xref: /linux/drivers/mtd/mtdcore.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 #include <linux/error-injection.h>
34 
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 struct backing_dev_info *mtd_bdi;
41 
42 #ifdef CONFIG_PM_SLEEP
43 
44 static int mtd_cls_suspend(struct device *dev)
45 {
46 	struct mtd_info *mtd = dev_get_drvdata(dev);
47 
48 	return mtd ? mtd_suspend(mtd) : 0;
49 }
50 
51 static int mtd_cls_resume(struct device *dev)
52 {
53 	struct mtd_info *mtd = dev_get_drvdata(dev);
54 
55 	if (mtd)
56 		mtd_resume(mtd);
57 	return 0;
58 }
59 
60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62 #else
63 #define MTD_CLS_PM_OPS NULL
64 #endif
65 
66 static struct class mtd_class = {
67 	.name = "mtd",
68 	.pm = MTD_CLS_PM_OPS,
69 };
70 
71 static DEFINE_IDR(mtd_idr);
72 
73 /* These are exported solely for the purpose of mtd_blkdevs.c. You
74    should not use them for _anything_ else */
75 DEFINE_MUTEX(mtd_table_mutex);
76 EXPORT_SYMBOL_GPL(mtd_table_mutex);
77 
78 struct mtd_info *__mtd_next_device(int i)
79 {
80 	return idr_get_next(&mtd_idr, &i);
81 }
82 EXPORT_SYMBOL_GPL(__mtd_next_device);
83 
84 static LIST_HEAD(mtd_notifiers);
85 
86 
87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
88 
89 /* REVISIT once MTD uses the driver model better, whoever allocates
90  * the mtd_info will probably want to use the release() hook...
91  */
92 static void mtd_release(struct device *dev)
93 {
94 	struct mtd_info *mtd = dev_get_drvdata(dev);
95 	dev_t index = MTD_DEVT(mtd->index);
96 
97 	idr_remove(&mtd_idr, mtd->index);
98 	of_node_put(mtd_get_of_node(mtd));
99 
100 	if (mtd_is_partition(mtd))
101 		release_mtd_partition(mtd);
102 
103 	/* remove /dev/mtdXro node */
104 	device_destroy(&mtd_class, index + 1);
105 }
106 
107 static void mtd_device_release(struct kref *kref)
108 {
109 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
110 	bool is_partition = mtd_is_partition(mtd);
111 
112 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
113 
114 	/* Try to remove the NVMEM provider */
115 	nvmem_unregister(mtd->nvmem);
116 
117 	device_unregister(&mtd->dev);
118 
119 	/*
120 	 *  Clear dev so mtd can be safely re-registered later if desired.
121 	 *  Should not be done for partition,
122 	 *  as it was already destroyed in device_unregister().
123 	 */
124 	if (!is_partition)
125 		memset(&mtd->dev, 0, sizeof(mtd->dev));
126 
127 	module_put(THIS_MODULE);
128 }
129 
130 #define MTD_DEVICE_ATTR_RO(name) \
131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132 
133 #define MTD_DEVICE_ATTR_RW(name) \
134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135 
136 static ssize_t mtd_type_show(struct device *dev,
137 		struct device_attribute *attr, char *buf)
138 {
139 	struct mtd_info *mtd = dev_get_drvdata(dev);
140 	char *type;
141 
142 	switch (mtd->type) {
143 	case MTD_ABSENT:
144 		type = "absent";
145 		break;
146 	case MTD_RAM:
147 		type = "ram";
148 		break;
149 	case MTD_ROM:
150 		type = "rom";
151 		break;
152 	case MTD_NORFLASH:
153 		type = "nor";
154 		break;
155 	case MTD_NANDFLASH:
156 		type = "nand";
157 		break;
158 	case MTD_DATAFLASH:
159 		type = "dataflash";
160 		break;
161 	case MTD_UBIVOLUME:
162 		type = "ubi";
163 		break;
164 	case MTD_MLCNANDFLASH:
165 		type = "mlc-nand";
166 		break;
167 	default:
168 		type = "unknown";
169 	}
170 
171 	return sysfs_emit(buf, "%s\n", type);
172 }
173 MTD_DEVICE_ATTR_RO(type);
174 
175 static ssize_t mtd_flags_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 
180 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
181 }
182 MTD_DEVICE_ATTR_RO(flags);
183 
184 static ssize_t mtd_size_show(struct device *dev,
185 		struct device_attribute *attr, char *buf)
186 {
187 	struct mtd_info *mtd = dev_get_drvdata(dev);
188 
189 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
190 }
191 MTD_DEVICE_ATTR_RO(size);
192 
193 static ssize_t mtd_erasesize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 
198 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
199 }
200 MTD_DEVICE_ATTR_RO(erasesize);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
208 }
209 MTD_DEVICE_ATTR_RO(writesize);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217 	return sysfs_emit(buf, "%u\n", subpagesize);
218 }
219 MTD_DEVICE_ATTR_RO(subpagesize);
220 
221 static ssize_t mtd_oobsize_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	struct mtd_info *mtd = dev_get_drvdata(dev);
225 
226 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
227 }
228 MTD_DEVICE_ATTR_RO(oobsize);
229 
230 static ssize_t mtd_oobavail_show(struct device *dev,
231 				 struct device_attribute *attr, char *buf)
232 {
233 	struct mtd_info *mtd = dev_get_drvdata(dev);
234 
235 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
236 }
237 MTD_DEVICE_ATTR_RO(oobavail);
238 
239 static ssize_t mtd_numeraseregions_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct mtd_info *mtd = dev_get_drvdata(dev);
243 
244 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
245 }
246 MTD_DEVICE_ATTR_RO(numeraseregions);
247 
248 static ssize_t mtd_name_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return sysfs_emit(buf, "%s\n", mtd->name);
254 }
255 MTD_DEVICE_ATTR_RO(name);
256 
257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 				     struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
263 }
264 MTD_DEVICE_ATTR_RO(ecc_strength);
265 
266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
273 }
274 
275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 					   struct device_attribute *attr,
277 					   const char *buf, size_t count)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	unsigned int bitflip_threshold;
281 	int retval;
282 
283 	retval = kstrtouint(buf, 0, &bitflip_threshold);
284 	if (retval)
285 		return retval;
286 
287 	mtd->bitflip_threshold = bitflip_threshold;
288 	return count;
289 }
290 MTD_DEVICE_ATTR_RW(bitflip_threshold);
291 
292 static ssize_t mtd_ecc_step_size_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 
297 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
298 
299 }
300 MTD_DEVICE_ATTR_RO(ecc_step_size);
301 
302 static ssize_t mtd_corrected_bits_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
309 }
310 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
311 
312 static ssize_t mtd_ecc_failures_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
319 }
320 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
321 
322 static ssize_t mtd_bad_blocks_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct mtd_info *mtd = dev_get_drvdata(dev);
326 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 
328 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
329 }
330 MTD_DEVICE_ATTR_RO(bad_blocks);
331 
332 static ssize_t mtd_bbt_blocks_show(struct device *dev,
333 		struct device_attribute *attr, char *buf)
334 {
335 	struct mtd_info *mtd = dev_get_drvdata(dev);
336 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337 
338 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
339 }
340 MTD_DEVICE_ATTR_RO(bbt_blocks);
341 
342 static struct attribute *mtd_attrs[] = {
343 	&dev_attr_type.attr,
344 	&dev_attr_flags.attr,
345 	&dev_attr_size.attr,
346 	&dev_attr_erasesize.attr,
347 	&dev_attr_writesize.attr,
348 	&dev_attr_subpagesize.attr,
349 	&dev_attr_oobsize.attr,
350 	&dev_attr_oobavail.attr,
351 	&dev_attr_numeraseregions.attr,
352 	&dev_attr_name.attr,
353 	&dev_attr_ecc_strength.attr,
354 	&dev_attr_ecc_step_size.attr,
355 	&dev_attr_corrected_bits.attr,
356 	&dev_attr_ecc_failures.attr,
357 	&dev_attr_bad_blocks.attr,
358 	&dev_attr_bbt_blocks.attr,
359 	&dev_attr_bitflip_threshold.attr,
360 	NULL,
361 };
362 ATTRIBUTE_GROUPS(mtd);
363 
364 static const struct device_type mtd_devtype = {
365 	.name		= "mtd",
366 	.groups		= mtd_groups,
367 	.release	= mtd_release,
368 };
369 
370 static bool mtd_expert_analysis_mode;
371 
372 #ifdef CONFIG_DEBUG_FS
373 bool mtd_check_expert_analysis_mode(void)
374 {
375 	const char *mtd_expert_analysis_warning =
376 		"Bad block checks have been entirely disabled.\n"
377 		"This is only reserved for post-mortem forensics and debug purposes.\n"
378 		"Never enable this mode if you do not know what you are doing!\n";
379 
380 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
381 }
382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383 #endif
384 
385 static struct dentry *dfs_dir_mtd;
386 
387 static void mtd_debugfs_populate(struct mtd_info *mtd)
388 {
389 	struct device *dev = &mtd->dev;
390 
391 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
392 		return;
393 
394 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
395 }
396 
397 #ifndef CONFIG_MMU
398 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
399 {
400 	switch (mtd->type) {
401 	case MTD_RAM:
402 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
403 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
404 	case MTD_ROM:
405 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
406 			NOMMU_MAP_READ;
407 	default:
408 		return NOMMU_MAP_COPY;
409 	}
410 }
411 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
412 #endif
413 
414 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
415 			       void *cmd)
416 {
417 	struct mtd_info *mtd;
418 
419 	mtd = container_of(n, struct mtd_info, reboot_notifier);
420 	mtd->_reboot(mtd);
421 
422 	return NOTIFY_DONE;
423 }
424 
425 /**
426  * mtd_wunit_to_pairing_info - get pairing information of a wunit
427  * @mtd: pointer to new MTD device info structure
428  * @wunit: write unit we are interested in
429  * @info: returned pairing information
430  *
431  * Retrieve pairing information associated to the wunit.
432  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
433  * paired together, and where programming a page may influence the page it is
434  * paired with.
435  * The notion of page is replaced by the term wunit (write-unit) to stay
436  * consistent with the ->writesize field.
437  *
438  * The @wunit argument can be extracted from an absolute offset using
439  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
440  * to @wunit.
441  *
442  * From the pairing info the MTD user can find all the wunits paired with
443  * @wunit using the following loop:
444  *
445  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
446  *	info.pair = i;
447  *	mtd_pairing_info_to_wunit(mtd, &info);
448  *	...
449  * }
450  */
451 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
452 			      struct mtd_pairing_info *info)
453 {
454 	struct mtd_info *master = mtd_get_master(mtd);
455 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
456 
457 	if (wunit < 0 || wunit >= npairs)
458 		return -EINVAL;
459 
460 	if (master->pairing && master->pairing->get_info)
461 		return master->pairing->get_info(master, wunit, info);
462 
463 	info->group = 0;
464 	info->pair = wunit;
465 
466 	return 0;
467 }
468 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
469 
470 /**
471  * mtd_pairing_info_to_wunit - get wunit from pairing information
472  * @mtd: pointer to new MTD device info structure
473  * @info: pairing information struct
474  *
475  * Returns a positive number representing the wunit associated to the info
476  * struct, or a negative error code.
477  *
478  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
479  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
480  * doc).
481  *
482  * It can also be used to only program the first page of each pair (i.e.
483  * page attached to group 0), which allows one to use an MLC NAND in
484  * software-emulated SLC mode:
485  *
486  * info.group = 0;
487  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
488  * for (info.pair = 0; info.pair < npairs; info.pair++) {
489  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
490  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
491  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
492  * }
493  */
494 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
495 			      const struct mtd_pairing_info *info)
496 {
497 	struct mtd_info *master = mtd_get_master(mtd);
498 	int ngroups = mtd_pairing_groups(master);
499 	int npairs = mtd_wunit_per_eb(master) / ngroups;
500 
501 	if (!info || info->pair < 0 || info->pair >= npairs ||
502 	    info->group < 0 || info->group >= ngroups)
503 		return -EINVAL;
504 
505 	if (master->pairing && master->pairing->get_wunit)
506 		return mtd->pairing->get_wunit(master, info);
507 
508 	return info->pair;
509 }
510 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
511 
512 /**
513  * mtd_pairing_groups - get the number of pairing groups
514  * @mtd: pointer to new MTD device info structure
515  *
516  * Returns the number of pairing groups.
517  *
518  * This number is usually equal to the number of bits exposed by a single
519  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
520  * to iterate over all pages of a given pair.
521  */
522 int mtd_pairing_groups(struct mtd_info *mtd)
523 {
524 	struct mtd_info *master = mtd_get_master(mtd);
525 
526 	if (!master->pairing || !master->pairing->ngroups)
527 		return 1;
528 
529 	return master->pairing->ngroups;
530 }
531 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
532 
533 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
534 			      void *val, size_t bytes)
535 {
536 	struct mtd_info *mtd = priv;
537 	size_t retlen;
538 	int err;
539 
540 	err = mtd_read(mtd, offset, bytes, &retlen, val);
541 	if (err && err != -EUCLEAN)
542 		return err;
543 
544 	return retlen == bytes ? 0 : -EIO;
545 }
546 
547 static int mtd_nvmem_add(struct mtd_info *mtd)
548 {
549 	struct device_node *node = mtd_get_of_node(mtd);
550 	struct nvmem_config config = {};
551 
552 	config.id = NVMEM_DEVID_NONE;
553 	config.dev = &mtd->dev;
554 	config.name = dev_name(&mtd->dev);
555 	config.owner = THIS_MODULE;
556 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
557 	config.reg_read = mtd_nvmem_reg_read;
558 	config.size = mtd->size;
559 	config.word_size = 1;
560 	config.stride = 1;
561 	config.read_only = true;
562 	config.root_only = true;
563 	config.ignore_wp = true;
564 	config.priv = mtd;
565 
566 	mtd->nvmem = nvmem_register(&config);
567 	if (IS_ERR(mtd->nvmem)) {
568 		/* Just ignore if there is no NVMEM support in the kernel */
569 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570 			mtd->nvmem = NULL;
571 		else
572 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 					     "Failed to register NVMEM device\n");
574 	}
575 
576 	return 0;
577 }
578 
579 static void mtd_check_of_node(struct mtd_info *mtd)
580 {
581 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 	const char *pname, *prefix = "partition-";
583 	int plen, mtd_name_len, offset, prefix_len;
584 
585 	/* Check if MTD already has a device node */
586 	if (mtd_get_of_node(mtd))
587 		return;
588 
589 	if (!mtd_is_partition(mtd))
590 		return;
591 
592 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593 	if (!parent_dn)
594 		return;
595 
596 	if (mtd_is_partition(mtd->parent))
597 		partitions = of_node_get(parent_dn);
598 	else
599 		partitions = of_get_child_by_name(parent_dn, "partitions");
600 	if (!partitions)
601 		goto exit_parent;
602 
603 	prefix_len = strlen(prefix);
604 	mtd_name_len = strlen(mtd->name);
605 
606 	/* Search if a partition is defined with the same name */
607 	for_each_child_of_node(partitions, mtd_dn) {
608 		/* Skip partition with no/wrong prefix */
609 		if (!of_node_name_prefix(mtd_dn, prefix))
610 			continue;
611 
612 		/* Label have priority. Check that first */
613 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 			offset = 0;
615 		} else {
616 			pname = mtd_dn->name;
617 			offset = prefix_len;
618 		}
619 
620 		plen = strlen(pname) - offset;
621 		if (plen == mtd_name_len &&
622 		    !strncmp(mtd->name, pname + offset, plen)) {
623 			mtd_set_of_node(mtd, mtd_dn);
624 			of_node_put(mtd_dn);
625 			break;
626 		}
627 	}
628 
629 	of_node_put(partitions);
630 exit_parent:
631 	of_node_put(parent_dn);
632 }
633 
634 /**
635  *	add_mtd_device - register an MTD device
636  *	@mtd: pointer to new MTD device info structure
637  *
638  *	Add a device to the list of MTD devices present in the system, and
639  *	notify each currently active MTD 'user' of its arrival. Returns
640  *	zero on success or non-zero on failure.
641  */
642 
643 int add_mtd_device(struct mtd_info *mtd)
644 {
645 	struct device_node *np = mtd_get_of_node(mtd);
646 	struct mtd_info *master = mtd_get_master(mtd);
647 	struct mtd_notifier *not;
648 	int i, error, ofidx;
649 
650 	/*
651 	 * May occur, for instance, on buggy drivers which call
652 	 * mtd_device_parse_register() multiple times on the same master MTD,
653 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
654 	 */
655 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
656 		return -EEXIST;
657 
658 	BUG_ON(mtd->writesize == 0);
659 
660 	/*
661 	 * MTD drivers should implement ->_{write,read}() or
662 	 * ->_{write,read}_oob(), but not both.
663 	 */
664 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
665 		    (mtd->_read && mtd->_read_oob)))
666 		return -EINVAL;
667 
668 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
669 		    !(mtd->flags & MTD_NO_ERASE)))
670 		return -EINVAL;
671 
672 	/*
673 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
674 	 * master is an MLC NAND and has a proper pairing scheme defined.
675 	 * We also reject masters that implement ->_writev() for now, because
676 	 * NAND controller drivers don't implement this hook, and adding the
677 	 * SLC -> MLC address/length conversion to this path is useless if we
678 	 * don't have a user.
679 	 */
680 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
681 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
682 	     !master->pairing || master->_writev))
683 		return -EINVAL;
684 
685 	mutex_lock(&mtd_table_mutex);
686 
687 	ofidx = -1;
688 	if (np)
689 		ofidx = of_alias_get_id(np, "mtd");
690 	if (ofidx >= 0)
691 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
692 	else
693 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
694 	if (i < 0) {
695 		error = i;
696 		goto fail_locked;
697 	}
698 
699 	mtd->index = i;
700 	kref_init(&mtd->refcnt);
701 
702 	/* default value if not set by driver */
703 	if (mtd->bitflip_threshold == 0)
704 		mtd->bitflip_threshold = mtd->ecc_strength;
705 
706 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
707 		int ngroups = mtd_pairing_groups(master);
708 
709 		mtd->erasesize /= ngroups;
710 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
711 			    mtd->erasesize;
712 	}
713 
714 	if (is_power_of_2(mtd->erasesize))
715 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
716 	else
717 		mtd->erasesize_shift = 0;
718 
719 	if (is_power_of_2(mtd->writesize))
720 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
721 	else
722 		mtd->writesize_shift = 0;
723 
724 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
725 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
726 
727 	/* Some chips always power up locked. Unlock them now */
728 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
729 		error = mtd_unlock(mtd, 0, mtd->size);
730 		if (error && error != -EOPNOTSUPP)
731 			printk(KERN_WARNING
732 			       "%s: unlock failed, writes may not work\n",
733 			       mtd->name);
734 		/* Ignore unlock failures? */
735 		error = 0;
736 	}
737 
738 	/* Caller should have set dev.parent to match the
739 	 * physical device, if appropriate.
740 	 */
741 	mtd->dev.type = &mtd_devtype;
742 	mtd->dev.class = &mtd_class;
743 	mtd->dev.devt = MTD_DEVT(i);
744 	dev_set_name(&mtd->dev, "mtd%d", i);
745 	dev_set_drvdata(&mtd->dev, mtd);
746 	mtd_check_of_node(mtd);
747 	of_node_get(mtd_get_of_node(mtd));
748 	error = device_register(&mtd->dev);
749 	if (error) {
750 		put_device(&mtd->dev);
751 		goto fail_added;
752 	}
753 
754 	/* Add the nvmem provider */
755 	error = mtd_nvmem_add(mtd);
756 	if (error)
757 		goto fail_nvmem_add;
758 
759 	mtd_debugfs_populate(mtd);
760 
761 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
762 		      "mtd%dro", i);
763 
764 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
765 	/* No need to get a refcount on the module containing
766 	   the notifier, since we hold the mtd_table_mutex */
767 	list_for_each_entry(not, &mtd_notifiers, list)
768 		not->add(mtd);
769 
770 	mutex_unlock(&mtd_table_mutex);
771 
772 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
773 		if (IS_BUILTIN(CONFIG_MTD)) {
774 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
775 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
776 		} else {
777 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
778 				mtd->index, mtd->name);
779 		}
780 	}
781 
782 	/* We _know_ we aren't being removed, because
783 	   our caller is still holding us here. So none
784 	   of this try_ nonsense, and no bitching about it
785 	   either. :) */
786 	__module_get(THIS_MODULE);
787 	return 0;
788 
789 fail_nvmem_add:
790 	device_unregister(&mtd->dev);
791 fail_added:
792 	of_node_put(mtd_get_of_node(mtd));
793 	idr_remove(&mtd_idr, i);
794 fail_locked:
795 	mutex_unlock(&mtd_table_mutex);
796 	return error;
797 }
798 
799 /**
800  *	del_mtd_device - unregister an MTD device
801  *	@mtd: pointer to MTD device info structure
802  *
803  *	Remove a device from the list of MTD devices present in the system,
804  *	and notify each currently active MTD 'user' of its departure.
805  *	Returns zero on success or 1 on failure, which currently will happen
806  *	if the requested device does not appear to be present in the list.
807  */
808 
809 int del_mtd_device(struct mtd_info *mtd)
810 {
811 	int ret;
812 	struct mtd_notifier *not;
813 
814 	mutex_lock(&mtd_table_mutex);
815 
816 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
817 		ret = -ENODEV;
818 		goto out_error;
819 	}
820 
821 	/* No need to get a refcount on the module containing
822 		the notifier, since we hold the mtd_table_mutex */
823 	list_for_each_entry(not, &mtd_notifiers, list)
824 		not->remove(mtd);
825 
826 	kref_put(&mtd->refcnt, mtd_device_release);
827 	ret = 0;
828 
829 out_error:
830 	mutex_unlock(&mtd_table_mutex);
831 	return ret;
832 }
833 
834 /*
835  * Set a few defaults based on the parent devices, if not provided by the
836  * driver
837  */
838 static void mtd_set_dev_defaults(struct mtd_info *mtd)
839 {
840 	if (mtd->dev.parent) {
841 		if (!mtd->owner && mtd->dev.parent->driver)
842 			mtd->owner = mtd->dev.parent->driver->owner;
843 		if (!mtd->name)
844 			mtd->name = dev_name(mtd->dev.parent);
845 	} else {
846 		pr_debug("mtd device won't show a device symlink in sysfs\n");
847 	}
848 
849 	INIT_LIST_HEAD(&mtd->partitions);
850 	mutex_init(&mtd->master.partitions_lock);
851 	mutex_init(&mtd->master.chrdev_lock);
852 }
853 
854 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
855 {
856 	struct otp_info *info;
857 	ssize_t size = 0;
858 	unsigned int i;
859 	size_t retlen;
860 	int ret;
861 
862 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
863 	if (!info)
864 		return -ENOMEM;
865 
866 	if (is_user)
867 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 	else
869 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
870 	if (ret)
871 		goto err;
872 
873 	for (i = 0; i < retlen / sizeof(*info); i++)
874 		size += info[i].length;
875 
876 	kfree(info);
877 	return size;
878 
879 err:
880 	kfree(info);
881 
882 	/* ENODATA means there is no OTP region. */
883 	return ret == -ENODATA ? 0 : ret;
884 }
885 
886 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
887 						   const char *compatible,
888 						   int size,
889 						   nvmem_reg_read_t reg_read)
890 {
891 	struct nvmem_device *nvmem = NULL;
892 	struct nvmem_config config = {};
893 	struct device_node *np;
894 
895 	/* DT binding is optional */
896 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
897 
898 	/* OTP nvmem will be registered on the physical device */
899 	config.dev = mtd->dev.parent;
900 	config.name = compatible;
901 	config.id = NVMEM_DEVID_AUTO;
902 	config.owner = THIS_MODULE;
903 	config.add_legacy_fixed_of_cells = true;
904 	config.type = NVMEM_TYPE_OTP;
905 	config.root_only = true;
906 	config.ignore_wp = true;
907 	config.reg_read = reg_read;
908 	config.size = size;
909 	config.of_node = np;
910 	config.priv = mtd;
911 
912 	nvmem = nvmem_register(&config);
913 	/* Just ignore if there is no NVMEM support in the kernel */
914 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
915 		nvmem = NULL;
916 
917 	of_node_put(np);
918 
919 	return nvmem;
920 }
921 
922 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
923 				       void *val, size_t bytes)
924 {
925 	struct mtd_info *mtd = priv;
926 	size_t retlen;
927 	int ret;
928 
929 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
930 	if (ret)
931 		return ret;
932 
933 	return retlen == bytes ? 0 : -EIO;
934 }
935 
936 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
937 				       void *val, size_t bytes)
938 {
939 	struct mtd_info *mtd = priv;
940 	size_t retlen;
941 	int ret;
942 
943 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
944 	if (ret)
945 		return ret;
946 
947 	return retlen == bytes ? 0 : -EIO;
948 }
949 
950 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
951 {
952 	struct device *dev = mtd->dev.parent;
953 	struct nvmem_device *nvmem;
954 	ssize_t size;
955 	int err;
956 
957 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
958 		size = mtd_otp_size(mtd, true);
959 		if (size < 0)
960 			return size;
961 
962 		if (size > 0) {
963 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
964 						       mtd_nvmem_user_otp_reg_read);
965 			if (IS_ERR(nvmem)) {
966 				err = PTR_ERR(nvmem);
967 				goto err;
968 			}
969 			mtd->otp_user_nvmem = nvmem;
970 		}
971 	}
972 
973 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
974 		size = mtd_otp_size(mtd, false);
975 		if (size < 0) {
976 			err = size;
977 			goto err;
978 		}
979 
980 		if (size > 0) {
981 			/*
982 			 * The factory OTP contains thing such as a unique serial
983 			 * number and is small, so let's read it out and put it
984 			 * into the entropy pool.
985 			 */
986 			void *otp;
987 
988 			otp = kmalloc(size, GFP_KERNEL);
989 			if (!otp) {
990 				err = -ENOMEM;
991 				goto err;
992 			}
993 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
994 			if (err < 0) {
995 				kfree(otp);
996 				goto err;
997 			}
998 			add_device_randomness(otp, err);
999 			kfree(otp);
1000 
1001 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1002 						       mtd_nvmem_fact_otp_reg_read);
1003 			if (IS_ERR(nvmem)) {
1004 				err = PTR_ERR(nvmem);
1005 				goto err;
1006 			}
1007 			mtd->otp_factory_nvmem = nvmem;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 
1013 err:
1014 	nvmem_unregister(mtd->otp_user_nvmem);
1015 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1016 }
1017 
1018 /**
1019  * mtd_device_parse_register - parse partitions and register an MTD device.
1020  *
1021  * @mtd: the MTD device to register
1022  * @types: the list of MTD partition probes to try, see
1023  *         'parse_mtd_partitions()' for more information
1024  * @parser_data: MTD partition parser-specific data
1025  * @parts: fallback partition information to register, if parsing fails;
1026  *         only valid if %nr_parts > %0
1027  * @nr_parts: the number of partitions in parts, if zero then the full
1028  *            MTD device is registered if no partition info is found
1029  *
1030  * This function aggregates MTD partitions parsing (done by
1031  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1032  * basically follows the most common pattern found in many MTD drivers:
1033  *
1034  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1035  *   registered first.
1036  * * Then It tries to probe partitions on MTD device @mtd using parsers
1037  *   specified in @types (if @types is %NULL, then the default list of parsers
1038  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1039  *   found this functions tries to fallback to information specified in
1040  *   @parts/@nr_parts.
1041  * * If no partitions were found this function just registers the MTD device
1042  *   @mtd and exits.
1043  *
1044  * Returns zero in case of success and a negative error code in case of failure.
1045  */
1046 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1047 			      struct mtd_part_parser_data *parser_data,
1048 			      const struct mtd_partition *parts,
1049 			      int nr_parts)
1050 {
1051 	int ret;
1052 
1053 	mtd_set_dev_defaults(mtd);
1054 
1055 	ret = mtd_otp_nvmem_add(mtd);
1056 	if (ret)
1057 		goto out;
1058 
1059 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1060 		ret = add_mtd_device(mtd);
1061 		if (ret)
1062 			goto out;
1063 	}
1064 
1065 	/* Prefer parsed partitions over driver-provided fallback */
1066 	ret = parse_mtd_partitions(mtd, types, parser_data);
1067 	if (ret == -EPROBE_DEFER)
1068 		goto out;
1069 
1070 	if (ret > 0)
1071 		ret = 0;
1072 	else if (nr_parts)
1073 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1074 	else if (!device_is_registered(&mtd->dev))
1075 		ret = add_mtd_device(mtd);
1076 	else
1077 		ret = 0;
1078 
1079 	if (ret)
1080 		goto out;
1081 
1082 	/*
1083 	 * FIXME: some drivers unfortunately call this function more than once.
1084 	 * So we have to check if we've already assigned the reboot notifier.
1085 	 *
1086 	 * Generally, we can make multiple calls work for most cases, but it
1087 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1088 	 * cmdlineparts will register partitions more than once).
1089 	 */
1090 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1091 		  "MTD already registered\n");
1092 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1093 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1094 		register_reboot_notifier(&mtd->reboot_notifier);
1095 	}
1096 
1097 out:
1098 	if (ret) {
1099 		nvmem_unregister(mtd->otp_user_nvmem);
1100 		nvmem_unregister(mtd->otp_factory_nvmem);
1101 	}
1102 
1103 	if (ret && device_is_registered(&mtd->dev))
1104 		del_mtd_device(mtd);
1105 
1106 	return ret;
1107 }
1108 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1109 
1110 /**
1111  * mtd_device_unregister - unregister an existing MTD device.
1112  *
1113  * @master: the MTD device to unregister.  This will unregister both the master
1114  *          and any partitions if registered.
1115  */
1116 int mtd_device_unregister(struct mtd_info *master)
1117 {
1118 	int err;
1119 
1120 	if (master->_reboot) {
1121 		unregister_reboot_notifier(&master->reboot_notifier);
1122 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1123 	}
1124 
1125 	nvmem_unregister(master->otp_user_nvmem);
1126 	nvmem_unregister(master->otp_factory_nvmem);
1127 
1128 	err = del_mtd_partitions(master);
1129 	if (err)
1130 		return err;
1131 
1132 	if (!device_is_registered(&master->dev))
1133 		return 0;
1134 
1135 	return del_mtd_device(master);
1136 }
1137 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1138 
1139 /**
1140  *	register_mtd_user - register a 'user' of MTD devices.
1141  *	@new: pointer to notifier info structure
1142  *
1143  *	Registers a pair of callbacks function to be called upon addition
1144  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1145  *	invoked for each MTD device currently present in the system.
1146  */
1147 void register_mtd_user (struct mtd_notifier *new)
1148 {
1149 	struct mtd_info *mtd;
1150 
1151 	mutex_lock(&mtd_table_mutex);
1152 
1153 	list_add(&new->list, &mtd_notifiers);
1154 
1155 	__module_get(THIS_MODULE);
1156 
1157 	mtd_for_each_device(mtd)
1158 		new->add(mtd);
1159 
1160 	mutex_unlock(&mtd_table_mutex);
1161 }
1162 EXPORT_SYMBOL_GPL(register_mtd_user);
1163 
1164 /**
1165  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1166  *	@old: pointer to notifier info structure
1167  *
1168  *	Removes a callback function pair from the list of 'users' to be
1169  *	notified upon addition or removal of MTD devices. Causes the
1170  *	'remove' callback to be immediately invoked for each MTD device
1171  *	currently present in the system.
1172  */
1173 int unregister_mtd_user (struct mtd_notifier *old)
1174 {
1175 	struct mtd_info *mtd;
1176 
1177 	mutex_lock(&mtd_table_mutex);
1178 
1179 	module_put(THIS_MODULE);
1180 
1181 	mtd_for_each_device(mtd)
1182 		old->remove(mtd);
1183 
1184 	list_del(&old->list);
1185 	mutex_unlock(&mtd_table_mutex);
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1189 
1190 /**
1191  *	get_mtd_device - obtain a validated handle for an MTD device
1192  *	@mtd: last known address of the required MTD device
1193  *	@num: internal device number of the required MTD device
1194  *
1195  *	Given a number and NULL address, return the num'th entry in the device
1196  *	table, if any.	Given an address and num == -1, search the device table
1197  *	for a device with that address and return if it's still present. Given
1198  *	both, return the num'th driver only if its address matches. Return
1199  *	error code if not.
1200  */
1201 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1202 {
1203 	struct mtd_info *ret = NULL, *other;
1204 	int err = -ENODEV;
1205 
1206 	mutex_lock(&mtd_table_mutex);
1207 
1208 	if (num == -1) {
1209 		mtd_for_each_device(other) {
1210 			if (other == mtd) {
1211 				ret = mtd;
1212 				break;
1213 			}
1214 		}
1215 	} else if (num >= 0) {
1216 		ret = idr_find(&mtd_idr, num);
1217 		if (mtd && mtd != ret)
1218 			ret = NULL;
1219 	}
1220 
1221 	if (!ret) {
1222 		ret = ERR_PTR(err);
1223 		goto out;
1224 	}
1225 
1226 	err = __get_mtd_device(ret);
1227 	if (err)
1228 		ret = ERR_PTR(err);
1229 out:
1230 	mutex_unlock(&mtd_table_mutex);
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(get_mtd_device);
1234 
1235 
1236 int __get_mtd_device(struct mtd_info *mtd)
1237 {
1238 	struct mtd_info *master = mtd_get_master(mtd);
1239 	int err;
1240 
1241 	if (master->_get_device) {
1242 		err = master->_get_device(mtd);
1243 		if (err)
1244 			return err;
1245 	}
1246 
1247 	if (!try_module_get(master->owner)) {
1248 		if (master->_put_device)
1249 			master->_put_device(master);
1250 		return -ENODEV;
1251 	}
1252 
1253 	while (mtd) {
1254 		if (mtd != master)
1255 			kref_get(&mtd->refcnt);
1256 		mtd = mtd->parent;
1257 	}
1258 
1259 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1260 		kref_get(&master->refcnt);
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(__get_mtd_device);
1265 
1266 /**
1267  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1268  *
1269  * @np: device tree node
1270  */
1271 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1272 {
1273 	struct mtd_info *mtd = NULL;
1274 	struct mtd_info *tmp;
1275 	int err;
1276 
1277 	mutex_lock(&mtd_table_mutex);
1278 
1279 	err = -EPROBE_DEFER;
1280 	mtd_for_each_device(tmp) {
1281 		if (mtd_get_of_node(tmp) == np) {
1282 			mtd = tmp;
1283 			err = __get_mtd_device(mtd);
1284 			break;
1285 		}
1286 	}
1287 
1288 	mutex_unlock(&mtd_table_mutex);
1289 
1290 	return err ? ERR_PTR(err) : mtd;
1291 }
1292 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1293 
1294 /**
1295  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1296  *	device name
1297  *	@name: MTD device name to open
1298  *
1299  * 	This function returns MTD device description structure in case of
1300  * 	success and an error code in case of failure.
1301  */
1302 struct mtd_info *get_mtd_device_nm(const char *name)
1303 {
1304 	int err = -ENODEV;
1305 	struct mtd_info *mtd = NULL, *other;
1306 
1307 	mutex_lock(&mtd_table_mutex);
1308 
1309 	mtd_for_each_device(other) {
1310 		if (!strcmp(name, other->name)) {
1311 			mtd = other;
1312 			break;
1313 		}
1314 	}
1315 
1316 	if (!mtd)
1317 		goto out_unlock;
1318 
1319 	err = __get_mtd_device(mtd);
1320 	if (err)
1321 		goto out_unlock;
1322 
1323 	mutex_unlock(&mtd_table_mutex);
1324 	return mtd;
1325 
1326 out_unlock:
1327 	mutex_unlock(&mtd_table_mutex);
1328 	return ERR_PTR(err);
1329 }
1330 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1331 
1332 void put_mtd_device(struct mtd_info *mtd)
1333 {
1334 	mutex_lock(&mtd_table_mutex);
1335 	__put_mtd_device(mtd);
1336 	mutex_unlock(&mtd_table_mutex);
1337 
1338 }
1339 EXPORT_SYMBOL_GPL(put_mtd_device);
1340 
1341 void __put_mtd_device(struct mtd_info *mtd)
1342 {
1343 	struct mtd_info *master = mtd_get_master(mtd);
1344 
1345 	while (mtd) {
1346 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1347 		struct mtd_info *parent = mtd->parent;
1348 
1349 		if (mtd != master)
1350 			kref_put(&mtd->refcnt, mtd_device_release);
1351 		mtd = parent;
1352 	}
1353 
1354 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1355 		kref_put(&master->refcnt, mtd_device_release);
1356 
1357 	module_put(master->owner);
1358 
1359 	/* must be the last as master can be freed in the _put_device */
1360 	if (master->_put_device)
1361 		master->_put_device(master);
1362 }
1363 EXPORT_SYMBOL_GPL(__put_mtd_device);
1364 
1365 /*
1366  * Erase is an synchronous operation. Device drivers are epected to return a
1367  * negative error code if the operation failed and update instr->fail_addr
1368  * to point the portion that was not properly erased.
1369  */
1370 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1371 {
1372 	struct mtd_info *master = mtd_get_master(mtd);
1373 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1374 	struct erase_info adjinstr;
1375 	int ret;
1376 
1377 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1378 	adjinstr = *instr;
1379 
1380 	if (!mtd->erasesize || !master->_erase)
1381 		return -ENOTSUPP;
1382 
1383 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1384 		return -EINVAL;
1385 	if (!(mtd->flags & MTD_WRITEABLE))
1386 		return -EROFS;
1387 
1388 	if (!instr->len)
1389 		return 0;
1390 
1391 	ledtrig_mtd_activity();
1392 
1393 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1394 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1395 				master->erasesize;
1396 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1397 				master->erasesize) -
1398 			       adjinstr.addr;
1399 	}
1400 
1401 	adjinstr.addr += mst_ofs;
1402 
1403 	ret = master->_erase(master, &adjinstr);
1404 
1405 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1406 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1407 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1408 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1409 							 master);
1410 			instr->fail_addr *= mtd->erasesize;
1411 		}
1412 	}
1413 
1414 	return ret;
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_erase);
1417 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1418 
1419 /*
1420  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1421  */
1422 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1423 	      void **virt, resource_size_t *phys)
1424 {
1425 	struct mtd_info *master = mtd_get_master(mtd);
1426 
1427 	*retlen = 0;
1428 	*virt = NULL;
1429 	if (phys)
1430 		*phys = 0;
1431 	if (!master->_point)
1432 		return -EOPNOTSUPP;
1433 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1434 		return -EINVAL;
1435 	if (!len)
1436 		return 0;
1437 
1438 	from = mtd_get_master_ofs(mtd, from);
1439 	return master->_point(master, from, len, retlen, virt, phys);
1440 }
1441 EXPORT_SYMBOL_GPL(mtd_point);
1442 
1443 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1444 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1445 {
1446 	struct mtd_info *master = mtd_get_master(mtd);
1447 
1448 	if (!master->_unpoint)
1449 		return -EOPNOTSUPP;
1450 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1451 		return -EINVAL;
1452 	if (!len)
1453 		return 0;
1454 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1455 }
1456 EXPORT_SYMBOL_GPL(mtd_unpoint);
1457 
1458 /*
1459  * Allow NOMMU mmap() to directly map the device (if not NULL)
1460  * - return the address to which the offset maps
1461  * - return -ENOSYS to indicate refusal to do the mapping
1462  */
1463 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1464 				    unsigned long offset, unsigned long flags)
1465 {
1466 	size_t retlen;
1467 	void *virt;
1468 	int ret;
1469 
1470 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1471 	if (ret)
1472 		return ret;
1473 	if (retlen != len) {
1474 		mtd_unpoint(mtd, offset, retlen);
1475 		return -ENOSYS;
1476 	}
1477 	return (unsigned long)virt;
1478 }
1479 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1480 
1481 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1482 				 const struct mtd_ecc_stats *old_stats)
1483 {
1484 	struct mtd_ecc_stats diff;
1485 
1486 	if (master == mtd)
1487 		return;
1488 
1489 	diff = master->ecc_stats;
1490 	diff.failed -= old_stats->failed;
1491 	diff.corrected -= old_stats->corrected;
1492 
1493 	while (mtd->parent) {
1494 		mtd->ecc_stats.failed += diff.failed;
1495 		mtd->ecc_stats.corrected += diff.corrected;
1496 		mtd = mtd->parent;
1497 	}
1498 }
1499 
1500 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1501 	     u_char *buf)
1502 {
1503 	struct mtd_oob_ops ops = {
1504 		.len = len,
1505 		.datbuf = buf,
1506 	};
1507 	int ret;
1508 
1509 	ret = mtd_read_oob(mtd, from, &ops);
1510 	*retlen = ops.retlen;
1511 
1512 	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1513 
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(mtd_read);
1517 ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1518 
1519 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1520 	      const u_char *buf)
1521 {
1522 	struct mtd_oob_ops ops = {
1523 		.len = len,
1524 		.datbuf = (u8 *)buf,
1525 	};
1526 	int ret;
1527 
1528 	ret = mtd_write_oob(mtd, to, &ops);
1529 	*retlen = ops.retlen;
1530 
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(mtd_write);
1534 ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1535 
1536 /*
1537  * In blackbox flight recorder like scenarios we want to make successful writes
1538  * in interrupt context. panic_write() is only intended to be called when its
1539  * known the kernel is about to panic and we need the write to succeed. Since
1540  * the kernel is not going to be running for much longer, this function can
1541  * break locks and delay to ensure the write succeeds (but not sleep).
1542  */
1543 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1544 		    const u_char *buf)
1545 {
1546 	struct mtd_info *master = mtd_get_master(mtd);
1547 
1548 	*retlen = 0;
1549 	if (!master->_panic_write)
1550 		return -EOPNOTSUPP;
1551 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1552 		return -EINVAL;
1553 	if (!(mtd->flags & MTD_WRITEABLE))
1554 		return -EROFS;
1555 	if (!len)
1556 		return 0;
1557 	if (!master->oops_panic_write)
1558 		master->oops_panic_write = true;
1559 
1560 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1561 				    retlen, buf);
1562 }
1563 EXPORT_SYMBOL_GPL(mtd_panic_write);
1564 
1565 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1566 			     struct mtd_oob_ops *ops)
1567 {
1568 	/*
1569 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1570 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1571 	 *  this case.
1572 	 */
1573 	if (!ops->datbuf)
1574 		ops->len = 0;
1575 
1576 	if (!ops->oobbuf)
1577 		ops->ooblen = 0;
1578 
1579 	if (offs < 0 || offs + ops->len > mtd->size)
1580 		return -EINVAL;
1581 
1582 	if (ops->ooblen) {
1583 		size_t maxooblen;
1584 
1585 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1586 			return -EINVAL;
1587 
1588 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1589 				      mtd_div_by_ws(offs, mtd)) *
1590 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1591 		if (ops->ooblen > maxooblen)
1592 			return -EINVAL;
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1599 			    struct mtd_oob_ops *ops)
1600 {
1601 	struct mtd_info *master = mtd_get_master(mtd);
1602 	int ret;
1603 
1604 	from = mtd_get_master_ofs(mtd, from);
1605 	if (master->_read_oob)
1606 		ret = master->_read_oob(master, from, ops);
1607 	else
1608 		ret = master->_read(master, from, ops->len, &ops->retlen,
1609 				    ops->datbuf);
1610 
1611 	return ret;
1612 }
1613 
1614 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1615 			     struct mtd_oob_ops *ops)
1616 {
1617 	struct mtd_info *master = mtd_get_master(mtd);
1618 	int ret;
1619 
1620 	to = mtd_get_master_ofs(mtd, to);
1621 	if (master->_write_oob)
1622 		ret = master->_write_oob(master, to, ops);
1623 	else
1624 		ret = master->_write(master, to, ops->len, &ops->retlen,
1625 				     ops->datbuf);
1626 
1627 	return ret;
1628 }
1629 
1630 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1631 			       struct mtd_oob_ops *ops)
1632 {
1633 	struct mtd_info *master = mtd_get_master(mtd);
1634 	int ngroups = mtd_pairing_groups(master);
1635 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1636 	struct mtd_oob_ops adjops = *ops;
1637 	unsigned int wunit, oobavail;
1638 	struct mtd_pairing_info info;
1639 	int max_bitflips = 0;
1640 	u32 ebofs, pageofs;
1641 	loff_t base, pos;
1642 
1643 	ebofs = mtd_mod_by_eb(start, mtd);
1644 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1645 	info.group = 0;
1646 	info.pair = mtd_div_by_ws(ebofs, mtd);
1647 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1648 	oobavail = mtd_oobavail(mtd, ops);
1649 
1650 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1651 		int ret;
1652 
1653 		if (info.pair >= npairs) {
1654 			info.pair = 0;
1655 			base += master->erasesize;
1656 		}
1657 
1658 		wunit = mtd_pairing_info_to_wunit(master, &info);
1659 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1660 
1661 		adjops.len = ops->len - ops->retlen;
1662 		if (adjops.len > mtd->writesize - pageofs)
1663 			adjops.len = mtd->writesize - pageofs;
1664 
1665 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1666 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1667 			adjops.ooblen = oobavail - adjops.ooboffs;
1668 
1669 		if (read) {
1670 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1671 			if (ret > 0)
1672 				max_bitflips = max(max_bitflips, ret);
1673 		} else {
1674 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1675 		}
1676 
1677 		if (ret < 0)
1678 			return ret;
1679 
1680 		max_bitflips = max(max_bitflips, ret);
1681 		ops->retlen += adjops.retlen;
1682 		ops->oobretlen += adjops.oobretlen;
1683 		adjops.datbuf += adjops.retlen;
1684 		adjops.oobbuf += adjops.oobretlen;
1685 		adjops.ooboffs = 0;
1686 		pageofs = 0;
1687 		info.pair++;
1688 	}
1689 
1690 	return max_bitflips;
1691 }
1692 
1693 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1694 {
1695 	struct mtd_info *master = mtd_get_master(mtd);
1696 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1697 	int ret_code;
1698 
1699 	ops->retlen = ops->oobretlen = 0;
1700 
1701 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1702 	if (ret_code)
1703 		return ret_code;
1704 
1705 	ledtrig_mtd_activity();
1706 
1707 	/* Check the validity of a potential fallback on mtd->_read */
1708 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1709 		return -EOPNOTSUPP;
1710 
1711 	if (ops->stats)
1712 		memset(ops->stats, 0, sizeof(*ops->stats));
1713 
1714 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1715 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1716 	else
1717 		ret_code = mtd_read_oob_std(mtd, from, ops);
1718 
1719 	mtd_update_ecc_stats(mtd, master, &old_stats);
1720 
1721 	/*
1722 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1723 	 * similar to mtd->_read(), returning a non-negative integer
1724 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1725 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1726 	 */
1727 	if (unlikely(ret_code < 0))
1728 		return ret_code;
1729 	if (mtd->ecc_strength == 0)
1730 		return 0;	/* device lacks ecc */
1731 	if (ops->stats)
1732 		ops->stats->max_bitflips = ret_code;
1733 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1734 }
1735 EXPORT_SYMBOL_GPL(mtd_read_oob);
1736 
1737 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1738 				struct mtd_oob_ops *ops)
1739 {
1740 	struct mtd_info *master = mtd_get_master(mtd);
1741 	int ret;
1742 
1743 	ops->retlen = ops->oobretlen = 0;
1744 
1745 	if (!(mtd->flags & MTD_WRITEABLE))
1746 		return -EROFS;
1747 
1748 	ret = mtd_check_oob_ops(mtd, to, ops);
1749 	if (ret)
1750 		return ret;
1751 
1752 	ledtrig_mtd_activity();
1753 
1754 	/* Check the validity of a potential fallback on mtd->_write */
1755 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1756 		return -EOPNOTSUPP;
1757 
1758 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1759 		return mtd_io_emulated_slc(mtd, to, false, ops);
1760 
1761 	return mtd_write_oob_std(mtd, to, ops);
1762 }
1763 EXPORT_SYMBOL_GPL(mtd_write_oob);
1764 
1765 /**
1766  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1767  * @mtd: MTD device structure
1768  * @section: ECC section. Depending on the layout you may have all the ECC
1769  *	     bytes stored in a single contiguous section, or one section
1770  *	     per ECC chunk (and sometime several sections for a single ECC
1771  *	     ECC chunk)
1772  * @oobecc: OOB region struct filled with the appropriate ECC position
1773  *	    information
1774  *
1775  * This function returns ECC section information in the OOB area. If you want
1776  * to get all the ECC bytes information, then you should call
1777  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1778  *
1779  * Returns zero on success, a negative error code otherwise.
1780  */
1781 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1782 		      struct mtd_oob_region *oobecc)
1783 {
1784 	struct mtd_info *master = mtd_get_master(mtd);
1785 
1786 	memset(oobecc, 0, sizeof(*oobecc));
1787 
1788 	if (!master || section < 0)
1789 		return -EINVAL;
1790 
1791 	if (!master->ooblayout || !master->ooblayout->ecc)
1792 		return -ENOTSUPP;
1793 
1794 	return master->ooblayout->ecc(master, section, oobecc);
1795 }
1796 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1797 
1798 /**
1799  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1800  *			section
1801  * @mtd: MTD device structure
1802  * @section: Free section you are interested in. Depending on the layout
1803  *	     you may have all the free bytes stored in a single contiguous
1804  *	     section, or one section per ECC chunk plus an extra section
1805  *	     for the remaining bytes (or other funky layout).
1806  * @oobfree: OOB region struct filled with the appropriate free position
1807  *	     information
1808  *
1809  * This function returns free bytes position in the OOB area. If you want
1810  * to get all the free bytes information, then you should call
1811  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1812  *
1813  * Returns zero on success, a negative error code otherwise.
1814  */
1815 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1816 		       struct mtd_oob_region *oobfree)
1817 {
1818 	struct mtd_info *master = mtd_get_master(mtd);
1819 
1820 	memset(oobfree, 0, sizeof(*oobfree));
1821 
1822 	if (!master || section < 0)
1823 		return -EINVAL;
1824 
1825 	if (!master->ooblayout || !master->ooblayout->free)
1826 		return -ENOTSUPP;
1827 
1828 	return master->ooblayout->free(master, section, oobfree);
1829 }
1830 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1831 
1832 /**
1833  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1834  * @mtd: mtd info structure
1835  * @byte: the byte we are searching for
1836  * @sectionp: pointer where the section id will be stored
1837  * @oobregion: used to retrieve the ECC position
1838  * @iter: iterator function. Should be either mtd_ooblayout_free or
1839  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1840  *
1841  * This function returns the section id and oobregion information of a
1842  * specific byte. For example, say you want to know where the 4th ECC byte is
1843  * stored, you'll use:
1844  *
1845  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1846  *
1847  * Returns zero on success, a negative error code otherwise.
1848  */
1849 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1850 				int *sectionp, struct mtd_oob_region *oobregion,
1851 				int (*iter)(struct mtd_info *,
1852 					    int section,
1853 					    struct mtd_oob_region *oobregion))
1854 {
1855 	int pos = 0, ret, section = 0;
1856 
1857 	memset(oobregion, 0, sizeof(*oobregion));
1858 
1859 	while (1) {
1860 		ret = iter(mtd, section, oobregion);
1861 		if (ret)
1862 			return ret;
1863 
1864 		if (pos + oobregion->length > byte)
1865 			break;
1866 
1867 		pos += oobregion->length;
1868 		section++;
1869 	}
1870 
1871 	/*
1872 	 * Adjust region info to make it start at the beginning at the
1873 	 * 'start' ECC byte.
1874 	 */
1875 	oobregion->offset += byte - pos;
1876 	oobregion->length -= byte - pos;
1877 	*sectionp = section;
1878 
1879 	return 0;
1880 }
1881 
1882 /**
1883  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1884  *				  ECC byte
1885  * @mtd: mtd info structure
1886  * @eccbyte: the byte we are searching for
1887  * @section: pointer where the section id will be stored
1888  * @oobregion: OOB region information
1889  *
1890  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1891  * byte.
1892  *
1893  * Returns zero on success, a negative error code otherwise.
1894  */
1895 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1896 				 int *section,
1897 				 struct mtd_oob_region *oobregion)
1898 {
1899 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1900 					 mtd_ooblayout_ecc);
1901 }
1902 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1903 
1904 /**
1905  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1906  * @mtd: mtd info structure
1907  * @buf: destination buffer to store OOB bytes
1908  * @oobbuf: OOB buffer
1909  * @start: first byte to retrieve
1910  * @nbytes: number of bytes to retrieve
1911  * @iter: section iterator
1912  *
1913  * Extract bytes attached to a specific category (ECC or free)
1914  * from the OOB buffer and copy them into buf.
1915  *
1916  * Returns zero on success, a negative error code otherwise.
1917  */
1918 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1919 				const u8 *oobbuf, int start, int nbytes,
1920 				int (*iter)(struct mtd_info *,
1921 					    int section,
1922 					    struct mtd_oob_region *oobregion))
1923 {
1924 	struct mtd_oob_region oobregion;
1925 	int section, ret;
1926 
1927 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1928 					&oobregion, iter);
1929 
1930 	while (!ret) {
1931 		int cnt;
1932 
1933 		cnt = min_t(int, nbytes, oobregion.length);
1934 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1935 		buf += cnt;
1936 		nbytes -= cnt;
1937 
1938 		if (!nbytes)
1939 			break;
1940 
1941 		ret = iter(mtd, ++section, &oobregion);
1942 	}
1943 
1944 	return ret;
1945 }
1946 
1947 /**
1948  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1949  * @mtd: mtd info structure
1950  * @buf: source buffer to get OOB bytes from
1951  * @oobbuf: OOB buffer
1952  * @start: first OOB byte to set
1953  * @nbytes: number of OOB bytes to set
1954  * @iter: section iterator
1955  *
1956  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1957  * is selected by passing the appropriate iterator.
1958  *
1959  * Returns zero on success, a negative error code otherwise.
1960  */
1961 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1962 				u8 *oobbuf, int start, int nbytes,
1963 				int (*iter)(struct mtd_info *,
1964 					    int section,
1965 					    struct mtd_oob_region *oobregion))
1966 {
1967 	struct mtd_oob_region oobregion;
1968 	int section, ret;
1969 
1970 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1971 					&oobregion, iter);
1972 
1973 	while (!ret) {
1974 		int cnt;
1975 
1976 		cnt = min_t(int, nbytes, oobregion.length);
1977 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1978 		buf += cnt;
1979 		nbytes -= cnt;
1980 
1981 		if (!nbytes)
1982 			break;
1983 
1984 		ret = iter(mtd, ++section, &oobregion);
1985 	}
1986 
1987 	return ret;
1988 }
1989 
1990 /**
1991  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1992  * @mtd: mtd info structure
1993  * @iter: category iterator
1994  *
1995  * Count the number of bytes in a given category.
1996  *
1997  * Returns a positive value on success, a negative error code otherwise.
1998  */
1999 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2000 				int (*iter)(struct mtd_info *,
2001 					    int section,
2002 					    struct mtd_oob_region *oobregion))
2003 {
2004 	struct mtd_oob_region oobregion;
2005 	int section = 0, ret, nbytes = 0;
2006 
2007 	while (1) {
2008 		ret = iter(mtd, section++, &oobregion);
2009 		if (ret) {
2010 			if (ret == -ERANGE)
2011 				ret = nbytes;
2012 			break;
2013 		}
2014 
2015 		nbytes += oobregion.length;
2016 	}
2017 
2018 	return ret;
2019 }
2020 
2021 /**
2022  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2023  * @mtd: mtd info structure
2024  * @eccbuf: destination buffer to store ECC bytes
2025  * @oobbuf: OOB buffer
2026  * @start: first ECC byte to retrieve
2027  * @nbytes: number of ECC bytes to retrieve
2028  *
2029  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2030  *
2031  * Returns zero on success, a negative error code otherwise.
2032  */
2033 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2034 			       const u8 *oobbuf, int start, int nbytes)
2035 {
2036 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2037 				       mtd_ooblayout_ecc);
2038 }
2039 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2040 
2041 /**
2042  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2043  * @mtd: mtd info structure
2044  * @eccbuf: source buffer to get ECC bytes from
2045  * @oobbuf: OOB buffer
2046  * @start: first ECC byte to set
2047  * @nbytes: number of ECC bytes to set
2048  *
2049  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2050  *
2051  * Returns zero on success, a negative error code otherwise.
2052  */
2053 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2054 			       u8 *oobbuf, int start, int nbytes)
2055 {
2056 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2057 				       mtd_ooblayout_ecc);
2058 }
2059 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2060 
2061 /**
2062  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2063  * @mtd: mtd info structure
2064  * @databuf: destination buffer to store ECC bytes
2065  * @oobbuf: OOB buffer
2066  * @start: first ECC byte to retrieve
2067  * @nbytes: number of ECC bytes to retrieve
2068  *
2069  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2070  *
2071  * Returns zero on success, a negative error code otherwise.
2072  */
2073 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2074 				const u8 *oobbuf, int start, int nbytes)
2075 {
2076 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2077 				       mtd_ooblayout_free);
2078 }
2079 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2080 
2081 /**
2082  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2083  * @mtd: mtd info structure
2084  * @databuf: source buffer to get data bytes from
2085  * @oobbuf: OOB buffer
2086  * @start: first ECC byte to set
2087  * @nbytes: number of ECC bytes to set
2088  *
2089  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2090  *
2091  * Returns zero on success, a negative error code otherwise.
2092  */
2093 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2094 				u8 *oobbuf, int start, int nbytes)
2095 {
2096 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2097 				       mtd_ooblayout_free);
2098 }
2099 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2100 
2101 /**
2102  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2103  * @mtd: mtd info structure
2104  *
2105  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2106  *
2107  * Returns zero on success, a negative error code otherwise.
2108  */
2109 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2110 {
2111 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2112 }
2113 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2114 
2115 /**
2116  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2117  * @mtd: mtd info structure
2118  *
2119  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2120  *
2121  * Returns zero on success, a negative error code otherwise.
2122  */
2123 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2124 {
2125 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2126 }
2127 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2128 
2129 /*
2130  * Method to access the protection register area, present in some flash
2131  * devices. The user data is one time programmable but the factory data is read
2132  * only.
2133  */
2134 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2135 			   struct otp_info *buf)
2136 {
2137 	struct mtd_info *master = mtd_get_master(mtd);
2138 
2139 	if (!master->_get_fact_prot_info)
2140 		return -EOPNOTSUPP;
2141 	if (!len)
2142 		return 0;
2143 	return master->_get_fact_prot_info(master, len, retlen, buf);
2144 }
2145 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2146 
2147 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2148 			   size_t *retlen, u_char *buf)
2149 {
2150 	struct mtd_info *master = mtd_get_master(mtd);
2151 
2152 	*retlen = 0;
2153 	if (!master->_read_fact_prot_reg)
2154 		return -EOPNOTSUPP;
2155 	if (!len)
2156 		return 0;
2157 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2158 }
2159 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2160 
2161 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2162 			   struct otp_info *buf)
2163 {
2164 	struct mtd_info *master = mtd_get_master(mtd);
2165 
2166 	if (!master->_get_user_prot_info)
2167 		return -EOPNOTSUPP;
2168 	if (!len)
2169 		return 0;
2170 	return master->_get_user_prot_info(master, len, retlen, buf);
2171 }
2172 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2173 
2174 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2175 			   size_t *retlen, u_char *buf)
2176 {
2177 	struct mtd_info *master = mtd_get_master(mtd);
2178 
2179 	*retlen = 0;
2180 	if (!master->_read_user_prot_reg)
2181 		return -EOPNOTSUPP;
2182 	if (!len)
2183 		return 0;
2184 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2185 }
2186 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2187 
2188 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2189 			    size_t *retlen, const u_char *buf)
2190 {
2191 	struct mtd_info *master = mtd_get_master(mtd);
2192 	int ret;
2193 
2194 	*retlen = 0;
2195 	if (!master->_write_user_prot_reg)
2196 		return -EOPNOTSUPP;
2197 	if (!len)
2198 		return 0;
2199 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2200 	if (ret)
2201 		return ret;
2202 
2203 	/*
2204 	 * If no data could be written at all, we are out of memory and
2205 	 * must return -ENOSPC.
2206 	 */
2207 	return (*retlen) ? 0 : -ENOSPC;
2208 }
2209 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2210 
2211 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2212 {
2213 	struct mtd_info *master = mtd_get_master(mtd);
2214 
2215 	if (!master->_lock_user_prot_reg)
2216 		return -EOPNOTSUPP;
2217 	if (!len)
2218 		return 0;
2219 	return master->_lock_user_prot_reg(master, from, len);
2220 }
2221 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2222 
2223 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2224 {
2225 	struct mtd_info *master = mtd_get_master(mtd);
2226 
2227 	if (!master->_erase_user_prot_reg)
2228 		return -EOPNOTSUPP;
2229 	if (!len)
2230 		return 0;
2231 	return master->_erase_user_prot_reg(master, from, len);
2232 }
2233 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2234 
2235 /* Chip-supported device locking */
2236 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2237 {
2238 	struct mtd_info *master = mtd_get_master(mtd);
2239 
2240 	if (!master->_lock)
2241 		return -EOPNOTSUPP;
2242 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2243 		return -EINVAL;
2244 	if (!len)
2245 		return 0;
2246 
2247 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2248 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2249 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2250 	}
2251 
2252 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2253 }
2254 EXPORT_SYMBOL_GPL(mtd_lock);
2255 
2256 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2257 {
2258 	struct mtd_info *master = mtd_get_master(mtd);
2259 
2260 	if (!master->_unlock)
2261 		return -EOPNOTSUPP;
2262 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2263 		return -EINVAL;
2264 	if (!len)
2265 		return 0;
2266 
2267 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2268 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2269 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2270 	}
2271 
2272 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2273 }
2274 EXPORT_SYMBOL_GPL(mtd_unlock);
2275 
2276 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2277 {
2278 	struct mtd_info *master = mtd_get_master(mtd);
2279 
2280 	if (!master->_is_locked)
2281 		return -EOPNOTSUPP;
2282 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2283 		return -EINVAL;
2284 	if (!len)
2285 		return 0;
2286 
2287 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2288 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2289 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2290 	}
2291 
2292 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2293 }
2294 EXPORT_SYMBOL_GPL(mtd_is_locked);
2295 
2296 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2297 {
2298 	struct mtd_info *master = mtd_get_master(mtd);
2299 
2300 	if (ofs < 0 || ofs >= mtd->size)
2301 		return -EINVAL;
2302 	if (!master->_block_isreserved)
2303 		return 0;
2304 
2305 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2306 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2307 
2308 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2309 }
2310 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2311 
2312 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2313 {
2314 	struct mtd_info *master = mtd_get_master(mtd);
2315 
2316 	if (ofs < 0 || ofs >= mtd->size)
2317 		return -EINVAL;
2318 	if (!master->_block_isbad)
2319 		return 0;
2320 
2321 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2322 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2323 
2324 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2325 }
2326 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2327 
2328 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2329 {
2330 	struct mtd_info *master = mtd_get_master(mtd);
2331 	int ret;
2332 
2333 	if (!master->_block_markbad)
2334 		return -EOPNOTSUPP;
2335 	if (ofs < 0 || ofs >= mtd->size)
2336 		return -EINVAL;
2337 	if (!(mtd->flags & MTD_WRITEABLE))
2338 		return -EROFS;
2339 
2340 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2341 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2342 
2343 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2344 	if (ret)
2345 		return ret;
2346 
2347 	while (mtd->parent) {
2348 		mtd->ecc_stats.badblocks++;
2349 		mtd = mtd->parent;
2350 	}
2351 
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2355 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2356 
2357 /*
2358  * default_mtd_writev - the default writev method
2359  * @mtd: mtd device description object pointer
2360  * @vecs: the vectors to write
2361  * @count: count of vectors in @vecs
2362  * @to: the MTD device offset to write to
2363  * @retlen: on exit contains the count of bytes written to the MTD device.
2364  *
2365  * This function returns zero in case of success and a negative error code in
2366  * case of failure.
2367  */
2368 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2369 			      unsigned long count, loff_t to, size_t *retlen)
2370 {
2371 	unsigned long i;
2372 	size_t totlen = 0, thislen;
2373 	int ret = 0;
2374 
2375 	for (i = 0; i < count; i++) {
2376 		if (!vecs[i].iov_len)
2377 			continue;
2378 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2379 				vecs[i].iov_base);
2380 		totlen += thislen;
2381 		if (ret || thislen != vecs[i].iov_len)
2382 			break;
2383 		to += vecs[i].iov_len;
2384 	}
2385 	*retlen = totlen;
2386 	return ret;
2387 }
2388 
2389 /*
2390  * mtd_writev - the vector-based MTD write method
2391  * @mtd: mtd device description object pointer
2392  * @vecs: the vectors to write
2393  * @count: count of vectors in @vecs
2394  * @to: the MTD device offset to write to
2395  * @retlen: on exit contains the count of bytes written to the MTD device.
2396  *
2397  * This function returns zero in case of success and a negative error code in
2398  * case of failure.
2399  */
2400 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2401 	       unsigned long count, loff_t to, size_t *retlen)
2402 {
2403 	struct mtd_info *master = mtd_get_master(mtd);
2404 
2405 	*retlen = 0;
2406 	if (!(mtd->flags & MTD_WRITEABLE))
2407 		return -EROFS;
2408 
2409 	if (!master->_writev)
2410 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2411 
2412 	return master->_writev(master, vecs, count,
2413 			       mtd_get_master_ofs(mtd, to), retlen);
2414 }
2415 EXPORT_SYMBOL_GPL(mtd_writev);
2416 
2417 /**
2418  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2419  * @mtd: mtd device description object pointer
2420  * @size: a pointer to the ideal or maximum size of the allocation, points
2421  *        to the actual allocation size on success.
2422  *
2423  * This routine attempts to allocate a contiguous kernel buffer up to
2424  * the specified size, backing off the size of the request exponentially
2425  * until the request succeeds or until the allocation size falls below
2426  * the system page size. This attempts to make sure it does not adversely
2427  * impact system performance, so when allocating more than one page, we
2428  * ask the memory allocator to avoid re-trying, swapping, writing back
2429  * or performing I/O.
2430  *
2431  * Note, this function also makes sure that the allocated buffer is aligned to
2432  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2433  *
2434  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2435  * to handle smaller (i.e. degraded) buffer allocations under low- or
2436  * fragmented-memory situations where such reduced allocations, from a
2437  * requested ideal, are allowed.
2438  *
2439  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2440  */
2441 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2442 {
2443 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2444 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2445 	void *kbuf;
2446 
2447 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2448 
2449 	while (*size > min_alloc) {
2450 		kbuf = kmalloc(*size, flags);
2451 		if (kbuf)
2452 			return kbuf;
2453 
2454 		*size >>= 1;
2455 		*size = ALIGN(*size, mtd->writesize);
2456 	}
2457 
2458 	/*
2459 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2460 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2461 	 */
2462 	return kmalloc(*size, GFP_KERNEL);
2463 }
2464 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2465 
2466 #ifdef CONFIG_PROC_FS
2467 
2468 /*====================================================================*/
2469 /* Support for /proc/mtd */
2470 
2471 static int mtd_proc_show(struct seq_file *m, void *v)
2472 {
2473 	struct mtd_info *mtd;
2474 
2475 	seq_puts(m, "dev:    size   erasesize  name\n");
2476 	mutex_lock(&mtd_table_mutex);
2477 	mtd_for_each_device(mtd) {
2478 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2479 			   mtd->index, (unsigned long long)mtd->size,
2480 			   mtd->erasesize, mtd->name);
2481 	}
2482 	mutex_unlock(&mtd_table_mutex);
2483 	return 0;
2484 }
2485 #endif /* CONFIG_PROC_FS */
2486 
2487 /*====================================================================*/
2488 /* Init code */
2489 
2490 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2491 {
2492 	struct backing_dev_info *bdi;
2493 	int ret;
2494 
2495 	bdi = bdi_alloc(NUMA_NO_NODE);
2496 	if (!bdi)
2497 		return ERR_PTR(-ENOMEM);
2498 	bdi->ra_pages = 0;
2499 	bdi->io_pages = 0;
2500 
2501 	/*
2502 	 * We put '-0' suffix to the name to get the same name format as we
2503 	 * used to get. Since this is called only once, we get a unique name.
2504 	 */
2505 	ret = bdi_register(bdi, "%.28s-0", name);
2506 	if (ret)
2507 		bdi_put(bdi);
2508 
2509 	return ret ? ERR_PTR(ret) : bdi;
2510 }
2511 
2512 static struct proc_dir_entry *proc_mtd;
2513 
2514 static int __init init_mtd(void)
2515 {
2516 	int ret;
2517 
2518 	ret = class_register(&mtd_class);
2519 	if (ret)
2520 		goto err_reg;
2521 
2522 	mtd_bdi = mtd_bdi_init("mtd");
2523 	if (IS_ERR(mtd_bdi)) {
2524 		ret = PTR_ERR(mtd_bdi);
2525 		goto err_bdi;
2526 	}
2527 
2528 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2529 
2530 	ret = init_mtdchar();
2531 	if (ret)
2532 		goto out_procfs;
2533 
2534 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2535 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2536 			    &mtd_expert_analysis_mode);
2537 
2538 	return 0;
2539 
2540 out_procfs:
2541 	if (proc_mtd)
2542 		remove_proc_entry("mtd", NULL);
2543 	bdi_unregister(mtd_bdi);
2544 	bdi_put(mtd_bdi);
2545 err_bdi:
2546 	class_unregister(&mtd_class);
2547 err_reg:
2548 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2549 	return ret;
2550 }
2551 
2552 static void __exit cleanup_mtd(void)
2553 {
2554 	debugfs_remove_recursive(dfs_dir_mtd);
2555 	cleanup_mtdchar();
2556 	if (proc_mtd)
2557 		remove_proc_entry("mtd", NULL);
2558 	class_unregister(&mtd_class);
2559 	bdi_unregister(mtd_bdi);
2560 	bdi_put(mtd_bdi);
2561 	idr_destroy(&mtd_idr);
2562 }
2563 
2564 module_init(init_mtd);
2565 module_exit(cleanup_mtd);
2566 
2567 MODULE_LICENSE("GPL");
2568 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2569 MODULE_DESCRIPTION("Core MTD registration and access routines");
2570