1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *
20  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22  *
23  *   Derived from Das U-Boot source code
24  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25  *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26  *
27  *   Add Programmable Multibit ECC support for various AT91 SoC
28  *	Copyright 2012 ATMEL, Hong Xu
29  *
30  *   Add Nand Flash Controller support for SAMA5 SoC
31  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32  *
33  * A few words about the naming convention in this file. This convention
34  * applies to structure and function names.
35  *
36  * Prefixes:
37  *
38  * - atmel_nand_: all generic structures/functions
39  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40  *		      (at91sam9 and avr32 SoCs)
41  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42  *		       (sama5 SoCs and later)
43  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44  *		 that is available in the HSMC block
45  * - <soc>_nand_: all SoC specific structures/functions
46  */
47 
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66 
67 #include "pmecc.h"
68 
69 #define ATMEL_HSMC_NFC_CFG			0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
80 
81 #define ATMEL_HSMC_NFC_CTRL			0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
84 
85 #define ATMEL_HSMC_NFC_SR			0x8
86 #define ATMEL_HSMC_NFC_IER			0xc
87 #define ATMEL_HSMC_NFC_IDR			0x10
88 #define ATMEL_HSMC_NFC_IMR			0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR			BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
102 						 ATMEL_HSMC_NFC_SR_UNDEF | \
103 						 ATMEL_HSMC_NFC_SR_AWB | \
104 						 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
106 
107 #define ATMEL_HSMC_NFC_ADDR			0x18
108 #define ATMEL_HSMC_NFC_BANK			0x1c
109 
110 #define ATMEL_NFC_MAX_RB_ID			7
111 
112 #define ATMEL_NFC_SRAM_SIZE			0x2400
113 
114 #define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2				BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs)			((cs) << 22)
118 #define ATMEL_NFC_DATAEN			BIT(25)
119 #define ATMEL_NFC_NFCWR				BIT(26)
120 
121 #define ATMEL_NFC_MAX_ADDR_CYCLES		5
122 
123 #define ATMEL_NAND_ALE_OFFSET			BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET			BIT(22)
125 
126 #define DEFAULT_TIMEOUT_MS			1000
127 #define MIN_DMA_LEN				128
128 
129 static bool atmel_nand_avoid_dma __read_mostly;
130 
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133 
134 enum atmel_nand_rb_type {
135 	ATMEL_NAND_NO_RB,
136 	ATMEL_NAND_NATIVE_RB,
137 	ATMEL_NAND_GPIO_RB,
138 };
139 
140 struct atmel_nand_rb {
141 	enum atmel_nand_rb_type type;
142 	union {
143 		struct gpio_desc *gpio;
144 		int id;
145 	};
146 };
147 
148 struct atmel_nand_cs {
149 	int id;
150 	struct atmel_nand_rb rb;
151 	struct gpio_desc *csgpio;
152 	struct {
153 		void __iomem *virt;
154 		dma_addr_t dma;
155 	} io;
156 
157 	struct atmel_smc_cs_conf smcconf;
158 };
159 
160 struct atmel_nand {
161 	struct list_head node;
162 	struct device *dev;
163 	struct nand_chip base;
164 	struct atmel_nand_cs *activecs;
165 	struct atmel_pmecc_user *pmecc;
166 	struct gpio_desc *cdgpio;
167 	int numcs;
168 	struct atmel_nand_cs cs[];
169 };
170 
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 	return container_of(chip, struct atmel_nand, base);
174 }
175 
176 enum atmel_nfc_data_xfer {
177 	ATMEL_NFC_NO_DATA,
178 	ATMEL_NFC_READ_DATA,
179 	ATMEL_NFC_WRITE_DATA,
180 };
181 
182 struct atmel_nfc_op {
183 	u8 cs;
184 	u8 ncmds;
185 	u8 cmds[2];
186 	u8 naddrs;
187 	u8 addrs[5];
188 	enum atmel_nfc_data_xfer data;
189 	u32 wait;
190 	u32 errors;
191 };
192 
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195 
196 struct atmel_nand_controller_ops {
197 	int (*probe)(struct platform_device *pdev,
198 		     const struct atmel_nand_controller_caps *caps);
199 	int (*remove)(struct atmel_nand_controller *nc);
200 	void (*nand_init)(struct atmel_nand_controller *nc,
201 			  struct atmel_nand *nand);
202 	int (*ecc_init)(struct nand_chip *chip);
203 	int (*setup_interface)(struct atmel_nand *nand, int csline,
204 			       const struct nand_interface_config *conf);
205 	int (*exec_op)(struct atmel_nand *nand,
206 		       const struct nand_operation *op, bool check_only);
207 };
208 
209 struct atmel_nand_controller_caps {
210 	bool has_dma;
211 	bool legacy_of_bindings;
212 	u32 ale_offs;
213 	u32 cle_offs;
214 	const char *ebi_csa_regmap_name;
215 	const struct atmel_nand_controller_ops *ops;
216 };
217 
218 struct atmel_nand_controller {
219 	struct nand_controller base;
220 	const struct atmel_nand_controller_caps *caps;
221 	struct device *dev;
222 	struct regmap *smc;
223 	struct dma_chan *dmac;
224 	struct atmel_pmecc *pmecc;
225 	struct list_head chips;
226 	struct clk *mck;
227 };
228 
229 static inline struct atmel_nand_controller *
230 to_nand_controller(struct nand_controller *ctl)
231 {
232 	return container_of(ctl, struct atmel_nand_controller, base);
233 }
234 
235 struct atmel_smc_nand_ebi_csa_cfg {
236 	u32 offs;
237 	u32 nfd0_on_d16;
238 };
239 
240 struct atmel_smc_nand_controller {
241 	struct atmel_nand_controller base;
242 	struct regmap *ebi_csa_regmap;
243 	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245 
246 static inline struct atmel_smc_nand_controller *
247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249 	return container_of(to_nand_controller(ctl),
250 			    struct atmel_smc_nand_controller, base);
251 }
252 
253 struct atmel_hsmc_nand_controller {
254 	struct atmel_nand_controller base;
255 	struct {
256 		struct gen_pool *pool;
257 		void __iomem *virt;
258 		dma_addr_t dma;
259 	} sram;
260 	const struct atmel_hsmc_reg_layout *hsmc_layout;
261 	struct regmap *io;
262 	struct atmel_nfc_op op;
263 	struct completion complete;
264 	u32 cfg;
265 	int irq;
266 
267 	/* Only used when instantiating from legacy DT bindings. */
268 	struct clk *clk;
269 };
270 
271 static inline struct atmel_hsmc_nand_controller *
272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274 	return container_of(to_nand_controller(ctl),
275 			    struct atmel_hsmc_nand_controller, base);
276 }
277 
278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280 	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 	op->wait ^= status & op->wait;
282 
283 	return !op->wait || op->errors;
284 }
285 
286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288 	struct atmel_hsmc_nand_controller *nc = data;
289 	u32 sr, rcvd;
290 	bool done;
291 
292 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293 
294 	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 	done = atmel_nfc_op_done(&nc->op, sr);
296 
297 	if (rcvd)
298 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299 
300 	if (done)
301 		complete(&nc->complete);
302 
303 	return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305 
306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 			  unsigned int timeout_ms)
308 {
309 	int ret;
310 
311 	if (!timeout_ms)
312 		timeout_ms = DEFAULT_TIMEOUT_MS;
313 
314 	if (poll) {
315 		u32 status;
316 
317 		ret = regmap_read_poll_timeout(nc->base.smc,
318 					       ATMEL_HSMC_NFC_SR, status,
319 					       atmel_nfc_op_done(&nc->op,
320 								 status),
321 					       0, timeout_ms * 1000);
322 	} else {
323 		init_completion(&nc->complete);
324 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 		ret = wait_for_completion_timeout(&nc->complete,
327 						msecs_to_jiffies(timeout_ms));
328 		if (!ret)
329 			ret = -ETIMEDOUT;
330 		else
331 			ret = 0;
332 
333 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334 	}
335 
336 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 		ret = -ETIMEDOUT;
339 	}
340 
341 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 		dev_err(nc->base.dev, "Access to an undefined area\n");
343 		ret = -EIO;
344 	}
345 
346 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 		dev_err(nc->base.dev, "Access while busy\n");
348 		ret = -EIO;
349 	}
350 
351 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 		dev_err(nc->base.dev, "Wrong access size\n");
353 		ret = -EIO;
354 	}
355 
356 	return ret;
357 }
358 
359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361 	struct completion *finished = data;
362 
363 	complete(finished);
364 }
365 
366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 				   void *buf, dma_addr_t dev_dma, size_t len,
368 				   enum dma_data_direction dir)
369 {
370 	DECLARE_COMPLETION_ONSTACK(finished);
371 	dma_addr_t src_dma, dst_dma, buf_dma;
372 	struct dma_async_tx_descriptor *tx;
373 	dma_cookie_t cookie;
374 
375 	buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 	if (dma_mapping_error(nc->dev, dev_dma)) {
377 		dev_err(nc->dev,
378 			"Failed to prepare a buffer for DMA access\n");
379 		goto err;
380 	}
381 
382 	if (dir == DMA_FROM_DEVICE) {
383 		src_dma = dev_dma;
384 		dst_dma = buf_dma;
385 	} else {
386 		src_dma = buf_dma;
387 		dst_dma = dev_dma;
388 	}
389 
390 	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 	if (!tx) {
393 		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 		goto err_unmap;
395 	}
396 
397 	tx->callback = atmel_nand_dma_transfer_finished;
398 	tx->callback_param = &finished;
399 
400 	cookie = dmaengine_submit(tx);
401 	if (dma_submit_error(cookie)) {
402 		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 		goto err_unmap;
404 	}
405 
406 	dma_async_issue_pending(nc->dmac);
407 	wait_for_completion(&finished);
408 	dma_unmap_single(nc->dev, buf_dma, len, dir);
409 
410 	return 0;
411 
412 err_unmap:
413 	dma_unmap_single(nc->dev, buf_dma, len, dir);
414 
415 err:
416 	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417 
418 	return -EIO;
419 }
420 
421 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422 {
423 	u8 *addrs = nc->op.addrs;
424 	unsigned int op = 0;
425 	u32 addr, val;
426 	int i, ret;
427 
428 	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429 
430 	for (i = 0; i < nc->op.ncmds; i++)
431 		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432 
433 	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435 
436 	op |= ATMEL_NFC_CSID(nc->op.cs) |
437 	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
438 
439 	if (nc->op.ncmds > 1)
440 		op |= ATMEL_NFC_VCMD2;
441 
442 	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443 	       (addrs[3] << 24);
444 
445 	if (nc->op.data != ATMEL_NFC_NO_DATA) {
446 		op |= ATMEL_NFC_DATAEN;
447 		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448 
449 		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450 			op |= ATMEL_NFC_NFCWR;
451 	}
452 
453 	/* Clear all flags. */
454 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455 
456 	/* Send the command. */
457 	regmap_write(nc->io, op, addr);
458 
459 	ret = atmel_nfc_wait(nc, poll, 0);
460 	if (ret)
461 		dev_err(nc->base.dev,
462 			"Failed to send NAND command (err = %d)!",
463 			ret);
464 
465 	/* Reset the op state. */
466 	memset(&nc->op, 0, sizeof(nc->op));
467 
468 	return ret;
469 }
470 
471 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472 			       unsigned int len, bool force_8bit)
473 {
474 	struct atmel_nand_controller *nc;
475 
476 	nc = to_nand_controller(nand->base.controller);
477 
478 	/*
479 	 * If the controller supports DMA, the buffer address is DMA-able and
480 	 * len is long enough to make DMA transfers profitable, let's trigger
481 	 * a DMA transfer. If it fails, fallback to PIO mode.
482 	 */
483 	if (nc->dmac && virt_addr_valid(buf) &&
484 	    len >= MIN_DMA_LEN && !force_8bit &&
485 	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486 				     DMA_FROM_DEVICE))
487 		return;
488 
489 	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490 		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491 	else
492 		ioread8_rep(nand->activecs->io.virt, buf, len);
493 }
494 
495 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496 				unsigned int len, bool force_8bit)
497 {
498 	struct atmel_nand_controller *nc;
499 
500 	nc = to_nand_controller(nand->base.controller);
501 
502 	/*
503 	 * If the controller supports DMA, the buffer address is DMA-able and
504 	 * len is long enough to make DMA transfers profitable, let's trigger
505 	 * a DMA transfer. If it fails, fallback to PIO mode.
506 	 */
507 	if (nc->dmac && virt_addr_valid(buf) &&
508 	    len >= MIN_DMA_LEN && !force_8bit &&
509 	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510 				     len, DMA_TO_DEVICE))
511 		return;
512 
513 	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514 		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515 	else
516 		iowrite8_rep(nand->activecs->io.virt, buf, len);
517 }
518 
519 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520 {
521 	if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522 		return nand_soft_waitrdy(&nand->base, timeout_ms);
523 
524 	return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525 				 timeout_ms);
526 }
527 
528 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529 				   unsigned int timeout_ms)
530 {
531 	struct atmel_hsmc_nand_controller *nc;
532 	u32 status, mask;
533 
534 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535 		return atmel_nand_waitrdy(nand, timeout_ms);
536 
537 	nc = to_hsmc_nand_controller(nand->base.controller);
538 	mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539 	return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540 					       status, status & mask,
541 					       10, timeout_ms * 1000);
542 }
543 
544 static void atmel_nand_select_target(struct atmel_nand *nand,
545 				     unsigned int cs)
546 {
547 	nand->activecs = &nand->cs[cs];
548 }
549 
550 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551 					  unsigned int cs)
552 {
553 	struct mtd_info *mtd = nand_to_mtd(&nand->base);
554 	struct atmel_hsmc_nand_controller *nc;
555 	u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556 		  ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557 		  ATMEL_HSMC_NFC_CFG_RSPARE;
558 
559 	nand->activecs = &nand->cs[cs];
560 	nc = to_hsmc_nand_controller(nand->base.controller);
561 	if (nc->cfg == cfg)
562 		return;
563 
564 	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565 			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566 			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567 			   ATMEL_HSMC_NFC_CFG_RSPARE |
568 			   ATMEL_HSMC_NFC_CFG_WSPARE,
569 			   cfg);
570 	nc->cfg = cfg;
571 }
572 
573 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574 				     const struct nand_op_instr *instr)
575 {
576 	struct atmel_nand_controller *nc;
577 	unsigned int i;
578 
579 	nc = to_nand_controller(nand->base.controller);
580 	switch (instr->type) {
581 	case NAND_OP_CMD_INSTR:
582 		writeb(instr->ctx.cmd.opcode,
583 		       nand->activecs->io.virt + nc->caps->cle_offs);
584 		return 0;
585 	case NAND_OP_ADDR_INSTR:
586 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
587 			writeb(instr->ctx.addr.addrs[i],
588 			       nand->activecs->io.virt + nc->caps->ale_offs);
589 		return 0;
590 	case NAND_OP_DATA_IN_INSTR:
591 		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592 				   instr->ctx.data.len,
593 				   instr->ctx.data.force_8bit);
594 		return 0;
595 	case NAND_OP_DATA_OUT_INSTR:
596 		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597 				    instr->ctx.data.len,
598 				    instr->ctx.data.force_8bit);
599 		return 0;
600 	case NAND_OP_WAITRDY_INSTR:
601 		return atmel_nand_waitrdy(nand,
602 					  instr->ctx.waitrdy.timeout_ms);
603 	default:
604 		break;
605 	}
606 
607 	return -EINVAL;
608 }
609 
610 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611 				  const struct nand_operation *op,
612 				  bool check_only)
613 {
614 	unsigned int i;
615 	int ret = 0;
616 
617 	if (check_only)
618 		return 0;
619 
620 	atmel_nand_select_target(nand, op->cs);
621 	gpiod_set_value(nand->activecs->csgpio, 0);
622 	for (i = 0; i < op->ninstrs; i++) {
623 		ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624 		if (ret)
625 			break;
626 	}
627 	gpiod_set_value(nand->activecs->csgpio, 1);
628 
629 	return ret;
630 }
631 
632 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633 				    const struct nand_subop *subop)
634 {
635 	struct atmel_nand *nand = to_atmel_nand(chip);
636 	struct atmel_hsmc_nand_controller *nc;
637 	unsigned int i, j;
638 
639 	nc = to_hsmc_nand_controller(chip->controller);
640 
641 	nc->op.cs = nand->activecs->id;
642 	for (i = 0; i < subop->ninstrs; i++) {
643 		const struct nand_op_instr *instr = &subop->instrs[i];
644 
645 		if (instr->type == NAND_OP_CMD_INSTR) {
646 			nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647 			continue;
648 		}
649 
650 		for (j = nand_subop_get_addr_start_off(subop, i);
651 		     j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652 			nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653 			nc->op.naddrs++;
654 		}
655 	}
656 
657 	return atmel_nfc_exec_op(nc, true);
658 }
659 
660 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661 			      const struct nand_subop *subop)
662 {
663 	const struct nand_op_instr *instr = subop->instrs;
664 	struct atmel_nand *nand = to_atmel_nand(chip);
665 
666 	if (instr->type == NAND_OP_DATA_IN_INSTR)
667 		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668 				   instr->ctx.data.len,
669 				   instr->ctx.data.force_8bit);
670 	else
671 		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672 				    instr->ctx.data.len,
673 				    instr->ctx.data.force_8bit);
674 
675 	return 0;
676 }
677 
678 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679 				   const struct nand_subop *subop)
680 {
681 	const struct nand_op_instr *instr = subop->instrs;
682 	struct atmel_nand *nand = to_atmel_nand(chip);
683 
684 	return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685 }
686 
687 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
690 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691 		NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698 );
699 
700 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701 				   const struct nand_operation *op,
702 				   bool check_only)
703 {
704 	int ret;
705 
706 	if (check_only)
707 		return nand_op_parser_exec_op(&nand->base,
708 					      &atmel_hsmc_op_parser, op, true);
709 
710 	atmel_hsmc_nand_select_target(nand, op->cs);
711 	ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712 				     false);
713 
714 	return ret;
715 }
716 
717 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718 				   bool oob_required)
719 {
720 	struct mtd_info *mtd = nand_to_mtd(chip);
721 	struct atmel_hsmc_nand_controller *nc;
722 	int ret = -EIO;
723 
724 	nc = to_hsmc_nand_controller(chip->controller);
725 
726 	if (nc->base.dmac)
727 		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728 					      nc->sram.dma, mtd->writesize,
729 					      DMA_TO_DEVICE);
730 
731 	/* Falling back to CPU copy. */
732 	if (ret)
733 		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734 
735 	if (oob_required)
736 		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737 			    mtd->oobsize);
738 }
739 
740 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741 				     bool oob_required)
742 {
743 	struct mtd_info *mtd = nand_to_mtd(chip);
744 	struct atmel_hsmc_nand_controller *nc;
745 	int ret = -EIO;
746 
747 	nc = to_hsmc_nand_controller(chip->controller);
748 
749 	if (nc->base.dmac)
750 		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751 					      mtd->writesize, DMA_FROM_DEVICE);
752 
753 	/* Falling back to CPU copy. */
754 	if (ret)
755 		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756 
757 	if (oob_required)
758 		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759 			      mtd->oobsize);
760 }
761 
762 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763 {
764 	struct mtd_info *mtd = nand_to_mtd(chip);
765 	struct atmel_hsmc_nand_controller *nc;
766 
767 	nc = to_hsmc_nand_controller(chip->controller);
768 
769 	if (column >= 0) {
770 		nc->op.addrs[nc->op.naddrs++] = column;
771 
772 		/*
773 		 * 2 address cycles for the column offset on large page NANDs.
774 		 */
775 		if (mtd->writesize > 512)
776 			nc->op.addrs[nc->op.naddrs++] = column >> 8;
777 	}
778 
779 	if (page >= 0) {
780 		nc->op.addrs[nc->op.naddrs++] = page;
781 		nc->op.addrs[nc->op.naddrs++] = page >> 8;
782 
783 		if (chip->options & NAND_ROW_ADDR_3)
784 			nc->op.addrs[nc->op.naddrs++] = page >> 16;
785 	}
786 }
787 
788 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789 {
790 	struct atmel_nand *nand = to_atmel_nand(chip);
791 	struct atmel_nand_controller *nc;
792 	int ret;
793 
794 	nc = to_nand_controller(chip->controller);
795 
796 	if (raw)
797 		return 0;
798 
799 	ret = atmel_pmecc_enable(nand->pmecc, op);
800 	if (ret)
801 		dev_err(nc->dev,
802 			"Failed to enable ECC engine (err = %d)\n", ret);
803 
804 	return ret;
805 }
806 
807 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808 {
809 	struct atmel_nand *nand = to_atmel_nand(chip);
810 
811 	if (!raw)
812 		atmel_pmecc_disable(nand->pmecc);
813 }
814 
815 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816 {
817 	struct atmel_nand *nand = to_atmel_nand(chip);
818 	struct mtd_info *mtd = nand_to_mtd(chip);
819 	struct atmel_nand_controller *nc;
820 	struct mtd_oob_region oobregion;
821 	void *eccbuf;
822 	int ret, i;
823 
824 	nc = to_nand_controller(chip->controller);
825 
826 	if (raw)
827 		return 0;
828 
829 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
830 	if (ret) {
831 		dev_err(nc->dev,
832 			"Failed to transfer NAND page data (err = %d)\n",
833 			ret);
834 		return ret;
835 	}
836 
837 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
838 	eccbuf = chip->oob_poi + oobregion.offset;
839 
840 	for (i = 0; i < chip->ecc.steps; i++) {
841 		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842 						   eccbuf);
843 		eccbuf += chip->ecc.bytes;
844 	}
845 
846 	return 0;
847 }
848 
849 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850 					 bool raw)
851 {
852 	struct atmel_nand *nand = to_atmel_nand(chip);
853 	struct mtd_info *mtd = nand_to_mtd(chip);
854 	struct atmel_nand_controller *nc;
855 	struct mtd_oob_region oobregion;
856 	int ret, i, max_bitflips = 0;
857 	void *databuf, *eccbuf;
858 
859 	nc = to_nand_controller(chip->controller);
860 
861 	if (raw)
862 		return 0;
863 
864 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
865 	if (ret) {
866 		dev_err(nc->dev,
867 			"Failed to read NAND page data (err = %d)\n",
868 			ret);
869 		return ret;
870 	}
871 
872 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
873 	eccbuf = chip->oob_poi + oobregion.offset;
874 	databuf = buf;
875 
876 	for (i = 0; i < chip->ecc.steps; i++) {
877 		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878 						 eccbuf);
879 		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880 			ret = nand_check_erased_ecc_chunk(databuf,
881 							  chip->ecc.size,
882 							  eccbuf,
883 							  chip->ecc.bytes,
884 							  NULL, 0,
885 							  chip->ecc.strength);
886 
887 		if (ret >= 0) {
888 			mtd->ecc_stats.corrected += ret;
889 			max_bitflips = max(ret, max_bitflips);
890 		} else {
891 			mtd->ecc_stats.failed++;
892 		}
893 
894 		databuf += chip->ecc.size;
895 		eccbuf += chip->ecc.bytes;
896 	}
897 
898 	return max_bitflips;
899 }
900 
901 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902 				     bool oob_required, int page, bool raw)
903 {
904 	struct mtd_info *mtd = nand_to_mtd(chip);
905 	struct atmel_nand *nand = to_atmel_nand(chip);
906 	int ret;
907 
908 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909 
910 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911 	if (ret)
912 		return ret;
913 
914 	nand_write_data_op(chip, buf, mtd->writesize, false);
915 
916 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917 	if (ret) {
918 		atmel_pmecc_disable(nand->pmecc);
919 		return ret;
920 	}
921 
922 	atmel_nand_pmecc_disable(chip, raw);
923 
924 	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925 
926 	return nand_prog_page_end_op(chip);
927 }
928 
929 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930 				       int oob_required, int page)
931 {
932 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933 }
934 
935 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936 					   const u8 *buf, int oob_required,
937 					   int page)
938 {
939 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940 }
941 
942 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943 				    bool oob_required, int page, bool raw)
944 {
945 	struct mtd_info *mtd = nand_to_mtd(chip);
946 	int ret;
947 
948 	nand_read_page_op(chip, page, 0, NULL, 0);
949 
950 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951 	if (ret)
952 		return ret;
953 
954 	ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955 	if (ret)
956 		goto out_disable;
957 
958 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959 	if (ret)
960 		goto out_disable;
961 
962 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963 
964 out_disable:
965 	atmel_nand_pmecc_disable(chip, raw);
966 
967 	return ret;
968 }
969 
970 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971 				      int oob_required, int page)
972 {
973 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974 }
975 
976 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977 					  int oob_required, int page)
978 {
979 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980 }
981 
982 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983 					  const u8 *buf, bool oob_required,
984 					  int page, bool raw)
985 {
986 	struct mtd_info *mtd = nand_to_mtd(chip);
987 	struct atmel_nand *nand = to_atmel_nand(chip);
988 	struct atmel_hsmc_nand_controller *nc;
989 	int ret;
990 
991 	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992 	nc = to_hsmc_nand_controller(chip->controller);
993 
994 	atmel_nfc_copy_to_sram(chip, buf, false);
995 
996 	nc->op.cmds[0] = NAND_CMD_SEQIN;
997 	nc->op.ncmds = 1;
998 	atmel_nfc_set_op_addr(chip, page, 0x0);
999 	nc->op.cs = nand->activecs->id;
1000 	nc->op.data = ATMEL_NFC_WRITE_DATA;
1001 
1002 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003 	if (ret)
1004 		return ret;
1005 
1006 	ret = atmel_nfc_exec_op(nc, false);
1007 	if (ret) {
1008 		atmel_nand_pmecc_disable(chip, raw);
1009 		dev_err(nc->base.dev,
1010 			"Failed to transfer NAND page data (err = %d)\n",
1011 			ret);
1012 		return ret;
1013 	}
1014 
1015 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016 
1017 	atmel_nand_pmecc_disable(chip, raw);
1018 
1019 	if (ret)
1020 		return ret;
1021 
1022 	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023 
1024 	return nand_prog_page_end_op(chip);
1025 }
1026 
1027 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028 					    const u8 *buf, int oob_required,
1029 					    int page)
1030 {
1031 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032 					      false);
1033 }
1034 
1035 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036 						const u8 *buf,
1037 						int oob_required, int page)
1038 {
1039 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040 					      true);
1041 }
1042 
1043 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044 					 bool oob_required, int page,
1045 					 bool raw)
1046 {
1047 	struct mtd_info *mtd = nand_to_mtd(chip);
1048 	struct atmel_nand *nand = to_atmel_nand(chip);
1049 	struct atmel_hsmc_nand_controller *nc;
1050 	int ret;
1051 
1052 	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053 	nc = to_hsmc_nand_controller(chip->controller);
1054 
1055 	/*
1056 	 * Optimized read page accessors only work when the NAND R/B pin is
1057 	 * connected to a native SoC R/B pin. If that's not the case, fallback
1058 	 * to the non-optimized one.
1059 	 */
1060 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061 		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062 						raw);
1063 
1064 	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065 
1066 	if (mtd->writesize > 512)
1067 		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068 
1069 	atmel_nfc_set_op_addr(chip, page, 0x0);
1070 	nc->op.cs = nand->activecs->id;
1071 	nc->op.data = ATMEL_NFC_READ_DATA;
1072 
1073 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074 	if (ret)
1075 		return ret;
1076 
1077 	ret = atmel_nfc_exec_op(nc, false);
1078 	if (ret) {
1079 		atmel_nand_pmecc_disable(chip, raw);
1080 		dev_err(nc->base.dev,
1081 			"Failed to load NAND page data (err = %d)\n",
1082 			ret);
1083 		return ret;
1084 	}
1085 
1086 	atmel_nfc_copy_from_sram(chip, buf, true);
1087 
1088 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089 
1090 	atmel_nand_pmecc_disable(chip, raw);
1091 
1092 	return ret;
1093 }
1094 
1095 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096 					   int oob_required, int page)
1097 {
1098 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099 					     false);
1100 }
1101 
1102 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103 					       u8 *buf, int oob_required,
1104 					       int page)
1105 {
1106 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107 					     true);
1108 }
1109 
1110 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111 {
1112 	const struct nand_ecc_props *requirements =
1113 		nanddev_get_ecc_requirements(&chip->base);
1114 	struct mtd_info *mtd = nand_to_mtd(chip);
1115 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116 	struct atmel_nand *nand = to_atmel_nand(chip);
1117 	struct atmel_nand_controller *nc;
1118 	struct atmel_pmecc_user_req req;
1119 
1120 	nc = to_nand_controller(chip->controller);
1121 
1122 	if (!nc->pmecc) {
1123 		dev_err(nc->dev, "HW ECC not supported\n");
1124 		return -ENOTSUPP;
1125 	}
1126 
1127 	if (nc->caps->legacy_of_bindings) {
1128 		u32 val;
1129 
1130 		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131 					  &val))
1132 			chip->ecc.strength = val;
1133 
1134 		if (!of_property_read_u32(nc->dev->of_node,
1135 					  "atmel,pmecc-sector-size",
1136 					  &val))
1137 			chip->ecc.size = val;
1138 	}
1139 
1140 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142 	else if (chip->ecc.strength)
1143 		req.ecc.strength = chip->ecc.strength;
1144 	else if (requirements->strength)
1145 		req.ecc.strength = requirements->strength;
1146 	else
1147 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148 
1149 	if (chip->ecc.size)
1150 		req.ecc.sectorsize = chip->ecc.size;
1151 	else if (requirements->step_size)
1152 		req.ecc.sectorsize = requirements->step_size;
1153 	else
1154 		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155 
1156 	req.pagesize = mtd->writesize;
1157 	req.oobsize = mtd->oobsize;
1158 
1159 	if (mtd->writesize <= 512) {
1160 		req.ecc.bytes = 4;
1161 		req.ecc.ooboffset = 0;
1162 	} else {
1163 		req.ecc.bytes = mtd->oobsize - 2;
1164 		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165 	}
1166 
1167 	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168 	if (IS_ERR(nand->pmecc))
1169 		return PTR_ERR(nand->pmecc);
1170 
1171 	chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172 	chip->ecc.size = req.ecc.sectorsize;
1173 	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174 	chip->ecc.strength = req.ecc.strength;
1175 
1176 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1177 
1178 	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179 
1180 	return 0;
1181 }
1182 
1183 static int atmel_nand_ecc_init(struct nand_chip *chip)
1184 {
1185 	struct atmel_nand_controller *nc;
1186 	int ret;
1187 
1188 	nc = to_nand_controller(chip->controller);
1189 
1190 	switch (chip->ecc.engine_type) {
1191 	case NAND_ECC_ENGINE_TYPE_NONE:
1192 	case NAND_ECC_ENGINE_TYPE_SOFT:
1193 		/*
1194 		 * Nothing to do, the core will initialize everything for us.
1195 		 */
1196 		break;
1197 
1198 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199 		ret = atmel_nand_pmecc_init(chip);
1200 		if (ret)
1201 			return ret;
1202 
1203 		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204 		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205 		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206 		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207 		break;
1208 
1209 	default:
1210 		/* Other modes are not supported. */
1211 		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212 			chip->ecc.engine_type);
1213 		return -ENOTSUPP;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220 {
1221 	int ret;
1222 
1223 	ret = atmel_nand_ecc_init(chip);
1224 	if (ret)
1225 		return ret;
1226 
1227 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228 		return 0;
1229 
1230 	/* Adjust the ECC operations for the HSMC IP. */
1231 	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232 	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233 	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234 	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235 
1236 	return 0;
1237 }
1238 
1239 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240 					const struct nand_interface_config *conf,
1241 					struct atmel_smc_cs_conf *smcconf)
1242 {
1243 	u32 ncycles, totalcycles, timeps, mckperiodps;
1244 	struct atmel_nand_controller *nc;
1245 	int ret;
1246 
1247 	nc = to_nand_controller(nand->base.controller);
1248 
1249 	/* DDR interface not supported. */
1250 	if (!nand_interface_is_sdr(conf))
1251 		return -ENOTSUPP;
1252 
1253 	/*
1254 	 * tRC < 30ns implies EDO mode. This controller does not support this
1255 	 * mode.
1256 	 */
1257 	if (conf->timings.sdr.tRC_min < 30000)
1258 		return -ENOTSUPP;
1259 
1260 	atmel_smc_cs_conf_init(smcconf);
1261 
1262 	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263 	mckperiodps *= 1000;
1264 
1265 	/*
1266 	 * Set write pulse timing. This one is easy to extract:
1267 	 *
1268 	 * NWE_PULSE = tWP
1269 	 */
1270 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271 	totalcycles = ncycles;
1272 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273 					  ncycles);
1274 	if (ret)
1275 		return ret;
1276 
1277 	/*
1278 	 * The write setup timing depends on the operation done on the NAND.
1279 	 * All operations goes through the same data bus, but the operation
1280 	 * type depends on the address we are writing to (ALE/CLE address
1281 	 * lines).
1282 	 * Since we have no way to differentiate the different operations at
1283 	 * the SMC level, we must consider the worst case (the biggest setup
1284 	 * time among all operation types):
1285 	 *
1286 	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287 	 */
1288 	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289 		      conf->timings.sdr.tALS_min);
1290 	timeps = max(timeps, conf->timings.sdr.tDS_min);
1291 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292 	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293 	totalcycles += ncycles;
1294 	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295 					  ncycles);
1296 	if (ret)
1297 		return ret;
1298 
1299 	/*
1300 	 * As for the write setup timing, the write hold timing depends on the
1301 	 * operation done on the NAND:
1302 	 *
1303 	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304 	 */
1305 	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306 		      conf->timings.sdr.tALH_min);
1307 	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308 		      conf->timings.sdr.tWH_min);
1309 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310 	totalcycles += ncycles;
1311 
1312 	/*
1313 	 * The write cycle timing is directly matching tWC, but is also
1314 	 * dependent on the other timings on the setup and hold timings we
1315 	 * calculated earlier, which gives:
1316 	 *
1317 	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318 	 */
1319 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320 	ncycles = max(totalcycles, ncycles);
1321 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322 					  ncycles);
1323 	if (ret)
1324 		return ret;
1325 
1326 	/*
1327 	 * We don't want the CS line to be toggled between each byte/word
1328 	 * transfer to the NAND. The only way to guarantee that is to have the
1329 	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330 	 *
1331 	 * NCS_WR_PULSE = NWE_CYCLE
1332 	 */
1333 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334 					  ncycles);
1335 	if (ret)
1336 		return ret;
1337 
1338 	/*
1339 	 * As for the write setup timing, the read hold timing depends on the
1340 	 * operation done on the NAND:
1341 	 *
1342 	 * NRD_HOLD = max(tREH, tRHOH)
1343 	 */
1344 	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346 	totalcycles = ncycles;
1347 
1348 	/*
1349 	 * TDF = tRHZ - NRD_HOLD
1350 	 */
1351 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352 	ncycles -= totalcycles;
1353 
1354 	/*
1355 	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356 	 * we might end up with a config that does not fit in the TDF field.
1357 	 * Just take the max value in this case and hope that the NAND is more
1358 	 * tolerant than advertised.
1359 	 */
1360 	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361 		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362 	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363 		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364 
1365 	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366 			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367 
1368 	/*
1369 	 * Read pulse timing directly matches tRP:
1370 	 *
1371 	 * NRD_PULSE = tRP
1372 	 */
1373 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1374 	totalcycles += ncycles;
1375 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1376 					  ncycles);
1377 	if (ret)
1378 		return ret;
1379 
1380 	/*
1381 	 * The write cycle timing is directly matching tWC, but is also
1382 	 * dependent on the setup and hold timings we calculated earlier,
1383 	 * which gives:
1384 	 *
1385 	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1386 	 *
1387 	 * NRD_SETUP is always 0.
1388 	 */
1389 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1390 	ncycles = max(totalcycles, ncycles);
1391 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1392 					  ncycles);
1393 	if (ret)
1394 		return ret;
1395 
1396 	/*
1397 	 * We don't want the CS line to be toggled between each byte/word
1398 	 * transfer from the NAND. The only way to guarantee that is to have
1399 	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1400 	 *
1401 	 * NCS_RD_PULSE = NRD_CYCLE
1402 	 */
1403 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1404 					  ncycles);
1405 	if (ret)
1406 		return ret;
1407 
1408 	/* Txxx timings are directly matching tXXX ones. */
1409 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1410 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1411 					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1412 					   ncycles);
1413 	if (ret)
1414 		return ret;
1415 
1416 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1417 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1418 					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1419 					   ncycles);
1420 	/*
1421 	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1422 	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1423 	 * fit in the tADL field of the SMC reg. We need to relax the check and
1424 	 * accept the -ERANGE return code.
1425 	 *
1426 	 * Note that previous versions of the ONFI spec had a lower tADL_min
1427 	 * (100 or 200 ns). It's not clear why this timing constraint got
1428 	 * increased but it seems most NANDs are fine with values lower than
1429 	 * 400ns, so we should be safe.
1430 	 */
1431 	if (ret && ret != -ERANGE)
1432 		return ret;
1433 
1434 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1435 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1436 					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1437 					   ncycles);
1438 	if (ret)
1439 		return ret;
1440 
1441 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1442 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1443 					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1444 					   ncycles);
1445 	if (ret)
1446 		return ret;
1447 
1448 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1449 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1450 					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1451 					   ncycles);
1452 	if (ret)
1453 		return ret;
1454 
1455 	/* Attach the CS line to the NFC logic. */
1456 	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1457 
1458 	/* Set the appropriate data bus width. */
1459 	if (nand->base.options & NAND_BUSWIDTH_16)
1460 		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1461 
1462 	/* Operate in NRD/NWE READ/WRITEMODE. */
1463 	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1464 			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1465 
1466 	return 0;
1467 }
1468 
1469 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1470 					int csline,
1471 					const struct nand_interface_config *conf)
1472 {
1473 	struct atmel_nand_controller *nc;
1474 	struct atmel_smc_cs_conf smcconf;
1475 	struct atmel_nand_cs *cs;
1476 	int ret;
1477 
1478 	nc = to_nand_controller(nand->base.controller);
1479 
1480 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1481 	if (ret)
1482 		return ret;
1483 
1484 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1485 		return 0;
1486 
1487 	cs = &nand->cs[csline];
1488 	cs->smcconf = smcconf;
1489 	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1490 
1491 	return 0;
1492 }
1493 
1494 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1495 					int csline,
1496 					const struct nand_interface_config *conf)
1497 {
1498 	struct atmel_hsmc_nand_controller *nc;
1499 	struct atmel_smc_cs_conf smcconf;
1500 	struct atmel_nand_cs *cs;
1501 	int ret;
1502 
1503 	nc = to_hsmc_nand_controller(nand->base.controller);
1504 
1505 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1506 	if (ret)
1507 		return ret;
1508 
1509 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1510 		return 0;
1511 
1512 	cs = &nand->cs[csline];
1513 	cs->smcconf = smcconf;
1514 
1515 	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1516 		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1517 
1518 	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1519 				 &cs->smcconf);
1520 
1521 	return 0;
1522 }
1523 
1524 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1525 				      const struct nand_interface_config *conf)
1526 {
1527 	struct atmel_nand *nand = to_atmel_nand(chip);
1528 	const struct nand_sdr_timings *sdr;
1529 	struct atmel_nand_controller *nc;
1530 
1531 	sdr = nand_get_sdr_timings(conf);
1532 	if (IS_ERR(sdr))
1533 		return PTR_ERR(sdr);
1534 
1535 	nc = to_nand_controller(nand->base.controller);
1536 
1537 	if (csline >= nand->numcs ||
1538 	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1539 		return -EINVAL;
1540 
1541 	return nc->caps->ops->setup_interface(nand, csline, conf);
1542 }
1543 
1544 static int atmel_nand_exec_op(struct nand_chip *chip,
1545 			      const struct nand_operation *op,
1546 			      bool check_only)
1547 {
1548 	struct atmel_nand *nand = to_atmel_nand(chip);
1549 	struct atmel_nand_controller *nc;
1550 
1551 	nc = to_nand_controller(nand->base.controller);
1552 
1553 	return nc->caps->ops->exec_op(nand, op, check_only);
1554 }
1555 
1556 static void atmel_nand_init(struct atmel_nand_controller *nc,
1557 			    struct atmel_nand *nand)
1558 {
1559 	struct nand_chip *chip = &nand->base;
1560 	struct mtd_info *mtd = nand_to_mtd(chip);
1561 
1562 	mtd->dev.parent = nc->dev;
1563 	nand->base.controller = &nc->base;
1564 
1565 	if (!nc->mck || !nc->caps->ops->setup_interface)
1566 		chip->options |= NAND_KEEP_TIMINGS;
1567 
1568 	/*
1569 	 * Use a bounce buffer when the buffer passed by the MTD user is not
1570 	 * suitable for DMA.
1571 	 */
1572 	if (nc->dmac)
1573 		chip->options |= NAND_USES_DMA;
1574 
1575 	/* Default to HW ECC if pmecc is available. */
1576 	if (nc->pmecc)
1577 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1578 }
1579 
1580 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1581 				struct atmel_nand *nand)
1582 {
1583 	struct nand_chip *chip = &nand->base;
1584 	struct atmel_smc_nand_controller *smc_nc;
1585 	int i;
1586 
1587 	atmel_nand_init(nc, nand);
1588 
1589 	smc_nc = to_smc_nand_controller(chip->controller);
1590 	if (!smc_nc->ebi_csa_regmap)
1591 		return;
1592 
1593 	/* Attach the CS to the NAND Flash logic. */
1594 	for (i = 0; i < nand->numcs; i++)
1595 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1596 				   smc_nc->ebi_csa->offs,
1597 				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1598 
1599 	if (smc_nc->ebi_csa->nfd0_on_d16)
1600 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1601 				   smc_nc->ebi_csa->offs,
1602 				   smc_nc->ebi_csa->nfd0_on_d16,
1603 				   smc_nc->ebi_csa->nfd0_on_d16);
1604 }
1605 
1606 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1607 {
1608 	struct nand_chip *chip = &nand->base;
1609 	struct mtd_info *mtd = nand_to_mtd(chip);
1610 	int ret;
1611 
1612 	ret = mtd_device_unregister(mtd);
1613 	if (ret)
1614 		return ret;
1615 
1616 	nand_cleanup(chip);
1617 	list_del(&nand->node);
1618 
1619 	return 0;
1620 }
1621 
1622 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1623 					    struct device_node *np,
1624 					    int reg_cells)
1625 {
1626 	struct atmel_nand *nand;
1627 	struct gpio_desc *gpio;
1628 	int numcs, ret, i;
1629 
1630 	numcs = of_property_count_elems_of_size(np, "reg",
1631 						reg_cells * sizeof(u32));
1632 	if (numcs < 1) {
1633 		dev_err(nc->dev, "Missing or invalid reg property\n");
1634 		return ERR_PTR(-EINVAL);
1635 	}
1636 
1637 	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1638 	if (!nand)
1639 		return ERR_PTR(-ENOMEM);
1640 
1641 	nand->numcs = numcs;
1642 
1643 	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1644 				     "det", GPIOD_IN, "nand-det");
1645 	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1646 		dev_err(nc->dev,
1647 			"Failed to get detect gpio (err = %ld)\n",
1648 			PTR_ERR(gpio));
1649 		return ERR_CAST(gpio);
1650 	}
1651 
1652 	if (!IS_ERR(gpio))
1653 		nand->cdgpio = gpio;
1654 
1655 	for (i = 0; i < numcs; i++) {
1656 		struct resource res;
1657 		u32 val;
1658 
1659 		ret = of_address_to_resource(np, 0, &res);
1660 		if (ret) {
1661 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1662 				ret);
1663 			return ERR_PTR(ret);
1664 		}
1665 
1666 		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1667 						 &val);
1668 		if (ret) {
1669 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1670 				ret);
1671 			return ERR_PTR(ret);
1672 		}
1673 
1674 		nand->cs[i].id = val;
1675 
1676 		nand->cs[i].io.dma = res.start;
1677 		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1678 		if (IS_ERR(nand->cs[i].io.virt))
1679 			return ERR_CAST(nand->cs[i].io.virt);
1680 
1681 		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1682 			if (val > ATMEL_NFC_MAX_RB_ID)
1683 				return ERR_PTR(-EINVAL);
1684 
1685 			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1686 			nand->cs[i].rb.id = val;
1687 		} else {
1688 			gpio = devm_fwnode_gpiod_get_index(nc->dev,
1689 							   of_fwnode_handle(np),
1690 							   "rb", i, GPIOD_IN,
1691 							   "nand-rb");
1692 			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1693 				dev_err(nc->dev,
1694 					"Failed to get R/B gpio (err = %ld)\n",
1695 					PTR_ERR(gpio));
1696 				return ERR_CAST(gpio);
1697 			}
1698 
1699 			if (!IS_ERR(gpio)) {
1700 				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1701 				nand->cs[i].rb.gpio = gpio;
1702 			}
1703 		}
1704 
1705 		gpio = devm_fwnode_gpiod_get_index(nc->dev,
1706 						   of_fwnode_handle(np),
1707 						   "cs", i, GPIOD_OUT_HIGH,
1708 						   "nand-cs");
1709 		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1710 			dev_err(nc->dev,
1711 				"Failed to get CS gpio (err = %ld)\n",
1712 				PTR_ERR(gpio));
1713 			return ERR_CAST(gpio);
1714 		}
1715 
1716 		if (!IS_ERR(gpio))
1717 			nand->cs[i].csgpio = gpio;
1718 	}
1719 
1720 	nand_set_flash_node(&nand->base, np);
1721 
1722 	return nand;
1723 }
1724 
1725 static int
1726 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1727 			       struct atmel_nand *nand)
1728 {
1729 	struct nand_chip *chip = &nand->base;
1730 	struct mtd_info *mtd = nand_to_mtd(chip);
1731 	int ret;
1732 
1733 	/* No card inserted, skip this NAND. */
1734 	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1735 		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1736 		return 0;
1737 	}
1738 
1739 	nc->caps->ops->nand_init(nc, nand);
1740 
1741 	ret = nand_scan(chip, nand->numcs);
1742 	if (ret) {
1743 		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1744 		return ret;
1745 	}
1746 
1747 	ret = mtd_device_register(mtd, NULL, 0);
1748 	if (ret) {
1749 		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1750 		nand_cleanup(chip);
1751 		return ret;
1752 	}
1753 
1754 	list_add_tail(&nand->node, &nc->chips);
1755 
1756 	return 0;
1757 }
1758 
1759 static int
1760 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1761 {
1762 	struct atmel_nand *nand, *tmp;
1763 	int ret;
1764 
1765 	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1766 		ret = atmel_nand_controller_remove_nand(nand);
1767 		if (ret)
1768 			return ret;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static int
1775 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1776 {
1777 	struct device *dev = nc->dev;
1778 	struct platform_device *pdev = to_platform_device(dev);
1779 	struct atmel_nand *nand;
1780 	struct gpio_desc *gpio;
1781 	struct resource *res;
1782 
1783 	/*
1784 	 * Legacy bindings only allow connecting a single NAND with a unique CS
1785 	 * line to the controller.
1786 	 */
1787 	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1788 			    GFP_KERNEL);
1789 	if (!nand)
1790 		return -ENOMEM;
1791 
1792 	nand->numcs = 1;
1793 
1794 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1795 	nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1796 	if (IS_ERR(nand->cs[0].io.virt))
1797 		return PTR_ERR(nand->cs[0].io.virt);
1798 
1799 	nand->cs[0].io.dma = res->start;
1800 
1801 	/*
1802 	 * The old driver was hardcoding the CS id to 3 for all sama5
1803 	 * controllers. Since this id is only meaningful for the sama5
1804 	 * controller we can safely assign this id to 3 no matter the
1805 	 * controller.
1806 	 * If one wants to connect a NAND to a different CS line, he will
1807 	 * have to use the new bindings.
1808 	 */
1809 	nand->cs[0].id = 3;
1810 
1811 	/* R/B GPIO. */
1812 	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1813 	if (IS_ERR(gpio)) {
1814 		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1815 			PTR_ERR(gpio));
1816 		return PTR_ERR(gpio);
1817 	}
1818 
1819 	if (gpio) {
1820 		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1821 		nand->cs[0].rb.gpio = gpio;
1822 	}
1823 
1824 	/* CS GPIO. */
1825 	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1826 	if (IS_ERR(gpio)) {
1827 		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1828 			PTR_ERR(gpio));
1829 		return PTR_ERR(gpio);
1830 	}
1831 
1832 	nand->cs[0].csgpio = gpio;
1833 
1834 	/* Card detect GPIO. */
1835 	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1836 	if (IS_ERR(gpio)) {
1837 		dev_err(dev,
1838 			"Failed to get detect gpio (err = %ld)\n",
1839 			PTR_ERR(gpio));
1840 		return PTR_ERR(gpio);
1841 	}
1842 
1843 	nand->cdgpio = gpio;
1844 
1845 	nand_set_flash_node(&nand->base, nc->dev->of_node);
1846 
1847 	return atmel_nand_controller_add_nand(nc, nand);
1848 }
1849 
1850 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1851 {
1852 	struct device_node *np, *nand_np;
1853 	struct device *dev = nc->dev;
1854 	int ret, reg_cells;
1855 	u32 val;
1856 
1857 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1858 	if (nc->caps->legacy_of_bindings)
1859 		return atmel_nand_controller_legacy_add_nands(nc);
1860 
1861 	np = dev->of_node;
1862 
1863 	ret = of_property_read_u32(np, "#address-cells", &val);
1864 	if (ret) {
1865 		dev_err(dev, "missing #address-cells property\n");
1866 		return ret;
1867 	}
1868 
1869 	reg_cells = val;
1870 
1871 	ret = of_property_read_u32(np, "#size-cells", &val);
1872 	if (ret) {
1873 		dev_err(dev, "missing #size-cells property\n");
1874 		return ret;
1875 	}
1876 
1877 	reg_cells += val;
1878 
1879 	for_each_child_of_node(np, nand_np) {
1880 		struct atmel_nand *nand;
1881 
1882 		nand = atmel_nand_create(nc, nand_np, reg_cells);
1883 		if (IS_ERR(nand)) {
1884 			ret = PTR_ERR(nand);
1885 			goto err;
1886 		}
1887 
1888 		ret = atmel_nand_controller_add_nand(nc, nand);
1889 		if (ret)
1890 			goto err;
1891 	}
1892 
1893 	return 0;
1894 
1895 err:
1896 	atmel_nand_controller_remove_nands(nc);
1897 
1898 	return ret;
1899 }
1900 
1901 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1902 {
1903 	if (nc->dmac)
1904 		dma_release_channel(nc->dmac);
1905 
1906 	clk_put(nc->mck);
1907 }
1908 
1909 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1910 	.offs = AT91SAM9260_MATRIX_EBICSA,
1911 };
1912 
1913 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1914 	.offs = AT91SAM9261_MATRIX_EBICSA,
1915 };
1916 
1917 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1918 	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1919 };
1920 
1921 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1922 	.offs = AT91SAM9RL_MATRIX_EBICSA,
1923 };
1924 
1925 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1926 	.offs = AT91SAM9G45_MATRIX_EBICSA,
1927 };
1928 
1929 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1930 	.offs = AT91SAM9N12_MATRIX_EBICSA,
1931 };
1932 
1933 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1934 	.offs = AT91SAM9X5_MATRIX_EBICSA,
1935 };
1936 
1937 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1938 	.offs = AT91_SFR_CCFG_EBICSA,
1939 	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1940 };
1941 
1942 static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
1943 	{
1944 		.compatible = "atmel,at91sam9260-matrix",
1945 		.data = &at91sam9260_ebi_csa,
1946 	},
1947 	{
1948 		.compatible = "atmel,at91sam9261-matrix",
1949 		.data = &at91sam9261_ebi_csa,
1950 	},
1951 	{
1952 		.compatible = "atmel,at91sam9263-matrix",
1953 		.data = &at91sam9263_ebi_csa,
1954 	},
1955 	{
1956 		.compatible = "atmel,at91sam9rl-matrix",
1957 		.data = &at91sam9rl_ebi_csa,
1958 	},
1959 	{
1960 		.compatible = "atmel,at91sam9g45-matrix",
1961 		.data = &at91sam9g45_ebi_csa,
1962 	},
1963 	{
1964 		.compatible = "atmel,at91sam9n12-matrix",
1965 		.data = &at91sam9n12_ebi_csa,
1966 	},
1967 	{
1968 		.compatible = "atmel,at91sam9x5-matrix",
1969 		.data = &at91sam9x5_ebi_csa,
1970 	},
1971 	{
1972 		.compatible = "microchip,sam9x60-sfr",
1973 		.data = &sam9x60_ebi_csa,
1974 	},
1975 	{ /* sentinel */ },
1976 };
1977 
1978 static int atmel_nand_attach_chip(struct nand_chip *chip)
1979 {
1980 	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1981 	struct atmel_nand *nand = to_atmel_nand(chip);
1982 	struct mtd_info *mtd = nand_to_mtd(chip);
1983 	int ret;
1984 
1985 	ret = nc->caps->ops->ecc_init(chip);
1986 	if (ret)
1987 		return ret;
1988 
1989 	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1990 		/*
1991 		 * We keep the MTD name unchanged to avoid breaking platforms
1992 		 * where the MTD cmdline parser is used and the bootloader
1993 		 * has not been updated to use the new naming scheme.
1994 		 */
1995 		mtd->name = "atmel_nand";
1996 	} else if (!mtd->name) {
1997 		/*
1998 		 * If the new bindings are used and the bootloader has not been
1999 		 * updated to pass a new mtdparts parameter on the cmdline, you
2000 		 * should define the following property in your nand node:
2001 		 *
2002 		 *	label = "atmel_nand";
2003 		 *
2004 		 * This way, mtd->name will be set by the core when
2005 		 * nand_set_flash_node() is called.
2006 		 */
2007 		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2008 					   "%s:nand.%d", dev_name(nc->dev),
2009 					   nand->cs[0].id);
2010 		if (!mtd->name) {
2011 			dev_err(nc->dev, "Failed to allocate mtd->name\n");
2012 			return -ENOMEM;
2013 		}
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static const struct nand_controller_ops atmel_nand_controller_ops = {
2020 	.attach_chip = atmel_nand_attach_chip,
2021 	.setup_interface = atmel_nand_setup_interface,
2022 	.exec_op = atmel_nand_exec_op,
2023 };
2024 
2025 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2026 				struct platform_device *pdev,
2027 				const struct atmel_nand_controller_caps *caps)
2028 {
2029 	struct device *dev = &pdev->dev;
2030 	struct device_node *np = dev->of_node;
2031 	int ret;
2032 
2033 	nand_controller_init(&nc->base);
2034 	nc->base.ops = &atmel_nand_controller_ops;
2035 	INIT_LIST_HEAD(&nc->chips);
2036 	nc->dev = dev;
2037 	nc->caps = caps;
2038 
2039 	platform_set_drvdata(pdev, nc);
2040 
2041 	nc->pmecc = devm_atmel_pmecc_get(dev);
2042 	if (IS_ERR(nc->pmecc))
2043 		return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2044 				     "Could not get PMECC object\n");
2045 
2046 	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2047 		dma_cap_mask_t mask;
2048 
2049 		dma_cap_zero(mask);
2050 		dma_cap_set(DMA_MEMCPY, mask);
2051 
2052 		nc->dmac = dma_request_channel(mask, NULL, NULL);
2053 		if (!nc->dmac)
2054 			dev_err(nc->dev, "Failed to request DMA channel\n");
2055 	}
2056 
2057 	/* We do not retrieve the SMC syscon when parsing old DTs. */
2058 	if (nc->caps->legacy_of_bindings)
2059 		return 0;
2060 
2061 	nc->mck = of_clk_get(dev->parent->of_node, 0);
2062 	if (IS_ERR(nc->mck)) {
2063 		dev_err(dev, "Failed to retrieve MCK clk\n");
2064 		ret = PTR_ERR(nc->mck);
2065 		goto out_release_dma;
2066 	}
2067 
2068 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2069 	if (!np) {
2070 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2071 		ret = -EINVAL;
2072 		goto out_release_dma;
2073 	}
2074 
2075 	nc->smc = syscon_node_to_regmap(np);
2076 	of_node_put(np);
2077 	if (IS_ERR(nc->smc)) {
2078 		ret = PTR_ERR(nc->smc);
2079 		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2080 		goto out_release_dma;
2081 	}
2082 
2083 	return 0;
2084 
2085 out_release_dma:
2086 	if (nc->dmac)
2087 		dma_release_channel(nc->dmac);
2088 
2089 	return ret;
2090 }
2091 
2092 static int
2093 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2094 {
2095 	struct device *dev = nc->base.dev;
2096 	const struct of_device_id *match;
2097 	struct device_node *np;
2098 	int ret;
2099 
2100 	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
2101 	if (nc->base.caps->legacy_of_bindings)
2102 		return 0;
2103 
2104 	np = of_parse_phandle(dev->parent->of_node,
2105 			      nc->base.caps->ebi_csa_regmap_name, 0);
2106 	if (!np)
2107 		return 0;
2108 
2109 	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2110 	if (!match) {
2111 		of_node_put(np);
2112 		return 0;
2113 	}
2114 
2115 	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2116 	of_node_put(np);
2117 	if (IS_ERR(nc->ebi_csa_regmap)) {
2118 		ret = PTR_ERR(nc->ebi_csa_regmap);
2119 		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2120 		return ret;
2121 	}
2122 
2123 	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2124 
2125 	/*
2126 	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2127 	 * add 4 to ->ebi_csa->offs.
2128 	 */
2129 	if (of_device_is_compatible(dev->parent->of_node,
2130 				    "atmel,at91sam9263-ebi1"))
2131 		nc->ebi_csa->offs += 4;
2132 
2133 	return 0;
2134 }
2135 
2136 static int
2137 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2138 {
2139 	struct regmap_config regmap_conf = {
2140 		.reg_bits = 32,
2141 		.val_bits = 32,
2142 		.reg_stride = 4,
2143 	};
2144 
2145 	struct device *dev = nc->base.dev;
2146 	struct device_node *nand_np, *nfc_np;
2147 	void __iomem *iomem;
2148 	struct resource res;
2149 	int ret;
2150 
2151 	nand_np = dev->of_node;
2152 	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2153 	if (!nfc_np) {
2154 		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2155 		return -ENODEV;
2156 	}
2157 
2158 	nc->clk = of_clk_get(nfc_np, 0);
2159 	if (IS_ERR(nc->clk)) {
2160 		ret = PTR_ERR(nc->clk);
2161 		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2162 			ret);
2163 		goto out;
2164 	}
2165 
2166 	ret = clk_prepare_enable(nc->clk);
2167 	if (ret) {
2168 		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2169 			ret);
2170 		goto out;
2171 	}
2172 
2173 	nc->irq = of_irq_get(nand_np, 0);
2174 	if (nc->irq <= 0) {
2175 		ret = nc->irq ?: -ENXIO;
2176 		if (ret != -EPROBE_DEFER)
2177 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2178 				ret);
2179 		goto out;
2180 	}
2181 
2182 	ret = of_address_to_resource(nfc_np, 0, &res);
2183 	if (ret) {
2184 		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2185 			ret);
2186 		goto out;
2187 	}
2188 
2189 	iomem = devm_ioremap_resource(dev, &res);
2190 	if (IS_ERR(iomem)) {
2191 		ret = PTR_ERR(iomem);
2192 		goto out;
2193 	}
2194 
2195 	regmap_conf.name = "nfc-io";
2196 	regmap_conf.max_register = resource_size(&res) - 4;
2197 	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2198 	if (IS_ERR(nc->io)) {
2199 		ret = PTR_ERR(nc->io);
2200 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2201 			ret);
2202 		goto out;
2203 	}
2204 
2205 	ret = of_address_to_resource(nfc_np, 1, &res);
2206 	if (ret) {
2207 		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2208 			ret);
2209 		goto out;
2210 	}
2211 
2212 	iomem = devm_ioremap_resource(dev, &res);
2213 	if (IS_ERR(iomem)) {
2214 		ret = PTR_ERR(iomem);
2215 		goto out;
2216 	}
2217 
2218 	regmap_conf.name = "smc";
2219 	regmap_conf.max_register = resource_size(&res) - 4;
2220 	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2221 	if (IS_ERR(nc->base.smc)) {
2222 		ret = PTR_ERR(nc->base.smc);
2223 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2224 			ret);
2225 		goto out;
2226 	}
2227 
2228 	ret = of_address_to_resource(nfc_np, 2, &res);
2229 	if (ret) {
2230 		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2231 			ret);
2232 		goto out;
2233 	}
2234 
2235 	nc->sram.virt = devm_ioremap_resource(dev, &res);
2236 	if (IS_ERR(nc->sram.virt)) {
2237 		ret = PTR_ERR(nc->sram.virt);
2238 		goto out;
2239 	}
2240 
2241 	nc->sram.dma = res.start;
2242 
2243 out:
2244 	of_node_put(nfc_np);
2245 
2246 	return ret;
2247 }
2248 
2249 static int
2250 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2251 {
2252 	struct device *dev = nc->base.dev;
2253 	struct device_node *np;
2254 	int ret;
2255 
2256 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2257 	if (!np) {
2258 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2259 		return -EINVAL;
2260 	}
2261 
2262 	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2263 
2264 	nc->irq = of_irq_get(np, 0);
2265 	of_node_put(np);
2266 	if (nc->irq <= 0) {
2267 		ret = nc->irq ?: -ENXIO;
2268 		if (ret != -EPROBE_DEFER)
2269 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2270 				ret);
2271 		return ret;
2272 	}
2273 
2274 	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2275 	if (!np) {
2276 		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2277 		return -EINVAL;
2278 	}
2279 
2280 	nc->io = syscon_node_to_regmap(np);
2281 	of_node_put(np);
2282 	if (IS_ERR(nc->io)) {
2283 		ret = PTR_ERR(nc->io);
2284 		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2285 		return ret;
2286 	}
2287 
2288 	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2289 					 "atmel,nfc-sram", 0);
2290 	if (!nc->sram.pool) {
2291 		dev_err(nc->base.dev, "Missing SRAM\n");
2292 		return -ENOMEM;
2293 	}
2294 
2295 	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2296 							   ATMEL_NFC_SRAM_SIZE,
2297 							   &nc->sram.dma);
2298 	if (!nc->sram.virt) {
2299 		dev_err(nc->base.dev,
2300 			"Could not allocate memory from the NFC SRAM pool\n");
2301 		return -ENOMEM;
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 static int
2308 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2309 {
2310 	struct atmel_hsmc_nand_controller *hsmc_nc;
2311 	int ret;
2312 
2313 	ret = atmel_nand_controller_remove_nands(nc);
2314 	if (ret)
2315 		return ret;
2316 
2317 	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2318 	regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2319 		     ATMEL_HSMC_NFC_CTRL_DIS);
2320 
2321 	if (hsmc_nc->sram.pool)
2322 		gen_pool_free(hsmc_nc->sram.pool,
2323 			      (unsigned long)hsmc_nc->sram.virt,
2324 			      ATMEL_NFC_SRAM_SIZE);
2325 
2326 	if (hsmc_nc->clk) {
2327 		clk_disable_unprepare(hsmc_nc->clk);
2328 		clk_put(hsmc_nc->clk);
2329 	}
2330 
2331 	atmel_nand_controller_cleanup(nc);
2332 
2333 	return 0;
2334 }
2335 
2336 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2337 				const struct atmel_nand_controller_caps *caps)
2338 {
2339 	struct device *dev = &pdev->dev;
2340 	struct atmel_hsmc_nand_controller *nc;
2341 	int ret;
2342 
2343 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2344 	if (!nc)
2345 		return -ENOMEM;
2346 
2347 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2348 	if (ret)
2349 		return ret;
2350 
2351 	if (caps->legacy_of_bindings)
2352 		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2353 	else
2354 		ret = atmel_hsmc_nand_controller_init(nc);
2355 
2356 	if (ret)
2357 		return ret;
2358 
2359 	/* Make sure all irqs are masked before registering our IRQ handler. */
2360 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2361 	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2362 			       IRQF_SHARED, "nfc", nc);
2363 	if (ret) {
2364 		dev_err(dev,
2365 			"Could not get register NFC interrupt handler (err = %d)\n",
2366 			ret);
2367 		goto err;
2368 	}
2369 
2370 	/* Initial NFC configuration. */
2371 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2372 		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2373 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2374 		     ATMEL_HSMC_NFC_CTRL_EN);
2375 
2376 	ret = atmel_nand_controller_add_nands(&nc->base);
2377 	if (ret)
2378 		goto err;
2379 
2380 	return 0;
2381 
2382 err:
2383 	atmel_hsmc_nand_controller_remove(&nc->base);
2384 
2385 	return ret;
2386 }
2387 
2388 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2389 	.probe = atmel_hsmc_nand_controller_probe,
2390 	.remove = atmel_hsmc_nand_controller_remove,
2391 	.ecc_init = atmel_hsmc_nand_ecc_init,
2392 	.nand_init = atmel_nand_init,
2393 	.setup_interface = atmel_hsmc_nand_setup_interface,
2394 	.exec_op = atmel_hsmc_nand_exec_op,
2395 };
2396 
2397 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2398 	.has_dma = true,
2399 	.ale_offs = BIT(21),
2400 	.cle_offs = BIT(22),
2401 	.ops = &atmel_hsmc_nc_ops,
2402 };
2403 
2404 /* Only used to parse old bindings. */
2405 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2406 	.has_dma = true,
2407 	.ale_offs = BIT(21),
2408 	.cle_offs = BIT(22),
2409 	.ops = &atmel_hsmc_nc_ops,
2410 	.legacy_of_bindings = true,
2411 };
2412 
2413 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2414 				const struct atmel_nand_controller_caps *caps)
2415 {
2416 	struct device *dev = &pdev->dev;
2417 	struct atmel_smc_nand_controller *nc;
2418 	int ret;
2419 
2420 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2421 	if (!nc)
2422 		return -ENOMEM;
2423 
2424 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2425 	if (ret)
2426 		return ret;
2427 
2428 	ret = atmel_smc_nand_controller_init(nc);
2429 	if (ret)
2430 		return ret;
2431 
2432 	return atmel_nand_controller_add_nands(&nc->base);
2433 }
2434 
2435 static int
2436 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2437 {
2438 	int ret;
2439 
2440 	ret = atmel_nand_controller_remove_nands(nc);
2441 	if (ret)
2442 		return ret;
2443 
2444 	atmel_nand_controller_cleanup(nc);
2445 
2446 	return 0;
2447 }
2448 
2449 /*
2450  * The SMC reg layout of at91rm9200 is completely different which prevents us
2451  * from re-using atmel_smc_nand_setup_interface() for the
2452  * ->setup_interface() hook.
2453  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2454  * ->setup_interface() unassigned.
2455  */
2456 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2457 	.probe = atmel_smc_nand_controller_probe,
2458 	.remove = atmel_smc_nand_controller_remove,
2459 	.ecc_init = atmel_nand_ecc_init,
2460 	.nand_init = atmel_smc_nand_init,
2461 	.exec_op = atmel_smc_nand_exec_op,
2462 };
2463 
2464 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2465 	.ale_offs = BIT(21),
2466 	.cle_offs = BIT(22),
2467 	.ebi_csa_regmap_name = "atmel,matrix",
2468 	.ops = &at91rm9200_nc_ops,
2469 };
2470 
2471 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2472 	.probe = atmel_smc_nand_controller_probe,
2473 	.remove = atmel_smc_nand_controller_remove,
2474 	.ecc_init = atmel_nand_ecc_init,
2475 	.nand_init = atmel_smc_nand_init,
2476 	.setup_interface = atmel_smc_nand_setup_interface,
2477 	.exec_op = atmel_smc_nand_exec_op,
2478 };
2479 
2480 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2481 	.ale_offs = BIT(21),
2482 	.cle_offs = BIT(22),
2483 	.ebi_csa_regmap_name = "atmel,matrix",
2484 	.ops = &atmel_smc_nc_ops,
2485 };
2486 
2487 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2488 	.ale_offs = BIT(22),
2489 	.cle_offs = BIT(21),
2490 	.ebi_csa_regmap_name = "atmel,matrix",
2491 	.ops = &atmel_smc_nc_ops,
2492 };
2493 
2494 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2495 	.has_dma = true,
2496 	.ale_offs = BIT(21),
2497 	.cle_offs = BIT(22),
2498 	.ebi_csa_regmap_name = "atmel,matrix",
2499 	.ops = &atmel_smc_nc_ops,
2500 };
2501 
2502 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2503 	.has_dma = true,
2504 	.ale_offs = BIT(21),
2505 	.cle_offs = BIT(22),
2506 	.ebi_csa_regmap_name = "microchip,sfr",
2507 	.ops = &atmel_smc_nc_ops,
2508 };
2509 
2510 /* Only used to parse old bindings. */
2511 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2512 	.ale_offs = BIT(21),
2513 	.cle_offs = BIT(22),
2514 	.ops = &atmel_smc_nc_ops,
2515 	.legacy_of_bindings = true,
2516 };
2517 
2518 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2519 	.ale_offs = BIT(22),
2520 	.cle_offs = BIT(21),
2521 	.ops = &atmel_smc_nc_ops,
2522 	.legacy_of_bindings = true,
2523 };
2524 
2525 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2526 	.has_dma = true,
2527 	.ale_offs = BIT(21),
2528 	.cle_offs = BIT(22),
2529 	.ops = &atmel_smc_nc_ops,
2530 	.legacy_of_bindings = true,
2531 };
2532 
2533 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2534 	{
2535 		.compatible = "atmel,at91rm9200-nand-controller",
2536 		.data = &atmel_rm9200_nc_caps,
2537 	},
2538 	{
2539 		.compatible = "atmel,at91sam9260-nand-controller",
2540 		.data = &atmel_sam9260_nc_caps,
2541 	},
2542 	{
2543 		.compatible = "atmel,at91sam9261-nand-controller",
2544 		.data = &atmel_sam9261_nc_caps,
2545 	},
2546 	{
2547 		.compatible = "atmel,at91sam9g45-nand-controller",
2548 		.data = &atmel_sam9g45_nc_caps,
2549 	},
2550 	{
2551 		.compatible = "atmel,sama5d3-nand-controller",
2552 		.data = &atmel_sama5_nc_caps,
2553 	},
2554 	{
2555 		.compatible = "microchip,sam9x60-nand-controller",
2556 		.data = &microchip_sam9x60_nc_caps,
2557 	},
2558 	/* Support for old/deprecated bindings: */
2559 	{
2560 		.compatible = "atmel,at91rm9200-nand",
2561 		.data = &atmel_rm9200_nand_caps,
2562 	},
2563 	{
2564 		.compatible = "atmel,sama5d4-nand",
2565 		.data = &atmel_rm9200_nand_caps,
2566 	},
2567 	{
2568 		.compatible = "atmel,sama5d2-nand",
2569 		.data = &atmel_rm9200_nand_caps,
2570 	},
2571 	{ /* sentinel */ },
2572 };
2573 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2574 
2575 static int atmel_nand_controller_probe(struct platform_device *pdev)
2576 {
2577 	const struct atmel_nand_controller_caps *caps;
2578 
2579 	if (pdev->id_entry)
2580 		caps = (void *)pdev->id_entry->driver_data;
2581 	else
2582 		caps = of_device_get_match_data(&pdev->dev);
2583 
2584 	if (!caps) {
2585 		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2586 		return -EINVAL;
2587 	}
2588 
2589 	if (caps->legacy_of_bindings) {
2590 		struct device_node *nfc_node;
2591 		u32 ale_offs = 21;
2592 
2593 		/*
2594 		 * If we are parsing legacy DT props and the DT contains a
2595 		 * valid NFC node, forward the request to the sama5 logic.
2596 		 */
2597 		nfc_node = of_get_compatible_child(pdev->dev.of_node,
2598 						   "atmel,sama5d3-nfc");
2599 		if (nfc_node) {
2600 			caps = &atmel_sama5_nand_caps;
2601 			of_node_put(nfc_node);
2602 		}
2603 
2604 		/*
2605 		 * Even if the compatible says we are dealing with an
2606 		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2607 		 * this controller supports DMA, which means we are in fact
2608 		 * dealing with an at91sam9g45+ controller.
2609 		 */
2610 		if (!caps->has_dma &&
2611 		    of_property_read_bool(pdev->dev.of_node,
2612 					  "atmel,nand-has-dma"))
2613 			caps = &atmel_sam9g45_nand_caps;
2614 
2615 		/*
2616 		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2617 		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2618 		 * actually dealing with an at91sam9261 controller.
2619 		 */
2620 		of_property_read_u32(pdev->dev.of_node,
2621 				     "atmel,nand-addr-offset", &ale_offs);
2622 		if (ale_offs != 21)
2623 			caps = &atmel_sam9261_nand_caps;
2624 	}
2625 
2626 	return caps->ops->probe(pdev, caps);
2627 }
2628 
2629 static int atmel_nand_controller_remove(struct platform_device *pdev)
2630 {
2631 	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2632 
2633 	WARN_ON(nc->caps->ops->remove(nc));
2634 
2635 	return 0;
2636 }
2637 
2638 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2639 {
2640 	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2641 	struct atmel_nand *nand;
2642 
2643 	if (nc->pmecc)
2644 		atmel_pmecc_reset(nc->pmecc);
2645 
2646 	list_for_each_entry(nand, &nc->chips, node) {
2647 		int i;
2648 
2649 		for (i = 0; i < nand->numcs; i++)
2650 			nand_reset(&nand->base, i);
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2657 			 atmel_nand_controller_resume);
2658 
2659 static struct platform_driver atmel_nand_controller_driver = {
2660 	.driver = {
2661 		.name = "atmel-nand-controller",
2662 		.of_match_table = atmel_nand_controller_of_ids,
2663 		.pm = &atmel_nand_controller_pm_ops,
2664 	},
2665 	.probe = atmel_nand_controller_probe,
2666 	.remove = atmel_nand_controller_remove,
2667 };
2668 module_platform_driver(atmel_nand_controller_driver);
2669 
2670 MODULE_LICENSE("GPL");
2671 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2672 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2673 MODULE_ALIAS("platform:atmel-nand-controller");
2674