xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32 
33 #include "brcmnand.h"
34 
35 /*
36  * This flag controls if WP stays on between erase/write commands to mitigate
37  * flash corruption due to power glitches. Values:
38  * 0: NAND_WP is not used or not available
39  * 1: NAND_WP is set by default, cleared for erase/write operations
40  * 2: NAND_WP is always cleared
41  */
42 static int wp_on = 1;
43 module_param(wp_on, int, 0444);
44 
45 /***********************************************************************
46  * Definitions
47  ***********************************************************************/
48 
49 #define DRV_NAME			"brcmnand"
50 
51 #define CMD_NULL			0x00
52 #define CMD_PAGE_READ			0x01
53 #define CMD_SPARE_AREA_READ		0x02
54 #define CMD_STATUS_READ			0x03
55 #define CMD_PROGRAM_PAGE		0x04
56 #define CMD_PROGRAM_SPARE_AREA		0x05
57 #define CMD_COPY_BACK			0x06
58 #define CMD_DEVICE_ID_READ		0x07
59 #define CMD_BLOCK_ERASE			0x08
60 #define CMD_FLASH_RESET			0x09
61 #define CMD_BLOCKS_LOCK			0x0a
62 #define CMD_BLOCKS_LOCK_DOWN		0x0b
63 #define CMD_BLOCKS_UNLOCK		0x0c
64 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65 #define CMD_PARAMETER_READ		0x0e
66 #define CMD_PARAMETER_CHANGE_COL	0x0f
67 #define CMD_LOW_LEVEL_OP		0x10
68 
69 struct brcm_nand_dma_desc {
70 	u32 next_desc;
71 	u32 next_desc_ext;
72 	u32 cmd_irq;
73 	u32 dram_addr;
74 	u32 dram_addr_ext;
75 	u32 tfr_len;
76 	u32 total_len;
77 	u32 flash_addr;
78 	u32 flash_addr_ext;
79 	u32 cs;
80 	u32 pad2[5];
81 	u32 status_valid;
82 } __packed;
83 
84 /* Bitfields for brcm_nand_dma_desc::status_valid */
85 #define FLASH_DMA_ECC_ERROR	(1 << 8)
86 #define FLASH_DMA_CORR_ERROR	(1 << 9)
87 
88 /* Bitfields for DMA_MODE */
89 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
90 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
91 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
92 						FLASH_DMA_MODE_MODE)
93 
94 /* 512B flash cache in the NAND controller HW */
95 #define FC_SHIFT		9U
96 #define FC_BYTES		512U
97 #define FC_WORDS		(FC_BYTES >> 2)
98 
99 #define BRCMNAND_MIN_PAGESIZE	512
100 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
101 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
102 
103 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
104 #define NAND_POLL_STATUS_TIMEOUT_MS	100
105 
106 #define EDU_CMD_WRITE          0x00
107 #define EDU_CMD_READ           0x01
108 #define EDU_STATUS_ACTIVE      BIT(0)
109 #define EDU_ERR_STATUS_ERRACK  BIT(0)
110 #define EDU_DONE_MASK		GENMASK(1, 0)
111 
112 #define EDU_CONFIG_MODE_NAND   BIT(0)
113 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
116 #else
117 #define EDU_CONFIG_SWAP_CFG     0
118 #endif
119 
120 /* edu registers */
121 enum edu_reg {
122 	EDU_CONFIG = 0,
123 	EDU_DRAM_ADDR,
124 	EDU_EXT_ADDR,
125 	EDU_LENGTH,
126 	EDU_CMD,
127 	EDU_STOP,
128 	EDU_STATUS,
129 	EDU_DONE,
130 	EDU_ERR_STATUS,
131 };
132 
133 static const u16  edu_regs[] = {
134 	[EDU_CONFIG] = 0x00,
135 	[EDU_DRAM_ADDR] = 0x04,
136 	[EDU_EXT_ADDR] = 0x08,
137 	[EDU_LENGTH] = 0x0c,
138 	[EDU_CMD] = 0x10,
139 	[EDU_STOP] = 0x14,
140 	[EDU_STATUS] = 0x18,
141 	[EDU_DONE] = 0x1c,
142 	[EDU_ERR_STATUS] = 0x20,
143 };
144 
145 /* flash_dma registers */
146 enum flash_dma_reg {
147 	FLASH_DMA_REVISION = 0,
148 	FLASH_DMA_FIRST_DESC,
149 	FLASH_DMA_FIRST_DESC_EXT,
150 	FLASH_DMA_CTRL,
151 	FLASH_DMA_MODE,
152 	FLASH_DMA_STATUS,
153 	FLASH_DMA_INTERRUPT_DESC,
154 	FLASH_DMA_INTERRUPT_DESC_EXT,
155 	FLASH_DMA_ERROR_STATUS,
156 	FLASH_DMA_CURRENT_DESC,
157 	FLASH_DMA_CURRENT_DESC_EXT,
158 };
159 
160 /* flash_dma registers v0*/
161 static const u16 flash_dma_regs_v0[] = {
162 	[FLASH_DMA_REVISION]		= 0x00,
163 	[FLASH_DMA_FIRST_DESC]		= 0x04,
164 	[FLASH_DMA_CTRL]		= 0x08,
165 	[FLASH_DMA_MODE]		= 0x0c,
166 	[FLASH_DMA_STATUS]		= 0x10,
167 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
168 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
169 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
170 };
171 
172 /* flash_dma registers v1*/
173 static const u16 flash_dma_regs_v1[] = {
174 	[FLASH_DMA_REVISION]		= 0x00,
175 	[FLASH_DMA_FIRST_DESC]		= 0x04,
176 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
177 	[FLASH_DMA_CTRL]		= 0x0c,
178 	[FLASH_DMA_MODE]		= 0x10,
179 	[FLASH_DMA_STATUS]		= 0x14,
180 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
181 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
182 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
183 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
184 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
185 };
186 
187 /* flash_dma registers v4 */
188 static const u16 flash_dma_regs_v4[] = {
189 	[FLASH_DMA_REVISION]		= 0x00,
190 	[FLASH_DMA_FIRST_DESC]		= 0x08,
191 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
192 	[FLASH_DMA_CTRL]		= 0x10,
193 	[FLASH_DMA_MODE]		= 0x14,
194 	[FLASH_DMA_STATUS]		= 0x18,
195 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
196 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
197 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
198 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
199 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
200 };
201 
202 /* Controller feature flags */
203 enum {
204 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
205 	BRCMNAND_HAS_PREFETCH			= BIT(1),
206 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
207 	BRCMNAND_HAS_WP				= BIT(3),
208 };
209 
210 struct brcmnand_host;
211 
212 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213 
214 struct brcmnand_controller {
215 	struct device		*dev;
216 	struct nand_controller	controller;
217 	void __iomem		*nand_base;
218 	void __iomem		*nand_fc; /* flash cache */
219 	void __iomem		*flash_dma_base;
220 	int			irq;
221 	unsigned int		dma_irq;
222 	int			nand_version;
223 
224 	/* Some SoCs provide custom interrupt status register(s) */
225 	struct brcmnand_soc	*soc;
226 
227 	/* Some SoCs have a gateable clock for the controller */
228 	struct clk		*clk;
229 
230 	int			cmd_pending;
231 	bool			dma_pending;
232 	bool                    edu_pending;
233 	struct completion	done;
234 	struct completion	dma_done;
235 	struct completion       edu_done;
236 
237 	/* List of NAND hosts (one for each chip-select) */
238 	struct list_head host_list;
239 
240 	/* EDU info, per-transaction */
241 	const u16               *edu_offsets;
242 	void __iomem            *edu_base;
243 	int			edu_irq;
244 	int                     edu_count;
245 	u64                     edu_dram_addr;
246 	u32                     edu_ext_addr;
247 	u32                     edu_cmd;
248 	u32                     edu_config;
249 	int			sas; /* spare area size, per flash cache */
250 	int			sector_size_1k;
251 	u8			*oob;
252 
253 	/* flash_dma reg */
254 	const u16		*flash_dma_offsets;
255 	struct brcm_nand_dma_desc *dma_desc;
256 	dma_addr_t		dma_pa;
257 
258 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259 			 u8 *oob, u32 len, u8 dma_cmd);
260 
261 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
262 	u8			flash_cache[FC_BYTES];
263 
264 	/* Controller revision details */
265 	const u16		*reg_offsets;
266 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
267 	const u8		*cs_offsets; /* within each chip-select */
268 	const u8		*cs0_offsets; /* within CS0, if different */
269 	unsigned int		max_block_size;
270 	const unsigned int	*block_sizes;
271 	unsigned int		max_page_size;
272 	const unsigned int	*page_sizes;
273 	unsigned int		page_size_shift;
274 	unsigned int		max_oob;
275 	u32			features;
276 
277 	/* for low-power standby/resume only */
278 	u32			nand_cs_nand_select;
279 	u32			nand_cs_nand_xor;
280 	u32			corr_stat_threshold;
281 	u32			flash_dma_mode;
282 	u32                     flash_edu_mode;
283 	bool			pio_poll_mode;
284 };
285 
286 struct brcmnand_cfg {
287 	u64			device_size;
288 	unsigned int		block_size;
289 	unsigned int		page_size;
290 	unsigned int		spare_area_size;
291 	unsigned int		device_width;
292 	unsigned int		col_adr_bytes;
293 	unsigned int		blk_adr_bytes;
294 	unsigned int		ful_adr_bytes;
295 	unsigned int		sector_size_1k;
296 	unsigned int		ecc_level;
297 	/* use for low-power standby/resume only */
298 	u32			acc_control;
299 	u32			config;
300 	u32			config_ext;
301 	u32			timing_1;
302 	u32			timing_2;
303 };
304 
305 struct brcmnand_host {
306 	struct list_head	node;
307 
308 	struct nand_chip	chip;
309 	struct platform_device	*pdev;
310 	int			cs;
311 
312 	unsigned int		last_cmd;
313 	unsigned int		last_byte;
314 	u64			last_addr;
315 	struct brcmnand_cfg	hwcfg;
316 	struct brcmnand_controller *ctrl;
317 };
318 
319 enum brcmnand_reg {
320 	BRCMNAND_CMD_START = 0,
321 	BRCMNAND_CMD_EXT_ADDRESS,
322 	BRCMNAND_CMD_ADDRESS,
323 	BRCMNAND_INTFC_STATUS,
324 	BRCMNAND_CS_SELECT,
325 	BRCMNAND_CS_XOR,
326 	BRCMNAND_LL_OP,
327 	BRCMNAND_CS0_BASE,
328 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
329 	BRCMNAND_CORR_THRESHOLD,
330 	BRCMNAND_CORR_THRESHOLD_EXT,
331 	BRCMNAND_UNCORR_COUNT,
332 	BRCMNAND_CORR_COUNT,
333 	BRCMNAND_CORR_EXT_ADDR,
334 	BRCMNAND_CORR_ADDR,
335 	BRCMNAND_UNCORR_EXT_ADDR,
336 	BRCMNAND_UNCORR_ADDR,
337 	BRCMNAND_SEMAPHORE,
338 	BRCMNAND_ID,
339 	BRCMNAND_ID_EXT,
340 	BRCMNAND_LL_RDATA,
341 	BRCMNAND_OOB_READ_BASE,
342 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
343 	BRCMNAND_OOB_WRITE_BASE,
344 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
345 	BRCMNAND_FC_BASE,
346 };
347 
348 /* BRCMNAND v2.1-v2.2 */
349 static const u16 brcmnand_regs_v21[] = {
350 	[BRCMNAND_CMD_START]		=  0x04,
351 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
352 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
353 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
354 	[BRCMNAND_CS_SELECT]		=  0x14,
355 	[BRCMNAND_CS_XOR]		=  0x18,
356 	[BRCMNAND_LL_OP]		=     0,
357 	[BRCMNAND_CS0_BASE]		=  0x40,
358 	[BRCMNAND_CS1_BASE]		=     0,
359 	[BRCMNAND_CORR_THRESHOLD]	=     0,
360 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
361 	[BRCMNAND_UNCORR_COUNT]		=     0,
362 	[BRCMNAND_CORR_COUNT]		=     0,
363 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
364 	[BRCMNAND_CORR_ADDR]		=  0x64,
365 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
366 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
367 	[BRCMNAND_SEMAPHORE]		=  0x50,
368 	[BRCMNAND_ID]			=  0x54,
369 	[BRCMNAND_ID_EXT]		=     0,
370 	[BRCMNAND_LL_RDATA]		=     0,
371 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
372 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
373 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
374 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
375 	[BRCMNAND_FC_BASE]		= 0x200,
376 };
377 
378 /* BRCMNAND v3.3-v4.0 */
379 static const u16 brcmnand_regs_v33[] = {
380 	[BRCMNAND_CMD_START]		=  0x04,
381 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
382 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
383 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
384 	[BRCMNAND_CS_SELECT]		=  0x14,
385 	[BRCMNAND_CS_XOR]		=  0x18,
386 	[BRCMNAND_LL_OP]		= 0x178,
387 	[BRCMNAND_CS0_BASE]		=  0x40,
388 	[BRCMNAND_CS1_BASE]		=  0xd0,
389 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
390 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
391 	[BRCMNAND_UNCORR_COUNT]		=     0,
392 	[BRCMNAND_CORR_COUNT]		=     0,
393 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
394 	[BRCMNAND_CORR_ADDR]		=  0x74,
395 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
396 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
397 	[BRCMNAND_SEMAPHORE]		=  0x58,
398 	[BRCMNAND_ID]			=  0x60,
399 	[BRCMNAND_ID_EXT]		=  0x64,
400 	[BRCMNAND_LL_RDATA]		= 0x17c,
401 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
402 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
403 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
404 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
405 	[BRCMNAND_FC_BASE]		= 0x200,
406 };
407 
408 /* BRCMNAND v5.0 */
409 static const u16 brcmnand_regs_v50[] = {
410 	[BRCMNAND_CMD_START]		=  0x04,
411 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
412 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
413 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
414 	[BRCMNAND_CS_SELECT]		=  0x14,
415 	[BRCMNAND_CS_XOR]		=  0x18,
416 	[BRCMNAND_LL_OP]		= 0x178,
417 	[BRCMNAND_CS0_BASE]		=  0x40,
418 	[BRCMNAND_CS1_BASE]		=  0xd0,
419 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
420 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
421 	[BRCMNAND_UNCORR_COUNT]		=     0,
422 	[BRCMNAND_CORR_COUNT]		=     0,
423 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
424 	[BRCMNAND_CORR_ADDR]		=  0x74,
425 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
426 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
427 	[BRCMNAND_SEMAPHORE]		=  0x58,
428 	[BRCMNAND_ID]			=  0x60,
429 	[BRCMNAND_ID_EXT]		=  0x64,
430 	[BRCMNAND_LL_RDATA]		= 0x17c,
431 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
432 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
433 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
434 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
435 	[BRCMNAND_FC_BASE]		= 0x200,
436 };
437 
438 /* BRCMNAND v6.0 - v7.1 */
439 static const u16 brcmnand_regs_v60[] = {
440 	[BRCMNAND_CMD_START]		=  0x04,
441 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
442 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
443 	[BRCMNAND_INTFC_STATUS]		=  0x14,
444 	[BRCMNAND_CS_SELECT]		=  0x18,
445 	[BRCMNAND_CS_XOR]		=  0x1c,
446 	[BRCMNAND_LL_OP]		=  0x20,
447 	[BRCMNAND_CS0_BASE]		=  0x50,
448 	[BRCMNAND_CS1_BASE]		=     0,
449 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
450 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
451 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
452 	[BRCMNAND_CORR_COUNT]		= 0x100,
453 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
454 	[BRCMNAND_CORR_ADDR]		= 0x110,
455 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
456 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
457 	[BRCMNAND_SEMAPHORE]		= 0x150,
458 	[BRCMNAND_ID]			= 0x194,
459 	[BRCMNAND_ID_EXT]		= 0x198,
460 	[BRCMNAND_LL_RDATA]		= 0x19c,
461 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
462 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
463 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
464 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
465 	[BRCMNAND_FC_BASE]		= 0x400,
466 };
467 
468 /* BRCMNAND v7.1 */
469 static const u16 brcmnand_regs_v71[] = {
470 	[BRCMNAND_CMD_START]		=  0x04,
471 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
472 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
473 	[BRCMNAND_INTFC_STATUS]		=  0x14,
474 	[BRCMNAND_CS_SELECT]		=  0x18,
475 	[BRCMNAND_CS_XOR]		=  0x1c,
476 	[BRCMNAND_LL_OP]		=  0x20,
477 	[BRCMNAND_CS0_BASE]		=  0x50,
478 	[BRCMNAND_CS1_BASE]		=     0,
479 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
480 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
481 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
482 	[BRCMNAND_CORR_COUNT]		= 0x100,
483 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
484 	[BRCMNAND_CORR_ADDR]		= 0x110,
485 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
486 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
487 	[BRCMNAND_SEMAPHORE]		= 0x150,
488 	[BRCMNAND_ID]			= 0x194,
489 	[BRCMNAND_ID_EXT]		= 0x198,
490 	[BRCMNAND_LL_RDATA]		= 0x19c,
491 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
492 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
493 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
494 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
495 	[BRCMNAND_FC_BASE]		= 0x400,
496 };
497 
498 /* BRCMNAND v7.2 */
499 static const u16 brcmnand_regs_v72[] = {
500 	[BRCMNAND_CMD_START]		=  0x04,
501 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
502 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
503 	[BRCMNAND_INTFC_STATUS]		=  0x14,
504 	[BRCMNAND_CS_SELECT]		=  0x18,
505 	[BRCMNAND_CS_XOR]		=  0x1c,
506 	[BRCMNAND_LL_OP]		=  0x20,
507 	[BRCMNAND_CS0_BASE]		=  0x50,
508 	[BRCMNAND_CS1_BASE]		=     0,
509 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
510 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
511 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
512 	[BRCMNAND_CORR_COUNT]		= 0x100,
513 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
514 	[BRCMNAND_CORR_ADDR]		= 0x110,
515 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
516 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
517 	[BRCMNAND_SEMAPHORE]		= 0x150,
518 	[BRCMNAND_ID]			= 0x194,
519 	[BRCMNAND_ID_EXT]		= 0x198,
520 	[BRCMNAND_LL_RDATA]		= 0x19c,
521 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
522 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
523 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
524 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
525 	[BRCMNAND_FC_BASE]		= 0x600,
526 };
527 
528 enum brcmnand_cs_reg {
529 	BRCMNAND_CS_CFG_EXT = 0,
530 	BRCMNAND_CS_CFG,
531 	BRCMNAND_CS_ACC_CONTROL,
532 	BRCMNAND_CS_TIMING1,
533 	BRCMNAND_CS_TIMING2,
534 };
535 
536 /* Per chip-select offsets for v7.1 */
537 static const u8 brcmnand_cs_offsets_v71[] = {
538 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
539 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
540 	[BRCMNAND_CS_CFG]		= 0x08,
541 	[BRCMNAND_CS_TIMING1]		= 0x0c,
542 	[BRCMNAND_CS_TIMING2]		= 0x10,
543 };
544 
545 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
546 static const u8 brcmnand_cs_offsets[] = {
547 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
548 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
549 	[BRCMNAND_CS_CFG]		= 0x04,
550 	[BRCMNAND_CS_TIMING1]		= 0x08,
551 	[BRCMNAND_CS_TIMING2]		= 0x0c,
552 };
553 
554 /* Per chip-select offset for <= v5.0 on CS0 only */
555 static const u8 brcmnand_cs_offsets_cs0[] = {
556 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
557 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
558 	[BRCMNAND_CS_CFG]		= 0x08,
559 	[BRCMNAND_CS_TIMING1]		= 0x10,
560 	[BRCMNAND_CS_TIMING2]		= 0x14,
561 };
562 
563 /*
564  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
565  * one config register, but once the bitfields overflowed, newer controllers
566  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
567  */
568 enum {
569 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
570 	CFG_COL_ADR_BYTES_SHIFT		= 12,
571 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
572 	CFG_BUS_WIDTH_SHIFT		= 23,
573 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
574 	CFG_DEVICE_SIZE_SHIFT		= 24,
575 
576 	/* Only for v2.1 */
577 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
578 
579 	/* Only for pre-v7.1 (with no CFG_EXT register) */
580 	CFG_PAGE_SIZE_SHIFT		= 20,
581 	CFG_BLK_SIZE_SHIFT		= 28,
582 
583 	/* Only for v7.1+ (with CFG_EXT register) */
584 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
585 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
586 };
587 
588 /* BRCMNAND_INTFC_STATUS */
589 enum {
590 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
591 
592 	INTFC_ERASED			= BIT(27),
593 	INTFC_OOB_VALID			= BIT(28),
594 	INTFC_CACHE_VALID		= BIT(29),
595 	INTFC_FLASH_READY		= BIT(30),
596 	INTFC_CTLR_READY		= BIT(31),
597 };
598 
599 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
600 {
601 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
602 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
603 #else
604 	return false;
605 #endif
606 }
607 
608 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
609 {
610 	if (brcmnand_non_mmio_ops(ctrl))
611 		return brcmnand_soc_read(ctrl->soc, offs);
612 	return brcmnand_readl(ctrl->nand_base + offs);
613 }
614 
615 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
616 				 u32 val)
617 {
618 	if (brcmnand_non_mmio_ops(ctrl))
619 		brcmnand_soc_write(ctrl->soc, val, offs);
620 	else
621 		brcmnand_writel(val, ctrl->nand_base + offs);
622 }
623 
624 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
625 {
626 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
627 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
628 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
629 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
630 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
631 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
632 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
633 
634 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
635 
636 	/* Only support v2.1+ */
637 	if (ctrl->nand_version < 0x0201) {
638 		dev_err(ctrl->dev, "version %#x not supported\n",
639 			ctrl->nand_version);
640 		return -ENODEV;
641 	}
642 
643 	/* Register offsets */
644 	if (ctrl->nand_version >= 0x0702)
645 		ctrl->reg_offsets = brcmnand_regs_v72;
646 	else if (ctrl->nand_version == 0x0701)
647 		ctrl->reg_offsets = brcmnand_regs_v71;
648 	else if (ctrl->nand_version >= 0x0600)
649 		ctrl->reg_offsets = brcmnand_regs_v60;
650 	else if (ctrl->nand_version >= 0x0500)
651 		ctrl->reg_offsets = brcmnand_regs_v50;
652 	else if (ctrl->nand_version >= 0x0303)
653 		ctrl->reg_offsets = brcmnand_regs_v33;
654 	else if (ctrl->nand_version >= 0x0201)
655 		ctrl->reg_offsets = brcmnand_regs_v21;
656 
657 	/* Chip-select stride */
658 	if (ctrl->nand_version >= 0x0701)
659 		ctrl->reg_spacing = 0x14;
660 	else
661 		ctrl->reg_spacing = 0x10;
662 
663 	/* Per chip-select registers */
664 	if (ctrl->nand_version >= 0x0701) {
665 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
666 	} else {
667 		ctrl->cs_offsets = brcmnand_cs_offsets;
668 
669 		/* v3.3-5.0 have a different CS0 offset layout */
670 		if (ctrl->nand_version >= 0x0303 &&
671 		    ctrl->nand_version <= 0x0500)
672 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
673 	}
674 
675 	/* Page / block sizes */
676 	if (ctrl->nand_version >= 0x0701) {
677 		/* >= v7.1 use nice power-of-2 values! */
678 		ctrl->max_page_size = 16 * 1024;
679 		ctrl->max_block_size = 2 * 1024 * 1024;
680 	} else {
681 		if (ctrl->nand_version >= 0x0304)
682 			ctrl->page_sizes = page_sizes_v3_4;
683 		else if (ctrl->nand_version >= 0x0202)
684 			ctrl->page_sizes = page_sizes_v2_2;
685 		else
686 			ctrl->page_sizes = page_sizes_v2_1;
687 
688 		if (ctrl->nand_version >= 0x0202)
689 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
690 		else
691 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
692 
693 		if (ctrl->nand_version >= 0x0600)
694 			ctrl->block_sizes = block_sizes_v6;
695 		else if (ctrl->nand_version >= 0x0400)
696 			ctrl->block_sizes = block_sizes_v4;
697 		else if (ctrl->nand_version >= 0x0202)
698 			ctrl->block_sizes = block_sizes_v2_2;
699 		else
700 			ctrl->block_sizes = block_sizes_v2_1;
701 
702 		if (ctrl->nand_version < 0x0400) {
703 			if (ctrl->nand_version < 0x0202)
704 				ctrl->max_page_size = 2048;
705 			else
706 				ctrl->max_page_size = 4096;
707 			ctrl->max_block_size = 512 * 1024;
708 		}
709 	}
710 
711 	/* Maximum spare area sector size (per 512B) */
712 	if (ctrl->nand_version == 0x0702)
713 		ctrl->max_oob = 128;
714 	else if (ctrl->nand_version >= 0x0600)
715 		ctrl->max_oob = 64;
716 	else if (ctrl->nand_version >= 0x0500)
717 		ctrl->max_oob = 32;
718 	else
719 		ctrl->max_oob = 16;
720 
721 	/* v6.0 and newer (except v6.1) have prefetch support */
722 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
723 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
724 
725 	/*
726 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
727 	 * now.
728 	 */
729 	if (ctrl->nand_version >= 0x0700)
730 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
731 
732 	if (ctrl->nand_version >= 0x0500)
733 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
734 
735 	if (ctrl->nand_version >= 0x0700)
736 		ctrl->features |= BRCMNAND_HAS_WP;
737 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
738 		ctrl->features |= BRCMNAND_HAS_WP;
739 
740 	return 0;
741 }
742 
743 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
744 {
745 	/* flash_dma register offsets */
746 	if (ctrl->nand_version >= 0x0703)
747 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
748 	else if (ctrl->nand_version == 0x0602)
749 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
750 	else
751 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
752 }
753 
754 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
755 		enum brcmnand_reg reg)
756 {
757 	u16 offs = ctrl->reg_offsets[reg];
758 
759 	if (offs)
760 		return nand_readreg(ctrl, offs);
761 	else
762 		return 0;
763 }
764 
765 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
766 				      enum brcmnand_reg reg, u32 val)
767 {
768 	u16 offs = ctrl->reg_offsets[reg];
769 
770 	if (offs)
771 		nand_writereg(ctrl, offs, val);
772 }
773 
774 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
775 				    enum brcmnand_reg reg, u32 mask, unsigned
776 				    int shift, u32 val)
777 {
778 	u32 tmp = brcmnand_read_reg(ctrl, reg);
779 
780 	tmp &= ~mask;
781 	tmp |= val << shift;
782 	brcmnand_write_reg(ctrl, reg, tmp);
783 }
784 
785 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
786 {
787 	if (brcmnand_non_mmio_ops(ctrl))
788 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
789 	return __raw_readl(ctrl->nand_fc + word * 4);
790 }
791 
792 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
793 				     int word, u32 val)
794 {
795 	if (brcmnand_non_mmio_ops(ctrl))
796 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
797 	else
798 		__raw_writel(val, ctrl->nand_fc + word * 4);
799 }
800 
801 static inline void edu_writel(struct brcmnand_controller *ctrl,
802 			      enum edu_reg reg, u32 val)
803 {
804 	u16 offs = ctrl->edu_offsets[reg];
805 
806 	brcmnand_writel(val, ctrl->edu_base + offs);
807 }
808 
809 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
810 			    enum edu_reg reg)
811 {
812 	u16 offs = ctrl->edu_offsets[reg];
813 
814 	return brcmnand_readl(ctrl->edu_base + offs);
815 }
816 
817 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
818 {
819 
820 	/* Clear error addresses */
821 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
822 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
823 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
824 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
825 }
826 
827 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
828 {
829 	u64 err_addr;
830 
831 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
832 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
833 					     BRCMNAND_UNCORR_EXT_ADDR)
834 					     & 0xffff) << 32);
835 
836 	return err_addr;
837 }
838 
839 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
840 {
841 	u64 err_addr;
842 
843 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
844 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
845 					     BRCMNAND_CORR_EXT_ADDR)
846 					     & 0xffff) << 32);
847 
848 	return err_addr;
849 }
850 
851 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
852 {
853 	struct nand_chip *chip =  mtd_to_nand(mtd);
854 	struct brcmnand_host *host = nand_get_controller_data(chip);
855 	struct brcmnand_controller *ctrl = host->ctrl;
856 
857 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
858 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
859 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
860 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
861 			   lower_32_bits(addr));
862 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
863 }
864 
865 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
866 				     enum brcmnand_cs_reg reg)
867 {
868 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
869 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
870 	u8 cs_offs;
871 
872 	if (cs == 0 && ctrl->cs0_offsets)
873 		cs_offs = ctrl->cs0_offsets[reg];
874 	else
875 		cs_offs = ctrl->cs_offsets[reg];
876 
877 	if (cs && offs_cs1)
878 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
879 
880 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
881 }
882 
883 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
884 {
885 	if (ctrl->nand_version < 0x0600)
886 		return 1;
887 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
888 }
889 
890 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
891 {
892 	struct brcmnand_controller *ctrl = host->ctrl;
893 	unsigned int shift = 0, bits;
894 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
895 	int cs = host->cs;
896 
897 	if (!ctrl->reg_offsets[reg])
898 		return;
899 
900 	if (ctrl->nand_version == 0x0702)
901 		bits = 7;
902 	else if (ctrl->nand_version >= 0x0600)
903 		bits = 6;
904 	else if (ctrl->nand_version >= 0x0500)
905 		bits = 5;
906 	else
907 		bits = 4;
908 
909 	if (ctrl->nand_version >= 0x0702) {
910 		if (cs >= 4)
911 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
912 		shift = (cs % 4) * bits;
913 	} else if (ctrl->nand_version >= 0x0600) {
914 		if (cs >= 5)
915 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
916 		shift = (cs % 5) * bits;
917 	}
918 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
919 }
920 
921 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
922 {
923 	/* Kludge for the BCMA-based NAND controller which does not actually
924 	 * shift the command
925 	 */
926 	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
927 		return 0;
928 
929 	if (ctrl->nand_version < 0x0602)
930 		return 24;
931 	return 0;
932 }
933 
934 /***********************************************************************
935  * NAND ACC CONTROL bitfield
936  *
937  * Some bits have remained constant throughout hardware revision, while
938  * others have shifted around.
939  ***********************************************************************/
940 
941 /* Constant for all versions (where supported) */
942 enum {
943 	/* See BRCMNAND_HAS_CACHE_MODE */
944 	ACC_CONTROL_CACHE_MODE				= BIT(22),
945 
946 	/* See BRCMNAND_HAS_PREFETCH */
947 	ACC_CONTROL_PREFETCH				= BIT(23),
948 
949 	ACC_CONTROL_PAGE_HIT				= BIT(24),
950 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
951 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
952 	ACC_CONTROL_RD_ERASED				= BIT(27),
953 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
954 	ACC_CONTROL_WR_ECC				= BIT(30),
955 	ACC_CONTROL_RD_ECC				= BIT(31),
956 };
957 
958 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
959 {
960 	if (ctrl->nand_version == 0x0702)
961 		return GENMASK(7, 0);
962 	else if (ctrl->nand_version >= 0x0600)
963 		return GENMASK(6, 0);
964 	else if (ctrl->nand_version >= 0x0303)
965 		return GENMASK(5, 0);
966 	else
967 		return GENMASK(4, 0);
968 }
969 
970 #define NAND_ACC_CONTROL_ECC_SHIFT	16
971 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT	13
972 
973 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
974 {
975 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
976 
977 	mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
978 
979 	/* v7.2 includes additional ECC levels */
980 	if (ctrl->nand_version >= 0x0702)
981 		mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
982 
983 	return mask;
984 }
985 
986 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
987 {
988 	struct brcmnand_controller *ctrl = host->ctrl;
989 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
990 	u32 acc_control = nand_readreg(ctrl, offs);
991 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
992 
993 	if (en) {
994 		acc_control |= ecc_flags; /* enable RD/WR ECC */
995 		acc_control |= host->hwcfg.ecc_level
996 			       << NAND_ACC_CONTROL_ECC_SHIFT;
997 	} else {
998 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
999 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1000 	}
1001 
1002 	nand_writereg(ctrl, offs, acc_control);
1003 }
1004 
1005 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1006 {
1007 	if (ctrl->nand_version >= 0x0702)
1008 		return 9;
1009 	else if (ctrl->nand_version >= 0x0600)
1010 		return 7;
1011 	else if (ctrl->nand_version >= 0x0500)
1012 		return 6;
1013 	else
1014 		return -1;
1015 }
1016 
1017 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1018 {
1019 	struct brcmnand_controller *ctrl = host->ctrl;
1020 	int shift = brcmnand_sector_1k_shift(ctrl);
1021 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1022 						  BRCMNAND_CS_ACC_CONTROL);
1023 
1024 	if (shift < 0)
1025 		return 0;
1026 
1027 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
1028 }
1029 
1030 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1031 {
1032 	struct brcmnand_controller *ctrl = host->ctrl;
1033 	int shift = brcmnand_sector_1k_shift(ctrl);
1034 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1035 						  BRCMNAND_CS_ACC_CONTROL);
1036 	u32 tmp;
1037 
1038 	if (shift < 0)
1039 		return;
1040 
1041 	tmp = nand_readreg(ctrl, acc_control_offs);
1042 	tmp &= ~(1 << shift);
1043 	tmp |= (!!val) << shift;
1044 	nand_writereg(ctrl, acc_control_offs, tmp);
1045 }
1046 
1047 /***********************************************************************
1048  * CS_NAND_SELECT
1049  ***********************************************************************/
1050 
1051 enum {
1052 	CS_SELECT_NAND_WP			= BIT(29),
1053 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1054 };
1055 
1056 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1057 				    u32 mask, u32 expected_val,
1058 				    unsigned long timeout_ms)
1059 {
1060 	unsigned long limit;
1061 	u32 val;
1062 
1063 	if (!timeout_ms)
1064 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1065 
1066 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1067 	do {
1068 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1069 		if ((val & mask) == expected_val)
1070 			return 0;
1071 
1072 		cpu_relax();
1073 	} while (time_after(limit, jiffies));
1074 
1075 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1076 		 expected_val, val & mask);
1077 
1078 	return -ETIMEDOUT;
1079 }
1080 
1081 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1082 {
1083 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1084 
1085 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1086 }
1087 
1088 /***********************************************************************
1089  * Flash DMA
1090  ***********************************************************************/
1091 
1092 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1093 {
1094 	return ctrl->flash_dma_base;
1095 }
1096 
1097 static inline bool has_edu(struct brcmnand_controller *ctrl)
1098 {
1099 	return ctrl->edu_base;
1100 }
1101 
1102 static inline bool use_dma(struct brcmnand_controller *ctrl)
1103 {
1104 	return has_flash_dma(ctrl) || has_edu(ctrl);
1105 }
1106 
1107 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1108 {
1109 	if (ctrl->pio_poll_mode)
1110 		return;
1111 
1112 	if (has_flash_dma(ctrl)) {
1113 		ctrl->flash_dma_base = NULL;
1114 		disable_irq(ctrl->dma_irq);
1115 	}
1116 
1117 	disable_irq(ctrl->irq);
1118 	ctrl->pio_poll_mode = true;
1119 }
1120 
1121 static inline bool flash_dma_buf_ok(const void *buf)
1122 {
1123 	return buf && !is_vmalloc_addr(buf) &&
1124 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1125 }
1126 
1127 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1128 				    enum flash_dma_reg dma_reg, u32 val)
1129 {
1130 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1131 
1132 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1133 }
1134 
1135 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1136 				  enum flash_dma_reg dma_reg)
1137 {
1138 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1139 
1140 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1141 }
1142 
1143 /* Low-level operation types: command, address, write, or read */
1144 enum brcmnand_llop_type {
1145 	LL_OP_CMD,
1146 	LL_OP_ADDR,
1147 	LL_OP_WR,
1148 	LL_OP_RD,
1149 };
1150 
1151 /***********************************************************************
1152  * Internal support functions
1153  ***********************************************************************/
1154 
1155 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1156 				  struct brcmnand_cfg *cfg)
1157 {
1158 	if (ctrl->nand_version <= 0x0701)
1159 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1160 			cfg->ecc_level == 15;
1161 	else
1162 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1163 			cfg->ecc_level == 15) ||
1164 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1165 }
1166 
1167 /*
1168  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1169  * the layout/configuration.
1170  * Returns -ERRCODE on failure.
1171  */
1172 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1173 					  struct mtd_oob_region *oobregion)
1174 {
1175 	struct nand_chip *chip = mtd_to_nand(mtd);
1176 	struct brcmnand_host *host = nand_get_controller_data(chip);
1177 	struct brcmnand_cfg *cfg = &host->hwcfg;
1178 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1179 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1180 
1181 	if (section >= sectors)
1182 		return -ERANGE;
1183 
1184 	oobregion->offset = (section * sas) + 6;
1185 	oobregion->length = 3;
1186 
1187 	return 0;
1188 }
1189 
1190 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1191 					   struct mtd_oob_region *oobregion)
1192 {
1193 	struct nand_chip *chip = mtd_to_nand(mtd);
1194 	struct brcmnand_host *host = nand_get_controller_data(chip);
1195 	struct brcmnand_cfg *cfg = &host->hwcfg;
1196 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1197 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1198 	u32 next;
1199 
1200 	if (section > sectors)
1201 		return -ERANGE;
1202 
1203 	next = (section * sas);
1204 	if (section < sectors)
1205 		next += 6;
1206 
1207 	if (section) {
1208 		oobregion->offset = ((section - 1) * sas) + 9;
1209 	} else {
1210 		if (cfg->page_size > 512) {
1211 			/* Large page NAND uses first 2 bytes for BBI */
1212 			oobregion->offset = 2;
1213 		} else {
1214 			/* Small page NAND uses last byte before ECC for BBI */
1215 			oobregion->offset = 0;
1216 			next--;
1217 		}
1218 	}
1219 
1220 	oobregion->length = next - oobregion->offset;
1221 
1222 	return 0;
1223 }
1224 
1225 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1226 	.ecc = brcmnand_hamming_ooblayout_ecc,
1227 	.free = brcmnand_hamming_ooblayout_free,
1228 };
1229 
1230 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1231 				      struct mtd_oob_region *oobregion)
1232 {
1233 	struct nand_chip *chip = mtd_to_nand(mtd);
1234 	struct brcmnand_host *host = nand_get_controller_data(chip);
1235 	struct brcmnand_cfg *cfg = &host->hwcfg;
1236 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1237 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1238 
1239 	if (section >= sectors)
1240 		return -ERANGE;
1241 
1242 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1243 	oobregion->length = chip->ecc.bytes;
1244 
1245 	return 0;
1246 }
1247 
1248 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1249 					  struct mtd_oob_region *oobregion)
1250 {
1251 	struct nand_chip *chip = mtd_to_nand(mtd);
1252 	struct brcmnand_host *host = nand_get_controller_data(chip);
1253 	struct brcmnand_cfg *cfg = &host->hwcfg;
1254 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1255 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1256 
1257 	if (section >= sectors)
1258 		return -ERANGE;
1259 
1260 	if (sas <= chip->ecc.bytes)
1261 		return 0;
1262 
1263 	oobregion->offset = section * sas;
1264 	oobregion->length = sas - chip->ecc.bytes;
1265 
1266 	if (!section) {
1267 		oobregion->offset++;
1268 		oobregion->length--;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1275 					  struct mtd_oob_region *oobregion)
1276 {
1277 	struct nand_chip *chip = mtd_to_nand(mtd);
1278 	struct brcmnand_host *host = nand_get_controller_data(chip);
1279 	struct brcmnand_cfg *cfg = &host->hwcfg;
1280 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1281 
1282 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1283 	    (section && sas - chip->ecc.bytes == 6))
1284 		return -ERANGE;
1285 
1286 	if (!section) {
1287 		oobregion->offset = 0;
1288 		oobregion->length = 5;
1289 	} else {
1290 		oobregion->offset = 6;
1291 		oobregion->length = sas - chip->ecc.bytes - 6;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1298 	.ecc = brcmnand_bch_ooblayout_ecc,
1299 	.free = brcmnand_bch_ooblayout_free_lp,
1300 };
1301 
1302 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1303 	.ecc = brcmnand_bch_ooblayout_ecc,
1304 	.free = brcmnand_bch_ooblayout_free_sp,
1305 };
1306 
1307 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1308 {
1309 	struct brcmnand_cfg *p = &host->hwcfg;
1310 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1311 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1312 	unsigned int ecc_level = p->ecc_level;
1313 	int sas = p->spare_area_size << p->sector_size_1k;
1314 	int sectors = p->page_size / (512 << p->sector_size_1k);
1315 
1316 	if (p->sector_size_1k)
1317 		ecc_level <<= 1;
1318 
1319 	if (is_hamming_ecc(host->ctrl, p)) {
1320 		ecc->bytes = 3 * sectors;
1321 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1322 		return 0;
1323 	}
1324 
1325 	/*
1326 	 * CONTROLLER_VERSION:
1327 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1328 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1329 	 * But we will just be conservative.
1330 	 */
1331 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1332 	if (p->page_size == 512)
1333 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1334 	else
1335 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1336 
1337 	if (ecc->bytes >= sas) {
1338 		dev_err(&host->pdev->dev,
1339 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1340 			ecc->bytes, sas);
1341 		return -EINVAL;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1348 {
1349 	struct nand_chip *chip = mtd_to_nand(mtd);
1350 	struct brcmnand_host *host = nand_get_controller_data(chip);
1351 	struct brcmnand_controller *ctrl = host->ctrl;
1352 
1353 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1354 		static int old_wp = -1;
1355 		int ret;
1356 
1357 		if (old_wp != wp) {
1358 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1359 			old_wp = wp;
1360 		}
1361 
1362 		/*
1363 		 * make sure ctrl/flash ready before and after
1364 		 * changing state of #WP pin
1365 		 */
1366 		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1367 					       NAND_STATUS_READY,
1368 					       NAND_CTRL_RDY |
1369 					       NAND_STATUS_READY, 0);
1370 		if (ret)
1371 			return;
1372 
1373 		brcmnand_set_wp(ctrl, wp);
1374 		nand_status_op(chip, NULL);
1375 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1376 		ret = bcmnand_ctrl_poll_status(ctrl,
1377 					       NAND_CTRL_RDY |
1378 					       NAND_STATUS_READY |
1379 					       NAND_STATUS_WP,
1380 					       NAND_CTRL_RDY |
1381 					       NAND_STATUS_READY |
1382 					       (wp ? 0 : NAND_STATUS_WP), 0);
1383 
1384 		if (ret)
1385 			dev_err_ratelimited(&host->pdev->dev,
1386 					    "nand #WP expected %s\n",
1387 					    wp ? "on" : "off");
1388 	}
1389 }
1390 
1391 /* Helper functions for reading and writing OOB registers */
1392 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1393 {
1394 	u16 offset0, offset10, reg_offs;
1395 
1396 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1397 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1398 
1399 	if (offs >= ctrl->max_oob)
1400 		return 0x77;
1401 
1402 	if (offs >= 16 && offset10)
1403 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1404 	else
1405 		reg_offs = offset0 + (offs & ~0x03);
1406 
1407 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1408 }
1409 
1410 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1411 				 u32 data)
1412 {
1413 	u16 offset0, offset10, reg_offs;
1414 
1415 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1416 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1417 
1418 	if (offs >= ctrl->max_oob)
1419 		return;
1420 
1421 	if (offs >= 16 && offset10)
1422 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1423 	else
1424 		reg_offs = offset0 + (offs & ~0x03);
1425 
1426 	nand_writereg(ctrl, reg_offs, data);
1427 }
1428 
1429 /*
1430  * read_oob_from_regs - read data from OOB registers
1431  * @ctrl: NAND controller
1432  * @i: sub-page sector index
1433  * @oob: buffer to read to
1434  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1435  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1436  */
1437 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1438 			      int sas, int sector_1k)
1439 {
1440 	int tbytes = sas << sector_1k;
1441 	int j;
1442 
1443 	/* Adjust OOB values for 1K sector size */
1444 	if (sector_1k && (i & 0x01))
1445 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1446 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1447 
1448 	for (j = 0; j < tbytes; j++)
1449 		oob[j] = oob_reg_read(ctrl, j);
1450 	return tbytes;
1451 }
1452 
1453 /*
1454  * write_oob_to_regs - write data to OOB registers
1455  * @i: sub-page sector index
1456  * @oob: buffer to write from
1457  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1458  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1459  */
1460 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1461 			     const u8 *oob, int sas, int sector_1k)
1462 {
1463 	int tbytes = sas << sector_1k;
1464 	int j;
1465 
1466 	/* Adjust OOB values for 1K sector size */
1467 	if (sector_1k && (i & 0x01))
1468 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1469 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1470 
1471 	for (j = 0; j < tbytes; j += 4)
1472 		oob_reg_write(ctrl, j,
1473 				(oob[j + 0] << 24) |
1474 				(oob[j + 1] << 16) |
1475 				(oob[j + 2] <<  8) |
1476 				(oob[j + 3] <<  0));
1477 	return tbytes;
1478 }
1479 
1480 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1481 {
1482 	/* initialize edu */
1483 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1484 	edu_readl(ctrl, EDU_ERR_STATUS);
1485 	edu_writel(ctrl, EDU_DONE, 0);
1486 	edu_writel(ctrl, EDU_DONE, 0);
1487 	edu_writel(ctrl, EDU_DONE, 0);
1488 	edu_writel(ctrl, EDU_DONE, 0);
1489 	edu_readl(ctrl, EDU_DONE);
1490 }
1491 
1492 /* edu irq */
1493 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1494 {
1495 	struct brcmnand_controller *ctrl = data;
1496 
1497 	if (ctrl->edu_count) {
1498 		ctrl->edu_count--;
1499 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1500 			udelay(1);
1501 		edu_writel(ctrl, EDU_DONE, 0);
1502 		edu_readl(ctrl, EDU_DONE);
1503 	}
1504 
1505 	if (ctrl->edu_count) {
1506 		ctrl->edu_dram_addr += FC_BYTES;
1507 		ctrl->edu_ext_addr += FC_BYTES;
1508 
1509 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1510 		edu_readl(ctrl, EDU_DRAM_ADDR);
1511 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1512 		edu_readl(ctrl, EDU_EXT_ADDR);
1513 
1514 		if (ctrl->oob) {
1515 			if (ctrl->edu_cmd == EDU_CMD_READ) {
1516 				ctrl->oob += read_oob_from_regs(ctrl,
1517 							ctrl->edu_count + 1,
1518 							ctrl->oob, ctrl->sas,
1519 							ctrl->sector_size_1k);
1520 			} else {
1521 				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1522 						   ctrl->edu_ext_addr);
1523 				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1524 				ctrl->oob += write_oob_to_regs(ctrl,
1525 							       ctrl->edu_count,
1526 							       ctrl->oob, ctrl->sas,
1527 							       ctrl->sector_size_1k);
1528 			}
1529 		}
1530 
1531 		mb(); /* flush previous writes */
1532 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1533 		edu_readl(ctrl, EDU_CMD);
1534 
1535 		return IRQ_HANDLED;
1536 	}
1537 
1538 	complete(&ctrl->edu_done);
1539 
1540 	return IRQ_HANDLED;
1541 }
1542 
1543 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1544 {
1545 	struct brcmnand_controller *ctrl = data;
1546 
1547 	/* Discard all NAND_CTLRDY interrupts during DMA */
1548 	if (ctrl->dma_pending)
1549 		return IRQ_HANDLED;
1550 
1551 	/* check if you need to piggy back on the ctrlrdy irq */
1552 	if (ctrl->edu_pending) {
1553 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1554 	/* Discard interrupts while using dedicated edu irq */
1555 			return IRQ_HANDLED;
1556 
1557 	/* no registered edu irq, call handler */
1558 		return brcmnand_edu_irq(irq, data);
1559 	}
1560 
1561 	complete(&ctrl->done);
1562 	return IRQ_HANDLED;
1563 }
1564 
1565 /* Handle SoC-specific interrupt hardware */
1566 static irqreturn_t brcmnand_irq(int irq, void *data)
1567 {
1568 	struct brcmnand_controller *ctrl = data;
1569 
1570 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1571 		return brcmnand_ctlrdy_irq(irq, data);
1572 
1573 	return IRQ_NONE;
1574 }
1575 
1576 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1577 {
1578 	struct brcmnand_controller *ctrl = data;
1579 
1580 	complete(&ctrl->dma_done);
1581 
1582 	return IRQ_HANDLED;
1583 }
1584 
1585 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1586 {
1587 	struct brcmnand_controller *ctrl = host->ctrl;
1588 	int ret;
1589 	u64 cmd_addr;
1590 
1591 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1592 
1593 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1594 
1595 	BUG_ON(ctrl->cmd_pending != 0);
1596 	ctrl->cmd_pending = cmd;
1597 
1598 	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1599 	WARN_ON(ret);
1600 
1601 	mb(); /* flush previous writes */
1602 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1603 			   cmd << brcmnand_cmd_shift(ctrl));
1604 }
1605 
1606 /***********************************************************************
1607  * NAND MTD API: read/program/erase
1608  ***********************************************************************/
1609 
1610 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1611 			      unsigned int ctrl)
1612 {
1613 	/* intentionally left blank */
1614 }
1615 
1616 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1617 {
1618 	struct brcmnand_host *host = nand_get_controller_data(chip);
1619 	struct brcmnand_controller *ctrl = host->ctrl;
1620 	struct mtd_info *mtd = nand_to_mtd(chip);
1621 	bool err = false;
1622 	int sts;
1623 
1624 	if (mtd->oops_panic_write || ctrl->irq < 0) {
1625 		/* switch to interrupt polling and PIO mode */
1626 		disable_ctrl_irqs(ctrl);
1627 		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1628 					       NAND_CTRL_RDY, 0);
1629 		err = (sts < 0) ? true : false;
1630 	} else {
1631 		unsigned long timeo = msecs_to_jiffies(
1632 						NAND_POLL_STATUS_TIMEOUT_MS);
1633 		/* wait for completion interrupt */
1634 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1635 		err = (sts <= 0) ? true : false;
1636 	}
1637 
1638 	return err;
1639 }
1640 
1641 static int brcmnand_waitfunc(struct nand_chip *chip)
1642 {
1643 	struct brcmnand_host *host = nand_get_controller_data(chip);
1644 	struct brcmnand_controller *ctrl = host->ctrl;
1645 	bool err = false;
1646 
1647 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1648 	if (ctrl->cmd_pending)
1649 		err = brcmstb_nand_wait_for_completion(chip);
1650 
1651 	if (err) {
1652 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1653 					>> brcmnand_cmd_shift(ctrl);
1654 
1655 		dev_err_ratelimited(ctrl->dev,
1656 			"timeout waiting for command %#02x\n", cmd);
1657 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1658 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1659 	}
1660 	ctrl->cmd_pending = 0;
1661 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1662 				 INTFC_FLASH_STATUS;
1663 }
1664 
1665 enum {
1666 	LLOP_RE				= BIT(16),
1667 	LLOP_WE				= BIT(17),
1668 	LLOP_ALE			= BIT(18),
1669 	LLOP_CLE			= BIT(19),
1670 	LLOP_RETURN_IDLE		= BIT(31),
1671 
1672 	LLOP_DATA_MASK			= GENMASK(15, 0),
1673 };
1674 
1675 static int brcmnand_low_level_op(struct brcmnand_host *host,
1676 				 enum brcmnand_llop_type type, u32 data,
1677 				 bool last_op)
1678 {
1679 	struct nand_chip *chip = &host->chip;
1680 	struct brcmnand_controller *ctrl = host->ctrl;
1681 	u32 tmp;
1682 
1683 	tmp = data & LLOP_DATA_MASK;
1684 	switch (type) {
1685 	case LL_OP_CMD:
1686 		tmp |= LLOP_WE | LLOP_CLE;
1687 		break;
1688 	case LL_OP_ADDR:
1689 		/* WE | ALE */
1690 		tmp |= LLOP_WE | LLOP_ALE;
1691 		break;
1692 	case LL_OP_WR:
1693 		/* WE */
1694 		tmp |= LLOP_WE;
1695 		break;
1696 	case LL_OP_RD:
1697 		/* RE */
1698 		tmp |= LLOP_RE;
1699 		break;
1700 	}
1701 	if (last_op)
1702 		/* RETURN_IDLE */
1703 		tmp |= LLOP_RETURN_IDLE;
1704 
1705 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1706 
1707 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1708 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1709 
1710 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1711 	return brcmnand_waitfunc(chip);
1712 }
1713 
1714 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1715 			     int column, int page_addr)
1716 {
1717 	struct mtd_info *mtd = nand_to_mtd(chip);
1718 	struct brcmnand_host *host = nand_get_controller_data(chip);
1719 	struct brcmnand_controller *ctrl = host->ctrl;
1720 	u64 addr = (u64)page_addr << chip->page_shift;
1721 	int native_cmd = 0;
1722 
1723 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1724 			command == NAND_CMD_RNDOUT)
1725 		addr = (u64)column;
1726 	/* Avoid propagating a negative, don't-care address */
1727 	else if (page_addr < 0)
1728 		addr = 0;
1729 
1730 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1731 		(unsigned long long)addr);
1732 
1733 	host->last_cmd = command;
1734 	host->last_byte = 0;
1735 	host->last_addr = addr;
1736 
1737 	switch (command) {
1738 	case NAND_CMD_RESET:
1739 		native_cmd = CMD_FLASH_RESET;
1740 		break;
1741 	case NAND_CMD_STATUS:
1742 		native_cmd = CMD_STATUS_READ;
1743 		break;
1744 	case NAND_CMD_READID:
1745 		native_cmd = CMD_DEVICE_ID_READ;
1746 		break;
1747 	case NAND_CMD_READOOB:
1748 		native_cmd = CMD_SPARE_AREA_READ;
1749 		break;
1750 	case NAND_CMD_ERASE1:
1751 		native_cmd = CMD_BLOCK_ERASE;
1752 		brcmnand_wp(mtd, 0);
1753 		break;
1754 	case NAND_CMD_PARAM:
1755 		native_cmd = CMD_PARAMETER_READ;
1756 		break;
1757 	case NAND_CMD_SET_FEATURES:
1758 	case NAND_CMD_GET_FEATURES:
1759 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1760 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1761 		break;
1762 	case NAND_CMD_RNDOUT:
1763 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1764 		addr &= ~((u64)(FC_BYTES - 1));
1765 		/*
1766 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1767 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1768 		 */
1769 		if (brcmnand_get_sector_size_1k(host)) {
1770 			host->hwcfg.sector_size_1k =
1771 				brcmnand_get_sector_size_1k(host);
1772 			brcmnand_set_sector_size_1k(host, 0);
1773 		}
1774 		break;
1775 	}
1776 
1777 	if (!native_cmd)
1778 		return;
1779 
1780 	brcmnand_set_cmd_addr(mtd, addr);
1781 	brcmnand_send_cmd(host, native_cmd);
1782 	brcmnand_waitfunc(chip);
1783 
1784 	if (native_cmd == CMD_PARAMETER_READ ||
1785 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1786 		/* Copy flash cache word-wise */
1787 		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1788 		int i;
1789 
1790 		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1791 
1792 		/*
1793 		 * Must cache the FLASH_CACHE now, since changes in
1794 		 * SECTOR_SIZE_1K may invalidate it
1795 		 */
1796 		for (i = 0; i < FC_WORDS; i++)
1797 			/*
1798 			 * Flash cache is big endian for parameter pages, at
1799 			 * least on STB SoCs
1800 			 */
1801 			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1802 
1803 		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1804 
1805 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1806 		if (host->hwcfg.sector_size_1k)
1807 			brcmnand_set_sector_size_1k(host,
1808 						    host->hwcfg.sector_size_1k);
1809 	}
1810 
1811 	/* Re-enable protection is necessary only after erase */
1812 	if (command == NAND_CMD_ERASE1)
1813 		brcmnand_wp(mtd, 1);
1814 }
1815 
1816 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1817 {
1818 	struct brcmnand_host *host = nand_get_controller_data(chip);
1819 	struct brcmnand_controller *ctrl = host->ctrl;
1820 	uint8_t ret = 0;
1821 	int addr, offs;
1822 
1823 	switch (host->last_cmd) {
1824 	case NAND_CMD_READID:
1825 		if (host->last_byte < 4)
1826 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1827 				(24 - (host->last_byte << 3));
1828 		else if (host->last_byte < 8)
1829 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1830 				(56 - (host->last_byte << 3));
1831 		break;
1832 
1833 	case NAND_CMD_READOOB:
1834 		ret = oob_reg_read(ctrl, host->last_byte);
1835 		break;
1836 
1837 	case NAND_CMD_STATUS:
1838 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1839 					INTFC_FLASH_STATUS;
1840 		if (wp_on) /* hide WP status */
1841 			ret |= NAND_STATUS_WP;
1842 		break;
1843 
1844 	case NAND_CMD_PARAM:
1845 	case NAND_CMD_RNDOUT:
1846 		addr = host->last_addr + host->last_byte;
1847 		offs = addr & (FC_BYTES - 1);
1848 
1849 		/* At FC_BYTES boundary, switch to next column */
1850 		if (host->last_byte > 0 && offs == 0)
1851 			nand_change_read_column_op(chip, addr, NULL, 0, false);
1852 
1853 		ret = ctrl->flash_cache[offs];
1854 		break;
1855 	case NAND_CMD_GET_FEATURES:
1856 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1857 			ret = 0;
1858 		} else {
1859 			bool last = host->last_byte ==
1860 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1861 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1862 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1863 		}
1864 	}
1865 
1866 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1867 	host->last_byte++;
1868 
1869 	return ret;
1870 }
1871 
1872 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1873 {
1874 	int i;
1875 
1876 	for (i = 0; i < len; i++, buf++)
1877 		*buf = brcmnand_read_byte(chip);
1878 }
1879 
1880 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1881 			       int len)
1882 {
1883 	int i;
1884 	struct brcmnand_host *host = nand_get_controller_data(chip);
1885 
1886 	switch (host->last_cmd) {
1887 	case NAND_CMD_SET_FEATURES:
1888 		for (i = 0; i < len; i++)
1889 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1890 						  (i + 1) == len);
1891 		break;
1892 	default:
1893 		BUG();
1894 		break;
1895 	}
1896 }
1897 
1898 /*
1899  *  Kick EDU engine
1900  */
1901 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1902 			      u8 *oob, u32 len, u8 cmd)
1903 {
1904 	struct brcmnand_controller *ctrl = host->ctrl;
1905 	struct brcmnand_cfg *cfg = &host->hwcfg;
1906 	unsigned long timeo = msecs_to_jiffies(200);
1907 	int ret = 0;
1908 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1909 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1910 	unsigned int trans = len >> FC_SHIFT;
1911 	dma_addr_t pa;
1912 
1913 	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1914 					      "read" : "write"), buf, oob);
1915 
1916 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1917 	if (dma_mapping_error(ctrl->dev, pa)) {
1918 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1919 		return -ENOMEM;
1920 	}
1921 
1922 	ctrl->edu_pending = true;
1923 	ctrl->edu_dram_addr = pa;
1924 	ctrl->edu_ext_addr = addr;
1925 	ctrl->edu_cmd = edu_cmd;
1926 	ctrl->edu_count = trans;
1927 	ctrl->sas = cfg->spare_area_size;
1928 	ctrl->oob = oob;
1929 
1930 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1931 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1932 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1933 	edu_readl(ctrl, EDU_EXT_ADDR);
1934 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1935 	edu_readl(ctrl, EDU_LENGTH);
1936 
1937 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1938 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1939 				   ctrl->edu_ext_addr);
1940 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1941 		ctrl->oob += write_oob_to_regs(ctrl,
1942 					       1,
1943 					       ctrl->oob, ctrl->sas,
1944 					       ctrl->sector_size_1k);
1945 	}
1946 
1947 	/* Start edu engine */
1948 	mb(); /* flush previous writes */
1949 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1950 	edu_readl(ctrl, EDU_CMD);
1951 
1952 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1953 		dev_err(ctrl->dev,
1954 			"timeout waiting for EDU; status %#x, error status %#x\n",
1955 			edu_readl(ctrl, EDU_STATUS),
1956 			edu_readl(ctrl, EDU_ERR_STATUS));
1957 	}
1958 
1959 	dma_unmap_single(ctrl->dev, pa, len, dir);
1960 
1961 	/* read last subpage oob */
1962 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1963 		ctrl->oob += read_oob_from_regs(ctrl,
1964 						1,
1965 						ctrl->oob, ctrl->sas,
1966 						ctrl->sector_size_1k);
1967 	}
1968 
1969 	/* for program page check NAND status */
1970 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1971 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1972 	    edu_cmd == EDU_CMD_WRITE) {
1973 		dev_info(ctrl->dev, "program failed at %llx\n",
1974 			 (unsigned long long)addr);
1975 		ret = -EIO;
1976 	}
1977 
1978 	/* Make sure the EDU status is clean */
1979 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1980 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1981 			 edu_readl(ctrl, EDU_STATUS));
1982 
1983 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1984 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1985 			 (unsigned long long)addr);
1986 		ret = -EIO;
1987 	}
1988 
1989 	ctrl->edu_pending = false;
1990 	brcmnand_edu_init(ctrl);
1991 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1992 	edu_readl(ctrl, EDU_STOP);
1993 
1994 	if (!ret && edu_cmd == EDU_CMD_READ) {
1995 		u64 err_addr = 0;
1996 
1997 		/*
1998 		 * check for ECC errors here, subpage ECC errors are
1999 		 * retained in ECC error address register
2000 		 */
2001 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2002 		if (!err_addr) {
2003 			err_addr = brcmnand_get_correcc_addr(ctrl);
2004 			if (err_addr)
2005 				ret = -EUCLEAN;
2006 		} else
2007 			ret = -EBADMSG;
2008 	}
2009 
2010 	return ret;
2011 }
2012 
2013 /*
2014  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
2015  * following ahead of time:
2016  *  - Is this descriptor the beginning or end of a linked list?
2017  *  - What is the (DMA) address of the next descriptor in the linked list?
2018  */
2019 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
2020 				  struct brcm_nand_dma_desc *desc, u64 addr,
2021 				  dma_addr_t buf, u32 len, u8 dma_cmd,
2022 				  bool begin, bool end,
2023 				  dma_addr_t next_desc)
2024 {
2025 	memset(desc, 0, sizeof(*desc));
2026 	/* Descriptors are written in native byte order (wordwise) */
2027 	desc->next_desc = lower_32_bits(next_desc);
2028 	desc->next_desc_ext = upper_32_bits(next_desc);
2029 	desc->cmd_irq = (dma_cmd << 24) |
2030 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
2031 		(!!begin) | ((!!end) << 1); /* head, tail */
2032 #ifdef CONFIG_CPU_BIG_ENDIAN
2033 	desc->cmd_irq |= 0x01 << 12;
2034 #endif
2035 	desc->dram_addr = lower_32_bits(buf);
2036 	desc->dram_addr_ext = upper_32_bits(buf);
2037 	desc->tfr_len = len;
2038 	desc->total_len = len;
2039 	desc->flash_addr = lower_32_bits(addr);
2040 	desc->flash_addr_ext = upper_32_bits(addr);
2041 	desc->cs = host->cs;
2042 	desc->status_valid = 0x01;
2043 	return 0;
2044 }
2045 
2046 /*
2047  * Kick the FLASH_DMA engine, with a given DMA descriptor
2048  */
2049 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2050 {
2051 	struct brcmnand_controller *ctrl = host->ctrl;
2052 	unsigned long timeo = msecs_to_jiffies(100);
2053 
2054 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2055 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2056 	if (ctrl->nand_version > 0x0602) {
2057 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2058 				 upper_32_bits(desc));
2059 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2060 	}
2061 
2062 	/* Start FLASH_DMA engine */
2063 	ctrl->dma_pending = true;
2064 	mb(); /* flush previous writes */
2065 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2066 
2067 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2068 		dev_err(ctrl->dev,
2069 				"timeout waiting for DMA; status %#x, error status %#x\n",
2070 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2071 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2072 	}
2073 	ctrl->dma_pending = false;
2074 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2075 }
2076 
2077 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2078 			      u8 *oob, u32 len, u8 dma_cmd)
2079 {
2080 	struct brcmnand_controller *ctrl = host->ctrl;
2081 	dma_addr_t buf_pa;
2082 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2083 
2084 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2085 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2086 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2087 		return -ENOMEM;
2088 	}
2089 
2090 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2091 				   dma_cmd, true, true, 0);
2092 
2093 	brcmnand_dma_run(host, ctrl->dma_pa);
2094 
2095 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2096 
2097 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2098 		return -EBADMSG;
2099 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2100 		return -EUCLEAN;
2101 
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Assumes proper CS is already set
2107  */
2108 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2109 				u64 addr, unsigned int trans, u32 *buf,
2110 				u8 *oob, u64 *err_addr)
2111 {
2112 	struct brcmnand_host *host = nand_get_controller_data(chip);
2113 	struct brcmnand_controller *ctrl = host->ctrl;
2114 	int i, j, ret = 0;
2115 
2116 	brcmnand_clear_ecc_addr(ctrl);
2117 
2118 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2119 		brcmnand_set_cmd_addr(mtd, addr);
2120 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2121 		brcmnand_send_cmd(host, CMD_PAGE_READ);
2122 		brcmnand_waitfunc(chip);
2123 
2124 		if (likely(buf)) {
2125 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2126 
2127 			for (j = 0; j < FC_WORDS; j++, buf++)
2128 				*buf = brcmnand_read_fc(ctrl, j);
2129 
2130 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2131 		}
2132 
2133 		if (oob)
2134 			oob += read_oob_from_regs(ctrl, i, oob,
2135 					mtd->oobsize / trans,
2136 					host->hwcfg.sector_size_1k);
2137 
2138 		if (ret != -EBADMSG) {
2139 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2140 
2141 			if (*err_addr)
2142 				ret = -EBADMSG;
2143 		}
2144 
2145 		if (!ret) {
2146 			*err_addr = brcmnand_get_correcc_addr(ctrl);
2147 
2148 			if (*err_addr)
2149 				ret = -EUCLEAN;
2150 		}
2151 	}
2152 
2153 	return ret;
2154 }
2155 
2156 /*
2157  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2158  * error
2159  *
2160  * Because the HW ECC signals an ECC error if an erase paged has even a single
2161  * bitflip, we must check each ECC error to see if it is actually an erased
2162  * page with bitflips, not a truly corrupted page.
2163  *
2164  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2165  * buf will contain raw data.
2166  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2167  * bitflips-per-ECC-sector to the caller.
2168  *
2169  */
2170 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2171 		  struct nand_chip *chip, void *buf, u64 addr)
2172 {
2173 	struct mtd_oob_region ecc;
2174 	int i;
2175 	int bitflips = 0;
2176 	int page = addr >> chip->page_shift;
2177 	int ret;
2178 	void *ecc_bytes;
2179 	void *ecc_chunk;
2180 
2181 	if (!buf)
2182 		buf = nand_get_data_buf(chip);
2183 
2184 	/* read without ecc for verification */
2185 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2186 	if (ret)
2187 		return ret;
2188 
2189 	for (i = 0; i < chip->ecc.steps; i++) {
2190 		ecc_chunk = buf + chip->ecc.size * i;
2191 
2192 		mtd_ooblayout_ecc(mtd, i, &ecc);
2193 		ecc_bytes = chip->oob_poi + ecc.offset;
2194 
2195 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2196 						  ecc_bytes, ecc.length,
2197 						  NULL, 0,
2198 						  chip->ecc.strength);
2199 		if (ret < 0)
2200 			return ret;
2201 
2202 		bitflips = max(bitflips, ret);
2203 	}
2204 
2205 	return bitflips;
2206 }
2207 
2208 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2209 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2210 {
2211 	struct brcmnand_host *host = nand_get_controller_data(chip);
2212 	struct brcmnand_controller *ctrl = host->ctrl;
2213 	u64 err_addr = 0;
2214 	int err;
2215 	bool retry = true;
2216 	bool edu_err = false;
2217 
2218 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2219 
2220 try_dmaread:
2221 	brcmnand_clear_ecc_addr(ctrl);
2222 
2223 	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2224 	    flash_dma_buf_ok(buf)) {
2225 		err = ctrl->dma_trans(host, addr, buf, oob,
2226 				      trans * FC_BYTES,
2227 				      CMD_PAGE_READ);
2228 
2229 		if (err) {
2230 			if (mtd_is_bitflip_or_eccerr(err))
2231 				err_addr = addr;
2232 			else
2233 				return -EIO;
2234 		}
2235 
2236 		if (has_edu(ctrl) && err_addr)
2237 			edu_err = true;
2238 
2239 	} else {
2240 		if (oob)
2241 			memset(oob, 0x99, mtd->oobsize);
2242 
2243 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2244 					       oob, &err_addr);
2245 	}
2246 
2247 	if (mtd_is_eccerr(err)) {
2248 		/*
2249 		 * On controller version and 7.0, 7.1 , DMA read after a
2250 		 * prior PIO read that reported uncorrectable error,
2251 		 * the DMA engine captures this error following DMA read
2252 		 * cleared only on subsequent DMA read, so just retry once
2253 		 * to clear a possible false error reported for current DMA
2254 		 * read
2255 		 */
2256 		if ((ctrl->nand_version == 0x0700) ||
2257 		    (ctrl->nand_version == 0x0701)) {
2258 			if (retry) {
2259 				retry = false;
2260 				goto try_dmaread;
2261 			}
2262 		}
2263 
2264 		/*
2265 		 * Controller version 7.2 has hw encoder to detect erased page
2266 		 * bitflips, apply sw verification for older controllers only
2267 		 */
2268 		if (ctrl->nand_version < 0x0702) {
2269 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2270 							      addr);
2271 			/* erased page bitflips corrected */
2272 			if (err >= 0)
2273 				return err;
2274 		}
2275 
2276 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2277 			(unsigned long long)err_addr);
2278 		mtd->ecc_stats.failed++;
2279 		/* NAND layer expects zero on ECC errors */
2280 		return 0;
2281 	}
2282 
2283 	if (mtd_is_bitflip(err)) {
2284 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2285 
2286 		/* in case of EDU correctable error we read again using PIO */
2287 		if (edu_err)
2288 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2289 						   oob, &err_addr);
2290 
2291 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2292 			(unsigned long long)err_addr);
2293 		mtd->ecc_stats.corrected += corrected;
2294 		/* Always exceed the software-imposed threshold */
2295 		return max(mtd->bitflip_threshold, corrected);
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2302 			      int oob_required, int page)
2303 {
2304 	struct mtd_info *mtd = nand_to_mtd(chip);
2305 	struct brcmnand_host *host = nand_get_controller_data(chip);
2306 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2307 
2308 	nand_read_page_op(chip, page, 0, NULL, 0);
2309 
2310 	return brcmnand_read(mtd, chip, host->last_addr,
2311 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2312 }
2313 
2314 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2315 				  int oob_required, int page)
2316 {
2317 	struct brcmnand_host *host = nand_get_controller_data(chip);
2318 	struct mtd_info *mtd = nand_to_mtd(chip);
2319 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2320 	int ret;
2321 
2322 	nand_read_page_op(chip, page, 0, NULL, 0);
2323 
2324 	brcmnand_set_ecc_enabled(host, 0);
2325 	ret = brcmnand_read(mtd, chip, host->last_addr,
2326 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2327 	brcmnand_set_ecc_enabled(host, 1);
2328 	return ret;
2329 }
2330 
2331 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2332 {
2333 	struct mtd_info *mtd = nand_to_mtd(chip);
2334 
2335 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2336 			mtd->writesize >> FC_SHIFT,
2337 			NULL, (u8 *)chip->oob_poi);
2338 }
2339 
2340 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2341 {
2342 	struct mtd_info *mtd = nand_to_mtd(chip);
2343 	struct brcmnand_host *host = nand_get_controller_data(chip);
2344 
2345 	brcmnand_set_ecc_enabled(host, 0);
2346 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2347 		mtd->writesize >> FC_SHIFT,
2348 		NULL, (u8 *)chip->oob_poi);
2349 	brcmnand_set_ecc_enabled(host, 1);
2350 	return 0;
2351 }
2352 
2353 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2354 			  u64 addr, const u32 *buf, u8 *oob)
2355 {
2356 	struct brcmnand_host *host = nand_get_controller_data(chip);
2357 	struct brcmnand_controller *ctrl = host->ctrl;
2358 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2359 	int status, ret = 0;
2360 
2361 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2362 
2363 	if (unlikely((unsigned long)buf & 0x03)) {
2364 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2365 		buf = (u32 *)((unsigned long)buf & ~0x03);
2366 	}
2367 
2368 	brcmnand_wp(mtd, 0);
2369 
2370 	for (i = 0; i < ctrl->max_oob; i += 4)
2371 		oob_reg_write(ctrl, i, 0xffffffff);
2372 
2373 	if (mtd->oops_panic_write)
2374 		/* switch to interrupt polling and PIO mode */
2375 		disable_ctrl_irqs(ctrl);
2376 
2377 	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2378 		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2379 				    CMD_PROGRAM_PAGE))
2380 
2381 			ret = -EIO;
2382 
2383 		goto out;
2384 	}
2385 
2386 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2387 		/* full address MUST be set before populating FC */
2388 		brcmnand_set_cmd_addr(mtd, addr);
2389 
2390 		if (buf) {
2391 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2392 
2393 			for (j = 0; j < FC_WORDS; j++, buf++)
2394 				brcmnand_write_fc(ctrl, j, *buf);
2395 
2396 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2397 		} else if (oob) {
2398 			for (j = 0; j < FC_WORDS; j++)
2399 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2400 		}
2401 
2402 		if (oob) {
2403 			oob += write_oob_to_regs(ctrl, i, oob,
2404 					mtd->oobsize / trans,
2405 					host->hwcfg.sector_size_1k);
2406 		}
2407 
2408 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2409 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2410 		status = brcmnand_waitfunc(chip);
2411 
2412 		if (status & NAND_STATUS_FAIL) {
2413 			dev_info(ctrl->dev, "program failed at %llx\n",
2414 				(unsigned long long)addr);
2415 			ret = -EIO;
2416 			goto out;
2417 		}
2418 	}
2419 out:
2420 	brcmnand_wp(mtd, 1);
2421 	return ret;
2422 }
2423 
2424 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2425 			       int oob_required, int page)
2426 {
2427 	struct mtd_info *mtd = nand_to_mtd(chip);
2428 	struct brcmnand_host *host = nand_get_controller_data(chip);
2429 	void *oob = oob_required ? chip->oob_poi : NULL;
2430 
2431 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2432 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2433 
2434 	return nand_prog_page_end_op(chip);
2435 }
2436 
2437 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2438 				   int oob_required, int page)
2439 {
2440 	struct mtd_info *mtd = nand_to_mtd(chip);
2441 	struct brcmnand_host *host = nand_get_controller_data(chip);
2442 	void *oob = oob_required ? chip->oob_poi : NULL;
2443 
2444 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2445 	brcmnand_set_ecc_enabled(host, 0);
2446 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2447 	brcmnand_set_ecc_enabled(host, 1);
2448 
2449 	return nand_prog_page_end_op(chip);
2450 }
2451 
2452 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2453 {
2454 	return brcmnand_write(nand_to_mtd(chip), chip,
2455 			      (u64)page << chip->page_shift, NULL,
2456 			      chip->oob_poi);
2457 }
2458 
2459 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2460 {
2461 	struct mtd_info *mtd = nand_to_mtd(chip);
2462 	struct brcmnand_host *host = nand_get_controller_data(chip);
2463 	int ret;
2464 
2465 	brcmnand_set_ecc_enabled(host, 0);
2466 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2467 				 (u8 *)chip->oob_poi);
2468 	brcmnand_set_ecc_enabled(host, 1);
2469 
2470 	return ret;
2471 }
2472 
2473 /***********************************************************************
2474  * Per-CS setup (1 NAND device)
2475  ***********************************************************************/
2476 
2477 static int brcmnand_set_cfg(struct brcmnand_host *host,
2478 			    struct brcmnand_cfg *cfg)
2479 {
2480 	struct brcmnand_controller *ctrl = host->ctrl;
2481 	struct nand_chip *chip = &host->chip;
2482 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2483 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2484 			BRCMNAND_CS_CFG_EXT);
2485 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2486 			BRCMNAND_CS_ACC_CONTROL);
2487 	u8 block_size = 0, page_size = 0, device_size = 0;
2488 	u32 tmp;
2489 
2490 	if (ctrl->block_sizes) {
2491 		int i, found;
2492 
2493 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2494 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2495 				block_size = i;
2496 				found = 1;
2497 			}
2498 		if (!found) {
2499 			dev_warn(ctrl->dev, "invalid block size %u\n",
2500 					cfg->block_size);
2501 			return -EINVAL;
2502 		}
2503 	} else {
2504 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2505 	}
2506 
2507 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2508 				cfg->block_size > ctrl->max_block_size)) {
2509 		dev_warn(ctrl->dev, "invalid block size %u\n",
2510 				cfg->block_size);
2511 		block_size = 0;
2512 	}
2513 
2514 	if (ctrl->page_sizes) {
2515 		int i, found;
2516 
2517 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2518 			if (ctrl->page_sizes[i] == cfg->page_size) {
2519 				page_size = i;
2520 				found = 1;
2521 			}
2522 		if (!found) {
2523 			dev_warn(ctrl->dev, "invalid page size %u\n",
2524 					cfg->page_size);
2525 			return -EINVAL;
2526 		}
2527 	} else {
2528 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2529 	}
2530 
2531 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2532 				cfg->page_size > ctrl->max_page_size)) {
2533 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2534 		return -EINVAL;
2535 	}
2536 
2537 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2538 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2539 			(unsigned long long)cfg->device_size);
2540 		return -EINVAL;
2541 	}
2542 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2543 
2544 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2545 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2546 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2547 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2548 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2549 	if (cfg_offs == cfg_ext_offs) {
2550 		tmp |= (page_size << ctrl->page_size_shift) |
2551 		       (block_size << CFG_BLK_SIZE_SHIFT);
2552 		nand_writereg(ctrl, cfg_offs, tmp);
2553 	} else {
2554 		nand_writereg(ctrl, cfg_offs, tmp);
2555 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2556 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2557 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2558 	}
2559 
2560 	tmp = nand_readreg(ctrl, acc_control_offs);
2561 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2562 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2563 	if (ctrl->nand_version >= 0x0302) {
2564 		tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2565 		tmp |= cfg->spare_area_size;
2566 	}
2567 	nand_writereg(ctrl, acc_control_offs, tmp);
2568 
2569 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2570 
2571 	/* threshold = ceil(BCH-level * 0.75) */
2572 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2573 
2574 	return 0;
2575 }
2576 
2577 static void brcmnand_print_cfg(struct brcmnand_host *host,
2578 			       char *buf, struct brcmnand_cfg *cfg)
2579 {
2580 	buf += sprintf(buf,
2581 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2582 		(unsigned long long)cfg->device_size >> 20,
2583 		cfg->block_size >> 10,
2584 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2585 		cfg->page_size >= 1024 ? "KiB" : "B",
2586 		cfg->spare_area_size, cfg->device_width);
2587 
2588 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2589 	if (is_hamming_ecc(host->ctrl, cfg))
2590 		sprintf(buf, ", Hamming ECC");
2591 	else if (cfg->sector_size_1k)
2592 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2593 	else
2594 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2595 }
2596 
2597 /*
2598  * Minimum number of bytes to address a page. Calculated as:
2599  *     roundup(log2(size / page-size) / 8)
2600  *
2601  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2602  *     OK because many other things will break if 'size' is irregular...
2603  */
2604 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2605 {
2606 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2607 }
2608 
2609 static int brcmnand_setup_dev(struct brcmnand_host *host)
2610 {
2611 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2612 	struct nand_chip *chip = &host->chip;
2613 	const struct nand_ecc_props *requirements =
2614 		nanddev_get_ecc_requirements(&chip->base);
2615 	struct brcmnand_controller *ctrl = host->ctrl;
2616 	struct brcmnand_cfg *cfg = &host->hwcfg;
2617 	char msg[128];
2618 	u32 offs, tmp, oob_sector;
2619 	int ret;
2620 
2621 	memset(cfg, 0, sizeof(*cfg));
2622 
2623 	ret = of_property_read_u32(nand_get_flash_node(chip),
2624 				   "brcm,nand-oob-sector-size",
2625 				   &oob_sector);
2626 	if (ret) {
2627 		/* Use detected size */
2628 		cfg->spare_area_size = mtd->oobsize /
2629 					(mtd->writesize >> FC_SHIFT);
2630 	} else {
2631 		cfg->spare_area_size = oob_sector;
2632 	}
2633 	if (cfg->spare_area_size > ctrl->max_oob)
2634 		cfg->spare_area_size = ctrl->max_oob;
2635 	/*
2636 	 * Set oobsize to be consistent with controller's spare_area_size, as
2637 	 * the rest is inaccessible.
2638 	 */
2639 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2640 
2641 	cfg->device_size = mtd->size;
2642 	cfg->block_size = mtd->erasesize;
2643 	cfg->page_size = mtd->writesize;
2644 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2645 	cfg->col_adr_bytes = 2;
2646 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2647 
2648 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2649 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2650 			chip->ecc.engine_type);
2651 		return -EINVAL;
2652 	}
2653 
2654 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2655 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2656 			/* Default to Hamming for 1-bit ECC, if unspecified */
2657 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2658 		else
2659 			/* Otherwise, BCH */
2660 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2661 	}
2662 
2663 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2664 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2665 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2666 			chip->ecc.strength, chip->ecc.size);
2667 		return -EINVAL;
2668 	}
2669 
2670 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2671 	    (!chip->ecc.size || !chip->ecc.strength)) {
2672 		if (requirements->step_size && requirements->strength) {
2673 			/* use detected ECC parameters */
2674 			chip->ecc.size = requirements->step_size;
2675 			chip->ecc.strength = requirements->strength;
2676 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2677 				chip->ecc.size, chip->ecc.strength);
2678 		}
2679 	}
2680 
2681 	switch (chip->ecc.size) {
2682 	case 512:
2683 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2684 			cfg->ecc_level = 15;
2685 		else
2686 			cfg->ecc_level = chip->ecc.strength;
2687 		cfg->sector_size_1k = 0;
2688 		break;
2689 	case 1024:
2690 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2691 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2692 			return -EINVAL;
2693 		}
2694 		if (chip->ecc.strength & 0x1) {
2695 			dev_err(ctrl->dev,
2696 				"odd ECC not supported with 1KB sectors\n");
2697 			return -EINVAL;
2698 		}
2699 
2700 		cfg->ecc_level = chip->ecc.strength >> 1;
2701 		cfg->sector_size_1k = 1;
2702 		break;
2703 	default:
2704 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2705 			chip->ecc.size);
2706 		return -EINVAL;
2707 	}
2708 
2709 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2710 	if (mtd->writesize > 512)
2711 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2712 	else
2713 		cfg->ful_adr_bytes += 1;
2714 
2715 	ret = brcmnand_set_cfg(host, cfg);
2716 	if (ret)
2717 		return ret;
2718 
2719 	brcmnand_set_ecc_enabled(host, 1);
2720 
2721 	brcmnand_print_cfg(host, msg, cfg);
2722 	dev_info(ctrl->dev, "detected %s\n", msg);
2723 
2724 	/* Configure ACC_CONTROL */
2725 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2726 	tmp = nand_readreg(ctrl, offs);
2727 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2728 	tmp &= ~ACC_CONTROL_RD_ERASED;
2729 
2730 	/* We need to turn on Read from erased paged protected by ECC */
2731 	if (ctrl->nand_version >= 0x0702)
2732 		tmp |= ACC_CONTROL_RD_ERASED;
2733 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2734 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2735 		tmp &= ~ACC_CONTROL_PREFETCH;
2736 
2737 	nand_writereg(ctrl, offs, tmp);
2738 
2739 	return 0;
2740 }
2741 
2742 static int brcmnand_attach_chip(struct nand_chip *chip)
2743 {
2744 	struct mtd_info *mtd = nand_to_mtd(chip);
2745 	struct brcmnand_host *host = nand_get_controller_data(chip);
2746 	int ret;
2747 
2748 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2749 	/*
2750 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2751 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2752 	 * needed.
2753 	 */
2754 	chip->options |= NAND_USES_DMA;
2755 
2756 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2757 		chip->bbt_options |= NAND_BBT_NO_OOB;
2758 
2759 	if (brcmnand_setup_dev(host))
2760 		return -ENXIO;
2761 
2762 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2763 
2764 	/* only use our internal HW threshold */
2765 	mtd->bitflip_threshold = 1;
2766 
2767 	ret = brcmstb_choose_ecc_layout(host);
2768 
2769 	/* If OOB is written with ECC enabled it will cause ECC errors */
2770 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2771 		chip->ecc.write_oob = brcmnand_write_oob_raw;
2772 		chip->ecc.read_oob = brcmnand_read_oob_raw;
2773 	}
2774 
2775 	return ret;
2776 }
2777 
2778 static const struct nand_controller_ops brcmnand_controller_ops = {
2779 	.attach_chip = brcmnand_attach_chip,
2780 };
2781 
2782 static int brcmnand_init_cs(struct brcmnand_host *host,
2783 			    const char * const *part_probe_types)
2784 {
2785 	struct brcmnand_controller *ctrl = host->ctrl;
2786 	struct device *dev = ctrl->dev;
2787 	struct mtd_info *mtd;
2788 	struct nand_chip *chip;
2789 	int ret;
2790 	u16 cfg_offs;
2791 
2792 	mtd = nand_to_mtd(&host->chip);
2793 	chip = &host->chip;
2794 
2795 	nand_set_controller_data(chip, host);
2796 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2797 				   host->cs);
2798 	if (!mtd->name)
2799 		return -ENOMEM;
2800 
2801 	mtd->owner = THIS_MODULE;
2802 	mtd->dev.parent = dev;
2803 
2804 	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2805 	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2806 	chip->legacy.waitfunc = brcmnand_waitfunc;
2807 	chip->legacy.read_byte = brcmnand_read_byte;
2808 	chip->legacy.read_buf = brcmnand_read_buf;
2809 	chip->legacy.write_buf = brcmnand_write_buf;
2810 
2811 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2812 	chip->ecc.read_page = brcmnand_read_page;
2813 	chip->ecc.write_page = brcmnand_write_page;
2814 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2815 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2816 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2817 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2818 	chip->ecc.read_oob = brcmnand_read_oob;
2819 	chip->ecc.write_oob = brcmnand_write_oob;
2820 
2821 	chip->controller = &ctrl->controller;
2822 
2823 	/*
2824 	 * The bootloader might have configured 16bit mode but
2825 	 * NAND READID command only works in 8bit mode. We force
2826 	 * 8bit mode here to ensure that NAND READID commands works.
2827 	 */
2828 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2829 	nand_writereg(ctrl, cfg_offs,
2830 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2831 
2832 	ret = nand_scan(chip, 1);
2833 	if (ret)
2834 		return ret;
2835 
2836 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2837 	if (ret)
2838 		nand_cleanup(chip);
2839 
2840 	return ret;
2841 }
2842 
2843 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2844 					    int restore)
2845 {
2846 	struct brcmnand_controller *ctrl = host->ctrl;
2847 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2848 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2849 			BRCMNAND_CS_CFG_EXT);
2850 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2851 			BRCMNAND_CS_ACC_CONTROL);
2852 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2853 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2854 
2855 	if (restore) {
2856 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2857 		if (cfg_offs != cfg_ext_offs)
2858 			nand_writereg(ctrl, cfg_ext_offs,
2859 				      host->hwcfg.config_ext);
2860 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2861 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2862 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2863 	} else {
2864 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2865 		if (cfg_offs != cfg_ext_offs)
2866 			host->hwcfg.config_ext =
2867 				nand_readreg(ctrl, cfg_ext_offs);
2868 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2869 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2870 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2871 	}
2872 }
2873 
2874 static int brcmnand_suspend(struct device *dev)
2875 {
2876 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2877 	struct brcmnand_host *host;
2878 
2879 	list_for_each_entry(host, &ctrl->host_list, node)
2880 		brcmnand_save_restore_cs_config(host, 0);
2881 
2882 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2883 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2884 	ctrl->corr_stat_threshold =
2885 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2886 
2887 	if (has_flash_dma(ctrl))
2888 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2889 	else if (has_edu(ctrl))
2890 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2891 
2892 	return 0;
2893 }
2894 
2895 static int brcmnand_resume(struct device *dev)
2896 {
2897 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2898 	struct brcmnand_host *host;
2899 
2900 	if (has_flash_dma(ctrl)) {
2901 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2902 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2903 	}
2904 
2905 	if (has_edu(ctrl)) {
2906 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2907 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2908 		edu_readl(ctrl, EDU_CONFIG);
2909 		brcmnand_edu_init(ctrl);
2910 	}
2911 
2912 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2913 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2914 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2915 			ctrl->corr_stat_threshold);
2916 	if (ctrl->soc) {
2917 		/* Clear/re-enable interrupt */
2918 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2919 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2920 	}
2921 
2922 	list_for_each_entry(host, &ctrl->host_list, node) {
2923 		struct nand_chip *chip = &host->chip;
2924 
2925 		brcmnand_save_restore_cs_config(host, 1);
2926 
2927 		/* Reset the chip, required by some chips after power-up */
2928 		nand_reset_op(chip);
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 const struct dev_pm_ops brcmnand_pm_ops = {
2935 	.suspend		= brcmnand_suspend,
2936 	.resume			= brcmnand_resume,
2937 };
2938 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2939 
2940 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
2941 	{ .compatible = "brcm,brcmnand-v2.1" },
2942 	{ .compatible = "brcm,brcmnand-v2.2" },
2943 	{ .compatible = "brcm,brcmnand-v4.0" },
2944 	{ .compatible = "brcm,brcmnand-v5.0" },
2945 	{ .compatible = "brcm,brcmnand-v6.0" },
2946 	{ .compatible = "brcm,brcmnand-v6.1" },
2947 	{ .compatible = "brcm,brcmnand-v6.2" },
2948 	{ .compatible = "brcm,brcmnand-v7.0" },
2949 	{ .compatible = "brcm,brcmnand-v7.1" },
2950 	{ .compatible = "brcm,brcmnand-v7.2" },
2951 	{ .compatible = "brcm,brcmnand-v7.3" },
2952 	{},
2953 };
2954 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2955 
2956 /***********************************************************************
2957  * Platform driver setup (per controller)
2958  ***********************************************************************/
2959 static int brcmnand_edu_setup(struct platform_device *pdev)
2960 {
2961 	struct device *dev = &pdev->dev;
2962 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2963 	struct resource *res;
2964 	int ret;
2965 
2966 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2967 	if (res) {
2968 		ctrl->edu_base = devm_ioremap_resource(dev, res);
2969 		if (IS_ERR(ctrl->edu_base))
2970 			return PTR_ERR(ctrl->edu_base);
2971 
2972 		ctrl->edu_offsets = edu_regs;
2973 
2974 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2975 			   EDU_CONFIG_SWAP_CFG);
2976 		edu_readl(ctrl, EDU_CONFIG);
2977 
2978 		/* initialize edu */
2979 		brcmnand_edu_init(ctrl);
2980 
2981 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2982 		if (ctrl->edu_irq < 0) {
2983 			dev_warn(dev,
2984 				 "FLASH EDU enabled, using ctlrdy irq\n");
2985 		} else {
2986 			ret = devm_request_irq(dev, ctrl->edu_irq,
2987 					       brcmnand_edu_irq, 0,
2988 					       "brcmnand-edu", ctrl);
2989 			if (ret < 0) {
2990 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2991 					ctrl->edu_irq, ret);
2992 				return ret;
2993 			}
2994 
2995 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
2996 				 ctrl->edu_irq);
2997 		}
2998 	}
2999 
3000 	return 0;
3001 }
3002 
3003 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3004 {
3005 	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3006 	struct device *dev = &pdev->dev;
3007 	struct device_node *dn = dev->of_node, *child;
3008 	struct brcmnand_controller *ctrl;
3009 	struct brcmnand_host *host;
3010 	struct resource *res;
3011 	int ret;
3012 
3013 	if (dn && !of_match_node(brcmnand_of_match, dn))
3014 		return -ENODEV;
3015 
3016 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3017 	if (!ctrl)
3018 		return -ENOMEM;
3019 
3020 	dev_set_drvdata(dev, ctrl);
3021 	ctrl->dev = dev;
3022 	ctrl->soc = soc;
3023 
3024 	/* Enable the static key if the soc provides I/O operations indicating
3025 	 * that a non-memory mapped IO access path must be used
3026 	 */
3027 	if (brcmnand_soc_has_ops(ctrl->soc))
3028 		static_branch_enable(&brcmnand_soc_has_ops_key);
3029 
3030 	init_completion(&ctrl->done);
3031 	init_completion(&ctrl->dma_done);
3032 	init_completion(&ctrl->edu_done);
3033 	nand_controller_init(&ctrl->controller);
3034 	ctrl->controller.ops = &brcmnand_controller_ops;
3035 	INIT_LIST_HEAD(&ctrl->host_list);
3036 
3037 	/* NAND register range */
3038 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3039 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3040 	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3041 		return PTR_ERR(ctrl->nand_base);
3042 
3043 	/* Enable clock before using NAND registers */
3044 	ctrl->clk = devm_clk_get(dev, "nand");
3045 	if (!IS_ERR(ctrl->clk)) {
3046 		ret = clk_prepare_enable(ctrl->clk);
3047 		if (ret)
3048 			return ret;
3049 	} else {
3050 		ret = PTR_ERR(ctrl->clk);
3051 		if (ret == -EPROBE_DEFER)
3052 			return ret;
3053 
3054 		ctrl->clk = NULL;
3055 	}
3056 
3057 	/* Initialize NAND revision */
3058 	ret = brcmnand_revision_init(ctrl);
3059 	if (ret)
3060 		goto err;
3061 
3062 	/*
3063 	 * Most chips have this cache at a fixed offset within 'nand' block.
3064 	 * Some must specify this region separately.
3065 	 */
3066 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3067 	if (res) {
3068 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3069 		if (IS_ERR(ctrl->nand_fc)) {
3070 			ret = PTR_ERR(ctrl->nand_fc);
3071 			goto err;
3072 		}
3073 	} else {
3074 		ctrl->nand_fc = ctrl->nand_base +
3075 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3076 	}
3077 
3078 	/* FLASH_DMA */
3079 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3080 	if (res) {
3081 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3082 		if (IS_ERR(ctrl->flash_dma_base)) {
3083 			ret = PTR_ERR(ctrl->flash_dma_base);
3084 			goto err;
3085 		}
3086 
3087 		/* initialize the dma version */
3088 		brcmnand_flash_dma_revision_init(ctrl);
3089 
3090 		ret = -EIO;
3091 		if (ctrl->nand_version >= 0x0700)
3092 			ret = dma_set_mask_and_coherent(&pdev->dev,
3093 							DMA_BIT_MASK(40));
3094 		if (ret)
3095 			ret = dma_set_mask_and_coherent(&pdev->dev,
3096 							DMA_BIT_MASK(32));
3097 		if (ret)
3098 			goto err;
3099 
3100 		/* linked-list and stop on error */
3101 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3102 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3103 
3104 		/* Allocate descriptor(s) */
3105 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3106 						     sizeof(*ctrl->dma_desc),
3107 						     &ctrl->dma_pa, GFP_KERNEL);
3108 		if (!ctrl->dma_desc) {
3109 			ret = -ENOMEM;
3110 			goto err;
3111 		}
3112 
3113 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3114 		if ((int)ctrl->dma_irq < 0) {
3115 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3116 			ret = -ENODEV;
3117 			goto err;
3118 		}
3119 
3120 		ret = devm_request_irq(dev, ctrl->dma_irq,
3121 				brcmnand_dma_irq, 0, DRV_NAME,
3122 				ctrl);
3123 		if (ret < 0) {
3124 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3125 					ctrl->dma_irq, ret);
3126 			goto err;
3127 		}
3128 
3129 		dev_info(dev, "enabling FLASH_DMA\n");
3130 		/* set flash dma transfer function to call */
3131 		ctrl->dma_trans = brcmnand_dma_trans;
3132 	} else	{
3133 		ret = brcmnand_edu_setup(pdev);
3134 		if (ret < 0)
3135 			goto err;
3136 
3137 		if (has_edu(ctrl))
3138 			/* set edu transfer function to call */
3139 			ctrl->dma_trans = brcmnand_edu_trans;
3140 	}
3141 
3142 	/* Disable automatic device ID config, direct addressing */
3143 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3144 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3145 	/* Disable XOR addressing */
3146 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3147 
3148 	if (ctrl->features & BRCMNAND_HAS_WP) {
3149 		/* Permanently disable write protection */
3150 		if (wp_on == 2)
3151 			brcmnand_set_wp(ctrl, false);
3152 	} else {
3153 		wp_on = 0;
3154 	}
3155 
3156 	/* IRQ */
3157 	ctrl->irq = platform_get_irq_optional(pdev, 0);
3158 	if (ctrl->irq > 0) {
3159 		/*
3160 		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3161 		 * interesting ways
3162 		 */
3163 		if (soc) {
3164 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3165 					       DRV_NAME, ctrl);
3166 
3167 			/* Enable interrupt */
3168 			ctrl->soc->ctlrdy_ack(ctrl->soc);
3169 			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3170 		} else {
3171 			/* Use standard interrupt infrastructure */
3172 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3173 					       DRV_NAME, ctrl);
3174 		}
3175 		if (ret < 0) {
3176 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3177 				ctrl->irq, ret);
3178 			goto err;
3179 		}
3180 	}
3181 
3182 	for_each_available_child_of_node(dn, child) {
3183 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3184 
3185 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3186 			if (!host) {
3187 				of_node_put(child);
3188 				ret = -ENOMEM;
3189 				goto err;
3190 			}
3191 			host->pdev = pdev;
3192 			host->ctrl = ctrl;
3193 
3194 			ret = of_property_read_u32(child, "reg", &host->cs);
3195 			if (ret) {
3196 				dev_err(dev, "can't get chip-select\n");
3197 				devm_kfree(dev, host);
3198 				continue;
3199 			}
3200 
3201 			nand_set_flash_node(&host->chip, child);
3202 
3203 			ret = brcmnand_init_cs(host, NULL);
3204 			if (ret) {
3205 				devm_kfree(dev, host);
3206 				continue; /* Try all chip-selects */
3207 			}
3208 
3209 			list_add_tail(&host->node, &ctrl->host_list);
3210 		}
3211 	}
3212 
3213 	if (!list_empty(&ctrl->host_list))
3214 		return 0;
3215 
3216 	if (!pd) {
3217 		ret = -ENODEV;
3218 		goto err;
3219 	}
3220 
3221 	/* If we got there we must have been probing via platform data */
3222 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3223 	if (!host) {
3224 		ret = -ENOMEM;
3225 		goto err;
3226 	}
3227 	host->pdev = pdev;
3228 	host->ctrl = ctrl;
3229 	host->cs = pd->chip_select;
3230 	host->chip.ecc.size = pd->ecc_stepsize;
3231 	host->chip.ecc.strength = pd->ecc_strength;
3232 
3233 	ret = brcmnand_init_cs(host, pd->part_probe_types);
3234 	if (ret)
3235 		goto err;
3236 
3237 	list_add_tail(&host->node, &ctrl->host_list);
3238 
3239 	/* No chip-selects could initialize properly */
3240 	if (list_empty(&ctrl->host_list)) {
3241 		ret = -ENODEV;
3242 		goto err;
3243 	}
3244 
3245 	return 0;
3246 
3247 err:
3248 	clk_disable_unprepare(ctrl->clk);
3249 	return ret;
3250 
3251 }
3252 EXPORT_SYMBOL_GPL(brcmnand_probe);
3253 
3254 int brcmnand_remove(struct platform_device *pdev)
3255 {
3256 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3257 	struct brcmnand_host *host;
3258 	struct nand_chip *chip;
3259 	int ret;
3260 
3261 	list_for_each_entry(host, &ctrl->host_list, node) {
3262 		chip = &host->chip;
3263 		ret = mtd_device_unregister(nand_to_mtd(chip));
3264 		WARN_ON(ret);
3265 		nand_cleanup(chip);
3266 	}
3267 
3268 	clk_disable_unprepare(ctrl->clk);
3269 
3270 	dev_set_drvdata(&pdev->dev, NULL);
3271 
3272 	return 0;
3273 }
3274 EXPORT_SYMBOL_GPL(brcmnand_remove);
3275 
3276 MODULE_LICENSE("GPL v2");
3277 MODULE_AUTHOR("Kevin Cernekee");
3278 MODULE_AUTHOR("Brian Norris");
3279 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3280 MODULE_ALIAS("platform:brcmnand");
3281