page_finish(struct docg3 *docg3)
798 {
799 	doc_writeb(docg3, 0, DOC_DATAEND);
800 	doc_delay(docg3, 2);
801 }
802 
803 /**
804  * doc_read_page_finish - Ends reading of a flash page
805  * @docg3: the device
806  *
807  * As a side effect, resets the chip selector to 0. This ensures that after each
808  * read operation, the floor 0 is selected. Therefore, if the systems halts, the
809  * reboot will boot on floor 0, where the IPL is.
810  */
811 static void doc_read_page_finish(struct docg3 *docg3)
812 {
813 	doc_page_finish(docg3);
814 	doc_set_device_id(docg3, 0);
815 }
816 
817 /**
818  * calc_block_sector - Calculate blocks, pages and ofs.
819  *
820  * @from: offset in flash
821  * @block0: first plane block index calculated
822  * @block1: second plane block index calculated
823  * @page: page calculated
824  * @ofs: offset in page
825  * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
826  * reliable mode.
827  *
828  * The calculation is based on the reliable/normal mode. In normal mode, the 64
829  * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
830  * clones, only 32 pages per block are available.
831  */
832 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
833 			      int *ofs, int reliable)
834 {
835 	uint sector, pages_biblock;
836 
837 	pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
838 	if (reliable == 1 || reliable == 2)
839 		pages_biblock /= 2;
840 
841 	sector = from / DOC_LAYOUT_PAGE_SIZE;
842 	*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
843 	*block1 = *block0 + 1;
844 	*page = sector % pages_biblock;
845 	*page /= DOC_LAYOUT_NBPLANES;
846 	if (reliable == 1 || reliable == 2)
847 		*page *= 2;
848 	if (sector % 2)
849 		*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
850 	else
851 		*ofs = 0;
852 }
853 
854 /**
855  * doc_read_oob - Read out of band bytes from flash
856  * @mtd: the device
857  * @from: the offset from first block and first page, in bytes, aligned on page
858  *        size
859  * @ops: the mtd oob structure
860  *
861  * Reads flash memory OOB area of pages.
862  *
863  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
864  */
865 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
866 			struct mtd_oob_ops *ops)
867 {
868 	struct docg3 *docg3 = mtd->priv;
869 	int block0, block1, page, ret, skip, ofs = 0;
870 	u8 *oobbuf = ops->oobbuf;
871 	u8 *buf = ops->datbuf;
872 	size_t len, ooblen, nbdata, nboob;
873 	u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
874 	int max_bitflips = 0;
875 
876 	if (buf)
877 		len = ops->len;
878 	else
879 		len = 0;
880 	if (oobbuf)
881 		ooblen = ops->ooblen;
882 	else
883 		ooblen = 0;
884 
885 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
886 		oobbuf += ops->ooboffs;
887 
888 	doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
889 		from, ops->mode, buf, len, oobbuf, ooblen);
890 	if (ooblen % DOC_LAYOUT_OOB_SIZE)
891 		return -EINVAL;
892 
893 	ops->oobretlen = 0;
894 	ops->retlen = 0;
895 	ret = 0;
896 	skip = from % DOC_LAYOUT_PAGE_SIZE;
897 	mutex_lock(&docg3->cascade->lock);
898 	while (ret >= 0 && (len > 0 || ooblen > 0)) {
899 		calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
900 			docg3->reliable);
901 		nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
902 		nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
903 		ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
904 		if (ret < 0)
905 			goto out;
906 		ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
907 		if (ret < 0)
908 			goto err_in_read;
909 		ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
910 		if (ret < skip)
911 			goto err_in_read;
912 		ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
913 		if (ret < nbdata)
914 			goto err_in_read;
915 		doc_read_page_getbytes(docg3,
916 				       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
917 				       NULL, 0, (skip + nbdata) % 2);
918 		ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
919 		if (ret < nboob)
920 			goto err_in_read;
921 		doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
922 				       NULL, 0, nboob % 2);
923 
924 		doc_get_bch_hw_ecc(docg3, hwecc);
925 		eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
926 
927 		if (nboob >= DOC_LAYOUT_OOB_SIZE) {
928 			doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
929 			doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
930 			doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
931 			doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
932 		}
933 		doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
934 		doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
935 
936 		ret = -EIO;
937 		if (is_prot_seq_error(docg3))
938 			goto err_in_read;
939 		ret = 0;
940 		if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
941 		    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
942 		    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
943 		    (ops->mode != MTD_OPS_RAW) &&
944 		    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
945 			ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
946 			if (ret < 0) {
947 				mtd->ecc_stats.failed++;
948 				ret = -EBADMSG;
949 			}
950 			if (ret > 0) {
951 				mtd->ecc_stats.corrected += ret;
952 				max_bitflips = max(max_bitflips, ret);
953 				ret = max_bitflips;
954 			}
955 		}
956 
957 		doc_read_page_finish(docg3);
958 		ops->retlen += nbdata;
959 		ops->oobretlen += nboob;
960 		buf += nbdata;
961 		oobbuf += nboob;
962 		len -= nbdata;
963 		ooblen -= nboob;
964 		from += DOC_LAYOUT_PAGE_SIZE;
965 		skip = 0;
966 	}
967 
968 out:
969 	mutex_unlock(&docg3->cascade->lock);
970 	return ret;
971 err_in_read:
972 	doc_read_page_finish(docg3);
973 	goto out;
974 }
975 
976 static int doc_reload_bbt(struct docg3 *docg3)
977 {
978 	int block = DOC_LAYOUT_BLOCK_BBT;
979 	int ret = 0, nbpages, page;
980 	u_char *buf = docg3->bbt;
981 
982 	nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
983 	for (page = 0; !ret && (page < nbpages); page++) {
984 		ret = doc_read_page_prepare(docg3, block, block + 1,
985 					    page + DOC_LAYOUT_PAGE_BBT, 0);
986 		if (!ret)
987 			ret = doc_read_page_ecc_init(docg3,
988 						     DOC_LAYOUT_PAGE_SIZE);
989 		if (!ret)
990 			doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
991 					       buf, 1, 0);
992 		buf += DOC_LAYOUT_PAGE_SIZE;
993 	}
994 	doc_read_page_finish(docg3);
995 	return ret;
996 }
997 
998 /**
999  * doc_block_isbad - Checks whether a block is good or not
1000  * @mtd: the device
1001  * @from: the offset to find the correct block
1002  *
1003  * Returns 1 if block is bad, 0 if block is good
1004  */
1005 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1006 {
1007 	struct docg3 *docg3 = mtd->priv;
1008 	int block0, block1, page, ofs, is_good;
1009 
1010 	calc_block_sector(from, &block0, &block1, &page, &ofs,
1011 		docg3->reliable);
1012 	doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1013 		from, block0, block1, page, ofs);
1014 
1015 	if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1016 		return 0;
1017 	if (block1 > docg3->max_block)
1018 		return -EINVAL;
1019 
1020 	is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1021 	return !is_good;
1022 }
1023 
1024 #if 0
1025 /**
1026  * doc_get_erase_count - Get block erase count
1027  * @docg3: the device
1028  * @from: the offset in which the block is.
1029  *
1030  * Get the number of times a block was erased. The number is the maximum of
1031  * erase times between first and second plane (which should be equal normally).
1032  *
1033  * Returns The number of erases, or -EINVAL or -EIO on error.
1034  */
1035 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1036 {
1037 	u8 buf[DOC_LAYOUT_WEAR_SIZE];
1038 	int ret, plane1_erase_count, plane2_erase_count;
1039 	int block0, block1, page, ofs;
1040 
1041 	doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1042 	if (from % DOC_LAYOUT_PAGE_SIZE)
1043 		return -EINVAL;
1044 	calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1045 	if (block1 > docg3->max_block)
1046 		return -EINVAL;
1047 
1048 	ret = doc_reset_seq(docg3);
1049 	if (!ret)
1050 		ret = doc_read_page_prepare(docg3, block0, block1, page,
1051 					    ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1052 	if (!ret)
1053 		ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1054 					     buf, 1, 0);
1055 	doc_read_page_finish(docg3);
1056 
1057 	if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1058 		return -EIO;
1059 	plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1060 		| ((u8)(~buf[5]) << 16);
1061 	plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1062 		| ((u8)(~buf[7]) << 16);
1063 
1064 	return max(plane1_erase_count, plane2_erase_count);
1065 }
1066 #endif
1067 
1068 /**
1069  * doc_get_op_status - get erase/write operation status
1070  * @docg3: the device
1071  *
1072  * Queries the status from the chip, and returns it
1073  *
1074  * Returns the status (bits DOC_PLANES_STATUS_*)
1075  */
1076 static int doc_get_op_status(struct docg3 *docg3)
1077 {
1078 	u8 status;
1079 
1080 	doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1081 	doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1082 	doc_delay(docg3, 5);
1083 
1084 	doc_ecc_disable(docg3);
1085 	doc_read_data_area(docg3, &status, 1, 1);
1086 	return status;
1087 }
1088 
1089 /**
1090  * doc_write_erase_wait_status - wait for write or erase completion
1091  * @docg3: the device
1092  *
1093  * Wait for the chip to be ready again after erase or write operation, and check
1094  * erase/write status.
1095  *
1096  * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1097  * timeout
1098  */
1099 static int doc_write_erase_wait_status(struct docg3 *docg3)
1100 {
1101 	int i, status, ret = 0;
1102 
1103 	for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1104 		msleep(20);
1105 	if (!doc_is_ready(docg3)) {
1106 		doc_dbg("Timeout reached and the chip is still not ready\n");
1107 		ret = -EAGAIN;
1108 		goto out;
1109 	}
1110 
1111 	status = doc_get_op_status(docg3);
1112 	if (status & DOC_PLANES_STATUS_FAIL) {
1113 		doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1114 			status);
1115 		ret = -EIO;
1116 	}
1117 
1118 out:
1119 	doc_page_finish(docg3);
1120 	return ret;
1121 }
1122 
1123 /**
1124  * doc_erase_block - Erase a couple of blocks
1125  * @docg3: the device
1126  * @block0: the first block to erase (leftmost plane)
1127  * @block1: the second block to erase (rightmost plane)
1128  *
1129  * Erase both blocks, and return operation status
1130  *
1131  * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1132  * ready for too long
1133  */
1134 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1135 {
1136 	int ret, sector;
1137 
1138 	doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1139 	ret = doc_reset_seq(docg3);
1140 	if (ret)
1141 		return -EIO;
1142 
1143 	doc_set_reliable_mode(docg3);
1144 	doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1145 
1146 	sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1147 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1148 	doc_setup_addr_sector(docg3, sector);
1149 	sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1150 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1151 	doc_setup_addr_sector(docg3, sector);
1152 	doc_delay(docg3, 1);
1153 
1154 	doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1155 	doc_delay(docg3, 2);
1156 
1157 	if (is_prot_seq_error(docg3)) {
1158 		doc_err("Erase blocks %d,%d error\n", block0, block1);
1159 		return -EIO;
1160 	}
1161 
1162 	return doc_write_erase_wait_status(docg3);
1163 }
1164 
1165 /**
1166  * doc_erase - Erase a portion of the chip
1167  * @mtd: the device
1168  * @info: the erase info
1169  *
1170  * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1171  * split into 2 pages of 512 bytes on 2 contiguous blocks.
1172  *
1173  * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1174  * issue
1175  */
1176 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1177 {
1178 	struct docg3 *docg3 = mtd->priv;
1179 	uint64_t len;
1180 	int block0, block1, page, ret = 0, ofs = 0;
1181 
1182 	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1183 
1184 	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1185 			  &ofs, docg3->reliable);
1186 	if (info->addr + info->len > mtd->size || page || ofs)
1187 		return -EINVAL;
1188 
1189 	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1190 			  docg3->reliable);
1191 	mutex_lock(&docg3->cascade->lock);
1192 	doc_set_device_id(docg3, docg3->device_id);
1193 	doc_set_reliable_mode(docg3);
1194 	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1195 		ret = doc_erase_block(docg3, block0, block1);
1196 		block0 += 2;
1197 		block1 += 2;
1198 	}
1199 	mutex_unlock(&docg3->cascade->lock);
1200 
1201 	return ret;
1202 }
1203 
1204 /**
1205  * doc_write_page - Write a single page to the chip
1206  * @docg3: the device
1207  * @to: the offset from first block and first page, in bytes, aligned on page
1208  *      size
1209  * @buf: buffer to get bytes from
1210  * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1211  *       written)
1212  * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1213  *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1214  *           remaining ones are filled with hardware Hamming and BCH
1215  *           computations. Its value is not meaningfull is oob == NULL.
1216  *
1217  * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1218  * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1219  * BCH generator if autoecc is not null.
1220  *
1221  * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1222  */
1223 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1224 			  const u_char *oob, int autoecc)
1225 {
1226 	int block0, block1, page, ret, ofs = 0;
1227 	u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1228 
1229 	doc_dbg("doc_write_page(to=%lld)\n", to);
1230 	calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1231 
1232 	doc_set_device_id(docg3, docg3->device_id);
1233 	ret = doc_reset_seq(docg3);
1234 	if (ret)
1235 		goto err;
1236 
1237 	/* Program the flash address block and page */
1238 	ret = doc_write_seek(docg3, block0, block1, page, ofs);
1239 	if (ret)
1240 		goto err;
1241 
1242 	doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1243 	doc_delay(docg3, 2);
1244 	doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1245 
1246 	if (oob && autoecc) {
1247 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1248 		doc_delay(docg3, 2);
1249 		oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1250 
1251 		hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1252 		doc_delay(docg3, 2);
1253 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1254 					&hamming);
1255 		doc_delay(docg3, 2);
1256 
1257 		doc_get_bch_hw_ecc(docg3, hwecc);
1258 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1259 		doc_delay(docg3, 2);
1260 
1261 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1262 	}
1263 	if (oob && !autoecc)
1264 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1265 
1266 	doc_delay(docg3, 2);
1267 	doc_page_finish(docg3);
1268 	doc_delay(docg3, 2);
1269 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1270 	doc_delay(docg3, 2);
1271 
1272 	/*
1273 	 * The wait status will perform another doc_page_finish() call, but that
1274 	 * seems to please the docg3, so leave it.
1275 	 */
1276 	ret = doc_write_erase_wait_status(docg3);
1277 	return ret;
1278 err:
1279 	doc_read_page_finish(docg3);
1280 	return ret;
1281 }
1282 
1283 /**
1284  * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1285  * @ops: the oob operations
1286  *
1287  * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1288  */
1289 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1290 {
1291 	int autoecc;
1292 
1293 	switch (ops->mode) {
1294 	case MTD_OPS_PLACE_OOB:
1295 	case MTD_OPS_AUTO_OOB:
1296 		autoecc = 1;
1297 		break;
1298 	case MTD_OPS_RAW:
1299 		autoecc = 0;
1300 		break;
1301 	default:
1302 		autoecc = -EINVAL;
1303 	}
1304 	return autoecc;
1305 }
1306 
1307 /**
1308  * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1309  * @dst: the target 16 bytes OOB buffer
1310  * @oobsrc: the source 8 bytes non-ECC OOB buffer
1311  *
1312  */
1313 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1314 {
1315 	memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1316 	dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1317 }
1318 
1319 /**
1320  * doc_backup_oob - Backup OOB into docg3 structure
1321  * @docg3: the device
1322  * @to: the page offset in the chip
1323  * @ops: the OOB size and buffer
1324  *
1325  * As the docg3 should write a page with its OOB in one pass, and some userland
1326  * applications do write_oob() to setup the OOB and then write(), store the OOB
1327  * into a temporary storage. This is very dangerous, as 2 concurrent
1328  * applications could store an OOB, and then write their pages (which will
1329  * result into one having its OOB corrupted).
1330  *
1331  * The only reliable way would be for userland to call doc_write_oob() with both
1332  * the page data _and_ the OOB area.
1333  *
1334  * Returns 0 if success, -EINVAL if ops content invalid
1335  */
1336 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1337 			  struct mtd_oob_ops *ops)
1338 {
1339 	int ooblen = ops->ooblen, autoecc;
1340 
1341 	if (ooblen != DOC_LAYOUT_OOB_SIZE)
1342 		return -EINVAL;
1343 	autoecc = doc_guess_autoecc(ops);
1344 	if (autoecc < 0)
1345 		return autoecc;
1346 
1347 	docg3->oob_write_ofs = to;
1348 	docg3->oob_autoecc = autoecc;
1349 	if (ops->mode == MTD_OPS_AUTO_OOB) {
1350 		doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1351 		ops->oobretlen = 8;
1352 	} else {
1353 		memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1354 		ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1355 	}
1356 	return 0;
1357 }
1358 
1359 /**
1360  * doc_write_oob - Write out of band bytes to flash
1361  * @mtd: the device
1362  * @ofs: the offset from first block and first page, in bytes, aligned on page
1363  *       size
1364  * @ops: the mtd oob structure
1365  *
1366  * Either write OOB data into a temporary buffer, for the subsequent write
1367  * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1368  * as well, issue the page write.
1369  * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1370  * still be filled in if asked for).
1371  *
1372  * Returns 0 is successful, EINVAL if length is not 14 bytes
1373  */
1374 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1375 			 struct mtd_oob_ops *ops)
1376 {
1377 	struct docg3 *docg3 = mtd->priv;
1378 	int ret, autoecc, oobdelta;
1379 	u8 *oobbuf = ops->oobbuf;
1380 	u8 *buf = ops->datbuf;
1381 	size_t len, ooblen;
1382 	u8 oob[DOC_LAYOUT_OOB_SIZE];
1383 
1384 	if (buf)
1385 		len = ops->len;
1386 	else
1387 		len = 0;
1388 	if (oobbuf)
1389 		ooblen = ops->ooblen;
1390 	else
1391 		ooblen = 0;
1392 
1393 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1394 		oobbuf += ops->ooboffs;
1395 
1396 	doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1397 		ofs, ops->mode, buf, len, oobbuf, ooblen);
1398 	switch (ops->mode) {
1399 	case MTD_OPS_PLACE_OOB:
1400 	case MTD_OPS_RAW:
1401 		oobdelta = mtd->oobsize;
1402 		break;
1403 	case MTD_OPS_AUTO_OOB:
1404 		oobdelta = mtd->oobavail;
1405 		break;
1406 	default:
1407 		return -EINVAL;
1408 	}
1409 	if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1410 	    (ofs % DOC_LAYOUT_PAGE_SIZE))
1411 		return -EINVAL;
1412 	if (len && ooblen &&
1413 	    (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1414 		return -EINVAL;
1415 
1416 	ops->oobretlen = 0;
1417 	ops->retlen = 0;
1418 	ret = 0;
1419 	if (len == 0 && ooblen == 0)
1420 		return -EINVAL;
1421 	if (len == 0 && ooblen > 0)
1422 		return doc_backup_oob(docg3, ofs, ops);
1423 
1424 	autoecc = doc_guess_autoecc(ops);
1425 	if (autoecc < 0)
1426 		return autoecc;
1427 
1428 	mutex_lock(&docg3->cascade->lock);
1429 	while (!ret && len > 0) {
1430 		memset(oob, 0, sizeof(oob));
1431 		if (ofs == docg3->oob_write_ofs)
1432 			memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1433 		else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1434 			doc_fill_autooob(oob, oobbuf);
1435 		else if (ooblen > 0)
1436 			memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1437 		ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1438 
1439 		ofs += DOC_LAYOUT_PAGE_SIZE;
1440 		len -= DOC_LAYOUT_PAGE_SIZE;
1441 		buf += DOC_LAYOUT_PAGE_SIZE;
1442 		if (ooblen) {
1443 			oobbuf += oobdelta;
1444 			ooblen -= oobdelta;
1445 			ops->oobretlen += oobdelta;
1446 		}
1447 		ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1448 	}
1449 
1450 	doc_set_device_id(docg3, 0);
1451 	mutex_unlock(&docg3->cascade->lock);
1452 	return ret;
1453 }
1454 
1455 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1456 				     struct device_attribute *attr)
1457 {
1458 	int floor;
1459 	struct mtd_info **docg3_floors = dev_get_drvdata(dev);
1460 
1461 	floor = attr->attr.name[1] - '0';
1462 	if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1463 		return NULL;
1464 	else
1465 		return docg3_floors[floor]->priv;
1466 }
1467 
1468 static ssize_t dps0_is_key_locked(struct device *dev,
1469 				  struct device_attribute *attr, char *buf)
1470 {
1471 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1472 	int dps0;
1473 
1474 	mutex_lock(&docg3->cascade->lock);
1475 	doc_set_device_id(docg3, docg3->device_id);
1476 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1477 	doc_set_device_id(docg3, 0);
1478 	mutex_unlock(&docg3->cascade->lock);
1479 
1480 	return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1481 }
1482 
1483 static ssize_t dps1_is_key_locked(struct device *dev,
1484 				  struct device_attribute *attr, char *buf)
1485 {
1486 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1487 	int dps1;
1488 
1489 	mutex_lock(&docg3->cascade->lock);
1490 	doc_set_device_id(docg3, docg3->device_id);
1491 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1492 	doc_set_device_id(docg3, 0);
1493 	mutex_unlock(&docg3->cascade->lock);
1494 
1495 	return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1496 }
1497 
1498 static ssize_t dps0_insert_key(struct device *dev,
1499 			       struct device_attribute *attr,
1500 			       const char *buf, size_t count)
1501 {
1502 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1503 	int i;
1504 
1505 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1506 		return -EINVAL;
1507 
1508 	mutex_lock(&docg3->cascade->lock);
1509 	doc_set_device_id(docg3, docg3->device_id);
1510 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1511 		doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1512 	doc_set_device_id(docg3, 0);
1513 	mutex_unlock(&docg3->cascade->lock);
1514 	return count;
1515 }
1516 
1517 static ssize_t dps1_insert_key(struct device *dev,
1518 			       struct device_attribute *attr,
1519 			       const char *buf, size_t count)
1520 {
1521 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1522 	int i;
1523 
1524 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1525 		return -EINVAL;
1526 
1527 	mutex_lock(&docg3->cascade->lock);
1528 	doc_set_device_id(docg3, docg3->device_id);
1529 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1530 		doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1531 	doc_set_device_id(docg3, 0);
1532 	mutex_unlock(&docg3->cascade->lock);
1533 	return count;
1534 }
1535 
1536 #define FLOOR_SYSFS(id) { \
1537 	__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1538 	__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1539 	__ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1540 	__ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1541 }
1542 
1543 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1544 	FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1545 };
1546 
1547 static int doc_register_sysfs(struct platform_device *pdev,
1548 			      struct docg3_cascade *cascade)
1549 {
1550 	struct device *dev = &pdev->dev;
1551 	int floor;
1552 	int ret;
1553 	int i;
1554 
1555 	for (floor = 0;
1556 	     floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1557 	     floor++) {
1558 		for (i = 0; i < 4; i++) {
1559 			ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1560 			if (ret)
1561 				goto remove_files;
1562 		}
1563 	}
1564 
1565 	return 0;
1566 
1567 remove_files:
1568 	do {
1569 		while (--i >= 0)
1570 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1571 		i = 4;
1572 	} while (--floor >= 0);
1573 
1574 	return ret;
1575 }
1576 
1577 static void doc_unregister_sysfs(struct platform_device *pdev,
1578 				 struct docg3_cascade *cascade)
1579 {
1580 	struct device *dev = &pdev->dev;
1581 	int floor, i;
1582 
1583 	for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1584 	     floor++)
1585 		for (i = 0; i < 4; i++)
1586 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1587 }
1588 
1589 /*
1590  * Debug sysfs entries
1591  */
1592 static int flashcontrol_show(struct seq_file *s, void *p)
1593 {
1594 	struct docg3 *docg3 = (struct docg3 *)s->private;
1595 
1596 	u8 fctrl;
1597 
1598 	mutex_lock(&docg3->cascade->lock);
1599 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1600 	mutex_unlock(&docg3->cascade->lock);
1601 
1602 	seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1603 		   fctrl,
1604 		   fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1605 		   fctrl & DOC_CTRL_CE ? "active" : "inactive",
1606 		   fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1607 		   fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1608 		   fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1609 
1610 	return 0;
1611 }
1612 DEFINE_SHOW_ATTRIBUTE(flashcontrol);
1613 
1614 static int asic_mode_show(struct seq_file *s, void *p)
1615 {
1616 	struct docg3 *docg3 = (struct docg3 *)s->private;
1617 
1618 	int pctrl, mode;
1619 
1620 	mutex_lock(&docg3->cascade->lock);
1621 	pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1622 	mode = pctrl & 0x03;
1623 	mutex_unlock(&docg3->cascade->lock);
1624 
1625 	seq_printf(s,
1626 		   "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1627 		   pctrl,
1628 		   pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1629 		   pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1630 		   pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1631 		   pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1632 		   pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1633 		   mode >> 1, mode & 0x1);
1634 
1635 	switch (mode) {
1636 	case DOC_ASICMODE_RESET:
1637 		seq_puts(s, "reset");
1638 		break;
1639 	case DOC_ASICMODE_NORMAL:
1640 		seq_puts(s, "normal");
1641 		break;
1642 	case DOC_ASICMODE_POWERDOWN:
1643 		seq_puts(s, "powerdown");
1644 		break;
1645 	}
1646 	seq_puts(s, ")\n");
1647 	return 0;
1648 }
1649 DEFINE_SHOW_ATTRIBUTE(asic_mode);
1650 
1651 static int device_id_show(struct seq_file *s, void *p)
1652 {
1653 	struct docg3 *docg3 = (struct docg3 *)s->private;
1654 	int id;
1655 
1656 	mutex_lock(&docg3->cascade->lock);
1657 	id = doc_register_readb(docg3, DOC_DEVICESELECT);
1658 	mutex_unlock(&docg3->cascade->lock);
1659 
1660 	seq_printf(s, "DeviceId = %d\n", id);
1661 	return 0;
1662 }
1663 DEFINE_SHOW_ATTRIBUTE(device_id);
1664 
1665 static int protection_show(struct seq_file *s, void *p)
1666 {
1667 	struct docg3 *docg3 = (struct docg3 *)s->private;
1668 	int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1669 
1670 	mutex_lock(&docg3->cascade->lock);
1671 	protect = doc_register_readb(docg3, DOC_PROTECTION);
1672 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1673 	dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1674 	dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1675 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1676 	dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1677 	dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1678 	mutex_unlock(&docg3->cascade->lock);
1679 
1680 	seq_printf(s, "Protection = 0x%02x (", protect);
1681 	if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1682 		seq_puts(s, "FOUNDRY_OTP_LOCK,");
1683 	if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1684 		seq_puts(s, "CUSTOMER_OTP_LOCK,");
1685 	if (protect & DOC_PROTECT_LOCK_INPUT)
1686 		seq_puts(s, "LOCK_INPUT,");
1687 	if (protect & DOC_PROTECT_STICKY_LOCK)
1688 		seq_puts(s, "STICKY_LOCK,");
1689 	if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1690 		seq_puts(s, "PROTECTION ON,");
1691 	if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1692 		seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1693 	if (protect & DOC_PROTECT_PROTECTION_ERROR)
1694 		seq_puts(s, "PROTECT_ERR,");
1695 	else
1696 		seq_puts(s, "NO_PROTECT_ERR");
1697 	seq_puts(s, ")\n");
1698 
1699 	seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1700 		   dps0, dps0_low, dps0_high,
1701 		   !!(dps0 & DOC_DPS_OTP_PROTECTED),
1702 		   !!(dps0 & DOC_DPS_READ_PROTECTED),
1703 		   !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1704 		   !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1705 		   !!(dps0 & DOC_DPS_KEY_OK));
1706 	seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1707 		   dps1, dps1_low, dps1_high,
1708 		   !!(dps1 & DOC_DPS_OTP_PROTECTED),
1709 		   !!(dps1 & DOC_DPS_READ_PROTECTED),
1710 		   !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1711 		   !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1712 		   !!(dps1 & DOC_DPS_KEY_OK));
1713 	return 0;
1714 }
1715 DEFINE_SHOW_ATTRIBUTE(protection);
1716 
1717 static void __init doc_dbg_register(struct mtd_info *floor)
1718 {
1719 	struct dentry *root = floor->dbg.dfs_dir;
1720 	struct docg3 *docg3 = floor->priv;
1721 
1722 	if (IS_ERR_OR_NULL(root)) {
1723 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
1724 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1725 			dev_warn(floor->dev.parent,
1726 				 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1727 		return;
1728 	}
1729 
1730 	debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1731 			    &flashcontrol_fops);
1732 	debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1733 			    &asic_mode_fops);
1734 	debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1735 			    &device_id_fops);
1736 	debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1737 			    &protection_fops);
1738 }
1739 
1740 /**
1741  * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1742  * @chip_id: The chip ID of the supported chip
1743  * @mtd: The structure to fill
1744  */
1745 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1746 {
1747 	struct docg3 *docg3 = mtd->priv;
1748 	int cfg;
1749 
1750 	cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1751 	docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1752 	docg3->reliable = reliable_mode;
1753 
1754 	switch (chip_id) {
1755 	case DOC_CHIPID_G3:
1756 		mtd->name = devm_kasprintf(docg3->dev, GFP_KERNEL, "docg3.%d",
1757 					   docg3->device_id);
1758 		if (!mtd->name)
1759 			return -ENOMEM;
1760 		docg3->max_block = 2047;
1761 		break;
1762 	}
1763 	mtd->type = MTD_NANDFLASH;
1764 	mtd->flags = MTD_CAP_NANDFLASH;
1765 	mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1766 	if (docg3->reliable == 2)
1767 		mtd->size /= 2;
1768 	mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1769 	if (docg3->reliable == 2)
1770 		mtd->erasesize /= 2;
1771 	mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1772 	mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1773 	mtd->_erase = doc_erase;
1774 	mtd->_read_oob = doc_read_oob;
1775 	mtd->_write_oob = doc_write_oob;
1776 	mtd->_block_isbad = doc_block_isbad;
1777 	mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1778 	mtd->oobavail = 8;
1779 	mtd->ecc_strength = DOC_ECC_BCH_T;
1780 
1781 	return 0;
1782 }
1783 
1784 /**
1785  * doc_probe_device - Check if a device is available
1786  * @cascade: the cascade of chips this devices will belong to
1787  * @floor: the floor of the probed device
1788  * @dev: the device
1789  *
1790  * Checks whether a device at the specified IO range, and floor is available.
1791  *
1792  * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1793  * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1794  * launched.
1795  */
1796 static struct mtd_info * __init
1797 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1798 {
1799 	int ret, bbt_nbpages;
1800 	u16 chip_id, chip_id_inv;
1801 	struct docg3 *docg3;
1802 	struct mtd_info *mtd;
1803 
1804 	ret = -ENOMEM;
1805 	docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1806 	if (!docg3)
1807 		goto nomem1;
1808 	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1809 	if (!mtd)
1810 		goto nomem2;
1811 	mtd->priv = docg3;
1812 	mtd->dev.parent = dev;
1813 	bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1814 				   8 * DOC_LAYOUT_PAGE_SIZE);
1815 	docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL);
1816 	if (!docg3->bbt)
1817 		goto nomem3;
1818 
1819 	docg3->dev = dev;
1820 	docg3->device_id = floor;
1821 	docg3->cascade = cascade;
1822 	doc_set_device_id(docg3, docg3->device_id);
1823 	if (!floor)
1824 		doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1825 	doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1826 
1827 	chip_id = doc_register_readw(docg3, DOC_CHIPID);
1828 	chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1829 
1830 	ret = 0;
1831 	if (chip_id != (u16)(~chip_id_inv)) {
1832 		goto nomem4;
1833 	}
1834 
1835 	switch (chip_id) {
1836 	case DOC_CHIPID_G3:
1837 		doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1838 			 docg3->cascade->base, floor);
1839 		break;
1840 	default:
1841 		doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1842 		goto nomem4;
1843 	}
1844 
1845 	ret = doc_set_driver_info(chip_id, mtd);
1846 	if (ret)
1847 		goto nomem4;
1848 
1849 	doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1850 	doc_reload_bbt(docg3);
1851 	return mtd;
1852 
1853 nomem4:
1854 	kfree(docg3->bbt);
1855 nomem3:
1856 	kfree(mtd);
1857 nomem2:
1858 	kfree(docg3);
1859 nomem1:
1860 	return ret ? ERR_PTR(ret) : NULL;
1861 }
1862 
1863 /**
1864  * doc_release_device - Release a docg3 floor
1865  * @mtd: the device
1866  */
1867 static void doc_release_device(struct mtd_info *mtd)
1868 {
1869 	struct docg3 *docg3 = mtd->priv;
1870 
1871 	mtd_device_unregister(mtd);
1872 	kfree(docg3->bbt);
1873 	kfree(docg3);
1874 	kfree(mtd);
1875 }
1876 
1877 /**
1878  * docg3_resume - Awakens docg3 floor
1879  * @pdev: platfrom device
1880  *
1881  * Returns 0 (always successful)
1882  */
1883 static int docg3_resume(struct platform_device *pdev)
1884 {
1885 	int i;
1886 	struct docg3_cascade *cascade;
1887 	struct mtd_info **docg3_floors, *mtd;
1888 	struct docg3 *docg3;
1889 
1890 	cascade = platform_get_drvdata(pdev);
1891 	docg3_floors = cascade->floors;
1892 	mtd = docg3_floors[0];
1893 	docg3 = mtd->priv;
1894 
1895 	doc_dbg("docg3_resume()\n");
1896 	for (i = 0; i < 12; i++)
1897 		doc_readb(docg3, DOC_IOSPACE_IPL);
1898 	return 0;
1899 }
1900 
1901 /**
1902  * docg3_suspend - Put in low power mode the docg3 floor
1903  * @pdev: platform device
1904  * @state: power state
1905  *
1906  * Shuts off most of docg3 circuitery to lower power consumption.
1907  *
1908  * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1909  */
1910 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1911 {
1912 	int floor, i;
1913 	struct docg3_cascade *cascade;
1914 	struct mtd_info **docg3_floors, *mtd;
1915 	struct docg3 *docg3;
1916 	u8 ctrl, pwr_down;
1917 
1918 	cascade = platform_get_drvdata(pdev);
1919 	docg3_floors = cascade->floors;
1920 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1921 		mtd = docg3_floors[floor];
1922 		if (!mtd)
1923 			continue;
1924 		docg3 = mtd->priv;
1925 
1926 		doc_writeb(docg3, floor, DOC_DEVICESELECT);
1927 		ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1928 		ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1929 		doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1930 
1931 		for (i = 0; i < 10; i++) {
1932 			usleep_range(3000, 4000);
1933 			pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1934 			if (pwr_down & DOC_POWERDOWN_READY)
1935 				break;
1936 		}
1937 		if (pwr_down & DOC_POWERDOWN_READY) {
1938 			doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1939 				floor);
1940 		} else {
1941 			doc_err("docg3_suspend(): floor %d powerdown failed\n",
1942 				floor);
1943 			return -EIO;
1944 		}
1945 	}
1946 
1947 	mtd = docg3_floors[0];
1948 	docg3 = mtd->priv;
1949 	doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1950 	return 0;
1951 }
1952 
1953 /**
1954  * doc_probe - Probe the IO space for a DiskOnChip G3 chip
1955  * @pdev: platform device
1956  *
1957  * Probes for a G3 chip at the specified IO space in the platform data
1958  * ressources. The floor 0 must be available.
1959  *
1960  * Returns 0 on success, -ENOMEM, -ENXIO on error
1961  */
1962 static int __init docg3_probe(struct platform_device *pdev)
1963 {
1964 	struct device *dev = &pdev->dev;
1965 	struct mtd_info *mtd;
1966 	struct resource *ress;
1967 	void __iomem *base;
1968 	int ret, floor;
1969 	struct docg3_cascade *cascade;
1970 
1971 	ret = -ENXIO;
1972 	ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1973 	if (!ress) {
1974 		dev_err(dev, "No I/O memory resource defined\n");
1975 		return ret;
1976 	}
1977 	base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
1978 
1979 	ret = -ENOMEM;
1980 	cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade),
1981 			       GFP_KERNEL);
1982 	if (!cascade)
1983 		return ret;
1984 	cascade->base = base;
1985 	mutex_init(&cascade->lock);
1986 	cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
1987 				DOC_ECC_BCH_PRIMPOLY, false);
1988 	if (!cascade->bch)
1989 		return ret;
1990 
1991 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1992 		mtd = doc_probe_device(cascade, floor, dev);
1993 		if (IS_ERR(mtd)) {
1994 			ret = PTR_ERR(mtd);
1995 			goto err_probe;
1996 		}
1997 		if (!mtd) {
1998 			if (floor == 0)
1999 				goto notfound;
2000 			else
2001 				continue;
2002 		}
2003 		cascade->floors[floor] = mtd;
2004 		ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2005 						0);
2006 		if (ret)
2007 			goto err_probe;
2008 
2009 		doc_dbg_register(cascade->floors[floor]);
2010 	}
2011 
2012 	ret = doc_register_sysfs(pdev, cascade);
2013 	if (ret)
2014 		goto err_probe;
2015 
2016 	platform_set_drvdata(pdev, cascade);
2017 	return 0;
2018 
2019 notfound:
2020 	ret = -ENODEV;
2021 	dev_info(dev, "No supported DiskOnChip found\n");
2022 err_probe:
2023 	bch_free(cascade->bch);
2024 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2025 		if (cascade->floors[floor])
2026 			doc_release_device(cascade->floors[floor]);
2027 	return ret;
2028 }
2029 
2030 /**
2031  * docg3_release - Release the driver
2032  * @pdev: the platform device
2033  *
2034  * Returns 0
2035  */
2036 static int docg3_release(struct platform_device *pdev)
2037 {
2038 	struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2039 	struct docg3 *docg3 = cascade->floors[0]->priv;
2040 	int floor;
2041 
2042 	doc_unregister_sysfs(pdev, cascade);
2043 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2044 		if (cascade->floors[floor])
2045 			doc_release_device(cascade->floors[floor]);
2046 
2047 	bch_free(docg3->cascade->bch);
2048 	return 0;
2049 }
2050 
2051 #ifdef CONFIG_OF
2052 static const struct of_device_id docg3_dt_ids[] = {
2053 	{ .compatible = "m-systems,diskonchip-g3" },
2054 	{}
2055 };
2056 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2057 #endif
2058 
2059 static struct platform_driver g3_driver = {
2060 	.driver		= {
2061 		.name	= "docg3",
2062 		.of_match_table = of_match_ptr(docg3_dt_ids),
2063 	},
2064 	.suspend	= docg3_suspend,
2065 	.resume		= docg3_resume,
2066 	.remove		= docg3_release,
2067 };
2068 
2069 module_platform_driver_probe(g3_driver, docg3_probe);
2070 
2071 MODULE_LICENSE("GPL");
2072 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2073 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2074