xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/version.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/log2.h>
31 
32 #include "brcmnand.h"
33 
34 /*
35  * This flag controls if WP stays on between erase/write commands to mitigate
36  * flash corruption due to power glitches. Values:
37  * 0: NAND_WP is not used or not available
38  * 1: NAND_WP is set by default, cleared for erase/write operations
39  * 2: NAND_WP is always cleared
40  */
41 static int wp_on = 1;
42 module_param(wp_on, int, 0444);
43 
44 /***********************************************************************
45  * Definitions
46  ***********************************************************************/
47 
48 #define DRV_NAME			"brcmnand"
49 
50 #define CMD_NULL			0x00
51 #define CMD_PAGE_READ			0x01
52 #define CMD_SPARE_AREA_READ		0x02
53 #define CMD_STATUS_READ			0x03
54 #define CMD_PROGRAM_PAGE		0x04
55 #define CMD_PROGRAM_SPARE_AREA		0x05
56 #define CMD_COPY_BACK			0x06
57 #define CMD_DEVICE_ID_READ		0x07
58 #define CMD_BLOCK_ERASE			0x08
59 #define CMD_FLASH_RESET			0x09
60 #define CMD_BLOCKS_LOCK			0x0a
61 #define CMD_BLOCKS_LOCK_DOWN		0x0b
62 #define CMD_BLOCKS_UNLOCK		0x0c
63 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
64 #define CMD_PARAMETER_READ		0x0e
65 #define CMD_PARAMETER_CHANGE_COL	0x0f
66 #define CMD_LOW_LEVEL_OP		0x10
67 
68 struct brcm_nand_dma_desc {
69 	u32 next_desc;
70 	u32 next_desc_ext;
71 	u32 cmd_irq;
72 	u32 dram_addr;
73 	u32 dram_addr_ext;
74 	u32 tfr_len;
75 	u32 total_len;
76 	u32 flash_addr;
77 	u32 flash_addr_ext;
78 	u32 cs;
79 	u32 pad2[5];
80 	u32 status_valid;
81 } __packed;
82 
83 /* Bitfields for brcm_nand_dma_desc::status_valid */
84 #define FLASH_DMA_ECC_ERROR	(1 << 8)
85 #define FLASH_DMA_CORR_ERROR	(1 << 9)
86 
87 /* Bitfields for DMA_MODE */
88 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
89 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
90 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
91 						FLASH_DMA_MODE_MODE)
92 
93 /* 512B flash cache in the NAND controller HW */
94 #define FC_SHIFT		9U
95 #define FC_BYTES		512U
96 #define FC_WORDS		(FC_BYTES >> 2)
97 
98 #define BRCMNAND_MIN_PAGESIZE	512
99 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
100 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
101 
102 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
103 #define NAND_POLL_STATUS_TIMEOUT_MS	100
104 
105 /* flash_dma registers */
106 enum flash_dma_reg {
107 	FLASH_DMA_REVISION = 0,
108 	FLASH_DMA_FIRST_DESC,
109 	FLASH_DMA_FIRST_DESC_EXT,
110 	FLASH_DMA_CTRL,
111 	FLASH_DMA_MODE,
112 	FLASH_DMA_STATUS,
113 	FLASH_DMA_INTERRUPT_DESC,
114 	FLASH_DMA_INTERRUPT_DESC_EXT,
115 	FLASH_DMA_ERROR_STATUS,
116 	FLASH_DMA_CURRENT_DESC,
117 	FLASH_DMA_CURRENT_DESC_EXT,
118 };
119 
120 /* flash_dma registers v0*/
121 static const u16 flash_dma_regs_v0[] = {
122 	[FLASH_DMA_REVISION]		= 0x00,
123 	[FLASH_DMA_FIRST_DESC]		= 0x04,
124 	[FLASH_DMA_CTRL]		= 0x08,
125 	[FLASH_DMA_MODE]		= 0x0c,
126 	[FLASH_DMA_STATUS]		= 0x10,
127 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
128 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
129 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
130 };
131 
132 /* flash_dma registers v1*/
133 static const u16 flash_dma_regs_v1[] = {
134 	[FLASH_DMA_REVISION]		= 0x00,
135 	[FLASH_DMA_FIRST_DESC]		= 0x04,
136 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
137 	[FLASH_DMA_CTRL]		= 0x0c,
138 	[FLASH_DMA_MODE]		= 0x10,
139 	[FLASH_DMA_STATUS]		= 0x14,
140 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
141 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
142 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
143 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
144 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
145 };
146 
147 /* flash_dma registers v4 */
148 static const u16 flash_dma_regs_v4[] = {
149 	[FLASH_DMA_REVISION]		= 0x00,
150 	[FLASH_DMA_FIRST_DESC]		= 0x08,
151 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
152 	[FLASH_DMA_CTRL]		= 0x10,
153 	[FLASH_DMA_MODE]		= 0x14,
154 	[FLASH_DMA_STATUS]		= 0x18,
155 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
156 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
157 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
158 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
159 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
160 };
161 
162 /* Controller feature flags */
163 enum {
164 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
165 	BRCMNAND_HAS_PREFETCH			= BIT(1),
166 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
167 	BRCMNAND_HAS_WP				= BIT(3),
168 };
169 
170 struct brcmnand_controller {
171 	struct device		*dev;
172 	struct nand_controller	controller;
173 	void __iomem		*nand_base;
174 	void __iomem		*nand_fc; /* flash cache */
175 	void __iomem		*flash_dma_base;
176 	unsigned int		irq;
177 	unsigned int		dma_irq;
178 	int			nand_version;
179 
180 	/* Some SoCs provide custom interrupt status register(s) */
181 	struct brcmnand_soc	*soc;
182 
183 	/* Some SoCs have a gateable clock for the controller */
184 	struct clk		*clk;
185 
186 	int			cmd_pending;
187 	bool			dma_pending;
188 	struct completion	done;
189 	struct completion	dma_done;
190 
191 	/* List of NAND hosts (one for each chip-select) */
192 	struct list_head host_list;
193 
194 	/* flash_dma reg */
195 	const u16		*flash_dma_offsets;
196 	struct brcm_nand_dma_desc *dma_desc;
197 	dma_addr_t		dma_pa;
198 
199 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
200 	u8			flash_cache[FC_BYTES];
201 
202 	/* Controller revision details */
203 	const u16		*reg_offsets;
204 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
205 	const u8		*cs_offsets; /* within each chip-select */
206 	const u8		*cs0_offsets; /* within CS0, if different */
207 	unsigned int		max_block_size;
208 	const unsigned int	*block_sizes;
209 	unsigned int		max_page_size;
210 	const unsigned int	*page_sizes;
211 	unsigned int		max_oob;
212 	u32			features;
213 
214 	/* for low-power standby/resume only */
215 	u32			nand_cs_nand_select;
216 	u32			nand_cs_nand_xor;
217 	u32			corr_stat_threshold;
218 	u32			flash_dma_mode;
219 	bool			pio_poll_mode;
220 };
221 
222 struct brcmnand_cfg {
223 	u64			device_size;
224 	unsigned int		block_size;
225 	unsigned int		page_size;
226 	unsigned int		spare_area_size;
227 	unsigned int		device_width;
228 	unsigned int		col_adr_bytes;
229 	unsigned int		blk_adr_bytes;
230 	unsigned int		ful_adr_bytes;
231 	unsigned int		sector_size_1k;
232 	unsigned int		ecc_level;
233 	/* use for low-power standby/resume only */
234 	u32			acc_control;
235 	u32			config;
236 	u32			config_ext;
237 	u32			timing_1;
238 	u32			timing_2;
239 };
240 
241 struct brcmnand_host {
242 	struct list_head	node;
243 
244 	struct nand_chip	chip;
245 	struct platform_device	*pdev;
246 	int			cs;
247 
248 	unsigned int		last_cmd;
249 	unsigned int		last_byte;
250 	u64			last_addr;
251 	struct brcmnand_cfg	hwcfg;
252 	struct brcmnand_controller *ctrl;
253 };
254 
255 enum brcmnand_reg {
256 	BRCMNAND_CMD_START = 0,
257 	BRCMNAND_CMD_EXT_ADDRESS,
258 	BRCMNAND_CMD_ADDRESS,
259 	BRCMNAND_INTFC_STATUS,
260 	BRCMNAND_CS_SELECT,
261 	BRCMNAND_CS_XOR,
262 	BRCMNAND_LL_OP,
263 	BRCMNAND_CS0_BASE,
264 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
265 	BRCMNAND_CORR_THRESHOLD,
266 	BRCMNAND_CORR_THRESHOLD_EXT,
267 	BRCMNAND_UNCORR_COUNT,
268 	BRCMNAND_CORR_COUNT,
269 	BRCMNAND_CORR_EXT_ADDR,
270 	BRCMNAND_CORR_ADDR,
271 	BRCMNAND_UNCORR_EXT_ADDR,
272 	BRCMNAND_UNCORR_ADDR,
273 	BRCMNAND_SEMAPHORE,
274 	BRCMNAND_ID,
275 	BRCMNAND_ID_EXT,
276 	BRCMNAND_LL_RDATA,
277 	BRCMNAND_OOB_READ_BASE,
278 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
279 	BRCMNAND_OOB_WRITE_BASE,
280 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
281 	BRCMNAND_FC_BASE,
282 };
283 
284 /* BRCMNAND v4.0 */
285 static const u16 brcmnand_regs_v40[] = {
286 	[BRCMNAND_CMD_START]		=  0x04,
287 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
288 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
289 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
290 	[BRCMNAND_CS_SELECT]		=  0x14,
291 	[BRCMNAND_CS_XOR]		=  0x18,
292 	[BRCMNAND_LL_OP]		= 0x178,
293 	[BRCMNAND_CS0_BASE]		=  0x40,
294 	[BRCMNAND_CS1_BASE]		=  0xd0,
295 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
296 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
297 	[BRCMNAND_UNCORR_COUNT]		=     0,
298 	[BRCMNAND_CORR_COUNT]		=     0,
299 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
300 	[BRCMNAND_CORR_ADDR]		=  0x74,
301 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
302 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
303 	[BRCMNAND_SEMAPHORE]		=  0x58,
304 	[BRCMNAND_ID]			=  0x60,
305 	[BRCMNAND_ID_EXT]		=  0x64,
306 	[BRCMNAND_LL_RDATA]		= 0x17c,
307 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
308 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
309 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
310 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
311 	[BRCMNAND_FC_BASE]		= 0x200,
312 };
313 
314 /* BRCMNAND v5.0 */
315 static const u16 brcmnand_regs_v50[] = {
316 	[BRCMNAND_CMD_START]		=  0x04,
317 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
318 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
319 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
320 	[BRCMNAND_CS_SELECT]		=  0x14,
321 	[BRCMNAND_CS_XOR]		=  0x18,
322 	[BRCMNAND_LL_OP]		= 0x178,
323 	[BRCMNAND_CS0_BASE]		=  0x40,
324 	[BRCMNAND_CS1_BASE]		=  0xd0,
325 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
326 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
327 	[BRCMNAND_UNCORR_COUNT]		=     0,
328 	[BRCMNAND_CORR_COUNT]		=     0,
329 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
330 	[BRCMNAND_CORR_ADDR]		=  0x74,
331 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
332 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
333 	[BRCMNAND_SEMAPHORE]		=  0x58,
334 	[BRCMNAND_ID]			=  0x60,
335 	[BRCMNAND_ID_EXT]		=  0x64,
336 	[BRCMNAND_LL_RDATA]		= 0x17c,
337 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
338 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
339 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
340 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
341 	[BRCMNAND_FC_BASE]		= 0x200,
342 };
343 
344 /* BRCMNAND v6.0 - v7.1 */
345 static const u16 brcmnand_regs_v60[] = {
346 	[BRCMNAND_CMD_START]		=  0x04,
347 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
348 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
349 	[BRCMNAND_INTFC_STATUS]		=  0x14,
350 	[BRCMNAND_CS_SELECT]		=  0x18,
351 	[BRCMNAND_CS_XOR]		=  0x1c,
352 	[BRCMNAND_LL_OP]		=  0x20,
353 	[BRCMNAND_CS0_BASE]		=  0x50,
354 	[BRCMNAND_CS1_BASE]		=     0,
355 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
356 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
357 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
358 	[BRCMNAND_CORR_COUNT]		= 0x100,
359 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
360 	[BRCMNAND_CORR_ADDR]		= 0x110,
361 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
362 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
363 	[BRCMNAND_SEMAPHORE]		= 0x150,
364 	[BRCMNAND_ID]			= 0x194,
365 	[BRCMNAND_ID_EXT]		= 0x198,
366 	[BRCMNAND_LL_RDATA]		= 0x19c,
367 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
368 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
369 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
370 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
371 	[BRCMNAND_FC_BASE]		= 0x400,
372 };
373 
374 /* BRCMNAND v7.1 */
375 static const u16 brcmnand_regs_v71[] = {
376 	[BRCMNAND_CMD_START]		=  0x04,
377 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
378 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
379 	[BRCMNAND_INTFC_STATUS]		=  0x14,
380 	[BRCMNAND_CS_SELECT]		=  0x18,
381 	[BRCMNAND_CS_XOR]		=  0x1c,
382 	[BRCMNAND_LL_OP]		=  0x20,
383 	[BRCMNAND_CS0_BASE]		=  0x50,
384 	[BRCMNAND_CS1_BASE]		=     0,
385 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
386 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
387 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
388 	[BRCMNAND_CORR_COUNT]		= 0x100,
389 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
390 	[BRCMNAND_CORR_ADDR]		= 0x110,
391 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
392 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
393 	[BRCMNAND_SEMAPHORE]		= 0x150,
394 	[BRCMNAND_ID]			= 0x194,
395 	[BRCMNAND_ID_EXT]		= 0x198,
396 	[BRCMNAND_LL_RDATA]		= 0x19c,
397 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
398 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
399 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
400 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
401 	[BRCMNAND_FC_BASE]		= 0x400,
402 };
403 
404 /* BRCMNAND v7.2 */
405 static const u16 brcmnand_regs_v72[] = {
406 	[BRCMNAND_CMD_START]		=  0x04,
407 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
408 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
409 	[BRCMNAND_INTFC_STATUS]		=  0x14,
410 	[BRCMNAND_CS_SELECT]		=  0x18,
411 	[BRCMNAND_CS_XOR]		=  0x1c,
412 	[BRCMNAND_LL_OP]		=  0x20,
413 	[BRCMNAND_CS0_BASE]		=  0x50,
414 	[BRCMNAND_CS1_BASE]		=     0,
415 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
416 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
417 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
418 	[BRCMNAND_CORR_COUNT]		= 0x100,
419 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
420 	[BRCMNAND_CORR_ADDR]		= 0x110,
421 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
422 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
423 	[BRCMNAND_SEMAPHORE]		= 0x150,
424 	[BRCMNAND_ID]			= 0x194,
425 	[BRCMNAND_ID_EXT]		= 0x198,
426 	[BRCMNAND_LL_RDATA]		= 0x19c,
427 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
428 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
429 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
430 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
431 	[BRCMNAND_FC_BASE]		= 0x600,
432 };
433 
434 enum brcmnand_cs_reg {
435 	BRCMNAND_CS_CFG_EXT = 0,
436 	BRCMNAND_CS_CFG,
437 	BRCMNAND_CS_ACC_CONTROL,
438 	BRCMNAND_CS_TIMING1,
439 	BRCMNAND_CS_TIMING2,
440 };
441 
442 /* Per chip-select offsets for v7.1 */
443 static const u8 brcmnand_cs_offsets_v71[] = {
444 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
445 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
446 	[BRCMNAND_CS_CFG]		= 0x08,
447 	[BRCMNAND_CS_TIMING1]		= 0x0c,
448 	[BRCMNAND_CS_TIMING2]		= 0x10,
449 };
450 
451 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
452 static const u8 brcmnand_cs_offsets[] = {
453 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
454 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
455 	[BRCMNAND_CS_CFG]		= 0x04,
456 	[BRCMNAND_CS_TIMING1]		= 0x08,
457 	[BRCMNAND_CS_TIMING2]		= 0x0c,
458 };
459 
460 /* Per chip-select offset for <= v5.0 on CS0 only */
461 static const u8 brcmnand_cs_offsets_cs0[] = {
462 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
463 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
464 	[BRCMNAND_CS_CFG]		= 0x08,
465 	[BRCMNAND_CS_TIMING1]		= 0x10,
466 	[BRCMNAND_CS_TIMING2]		= 0x14,
467 };
468 
469 /*
470  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
471  * one config register, but once the bitfields overflowed, newer controllers
472  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
473  */
474 enum {
475 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
476 	CFG_COL_ADR_BYTES_SHIFT		= 12,
477 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
478 	CFG_BUS_WIDTH_SHIFT		= 23,
479 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
480 	CFG_DEVICE_SIZE_SHIFT		= 24,
481 
482 	/* Only for pre-v7.1 (with no CFG_EXT register) */
483 	CFG_PAGE_SIZE_SHIFT		= 20,
484 	CFG_BLK_SIZE_SHIFT		= 28,
485 
486 	/* Only for v7.1+ (with CFG_EXT register) */
487 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
488 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
489 };
490 
491 /* BRCMNAND_INTFC_STATUS */
492 enum {
493 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
494 
495 	INTFC_ERASED			= BIT(27),
496 	INTFC_OOB_VALID			= BIT(28),
497 	INTFC_CACHE_VALID		= BIT(29),
498 	INTFC_FLASH_READY		= BIT(30),
499 	INTFC_CTLR_READY		= BIT(31),
500 };
501 
502 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
503 {
504 	return brcmnand_readl(ctrl->nand_base + offs);
505 }
506 
507 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
508 				 u32 val)
509 {
510 	brcmnand_writel(val, ctrl->nand_base + offs);
511 }
512 
513 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
514 {
515 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
516 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
517 	static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
518 
519 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
520 
521 	/* Only support v4.0+? */
522 	if (ctrl->nand_version < 0x0400) {
523 		dev_err(ctrl->dev, "version %#x not supported\n",
524 			ctrl->nand_version);
525 		return -ENODEV;
526 	}
527 
528 	/* Register offsets */
529 	if (ctrl->nand_version >= 0x0702)
530 		ctrl->reg_offsets = brcmnand_regs_v72;
531 	else if (ctrl->nand_version == 0x0701)
532 		ctrl->reg_offsets = brcmnand_regs_v71;
533 	else if (ctrl->nand_version >= 0x0600)
534 		ctrl->reg_offsets = brcmnand_regs_v60;
535 	else if (ctrl->nand_version >= 0x0500)
536 		ctrl->reg_offsets = brcmnand_regs_v50;
537 	else if (ctrl->nand_version >= 0x0400)
538 		ctrl->reg_offsets = brcmnand_regs_v40;
539 
540 	/* Chip-select stride */
541 	if (ctrl->nand_version >= 0x0701)
542 		ctrl->reg_spacing = 0x14;
543 	else
544 		ctrl->reg_spacing = 0x10;
545 
546 	/* Per chip-select registers */
547 	if (ctrl->nand_version >= 0x0701) {
548 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
549 	} else {
550 		ctrl->cs_offsets = brcmnand_cs_offsets;
551 
552 		/* v5.0 and earlier has a different CS0 offset layout */
553 		if (ctrl->nand_version <= 0x0500)
554 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
555 	}
556 
557 	/* Page / block sizes */
558 	if (ctrl->nand_version >= 0x0701) {
559 		/* >= v7.1 use nice power-of-2 values! */
560 		ctrl->max_page_size = 16 * 1024;
561 		ctrl->max_block_size = 2 * 1024 * 1024;
562 	} else {
563 		ctrl->page_sizes = page_sizes;
564 		if (ctrl->nand_version >= 0x0600)
565 			ctrl->block_sizes = block_sizes_v6;
566 		else
567 			ctrl->block_sizes = block_sizes_v4;
568 
569 		if (ctrl->nand_version < 0x0400) {
570 			ctrl->max_page_size = 4096;
571 			ctrl->max_block_size = 512 * 1024;
572 		}
573 	}
574 
575 	/* Maximum spare area sector size (per 512B) */
576 	if (ctrl->nand_version == 0x0702)
577 		ctrl->max_oob = 128;
578 	else if (ctrl->nand_version >= 0x0600)
579 		ctrl->max_oob = 64;
580 	else if (ctrl->nand_version >= 0x0500)
581 		ctrl->max_oob = 32;
582 	else
583 		ctrl->max_oob = 16;
584 
585 	/* v6.0 and newer (except v6.1) have prefetch support */
586 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
587 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
588 
589 	/*
590 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
591 	 * now.
592 	 */
593 	if (ctrl->nand_version >= 0x0700)
594 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
595 
596 	if (ctrl->nand_version >= 0x0500)
597 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
598 
599 	if (ctrl->nand_version >= 0x0700)
600 		ctrl->features |= BRCMNAND_HAS_WP;
601 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
602 		ctrl->features |= BRCMNAND_HAS_WP;
603 
604 	return 0;
605 }
606 
607 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
608 {
609 	/* flash_dma register offsets */
610 	if (ctrl->nand_version >= 0x0703)
611 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
612 	else if (ctrl->nand_version == 0x0602)
613 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
614 	else
615 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
616 }
617 
618 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
619 		enum brcmnand_reg reg)
620 {
621 	u16 offs = ctrl->reg_offsets[reg];
622 
623 	if (offs)
624 		return nand_readreg(ctrl, offs);
625 	else
626 		return 0;
627 }
628 
629 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
630 				      enum brcmnand_reg reg, u32 val)
631 {
632 	u16 offs = ctrl->reg_offsets[reg];
633 
634 	if (offs)
635 		nand_writereg(ctrl, offs, val);
636 }
637 
638 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
639 				    enum brcmnand_reg reg, u32 mask, unsigned
640 				    int shift, u32 val)
641 {
642 	u32 tmp = brcmnand_read_reg(ctrl, reg);
643 
644 	tmp &= ~mask;
645 	tmp |= val << shift;
646 	brcmnand_write_reg(ctrl, reg, tmp);
647 }
648 
649 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
650 {
651 	return __raw_readl(ctrl->nand_fc + word * 4);
652 }
653 
654 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
655 				     int word, u32 val)
656 {
657 	__raw_writel(val, ctrl->nand_fc + word * 4);
658 }
659 
660 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
661 {
662 
663 	/* Clear error addresses */
664 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
665 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
666 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
667 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
668 }
669 
670 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
671 {
672 	u64 err_addr;
673 
674 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
675 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
676 					     BRCMNAND_UNCORR_EXT_ADDR)
677 					     & 0xffff) << 32);
678 
679 	return err_addr;
680 }
681 
682 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
683 {
684 	u64 err_addr;
685 
686 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
687 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
688 					     BRCMNAND_CORR_EXT_ADDR)
689 					     & 0xffff) << 32);
690 
691 	return err_addr;
692 }
693 
694 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
695 {
696 	struct nand_chip *chip =  mtd_to_nand(mtd);
697 	struct brcmnand_host *host = nand_get_controller_data(chip);
698 	struct brcmnand_controller *ctrl = host->ctrl;
699 
700 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
701 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
702 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
703 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
704 			   lower_32_bits(addr));
705 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
706 }
707 
708 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
709 				     enum brcmnand_cs_reg reg)
710 {
711 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
712 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
713 	u8 cs_offs;
714 
715 	if (cs == 0 && ctrl->cs0_offsets)
716 		cs_offs = ctrl->cs0_offsets[reg];
717 	else
718 		cs_offs = ctrl->cs_offsets[reg];
719 
720 	if (cs && offs_cs1)
721 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
722 
723 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
724 }
725 
726 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
727 {
728 	if (ctrl->nand_version < 0x0600)
729 		return 1;
730 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
731 }
732 
733 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
734 {
735 	struct brcmnand_controller *ctrl = host->ctrl;
736 	unsigned int shift = 0, bits;
737 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
738 	int cs = host->cs;
739 
740 	if (ctrl->nand_version == 0x0702)
741 		bits = 7;
742 	else if (ctrl->nand_version >= 0x0600)
743 		bits = 6;
744 	else if (ctrl->nand_version >= 0x0500)
745 		bits = 5;
746 	else
747 		bits = 4;
748 
749 	if (ctrl->nand_version >= 0x0702) {
750 		if (cs >= 4)
751 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
752 		shift = (cs % 4) * bits;
753 	} else if (ctrl->nand_version >= 0x0600) {
754 		if (cs >= 5)
755 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
756 		shift = (cs % 5) * bits;
757 	}
758 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
759 }
760 
761 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
762 {
763 	if (ctrl->nand_version < 0x0602)
764 		return 24;
765 	return 0;
766 }
767 
768 /***********************************************************************
769  * NAND ACC CONTROL bitfield
770  *
771  * Some bits have remained constant throughout hardware revision, while
772  * others have shifted around.
773  ***********************************************************************/
774 
775 /* Constant for all versions (where supported) */
776 enum {
777 	/* See BRCMNAND_HAS_CACHE_MODE */
778 	ACC_CONTROL_CACHE_MODE				= BIT(22),
779 
780 	/* See BRCMNAND_HAS_PREFETCH */
781 	ACC_CONTROL_PREFETCH				= BIT(23),
782 
783 	ACC_CONTROL_PAGE_HIT				= BIT(24),
784 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
785 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
786 	ACC_CONTROL_RD_ERASED				= BIT(27),
787 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
788 	ACC_CONTROL_WR_ECC				= BIT(30),
789 	ACC_CONTROL_RD_ECC				= BIT(31),
790 };
791 
792 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
793 {
794 	if (ctrl->nand_version == 0x0702)
795 		return GENMASK(7, 0);
796 	else if (ctrl->nand_version >= 0x0600)
797 		return GENMASK(6, 0);
798 	else
799 		return GENMASK(5, 0);
800 }
801 
802 #define NAND_ACC_CONTROL_ECC_SHIFT	16
803 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT	13
804 
805 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
806 {
807 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
808 
809 	mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
810 
811 	/* v7.2 includes additional ECC levels */
812 	if (ctrl->nand_version >= 0x0702)
813 		mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
814 
815 	return mask;
816 }
817 
818 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
819 {
820 	struct brcmnand_controller *ctrl = host->ctrl;
821 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
822 	u32 acc_control = nand_readreg(ctrl, offs);
823 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
824 
825 	if (en) {
826 		acc_control |= ecc_flags; /* enable RD/WR ECC */
827 		acc_control |= host->hwcfg.ecc_level
828 			       << NAND_ACC_CONTROL_ECC_SHIFT;
829 	} else {
830 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
831 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
832 	}
833 
834 	nand_writereg(ctrl, offs, acc_control);
835 }
836 
837 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
838 {
839 	if (ctrl->nand_version >= 0x0702)
840 		return 9;
841 	else if (ctrl->nand_version >= 0x0600)
842 		return 7;
843 	else if (ctrl->nand_version >= 0x0500)
844 		return 6;
845 	else
846 		return -1;
847 }
848 
849 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
850 {
851 	struct brcmnand_controller *ctrl = host->ctrl;
852 	int shift = brcmnand_sector_1k_shift(ctrl);
853 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
854 						  BRCMNAND_CS_ACC_CONTROL);
855 
856 	if (shift < 0)
857 		return 0;
858 
859 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
860 }
861 
862 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
863 {
864 	struct brcmnand_controller *ctrl = host->ctrl;
865 	int shift = brcmnand_sector_1k_shift(ctrl);
866 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
867 						  BRCMNAND_CS_ACC_CONTROL);
868 	u32 tmp;
869 
870 	if (shift < 0)
871 		return;
872 
873 	tmp = nand_readreg(ctrl, acc_control_offs);
874 	tmp &= ~(1 << shift);
875 	tmp |= (!!val) << shift;
876 	nand_writereg(ctrl, acc_control_offs, tmp);
877 }
878 
879 /***********************************************************************
880  * CS_NAND_SELECT
881  ***********************************************************************/
882 
883 enum {
884 	CS_SELECT_NAND_WP			= BIT(29),
885 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
886 };
887 
888 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
889 				    u32 mask, u32 expected_val,
890 				    unsigned long timeout_ms)
891 {
892 	unsigned long limit;
893 	u32 val;
894 
895 	if (!timeout_ms)
896 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
897 
898 	limit = jiffies + msecs_to_jiffies(timeout_ms);
899 	do {
900 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
901 		if ((val & mask) == expected_val)
902 			return 0;
903 
904 		cpu_relax();
905 	} while (time_after(limit, jiffies));
906 
907 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
908 		 expected_val, val & mask);
909 
910 	return -ETIMEDOUT;
911 }
912 
913 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
914 {
915 	u32 val = en ? CS_SELECT_NAND_WP : 0;
916 
917 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
918 }
919 
920 /***********************************************************************
921  * Flash DMA
922  ***********************************************************************/
923 
924 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
925 {
926 	return ctrl->flash_dma_base;
927 }
928 
929 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
930 {
931 	if (ctrl->pio_poll_mode)
932 		return;
933 
934 	if (has_flash_dma(ctrl)) {
935 		ctrl->flash_dma_base = NULL;
936 		disable_irq(ctrl->dma_irq);
937 	}
938 
939 	disable_irq(ctrl->irq);
940 	ctrl->pio_poll_mode = true;
941 }
942 
943 static inline bool flash_dma_buf_ok(const void *buf)
944 {
945 	return buf && !is_vmalloc_addr(buf) &&
946 		likely(IS_ALIGNED((uintptr_t)buf, 4));
947 }
948 
949 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
950 				    enum flash_dma_reg dma_reg, u32 val)
951 {
952 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
953 
954 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
955 }
956 
957 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
958 				  enum flash_dma_reg dma_reg)
959 {
960 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
961 
962 	return brcmnand_readl(ctrl->flash_dma_base + offs);
963 }
964 
965 /* Low-level operation types: command, address, write, or read */
966 enum brcmnand_llop_type {
967 	LL_OP_CMD,
968 	LL_OP_ADDR,
969 	LL_OP_WR,
970 	LL_OP_RD,
971 };
972 
973 /***********************************************************************
974  * Internal support functions
975  ***********************************************************************/
976 
977 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
978 				  struct brcmnand_cfg *cfg)
979 {
980 	if (ctrl->nand_version <= 0x0701)
981 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
982 			cfg->ecc_level == 15;
983 	else
984 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
985 			cfg->ecc_level == 15) ||
986 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
987 }
988 
989 /*
990  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
991  * the layout/configuration.
992  * Returns -ERRCODE on failure.
993  */
994 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
995 					  struct mtd_oob_region *oobregion)
996 {
997 	struct nand_chip *chip = mtd_to_nand(mtd);
998 	struct brcmnand_host *host = nand_get_controller_data(chip);
999 	struct brcmnand_cfg *cfg = &host->hwcfg;
1000 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1001 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1002 
1003 	if (section >= sectors)
1004 		return -ERANGE;
1005 
1006 	oobregion->offset = (section * sas) + 6;
1007 	oobregion->length = 3;
1008 
1009 	return 0;
1010 }
1011 
1012 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1013 					   struct mtd_oob_region *oobregion)
1014 {
1015 	struct nand_chip *chip = mtd_to_nand(mtd);
1016 	struct brcmnand_host *host = nand_get_controller_data(chip);
1017 	struct brcmnand_cfg *cfg = &host->hwcfg;
1018 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1019 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1020 
1021 	if (section >= sectors * 2)
1022 		return -ERANGE;
1023 
1024 	oobregion->offset = (section / 2) * sas;
1025 
1026 	if (section & 1) {
1027 		oobregion->offset += 9;
1028 		oobregion->length = 7;
1029 	} else {
1030 		oobregion->length = 6;
1031 
1032 		/* First sector of each page may have BBI */
1033 		if (!section) {
1034 			/*
1035 			 * Small-page NAND use byte 6 for BBI while large-page
1036 			 * NAND use byte 0.
1037 			 */
1038 			if (cfg->page_size > 512)
1039 				oobregion->offset++;
1040 			oobregion->length--;
1041 		}
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1048 	.ecc = brcmnand_hamming_ooblayout_ecc,
1049 	.free = brcmnand_hamming_ooblayout_free,
1050 };
1051 
1052 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1053 				      struct mtd_oob_region *oobregion)
1054 {
1055 	struct nand_chip *chip = mtd_to_nand(mtd);
1056 	struct brcmnand_host *host = nand_get_controller_data(chip);
1057 	struct brcmnand_cfg *cfg = &host->hwcfg;
1058 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1059 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1060 
1061 	if (section >= sectors)
1062 		return -ERANGE;
1063 
1064 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1065 	oobregion->length = chip->ecc.bytes;
1066 
1067 	return 0;
1068 }
1069 
1070 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1071 					  struct mtd_oob_region *oobregion)
1072 {
1073 	struct nand_chip *chip = mtd_to_nand(mtd);
1074 	struct brcmnand_host *host = nand_get_controller_data(chip);
1075 	struct brcmnand_cfg *cfg = &host->hwcfg;
1076 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1077 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1078 
1079 	if (section >= sectors)
1080 		return -ERANGE;
1081 
1082 	if (sas <= chip->ecc.bytes)
1083 		return 0;
1084 
1085 	oobregion->offset = section * sas;
1086 	oobregion->length = sas - chip->ecc.bytes;
1087 
1088 	if (!section) {
1089 		oobregion->offset++;
1090 		oobregion->length--;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1097 					  struct mtd_oob_region *oobregion)
1098 {
1099 	struct nand_chip *chip = mtd_to_nand(mtd);
1100 	struct brcmnand_host *host = nand_get_controller_data(chip);
1101 	struct brcmnand_cfg *cfg = &host->hwcfg;
1102 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1103 
1104 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1105 	    (section && sas - chip->ecc.bytes == 6))
1106 		return -ERANGE;
1107 
1108 	if (!section) {
1109 		oobregion->offset = 0;
1110 		oobregion->length = 5;
1111 	} else {
1112 		oobregion->offset = 6;
1113 		oobregion->length = sas - chip->ecc.bytes - 6;
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1120 	.ecc = brcmnand_bch_ooblayout_ecc,
1121 	.free = brcmnand_bch_ooblayout_free_lp,
1122 };
1123 
1124 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1125 	.ecc = brcmnand_bch_ooblayout_ecc,
1126 	.free = brcmnand_bch_ooblayout_free_sp,
1127 };
1128 
1129 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1130 {
1131 	struct brcmnand_cfg *p = &host->hwcfg;
1132 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1133 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1134 	unsigned int ecc_level = p->ecc_level;
1135 	int sas = p->spare_area_size << p->sector_size_1k;
1136 	int sectors = p->page_size / (512 << p->sector_size_1k);
1137 
1138 	if (p->sector_size_1k)
1139 		ecc_level <<= 1;
1140 
1141 	if (is_hamming_ecc(host->ctrl, p)) {
1142 		ecc->bytes = 3 * sectors;
1143 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1144 		return 0;
1145 	}
1146 
1147 	/*
1148 	 * CONTROLLER_VERSION:
1149 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1150 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1151 	 * But we will just be conservative.
1152 	 */
1153 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1154 	if (p->page_size == 512)
1155 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1156 	else
1157 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1158 
1159 	if (ecc->bytes >= sas) {
1160 		dev_err(&host->pdev->dev,
1161 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1162 			ecc->bytes, sas);
1163 		return -EINVAL;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1170 {
1171 	struct nand_chip *chip = mtd_to_nand(mtd);
1172 	struct brcmnand_host *host = nand_get_controller_data(chip);
1173 	struct brcmnand_controller *ctrl = host->ctrl;
1174 
1175 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1176 		static int old_wp = -1;
1177 		int ret;
1178 
1179 		if (old_wp != wp) {
1180 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1181 			old_wp = wp;
1182 		}
1183 
1184 		/*
1185 		 * make sure ctrl/flash ready before and after
1186 		 * changing state of #WP pin
1187 		 */
1188 		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1189 					       NAND_STATUS_READY,
1190 					       NAND_CTRL_RDY |
1191 					       NAND_STATUS_READY, 0);
1192 		if (ret)
1193 			return;
1194 
1195 		brcmnand_set_wp(ctrl, wp);
1196 		nand_status_op(chip, NULL);
1197 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1198 		ret = bcmnand_ctrl_poll_status(ctrl,
1199 					       NAND_CTRL_RDY |
1200 					       NAND_STATUS_READY |
1201 					       NAND_STATUS_WP,
1202 					       NAND_CTRL_RDY |
1203 					       NAND_STATUS_READY |
1204 					       (wp ? 0 : NAND_STATUS_WP), 0);
1205 
1206 		if (ret)
1207 			dev_err_ratelimited(&host->pdev->dev,
1208 					    "nand #WP expected %s\n",
1209 					    wp ? "on" : "off");
1210 	}
1211 }
1212 
1213 /* Helper functions for reading and writing OOB registers */
1214 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1215 {
1216 	u16 offset0, offset10, reg_offs;
1217 
1218 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1219 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1220 
1221 	if (offs >= ctrl->max_oob)
1222 		return 0x77;
1223 
1224 	if (offs >= 16 && offset10)
1225 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1226 	else
1227 		reg_offs = offset0 + (offs & ~0x03);
1228 
1229 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1230 }
1231 
1232 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1233 				 u32 data)
1234 {
1235 	u16 offset0, offset10, reg_offs;
1236 
1237 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1238 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1239 
1240 	if (offs >= ctrl->max_oob)
1241 		return;
1242 
1243 	if (offs >= 16 && offset10)
1244 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1245 	else
1246 		reg_offs = offset0 + (offs & ~0x03);
1247 
1248 	nand_writereg(ctrl, reg_offs, data);
1249 }
1250 
1251 /*
1252  * read_oob_from_regs - read data from OOB registers
1253  * @ctrl: NAND controller
1254  * @i: sub-page sector index
1255  * @oob: buffer to read to
1256  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1257  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1258  */
1259 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1260 			      int sas, int sector_1k)
1261 {
1262 	int tbytes = sas << sector_1k;
1263 	int j;
1264 
1265 	/* Adjust OOB values for 1K sector size */
1266 	if (sector_1k && (i & 0x01))
1267 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1268 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1269 
1270 	for (j = 0; j < tbytes; j++)
1271 		oob[j] = oob_reg_read(ctrl, j);
1272 	return tbytes;
1273 }
1274 
1275 /*
1276  * write_oob_to_regs - write data to OOB registers
1277  * @i: sub-page sector index
1278  * @oob: buffer to write from
1279  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1280  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1281  */
1282 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1283 			     const u8 *oob, int sas, int sector_1k)
1284 {
1285 	int tbytes = sas << sector_1k;
1286 	int j;
1287 
1288 	/* Adjust OOB values for 1K sector size */
1289 	if (sector_1k && (i & 0x01))
1290 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1291 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1292 
1293 	for (j = 0; j < tbytes; j += 4)
1294 		oob_reg_write(ctrl, j,
1295 				(oob[j + 0] << 24) |
1296 				(oob[j + 1] << 16) |
1297 				(oob[j + 2] <<  8) |
1298 				(oob[j + 3] <<  0));
1299 	return tbytes;
1300 }
1301 
1302 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1303 {
1304 	struct brcmnand_controller *ctrl = data;
1305 
1306 	/* Discard all NAND_CTLRDY interrupts during DMA */
1307 	if (ctrl->dma_pending)
1308 		return IRQ_HANDLED;
1309 
1310 	complete(&ctrl->done);
1311 	return IRQ_HANDLED;
1312 }
1313 
1314 /* Handle SoC-specific interrupt hardware */
1315 static irqreturn_t brcmnand_irq(int irq, void *data)
1316 {
1317 	struct brcmnand_controller *ctrl = data;
1318 
1319 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1320 		return brcmnand_ctlrdy_irq(irq, data);
1321 
1322 	return IRQ_NONE;
1323 }
1324 
1325 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1326 {
1327 	struct brcmnand_controller *ctrl = data;
1328 
1329 	complete(&ctrl->dma_done);
1330 
1331 	return IRQ_HANDLED;
1332 }
1333 
1334 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1335 {
1336 	struct brcmnand_controller *ctrl = host->ctrl;
1337 	int ret;
1338 	u64 cmd_addr;
1339 
1340 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1341 
1342 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1343 
1344 	BUG_ON(ctrl->cmd_pending != 0);
1345 	ctrl->cmd_pending = cmd;
1346 
1347 	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1348 	WARN_ON(ret);
1349 
1350 	mb(); /* flush previous writes */
1351 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1352 			   cmd << brcmnand_cmd_shift(ctrl));
1353 }
1354 
1355 /***********************************************************************
1356  * NAND MTD API: read/program/erase
1357  ***********************************************************************/
1358 
1359 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1360 			      unsigned int ctrl)
1361 {
1362 	/* intentionally left blank */
1363 }
1364 
1365 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1366 {
1367 	struct brcmnand_host *host = nand_get_controller_data(chip);
1368 	struct brcmnand_controller *ctrl = host->ctrl;
1369 	struct mtd_info *mtd = nand_to_mtd(chip);
1370 	bool err = false;
1371 	int sts;
1372 
1373 	if (mtd->oops_panic_write) {
1374 		/* switch to interrupt polling and PIO mode */
1375 		disable_ctrl_irqs(ctrl);
1376 		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1377 					       NAND_CTRL_RDY, 0);
1378 		err = (sts < 0) ? true : false;
1379 	} else {
1380 		unsigned long timeo = msecs_to_jiffies(
1381 						NAND_POLL_STATUS_TIMEOUT_MS);
1382 		/* wait for completion interrupt */
1383 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1384 		err = (sts <= 0) ? true : false;
1385 	}
1386 
1387 	return err;
1388 }
1389 
1390 static int brcmnand_waitfunc(struct nand_chip *chip)
1391 {
1392 	struct brcmnand_host *host = nand_get_controller_data(chip);
1393 	struct brcmnand_controller *ctrl = host->ctrl;
1394 	bool err = false;
1395 
1396 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1397 	if (ctrl->cmd_pending)
1398 		err = brcmstb_nand_wait_for_completion(chip);
1399 
1400 	if (err) {
1401 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1402 					>> brcmnand_cmd_shift(ctrl);
1403 
1404 		dev_err_ratelimited(ctrl->dev,
1405 			"timeout waiting for command %#02x\n", cmd);
1406 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1407 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1408 	}
1409 	ctrl->cmd_pending = 0;
1410 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1411 				 INTFC_FLASH_STATUS;
1412 }
1413 
1414 enum {
1415 	LLOP_RE				= BIT(16),
1416 	LLOP_WE				= BIT(17),
1417 	LLOP_ALE			= BIT(18),
1418 	LLOP_CLE			= BIT(19),
1419 	LLOP_RETURN_IDLE		= BIT(31),
1420 
1421 	LLOP_DATA_MASK			= GENMASK(15, 0),
1422 };
1423 
1424 static int brcmnand_low_level_op(struct brcmnand_host *host,
1425 				 enum brcmnand_llop_type type, u32 data,
1426 				 bool last_op)
1427 {
1428 	struct nand_chip *chip = &host->chip;
1429 	struct brcmnand_controller *ctrl = host->ctrl;
1430 	u32 tmp;
1431 
1432 	tmp = data & LLOP_DATA_MASK;
1433 	switch (type) {
1434 	case LL_OP_CMD:
1435 		tmp |= LLOP_WE | LLOP_CLE;
1436 		break;
1437 	case LL_OP_ADDR:
1438 		/* WE | ALE */
1439 		tmp |= LLOP_WE | LLOP_ALE;
1440 		break;
1441 	case LL_OP_WR:
1442 		/* WE */
1443 		tmp |= LLOP_WE;
1444 		break;
1445 	case LL_OP_RD:
1446 		/* RE */
1447 		tmp |= LLOP_RE;
1448 		break;
1449 	}
1450 	if (last_op)
1451 		/* RETURN_IDLE */
1452 		tmp |= LLOP_RETURN_IDLE;
1453 
1454 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1455 
1456 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1457 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1458 
1459 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1460 	return brcmnand_waitfunc(chip);
1461 }
1462 
1463 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1464 			     int column, int page_addr)
1465 {
1466 	struct mtd_info *mtd = nand_to_mtd(chip);
1467 	struct brcmnand_host *host = nand_get_controller_data(chip);
1468 	struct brcmnand_controller *ctrl = host->ctrl;
1469 	u64 addr = (u64)page_addr << chip->page_shift;
1470 	int native_cmd = 0;
1471 
1472 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1473 			command == NAND_CMD_RNDOUT)
1474 		addr = (u64)column;
1475 	/* Avoid propagating a negative, don't-care address */
1476 	else if (page_addr < 0)
1477 		addr = 0;
1478 
1479 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1480 		(unsigned long long)addr);
1481 
1482 	host->last_cmd = command;
1483 	host->last_byte = 0;
1484 	host->last_addr = addr;
1485 
1486 	switch (command) {
1487 	case NAND_CMD_RESET:
1488 		native_cmd = CMD_FLASH_RESET;
1489 		break;
1490 	case NAND_CMD_STATUS:
1491 		native_cmd = CMD_STATUS_READ;
1492 		break;
1493 	case NAND_CMD_READID:
1494 		native_cmd = CMD_DEVICE_ID_READ;
1495 		break;
1496 	case NAND_CMD_READOOB:
1497 		native_cmd = CMD_SPARE_AREA_READ;
1498 		break;
1499 	case NAND_CMD_ERASE1:
1500 		native_cmd = CMD_BLOCK_ERASE;
1501 		brcmnand_wp(mtd, 0);
1502 		break;
1503 	case NAND_CMD_PARAM:
1504 		native_cmd = CMD_PARAMETER_READ;
1505 		break;
1506 	case NAND_CMD_SET_FEATURES:
1507 	case NAND_CMD_GET_FEATURES:
1508 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1509 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1510 		break;
1511 	case NAND_CMD_RNDOUT:
1512 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1513 		addr &= ~((u64)(FC_BYTES - 1));
1514 		/*
1515 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1516 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1517 		 */
1518 		if (brcmnand_get_sector_size_1k(host)) {
1519 			host->hwcfg.sector_size_1k =
1520 				brcmnand_get_sector_size_1k(host);
1521 			brcmnand_set_sector_size_1k(host, 0);
1522 		}
1523 		break;
1524 	}
1525 
1526 	if (!native_cmd)
1527 		return;
1528 
1529 	brcmnand_set_cmd_addr(mtd, addr);
1530 	brcmnand_send_cmd(host, native_cmd);
1531 	brcmnand_waitfunc(chip);
1532 
1533 	if (native_cmd == CMD_PARAMETER_READ ||
1534 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1535 		/* Copy flash cache word-wise */
1536 		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1537 		int i;
1538 
1539 		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1540 
1541 		/*
1542 		 * Must cache the FLASH_CACHE now, since changes in
1543 		 * SECTOR_SIZE_1K may invalidate it
1544 		 */
1545 		for (i = 0; i < FC_WORDS; i++)
1546 			/*
1547 			 * Flash cache is big endian for parameter pages, at
1548 			 * least on STB SoCs
1549 			 */
1550 			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1551 
1552 		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1553 
1554 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1555 		if (host->hwcfg.sector_size_1k)
1556 			brcmnand_set_sector_size_1k(host,
1557 						    host->hwcfg.sector_size_1k);
1558 	}
1559 
1560 	/* Re-enable protection is necessary only after erase */
1561 	if (command == NAND_CMD_ERASE1)
1562 		brcmnand_wp(mtd, 1);
1563 }
1564 
1565 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1566 {
1567 	struct brcmnand_host *host = nand_get_controller_data(chip);
1568 	struct brcmnand_controller *ctrl = host->ctrl;
1569 	uint8_t ret = 0;
1570 	int addr, offs;
1571 
1572 	switch (host->last_cmd) {
1573 	case NAND_CMD_READID:
1574 		if (host->last_byte < 4)
1575 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1576 				(24 - (host->last_byte << 3));
1577 		else if (host->last_byte < 8)
1578 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1579 				(56 - (host->last_byte << 3));
1580 		break;
1581 
1582 	case NAND_CMD_READOOB:
1583 		ret = oob_reg_read(ctrl, host->last_byte);
1584 		break;
1585 
1586 	case NAND_CMD_STATUS:
1587 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1588 					INTFC_FLASH_STATUS;
1589 		if (wp_on) /* hide WP status */
1590 			ret |= NAND_STATUS_WP;
1591 		break;
1592 
1593 	case NAND_CMD_PARAM:
1594 	case NAND_CMD_RNDOUT:
1595 		addr = host->last_addr + host->last_byte;
1596 		offs = addr & (FC_BYTES - 1);
1597 
1598 		/* At FC_BYTES boundary, switch to next column */
1599 		if (host->last_byte > 0 && offs == 0)
1600 			nand_change_read_column_op(chip, addr, NULL, 0, false);
1601 
1602 		ret = ctrl->flash_cache[offs];
1603 		break;
1604 	case NAND_CMD_GET_FEATURES:
1605 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1606 			ret = 0;
1607 		} else {
1608 			bool last = host->last_byte ==
1609 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1610 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1611 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1612 		}
1613 	}
1614 
1615 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1616 	host->last_byte++;
1617 
1618 	return ret;
1619 }
1620 
1621 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1622 {
1623 	int i;
1624 
1625 	for (i = 0; i < len; i++, buf++)
1626 		*buf = brcmnand_read_byte(chip);
1627 }
1628 
1629 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1630 			       int len)
1631 {
1632 	int i;
1633 	struct brcmnand_host *host = nand_get_controller_data(chip);
1634 
1635 	switch (host->last_cmd) {
1636 	case NAND_CMD_SET_FEATURES:
1637 		for (i = 0; i < len; i++)
1638 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1639 						  (i + 1) == len);
1640 		break;
1641 	default:
1642 		BUG();
1643 		break;
1644 	}
1645 }
1646 
1647 /**
1648  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1649  * following ahead of time:
1650  *  - Is this descriptor the beginning or end of a linked list?
1651  *  - What is the (DMA) address of the next descriptor in the linked list?
1652  */
1653 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1654 				  struct brcm_nand_dma_desc *desc, u64 addr,
1655 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1656 				  bool begin, bool end,
1657 				  dma_addr_t next_desc)
1658 {
1659 	memset(desc, 0, sizeof(*desc));
1660 	/* Descriptors are written in native byte order (wordwise) */
1661 	desc->next_desc = lower_32_bits(next_desc);
1662 	desc->next_desc_ext = upper_32_bits(next_desc);
1663 	desc->cmd_irq = (dma_cmd << 24) |
1664 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1665 		(!!begin) | ((!!end) << 1); /* head, tail */
1666 #ifdef CONFIG_CPU_BIG_ENDIAN
1667 	desc->cmd_irq |= 0x01 << 12;
1668 #endif
1669 	desc->dram_addr = lower_32_bits(buf);
1670 	desc->dram_addr_ext = upper_32_bits(buf);
1671 	desc->tfr_len = len;
1672 	desc->total_len = len;
1673 	desc->flash_addr = lower_32_bits(addr);
1674 	desc->flash_addr_ext = upper_32_bits(addr);
1675 	desc->cs = host->cs;
1676 	desc->status_valid = 0x01;
1677 	return 0;
1678 }
1679 
1680 /**
1681  * Kick the FLASH_DMA engine, with a given DMA descriptor
1682  */
1683 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1684 {
1685 	struct brcmnand_controller *ctrl = host->ctrl;
1686 	unsigned long timeo = msecs_to_jiffies(100);
1687 
1688 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1689 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1690 	if (ctrl->nand_version > 0x0602) {
1691 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1692 				 upper_32_bits(desc));
1693 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1694 	}
1695 
1696 	/* Start FLASH_DMA engine */
1697 	ctrl->dma_pending = true;
1698 	mb(); /* flush previous writes */
1699 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1700 
1701 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1702 		dev_err(ctrl->dev,
1703 				"timeout waiting for DMA; status %#x, error status %#x\n",
1704 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1705 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1706 	}
1707 	ctrl->dma_pending = false;
1708 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1709 }
1710 
1711 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1712 			      u32 len, u8 dma_cmd)
1713 {
1714 	struct brcmnand_controller *ctrl = host->ctrl;
1715 	dma_addr_t buf_pa;
1716 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1717 
1718 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1719 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
1720 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1721 		return -ENOMEM;
1722 	}
1723 
1724 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1725 				   dma_cmd, true, true, 0);
1726 
1727 	brcmnand_dma_run(host, ctrl->dma_pa);
1728 
1729 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1730 
1731 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1732 		return -EBADMSG;
1733 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1734 		return -EUCLEAN;
1735 
1736 	return 0;
1737 }
1738 
1739 /*
1740  * Assumes proper CS is already set
1741  */
1742 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1743 				u64 addr, unsigned int trans, u32 *buf,
1744 				u8 *oob, u64 *err_addr)
1745 {
1746 	struct brcmnand_host *host = nand_get_controller_data(chip);
1747 	struct brcmnand_controller *ctrl = host->ctrl;
1748 	int i, j, ret = 0;
1749 
1750 	brcmnand_clear_ecc_addr(ctrl);
1751 
1752 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1753 		brcmnand_set_cmd_addr(mtd, addr);
1754 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1755 		brcmnand_send_cmd(host, CMD_PAGE_READ);
1756 		brcmnand_waitfunc(chip);
1757 
1758 		if (likely(buf)) {
1759 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1760 
1761 			for (j = 0; j < FC_WORDS; j++, buf++)
1762 				*buf = brcmnand_read_fc(ctrl, j);
1763 
1764 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1765 		}
1766 
1767 		if (oob)
1768 			oob += read_oob_from_regs(ctrl, i, oob,
1769 					mtd->oobsize / trans,
1770 					host->hwcfg.sector_size_1k);
1771 
1772 		if (!ret) {
1773 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1774 
1775 			if (*err_addr)
1776 				ret = -EBADMSG;
1777 		}
1778 
1779 		if (!ret) {
1780 			*err_addr = brcmnand_get_correcc_addr(ctrl);
1781 
1782 			if (*err_addr)
1783 				ret = -EUCLEAN;
1784 		}
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 /*
1791  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1792  * error
1793  *
1794  * Because the HW ECC signals an ECC error if an erase paged has even a single
1795  * bitflip, we must check each ECC error to see if it is actually an erased
1796  * page with bitflips, not a truly corrupted page.
1797  *
1798  * On a real error, return a negative error code (-EBADMSG for ECC error), and
1799  * buf will contain raw data.
1800  * Otherwise, buf gets filled with 0xffs and return the maximum number of
1801  * bitflips-per-ECC-sector to the caller.
1802  *
1803  */
1804 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1805 		  struct nand_chip *chip, void *buf, u64 addr)
1806 {
1807 	int i, sas;
1808 	void *oob = chip->oob_poi;
1809 	int bitflips = 0;
1810 	int page = addr >> chip->page_shift;
1811 	int ret;
1812 	void *ecc_chunk;
1813 
1814 	if (!buf)
1815 		buf = nand_get_data_buf(chip);
1816 
1817 	sas = mtd->oobsize / chip->ecc.steps;
1818 
1819 	/* read without ecc for verification */
1820 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
1821 	if (ret)
1822 		return ret;
1823 
1824 	for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1825 		ecc_chunk = buf + chip->ecc.size * i;
1826 		ret = nand_check_erased_ecc_chunk(ecc_chunk,
1827 						  chip->ecc.size,
1828 						  oob, sas, NULL, 0,
1829 						  chip->ecc.strength);
1830 		if (ret < 0)
1831 			return ret;
1832 
1833 		bitflips = max(bitflips, ret);
1834 	}
1835 
1836 	return bitflips;
1837 }
1838 
1839 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1840 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1841 {
1842 	struct brcmnand_host *host = nand_get_controller_data(chip);
1843 	struct brcmnand_controller *ctrl = host->ctrl;
1844 	u64 err_addr = 0;
1845 	int err;
1846 	bool retry = true;
1847 
1848 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1849 
1850 try_dmaread:
1851 	brcmnand_clear_ecc_addr(ctrl);
1852 
1853 	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1854 		err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1855 					     CMD_PAGE_READ);
1856 		if (err) {
1857 			if (mtd_is_bitflip_or_eccerr(err))
1858 				err_addr = addr;
1859 			else
1860 				return -EIO;
1861 		}
1862 	} else {
1863 		if (oob)
1864 			memset(oob, 0x99, mtd->oobsize);
1865 
1866 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1867 					       oob, &err_addr);
1868 	}
1869 
1870 	if (mtd_is_eccerr(err)) {
1871 		/*
1872 		 * On controller version and 7.0, 7.1 , DMA read after a
1873 		 * prior PIO read that reported uncorrectable error,
1874 		 * the DMA engine captures this error following DMA read
1875 		 * cleared only on subsequent DMA read, so just retry once
1876 		 * to clear a possible false error reported for current DMA
1877 		 * read
1878 		 */
1879 		if ((ctrl->nand_version == 0x0700) ||
1880 		    (ctrl->nand_version == 0x0701)) {
1881 			if (retry) {
1882 				retry = false;
1883 				goto try_dmaread;
1884 			}
1885 		}
1886 
1887 		/*
1888 		 * Controller version 7.2 has hw encoder to detect erased page
1889 		 * bitflips, apply sw verification for older controllers only
1890 		 */
1891 		if (ctrl->nand_version < 0x0702) {
1892 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1893 							      addr);
1894 			/* erased page bitflips corrected */
1895 			if (err >= 0)
1896 				return err;
1897 		}
1898 
1899 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1900 			(unsigned long long)err_addr);
1901 		mtd->ecc_stats.failed++;
1902 		/* NAND layer expects zero on ECC errors */
1903 		return 0;
1904 	}
1905 
1906 	if (mtd_is_bitflip(err)) {
1907 		unsigned int corrected = brcmnand_count_corrected(ctrl);
1908 
1909 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1910 			(unsigned long long)err_addr);
1911 		mtd->ecc_stats.corrected += corrected;
1912 		/* Always exceed the software-imposed threshold */
1913 		return max(mtd->bitflip_threshold, corrected);
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
1920 			      int oob_required, int page)
1921 {
1922 	struct mtd_info *mtd = nand_to_mtd(chip);
1923 	struct brcmnand_host *host = nand_get_controller_data(chip);
1924 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1925 
1926 	nand_read_page_op(chip, page, 0, NULL, 0);
1927 
1928 	return brcmnand_read(mtd, chip, host->last_addr,
1929 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1930 }
1931 
1932 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1933 				  int oob_required, int page)
1934 {
1935 	struct brcmnand_host *host = nand_get_controller_data(chip);
1936 	struct mtd_info *mtd = nand_to_mtd(chip);
1937 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1938 	int ret;
1939 
1940 	nand_read_page_op(chip, page, 0, NULL, 0);
1941 
1942 	brcmnand_set_ecc_enabled(host, 0);
1943 	ret = brcmnand_read(mtd, chip, host->last_addr,
1944 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1945 	brcmnand_set_ecc_enabled(host, 1);
1946 	return ret;
1947 }
1948 
1949 static int brcmnand_read_oob(struct nand_chip *chip, int page)
1950 {
1951 	struct mtd_info *mtd = nand_to_mtd(chip);
1952 
1953 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1954 			mtd->writesize >> FC_SHIFT,
1955 			NULL, (u8 *)chip->oob_poi);
1956 }
1957 
1958 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
1959 {
1960 	struct mtd_info *mtd = nand_to_mtd(chip);
1961 	struct brcmnand_host *host = nand_get_controller_data(chip);
1962 
1963 	brcmnand_set_ecc_enabled(host, 0);
1964 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1965 		mtd->writesize >> FC_SHIFT,
1966 		NULL, (u8 *)chip->oob_poi);
1967 	brcmnand_set_ecc_enabled(host, 1);
1968 	return 0;
1969 }
1970 
1971 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1972 			  u64 addr, const u32 *buf, u8 *oob)
1973 {
1974 	struct brcmnand_host *host = nand_get_controller_data(chip);
1975 	struct brcmnand_controller *ctrl = host->ctrl;
1976 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1977 	int status, ret = 0;
1978 
1979 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1980 
1981 	if (unlikely((unsigned long)buf & 0x03)) {
1982 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1983 		buf = (u32 *)((unsigned long)buf & ~0x03);
1984 	}
1985 
1986 	brcmnand_wp(mtd, 0);
1987 
1988 	for (i = 0; i < ctrl->max_oob; i += 4)
1989 		oob_reg_write(ctrl, i, 0xffffffff);
1990 
1991 	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1992 		if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1993 					mtd->writesize, CMD_PROGRAM_PAGE))
1994 			ret = -EIO;
1995 		goto out;
1996 	}
1997 
1998 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1999 		/* full address MUST be set before populating FC */
2000 		brcmnand_set_cmd_addr(mtd, addr);
2001 
2002 		if (buf) {
2003 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2004 
2005 			for (j = 0; j < FC_WORDS; j++, buf++)
2006 				brcmnand_write_fc(ctrl, j, *buf);
2007 
2008 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2009 		} else if (oob) {
2010 			for (j = 0; j < FC_WORDS; j++)
2011 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2012 		}
2013 
2014 		if (oob) {
2015 			oob += write_oob_to_regs(ctrl, i, oob,
2016 					mtd->oobsize / trans,
2017 					host->hwcfg.sector_size_1k);
2018 		}
2019 
2020 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2021 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2022 		status = brcmnand_waitfunc(chip);
2023 
2024 		if (status & NAND_STATUS_FAIL) {
2025 			dev_info(ctrl->dev, "program failed at %llx\n",
2026 				(unsigned long long)addr);
2027 			ret = -EIO;
2028 			goto out;
2029 		}
2030 	}
2031 out:
2032 	brcmnand_wp(mtd, 1);
2033 	return ret;
2034 }
2035 
2036 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2037 			       int oob_required, int page)
2038 {
2039 	struct mtd_info *mtd = nand_to_mtd(chip);
2040 	struct brcmnand_host *host = nand_get_controller_data(chip);
2041 	void *oob = oob_required ? chip->oob_poi : NULL;
2042 
2043 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2044 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2045 
2046 	return nand_prog_page_end_op(chip);
2047 }
2048 
2049 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2050 				   int oob_required, int page)
2051 {
2052 	struct mtd_info *mtd = nand_to_mtd(chip);
2053 	struct brcmnand_host *host = nand_get_controller_data(chip);
2054 	void *oob = oob_required ? chip->oob_poi : NULL;
2055 
2056 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2057 	brcmnand_set_ecc_enabled(host, 0);
2058 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2059 	brcmnand_set_ecc_enabled(host, 1);
2060 
2061 	return nand_prog_page_end_op(chip);
2062 }
2063 
2064 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2065 {
2066 	return brcmnand_write(nand_to_mtd(chip), chip,
2067 			      (u64)page << chip->page_shift, NULL,
2068 			      chip->oob_poi);
2069 }
2070 
2071 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2072 {
2073 	struct mtd_info *mtd = nand_to_mtd(chip);
2074 	struct brcmnand_host *host = nand_get_controller_data(chip);
2075 	int ret;
2076 
2077 	brcmnand_set_ecc_enabled(host, 0);
2078 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2079 				 (u8 *)chip->oob_poi);
2080 	brcmnand_set_ecc_enabled(host, 1);
2081 
2082 	return ret;
2083 }
2084 
2085 /***********************************************************************
2086  * Per-CS setup (1 NAND device)
2087  ***********************************************************************/
2088 
2089 static int brcmnand_set_cfg(struct brcmnand_host *host,
2090 			    struct brcmnand_cfg *cfg)
2091 {
2092 	struct brcmnand_controller *ctrl = host->ctrl;
2093 	struct nand_chip *chip = &host->chip;
2094 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2095 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2096 			BRCMNAND_CS_CFG_EXT);
2097 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2098 			BRCMNAND_CS_ACC_CONTROL);
2099 	u8 block_size = 0, page_size = 0, device_size = 0;
2100 	u32 tmp;
2101 
2102 	if (ctrl->block_sizes) {
2103 		int i, found;
2104 
2105 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2106 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2107 				block_size = i;
2108 				found = 1;
2109 			}
2110 		if (!found) {
2111 			dev_warn(ctrl->dev, "invalid block size %u\n",
2112 					cfg->block_size);
2113 			return -EINVAL;
2114 		}
2115 	} else {
2116 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2117 	}
2118 
2119 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2120 				cfg->block_size > ctrl->max_block_size)) {
2121 		dev_warn(ctrl->dev, "invalid block size %u\n",
2122 				cfg->block_size);
2123 		block_size = 0;
2124 	}
2125 
2126 	if (ctrl->page_sizes) {
2127 		int i, found;
2128 
2129 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2130 			if (ctrl->page_sizes[i] == cfg->page_size) {
2131 				page_size = i;
2132 				found = 1;
2133 			}
2134 		if (!found) {
2135 			dev_warn(ctrl->dev, "invalid page size %u\n",
2136 					cfg->page_size);
2137 			return -EINVAL;
2138 		}
2139 	} else {
2140 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2141 	}
2142 
2143 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2144 				cfg->page_size > ctrl->max_page_size)) {
2145 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2146 		return -EINVAL;
2147 	}
2148 
2149 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2150 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2151 			(unsigned long long)cfg->device_size);
2152 		return -EINVAL;
2153 	}
2154 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2155 
2156 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2157 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2158 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2159 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2160 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2161 	if (cfg_offs == cfg_ext_offs) {
2162 		tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2163 		       (block_size << CFG_BLK_SIZE_SHIFT);
2164 		nand_writereg(ctrl, cfg_offs, tmp);
2165 	} else {
2166 		nand_writereg(ctrl, cfg_offs, tmp);
2167 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2168 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2169 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2170 	}
2171 
2172 	tmp = nand_readreg(ctrl, acc_control_offs);
2173 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2174 	tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2175 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2176 	tmp |= cfg->spare_area_size;
2177 	nand_writereg(ctrl, acc_control_offs, tmp);
2178 
2179 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2180 
2181 	/* threshold = ceil(BCH-level * 0.75) */
2182 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2183 
2184 	return 0;
2185 }
2186 
2187 static void brcmnand_print_cfg(struct brcmnand_host *host,
2188 			       char *buf, struct brcmnand_cfg *cfg)
2189 {
2190 	buf += sprintf(buf,
2191 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2192 		(unsigned long long)cfg->device_size >> 20,
2193 		cfg->block_size >> 10,
2194 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2195 		cfg->page_size >= 1024 ? "KiB" : "B",
2196 		cfg->spare_area_size, cfg->device_width);
2197 
2198 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2199 	if (is_hamming_ecc(host->ctrl, cfg))
2200 		sprintf(buf, ", Hamming ECC");
2201 	else if (cfg->sector_size_1k)
2202 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2203 	else
2204 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2205 }
2206 
2207 /*
2208  * Minimum number of bytes to address a page. Calculated as:
2209  *     roundup(log2(size / page-size) / 8)
2210  *
2211  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2212  *     OK because many other things will break if 'size' is irregular...
2213  */
2214 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2215 {
2216 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2217 }
2218 
2219 static int brcmnand_setup_dev(struct brcmnand_host *host)
2220 {
2221 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2222 	struct nand_chip *chip = &host->chip;
2223 	struct brcmnand_controller *ctrl = host->ctrl;
2224 	struct brcmnand_cfg *cfg = &host->hwcfg;
2225 	char msg[128];
2226 	u32 offs, tmp, oob_sector;
2227 	int ret;
2228 
2229 	memset(cfg, 0, sizeof(*cfg));
2230 
2231 	ret = of_property_read_u32(nand_get_flash_node(chip),
2232 				   "brcm,nand-oob-sector-size",
2233 				   &oob_sector);
2234 	if (ret) {
2235 		/* Use detected size */
2236 		cfg->spare_area_size = mtd->oobsize /
2237 					(mtd->writesize >> FC_SHIFT);
2238 	} else {
2239 		cfg->spare_area_size = oob_sector;
2240 	}
2241 	if (cfg->spare_area_size > ctrl->max_oob)
2242 		cfg->spare_area_size = ctrl->max_oob;
2243 	/*
2244 	 * Set oobsize to be consistent with controller's spare_area_size, as
2245 	 * the rest is inaccessible.
2246 	 */
2247 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2248 
2249 	cfg->device_size = mtd->size;
2250 	cfg->block_size = mtd->erasesize;
2251 	cfg->page_size = mtd->writesize;
2252 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2253 	cfg->col_adr_bytes = 2;
2254 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2255 
2256 	if (chip->ecc.mode != NAND_ECC_HW) {
2257 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2258 			chip->ecc.mode);
2259 		return -EINVAL;
2260 	}
2261 
2262 	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2263 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2264 			/* Default to Hamming for 1-bit ECC, if unspecified */
2265 			chip->ecc.algo = NAND_ECC_HAMMING;
2266 		else
2267 			/* Otherwise, BCH */
2268 			chip->ecc.algo = NAND_ECC_BCH;
2269 	}
2270 
2271 	if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2272 						   chip->ecc.size != 512)) {
2273 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2274 			chip->ecc.strength, chip->ecc.size);
2275 		return -EINVAL;
2276 	}
2277 
2278 	if (chip->ecc.mode != NAND_ECC_NONE &&
2279 	    (!chip->ecc.size || !chip->ecc.strength)) {
2280 		if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2281 			/* use detected ECC parameters */
2282 			chip->ecc.size = chip->base.eccreq.step_size;
2283 			chip->ecc.strength = chip->base.eccreq.strength;
2284 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2285 				chip->ecc.size, chip->ecc.strength);
2286 		}
2287 	}
2288 
2289 	switch (chip->ecc.size) {
2290 	case 512:
2291 		if (chip->ecc.algo == NAND_ECC_HAMMING)
2292 			cfg->ecc_level = 15;
2293 		else
2294 			cfg->ecc_level = chip->ecc.strength;
2295 		cfg->sector_size_1k = 0;
2296 		break;
2297 	case 1024:
2298 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2299 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2300 			return -EINVAL;
2301 		}
2302 		if (chip->ecc.strength & 0x1) {
2303 			dev_err(ctrl->dev,
2304 				"odd ECC not supported with 1KB sectors\n");
2305 			return -EINVAL;
2306 		}
2307 
2308 		cfg->ecc_level = chip->ecc.strength >> 1;
2309 		cfg->sector_size_1k = 1;
2310 		break;
2311 	default:
2312 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2313 			chip->ecc.size);
2314 		return -EINVAL;
2315 	}
2316 
2317 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2318 	if (mtd->writesize > 512)
2319 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2320 	else
2321 		cfg->ful_adr_bytes += 1;
2322 
2323 	ret = brcmnand_set_cfg(host, cfg);
2324 	if (ret)
2325 		return ret;
2326 
2327 	brcmnand_set_ecc_enabled(host, 1);
2328 
2329 	brcmnand_print_cfg(host, msg, cfg);
2330 	dev_info(ctrl->dev, "detected %s\n", msg);
2331 
2332 	/* Configure ACC_CONTROL */
2333 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2334 	tmp = nand_readreg(ctrl, offs);
2335 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2336 	tmp &= ~ACC_CONTROL_RD_ERASED;
2337 
2338 	/* We need to turn on Read from erased paged protected by ECC */
2339 	if (ctrl->nand_version >= 0x0702)
2340 		tmp |= ACC_CONTROL_RD_ERASED;
2341 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2342 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2343 		tmp &= ~ACC_CONTROL_PREFETCH;
2344 
2345 	nand_writereg(ctrl, offs, tmp);
2346 
2347 	return 0;
2348 }
2349 
2350 static int brcmnand_attach_chip(struct nand_chip *chip)
2351 {
2352 	struct mtd_info *mtd = nand_to_mtd(chip);
2353 	struct brcmnand_host *host = nand_get_controller_data(chip);
2354 	int ret;
2355 
2356 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2357 	/*
2358 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2359 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2360 	 * needed.
2361 	 */
2362 	chip->options |= NAND_USE_BOUNCE_BUFFER;
2363 
2364 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2365 		chip->bbt_options |= NAND_BBT_NO_OOB;
2366 
2367 	if (brcmnand_setup_dev(host))
2368 		return -ENXIO;
2369 
2370 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2371 
2372 	/* only use our internal HW threshold */
2373 	mtd->bitflip_threshold = 1;
2374 
2375 	ret = brcmstb_choose_ecc_layout(host);
2376 
2377 	return ret;
2378 }
2379 
2380 static const struct nand_controller_ops brcmnand_controller_ops = {
2381 	.attach_chip = brcmnand_attach_chip,
2382 };
2383 
2384 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2385 {
2386 	struct brcmnand_controller *ctrl = host->ctrl;
2387 	struct platform_device *pdev = host->pdev;
2388 	struct mtd_info *mtd;
2389 	struct nand_chip *chip;
2390 	int ret;
2391 	u16 cfg_offs;
2392 
2393 	ret = of_property_read_u32(dn, "reg", &host->cs);
2394 	if (ret) {
2395 		dev_err(&pdev->dev, "can't get chip-select\n");
2396 		return -ENXIO;
2397 	}
2398 
2399 	mtd = nand_to_mtd(&host->chip);
2400 	chip = &host->chip;
2401 
2402 	nand_set_flash_node(chip, dn);
2403 	nand_set_controller_data(chip, host);
2404 	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2405 				   host->cs);
2406 	if (!mtd->name)
2407 		return -ENOMEM;
2408 
2409 	mtd->owner = THIS_MODULE;
2410 	mtd->dev.parent = &pdev->dev;
2411 
2412 	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2413 	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2414 	chip->legacy.waitfunc = brcmnand_waitfunc;
2415 	chip->legacy.read_byte = brcmnand_read_byte;
2416 	chip->legacy.read_buf = brcmnand_read_buf;
2417 	chip->legacy.write_buf = brcmnand_write_buf;
2418 
2419 	chip->ecc.mode = NAND_ECC_HW;
2420 	chip->ecc.read_page = brcmnand_read_page;
2421 	chip->ecc.write_page = brcmnand_write_page;
2422 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2423 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2424 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2425 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2426 	chip->ecc.read_oob = brcmnand_read_oob;
2427 	chip->ecc.write_oob = brcmnand_write_oob;
2428 
2429 	chip->controller = &ctrl->controller;
2430 
2431 	/*
2432 	 * The bootloader might have configured 16bit mode but
2433 	 * NAND READID command only works in 8bit mode. We force
2434 	 * 8bit mode here to ensure that NAND READID commands works.
2435 	 */
2436 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2437 	nand_writereg(ctrl, cfg_offs,
2438 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2439 
2440 	ret = nand_scan(chip, 1);
2441 	if (ret)
2442 		return ret;
2443 
2444 	ret = mtd_device_register(mtd, NULL, 0);
2445 	if (ret)
2446 		nand_cleanup(chip);
2447 
2448 	return ret;
2449 }
2450 
2451 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2452 					    int restore)
2453 {
2454 	struct brcmnand_controller *ctrl = host->ctrl;
2455 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2456 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2457 			BRCMNAND_CS_CFG_EXT);
2458 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2459 			BRCMNAND_CS_ACC_CONTROL);
2460 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2461 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2462 
2463 	if (restore) {
2464 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2465 		if (cfg_offs != cfg_ext_offs)
2466 			nand_writereg(ctrl, cfg_ext_offs,
2467 				      host->hwcfg.config_ext);
2468 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2469 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2470 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2471 	} else {
2472 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2473 		if (cfg_offs != cfg_ext_offs)
2474 			host->hwcfg.config_ext =
2475 				nand_readreg(ctrl, cfg_ext_offs);
2476 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2477 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2478 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2479 	}
2480 }
2481 
2482 static int brcmnand_suspend(struct device *dev)
2483 {
2484 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2485 	struct brcmnand_host *host;
2486 
2487 	list_for_each_entry(host, &ctrl->host_list, node)
2488 		brcmnand_save_restore_cs_config(host, 0);
2489 
2490 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2491 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2492 	ctrl->corr_stat_threshold =
2493 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2494 
2495 	if (has_flash_dma(ctrl))
2496 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2497 
2498 	return 0;
2499 }
2500 
2501 static int brcmnand_resume(struct device *dev)
2502 {
2503 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2504 	struct brcmnand_host *host;
2505 
2506 	if (has_flash_dma(ctrl)) {
2507 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2508 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2509 	}
2510 
2511 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2512 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2513 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2514 			ctrl->corr_stat_threshold);
2515 	if (ctrl->soc) {
2516 		/* Clear/re-enable interrupt */
2517 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2518 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2519 	}
2520 
2521 	list_for_each_entry(host, &ctrl->host_list, node) {
2522 		struct nand_chip *chip = &host->chip;
2523 
2524 		brcmnand_save_restore_cs_config(host, 1);
2525 
2526 		/* Reset the chip, required by some chips after power-up */
2527 		nand_reset_op(chip);
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 const struct dev_pm_ops brcmnand_pm_ops = {
2534 	.suspend		= brcmnand_suspend,
2535 	.resume			= brcmnand_resume,
2536 };
2537 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2538 
2539 static const struct of_device_id brcmnand_of_match[] = {
2540 	{ .compatible = "brcm,brcmnand-v4.0" },
2541 	{ .compatible = "brcm,brcmnand-v5.0" },
2542 	{ .compatible = "brcm,brcmnand-v6.0" },
2543 	{ .compatible = "brcm,brcmnand-v6.1" },
2544 	{ .compatible = "brcm,brcmnand-v6.2" },
2545 	{ .compatible = "brcm,brcmnand-v7.0" },
2546 	{ .compatible = "brcm,brcmnand-v7.1" },
2547 	{ .compatible = "brcm,brcmnand-v7.2" },
2548 	{ .compatible = "brcm,brcmnand-v7.3" },
2549 	{},
2550 };
2551 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2552 
2553 /***********************************************************************
2554  * Platform driver setup (per controller)
2555  ***********************************************************************/
2556 
2557 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2558 {
2559 	struct device *dev = &pdev->dev;
2560 	struct device_node *dn = dev->of_node, *child;
2561 	struct brcmnand_controller *ctrl;
2562 	struct resource *res;
2563 	int ret;
2564 
2565 	/* We only support device-tree instantiation */
2566 	if (!dn)
2567 		return -ENODEV;
2568 
2569 	if (!of_match_node(brcmnand_of_match, dn))
2570 		return -ENODEV;
2571 
2572 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2573 	if (!ctrl)
2574 		return -ENOMEM;
2575 
2576 	dev_set_drvdata(dev, ctrl);
2577 	ctrl->dev = dev;
2578 
2579 	init_completion(&ctrl->done);
2580 	init_completion(&ctrl->dma_done);
2581 	nand_controller_init(&ctrl->controller);
2582 	ctrl->controller.ops = &brcmnand_controller_ops;
2583 	INIT_LIST_HEAD(&ctrl->host_list);
2584 
2585 	/* NAND register range */
2586 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2587 	ctrl->nand_base = devm_ioremap_resource(dev, res);
2588 	if (IS_ERR(ctrl->nand_base))
2589 		return PTR_ERR(ctrl->nand_base);
2590 
2591 	/* Enable clock before using NAND registers */
2592 	ctrl->clk = devm_clk_get(dev, "nand");
2593 	if (!IS_ERR(ctrl->clk)) {
2594 		ret = clk_prepare_enable(ctrl->clk);
2595 		if (ret)
2596 			return ret;
2597 	} else {
2598 		ret = PTR_ERR(ctrl->clk);
2599 		if (ret == -EPROBE_DEFER)
2600 			return ret;
2601 
2602 		ctrl->clk = NULL;
2603 	}
2604 
2605 	/* Initialize NAND revision */
2606 	ret = brcmnand_revision_init(ctrl);
2607 	if (ret)
2608 		goto err;
2609 
2610 	/*
2611 	 * Most chips have this cache at a fixed offset within 'nand' block.
2612 	 * Some must specify this region separately.
2613 	 */
2614 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2615 	if (res) {
2616 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
2617 		if (IS_ERR(ctrl->nand_fc)) {
2618 			ret = PTR_ERR(ctrl->nand_fc);
2619 			goto err;
2620 		}
2621 	} else {
2622 		ctrl->nand_fc = ctrl->nand_base +
2623 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
2624 	}
2625 
2626 	/* FLASH_DMA */
2627 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2628 	if (res) {
2629 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2630 		if (IS_ERR(ctrl->flash_dma_base)) {
2631 			ret = PTR_ERR(ctrl->flash_dma_base);
2632 			goto err;
2633 		}
2634 
2635 		/* initialize the dma version */
2636 		brcmnand_flash_dma_revision_init(ctrl);
2637 
2638 		ret = -EIO;
2639 		if (ctrl->nand_version >= 0x0700)
2640 			ret = dma_set_mask_and_coherent(&pdev->dev,
2641 							DMA_BIT_MASK(40));
2642 		if (ret)
2643 			ret = dma_set_mask_and_coherent(&pdev->dev,
2644 							DMA_BIT_MASK(32));
2645 		if (ret)
2646 			goto err;
2647 
2648 		/* linked-list and stop on error */
2649 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
2650 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2651 
2652 		/* Allocate descriptor(s) */
2653 		ctrl->dma_desc = dmam_alloc_coherent(dev,
2654 						     sizeof(*ctrl->dma_desc),
2655 						     &ctrl->dma_pa, GFP_KERNEL);
2656 		if (!ctrl->dma_desc) {
2657 			ret = -ENOMEM;
2658 			goto err;
2659 		}
2660 
2661 		ctrl->dma_irq = platform_get_irq(pdev, 1);
2662 		if ((int)ctrl->dma_irq < 0) {
2663 			dev_err(dev, "missing FLASH_DMA IRQ\n");
2664 			ret = -ENODEV;
2665 			goto err;
2666 		}
2667 
2668 		ret = devm_request_irq(dev, ctrl->dma_irq,
2669 				brcmnand_dma_irq, 0, DRV_NAME,
2670 				ctrl);
2671 		if (ret < 0) {
2672 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
2673 					ctrl->dma_irq, ret);
2674 			goto err;
2675 		}
2676 
2677 		dev_info(dev, "enabling FLASH_DMA\n");
2678 	}
2679 
2680 	/* Disable automatic device ID config, direct addressing */
2681 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2682 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2683 	/* Disable XOR addressing */
2684 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2685 
2686 	if (ctrl->features & BRCMNAND_HAS_WP) {
2687 		/* Permanently disable write protection */
2688 		if (wp_on == 2)
2689 			brcmnand_set_wp(ctrl, false);
2690 	} else {
2691 		wp_on = 0;
2692 	}
2693 
2694 	/* IRQ */
2695 	ctrl->irq = platform_get_irq(pdev, 0);
2696 	if ((int)ctrl->irq < 0) {
2697 		dev_err(dev, "no IRQ defined\n");
2698 		ret = -ENODEV;
2699 		goto err;
2700 	}
2701 
2702 	/*
2703 	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2704 	 * interesting ways
2705 	 */
2706 	if (soc) {
2707 		ctrl->soc = soc;
2708 
2709 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2710 				       DRV_NAME, ctrl);
2711 
2712 		/* Enable interrupt */
2713 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2714 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2715 	} else {
2716 		/* Use standard interrupt infrastructure */
2717 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2718 				       DRV_NAME, ctrl);
2719 	}
2720 	if (ret < 0) {
2721 		dev_err(dev, "can't allocate IRQ %d: error %d\n",
2722 			ctrl->irq, ret);
2723 		goto err;
2724 	}
2725 
2726 	for_each_available_child_of_node(dn, child) {
2727 		if (of_device_is_compatible(child, "brcm,nandcs")) {
2728 			struct brcmnand_host *host;
2729 
2730 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2731 			if (!host) {
2732 				of_node_put(child);
2733 				ret = -ENOMEM;
2734 				goto err;
2735 			}
2736 			host->pdev = pdev;
2737 			host->ctrl = ctrl;
2738 
2739 			ret = brcmnand_init_cs(host, child);
2740 			if (ret) {
2741 				devm_kfree(dev, host);
2742 				continue; /* Try all chip-selects */
2743 			}
2744 
2745 			list_add_tail(&host->node, &ctrl->host_list);
2746 		}
2747 	}
2748 
2749 	/* No chip-selects could initialize properly */
2750 	if (list_empty(&ctrl->host_list)) {
2751 		ret = -ENODEV;
2752 		goto err;
2753 	}
2754 
2755 	return 0;
2756 
2757 err:
2758 	clk_disable_unprepare(ctrl->clk);
2759 	return ret;
2760 
2761 }
2762 EXPORT_SYMBOL_GPL(brcmnand_probe);
2763 
2764 int brcmnand_remove(struct platform_device *pdev)
2765 {
2766 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2767 	struct brcmnand_host *host;
2768 
2769 	list_for_each_entry(host, &ctrl->host_list, node)
2770 		nand_release(&host->chip);
2771 
2772 	clk_disable_unprepare(ctrl->clk);
2773 
2774 	dev_set_drvdata(&pdev->dev, NULL);
2775 
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(brcmnand_remove);
2779 
2780 MODULE_LICENSE("GPL v2");
2781 MODULE_AUTHOR("Kevin Cernekee");
2782 MODULE_AUTHOR("Brian Norris");
2783 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2784 MODULE_ALIAS("platform:brcmnand");
2785