xref: /linux/drivers/mtd/nand/raw/vf610_nfc.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
4  *
5  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
6  * Jason ported to M54418TWR and MVFA5 (VF610).
7  * Authors: Stefan Agner <stefan.agner@toradex.com>
8  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
9  *          Shaohui Xie <b21989@freescale.com>
10  *          Jason Jin <Jason.jin@freescale.com>
11  *
12  * Based on original driver mpc5121_nfc.c.
13  *
14  * Limitations:
15  * - Untested on MPC5125 and M54418.
16  * - DMA and pipelining not used.
17  * - 2K pages or less.
18  * - HW ECC: Only 2K page with 64+ OOB.
19  * - HW ECC: Only 24 and 32-bit error correction implemented.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/of.h>
33 #include <linux/platform_device.h>
34 #include <linux/property.h>
35 #include <linux/slab.h>
36 #include <linux/swab.h>
37 
38 #define	DRV_NAME		"vf610_nfc"
39 
40 /* Register Offsets */
41 #define NFC_FLASH_CMD1			0x3F00
42 #define NFC_FLASH_CMD2			0x3F04
43 #define NFC_COL_ADDR			0x3F08
44 #define NFC_ROW_ADDR			0x3F0c
45 #define NFC_ROW_ADDR_INC		0x3F14
46 #define NFC_FLASH_STATUS1		0x3F18
47 #define NFC_FLASH_STATUS2		0x3F1c
48 #define NFC_CACHE_SWAP			0x3F28
49 #define NFC_SECTOR_SIZE			0x3F2c
50 #define NFC_FLASH_CONFIG		0x3F30
51 #define NFC_IRQ_STATUS			0x3F38
52 
53 /* Addresses for NFC MAIN RAM BUFFER areas */
54 #define NFC_MAIN_AREA(n)		((n) *  0x1000)
55 
56 #define PAGE_2K				0x0800
57 #define OOB_64				0x0040
58 #define OOB_MAX				0x0100
59 
60 /* NFC_CMD2[CODE] controller cycle bit masks */
61 #define COMMAND_CMD_BYTE1		BIT(14)
62 #define COMMAND_CAR_BYTE1		BIT(13)
63 #define COMMAND_CAR_BYTE2		BIT(12)
64 #define COMMAND_RAR_BYTE1		BIT(11)
65 #define COMMAND_RAR_BYTE2		BIT(10)
66 #define COMMAND_RAR_BYTE3		BIT(9)
67 #define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
68 #define COMMAND_WRITE_DATA		BIT(8)
69 #define COMMAND_CMD_BYTE2		BIT(7)
70 #define COMMAND_RB_HANDSHAKE		BIT(6)
71 #define COMMAND_READ_DATA		BIT(5)
72 #define COMMAND_CMD_BYTE3		BIT(4)
73 #define COMMAND_READ_STATUS		BIT(3)
74 #define COMMAND_READ_ID			BIT(2)
75 
76 /* NFC ECC mode define */
77 #define ECC_BYPASS			0
78 #define ECC_45_BYTE			6
79 #define ECC_60_BYTE			7
80 
81 /*** Register Mask and bit definitions */
82 
83 /* NFC_FLASH_CMD1 Field */
84 #define CMD_BYTE2_MASK				0xFF000000
85 #define CMD_BYTE2_SHIFT				24
86 
87 /* NFC_FLASH_CM2 Field */
88 #define CMD_BYTE1_MASK				0xFF000000
89 #define CMD_BYTE1_SHIFT				24
90 #define CMD_CODE_MASK				0x00FFFF00
91 #define CMD_CODE_SHIFT				8
92 #define BUFNO_MASK				0x00000006
93 #define BUFNO_SHIFT				1
94 #define START_BIT				BIT(0)
95 
96 /* NFC_COL_ADDR Field */
97 #define COL_ADDR_MASK				0x0000FFFF
98 #define COL_ADDR_SHIFT				0
99 #define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
100 
101 /* NFC_ROW_ADDR Field */
102 #define ROW_ADDR_MASK				0x00FFFFFF
103 #define ROW_ADDR_SHIFT				0
104 #define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
105 
106 #define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
107 #define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
108 #define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
109 #define ROW_ADDR_CHIP_SEL_SHIFT			24
110 
111 /* NFC_FLASH_STATUS2 Field */
112 #define STATUS_BYTE1_MASK			0x000000FF
113 
114 /* NFC_FLASH_CONFIG Field */
115 #define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
116 #define CONFIG_ECC_SRAM_ADDR_SHIFT		22
117 #define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
118 #define CONFIG_DMA_REQ_BIT			BIT(20)
119 #define CONFIG_ECC_MODE_MASK			0x000E0000
120 #define CONFIG_ECC_MODE_SHIFT			17
121 #define CONFIG_FAST_FLASH_BIT			BIT(16)
122 #define CONFIG_16BIT				BIT(7)
123 #define CONFIG_BOOT_MODE_BIT			BIT(6)
124 #define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
125 #define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
126 #define CONFIG_PAGE_CNT_MASK			0xF
127 #define CONFIG_PAGE_CNT_SHIFT			0
128 
129 /* NFC_IRQ_STATUS Field */
130 #define IDLE_IRQ_BIT				BIT(29)
131 #define IDLE_EN_BIT				BIT(20)
132 #define CMD_DONE_CLEAR_BIT			BIT(18)
133 #define IDLE_CLEAR_BIT				BIT(17)
134 
135 /*
136  * ECC status - seems to consume 8 bytes (double word). The documented
137  * status byte is located in the lowest byte of the second word (which is
138  * the 4th or 7th byte depending on endianness).
139  * Calculate an offset to store the ECC status at the end of the buffer.
140  */
141 #define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
142 
143 #define ECC_STATUS		0x4
144 #define ECC_STATUS_MASK		0x80
145 #define ECC_STATUS_ERR_COUNT	0x3F
146 
147 enum vf610_nfc_variant {
148 	NFC_VFC610 = 1,
149 };
150 
151 struct vf610_nfc {
152 	struct nand_controller base;
153 	struct nand_chip chip;
154 	struct device *dev;
155 	void __iomem *regs;
156 	struct completion cmd_done;
157 	/* Status and ID are in alternate locations. */
158 	enum vf610_nfc_variant variant;
159 	struct clk *clk;
160 	/*
161 	 * Indicate that user data is accessed (full page/oob). This is
162 	 * useful to indicate the driver whether to swap byte endianness.
163 	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
164 	 */
165 	bool data_access;
166 	u32 ecc_mode;
167 };
168 
169 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
170 {
171 	return container_of(chip, struct vf610_nfc, chip);
172 }
173 
174 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
175 {
176 	return readl(nfc->regs + reg);
177 }
178 
179 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
180 {
181 	writel(val, nfc->regs + reg);
182 }
183 
184 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
185 {
186 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
187 }
188 
189 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
190 {
191 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
192 }
193 
194 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
195 				       u32 mask, u32 shift, u32 val)
196 {
197 	vf610_nfc_write(nfc, reg,
198 			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
199 }
200 
201 static inline bool vf610_nfc_kernel_is_little_endian(void)
202 {
203 #ifdef __LITTLE_ENDIAN
204 	return true;
205 #else
206 	return false;
207 #endif
208 }
209 
210 /*
211  * Read accessor for internal SRAM buffer
212  * @dst: destination address in regular memory
213  * @src: source address in SRAM buffer
214  * @len: bytes to copy
215  * @fix_endian: Fix endianness if required
216  *
217  * Use this accessor for the internal SRAM buffers. On the ARM
218  * Freescale Vybrid SoC it's known that the driver can treat
219  * the SRAM buffer as if it's memory. Other platform might need
220  * to treat the buffers differently.
221  *
222  * The controller stores bytes from the NAND chip internally in big
223  * endianness. On little endian platforms such as Vybrid this leads
224  * to reversed byte order.
225  * For performance reason (and earlier probably due to unawareness)
226  * the driver avoids correcting endianness where it has control over
227  * write and read side (e.g. page wise data access).
228  */
229 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
230 					  size_t len, bool fix_endian)
231 {
232 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
233 		unsigned int i;
234 
235 		for (i = 0; i < len; i += 4) {
236 			u32 val = swab32(__raw_readl(src + i));
237 
238 			memcpy(dst + i, &val, min(sizeof(val), len - i));
239 		}
240 	} else {
241 		memcpy_fromio(dst, src, len);
242 	}
243 }
244 
245 /*
246  * Write accessor for internal SRAM buffer
247  * @dst: destination address in SRAM buffer
248  * @src: source address in regular memory
249  * @len: bytes to copy
250  * @fix_endian: Fix endianness if required
251  *
252  * Use this accessor for the internal SRAM buffers. On the ARM
253  * Freescale Vybrid SoC it's known that the driver can treat
254  * the SRAM buffer as if it's memory. Other platform might need
255  * to treat the buffers differently.
256  *
257  * The controller stores bytes from the NAND chip internally in big
258  * endianness. On little endian platforms such as Vybrid this leads
259  * to reversed byte order.
260  * For performance reason (and earlier probably due to unawareness)
261  * the driver avoids correcting endianness where it has control over
262  * write and read side (e.g. page wise data access).
263  */
264 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
265 					size_t len, bool fix_endian)
266 {
267 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
268 		unsigned int i;
269 
270 		for (i = 0; i < len; i += 4) {
271 			u32 val;
272 
273 			memcpy(&val, src + i, min(sizeof(val), len - i));
274 			__raw_writel(swab32(val), dst + i);
275 		}
276 	} else {
277 		memcpy_toio(dst, src, len);
278 	}
279 }
280 
281 /* Clear flags for upcoming command */
282 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
283 {
284 	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
285 
286 	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
287 	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
288 }
289 
290 static void vf610_nfc_done(struct vf610_nfc *nfc)
291 {
292 	unsigned long timeout = msecs_to_jiffies(100);
293 
294 	/*
295 	 * Barrier is needed after this write. This write need
296 	 * to be done before reading the next register the first
297 	 * time.
298 	 * vf610_nfc_set implicates such a barrier by using writel
299 	 * to write to the register.
300 	 */
301 	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
302 	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
303 
304 	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
305 		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
306 
307 	vf610_nfc_clear_status(nfc);
308 }
309 
310 static irqreturn_t vf610_nfc_irq(int irq, void *data)
311 {
312 	struct vf610_nfc *nfc = data;
313 
314 	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
315 	complete(&nfc->cmd_done);
316 
317 	return IRQ_HANDLED;
318 }
319 
320 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
321 {
322 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
323 			    CONFIG_ECC_MODE_MASK,
324 			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
325 }
326 
327 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
328 				 u32 cmd1, u32 cmd2, u32 trfr_sz)
329 {
330 	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
331 			    COL_ADDR_SHIFT, col);
332 
333 	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
334 			    ROW_ADDR_SHIFT, row);
335 
336 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
337 	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
338 	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
339 
340 	dev_dbg(nfc->dev,
341 		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
342 		col, row, cmd1, cmd2, trfr_sz);
343 
344 	vf610_nfc_done(nfc);
345 }
346 
347 static inline const struct nand_op_instr *
348 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
349 {
350 	if (*op_id + 1 >= subop->ninstrs)
351 		return NULL;
352 
353 	(*op_id)++;
354 
355 	return &subop->instrs[*op_id];
356 }
357 
358 static int vf610_nfc_cmd(struct nand_chip *chip,
359 			 const struct nand_subop *subop)
360 {
361 	const struct nand_op_instr *instr;
362 	struct vf610_nfc *nfc = chip_to_nfc(chip);
363 	int op_id = -1, trfr_sz = 0, offset = 0;
364 	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
365 	bool force8bit = false;
366 
367 	/*
368 	 * Some ops are optional, but the hardware requires the operations
369 	 * to be in this exact order.
370 	 * The op parser enforces the order and makes sure that there isn't
371 	 * a read and write element in a single operation.
372 	 */
373 	instr = vf610_get_next_instr(subop, &op_id);
374 	if (!instr)
375 		return -EINVAL;
376 
377 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
378 		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
379 		code |= COMMAND_CMD_BYTE1;
380 
381 		instr = vf610_get_next_instr(subop, &op_id);
382 	}
383 
384 	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
385 		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
386 		int i = nand_subop_get_addr_start_off(subop, op_id);
387 
388 		for (; i < naddrs; i++) {
389 			u8 val = instr->ctx.addr.addrs[i];
390 
391 			if (i < 2)
392 				col |= COL_ADDR(i, val);
393 			else
394 				row |= ROW_ADDR(i - 2, val);
395 		}
396 		code |= COMMAND_NADDR_BYTES(naddrs);
397 
398 		instr = vf610_get_next_instr(subop, &op_id);
399 	}
400 
401 	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
402 		trfr_sz = nand_subop_get_data_len(subop, op_id);
403 		offset = nand_subop_get_data_start_off(subop, op_id);
404 		force8bit = instr->ctx.data.force_8bit;
405 
406 		/*
407 		 * Don't fix endianness on page access for historical reasons.
408 		 * See comment in vf610_nfc_wr_to_sram
409 		 */
410 		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
411 				     instr->ctx.data.buf.out + offset,
412 				     trfr_sz, !nfc->data_access);
413 		code |= COMMAND_WRITE_DATA;
414 
415 		instr = vf610_get_next_instr(subop, &op_id);
416 	}
417 
418 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
419 		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
420 		code |= COMMAND_CMD_BYTE2;
421 
422 		instr = vf610_get_next_instr(subop, &op_id);
423 	}
424 
425 	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
426 		code |= COMMAND_RB_HANDSHAKE;
427 
428 		instr = vf610_get_next_instr(subop, &op_id);
429 	}
430 
431 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
432 		trfr_sz = nand_subop_get_data_len(subop, op_id);
433 		offset = nand_subop_get_data_start_off(subop, op_id);
434 		force8bit = instr->ctx.data.force_8bit;
435 
436 		code |= COMMAND_READ_DATA;
437 	}
438 
439 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
440 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
441 
442 	cmd2 |= code << CMD_CODE_SHIFT;
443 
444 	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
445 
446 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
447 		/*
448 		 * Don't fix endianness on page access for historical reasons.
449 		 * See comment in vf610_nfc_rd_from_sram
450 		 */
451 		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
452 				       nfc->regs + NFC_MAIN_AREA(0) + offset,
453 				       trfr_sz, !nfc->data_access);
454 	}
455 
456 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
457 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
458 
459 	return 0;
460 }
461 
462 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
463 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
464 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
465 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
466 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
467 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
468 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
469 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
470 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
471 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
472 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
473 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
474 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
475 	);
476 
477 /*
478  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
479  */
480 static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
481 {
482 	struct vf610_nfc *nfc = chip_to_nfc(chip);
483 	u32 tmp;
484 
485 	/* Vybrid only (MPC5125 would have full RB and four CS) */
486 	if (nfc->variant != NFC_VFC610)
487 		return;
488 
489 	tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
490 	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
491 	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
492 	tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
493 
494 	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
495 }
496 
497 static int vf610_nfc_exec_op(struct nand_chip *chip,
498 			     const struct nand_operation *op,
499 			     bool check_only)
500 {
501 	if (!check_only)
502 		vf610_nfc_select_target(chip, op->cs);
503 
504 	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
505 				      check_only);
506 }
507 
508 static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
509 					 uint8_t *oob, int page)
510 {
511 	struct vf610_nfc *nfc = chip_to_nfc(chip);
512 	struct mtd_info *mtd = nand_to_mtd(chip);
513 	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
514 	u8 ecc_status;
515 	u8 ecc_count;
516 	int flips_threshold = nfc->chip.ecc.strength / 2;
517 
518 	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
519 	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
520 
521 	if (!(ecc_status & ECC_STATUS_MASK))
522 		return ecc_count;
523 
524 	nfc->data_access = true;
525 	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
526 	nfc->data_access = false;
527 
528 	/*
529 	 * On an erased page, bit count (including OOB) should be zero or
530 	 * at least less then half of the ECC strength.
531 	 */
532 	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
533 					   mtd->oobsize, NULL, 0,
534 					   flips_threshold);
535 }
536 
537 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
538 			       u32 *row)
539 {
540 	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
541 	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
542 
543 	if (chip->options & NAND_ROW_ADDR_3) {
544 		*row |= ROW_ADDR(2, page >> 16);
545 		*code |= COMMAND_RAR_BYTE3;
546 	}
547 }
548 
549 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
550 			       int oob_required, int page)
551 {
552 	struct vf610_nfc *nfc = chip_to_nfc(chip);
553 	struct mtd_info *mtd = nand_to_mtd(chip);
554 	int trfr_sz = mtd->writesize + mtd->oobsize;
555 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
556 	int stat;
557 
558 	vf610_nfc_select_target(chip, chip->cur_cs);
559 
560 	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
561 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
562 
563 	vf610_nfc_fill_row(chip, page, &code, &row);
564 
565 	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
566 	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
567 
568 	cmd2 |= code << CMD_CODE_SHIFT;
569 
570 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
571 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
572 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
573 
574 	/*
575 	 * Don't fix endianness on page access for historical reasons.
576 	 * See comment in vf610_nfc_rd_from_sram
577 	 */
578 	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
579 			       mtd->writesize, false);
580 	if (oob_required)
581 		vf610_nfc_rd_from_sram(chip->oob_poi,
582 				       nfc->regs + NFC_MAIN_AREA(0) +
583 						   mtd->writesize,
584 				       mtd->oobsize, false);
585 
586 	stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
587 
588 	if (stat < 0) {
589 		mtd->ecc_stats.failed++;
590 		return 0;
591 	} else {
592 		mtd->ecc_stats.corrected += stat;
593 		return stat;
594 	}
595 }
596 
597 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
598 				int oob_required, int page)
599 {
600 	struct vf610_nfc *nfc = chip_to_nfc(chip);
601 	struct mtd_info *mtd = nand_to_mtd(chip);
602 	int trfr_sz = mtd->writesize + mtd->oobsize;
603 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
604 	u8 status;
605 	int ret;
606 
607 	vf610_nfc_select_target(chip, chip->cur_cs);
608 
609 	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
610 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
611 
612 	vf610_nfc_fill_row(chip, page, &code, &row);
613 
614 	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
615 	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
616 
617 	/*
618 	 * Don't fix endianness on page access for historical reasons.
619 	 * See comment in vf610_nfc_wr_to_sram
620 	 */
621 	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
622 			     mtd->writesize, false);
623 
624 	code |= COMMAND_RB_HANDSHAKE;
625 	cmd2 |= code << CMD_CODE_SHIFT;
626 
627 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
628 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
629 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
630 
631 	ret = nand_status_op(chip, &status);
632 	if (ret)
633 		return ret;
634 
635 	if (status & NAND_STATUS_FAIL)
636 		return -EIO;
637 
638 	return 0;
639 }
640 
641 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
642 				   int oob_required, int page)
643 {
644 	struct vf610_nfc *nfc = chip_to_nfc(chip);
645 	int ret;
646 
647 	nfc->data_access = true;
648 	ret = nand_read_page_raw(chip, buf, oob_required, page);
649 	nfc->data_access = false;
650 
651 	return ret;
652 }
653 
654 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
655 				    int oob_required, int page)
656 {
657 	struct vf610_nfc *nfc = chip_to_nfc(chip);
658 	struct mtd_info *mtd = nand_to_mtd(chip);
659 	int ret;
660 
661 	nfc->data_access = true;
662 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
663 	if (!ret && oob_required)
664 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
665 					 false);
666 	nfc->data_access = false;
667 
668 	if (ret)
669 		return ret;
670 
671 	return nand_prog_page_end_op(chip);
672 }
673 
674 static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
675 {
676 	struct vf610_nfc *nfc = chip_to_nfc(chip);
677 	int ret;
678 
679 	nfc->data_access = true;
680 	ret = nand_read_oob_std(chip, page);
681 	nfc->data_access = false;
682 
683 	return ret;
684 }
685 
686 static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
687 {
688 	struct mtd_info *mtd = nand_to_mtd(chip);
689 	struct vf610_nfc *nfc = chip_to_nfc(chip);
690 	int ret;
691 
692 	nfc->data_access = true;
693 	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
694 				      chip->oob_poi, mtd->oobsize);
695 	nfc->data_access = false;
696 
697 	if (ret)
698 		return ret;
699 
700 	return nand_prog_page_end_op(chip);
701 }
702 
703 static const struct of_device_id vf610_nfc_dt_ids[] = {
704 	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
705 	{ /* sentinel */ }
706 };
707 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
708 
709 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
710 {
711 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
712 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
713 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
714 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
715 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
716 	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
717 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
718 
719 	/* Disable virtual pages, only one elementary transfer unit */
720 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
721 			    CONFIG_PAGE_CNT_SHIFT, 1);
722 }
723 
724 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
725 {
726 	if (nfc->chip.options & NAND_BUSWIDTH_16)
727 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
728 	else
729 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
730 
731 	if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
732 		/* Set ECC status offset in SRAM */
733 		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
734 				    CONFIG_ECC_SRAM_ADDR_MASK,
735 				    CONFIG_ECC_SRAM_ADDR_SHIFT,
736 				    ECC_SRAM_ADDR >> 3);
737 
738 		/* Enable ECC status in SRAM */
739 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
740 	}
741 }
742 
743 static int vf610_nfc_attach_chip(struct nand_chip *chip)
744 {
745 	struct mtd_info *mtd = nand_to_mtd(chip);
746 	struct vf610_nfc *nfc = chip_to_nfc(chip);
747 
748 	vf610_nfc_init_controller(nfc);
749 
750 	/* Bad block options. */
751 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
752 		chip->bbt_options |= NAND_BBT_NO_OOB;
753 
754 	/* Single buffer only, max 256 OOB minus ECC status */
755 	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
756 		dev_err(nfc->dev, "Unsupported flash page size\n");
757 		return -ENXIO;
758 	}
759 
760 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
761 		return 0;
762 
763 	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
764 		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
765 		return -ENXIO;
766 	}
767 
768 	if (chip->ecc.size != mtd->writesize) {
769 		dev_err(nfc->dev, "Step size needs to be page size\n");
770 		return -ENXIO;
771 	}
772 
773 	/* Only 64 byte ECC layouts known */
774 	if (mtd->oobsize > 64)
775 		mtd->oobsize = 64;
776 
777 	/* Use default large page ECC layout defined in NAND core */
778 	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
779 	if (chip->ecc.strength == 32) {
780 		nfc->ecc_mode = ECC_60_BYTE;
781 		chip->ecc.bytes = 60;
782 	} else if (chip->ecc.strength == 24) {
783 		nfc->ecc_mode = ECC_45_BYTE;
784 		chip->ecc.bytes = 45;
785 	} else {
786 		dev_err(nfc->dev, "Unsupported ECC strength\n");
787 		return -ENXIO;
788 	}
789 
790 	chip->ecc.read_page = vf610_nfc_read_page;
791 	chip->ecc.write_page = vf610_nfc_write_page;
792 	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
793 	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
794 	chip->ecc.read_oob = vf610_nfc_read_oob;
795 	chip->ecc.write_oob = vf610_nfc_write_oob;
796 
797 	chip->ecc.size = PAGE_2K;
798 
799 	return 0;
800 }
801 
802 static const struct nand_controller_ops vf610_nfc_controller_ops = {
803 	.attach_chip = vf610_nfc_attach_chip,
804 	.exec_op = vf610_nfc_exec_op,
805 
806 };
807 
808 static int vf610_nfc_probe(struct platform_device *pdev)
809 {
810 	struct vf610_nfc *nfc;
811 	struct mtd_info *mtd;
812 	struct nand_chip *chip;
813 	struct device_node *child;
814 	int err;
815 	int irq;
816 
817 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
818 	if (!nfc)
819 		return -ENOMEM;
820 
821 	nfc->dev = &pdev->dev;
822 	chip = &nfc->chip;
823 	mtd = nand_to_mtd(chip);
824 
825 	mtd->owner = THIS_MODULE;
826 	mtd->dev.parent = nfc->dev;
827 	mtd->name = DRV_NAME;
828 
829 	irq = platform_get_irq(pdev, 0);
830 	if (irq < 0)
831 		return irq;
832 
833 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
834 	if (IS_ERR(nfc->regs))
835 		return PTR_ERR(nfc->regs);
836 
837 	nfc->clk = devm_clk_get_enabled(&pdev->dev, NULL);
838 	if (IS_ERR(nfc->clk)) {
839 		dev_err(nfc->dev, "Unable to get and enable clock!\n");
840 		return PTR_ERR(nfc->clk);
841 	}
842 
843 	nfc->variant = (enum vf610_nfc_variant)device_get_match_data(&pdev->dev);
844 	if (!nfc->variant)
845 		return -ENODEV;
846 
847 	for_each_available_child_of_node(nfc->dev->of_node, child) {
848 		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
849 
850 			if (nand_get_flash_node(chip)) {
851 				dev_err(nfc->dev,
852 					"Only one NAND chip supported!\n");
853 				of_node_put(child);
854 				return -EINVAL;
855 			}
856 
857 			nand_set_flash_node(chip, child);
858 		}
859 	}
860 
861 	if (!nand_get_flash_node(chip)) {
862 		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
863 		return -ENODEV;
864 	}
865 
866 	chip->options |= NAND_NO_SUBPAGE_WRITE;
867 
868 	init_completion(&nfc->cmd_done);
869 
870 	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
871 	if (err) {
872 		dev_err(nfc->dev, "Error requesting IRQ!\n");
873 		return err;
874 	}
875 
876 	vf610_nfc_preinit_controller(nfc);
877 
878 	nand_controller_init(&nfc->base);
879 	nfc->base.ops = &vf610_nfc_controller_ops;
880 	chip->controller = &nfc->base;
881 
882 	/* Scan the NAND chip */
883 	err = nand_scan(chip, 1);
884 	if (err)
885 		return err;
886 
887 	platform_set_drvdata(pdev, nfc);
888 
889 	/* Register device in MTD */
890 	err = mtd_device_register(mtd, NULL, 0);
891 	if (err)
892 		goto err_cleanup_nand;
893 	return 0;
894 
895 err_cleanup_nand:
896 	nand_cleanup(chip);
897 	return err;
898 }
899 
900 static void vf610_nfc_remove(struct platform_device *pdev)
901 {
902 	struct vf610_nfc *nfc = platform_get_drvdata(pdev);
903 	struct nand_chip *chip = &nfc->chip;
904 	int ret;
905 
906 	ret = mtd_device_unregister(nand_to_mtd(chip));
907 	WARN_ON(ret);
908 	nand_cleanup(chip);
909 }
910 
911 #ifdef CONFIG_PM_SLEEP
912 static int vf610_nfc_suspend(struct device *dev)
913 {
914 	struct vf610_nfc *nfc = dev_get_drvdata(dev);
915 
916 	clk_disable_unprepare(nfc->clk);
917 	return 0;
918 }
919 
920 static int vf610_nfc_resume(struct device *dev)
921 {
922 	struct vf610_nfc *nfc = dev_get_drvdata(dev);
923 	int err;
924 
925 	err = clk_prepare_enable(nfc->clk);
926 	if (err)
927 		return err;
928 
929 	vf610_nfc_preinit_controller(nfc);
930 	vf610_nfc_init_controller(nfc);
931 	return 0;
932 }
933 #endif
934 
935 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
936 
937 static struct platform_driver vf610_nfc_driver = {
938 	.driver		= {
939 		.name	= DRV_NAME,
940 		.of_match_table = vf610_nfc_dt_ids,
941 		.pm	= &vf610_nfc_pm_ops,
942 	},
943 	.probe		= vf610_nfc_probe,
944 	.remove_new	= vf610_nfc_remove,
945 };
946 
947 module_platform_driver(vf610_nfc_driver);
948 
949 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
950 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
951 MODULE_LICENSE("GPL");
952