xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/pkt_cls.h>
28 #include <net/switchdev.h>
29 
30 #include "ksz_common.h"
31 #include "ksz_ptp.h"
32 #include "ksz8.h"
33 #include "ksz9477.h"
34 #include "lan937x.h"
35 
36 #define MIB_COUNTER_NUM 0x20
37 
38 struct ksz_stats_raw {
39 	u64 rx_hi;
40 	u64 rx_undersize;
41 	u64 rx_fragments;
42 	u64 rx_oversize;
43 	u64 rx_jabbers;
44 	u64 rx_symbol_err;
45 	u64 rx_crc_err;
46 	u64 rx_align_err;
47 	u64 rx_mac_ctrl;
48 	u64 rx_pause;
49 	u64 rx_bcast;
50 	u64 rx_mcast;
51 	u64 rx_ucast;
52 	u64 rx_64_or_less;
53 	u64 rx_65_127;
54 	u64 rx_128_255;
55 	u64 rx_256_511;
56 	u64 rx_512_1023;
57 	u64 rx_1024_1522;
58 	u64 rx_1523_2000;
59 	u64 rx_2001;
60 	u64 tx_hi;
61 	u64 tx_late_col;
62 	u64 tx_pause;
63 	u64 tx_bcast;
64 	u64 tx_mcast;
65 	u64 tx_ucast;
66 	u64 tx_deferred;
67 	u64 tx_total_col;
68 	u64 tx_exc_col;
69 	u64 tx_single_col;
70 	u64 tx_mult_col;
71 	u64 rx_total;
72 	u64 tx_total;
73 	u64 rx_discards;
74 	u64 tx_discards;
75 };
76 
77 struct ksz88xx_stats_raw {
78 	u64 rx;
79 	u64 rx_hi;
80 	u64 rx_undersize;
81 	u64 rx_fragments;
82 	u64 rx_oversize;
83 	u64 rx_jabbers;
84 	u64 rx_symbol_err;
85 	u64 rx_crc_err;
86 	u64 rx_align_err;
87 	u64 rx_mac_ctrl;
88 	u64 rx_pause;
89 	u64 rx_bcast;
90 	u64 rx_mcast;
91 	u64 rx_ucast;
92 	u64 rx_64_or_less;
93 	u64 rx_65_127;
94 	u64 rx_128_255;
95 	u64 rx_256_511;
96 	u64 rx_512_1023;
97 	u64 rx_1024_1522;
98 	u64 tx;
99 	u64 tx_hi;
100 	u64 tx_late_col;
101 	u64 tx_pause;
102 	u64 tx_bcast;
103 	u64 tx_mcast;
104 	u64 tx_ucast;
105 	u64 tx_deferred;
106 	u64 tx_total_col;
107 	u64 tx_exc_col;
108 	u64 tx_single_col;
109 	u64 tx_mult_col;
110 	u64 rx_discards;
111 	u64 tx_discards;
112 };
113 
114 static const struct ksz_mib_names ksz88xx_mib_names[] = {
115 	{ 0x00, "rx" },
116 	{ 0x01, "rx_hi" },
117 	{ 0x02, "rx_undersize" },
118 	{ 0x03, "rx_fragments" },
119 	{ 0x04, "rx_oversize" },
120 	{ 0x05, "rx_jabbers" },
121 	{ 0x06, "rx_symbol_err" },
122 	{ 0x07, "rx_crc_err" },
123 	{ 0x08, "rx_align_err" },
124 	{ 0x09, "rx_mac_ctrl" },
125 	{ 0x0a, "rx_pause" },
126 	{ 0x0b, "rx_bcast" },
127 	{ 0x0c, "rx_mcast" },
128 	{ 0x0d, "rx_ucast" },
129 	{ 0x0e, "rx_64_or_less" },
130 	{ 0x0f, "rx_65_127" },
131 	{ 0x10, "rx_128_255" },
132 	{ 0x11, "rx_256_511" },
133 	{ 0x12, "rx_512_1023" },
134 	{ 0x13, "rx_1024_1522" },
135 	{ 0x14, "tx" },
136 	{ 0x15, "tx_hi" },
137 	{ 0x16, "tx_late_col" },
138 	{ 0x17, "tx_pause" },
139 	{ 0x18, "tx_bcast" },
140 	{ 0x19, "tx_mcast" },
141 	{ 0x1a, "tx_ucast" },
142 	{ 0x1b, "tx_deferred" },
143 	{ 0x1c, "tx_total_col" },
144 	{ 0x1d, "tx_exc_col" },
145 	{ 0x1e, "tx_single_col" },
146 	{ 0x1f, "tx_mult_col" },
147 	{ 0x100, "rx_discards" },
148 	{ 0x101, "tx_discards" },
149 };
150 
151 static const struct ksz_mib_names ksz9477_mib_names[] = {
152 	{ 0x00, "rx_hi" },
153 	{ 0x01, "rx_undersize" },
154 	{ 0x02, "rx_fragments" },
155 	{ 0x03, "rx_oversize" },
156 	{ 0x04, "rx_jabbers" },
157 	{ 0x05, "rx_symbol_err" },
158 	{ 0x06, "rx_crc_err" },
159 	{ 0x07, "rx_align_err" },
160 	{ 0x08, "rx_mac_ctrl" },
161 	{ 0x09, "rx_pause" },
162 	{ 0x0A, "rx_bcast" },
163 	{ 0x0B, "rx_mcast" },
164 	{ 0x0C, "rx_ucast" },
165 	{ 0x0D, "rx_64_or_less" },
166 	{ 0x0E, "rx_65_127" },
167 	{ 0x0F, "rx_128_255" },
168 	{ 0x10, "rx_256_511" },
169 	{ 0x11, "rx_512_1023" },
170 	{ 0x12, "rx_1024_1522" },
171 	{ 0x13, "rx_1523_2000" },
172 	{ 0x14, "rx_2001" },
173 	{ 0x15, "tx_hi" },
174 	{ 0x16, "tx_late_col" },
175 	{ 0x17, "tx_pause" },
176 	{ 0x18, "tx_bcast" },
177 	{ 0x19, "tx_mcast" },
178 	{ 0x1A, "tx_ucast" },
179 	{ 0x1B, "tx_deferred" },
180 	{ 0x1C, "tx_total_col" },
181 	{ 0x1D, "tx_exc_col" },
182 	{ 0x1E, "tx_single_col" },
183 	{ 0x1F, "tx_mult_col" },
184 	{ 0x80, "rx_total" },
185 	{ 0x81, "tx_total" },
186 	{ 0x82, "rx_discards" },
187 	{ 0x83, "tx_discards" },
188 };
189 
190 struct ksz_driver_strength_prop {
191 	const char *name;
192 	int offset;
193 	int value;
194 };
195 
196 enum ksz_driver_strength_type {
197 	KSZ_DRIVER_STRENGTH_HI,
198 	KSZ_DRIVER_STRENGTH_LO,
199 	KSZ_DRIVER_STRENGTH_IO,
200 };
201 
202 /**
203  * struct ksz_drive_strength - drive strength mapping
204  * @reg_val:	register value
205  * @microamp:	microamp value
206  */
207 struct ksz_drive_strength {
208 	u32 reg_val;
209 	u32 microamp;
210 };
211 
212 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213  *
214  * This values are not documented in KSZ9477 variants but confirmed by
215  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217  *
218  * Documentation in KSZ8795CLX provides more information with some
219  * recommendations:
220  * - for high speed signals
221  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222  *      2.5V or 3.3V VDDIO.
223  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224  *      using 1.8V VDDIO.
225  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226  *      or 3.3V VDDIO.
227  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228  *   5. In same interface, the heavy loading should use higher one of the
229  *      drive current strength.
230  * - for low speed signals
231  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234  *   4. If it is heavy loading, can use higher drive current strength.
235  */
236 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245 };
246 
247 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248  *			     variants.
249  * This values are documented in KSZ8873 and KSZ8863 datasheets.
250  */
251 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252 	{ 0,  8000 },
253 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254 };
255 
256 static const struct ksz_dev_ops ksz8_dev_ops = {
257 	.setup = ksz8_setup,
258 	.get_port_addr = ksz8_get_port_addr,
259 	.cfg_port_member = ksz8_cfg_port_member,
260 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
261 	.port_setup = ksz8_port_setup,
262 	.r_phy = ksz8_r_phy,
263 	.w_phy = ksz8_w_phy,
264 	.r_mib_cnt = ksz8_r_mib_cnt,
265 	.r_mib_pkt = ksz8_r_mib_pkt,
266 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
267 	.freeze_mib = ksz8_freeze_mib,
268 	.port_init_cnt = ksz8_port_init_cnt,
269 	.fdb_dump = ksz8_fdb_dump,
270 	.fdb_add = ksz8_fdb_add,
271 	.fdb_del = ksz8_fdb_del,
272 	.mdb_add = ksz8_mdb_add,
273 	.mdb_del = ksz8_mdb_del,
274 	.vlan_filtering = ksz8_port_vlan_filtering,
275 	.vlan_add = ksz8_port_vlan_add,
276 	.vlan_del = ksz8_port_vlan_del,
277 	.mirror_add = ksz8_port_mirror_add,
278 	.mirror_del = ksz8_port_mirror_del,
279 	.get_caps = ksz8_get_caps,
280 	.phylink_mac_link_up = ksz8_phylink_mac_link_up,
281 	.config_cpu_port = ksz8_config_cpu_port,
282 	.enable_stp_addr = ksz8_enable_stp_addr,
283 	.reset = ksz8_reset_switch,
284 	.init = ksz8_switch_init,
285 	.exit = ksz8_switch_exit,
286 	.change_mtu = ksz8_change_mtu,
287 };
288 
289 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
290 					unsigned int mode,
291 					phy_interface_t interface,
292 					struct phy_device *phydev, int speed,
293 					int duplex, bool tx_pause,
294 					bool rx_pause);
295 
296 static const struct ksz_dev_ops ksz9477_dev_ops = {
297 	.setup = ksz9477_setup,
298 	.get_port_addr = ksz9477_get_port_addr,
299 	.cfg_port_member = ksz9477_cfg_port_member,
300 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
301 	.port_setup = ksz9477_port_setup,
302 	.set_ageing_time = ksz9477_set_ageing_time,
303 	.r_phy = ksz9477_r_phy,
304 	.w_phy = ksz9477_w_phy,
305 	.r_mib_cnt = ksz9477_r_mib_cnt,
306 	.r_mib_pkt = ksz9477_r_mib_pkt,
307 	.r_mib_stat64 = ksz_r_mib_stats64,
308 	.freeze_mib = ksz9477_freeze_mib,
309 	.port_init_cnt = ksz9477_port_init_cnt,
310 	.vlan_filtering = ksz9477_port_vlan_filtering,
311 	.vlan_add = ksz9477_port_vlan_add,
312 	.vlan_del = ksz9477_port_vlan_del,
313 	.mirror_add = ksz9477_port_mirror_add,
314 	.mirror_del = ksz9477_port_mirror_del,
315 	.get_caps = ksz9477_get_caps,
316 	.fdb_dump = ksz9477_fdb_dump,
317 	.fdb_add = ksz9477_fdb_add,
318 	.fdb_del = ksz9477_fdb_del,
319 	.mdb_add = ksz9477_mdb_add,
320 	.mdb_del = ksz9477_mdb_del,
321 	.change_mtu = ksz9477_change_mtu,
322 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
323 	.get_wol = ksz9477_get_wol,
324 	.set_wol = ksz9477_set_wol,
325 	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
326 	.config_cpu_port = ksz9477_config_cpu_port,
327 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
328 	.enable_stp_addr = ksz9477_enable_stp_addr,
329 	.reset = ksz9477_reset_switch,
330 	.init = ksz9477_switch_init,
331 	.exit = ksz9477_switch_exit,
332 };
333 
334 static const struct ksz_dev_ops lan937x_dev_ops = {
335 	.setup = lan937x_setup,
336 	.teardown = lan937x_teardown,
337 	.get_port_addr = ksz9477_get_port_addr,
338 	.cfg_port_member = ksz9477_cfg_port_member,
339 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
340 	.port_setup = lan937x_port_setup,
341 	.set_ageing_time = lan937x_set_ageing_time,
342 	.r_phy = lan937x_r_phy,
343 	.w_phy = lan937x_w_phy,
344 	.r_mib_cnt = ksz9477_r_mib_cnt,
345 	.r_mib_pkt = ksz9477_r_mib_pkt,
346 	.r_mib_stat64 = ksz_r_mib_stats64,
347 	.freeze_mib = ksz9477_freeze_mib,
348 	.port_init_cnt = ksz9477_port_init_cnt,
349 	.vlan_filtering = ksz9477_port_vlan_filtering,
350 	.vlan_add = ksz9477_port_vlan_add,
351 	.vlan_del = ksz9477_port_vlan_del,
352 	.mirror_add = ksz9477_port_mirror_add,
353 	.mirror_del = ksz9477_port_mirror_del,
354 	.get_caps = lan937x_phylink_get_caps,
355 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
356 	.fdb_dump = ksz9477_fdb_dump,
357 	.fdb_add = ksz9477_fdb_add,
358 	.fdb_del = ksz9477_fdb_del,
359 	.mdb_add = ksz9477_mdb_add,
360 	.mdb_del = ksz9477_mdb_del,
361 	.change_mtu = lan937x_change_mtu,
362 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
363 	.config_cpu_port = lan937x_config_cpu_port,
364 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
365 	.enable_stp_addr = ksz9477_enable_stp_addr,
366 	.reset = lan937x_reset_switch,
367 	.init = lan937x_switch_init,
368 	.exit = lan937x_switch_exit,
369 };
370 
371 static const u16 ksz8795_regs[] = {
372 	[REG_SW_MAC_ADDR]		= 0x68,
373 	[REG_IND_CTRL_0]		= 0x6E,
374 	[REG_IND_DATA_8]		= 0x70,
375 	[REG_IND_DATA_CHECK]		= 0x72,
376 	[REG_IND_DATA_HI]		= 0x71,
377 	[REG_IND_DATA_LO]		= 0x75,
378 	[REG_IND_MIB_CHECK]		= 0x74,
379 	[REG_IND_BYTE]			= 0xA0,
380 	[P_FORCE_CTRL]			= 0x0C,
381 	[P_LINK_STATUS]			= 0x0E,
382 	[P_LOCAL_CTRL]			= 0x07,
383 	[P_NEG_RESTART_CTRL]		= 0x0D,
384 	[P_REMOTE_STATUS]		= 0x08,
385 	[P_SPEED_STATUS]		= 0x09,
386 	[S_TAIL_TAG_CTRL]		= 0x0C,
387 	[P_STP_CTRL]			= 0x02,
388 	[S_START_CTRL]			= 0x01,
389 	[S_BROADCAST_CTRL]		= 0x06,
390 	[S_MULTICAST_CTRL]		= 0x04,
391 	[P_XMII_CTRL_0]			= 0x06,
392 	[P_XMII_CTRL_1]			= 0x06,
393 };
394 
395 static const u32 ksz8795_masks[] = {
396 	[PORT_802_1P_REMAPPING]		= BIT(7),
397 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
398 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
399 	[MIB_COUNTER_VALID]		= BIT(5),
400 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
401 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
402 	[VLAN_TABLE_VALID]		= BIT(12),
403 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
404 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
405 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
406 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
407 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
408 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
409 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
410 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
411 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
412 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
413 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
414 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
415 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
416 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
417 };
418 
419 static const u8 ksz8795_xmii_ctrl0[] = {
420 	[P_MII_100MBIT]			= 0,
421 	[P_MII_10MBIT]			= 1,
422 	[P_MII_FULL_DUPLEX]		= 0,
423 	[P_MII_HALF_DUPLEX]		= 1,
424 };
425 
426 static const u8 ksz8795_xmii_ctrl1[] = {
427 	[P_RGMII_SEL]			= 3,
428 	[P_GMII_SEL]			= 2,
429 	[P_RMII_SEL]			= 1,
430 	[P_MII_SEL]			= 0,
431 	[P_GMII_1GBIT]			= 1,
432 	[P_GMII_NOT_1GBIT]		= 0,
433 };
434 
435 static const u8 ksz8795_shifts[] = {
436 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
437 	[VLAN_TABLE]			= 16,
438 	[STATIC_MAC_FWD_PORTS]		= 16,
439 	[STATIC_MAC_FID]		= 24,
440 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
441 	[DYNAMIC_MAC_ENTRIES]		= 29,
442 	[DYNAMIC_MAC_FID]		= 16,
443 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
444 	[DYNAMIC_MAC_SRC_PORT]		= 24,
445 };
446 
447 static const u16 ksz8863_regs[] = {
448 	[REG_SW_MAC_ADDR]		= 0x70,
449 	[REG_IND_CTRL_0]		= 0x79,
450 	[REG_IND_DATA_8]		= 0x7B,
451 	[REG_IND_DATA_CHECK]		= 0x7B,
452 	[REG_IND_DATA_HI]		= 0x7C,
453 	[REG_IND_DATA_LO]		= 0x80,
454 	[REG_IND_MIB_CHECK]		= 0x80,
455 	[P_FORCE_CTRL]			= 0x0C,
456 	[P_LINK_STATUS]			= 0x0E,
457 	[P_LOCAL_CTRL]			= 0x0C,
458 	[P_NEG_RESTART_CTRL]		= 0x0D,
459 	[P_REMOTE_STATUS]		= 0x0E,
460 	[P_SPEED_STATUS]		= 0x0F,
461 	[S_TAIL_TAG_CTRL]		= 0x03,
462 	[P_STP_CTRL]			= 0x02,
463 	[S_START_CTRL]			= 0x01,
464 	[S_BROADCAST_CTRL]		= 0x06,
465 	[S_MULTICAST_CTRL]		= 0x04,
466 };
467 
468 static const u32 ksz8863_masks[] = {
469 	[PORT_802_1P_REMAPPING]		= BIT(3),
470 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
471 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
472 	[MIB_COUNTER_VALID]		= BIT(6),
473 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
474 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
475 	[VLAN_TABLE_VALID]		= BIT(19),
476 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
477 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
478 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
479 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
480 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
481 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
482 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
483 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
484 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
485 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
486 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
487 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
488 };
489 
490 static u8 ksz8863_shifts[] = {
491 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
492 	[STATIC_MAC_FWD_PORTS]		= 16,
493 	[STATIC_MAC_FID]		= 22,
494 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
495 	[DYNAMIC_MAC_ENTRIES]		= 24,
496 	[DYNAMIC_MAC_FID]		= 16,
497 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
498 	[DYNAMIC_MAC_SRC_PORT]		= 20,
499 };
500 
501 static const u16 ksz9477_regs[] = {
502 	[REG_SW_MAC_ADDR]		= 0x0302,
503 	[P_STP_CTRL]			= 0x0B04,
504 	[S_START_CTRL]			= 0x0300,
505 	[S_BROADCAST_CTRL]		= 0x0332,
506 	[S_MULTICAST_CTRL]		= 0x0331,
507 	[P_XMII_CTRL_0]			= 0x0300,
508 	[P_XMII_CTRL_1]			= 0x0301,
509 };
510 
511 static const u32 ksz9477_masks[] = {
512 	[ALU_STAT_WRITE]		= 0,
513 	[ALU_STAT_READ]			= 1,
514 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
515 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
516 };
517 
518 static const u8 ksz9477_shifts[] = {
519 	[ALU_STAT_INDEX]		= 16,
520 };
521 
522 static const u8 ksz9477_xmii_ctrl0[] = {
523 	[P_MII_100MBIT]			= 1,
524 	[P_MII_10MBIT]			= 0,
525 	[P_MII_FULL_DUPLEX]		= 1,
526 	[P_MII_HALF_DUPLEX]		= 0,
527 };
528 
529 static const u8 ksz9477_xmii_ctrl1[] = {
530 	[P_RGMII_SEL]			= 0,
531 	[P_RMII_SEL]			= 1,
532 	[P_GMII_SEL]			= 2,
533 	[P_MII_SEL]			= 3,
534 	[P_GMII_1GBIT]			= 0,
535 	[P_GMII_NOT_1GBIT]		= 1,
536 };
537 
538 static const u32 lan937x_masks[] = {
539 	[ALU_STAT_WRITE]		= 1,
540 	[ALU_STAT_READ]			= 2,
541 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
542 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
543 };
544 
545 static const u8 lan937x_shifts[] = {
546 	[ALU_STAT_INDEX]		= 8,
547 };
548 
549 static const struct regmap_range ksz8563_valid_regs[] = {
550 	regmap_reg_range(0x0000, 0x0003),
551 	regmap_reg_range(0x0006, 0x0006),
552 	regmap_reg_range(0x000f, 0x001f),
553 	regmap_reg_range(0x0100, 0x0100),
554 	regmap_reg_range(0x0104, 0x0107),
555 	regmap_reg_range(0x010d, 0x010d),
556 	regmap_reg_range(0x0110, 0x0113),
557 	regmap_reg_range(0x0120, 0x012b),
558 	regmap_reg_range(0x0201, 0x0201),
559 	regmap_reg_range(0x0210, 0x0213),
560 	regmap_reg_range(0x0300, 0x0300),
561 	regmap_reg_range(0x0302, 0x031b),
562 	regmap_reg_range(0x0320, 0x032b),
563 	regmap_reg_range(0x0330, 0x0336),
564 	regmap_reg_range(0x0338, 0x033e),
565 	regmap_reg_range(0x0340, 0x035f),
566 	regmap_reg_range(0x0370, 0x0370),
567 	regmap_reg_range(0x0378, 0x0378),
568 	regmap_reg_range(0x037c, 0x037d),
569 	regmap_reg_range(0x0390, 0x0393),
570 	regmap_reg_range(0x0400, 0x040e),
571 	regmap_reg_range(0x0410, 0x042f),
572 	regmap_reg_range(0x0500, 0x0519),
573 	regmap_reg_range(0x0520, 0x054b),
574 	regmap_reg_range(0x0550, 0x05b3),
575 
576 	/* port 1 */
577 	regmap_reg_range(0x1000, 0x1001),
578 	regmap_reg_range(0x1004, 0x100b),
579 	regmap_reg_range(0x1013, 0x1013),
580 	regmap_reg_range(0x1017, 0x1017),
581 	regmap_reg_range(0x101b, 0x101b),
582 	regmap_reg_range(0x101f, 0x1021),
583 	regmap_reg_range(0x1030, 0x1030),
584 	regmap_reg_range(0x1100, 0x1111),
585 	regmap_reg_range(0x111a, 0x111d),
586 	regmap_reg_range(0x1122, 0x1127),
587 	regmap_reg_range(0x112a, 0x112b),
588 	regmap_reg_range(0x1136, 0x1139),
589 	regmap_reg_range(0x113e, 0x113f),
590 	regmap_reg_range(0x1400, 0x1401),
591 	regmap_reg_range(0x1403, 0x1403),
592 	regmap_reg_range(0x1410, 0x1417),
593 	regmap_reg_range(0x1420, 0x1423),
594 	regmap_reg_range(0x1500, 0x1507),
595 	regmap_reg_range(0x1600, 0x1612),
596 	regmap_reg_range(0x1800, 0x180f),
597 	regmap_reg_range(0x1900, 0x1907),
598 	regmap_reg_range(0x1914, 0x191b),
599 	regmap_reg_range(0x1a00, 0x1a03),
600 	regmap_reg_range(0x1a04, 0x1a08),
601 	regmap_reg_range(0x1b00, 0x1b01),
602 	regmap_reg_range(0x1b04, 0x1b04),
603 	regmap_reg_range(0x1c00, 0x1c05),
604 	regmap_reg_range(0x1c08, 0x1c1b),
605 
606 	/* port 2 */
607 	regmap_reg_range(0x2000, 0x2001),
608 	regmap_reg_range(0x2004, 0x200b),
609 	regmap_reg_range(0x2013, 0x2013),
610 	regmap_reg_range(0x2017, 0x2017),
611 	regmap_reg_range(0x201b, 0x201b),
612 	regmap_reg_range(0x201f, 0x2021),
613 	regmap_reg_range(0x2030, 0x2030),
614 	regmap_reg_range(0x2100, 0x2111),
615 	regmap_reg_range(0x211a, 0x211d),
616 	regmap_reg_range(0x2122, 0x2127),
617 	regmap_reg_range(0x212a, 0x212b),
618 	regmap_reg_range(0x2136, 0x2139),
619 	regmap_reg_range(0x213e, 0x213f),
620 	regmap_reg_range(0x2400, 0x2401),
621 	regmap_reg_range(0x2403, 0x2403),
622 	regmap_reg_range(0x2410, 0x2417),
623 	regmap_reg_range(0x2420, 0x2423),
624 	regmap_reg_range(0x2500, 0x2507),
625 	regmap_reg_range(0x2600, 0x2612),
626 	regmap_reg_range(0x2800, 0x280f),
627 	regmap_reg_range(0x2900, 0x2907),
628 	regmap_reg_range(0x2914, 0x291b),
629 	regmap_reg_range(0x2a00, 0x2a03),
630 	regmap_reg_range(0x2a04, 0x2a08),
631 	regmap_reg_range(0x2b00, 0x2b01),
632 	regmap_reg_range(0x2b04, 0x2b04),
633 	regmap_reg_range(0x2c00, 0x2c05),
634 	regmap_reg_range(0x2c08, 0x2c1b),
635 
636 	/* port 3 */
637 	regmap_reg_range(0x3000, 0x3001),
638 	regmap_reg_range(0x3004, 0x300b),
639 	regmap_reg_range(0x3013, 0x3013),
640 	regmap_reg_range(0x3017, 0x3017),
641 	regmap_reg_range(0x301b, 0x301b),
642 	regmap_reg_range(0x301f, 0x3021),
643 	regmap_reg_range(0x3030, 0x3030),
644 	regmap_reg_range(0x3300, 0x3301),
645 	regmap_reg_range(0x3303, 0x3303),
646 	regmap_reg_range(0x3400, 0x3401),
647 	regmap_reg_range(0x3403, 0x3403),
648 	regmap_reg_range(0x3410, 0x3417),
649 	regmap_reg_range(0x3420, 0x3423),
650 	regmap_reg_range(0x3500, 0x3507),
651 	regmap_reg_range(0x3600, 0x3612),
652 	regmap_reg_range(0x3800, 0x380f),
653 	regmap_reg_range(0x3900, 0x3907),
654 	regmap_reg_range(0x3914, 0x391b),
655 	regmap_reg_range(0x3a00, 0x3a03),
656 	regmap_reg_range(0x3a04, 0x3a08),
657 	regmap_reg_range(0x3b00, 0x3b01),
658 	regmap_reg_range(0x3b04, 0x3b04),
659 	regmap_reg_range(0x3c00, 0x3c05),
660 	regmap_reg_range(0x3c08, 0x3c1b),
661 };
662 
663 static const struct regmap_access_table ksz8563_register_set = {
664 	.yes_ranges = ksz8563_valid_regs,
665 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
666 };
667 
668 static const struct regmap_range ksz9477_valid_regs[] = {
669 	regmap_reg_range(0x0000, 0x0003),
670 	regmap_reg_range(0x0006, 0x0006),
671 	regmap_reg_range(0x0010, 0x001f),
672 	regmap_reg_range(0x0100, 0x0100),
673 	regmap_reg_range(0x0103, 0x0107),
674 	regmap_reg_range(0x010d, 0x010d),
675 	regmap_reg_range(0x0110, 0x0113),
676 	regmap_reg_range(0x0120, 0x012b),
677 	regmap_reg_range(0x0201, 0x0201),
678 	regmap_reg_range(0x0210, 0x0213),
679 	regmap_reg_range(0x0300, 0x0300),
680 	regmap_reg_range(0x0302, 0x031b),
681 	regmap_reg_range(0x0320, 0x032b),
682 	regmap_reg_range(0x0330, 0x0336),
683 	regmap_reg_range(0x0338, 0x033b),
684 	regmap_reg_range(0x033e, 0x033e),
685 	regmap_reg_range(0x0340, 0x035f),
686 	regmap_reg_range(0x0370, 0x0370),
687 	regmap_reg_range(0x0378, 0x0378),
688 	regmap_reg_range(0x037c, 0x037d),
689 	regmap_reg_range(0x0390, 0x0393),
690 	regmap_reg_range(0x0400, 0x040e),
691 	regmap_reg_range(0x0410, 0x042f),
692 	regmap_reg_range(0x0444, 0x044b),
693 	regmap_reg_range(0x0450, 0x046f),
694 	regmap_reg_range(0x0500, 0x0519),
695 	regmap_reg_range(0x0520, 0x054b),
696 	regmap_reg_range(0x0550, 0x05b3),
697 	regmap_reg_range(0x0604, 0x060b),
698 	regmap_reg_range(0x0610, 0x0612),
699 	regmap_reg_range(0x0614, 0x062c),
700 	regmap_reg_range(0x0640, 0x0645),
701 	regmap_reg_range(0x0648, 0x064d),
702 
703 	/* port 1 */
704 	regmap_reg_range(0x1000, 0x1001),
705 	regmap_reg_range(0x1013, 0x1013),
706 	regmap_reg_range(0x1017, 0x1017),
707 	regmap_reg_range(0x101b, 0x101b),
708 	regmap_reg_range(0x101f, 0x1020),
709 	regmap_reg_range(0x1030, 0x1030),
710 	regmap_reg_range(0x1100, 0x1115),
711 	regmap_reg_range(0x111a, 0x111f),
712 	regmap_reg_range(0x1120, 0x112b),
713 	regmap_reg_range(0x1134, 0x113b),
714 	regmap_reg_range(0x113c, 0x113f),
715 	regmap_reg_range(0x1400, 0x1401),
716 	regmap_reg_range(0x1403, 0x1403),
717 	regmap_reg_range(0x1410, 0x1417),
718 	regmap_reg_range(0x1420, 0x1423),
719 	regmap_reg_range(0x1500, 0x1507),
720 	regmap_reg_range(0x1600, 0x1613),
721 	regmap_reg_range(0x1800, 0x180f),
722 	regmap_reg_range(0x1820, 0x1827),
723 	regmap_reg_range(0x1830, 0x1837),
724 	regmap_reg_range(0x1840, 0x184b),
725 	regmap_reg_range(0x1900, 0x1907),
726 	regmap_reg_range(0x1914, 0x191b),
727 	regmap_reg_range(0x1920, 0x1920),
728 	regmap_reg_range(0x1923, 0x1927),
729 	regmap_reg_range(0x1a00, 0x1a03),
730 	regmap_reg_range(0x1a04, 0x1a07),
731 	regmap_reg_range(0x1b00, 0x1b01),
732 	regmap_reg_range(0x1b04, 0x1b04),
733 	regmap_reg_range(0x1c00, 0x1c05),
734 	regmap_reg_range(0x1c08, 0x1c1b),
735 
736 	/* port 2 */
737 	regmap_reg_range(0x2000, 0x2001),
738 	regmap_reg_range(0x2013, 0x2013),
739 	regmap_reg_range(0x2017, 0x2017),
740 	regmap_reg_range(0x201b, 0x201b),
741 	regmap_reg_range(0x201f, 0x2020),
742 	regmap_reg_range(0x2030, 0x2030),
743 	regmap_reg_range(0x2100, 0x2115),
744 	regmap_reg_range(0x211a, 0x211f),
745 	regmap_reg_range(0x2120, 0x212b),
746 	regmap_reg_range(0x2134, 0x213b),
747 	regmap_reg_range(0x213c, 0x213f),
748 	regmap_reg_range(0x2400, 0x2401),
749 	regmap_reg_range(0x2403, 0x2403),
750 	regmap_reg_range(0x2410, 0x2417),
751 	regmap_reg_range(0x2420, 0x2423),
752 	regmap_reg_range(0x2500, 0x2507),
753 	regmap_reg_range(0x2600, 0x2613),
754 	regmap_reg_range(0x2800, 0x280f),
755 	regmap_reg_range(0x2820, 0x2827),
756 	regmap_reg_range(0x2830, 0x2837),
757 	regmap_reg_range(0x2840, 0x284b),
758 	regmap_reg_range(0x2900, 0x2907),
759 	regmap_reg_range(0x2914, 0x291b),
760 	regmap_reg_range(0x2920, 0x2920),
761 	regmap_reg_range(0x2923, 0x2927),
762 	regmap_reg_range(0x2a00, 0x2a03),
763 	regmap_reg_range(0x2a04, 0x2a07),
764 	regmap_reg_range(0x2b00, 0x2b01),
765 	regmap_reg_range(0x2b04, 0x2b04),
766 	regmap_reg_range(0x2c00, 0x2c05),
767 	regmap_reg_range(0x2c08, 0x2c1b),
768 
769 	/* port 3 */
770 	regmap_reg_range(0x3000, 0x3001),
771 	regmap_reg_range(0x3013, 0x3013),
772 	regmap_reg_range(0x3017, 0x3017),
773 	regmap_reg_range(0x301b, 0x301b),
774 	regmap_reg_range(0x301f, 0x3020),
775 	regmap_reg_range(0x3030, 0x3030),
776 	regmap_reg_range(0x3100, 0x3115),
777 	regmap_reg_range(0x311a, 0x311f),
778 	regmap_reg_range(0x3120, 0x312b),
779 	regmap_reg_range(0x3134, 0x313b),
780 	regmap_reg_range(0x313c, 0x313f),
781 	regmap_reg_range(0x3400, 0x3401),
782 	regmap_reg_range(0x3403, 0x3403),
783 	regmap_reg_range(0x3410, 0x3417),
784 	regmap_reg_range(0x3420, 0x3423),
785 	regmap_reg_range(0x3500, 0x3507),
786 	regmap_reg_range(0x3600, 0x3613),
787 	regmap_reg_range(0x3800, 0x380f),
788 	regmap_reg_range(0x3820, 0x3827),
789 	regmap_reg_range(0x3830, 0x3837),
790 	regmap_reg_range(0x3840, 0x384b),
791 	regmap_reg_range(0x3900, 0x3907),
792 	regmap_reg_range(0x3914, 0x391b),
793 	regmap_reg_range(0x3920, 0x3920),
794 	regmap_reg_range(0x3923, 0x3927),
795 	regmap_reg_range(0x3a00, 0x3a03),
796 	regmap_reg_range(0x3a04, 0x3a07),
797 	regmap_reg_range(0x3b00, 0x3b01),
798 	regmap_reg_range(0x3b04, 0x3b04),
799 	regmap_reg_range(0x3c00, 0x3c05),
800 	regmap_reg_range(0x3c08, 0x3c1b),
801 
802 	/* port 4 */
803 	regmap_reg_range(0x4000, 0x4001),
804 	regmap_reg_range(0x4013, 0x4013),
805 	regmap_reg_range(0x4017, 0x4017),
806 	regmap_reg_range(0x401b, 0x401b),
807 	regmap_reg_range(0x401f, 0x4020),
808 	regmap_reg_range(0x4030, 0x4030),
809 	regmap_reg_range(0x4100, 0x4115),
810 	regmap_reg_range(0x411a, 0x411f),
811 	regmap_reg_range(0x4120, 0x412b),
812 	regmap_reg_range(0x4134, 0x413b),
813 	regmap_reg_range(0x413c, 0x413f),
814 	regmap_reg_range(0x4400, 0x4401),
815 	regmap_reg_range(0x4403, 0x4403),
816 	regmap_reg_range(0x4410, 0x4417),
817 	regmap_reg_range(0x4420, 0x4423),
818 	regmap_reg_range(0x4500, 0x4507),
819 	regmap_reg_range(0x4600, 0x4613),
820 	regmap_reg_range(0x4800, 0x480f),
821 	regmap_reg_range(0x4820, 0x4827),
822 	regmap_reg_range(0x4830, 0x4837),
823 	regmap_reg_range(0x4840, 0x484b),
824 	regmap_reg_range(0x4900, 0x4907),
825 	regmap_reg_range(0x4914, 0x491b),
826 	regmap_reg_range(0x4920, 0x4920),
827 	regmap_reg_range(0x4923, 0x4927),
828 	regmap_reg_range(0x4a00, 0x4a03),
829 	regmap_reg_range(0x4a04, 0x4a07),
830 	regmap_reg_range(0x4b00, 0x4b01),
831 	regmap_reg_range(0x4b04, 0x4b04),
832 	regmap_reg_range(0x4c00, 0x4c05),
833 	regmap_reg_range(0x4c08, 0x4c1b),
834 
835 	/* port 5 */
836 	regmap_reg_range(0x5000, 0x5001),
837 	regmap_reg_range(0x5013, 0x5013),
838 	regmap_reg_range(0x5017, 0x5017),
839 	regmap_reg_range(0x501b, 0x501b),
840 	regmap_reg_range(0x501f, 0x5020),
841 	regmap_reg_range(0x5030, 0x5030),
842 	regmap_reg_range(0x5100, 0x5115),
843 	regmap_reg_range(0x511a, 0x511f),
844 	regmap_reg_range(0x5120, 0x512b),
845 	regmap_reg_range(0x5134, 0x513b),
846 	regmap_reg_range(0x513c, 0x513f),
847 	regmap_reg_range(0x5400, 0x5401),
848 	regmap_reg_range(0x5403, 0x5403),
849 	regmap_reg_range(0x5410, 0x5417),
850 	regmap_reg_range(0x5420, 0x5423),
851 	regmap_reg_range(0x5500, 0x5507),
852 	regmap_reg_range(0x5600, 0x5613),
853 	regmap_reg_range(0x5800, 0x580f),
854 	regmap_reg_range(0x5820, 0x5827),
855 	regmap_reg_range(0x5830, 0x5837),
856 	regmap_reg_range(0x5840, 0x584b),
857 	regmap_reg_range(0x5900, 0x5907),
858 	regmap_reg_range(0x5914, 0x591b),
859 	regmap_reg_range(0x5920, 0x5920),
860 	regmap_reg_range(0x5923, 0x5927),
861 	regmap_reg_range(0x5a00, 0x5a03),
862 	regmap_reg_range(0x5a04, 0x5a07),
863 	regmap_reg_range(0x5b00, 0x5b01),
864 	regmap_reg_range(0x5b04, 0x5b04),
865 	regmap_reg_range(0x5c00, 0x5c05),
866 	regmap_reg_range(0x5c08, 0x5c1b),
867 
868 	/* port 6 */
869 	regmap_reg_range(0x6000, 0x6001),
870 	regmap_reg_range(0x6013, 0x6013),
871 	regmap_reg_range(0x6017, 0x6017),
872 	regmap_reg_range(0x601b, 0x601b),
873 	regmap_reg_range(0x601f, 0x6020),
874 	regmap_reg_range(0x6030, 0x6030),
875 	regmap_reg_range(0x6300, 0x6301),
876 	regmap_reg_range(0x6400, 0x6401),
877 	regmap_reg_range(0x6403, 0x6403),
878 	regmap_reg_range(0x6410, 0x6417),
879 	regmap_reg_range(0x6420, 0x6423),
880 	regmap_reg_range(0x6500, 0x6507),
881 	regmap_reg_range(0x6600, 0x6613),
882 	regmap_reg_range(0x6800, 0x680f),
883 	regmap_reg_range(0x6820, 0x6827),
884 	regmap_reg_range(0x6830, 0x6837),
885 	regmap_reg_range(0x6840, 0x684b),
886 	regmap_reg_range(0x6900, 0x6907),
887 	regmap_reg_range(0x6914, 0x691b),
888 	regmap_reg_range(0x6920, 0x6920),
889 	regmap_reg_range(0x6923, 0x6927),
890 	regmap_reg_range(0x6a00, 0x6a03),
891 	regmap_reg_range(0x6a04, 0x6a07),
892 	regmap_reg_range(0x6b00, 0x6b01),
893 	regmap_reg_range(0x6b04, 0x6b04),
894 	regmap_reg_range(0x6c00, 0x6c05),
895 	regmap_reg_range(0x6c08, 0x6c1b),
896 
897 	/* port 7 */
898 	regmap_reg_range(0x7000, 0x7001),
899 	regmap_reg_range(0x7013, 0x7013),
900 	regmap_reg_range(0x7017, 0x7017),
901 	regmap_reg_range(0x701b, 0x701b),
902 	regmap_reg_range(0x701f, 0x7020),
903 	regmap_reg_range(0x7030, 0x7030),
904 	regmap_reg_range(0x7200, 0x7203),
905 	regmap_reg_range(0x7206, 0x7207),
906 	regmap_reg_range(0x7300, 0x7301),
907 	regmap_reg_range(0x7400, 0x7401),
908 	regmap_reg_range(0x7403, 0x7403),
909 	regmap_reg_range(0x7410, 0x7417),
910 	regmap_reg_range(0x7420, 0x7423),
911 	regmap_reg_range(0x7500, 0x7507),
912 	regmap_reg_range(0x7600, 0x7613),
913 	regmap_reg_range(0x7800, 0x780f),
914 	regmap_reg_range(0x7820, 0x7827),
915 	regmap_reg_range(0x7830, 0x7837),
916 	regmap_reg_range(0x7840, 0x784b),
917 	regmap_reg_range(0x7900, 0x7907),
918 	regmap_reg_range(0x7914, 0x791b),
919 	regmap_reg_range(0x7920, 0x7920),
920 	regmap_reg_range(0x7923, 0x7927),
921 	regmap_reg_range(0x7a00, 0x7a03),
922 	regmap_reg_range(0x7a04, 0x7a07),
923 	regmap_reg_range(0x7b00, 0x7b01),
924 	regmap_reg_range(0x7b04, 0x7b04),
925 	regmap_reg_range(0x7c00, 0x7c05),
926 	regmap_reg_range(0x7c08, 0x7c1b),
927 };
928 
929 static const struct regmap_access_table ksz9477_register_set = {
930 	.yes_ranges = ksz9477_valid_regs,
931 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
932 };
933 
934 static const struct regmap_range ksz9896_valid_regs[] = {
935 	regmap_reg_range(0x0000, 0x0003),
936 	regmap_reg_range(0x0006, 0x0006),
937 	regmap_reg_range(0x0010, 0x001f),
938 	regmap_reg_range(0x0100, 0x0100),
939 	regmap_reg_range(0x0103, 0x0107),
940 	regmap_reg_range(0x010d, 0x010d),
941 	regmap_reg_range(0x0110, 0x0113),
942 	regmap_reg_range(0x0120, 0x0127),
943 	regmap_reg_range(0x0201, 0x0201),
944 	regmap_reg_range(0x0210, 0x0213),
945 	regmap_reg_range(0x0300, 0x0300),
946 	regmap_reg_range(0x0302, 0x030b),
947 	regmap_reg_range(0x0310, 0x031b),
948 	regmap_reg_range(0x0320, 0x032b),
949 	regmap_reg_range(0x0330, 0x0336),
950 	regmap_reg_range(0x0338, 0x033b),
951 	regmap_reg_range(0x033e, 0x033e),
952 	regmap_reg_range(0x0340, 0x035f),
953 	regmap_reg_range(0x0370, 0x0370),
954 	regmap_reg_range(0x0378, 0x0378),
955 	regmap_reg_range(0x037c, 0x037d),
956 	regmap_reg_range(0x0390, 0x0393),
957 	regmap_reg_range(0x0400, 0x040e),
958 	regmap_reg_range(0x0410, 0x042f),
959 
960 	/* port 1 */
961 	regmap_reg_range(0x1000, 0x1001),
962 	regmap_reg_range(0x1013, 0x1013),
963 	regmap_reg_range(0x1017, 0x1017),
964 	regmap_reg_range(0x101b, 0x101b),
965 	regmap_reg_range(0x101f, 0x1020),
966 	regmap_reg_range(0x1030, 0x1030),
967 	regmap_reg_range(0x1100, 0x1115),
968 	regmap_reg_range(0x111a, 0x111f),
969 	regmap_reg_range(0x1122, 0x1127),
970 	regmap_reg_range(0x112a, 0x112b),
971 	regmap_reg_range(0x1136, 0x1139),
972 	regmap_reg_range(0x113e, 0x113f),
973 	regmap_reg_range(0x1400, 0x1401),
974 	regmap_reg_range(0x1403, 0x1403),
975 	regmap_reg_range(0x1410, 0x1417),
976 	regmap_reg_range(0x1420, 0x1423),
977 	regmap_reg_range(0x1500, 0x1507),
978 	regmap_reg_range(0x1600, 0x1612),
979 	regmap_reg_range(0x1800, 0x180f),
980 	regmap_reg_range(0x1820, 0x1827),
981 	regmap_reg_range(0x1830, 0x1837),
982 	regmap_reg_range(0x1840, 0x184b),
983 	regmap_reg_range(0x1900, 0x1907),
984 	regmap_reg_range(0x1914, 0x1915),
985 	regmap_reg_range(0x1a00, 0x1a03),
986 	regmap_reg_range(0x1a04, 0x1a07),
987 	regmap_reg_range(0x1b00, 0x1b01),
988 	regmap_reg_range(0x1b04, 0x1b04),
989 
990 	/* port 2 */
991 	regmap_reg_range(0x2000, 0x2001),
992 	regmap_reg_range(0x2013, 0x2013),
993 	regmap_reg_range(0x2017, 0x2017),
994 	regmap_reg_range(0x201b, 0x201b),
995 	regmap_reg_range(0x201f, 0x2020),
996 	regmap_reg_range(0x2030, 0x2030),
997 	regmap_reg_range(0x2100, 0x2115),
998 	regmap_reg_range(0x211a, 0x211f),
999 	regmap_reg_range(0x2122, 0x2127),
1000 	regmap_reg_range(0x212a, 0x212b),
1001 	regmap_reg_range(0x2136, 0x2139),
1002 	regmap_reg_range(0x213e, 0x213f),
1003 	regmap_reg_range(0x2400, 0x2401),
1004 	regmap_reg_range(0x2403, 0x2403),
1005 	regmap_reg_range(0x2410, 0x2417),
1006 	regmap_reg_range(0x2420, 0x2423),
1007 	regmap_reg_range(0x2500, 0x2507),
1008 	regmap_reg_range(0x2600, 0x2612),
1009 	regmap_reg_range(0x2800, 0x280f),
1010 	regmap_reg_range(0x2820, 0x2827),
1011 	regmap_reg_range(0x2830, 0x2837),
1012 	regmap_reg_range(0x2840, 0x284b),
1013 	regmap_reg_range(0x2900, 0x2907),
1014 	regmap_reg_range(0x2914, 0x2915),
1015 	regmap_reg_range(0x2a00, 0x2a03),
1016 	regmap_reg_range(0x2a04, 0x2a07),
1017 	regmap_reg_range(0x2b00, 0x2b01),
1018 	regmap_reg_range(0x2b04, 0x2b04),
1019 
1020 	/* port 3 */
1021 	regmap_reg_range(0x3000, 0x3001),
1022 	regmap_reg_range(0x3013, 0x3013),
1023 	regmap_reg_range(0x3017, 0x3017),
1024 	regmap_reg_range(0x301b, 0x301b),
1025 	regmap_reg_range(0x301f, 0x3020),
1026 	regmap_reg_range(0x3030, 0x3030),
1027 	regmap_reg_range(0x3100, 0x3115),
1028 	regmap_reg_range(0x311a, 0x311f),
1029 	regmap_reg_range(0x3122, 0x3127),
1030 	regmap_reg_range(0x312a, 0x312b),
1031 	regmap_reg_range(0x3136, 0x3139),
1032 	regmap_reg_range(0x313e, 0x313f),
1033 	regmap_reg_range(0x3400, 0x3401),
1034 	regmap_reg_range(0x3403, 0x3403),
1035 	regmap_reg_range(0x3410, 0x3417),
1036 	regmap_reg_range(0x3420, 0x3423),
1037 	regmap_reg_range(0x3500, 0x3507),
1038 	regmap_reg_range(0x3600, 0x3612),
1039 	regmap_reg_range(0x3800, 0x380f),
1040 	regmap_reg_range(0x3820, 0x3827),
1041 	regmap_reg_range(0x3830, 0x3837),
1042 	regmap_reg_range(0x3840, 0x384b),
1043 	regmap_reg_range(0x3900, 0x3907),
1044 	regmap_reg_range(0x3914, 0x3915),
1045 	regmap_reg_range(0x3a00, 0x3a03),
1046 	regmap_reg_range(0x3a04, 0x3a07),
1047 	regmap_reg_range(0x3b00, 0x3b01),
1048 	regmap_reg_range(0x3b04, 0x3b04),
1049 
1050 	/* port 4 */
1051 	regmap_reg_range(0x4000, 0x4001),
1052 	regmap_reg_range(0x4013, 0x4013),
1053 	regmap_reg_range(0x4017, 0x4017),
1054 	regmap_reg_range(0x401b, 0x401b),
1055 	regmap_reg_range(0x401f, 0x4020),
1056 	regmap_reg_range(0x4030, 0x4030),
1057 	regmap_reg_range(0x4100, 0x4115),
1058 	regmap_reg_range(0x411a, 0x411f),
1059 	regmap_reg_range(0x4122, 0x4127),
1060 	regmap_reg_range(0x412a, 0x412b),
1061 	regmap_reg_range(0x4136, 0x4139),
1062 	regmap_reg_range(0x413e, 0x413f),
1063 	regmap_reg_range(0x4400, 0x4401),
1064 	regmap_reg_range(0x4403, 0x4403),
1065 	regmap_reg_range(0x4410, 0x4417),
1066 	regmap_reg_range(0x4420, 0x4423),
1067 	regmap_reg_range(0x4500, 0x4507),
1068 	regmap_reg_range(0x4600, 0x4612),
1069 	regmap_reg_range(0x4800, 0x480f),
1070 	regmap_reg_range(0x4820, 0x4827),
1071 	regmap_reg_range(0x4830, 0x4837),
1072 	regmap_reg_range(0x4840, 0x484b),
1073 	regmap_reg_range(0x4900, 0x4907),
1074 	regmap_reg_range(0x4914, 0x4915),
1075 	regmap_reg_range(0x4a00, 0x4a03),
1076 	regmap_reg_range(0x4a04, 0x4a07),
1077 	regmap_reg_range(0x4b00, 0x4b01),
1078 	regmap_reg_range(0x4b04, 0x4b04),
1079 
1080 	/* port 5 */
1081 	regmap_reg_range(0x5000, 0x5001),
1082 	regmap_reg_range(0x5013, 0x5013),
1083 	regmap_reg_range(0x5017, 0x5017),
1084 	regmap_reg_range(0x501b, 0x501b),
1085 	regmap_reg_range(0x501f, 0x5020),
1086 	regmap_reg_range(0x5030, 0x5030),
1087 	regmap_reg_range(0x5100, 0x5115),
1088 	regmap_reg_range(0x511a, 0x511f),
1089 	regmap_reg_range(0x5122, 0x5127),
1090 	regmap_reg_range(0x512a, 0x512b),
1091 	regmap_reg_range(0x5136, 0x5139),
1092 	regmap_reg_range(0x513e, 0x513f),
1093 	regmap_reg_range(0x5400, 0x5401),
1094 	regmap_reg_range(0x5403, 0x5403),
1095 	regmap_reg_range(0x5410, 0x5417),
1096 	regmap_reg_range(0x5420, 0x5423),
1097 	regmap_reg_range(0x5500, 0x5507),
1098 	regmap_reg_range(0x5600, 0x5612),
1099 	regmap_reg_range(0x5800, 0x580f),
1100 	regmap_reg_range(0x5820, 0x5827),
1101 	regmap_reg_range(0x5830, 0x5837),
1102 	regmap_reg_range(0x5840, 0x584b),
1103 	regmap_reg_range(0x5900, 0x5907),
1104 	regmap_reg_range(0x5914, 0x5915),
1105 	regmap_reg_range(0x5a00, 0x5a03),
1106 	regmap_reg_range(0x5a04, 0x5a07),
1107 	regmap_reg_range(0x5b00, 0x5b01),
1108 	regmap_reg_range(0x5b04, 0x5b04),
1109 
1110 	/* port 6 */
1111 	regmap_reg_range(0x6000, 0x6001),
1112 	regmap_reg_range(0x6013, 0x6013),
1113 	regmap_reg_range(0x6017, 0x6017),
1114 	regmap_reg_range(0x601b, 0x601b),
1115 	regmap_reg_range(0x601f, 0x6020),
1116 	regmap_reg_range(0x6030, 0x6030),
1117 	regmap_reg_range(0x6100, 0x6115),
1118 	regmap_reg_range(0x611a, 0x611f),
1119 	regmap_reg_range(0x6122, 0x6127),
1120 	regmap_reg_range(0x612a, 0x612b),
1121 	regmap_reg_range(0x6136, 0x6139),
1122 	regmap_reg_range(0x613e, 0x613f),
1123 	regmap_reg_range(0x6300, 0x6301),
1124 	regmap_reg_range(0x6400, 0x6401),
1125 	regmap_reg_range(0x6403, 0x6403),
1126 	regmap_reg_range(0x6410, 0x6417),
1127 	regmap_reg_range(0x6420, 0x6423),
1128 	regmap_reg_range(0x6500, 0x6507),
1129 	regmap_reg_range(0x6600, 0x6612),
1130 	regmap_reg_range(0x6800, 0x680f),
1131 	regmap_reg_range(0x6820, 0x6827),
1132 	regmap_reg_range(0x6830, 0x6837),
1133 	regmap_reg_range(0x6840, 0x684b),
1134 	regmap_reg_range(0x6900, 0x6907),
1135 	regmap_reg_range(0x6914, 0x6915),
1136 	regmap_reg_range(0x6a00, 0x6a03),
1137 	regmap_reg_range(0x6a04, 0x6a07),
1138 	regmap_reg_range(0x6b00, 0x6b01),
1139 	regmap_reg_range(0x6b04, 0x6b04),
1140 };
1141 
1142 static const struct regmap_access_table ksz9896_register_set = {
1143 	.yes_ranges = ksz9896_valid_regs,
1144 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1145 };
1146 
1147 static const struct regmap_range ksz8873_valid_regs[] = {
1148 	regmap_reg_range(0x00, 0x01),
1149 	/* global control register */
1150 	regmap_reg_range(0x02, 0x0f),
1151 
1152 	/* port registers */
1153 	regmap_reg_range(0x10, 0x1d),
1154 	regmap_reg_range(0x1e, 0x1f),
1155 	regmap_reg_range(0x20, 0x2d),
1156 	regmap_reg_range(0x2e, 0x2f),
1157 	regmap_reg_range(0x30, 0x39),
1158 	regmap_reg_range(0x3f, 0x3f),
1159 
1160 	/* advanced control registers */
1161 	regmap_reg_range(0x60, 0x6f),
1162 	regmap_reg_range(0x70, 0x75),
1163 	regmap_reg_range(0x76, 0x78),
1164 	regmap_reg_range(0x79, 0x7a),
1165 	regmap_reg_range(0x7b, 0x83),
1166 	regmap_reg_range(0x8e, 0x99),
1167 	regmap_reg_range(0x9a, 0xa5),
1168 	regmap_reg_range(0xa6, 0xa6),
1169 	regmap_reg_range(0xa7, 0xaa),
1170 	regmap_reg_range(0xab, 0xae),
1171 	regmap_reg_range(0xaf, 0xba),
1172 	regmap_reg_range(0xbb, 0xbc),
1173 	regmap_reg_range(0xbd, 0xbd),
1174 	regmap_reg_range(0xc0, 0xc0),
1175 	regmap_reg_range(0xc2, 0xc2),
1176 	regmap_reg_range(0xc3, 0xc3),
1177 	regmap_reg_range(0xc4, 0xc4),
1178 	regmap_reg_range(0xc6, 0xc6),
1179 };
1180 
1181 static const struct regmap_access_table ksz8873_register_set = {
1182 	.yes_ranges = ksz8873_valid_regs,
1183 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1184 };
1185 
1186 const struct ksz_chip_data ksz_switch_chips[] = {
1187 	[KSZ8563] = {
1188 		.chip_id = KSZ8563_CHIP_ID,
1189 		.dev_name = "KSZ8563",
1190 		.num_vlans = 4096,
1191 		.num_alus = 4096,
1192 		.num_statics = 16,
1193 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1194 		.port_cnt = 3,		/* total port count */
1195 		.port_nirqs = 3,
1196 		.num_tx_queues = 4,
1197 		.tc_cbs_supported = true,
1198 		.tc_ets_supported = true,
1199 		.ops = &ksz9477_dev_ops,
1200 		.mib_names = ksz9477_mib_names,
1201 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1202 		.reg_mib_cnt = MIB_COUNTER_NUM,
1203 		.regs = ksz9477_regs,
1204 		.masks = ksz9477_masks,
1205 		.shifts = ksz9477_shifts,
1206 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1207 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1208 		.supports_mii = {false, false, true},
1209 		.supports_rmii = {false, false, true},
1210 		.supports_rgmii = {false, false, true},
1211 		.internal_phy = {true, true, false},
1212 		.gbit_capable = {false, false, true},
1213 		.wr_table = &ksz8563_register_set,
1214 		.rd_table = &ksz8563_register_set,
1215 	},
1216 
1217 	[KSZ8795] = {
1218 		.chip_id = KSZ8795_CHIP_ID,
1219 		.dev_name = "KSZ8795",
1220 		.num_vlans = 4096,
1221 		.num_alus = 0,
1222 		.num_statics = 8,
1223 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1224 		.port_cnt = 5,		/* total cpu and user ports */
1225 		.num_tx_queues = 4,
1226 		.ops = &ksz8_dev_ops,
1227 		.ksz87xx_eee_link_erratum = true,
1228 		.mib_names = ksz9477_mib_names,
1229 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1230 		.reg_mib_cnt = MIB_COUNTER_NUM,
1231 		.regs = ksz8795_regs,
1232 		.masks = ksz8795_masks,
1233 		.shifts = ksz8795_shifts,
1234 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1235 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1236 		.supports_mii = {false, false, false, false, true},
1237 		.supports_rmii = {false, false, false, false, true},
1238 		.supports_rgmii = {false, false, false, false, true},
1239 		.internal_phy = {true, true, true, true, false},
1240 	},
1241 
1242 	[KSZ8794] = {
1243 		/* WARNING
1244 		 * =======
1245 		 * KSZ8794 is similar to KSZ8795, except the port map
1246 		 * contains a gap between external and CPU ports, the
1247 		 * port map is NOT continuous. The per-port register
1248 		 * map is shifted accordingly too, i.e. registers at
1249 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1250 		 * used on KSZ8795 for external port 3.
1251 		 *           external  cpu
1252 		 * KSZ8794   0,1,2      4
1253 		 * KSZ8795   0,1,2,3    4
1254 		 * KSZ8765   0,1,2,3    4
1255 		 * port_cnt is configured as 5, even though it is 4
1256 		 */
1257 		.chip_id = KSZ8794_CHIP_ID,
1258 		.dev_name = "KSZ8794",
1259 		.num_vlans = 4096,
1260 		.num_alus = 0,
1261 		.num_statics = 8,
1262 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1263 		.port_cnt = 5,		/* total cpu and user ports */
1264 		.num_tx_queues = 4,
1265 		.ops = &ksz8_dev_ops,
1266 		.ksz87xx_eee_link_erratum = true,
1267 		.mib_names = ksz9477_mib_names,
1268 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1269 		.reg_mib_cnt = MIB_COUNTER_NUM,
1270 		.regs = ksz8795_regs,
1271 		.masks = ksz8795_masks,
1272 		.shifts = ksz8795_shifts,
1273 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1274 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1275 		.supports_mii = {false, false, false, false, true},
1276 		.supports_rmii = {false, false, false, false, true},
1277 		.supports_rgmii = {false, false, false, false, true},
1278 		.internal_phy = {true, true, true, false, false},
1279 	},
1280 
1281 	[KSZ8765] = {
1282 		.chip_id = KSZ8765_CHIP_ID,
1283 		.dev_name = "KSZ8765",
1284 		.num_vlans = 4096,
1285 		.num_alus = 0,
1286 		.num_statics = 8,
1287 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1288 		.port_cnt = 5,		/* total cpu and user ports */
1289 		.num_tx_queues = 4,
1290 		.ops = &ksz8_dev_ops,
1291 		.ksz87xx_eee_link_erratum = true,
1292 		.mib_names = ksz9477_mib_names,
1293 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1294 		.reg_mib_cnt = MIB_COUNTER_NUM,
1295 		.regs = ksz8795_regs,
1296 		.masks = ksz8795_masks,
1297 		.shifts = ksz8795_shifts,
1298 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1299 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1300 		.supports_mii = {false, false, false, false, true},
1301 		.supports_rmii = {false, false, false, false, true},
1302 		.supports_rgmii = {false, false, false, false, true},
1303 		.internal_phy = {true, true, true, true, false},
1304 	},
1305 
1306 	[KSZ8830] = {
1307 		.chip_id = KSZ8830_CHIP_ID,
1308 		.dev_name = "KSZ8863/KSZ8873",
1309 		.num_vlans = 16,
1310 		.num_alus = 0,
1311 		.num_statics = 8,
1312 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1313 		.port_cnt = 3,
1314 		.num_tx_queues = 4,
1315 		.ops = &ksz8_dev_ops,
1316 		.mib_names = ksz88xx_mib_names,
1317 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1318 		.reg_mib_cnt = MIB_COUNTER_NUM,
1319 		.regs = ksz8863_regs,
1320 		.masks = ksz8863_masks,
1321 		.shifts = ksz8863_shifts,
1322 		.supports_mii = {false, false, true},
1323 		.supports_rmii = {false, false, true},
1324 		.internal_phy = {true, true, false},
1325 		.wr_table = &ksz8873_register_set,
1326 		.rd_table = &ksz8873_register_set,
1327 	},
1328 
1329 	[KSZ9477] = {
1330 		.chip_id = KSZ9477_CHIP_ID,
1331 		.dev_name = "KSZ9477",
1332 		.num_vlans = 4096,
1333 		.num_alus = 4096,
1334 		.num_statics = 16,
1335 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1336 		.port_cnt = 7,		/* total physical port count */
1337 		.port_nirqs = 4,
1338 		.num_tx_queues = 4,
1339 		.tc_cbs_supported = true,
1340 		.tc_ets_supported = true,
1341 		.ops = &ksz9477_dev_ops,
1342 		.mib_names = ksz9477_mib_names,
1343 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1344 		.reg_mib_cnt = MIB_COUNTER_NUM,
1345 		.regs = ksz9477_regs,
1346 		.masks = ksz9477_masks,
1347 		.shifts = ksz9477_shifts,
1348 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1349 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1350 		.supports_mii	= {false, false, false, false,
1351 				   false, true, false},
1352 		.supports_rmii	= {false, false, false, false,
1353 				   false, true, false},
1354 		.supports_rgmii = {false, false, false, false,
1355 				   false, true, false},
1356 		.internal_phy	= {true, true, true, true,
1357 				   true, false, false},
1358 		.gbit_capable	= {true, true, true, true, true, true, true},
1359 		.wr_table = &ksz9477_register_set,
1360 		.rd_table = &ksz9477_register_set,
1361 	},
1362 
1363 	[KSZ9896] = {
1364 		.chip_id = KSZ9896_CHIP_ID,
1365 		.dev_name = "KSZ9896",
1366 		.num_vlans = 4096,
1367 		.num_alus = 4096,
1368 		.num_statics = 16,
1369 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1370 		.port_cnt = 6,		/* total physical port count */
1371 		.port_nirqs = 2,
1372 		.num_tx_queues = 4,
1373 		.ops = &ksz9477_dev_ops,
1374 		.mib_names = ksz9477_mib_names,
1375 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1376 		.reg_mib_cnt = MIB_COUNTER_NUM,
1377 		.regs = ksz9477_regs,
1378 		.masks = ksz9477_masks,
1379 		.shifts = ksz9477_shifts,
1380 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1381 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1382 		.supports_mii	= {false, false, false, false,
1383 				   false, true},
1384 		.supports_rmii	= {false, false, false, false,
1385 				   false, true},
1386 		.supports_rgmii = {false, false, false, false,
1387 				   false, true},
1388 		.internal_phy	= {true, true, true, true,
1389 				   true, false},
1390 		.gbit_capable	= {true, true, true, true, true, true},
1391 		.wr_table = &ksz9896_register_set,
1392 		.rd_table = &ksz9896_register_set,
1393 	},
1394 
1395 	[KSZ9897] = {
1396 		.chip_id = KSZ9897_CHIP_ID,
1397 		.dev_name = "KSZ9897",
1398 		.num_vlans = 4096,
1399 		.num_alus = 4096,
1400 		.num_statics = 16,
1401 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1402 		.port_cnt = 7,		/* total physical port count */
1403 		.port_nirqs = 2,
1404 		.num_tx_queues = 4,
1405 		.ops = &ksz9477_dev_ops,
1406 		.mib_names = ksz9477_mib_names,
1407 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1408 		.reg_mib_cnt = MIB_COUNTER_NUM,
1409 		.regs = ksz9477_regs,
1410 		.masks = ksz9477_masks,
1411 		.shifts = ksz9477_shifts,
1412 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1413 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1414 		.supports_mii	= {false, false, false, false,
1415 				   false, true, true},
1416 		.supports_rmii	= {false, false, false, false,
1417 				   false, true, true},
1418 		.supports_rgmii = {false, false, false, false,
1419 				   false, true, true},
1420 		.internal_phy	= {true, true, true, true,
1421 				   true, false, false},
1422 		.gbit_capable	= {true, true, true, true, true, true, true},
1423 	},
1424 
1425 	[KSZ9893] = {
1426 		.chip_id = KSZ9893_CHIP_ID,
1427 		.dev_name = "KSZ9893",
1428 		.num_vlans = 4096,
1429 		.num_alus = 4096,
1430 		.num_statics = 16,
1431 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1432 		.port_cnt = 3,		/* total port count */
1433 		.port_nirqs = 2,
1434 		.num_tx_queues = 4,
1435 		.ops = &ksz9477_dev_ops,
1436 		.mib_names = ksz9477_mib_names,
1437 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1438 		.reg_mib_cnt = MIB_COUNTER_NUM,
1439 		.regs = ksz9477_regs,
1440 		.masks = ksz9477_masks,
1441 		.shifts = ksz9477_shifts,
1442 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1443 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1444 		.supports_mii = {false, false, true},
1445 		.supports_rmii = {false, false, true},
1446 		.supports_rgmii = {false, false, true},
1447 		.internal_phy = {true, true, false},
1448 		.gbit_capable = {true, true, true},
1449 	},
1450 
1451 	[KSZ9563] = {
1452 		.chip_id = KSZ9563_CHIP_ID,
1453 		.dev_name = "KSZ9563",
1454 		.num_vlans = 4096,
1455 		.num_alus = 4096,
1456 		.num_statics = 16,
1457 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1458 		.port_cnt = 3,		/* total port count */
1459 		.port_nirqs = 3,
1460 		.num_tx_queues = 4,
1461 		.tc_cbs_supported = true,
1462 		.tc_ets_supported = true,
1463 		.ops = &ksz9477_dev_ops,
1464 		.mib_names = ksz9477_mib_names,
1465 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1466 		.reg_mib_cnt = MIB_COUNTER_NUM,
1467 		.regs = ksz9477_regs,
1468 		.masks = ksz9477_masks,
1469 		.shifts = ksz9477_shifts,
1470 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1471 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1472 		.supports_mii = {false, false, true},
1473 		.supports_rmii = {false, false, true},
1474 		.supports_rgmii = {false, false, true},
1475 		.internal_phy = {true, true, false},
1476 		.gbit_capable = {true, true, true},
1477 	},
1478 
1479 	[KSZ9567] = {
1480 		.chip_id = KSZ9567_CHIP_ID,
1481 		.dev_name = "KSZ9567",
1482 		.num_vlans = 4096,
1483 		.num_alus = 4096,
1484 		.num_statics = 16,
1485 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1486 		.port_cnt = 7,		/* total physical port count */
1487 		.port_nirqs = 3,
1488 		.num_tx_queues = 4,
1489 		.tc_cbs_supported = true,
1490 		.tc_ets_supported = true,
1491 		.ops = &ksz9477_dev_ops,
1492 		.mib_names = ksz9477_mib_names,
1493 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1494 		.reg_mib_cnt = MIB_COUNTER_NUM,
1495 		.regs = ksz9477_regs,
1496 		.masks = ksz9477_masks,
1497 		.shifts = ksz9477_shifts,
1498 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1499 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1500 		.supports_mii	= {false, false, false, false,
1501 				   false, true, true},
1502 		.supports_rmii	= {false, false, false, false,
1503 				   false, true, true},
1504 		.supports_rgmii = {false, false, false, false,
1505 				   false, true, true},
1506 		.internal_phy	= {true, true, true, true,
1507 				   true, false, false},
1508 		.gbit_capable	= {true, true, true, true, true, true, true},
1509 	},
1510 
1511 	[LAN9370] = {
1512 		.chip_id = LAN9370_CHIP_ID,
1513 		.dev_name = "LAN9370",
1514 		.num_vlans = 4096,
1515 		.num_alus = 1024,
1516 		.num_statics = 256,
1517 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1518 		.port_cnt = 5,		/* total physical port count */
1519 		.port_nirqs = 6,
1520 		.num_tx_queues = 8,
1521 		.tc_cbs_supported = true,
1522 		.tc_ets_supported = true,
1523 		.ops = &lan937x_dev_ops,
1524 		.mib_names = ksz9477_mib_names,
1525 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1526 		.reg_mib_cnt = MIB_COUNTER_NUM,
1527 		.regs = ksz9477_regs,
1528 		.masks = lan937x_masks,
1529 		.shifts = lan937x_shifts,
1530 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1531 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1532 		.supports_mii = {false, false, false, false, true},
1533 		.supports_rmii = {false, false, false, false, true},
1534 		.supports_rgmii = {false, false, false, false, true},
1535 		.internal_phy = {true, true, true, true, false},
1536 	},
1537 
1538 	[LAN9371] = {
1539 		.chip_id = LAN9371_CHIP_ID,
1540 		.dev_name = "LAN9371",
1541 		.num_vlans = 4096,
1542 		.num_alus = 1024,
1543 		.num_statics = 256,
1544 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1545 		.port_cnt = 6,		/* total physical port count */
1546 		.port_nirqs = 6,
1547 		.num_tx_queues = 8,
1548 		.tc_cbs_supported = true,
1549 		.tc_ets_supported = true,
1550 		.ops = &lan937x_dev_ops,
1551 		.mib_names = ksz9477_mib_names,
1552 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1553 		.reg_mib_cnt = MIB_COUNTER_NUM,
1554 		.regs = ksz9477_regs,
1555 		.masks = lan937x_masks,
1556 		.shifts = lan937x_shifts,
1557 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1558 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1559 		.supports_mii = {false, false, false, false, true, true},
1560 		.supports_rmii = {false, false, false, false, true, true},
1561 		.supports_rgmii = {false, false, false, false, true, true},
1562 		.internal_phy = {true, true, true, true, false, false},
1563 	},
1564 
1565 	[LAN9372] = {
1566 		.chip_id = LAN9372_CHIP_ID,
1567 		.dev_name = "LAN9372",
1568 		.num_vlans = 4096,
1569 		.num_alus = 1024,
1570 		.num_statics = 256,
1571 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1572 		.port_cnt = 8,		/* total physical port count */
1573 		.port_nirqs = 6,
1574 		.num_tx_queues = 8,
1575 		.tc_cbs_supported = true,
1576 		.tc_ets_supported = true,
1577 		.ops = &lan937x_dev_ops,
1578 		.mib_names = ksz9477_mib_names,
1579 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1580 		.reg_mib_cnt = MIB_COUNTER_NUM,
1581 		.regs = ksz9477_regs,
1582 		.masks = lan937x_masks,
1583 		.shifts = lan937x_shifts,
1584 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1585 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1586 		.supports_mii	= {false, false, false, false,
1587 				   true, true, false, false},
1588 		.supports_rmii	= {false, false, false, false,
1589 				   true, true, false, false},
1590 		.supports_rgmii = {false, false, false, false,
1591 				   true, true, false, false},
1592 		.internal_phy	= {true, true, true, true,
1593 				   false, false, true, true},
1594 	},
1595 
1596 	[LAN9373] = {
1597 		.chip_id = LAN9373_CHIP_ID,
1598 		.dev_name = "LAN9373",
1599 		.num_vlans = 4096,
1600 		.num_alus = 1024,
1601 		.num_statics = 256,
1602 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1603 		.port_cnt = 5,		/* total physical port count */
1604 		.port_nirqs = 6,
1605 		.num_tx_queues = 8,
1606 		.tc_cbs_supported = true,
1607 		.tc_ets_supported = true,
1608 		.ops = &lan937x_dev_ops,
1609 		.mib_names = ksz9477_mib_names,
1610 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1611 		.reg_mib_cnt = MIB_COUNTER_NUM,
1612 		.regs = ksz9477_regs,
1613 		.masks = lan937x_masks,
1614 		.shifts = lan937x_shifts,
1615 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1616 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1617 		.supports_mii	= {false, false, false, false,
1618 				   true, true, false, false},
1619 		.supports_rmii	= {false, false, false, false,
1620 				   true, true, false, false},
1621 		.supports_rgmii = {false, false, false, false,
1622 				   true, true, false, false},
1623 		.internal_phy	= {true, true, true, false,
1624 				   false, false, true, true},
1625 	},
1626 
1627 	[LAN9374] = {
1628 		.chip_id = LAN9374_CHIP_ID,
1629 		.dev_name = "LAN9374",
1630 		.num_vlans = 4096,
1631 		.num_alus = 1024,
1632 		.num_statics = 256,
1633 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1634 		.port_cnt = 8,		/* total physical port count */
1635 		.port_nirqs = 6,
1636 		.num_tx_queues = 8,
1637 		.tc_cbs_supported = true,
1638 		.tc_ets_supported = true,
1639 		.ops = &lan937x_dev_ops,
1640 		.mib_names = ksz9477_mib_names,
1641 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1642 		.reg_mib_cnt = MIB_COUNTER_NUM,
1643 		.regs = ksz9477_regs,
1644 		.masks = lan937x_masks,
1645 		.shifts = lan937x_shifts,
1646 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1647 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1648 		.supports_mii	= {false, false, false, false,
1649 				   true, true, false, false},
1650 		.supports_rmii	= {false, false, false, false,
1651 				   true, true, false, false},
1652 		.supports_rgmii = {false, false, false, false,
1653 				   true, true, false, false},
1654 		.internal_phy	= {true, true, true, true,
1655 				   false, false, true, true},
1656 	},
1657 };
1658 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1659 
1660 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1661 {
1662 	int i;
1663 
1664 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1665 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1666 
1667 		if (chip->chip_id == prod_num)
1668 			return chip;
1669 	}
1670 
1671 	return NULL;
1672 }
1673 
1674 static int ksz_check_device_id(struct ksz_device *dev)
1675 {
1676 	const struct ksz_chip_data *expected_chip_data;
1677 	u32 expected_chip_id;
1678 
1679 	if (dev->pdata) {
1680 		expected_chip_id = dev->pdata->chip_id;
1681 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1682 		if (WARN_ON(!expected_chip_data))
1683 			return -ENODEV;
1684 	} else {
1685 		expected_chip_data = of_device_get_match_data(dev->dev);
1686 		expected_chip_id = expected_chip_data->chip_id;
1687 	}
1688 
1689 	if (expected_chip_id != dev->chip_id) {
1690 		dev_err(dev->dev,
1691 			"Device tree specifies chip %s but found %s, please fix it!\n",
1692 			expected_chip_data->dev_name, dev->info->dev_name);
1693 		return -ENODEV;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1700 				 struct phylink_config *config)
1701 {
1702 	struct ksz_device *dev = ds->priv;
1703 
1704 	if (dev->info->supports_mii[port])
1705 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1706 
1707 	if (dev->info->supports_rmii[port])
1708 		__set_bit(PHY_INTERFACE_MODE_RMII,
1709 			  config->supported_interfaces);
1710 
1711 	if (dev->info->supports_rgmii[port])
1712 		phy_interface_set_rgmii(config->supported_interfaces);
1713 
1714 	if (dev->info->internal_phy[port]) {
1715 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1716 			  config->supported_interfaces);
1717 		/* Compatibility for phylib's default interface type when the
1718 		 * phy-mode property is absent
1719 		 */
1720 		__set_bit(PHY_INTERFACE_MODE_GMII,
1721 			  config->supported_interfaces);
1722 	}
1723 
1724 	if (dev->dev_ops->get_caps)
1725 		dev->dev_ops->get_caps(dev, port, config);
1726 }
1727 
1728 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1729 {
1730 	struct ethtool_pause_stats *pstats;
1731 	struct rtnl_link_stats64 *stats;
1732 	struct ksz_stats_raw *raw;
1733 	struct ksz_port_mib *mib;
1734 
1735 	mib = &dev->ports[port].mib;
1736 	stats = &mib->stats64;
1737 	pstats = &mib->pause_stats;
1738 	raw = (struct ksz_stats_raw *)mib->counters;
1739 
1740 	spin_lock(&mib->stats64_lock);
1741 
1742 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1743 		raw->rx_pause;
1744 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1745 		raw->tx_pause;
1746 
1747 	/* HW counters are counting bytes + FCS which is not acceptable
1748 	 * for rtnl_link_stats64 interface
1749 	 */
1750 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1751 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1752 
1753 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1754 		raw->rx_oversize;
1755 
1756 	stats->rx_crc_errors = raw->rx_crc_err;
1757 	stats->rx_frame_errors = raw->rx_align_err;
1758 	stats->rx_dropped = raw->rx_discards;
1759 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1760 		stats->rx_frame_errors  + stats->rx_dropped;
1761 
1762 	stats->tx_window_errors = raw->tx_late_col;
1763 	stats->tx_fifo_errors = raw->tx_discards;
1764 	stats->tx_aborted_errors = raw->tx_exc_col;
1765 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1766 		stats->tx_aborted_errors;
1767 
1768 	stats->multicast = raw->rx_mcast;
1769 	stats->collisions = raw->tx_total_col;
1770 
1771 	pstats->tx_pause_frames = raw->tx_pause;
1772 	pstats->rx_pause_frames = raw->rx_pause;
1773 
1774 	spin_unlock(&mib->stats64_lock);
1775 }
1776 
1777 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1778 {
1779 	struct ethtool_pause_stats *pstats;
1780 	struct rtnl_link_stats64 *stats;
1781 	struct ksz88xx_stats_raw *raw;
1782 	struct ksz_port_mib *mib;
1783 
1784 	mib = &dev->ports[port].mib;
1785 	stats = &mib->stats64;
1786 	pstats = &mib->pause_stats;
1787 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1788 
1789 	spin_lock(&mib->stats64_lock);
1790 
1791 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1792 		raw->rx_pause;
1793 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1794 		raw->tx_pause;
1795 
1796 	/* HW counters are counting bytes + FCS which is not acceptable
1797 	 * for rtnl_link_stats64 interface
1798 	 */
1799 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1800 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1801 
1802 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1803 		raw->rx_oversize;
1804 
1805 	stats->rx_crc_errors = raw->rx_crc_err;
1806 	stats->rx_frame_errors = raw->rx_align_err;
1807 	stats->rx_dropped = raw->rx_discards;
1808 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1809 		stats->rx_frame_errors  + stats->rx_dropped;
1810 
1811 	stats->tx_window_errors = raw->tx_late_col;
1812 	stats->tx_fifo_errors = raw->tx_discards;
1813 	stats->tx_aborted_errors = raw->tx_exc_col;
1814 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1815 		stats->tx_aborted_errors;
1816 
1817 	stats->multicast = raw->rx_mcast;
1818 	stats->collisions = raw->tx_total_col;
1819 
1820 	pstats->tx_pause_frames = raw->tx_pause;
1821 	pstats->rx_pause_frames = raw->rx_pause;
1822 
1823 	spin_unlock(&mib->stats64_lock);
1824 }
1825 
1826 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1827 			    struct rtnl_link_stats64 *s)
1828 {
1829 	struct ksz_device *dev = ds->priv;
1830 	struct ksz_port_mib *mib;
1831 
1832 	mib = &dev->ports[port].mib;
1833 
1834 	spin_lock(&mib->stats64_lock);
1835 	memcpy(s, &mib->stats64, sizeof(*s));
1836 	spin_unlock(&mib->stats64_lock);
1837 }
1838 
1839 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1840 				struct ethtool_pause_stats *pause_stats)
1841 {
1842 	struct ksz_device *dev = ds->priv;
1843 	struct ksz_port_mib *mib;
1844 
1845 	mib = &dev->ports[port].mib;
1846 
1847 	spin_lock(&mib->stats64_lock);
1848 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1849 	spin_unlock(&mib->stats64_lock);
1850 }
1851 
1852 static void ksz_get_strings(struct dsa_switch *ds, int port,
1853 			    u32 stringset, uint8_t *buf)
1854 {
1855 	struct ksz_device *dev = ds->priv;
1856 	int i;
1857 
1858 	if (stringset != ETH_SS_STATS)
1859 		return;
1860 
1861 	for (i = 0; i < dev->info->mib_cnt; i++) {
1862 		memcpy(buf + i * ETH_GSTRING_LEN,
1863 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1864 	}
1865 }
1866 
1867 static void ksz_update_port_member(struct ksz_device *dev, int port)
1868 {
1869 	struct ksz_port *p = &dev->ports[port];
1870 	struct dsa_switch *ds = dev->ds;
1871 	u8 port_member = 0, cpu_port;
1872 	const struct dsa_port *dp;
1873 	int i, j;
1874 
1875 	if (!dsa_is_user_port(ds, port))
1876 		return;
1877 
1878 	dp = dsa_to_port(ds, port);
1879 	cpu_port = BIT(dsa_upstream_port(ds, port));
1880 
1881 	for (i = 0; i < ds->num_ports; i++) {
1882 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1883 		struct ksz_port *other_p = &dev->ports[i];
1884 		u8 val = 0;
1885 
1886 		if (!dsa_is_user_port(ds, i))
1887 			continue;
1888 		if (port == i)
1889 			continue;
1890 		if (!dsa_port_bridge_same(dp, other_dp))
1891 			continue;
1892 		if (other_p->stp_state != BR_STATE_FORWARDING)
1893 			continue;
1894 
1895 		if (p->stp_state == BR_STATE_FORWARDING) {
1896 			val |= BIT(port);
1897 			port_member |= BIT(i);
1898 		}
1899 
1900 		/* Retain port [i]'s relationship to other ports than [port] */
1901 		for (j = 0; j < ds->num_ports; j++) {
1902 			const struct dsa_port *third_dp;
1903 			struct ksz_port *third_p;
1904 
1905 			if (j == i)
1906 				continue;
1907 			if (j == port)
1908 				continue;
1909 			if (!dsa_is_user_port(ds, j))
1910 				continue;
1911 			third_p = &dev->ports[j];
1912 			if (third_p->stp_state != BR_STATE_FORWARDING)
1913 				continue;
1914 			third_dp = dsa_to_port(ds, j);
1915 			if (dsa_port_bridge_same(other_dp, third_dp))
1916 				val |= BIT(j);
1917 		}
1918 
1919 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
1920 	}
1921 
1922 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
1923 }
1924 
1925 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
1926 {
1927 	struct ksz_device *dev = bus->priv;
1928 	u16 val;
1929 	int ret;
1930 
1931 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
1932 	if (ret < 0)
1933 		return ret;
1934 
1935 	return val;
1936 }
1937 
1938 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
1939 			     u16 val)
1940 {
1941 	struct ksz_device *dev = bus->priv;
1942 
1943 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
1944 }
1945 
1946 static int ksz_irq_phy_setup(struct ksz_device *dev)
1947 {
1948 	struct dsa_switch *ds = dev->ds;
1949 	int phy;
1950 	int irq;
1951 	int ret;
1952 
1953 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
1954 		if (BIT(phy) & ds->phys_mii_mask) {
1955 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
1956 					       PORT_SRC_PHY_INT);
1957 			if (irq < 0) {
1958 				ret = irq;
1959 				goto out;
1960 			}
1961 			ds->user_mii_bus->irq[phy] = irq;
1962 		}
1963 	}
1964 	return 0;
1965 out:
1966 	while (phy--)
1967 		if (BIT(phy) & ds->phys_mii_mask)
1968 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
1969 
1970 	return ret;
1971 }
1972 
1973 static void ksz_irq_phy_free(struct ksz_device *dev)
1974 {
1975 	struct dsa_switch *ds = dev->ds;
1976 	int phy;
1977 
1978 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
1979 		if (BIT(phy) & ds->phys_mii_mask)
1980 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
1981 }
1982 
1983 static int ksz_mdio_register(struct ksz_device *dev)
1984 {
1985 	struct dsa_switch *ds = dev->ds;
1986 	struct device_node *mdio_np;
1987 	struct mii_bus *bus;
1988 	int ret;
1989 
1990 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
1991 	if (!mdio_np)
1992 		return 0;
1993 
1994 	bus = devm_mdiobus_alloc(ds->dev);
1995 	if (!bus) {
1996 		of_node_put(mdio_np);
1997 		return -ENOMEM;
1998 	}
1999 
2000 	bus->priv = dev;
2001 	bus->read = ksz_sw_mdio_read;
2002 	bus->write = ksz_sw_mdio_write;
2003 	bus->name = "ksz user smi";
2004 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2005 	bus->parent = ds->dev;
2006 	bus->phy_mask = ~ds->phys_mii_mask;
2007 
2008 	ds->user_mii_bus = bus;
2009 
2010 	if (dev->irq > 0) {
2011 		ret = ksz_irq_phy_setup(dev);
2012 		if (ret) {
2013 			of_node_put(mdio_np);
2014 			return ret;
2015 		}
2016 	}
2017 
2018 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2019 	if (ret) {
2020 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2021 			bus->id);
2022 		if (dev->irq > 0)
2023 			ksz_irq_phy_free(dev);
2024 	}
2025 
2026 	of_node_put(mdio_np);
2027 
2028 	return ret;
2029 }
2030 
2031 static void ksz_irq_mask(struct irq_data *d)
2032 {
2033 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2034 
2035 	kirq->masked |= BIT(d->hwirq);
2036 }
2037 
2038 static void ksz_irq_unmask(struct irq_data *d)
2039 {
2040 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2041 
2042 	kirq->masked &= ~BIT(d->hwirq);
2043 }
2044 
2045 static void ksz_irq_bus_lock(struct irq_data *d)
2046 {
2047 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2048 
2049 	mutex_lock(&kirq->dev->lock_irq);
2050 }
2051 
2052 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2053 {
2054 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2055 	struct ksz_device *dev = kirq->dev;
2056 	int ret;
2057 
2058 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2059 	if (ret)
2060 		dev_err(dev->dev, "failed to change IRQ mask\n");
2061 
2062 	mutex_unlock(&dev->lock_irq);
2063 }
2064 
2065 static const struct irq_chip ksz_irq_chip = {
2066 	.name			= "ksz-irq",
2067 	.irq_mask		= ksz_irq_mask,
2068 	.irq_unmask		= ksz_irq_unmask,
2069 	.irq_bus_lock		= ksz_irq_bus_lock,
2070 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2071 };
2072 
2073 static int ksz_irq_domain_map(struct irq_domain *d,
2074 			      unsigned int irq, irq_hw_number_t hwirq)
2075 {
2076 	irq_set_chip_data(irq, d->host_data);
2077 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2078 	irq_set_noprobe(irq);
2079 
2080 	return 0;
2081 }
2082 
2083 static const struct irq_domain_ops ksz_irq_domain_ops = {
2084 	.map	= ksz_irq_domain_map,
2085 	.xlate	= irq_domain_xlate_twocell,
2086 };
2087 
2088 static void ksz_irq_free(struct ksz_irq *kirq)
2089 {
2090 	int irq, virq;
2091 
2092 	free_irq(kirq->irq_num, kirq);
2093 
2094 	for (irq = 0; irq < kirq->nirqs; irq++) {
2095 		virq = irq_find_mapping(kirq->domain, irq);
2096 		irq_dispose_mapping(virq);
2097 	}
2098 
2099 	irq_domain_remove(kirq->domain);
2100 }
2101 
2102 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2103 {
2104 	struct ksz_irq *kirq = dev_id;
2105 	unsigned int nhandled = 0;
2106 	struct ksz_device *dev;
2107 	unsigned int sub_irq;
2108 	u8 data;
2109 	int ret;
2110 	u8 n;
2111 
2112 	dev = kirq->dev;
2113 
2114 	/* Read interrupt status register */
2115 	ret = ksz_read8(dev, kirq->reg_status, &data);
2116 	if (ret)
2117 		goto out;
2118 
2119 	for (n = 0; n < kirq->nirqs; ++n) {
2120 		if (data & BIT(n)) {
2121 			sub_irq = irq_find_mapping(kirq->domain, n);
2122 			handle_nested_irq(sub_irq);
2123 			++nhandled;
2124 		}
2125 	}
2126 out:
2127 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2128 }
2129 
2130 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2131 {
2132 	int ret, n;
2133 
2134 	kirq->dev = dev;
2135 	kirq->masked = ~0;
2136 
2137 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2138 					     &ksz_irq_domain_ops, kirq);
2139 	if (!kirq->domain)
2140 		return -ENOMEM;
2141 
2142 	for (n = 0; n < kirq->nirqs; n++)
2143 		irq_create_mapping(kirq->domain, n);
2144 
2145 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2146 				   IRQF_ONESHOT, kirq->name, kirq);
2147 	if (ret)
2148 		goto out;
2149 
2150 	return 0;
2151 
2152 out:
2153 	ksz_irq_free(kirq);
2154 
2155 	return ret;
2156 }
2157 
2158 static int ksz_girq_setup(struct ksz_device *dev)
2159 {
2160 	struct ksz_irq *girq = &dev->girq;
2161 
2162 	girq->nirqs = dev->info->port_cnt;
2163 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2164 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2165 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2166 
2167 	girq->irq_num = dev->irq;
2168 
2169 	return ksz_irq_common_setup(dev, girq);
2170 }
2171 
2172 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2173 {
2174 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2175 
2176 	pirq->nirqs = dev->info->port_nirqs;
2177 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2178 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2179 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2180 
2181 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2182 	if (pirq->irq_num < 0)
2183 		return pirq->irq_num;
2184 
2185 	return ksz_irq_common_setup(dev, pirq);
2186 }
2187 
2188 static int ksz_setup(struct dsa_switch *ds)
2189 {
2190 	struct ksz_device *dev = ds->priv;
2191 	struct dsa_port *dp;
2192 	struct ksz_port *p;
2193 	const u16 *regs;
2194 	int ret;
2195 
2196 	regs = dev->info->regs;
2197 
2198 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2199 				       dev->info->num_vlans, GFP_KERNEL);
2200 	if (!dev->vlan_cache)
2201 		return -ENOMEM;
2202 
2203 	ret = dev->dev_ops->reset(dev);
2204 	if (ret) {
2205 		dev_err(ds->dev, "failed to reset switch\n");
2206 		return ret;
2207 	}
2208 
2209 	/* set broadcast storm protection 10% rate */
2210 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2211 			   BROADCAST_STORM_RATE,
2212 			   (BROADCAST_STORM_VALUE *
2213 			   BROADCAST_STORM_PROT_RATE) / 100);
2214 
2215 	dev->dev_ops->config_cpu_port(ds);
2216 
2217 	dev->dev_ops->enable_stp_addr(dev);
2218 
2219 	ds->num_tx_queues = dev->info->num_tx_queues;
2220 
2221 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2222 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2223 
2224 	ksz_init_mib_timer(dev);
2225 
2226 	ds->configure_vlan_while_not_filtering = false;
2227 
2228 	if (dev->dev_ops->setup) {
2229 		ret = dev->dev_ops->setup(ds);
2230 		if (ret)
2231 			return ret;
2232 	}
2233 
2234 	/* Start with learning disabled on standalone user ports, and enabled
2235 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2236 	 * CPU port will avoid flooding bridge local addresses on the network
2237 	 * in some cases.
2238 	 */
2239 	p = &dev->ports[dev->cpu_port];
2240 	p->learning = true;
2241 
2242 	if (dev->irq > 0) {
2243 		ret = ksz_girq_setup(dev);
2244 		if (ret)
2245 			return ret;
2246 
2247 		dsa_switch_for_each_user_port(dp, dev->ds) {
2248 			ret = ksz_pirq_setup(dev, dp->index);
2249 			if (ret)
2250 				goto out_girq;
2251 
2252 			ret = ksz_ptp_irq_setup(ds, dp->index);
2253 			if (ret)
2254 				goto out_pirq;
2255 		}
2256 	}
2257 
2258 	ret = ksz_ptp_clock_register(ds);
2259 	if (ret) {
2260 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2261 		goto out_ptpirq;
2262 	}
2263 
2264 	ret = ksz_mdio_register(dev);
2265 	if (ret < 0) {
2266 		dev_err(dev->dev, "failed to register the mdio");
2267 		goto out_ptp_clock_unregister;
2268 	}
2269 
2270 	/* start switch */
2271 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2272 			   SW_START, SW_START);
2273 
2274 	return 0;
2275 
2276 out_ptp_clock_unregister:
2277 	ksz_ptp_clock_unregister(ds);
2278 out_ptpirq:
2279 	if (dev->irq > 0)
2280 		dsa_switch_for_each_user_port(dp, dev->ds)
2281 			ksz_ptp_irq_free(ds, dp->index);
2282 out_pirq:
2283 	if (dev->irq > 0)
2284 		dsa_switch_for_each_user_port(dp, dev->ds)
2285 			ksz_irq_free(&dev->ports[dp->index].pirq);
2286 out_girq:
2287 	if (dev->irq > 0)
2288 		ksz_irq_free(&dev->girq);
2289 
2290 	return ret;
2291 }
2292 
2293 static void ksz_teardown(struct dsa_switch *ds)
2294 {
2295 	struct ksz_device *dev = ds->priv;
2296 	struct dsa_port *dp;
2297 
2298 	ksz_ptp_clock_unregister(ds);
2299 
2300 	if (dev->irq > 0) {
2301 		dsa_switch_for_each_user_port(dp, dev->ds) {
2302 			ksz_ptp_irq_free(ds, dp->index);
2303 
2304 			ksz_irq_free(&dev->ports[dp->index].pirq);
2305 		}
2306 
2307 		ksz_irq_free(&dev->girq);
2308 	}
2309 
2310 	if (dev->dev_ops->teardown)
2311 		dev->dev_ops->teardown(ds);
2312 }
2313 
2314 static void port_r_cnt(struct ksz_device *dev, int port)
2315 {
2316 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2317 	u64 *dropped;
2318 
2319 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2320 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2321 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2322 					&mib->counters[mib->cnt_ptr]);
2323 		++mib->cnt_ptr;
2324 	}
2325 
2326 	/* last one in storage */
2327 	dropped = &mib->counters[dev->info->mib_cnt];
2328 
2329 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2330 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2331 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2332 					dropped, &mib->counters[mib->cnt_ptr]);
2333 		++mib->cnt_ptr;
2334 	}
2335 	mib->cnt_ptr = 0;
2336 }
2337 
2338 static void ksz_mib_read_work(struct work_struct *work)
2339 {
2340 	struct ksz_device *dev = container_of(work, struct ksz_device,
2341 					      mib_read.work);
2342 	struct ksz_port_mib *mib;
2343 	struct ksz_port *p;
2344 	int i;
2345 
2346 	for (i = 0; i < dev->info->port_cnt; i++) {
2347 		if (dsa_is_unused_port(dev->ds, i))
2348 			continue;
2349 
2350 		p = &dev->ports[i];
2351 		mib = &p->mib;
2352 		mutex_lock(&mib->cnt_mutex);
2353 
2354 		/* Only read MIB counters when the port is told to do.
2355 		 * If not, read only dropped counters when link is not up.
2356 		 */
2357 		if (!p->read) {
2358 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2359 
2360 			if (!netif_carrier_ok(dp->user))
2361 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2362 		}
2363 		port_r_cnt(dev, i);
2364 		p->read = false;
2365 
2366 		if (dev->dev_ops->r_mib_stat64)
2367 			dev->dev_ops->r_mib_stat64(dev, i);
2368 
2369 		mutex_unlock(&mib->cnt_mutex);
2370 	}
2371 
2372 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2373 }
2374 
2375 void ksz_init_mib_timer(struct ksz_device *dev)
2376 {
2377 	int i;
2378 
2379 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2380 
2381 	for (i = 0; i < dev->info->port_cnt; i++) {
2382 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2383 
2384 		dev->dev_ops->port_init_cnt(dev, i);
2385 
2386 		mib->cnt_ptr = 0;
2387 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2388 	}
2389 }
2390 
2391 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2392 {
2393 	struct ksz_device *dev = ds->priv;
2394 	u16 val = 0xffff;
2395 	int ret;
2396 
2397 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2398 	if (ret)
2399 		return ret;
2400 
2401 	return val;
2402 }
2403 
2404 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2405 {
2406 	struct ksz_device *dev = ds->priv;
2407 	int ret;
2408 
2409 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2410 	if (ret)
2411 		return ret;
2412 
2413 	return 0;
2414 }
2415 
2416 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2417 {
2418 	struct ksz_device *dev = ds->priv;
2419 
2420 	switch (dev->chip_id) {
2421 	case KSZ8830_CHIP_ID:
2422 		/* Silicon Errata Sheet (DS80000830A):
2423 		 * Port 1 does not work with LinkMD Cable-Testing.
2424 		 * Port 1 does not respond to received PAUSE control frames.
2425 		 */
2426 		if (!port)
2427 			return MICREL_KSZ8_P1_ERRATA;
2428 		break;
2429 	case KSZ9477_CHIP_ID:
2430 		/* KSZ9477 Errata DS80000754C
2431 		 *
2432 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2433 		 * be manually disabled
2434 		 *   The EEE feature is enabled by default, but it is not fully
2435 		 *   operational. It must be manually disabled through register
2436 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2437 		 *   to enable EEE, and this feature can cause link drops when
2438 		 *   linked to another device supporting EEE.
2439 		 */
2440 		return MICREL_NO_EEE;
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static void ksz_mac_link_down(struct dsa_switch *ds, int port,
2447 			      unsigned int mode, phy_interface_t interface)
2448 {
2449 	struct ksz_device *dev = ds->priv;
2450 	struct ksz_port *p = &dev->ports[port];
2451 
2452 	/* Read all MIB counters when the link is going down. */
2453 	p->read = true;
2454 	/* timer started */
2455 	if (dev->mib_read_interval)
2456 		schedule_delayed_work(&dev->mib_read, 0);
2457 }
2458 
2459 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2460 {
2461 	struct ksz_device *dev = ds->priv;
2462 
2463 	if (sset != ETH_SS_STATS)
2464 		return 0;
2465 
2466 	return dev->info->mib_cnt;
2467 }
2468 
2469 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2470 				  uint64_t *buf)
2471 {
2472 	const struct dsa_port *dp = dsa_to_port(ds, port);
2473 	struct ksz_device *dev = ds->priv;
2474 	struct ksz_port_mib *mib;
2475 
2476 	mib = &dev->ports[port].mib;
2477 	mutex_lock(&mib->cnt_mutex);
2478 
2479 	/* Only read dropped counters if no link. */
2480 	if (!netif_carrier_ok(dp->user))
2481 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2482 	port_r_cnt(dev, port);
2483 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2484 	mutex_unlock(&mib->cnt_mutex);
2485 }
2486 
2487 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2488 				struct dsa_bridge bridge,
2489 				bool *tx_fwd_offload,
2490 				struct netlink_ext_ack *extack)
2491 {
2492 	/* port_stp_state_set() will be called after to put the port in
2493 	 * appropriate state so there is no need to do anything.
2494 	 */
2495 
2496 	return 0;
2497 }
2498 
2499 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2500 				  struct dsa_bridge bridge)
2501 {
2502 	/* port_stp_state_set() will be called after to put the port in
2503 	 * forwarding state so there is no need to do anything.
2504 	 */
2505 }
2506 
2507 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2508 {
2509 	struct ksz_device *dev = ds->priv;
2510 
2511 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2512 }
2513 
2514 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2515 {
2516 	struct ksz_device *dev = ds->priv;
2517 
2518 	if (!dev->dev_ops->set_ageing_time)
2519 		return -EOPNOTSUPP;
2520 
2521 	return dev->dev_ops->set_ageing_time(dev, msecs);
2522 }
2523 
2524 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2525 			    const unsigned char *addr, u16 vid,
2526 			    struct dsa_db db)
2527 {
2528 	struct ksz_device *dev = ds->priv;
2529 
2530 	if (!dev->dev_ops->fdb_add)
2531 		return -EOPNOTSUPP;
2532 
2533 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2534 }
2535 
2536 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2537 			    const unsigned char *addr,
2538 			    u16 vid, struct dsa_db db)
2539 {
2540 	struct ksz_device *dev = ds->priv;
2541 
2542 	if (!dev->dev_ops->fdb_del)
2543 		return -EOPNOTSUPP;
2544 
2545 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2546 }
2547 
2548 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2549 			     dsa_fdb_dump_cb_t *cb, void *data)
2550 {
2551 	struct ksz_device *dev = ds->priv;
2552 
2553 	if (!dev->dev_ops->fdb_dump)
2554 		return -EOPNOTSUPP;
2555 
2556 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2557 }
2558 
2559 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2560 			    const struct switchdev_obj_port_mdb *mdb,
2561 			    struct dsa_db db)
2562 {
2563 	struct ksz_device *dev = ds->priv;
2564 
2565 	if (!dev->dev_ops->mdb_add)
2566 		return -EOPNOTSUPP;
2567 
2568 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2569 }
2570 
2571 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2572 			    const struct switchdev_obj_port_mdb *mdb,
2573 			    struct dsa_db db)
2574 {
2575 	struct ksz_device *dev = ds->priv;
2576 
2577 	if (!dev->dev_ops->mdb_del)
2578 		return -EOPNOTSUPP;
2579 
2580 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2581 }
2582 
2583 static int ksz_port_setup(struct dsa_switch *ds, int port)
2584 {
2585 	struct ksz_device *dev = ds->priv;
2586 
2587 	if (!dsa_is_user_port(ds, port))
2588 		return 0;
2589 
2590 	/* setup user port */
2591 	dev->dev_ops->port_setup(dev, port, false);
2592 
2593 	/* port_stp_state_set() will be called after to enable the port so
2594 	 * there is no need to do anything.
2595 	 */
2596 
2597 	return 0;
2598 }
2599 
2600 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2601 {
2602 	struct ksz_device *dev = ds->priv;
2603 	struct ksz_port *p;
2604 	const u16 *regs;
2605 	u8 data;
2606 
2607 	regs = dev->info->regs;
2608 
2609 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2610 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2611 
2612 	p = &dev->ports[port];
2613 
2614 	switch (state) {
2615 	case BR_STATE_DISABLED:
2616 		data |= PORT_LEARN_DISABLE;
2617 		break;
2618 	case BR_STATE_LISTENING:
2619 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2620 		break;
2621 	case BR_STATE_LEARNING:
2622 		data |= PORT_RX_ENABLE;
2623 		if (!p->learning)
2624 			data |= PORT_LEARN_DISABLE;
2625 		break;
2626 	case BR_STATE_FORWARDING:
2627 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2628 		if (!p->learning)
2629 			data |= PORT_LEARN_DISABLE;
2630 		break;
2631 	case BR_STATE_BLOCKING:
2632 		data |= PORT_LEARN_DISABLE;
2633 		break;
2634 	default:
2635 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2636 		return;
2637 	}
2638 
2639 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2640 
2641 	p->stp_state = state;
2642 
2643 	ksz_update_port_member(dev, port);
2644 }
2645 
2646 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2647 {
2648 	struct ksz_device *dev = ds->priv;
2649 
2650 	switch (dev->chip_id) {
2651 	case KSZ8563_CHIP_ID:
2652 	case KSZ9477_CHIP_ID:
2653 	case KSZ9563_CHIP_ID:
2654 	case KSZ9567_CHIP_ID:
2655 	case KSZ9893_CHIP_ID:
2656 	case KSZ9896_CHIP_ID:
2657 	case KSZ9897_CHIP_ID:
2658 		if (dsa_is_user_port(ds, port))
2659 			ksz9477_port_acl_free(dev, port);
2660 	}
2661 }
2662 
2663 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2664 				     struct switchdev_brport_flags flags,
2665 				     struct netlink_ext_ack *extack)
2666 {
2667 	if (flags.mask & ~BR_LEARNING)
2668 		return -EINVAL;
2669 
2670 	return 0;
2671 }
2672 
2673 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2674 				 struct switchdev_brport_flags flags,
2675 				 struct netlink_ext_ack *extack)
2676 {
2677 	struct ksz_device *dev = ds->priv;
2678 	struct ksz_port *p = &dev->ports[port];
2679 
2680 	if (flags.mask & BR_LEARNING) {
2681 		p->learning = !!(flags.val & BR_LEARNING);
2682 
2683 		/* Make the change take effect immediately */
2684 		ksz_port_stp_state_set(ds, port, p->stp_state);
2685 	}
2686 
2687 	return 0;
2688 }
2689 
2690 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2691 						  int port,
2692 						  enum dsa_tag_protocol mp)
2693 {
2694 	struct ksz_device *dev = ds->priv;
2695 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2696 
2697 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2698 	    dev->chip_id == KSZ8794_CHIP_ID ||
2699 	    dev->chip_id == KSZ8765_CHIP_ID)
2700 		proto = DSA_TAG_PROTO_KSZ8795;
2701 
2702 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2703 	    dev->chip_id == KSZ8563_CHIP_ID ||
2704 	    dev->chip_id == KSZ9893_CHIP_ID ||
2705 	    dev->chip_id == KSZ9563_CHIP_ID)
2706 		proto = DSA_TAG_PROTO_KSZ9893;
2707 
2708 	if (dev->chip_id == KSZ9477_CHIP_ID ||
2709 	    dev->chip_id == KSZ9896_CHIP_ID ||
2710 	    dev->chip_id == KSZ9897_CHIP_ID ||
2711 	    dev->chip_id == KSZ9567_CHIP_ID)
2712 		proto = DSA_TAG_PROTO_KSZ9477;
2713 
2714 	if (is_lan937x(dev))
2715 		proto = DSA_TAG_PROTO_LAN937X;
2716 
2717 	return proto;
2718 }
2719 
2720 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2721 				    enum dsa_tag_protocol proto)
2722 {
2723 	struct ksz_tagger_data *tagger_data;
2724 
2725 	switch (proto) {
2726 	case DSA_TAG_PROTO_KSZ8795:
2727 		return 0;
2728 	case DSA_TAG_PROTO_KSZ9893:
2729 	case DSA_TAG_PROTO_KSZ9477:
2730 	case DSA_TAG_PROTO_LAN937X:
2731 		tagger_data = ksz_tagger_data(ds);
2732 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2733 		return 0;
2734 	default:
2735 		return -EPROTONOSUPPORT;
2736 	}
2737 }
2738 
2739 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2740 				   bool flag, struct netlink_ext_ack *extack)
2741 {
2742 	struct ksz_device *dev = ds->priv;
2743 
2744 	if (!dev->dev_ops->vlan_filtering)
2745 		return -EOPNOTSUPP;
2746 
2747 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2748 }
2749 
2750 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2751 			     const struct switchdev_obj_port_vlan *vlan,
2752 			     struct netlink_ext_ack *extack)
2753 {
2754 	struct ksz_device *dev = ds->priv;
2755 
2756 	if (!dev->dev_ops->vlan_add)
2757 		return -EOPNOTSUPP;
2758 
2759 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2760 }
2761 
2762 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2763 			     const struct switchdev_obj_port_vlan *vlan)
2764 {
2765 	struct ksz_device *dev = ds->priv;
2766 
2767 	if (!dev->dev_ops->vlan_del)
2768 		return -EOPNOTSUPP;
2769 
2770 	return dev->dev_ops->vlan_del(dev, port, vlan);
2771 }
2772 
2773 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2774 			       struct dsa_mall_mirror_tc_entry *mirror,
2775 			       bool ingress, struct netlink_ext_ack *extack)
2776 {
2777 	struct ksz_device *dev = ds->priv;
2778 
2779 	if (!dev->dev_ops->mirror_add)
2780 		return -EOPNOTSUPP;
2781 
2782 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2783 }
2784 
2785 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2786 				struct dsa_mall_mirror_tc_entry *mirror)
2787 {
2788 	struct ksz_device *dev = ds->priv;
2789 
2790 	if (dev->dev_ops->mirror_del)
2791 		dev->dev_ops->mirror_del(dev, port, mirror);
2792 }
2793 
2794 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2795 {
2796 	struct ksz_device *dev = ds->priv;
2797 
2798 	if (!dev->dev_ops->change_mtu)
2799 		return -EOPNOTSUPP;
2800 
2801 	return dev->dev_ops->change_mtu(dev, port, mtu);
2802 }
2803 
2804 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2805 {
2806 	struct ksz_device *dev = ds->priv;
2807 
2808 	switch (dev->chip_id) {
2809 	case KSZ8795_CHIP_ID:
2810 	case KSZ8794_CHIP_ID:
2811 	case KSZ8765_CHIP_ID:
2812 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2813 	case KSZ8830_CHIP_ID:
2814 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2815 	case KSZ8563_CHIP_ID:
2816 	case KSZ9477_CHIP_ID:
2817 	case KSZ9563_CHIP_ID:
2818 	case KSZ9567_CHIP_ID:
2819 	case KSZ9893_CHIP_ID:
2820 	case KSZ9896_CHIP_ID:
2821 	case KSZ9897_CHIP_ID:
2822 	case LAN9370_CHIP_ID:
2823 	case LAN9371_CHIP_ID:
2824 	case LAN9372_CHIP_ID:
2825 	case LAN9373_CHIP_ID:
2826 	case LAN9374_CHIP_ID:
2827 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2828 	}
2829 
2830 	return -EOPNOTSUPP;
2831 }
2832 
2833 static int ksz_validate_eee(struct dsa_switch *ds, int port)
2834 {
2835 	struct ksz_device *dev = ds->priv;
2836 
2837 	if (!dev->info->internal_phy[port])
2838 		return -EOPNOTSUPP;
2839 
2840 	switch (dev->chip_id) {
2841 	case KSZ8563_CHIP_ID:
2842 	case KSZ9477_CHIP_ID:
2843 	case KSZ9563_CHIP_ID:
2844 	case KSZ9567_CHIP_ID:
2845 	case KSZ9893_CHIP_ID:
2846 	case KSZ9896_CHIP_ID:
2847 	case KSZ9897_CHIP_ID:
2848 		return 0;
2849 	}
2850 
2851 	return -EOPNOTSUPP;
2852 }
2853 
2854 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2855 			   struct ethtool_eee *e)
2856 {
2857 	int ret;
2858 
2859 	ret = ksz_validate_eee(ds, port);
2860 	if (ret)
2861 		return ret;
2862 
2863 	/* There is no documented control of Tx LPI configuration. */
2864 	e->tx_lpi_enabled = true;
2865 
2866 	/* There is no documented control of Tx LPI timer. According to tests
2867 	 * Tx LPI timer seems to be set by default to minimal value.
2868 	 */
2869 	e->tx_lpi_timer = 0;
2870 
2871 	return 0;
2872 }
2873 
2874 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
2875 			   struct ethtool_eee *e)
2876 {
2877 	struct ksz_device *dev = ds->priv;
2878 	int ret;
2879 
2880 	ret = ksz_validate_eee(ds, port);
2881 	if (ret)
2882 		return ret;
2883 
2884 	if (!e->tx_lpi_enabled) {
2885 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
2886 		return -EINVAL;
2887 	}
2888 
2889 	if (e->tx_lpi_timer) {
2890 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
2891 		return -EINVAL;
2892 	}
2893 
2894 	return 0;
2895 }
2896 
2897 static void ksz_set_xmii(struct ksz_device *dev, int port,
2898 			 phy_interface_t interface)
2899 {
2900 	const u8 *bitval = dev->info->xmii_ctrl1;
2901 	struct ksz_port *p = &dev->ports[port];
2902 	const u16 *regs = dev->info->regs;
2903 	u8 data8;
2904 
2905 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2906 
2907 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
2908 		   P_RGMII_ID_EG_ENABLE);
2909 
2910 	switch (interface) {
2911 	case PHY_INTERFACE_MODE_MII:
2912 		data8 |= bitval[P_MII_SEL];
2913 		break;
2914 	case PHY_INTERFACE_MODE_RMII:
2915 		data8 |= bitval[P_RMII_SEL];
2916 		break;
2917 	case PHY_INTERFACE_MODE_GMII:
2918 		data8 |= bitval[P_GMII_SEL];
2919 		break;
2920 	case PHY_INTERFACE_MODE_RGMII:
2921 	case PHY_INTERFACE_MODE_RGMII_ID:
2922 	case PHY_INTERFACE_MODE_RGMII_TXID:
2923 	case PHY_INTERFACE_MODE_RGMII_RXID:
2924 		data8 |= bitval[P_RGMII_SEL];
2925 		/* On KSZ9893, disable RGMII in-band status support */
2926 		if (dev->chip_id == KSZ9893_CHIP_ID ||
2927 		    dev->chip_id == KSZ8563_CHIP_ID ||
2928 		    dev->chip_id == KSZ9563_CHIP_ID)
2929 			data8 &= ~P_MII_MAC_MODE;
2930 		break;
2931 	default:
2932 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
2933 			phy_modes(interface), port);
2934 		return;
2935 	}
2936 
2937 	if (p->rgmii_tx_val)
2938 		data8 |= P_RGMII_ID_EG_ENABLE;
2939 
2940 	if (p->rgmii_rx_val)
2941 		data8 |= P_RGMII_ID_IG_ENABLE;
2942 
2943 	/* Write the updated value */
2944 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
2945 }
2946 
2947 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
2948 {
2949 	const u8 *bitval = dev->info->xmii_ctrl1;
2950 	const u16 *regs = dev->info->regs;
2951 	phy_interface_t interface;
2952 	u8 data8;
2953 	u8 val;
2954 
2955 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2956 
2957 	val = FIELD_GET(P_MII_SEL_M, data8);
2958 
2959 	if (val == bitval[P_MII_SEL]) {
2960 		if (gbit)
2961 			interface = PHY_INTERFACE_MODE_GMII;
2962 		else
2963 			interface = PHY_INTERFACE_MODE_MII;
2964 	} else if (val == bitval[P_RMII_SEL]) {
2965 		interface = PHY_INTERFACE_MODE_RGMII;
2966 	} else {
2967 		interface = PHY_INTERFACE_MODE_RGMII;
2968 		if (data8 & P_RGMII_ID_EG_ENABLE)
2969 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
2970 		if (data8 & P_RGMII_ID_IG_ENABLE) {
2971 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
2972 			if (data8 & P_RGMII_ID_EG_ENABLE)
2973 				interface = PHY_INTERFACE_MODE_RGMII_ID;
2974 		}
2975 	}
2976 
2977 	return interface;
2978 }
2979 
2980 static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
2981 				   unsigned int mode,
2982 				   const struct phylink_link_state *state)
2983 {
2984 	struct ksz_device *dev = ds->priv;
2985 
2986 	if (ksz_is_ksz88x3(dev)) {
2987 		dev->ports[port].manual_flow = !(state->pause & MLO_PAUSE_AN);
2988 		return;
2989 	}
2990 
2991 	/* Internal PHYs */
2992 	if (dev->info->internal_phy[port])
2993 		return;
2994 
2995 	if (phylink_autoneg_inband(mode)) {
2996 		dev_err(dev->dev, "In-band AN not supported!\n");
2997 		return;
2998 	}
2999 
3000 	ksz_set_xmii(dev, port, state->interface);
3001 
3002 	if (dev->dev_ops->phylink_mac_config)
3003 		dev->dev_ops->phylink_mac_config(dev, port, mode, state);
3004 
3005 	if (dev->dev_ops->setup_rgmii_delay)
3006 		dev->dev_ops->setup_rgmii_delay(dev, port);
3007 }
3008 
3009 bool ksz_get_gbit(struct ksz_device *dev, int port)
3010 {
3011 	const u8 *bitval = dev->info->xmii_ctrl1;
3012 	const u16 *regs = dev->info->regs;
3013 	bool gbit = false;
3014 	u8 data8;
3015 	bool val;
3016 
3017 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3018 
3019 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3020 
3021 	if (val == bitval[P_GMII_1GBIT])
3022 		gbit = true;
3023 
3024 	return gbit;
3025 }
3026 
3027 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3028 {
3029 	const u8 *bitval = dev->info->xmii_ctrl1;
3030 	const u16 *regs = dev->info->regs;
3031 	u8 data8;
3032 
3033 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3034 
3035 	data8 &= ~P_GMII_1GBIT_M;
3036 
3037 	if (gbit)
3038 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3039 	else
3040 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3041 
3042 	/* Write the updated value */
3043 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3044 }
3045 
3046 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3047 {
3048 	const u8 *bitval = dev->info->xmii_ctrl0;
3049 	const u16 *regs = dev->info->regs;
3050 	u8 data8;
3051 
3052 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3053 
3054 	data8 &= ~P_MII_100MBIT_M;
3055 
3056 	if (speed == SPEED_100)
3057 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3058 	else
3059 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3060 
3061 	/* Write the updated value */
3062 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3063 }
3064 
3065 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3066 {
3067 	if (speed == SPEED_1000)
3068 		ksz_set_gbit(dev, port, true);
3069 	else
3070 		ksz_set_gbit(dev, port, false);
3071 
3072 	if (speed == SPEED_100 || speed == SPEED_10)
3073 		ksz_set_100_10mbit(dev, port, speed);
3074 }
3075 
3076 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3077 				bool tx_pause, bool rx_pause)
3078 {
3079 	const u8 *bitval = dev->info->xmii_ctrl0;
3080 	const u32 *masks = dev->info->masks;
3081 	const u16 *regs = dev->info->regs;
3082 	u8 mask;
3083 	u8 val;
3084 
3085 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3086 	       masks[P_MII_RX_FLOW_CTRL];
3087 
3088 	if (duplex == DUPLEX_FULL)
3089 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3090 	else
3091 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3092 
3093 	if (tx_pause)
3094 		val |= masks[P_MII_TX_FLOW_CTRL];
3095 
3096 	if (rx_pause)
3097 		val |= masks[P_MII_RX_FLOW_CTRL];
3098 
3099 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3100 }
3101 
3102 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
3103 					unsigned int mode,
3104 					phy_interface_t interface,
3105 					struct phy_device *phydev, int speed,
3106 					int duplex, bool tx_pause,
3107 					bool rx_pause)
3108 {
3109 	struct ksz_port *p;
3110 
3111 	p = &dev->ports[port];
3112 
3113 	/* Internal PHYs */
3114 	if (dev->info->internal_phy[port])
3115 		return;
3116 
3117 	p->phydev.speed = speed;
3118 
3119 	ksz_port_set_xmii_speed(dev, port, speed);
3120 
3121 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3122 }
3123 
3124 static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
3125 				    unsigned int mode,
3126 				    phy_interface_t interface,
3127 				    struct phy_device *phydev, int speed,
3128 				    int duplex, bool tx_pause, bool rx_pause)
3129 {
3130 	struct ksz_device *dev = ds->priv;
3131 
3132 	dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface, phydev,
3133 					  speed, duplex, tx_pause, rx_pause);
3134 }
3135 
3136 static int ksz_switch_detect(struct ksz_device *dev)
3137 {
3138 	u8 id1, id2, id4;
3139 	u16 id16;
3140 	u32 id32;
3141 	int ret;
3142 
3143 	/* read chip id */
3144 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3145 	if (ret)
3146 		return ret;
3147 
3148 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3149 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3150 
3151 	switch (id1) {
3152 	case KSZ87_FAMILY_ID:
3153 		if (id2 == KSZ87_CHIP_ID_95) {
3154 			u8 val;
3155 
3156 			dev->chip_id = KSZ8795_CHIP_ID;
3157 
3158 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3159 			if (val & KSZ8_PORT_FIBER_MODE)
3160 				dev->chip_id = KSZ8765_CHIP_ID;
3161 		} else if (id2 == KSZ87_CHIP_ID_94) {
3162 			dev->chip_id = KSZ8794_CHIP_ID;
3163 		} else {
3164 			return -ENODEV;
3165 		}
3166 		break;
3167 	case KSZ88_FAMILY_ID:
3168 		if (id2 == KSZ88_CHIP_ID_63)
3169 			dev->chip_id = KSZ8830_CHIP_ID;
3170 		else
3171 			return -ENODEV;
3172 		break;
3173 	default:
3174 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3175 		if (ret)
3176 			return ret;
3177 
3178 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3179 		id32 &= ~0xFF;
3180 
3181 		switch (id32) {
3182 		case KSZ9477_CHIP_ID:
3183 		case KSZ9896_CHIP_ID:
3184 		case KSZ9897_CHIP_ID:
3185 		case KSZ9567_CHIP_ID:
3186 		case LAN9370_CHIP_ID:
3187 		case LAN9371_CHIP_ID:
3188 		case LAN9372_CHIP_ID:
3189 		case LAN9373_CHIP_ID:
3190 		case LAN9374_CHIP_ID:
3191 			dev->chip_id = id32;
3192 			break;
3193 		case KSZ9893_CHIP_ID:
3194 			ret = ksz_read8(dev, REG_CHIP_ID4,
3195 					&id4);
3196 			if (ret)
3197 				return ret;
3198 
3199 			if (id4 == SKU_ID_KSZ8563)
3200 				dev->chip_id = KSZ8563_CHIP_ID;
3201 			else if (id4 == SKU_ID_KSZ9563)
3202 				dev->chip_id = KSZ9563_CHIP_ID;
3203 			else
3204 				dev->chip_id = KSZ9893_CHIP_ID;
3205 
3206 			break;
3207 		default:
3208 			dev_err(dev->dev,
3209 				"unsupported switch detected %x)\n", id32);
3210 			return -ENODEV;
3211 		}
3212 	}
3213 	return 0;
3214 }
3215 
3216 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3217 			      struct flow_cls_offload *cls, bool ingress)
3218 {
3219 	struct ksz_device *dev = ds->priv;
3220 
3221 	switch (dev->chip_id) {
3222 	case KSZ8563_CHIP_ID:
3223 	case KSZ9477_CHIP_ID:
3224 	case KSZ9563_CHIP_ID:
3225 	case KSZ9567_CHIP_ID:
3226 	case KSZ9893_CHIP_ID:
3227 	case KSZ9896_CHIP_ID:
3228 	case KSZ9897_CHIP_ID:
3229 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3230 	}
3231 
3232 	return -EOPNOTSUPP;
3233 }
3234 
3235 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3236 			      struct flow_cls_offload *cls, bool ingress)
3237 {
3238 	struct ksz_device *dev = ds->priv;
3239 
3240 	switch (dev->chip_id) {
3241 	case KSZ8563_CHIP_ID:
3242 	case KSZ9477_CHIP_ID:
3243 	case KSZ9563_CHIP_ID:
3244 	case KSZ9567_CHIP_ID:
3245 	case KSZ9893_CHIP_ID:
3246 	case KSZ9896_CHIP_ID:
3247 	case KSZ9897_CHIP_ID:
3248 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3249 	}
3250 
3251 	return -EOPNOTSUPP;
3252 }
3253 
3254 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3255  * is converted to Hex-decimal using the successive multiplication method. On
3256  * every step, integer part is taken and decimal part is carry forwarded.
3257  */
3258 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3259 {
3260 	u32 cinc = 0;
3261 	u32 txrate;
3262 	u32 rate;
3263 	u8 temp;
3264 	u8 i;
3265 
3266 	txrate = idle_slope - send_slope;
3267 
3268 	if (!txrate)
3269 		return -EINVAL;
3270 
3271 	rate = idle_slope;
3272 
3273 	/* 24 bit register */
3274 	for (i = 0; i < 6; i++) {
3275 		rate = rate * 16;
3276 
3277 		temp = rate / txrate;
3278 
3279 		rate %= txrate;
3280 
3281 		cinc = ((cinc << 4) | temp);
3282 	}
3283 
3284 	*bw = cinc;
3285 
3286 	return 0;
3287 }
3288 
3289 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3290 			     u8 shaper)
3291 {
3292 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3293 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3294 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3295 }
3296 
3297 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3298 			    struct tc_cbs_qopt_offload *qopt)
3299 {
3300 	struct ksz_device *dev = ds->priv;
3301 	int ret;
3302 	u32 bw;
3303 
3304 	if (!dev->info->tc_cbs_supported)
3305 		return -EOPNOTSUPP;
3306 
3307 	if (qopt->queue > dev->info->num_tx_queues)
3308 		return -EINVAL;
3309 
3310 	/* Queue Selection */
3311 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3312 	if (ret)
3313 		return ret;
3314 
3315 	if (!qopt->enable)
3316 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3317 					 MTI_SHAPING_OFF);
3318 
3319 	/* High Credit */
3320 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3321 			   qopt->hicredit);
3322 	if (ret)
3323 		return ret;
3324 
3325 	/* Low Credit */
3326 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3327 			   qopt->locredit);
3328 	if (ret)
3329 		return ret;
3330 
3331 	/* Credit Increment Register */
3332 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3333 	if (ret)
3334 		return ret;
3335 
3336 	if (dev->dev_ops->tc_cbs_set_cinc) {
3337 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3338 		if (ret)
3339 			return ret;
3340 	}
3341 
3342 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3343 				 MTI_SHAPING_SRP);
3344 }
3345 
3346 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3347 {
3348 	int queue, ret;
3349 
3350 	/* Configuration will not take effect until the last Port Queue X
3351 	 * Egress Limit Control Register is written.
3352 	 */
3353 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3354 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3355 				  KSZ9477_OUT_RATE_NO_LIMIT);
3356 		if (ret)
3357 			return ret;
3358 	}
3359 
3360 	return 0;
3361 }
3362 
3363 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3364 				 int band)
3365 {
3366 	/* Compared to queues, bands prioritize packets differently. In strict
3367 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3368 	 * highest priority is given to Band 0.
3369 	 */
3370 	return p->bands - 1 - band;
3371 }
3372 
3373 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3374 {
3375 	int ret;
3376 
3377 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3378 	if (ret)
3379 		return ret;
3380 
3381 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3382 				 MTI_SHAPING_OFF);
3383 }
3384 
3385 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3386 			     int weight)
3387 {
3388 	int ret;
3389 
3390 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3391 	if (ret)
3392 		return ret;
3393 
3394 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3395 				MTI_SHAPING_OFF);
3396 	if (ret)
3397 		return ret;
3398 
3399 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3400 }
3401 
3402 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3403 			  struct tc_ets_qopt_offload_replace_params *p)
3404 {
3405 	int ret, band, tc_prio;
3406 	u32 queue_map = 0;
3407 
3408 	/* In order to ensure proper prioritization, it is necessary to set the
3409 	 * rate limit for the related queue to zero. Otherwise strict priority
3410 	 * or WRR mode will not work. This is a hardware limitation.
3411 	 */
3412 	ret = ksz_disable_egress_rate_limit(dev, port);
3413 	if (ret)
3414 		return ret;
3415 
3416 	/* Configure queue scheduling mode for all bands. Currently only strict
3417 	 * prio mode is supported.
3418 	 */
3419 	for (band = 0; band < p->bands; band++) {
3420 		int queue = ksz_ets_band_to_queue(p, band);
3421 
3422 		ret = ksz_queue_set_strict(dev, port, queue);
3423 		if (ret)
3424 			return ret;
3425 	}
3426 
3427 	/* Configure the mapping between traffic classes and queues. Note:
3428 	 * priomap variable support 16 traffic classes, but the chip can handle
3429 	 * only 8 classes.
3430 	 */
3431 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3432 		int queue;
3433 
3434 		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3435 			break;
3436 
3437 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3438 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3439 	}
3440 
3441 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3442 }
3443 
3444 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3445 {
3446 	int ret, queue, tc_prio, s;
3447 	u32 queue_map = 0;
3448 
3449 	/* To restore the default chip configuration, set all queues to use the
3450 	 * WRR scheduler with a weight of 1.
3451 	 */
3452 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3453 		ret = ksz_queue_set_wrr(dev, port, queue,
3454 					KSZ9477_DEFAULT_WRR_WEIGHT);
3455 		if (ret)
3456 			return ret;
3457 	}
3458 
3459 	switch (dev->info->num_tx_queues) {
3460 	case 2:
3461 		s = 2;
3462 		break;
3463 	case 4:
3464 		s = 1;
3465 		break;
3466 	case 8:
3467 		s = 0;
3468 		break;
3469 	default:
3470 		return -EINVAL;
3471 	}
3472 
3473 	/* Revert the queue mapping for TC-priority to its default setting on
3474 	 * the chip.
3475 	 */
3476 	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3477 		int queue;
3478 
3479 		queue = tc_prio >> s;
3480 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3481 	}
3482 
3483 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3484 }
3485 
3486 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3487 			       struct tc_ets_qopt_offload_replace_params *p)
3488 {
3489 	int band;
3490 
3491 	/* Since it is not feasible to share one port among multiple qdisc,
3492 	 * the user must configure all available queues appropriately.
3493 	 */
3494 	if (p->bands != dev->info->num_tx_queues) {
3495 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3496 			dev->info->num_tx_queues);
3497 		return -EOPNOTSUPP;
3498 	}
3499 
3500 	for (band = 0; band < p->bands; ++band) {
3501 		/* The KSZ switches utilize a weighted round robin configuration
3502 		 * where a certain number of packets can be transmitted from a
3503 		 * queue before the next queue is serviced. For more information
3504 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3505 		 * documentation on the Port Transmit Queue Control 1 Register.
3506 		 * However, the current ETS Qdisc implementation (as of February
3507 		 * 2023) assigns a weight to each queue based on the number of
3508 		 * bytes or extrapolated bandwidth in percentages. Since this
3509 		 * differs from the KSZ switches' method and we don't want to
3510 		 * fake support by converting bytes to packets, it is better to
3511 		 * return an error instead.
3512 		 */
3513 		if (p->quanta[band]) {
3514 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3515 			return -EOPNOTSUPP;
3516 		}
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3523 				  struct tc_ets_qopt_offload *qopt)
3524 {
3525 	struct ksz_device *dev = ds->priv;
3526 	int ret;
3527 
3528 	if (!dev->info->tc_ets_supported)
3529 		return -EOPNOTSUPP;
3530 
3531 	if (qopt->parent != TC_H_ROOT) {
3532 		dev_err(dev->dev, "Parent should be \"root\"\n");
3533 		return -EOPNOTSUPP;
3534 	}
3535 
3536 	switch (qopt->command) {
3537 	case TC_ETS_REPLACE:
3538 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3539 		if (ret)
3540 			return ret;
3541 
3542 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3543 	case TC_ETS_DESTROY:
3544 		return ksz_tc_ets_del(dev, port);
3545 	case TC_ETS_STATS:
3546 	case TC_ETS_GRAFT:
3547 		return -EOPNOTSUPP;
3548 	}
3549 
3550 	return -EOPNOTSUPP;
3551 }
3552 
3553 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3554 			enum tc_setup_type type, void *type_data)
3555 {
3556 	switch (type) {
3557 	case TC_SETUP_QDISC_CBS:
3558 		return ksz_setup_tc_cbs(ds, port, type_data);
3559 	case TC_SETUP_QDISC_ETS:
3560 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3561 	default:
3562 		return -EOPNOTSUPP;
3563 	}
3564 }
3565 
3566 static void ksz_get_wol(struct dsa_switch *ds, int port,
3567 			struct ethtool_wolinfo *wol)
3568 {
3569 	struct ksz_device *dev = ds->priv;
3570 
3571 	if (dev->dev_ops->get_wol)
3572 		dev->dev_ops->get_wol(dev, port, wol);
3573 }
3574 
3575 static int ksz_set_wol(struct dsa_switch *ds, int port,
3576 		       struct ethtool_wolinfo *wol)
3577 {
3578 	struct ksz_device *dev = ds->priv;
3579 
3580 	if (dev->dev_ops->set_wol)
3581 		return dev->dev_ops->set_wol(dev, port, wol);
3582 
3583 	return -EOPNOTSUPP;
3584 }
3585 
3586 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3587 				    const unsigned char *addr)
3588 {
3589 	struct dsa_port *dp = dsa_to_port(ds, port);
3590 	struct ethtool_wolinfo wol;
3591 
3592 	if (dp->hsr_dev) {
3593 		dev_err(ds->dev,
3594 			"Cannot change MAC address on port %d with active HSR offload\n",
3595 			port);
3596 		return -EBUSY;
3597 	}
3598 
3599 	ksz_get_wol(ds, dp->index, &wol);
3600 	if (wol.wolopts & WAKE_MAGIC) {
3601 		dev_err(ds->dev,
3602 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3603 			port);
3604 		return -EBUSY;
3605 	}
3606 
3607 	return 0;
3608 }
3609 
3610 /**
3611  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3612  *                                 can be used as a global address.
3613  * @ds: Pointer to the DSA switch structure.
3614  * @port: The port number on which the MAC address is to be checked.
3615  *
3616  * This function examines the MAC address set on the specified port and
3617  * determines if it can be used as a global address for the switch.
3618  *
3619  * Return: true if the port's MAC address can be used as a global address, false
3620  * otherwise.
3621  */
3622 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3623 {
3624 	struct net_device *user = dsa_to_port(ds, port)->user;
3625 	const unsigned char *addr = user->dev_addr;
3626 	struct ksz_switch_macaddr *switch_macaddr;
3627 	struct ksz_device *dev = ds->priv;
3628 
3629 	ASSERT_RTNL();
3630 
3631 	switch_macaddr = dev->switch_macaddr;
3632 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3633 		return false;
3634 
3635 	return true;
3636 }
3637 
3638 /**
3639  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3640  * @ds: DSA switch instance.
3641  * @port: Port number.
3642  * @extack: Netlink extended acknowledgment.
3643  *
3644  * This function programs the switch's MAC address register with the MAC address
3645  * of the requesting user port. This single address is used by the switch for
3646  * multiple features like HSR self-address filtering and WoL. Other user ports
3647  * can share ownership of this address as long as their MAC address is the same.
3648  * The MAC addresses of user ports must not change while they have ownership of
3649  * the switch MAC address.
3650  *
3651  * Return: 0 on success, or other error codes on failure.
3652  */
3653 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3654 			   struct netlink_ext_ack *extack)
3655 {
3656 	struct net_device *user = dsa_to_port(ds, port)->user;
3657 	const unsigned char *addr = user->dev_addr;
3658 	struct ksz_switch_macaddr *switch_macaddr;
3659 	struct ksz_device *dev = ds->priv;
3660 	const u16 *regs = dev->info->regs;
3661 	int i, ret;
3662 
3663 	/* Make sure concurrent MAC address changes are blocked */
3664 	ASSERT_RTNL();
3665 
3666 	switch_macaddr = dev->switch_macaddr;
3667 	if (switch_macaddr) {
3668 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3669 			NL_SET_ERR_MSG_FMT_MOD(extack,
3670 					       "Switch already configured for MAC address %pM",
3671 					       switch_macaddr->addr);
3672 			return -EBUSY;
3673 		}
3674 
3675 		refcount_inc(&switch_macaddr->refcount);
3676 		return 0;
3677 	}
3678 
3679 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3680 	if (!switch_macaddr)
3681 		return -ENOMEM;
3682 
3683 	ether_addr_copy(switch_macaddr->addr, addr);
3684 	refcount_set(&switch_macaddr->refcount, 1);
3685 	dev->switch_macaddr = switch_macaddr;
3686 
3687 	/* Program the switch MAC address to hardware */
3688 	for (i = 0; i < ETH_ALEN; i++) {
3689 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3690 		if (ret)
3691 			goto macaddr_drop;
3692 	}
3693 
3694 	return 0;
3695 
3696 macaddr_drop:
3697 	dev->switch_macaddr = NULL;
3698 	refcount_set(&switch_macaddr->refcount, 0);
3699 	kfree(switch_macaddr);
3700 
3701 	return ret;
3702 }
3703 
3704 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3705 {
3706 	struct ksz_switch_macaddr *switch_macaddr;
3707 	struct ksz_device *dev = ds->priv;
3708 	const u16 *regs = dev->info->regs;
3709 	int i;
3710 
3711 	/* Make sure concurrent MAC address changes are blocked */
3712 	ASSERT_RTNL();
3713 
3714 	switch_macaddr = dev->switch_macaddr;
3715 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3716 		return;
3717 
3718 	for (i = 0; i < ETH_ALEN; i++)
3719 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3720 
3721 	dev->switch_macaddr = NULL;
3722 	kfree(switch_macaddr);
3723 }
3724 
3725 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3726 			struct netlink_ext_ack *extack)
3727 {
3728 	struct ksz_device *dev = ds->priv;
3729 	enum hsr_version ver;
3730 	int ret;
3731 
3732 	ret = hsr_get_version(hsr, &ver);
3733 	if (ret)
3734 		return ret;
3735 
3736 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3737 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3738 		return -EOPNOTSUPP;
3739 	}
3740 
3741 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3742 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3743 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3744 		return -EOPNOTSUPP;
3745 	}
3746 
3747 	/* KSZ9477 only supports HSR v0 and v1 */
3748 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3749 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3750 		return -EOPNOTSUPP;
3751 	}
3752 
3753 	/* Self MAC address filtering, to avoid frames traversing
3754 	 * the HSR ring more than once.
3755 	 */
3756 	ret = ksz_switch_macaddr_get(ds, port, extack);
3757 	if (ret)
3758 		return ret;
3759 
3760 	ksz9477_hsr_join(ds, port, hsr);
3761 	dev->hsr_dev = hsr;
3762 	dev->hsr_ports |= BIT(port);
3763 
3764 	return 0;
3765 }
3766 
3767 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3768 			 struct net_device *hsr)
3769 {
3770 	struct ksz_device *dev = ds->priv;
3771 
3772 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3773 
3774 	ksz9477_hsr_leave(ds, port, hsr);
3775 	dev->hsr_ports &= ~BIT(port);
3776 	if (!dev->hsr_ports)
3777 		dev->hsr_dev = NULL;
3778 
3779 	ksz_switch_macaddr_put(ds);
3780 
3781 	return 0;
3782 }
3783 
3784 static const struct dsa_switch_ops ksz_switch_ops = {
3785 	.get_tag_protocol	= ksz_get_tag_protocol,
3786 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3787 	.get_phy_flags		= ksz_get_phy_flags,
3788 	.setup			= ksz_setup,
3789 	.teardown		= ksz_teardown,
3790 	.phy_read		= ksz_phy_read16,
3791 	.phy_write		= ksz_phy_write16,
3792 	.phylink_get_caps	= ksz_phylink_get_caps,
3793 	.phylink_mac_config	= ksz_phylink_mac_config,
3794 	.phylink_mac_link_up	= ksz_phylink_mac_link_up,
3795 	.phylink_mac_link_down	= ksz_mac_link_down,
3796 	.port_setup		= ksz_port_setup,
3797 	.set_ageing_time	= ksz_set_ageing_time,
3798 	.get_strings		= ksz_get_strings,
3799 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3800 	.get_sset_count		= ksz_sset_count,
3801 	.port_bridge_join	= ksz_port_bridge_join,
3802 	.port_bridge_leave	= ksz_port_bridge_leave,
3803 	.port_hsr_join		= ksz_hsr_join,
3804 	.port_hsr_leave		= ksz_hsr_leave,
3805 	.port_set_mac_address	= ksz_port_set_mac_address,
3806 	.port_stp_state_set	= ksz_port_stp_state_set,
3807 	.port_teardown		= ksz_port_teardown,
3808 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3809 	.port_bridge_flags	= ksz_port_bridge_flags,
3810 	.port_fast_age		= ksz_port_fast_age,
3811 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3812 	.port_vlan_add		= ksz_port_vlan_add,
3813 	.port_vlan_del		= ksz_port_vlan_del,
3814 	.port_fdb_dump		= ksz_port_fdb_dump,
3815 	.port_fdb_add		= ksz_port_fdb_add,
3816 	.port_fdb_del		= ksz_port_fdb_del,
3817 	.port_mdb_add           = ksz_port_mdb_add,
3818 	.port_mdb_del           = ksz_port_mdb_del,
3819 	.port_mirror_add	= ksz_port_mirror_add,
3820 	.port_mirror_del	= ksz_port_mirror_del,
3821 	.get_stats64		= ksz_get_stats64,
3822 	.get_pause_stats	= ksz_get_pause_stats,
3823 	.port_change_mtu	= ksz_change_mtu,
3824 	.port_max_mtu		= ksz_max_mtu,
3825 	.get_wol		= ksz_get_wol,
3826 	.set_wol		= ksz_set_wol,
3827 	.get_ts_info		= ksz_get_ts_info,
3828 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3829 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3830 	.port_txtstamp		= ksz_port_txtstamp,
3831 	.port_rxtstamp		= ksz_port_rxtstamp,
3832 	.cls_flower_add		= ksz_cls_flower_add,
3833 	.cls_flower_del		= ksz_cls_flower_del,
3834 	.port_setup_tc		= ksz_setup_tc,
3835 	.get_mac_eee		= ksz_get_mac_eee,
3836 	.set_mac_eee		= ksz_set_mac_eee,
3837 };
3838 
3839 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3840 {
3841 	struct dsa_switch *ds;
3842 	struct ksz_device *swdev;
3843 
3844 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3845 	if (!ds)
3846 		return NULL;
3847 
3848 	ds->dev = base;
3849 	ds->num_ports = DSA_MAX_PORTS;
3850 	ds->ops = &ksz_switch_ops;
3851 
3852 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3853 	if (!swdev)
3854 		return NULL;
3855 
3856 	ds->priv = swdev;
3857 	swdev->dev = base;
3858 
3859 	swdev->ds = ds;
3860 	swdev->priv = priv;
3861 
3862 	return swdev;
3863 }
3864 EXPORT_SYMBOL(ksz_switch_alloc);
3865 
3866 /**
3867  * ksz_switch_shutdown - Shutdown routine for the switch device.
3868  * @dev: The switch device structure.
3869  *
3870  * This function is responsible for initiating a shutdown sequence for the
3871  * switch device. It invokes the reset operation defined in the device
3872  * operations, if available, to reset the switch. Subsequently, it calls the
3873  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
3874  * switch.
3875  */
3876 void ksz_switch_shutdown(struct ksz_device *dev)
3877 {
3878 	bool wol_enabled = false;
3879 
3880 	if (dev->dev_ops->wol_pre_shutdown)
3881 		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
3882 
3883 	if (dev->dev_ops->reset && !wol_enabled)
3884 		dev->dev_ops->reset(dev);
3885 
3886 	dsa_switch_shutdown(dev->ds);
3887 }
3888 EXPORT_SYMBOL(ksz_switch_shutdown);
3889 
3890 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
3891 				  struct device_node *port_dn)
3892 {
3893 	phy_interface_t phy_mode = dev->ports[port_num].interface;
3894 	int rx_delay = -1, tx_delay = -1;
3895 
3896 	if (!phy_interface_mode_is_rgmii(phy_mode))
3897 		return;
3898 
3899 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
3900 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
3901 
3902 	if (rx_delay == -1 && tx_delay == -1) {
3903 		dev_warn(dev->dev,
3904 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
3905 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
3906 			 "\"tx-internal-delay-ps\"",
3907 			 port_num);
3908 
3909 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
3910 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3911 			rx_delay = 2000;
3912 
3913 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
3914 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3915 			tx_delay = 2000;
3916 	}
3917 
3918 	if (rx_delay < 0)
3919 		rx_delay = 0;
3920 	if (tx_delay < 0)
3921 		tx_delay = 0;
3922 
3923 	dev->ports[port_num].rgmii_rx_val = rx_delay;
3924 	dev->ports[port_num].rgmii_tx_val = tx_delay;
3925 }
3926 
3927 /**
3928  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
3929  *				 register value.
3930  * @array:	The array of drive strength values to search.
3931  * @array_size:	The size of the array.
3932  * @microamp:	The drive strength value in microamp to be converted.
3933  *
3934  * This function searches the array of drive strength values for the given
3935  * microamp value and returns the corresponding register value for that drive.
3936  *
3937  * Returns: If found, the corresponding register value for that drive strength
3938  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
3939  */
3940 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
3941 				     size_t array_size, int microamp)
3942 {
3943 	int i;
3944 
3945 	for (i = 0; i < array_size; i++) {
3946 		if (array[i].microamp == microamp)
3947 			return array[i].reg_val;
3948 	}
3949 
3950 	return -EINVAL;
3951 }
3952 
3953 /**
3954  * ksz_drive_strength_error() - Report invalid drive strength value
3955  * @dev:	ksz device
3956  * @array:	The array of drive strength values to search.
3957  * @array_size:	The size of the array.
3958  * @microamp:	Invalid drive strength value in microamp
3959  *
3960  * This function logs an error message when an unsupported drive strength value
3961  * is detected. It lists out all the supported drive strength values for
3962  * reference in the error message.
3963  */
3964 static void ksz_drive_strength_error(struct ksz_device *dev,
3965 				     const struct ksz_drive_strength *array,
3966 				     size_t array_size, int microamp)
3967 {
3968 	char supported_values[100];
3969 	size_t remaining_size;
3970 	int added_len;
3971 	char *ptr;
3972 	int i;
3973 
3974 	remaining_size = sizeof(supported_values);
3975 	ptr = supported_values;
3976 
3977 	for (i = 0; i < array_size; i++) {
3978 		added_len = snprintf(ptr, remaining_size,
3979 				     i == 0 ? "%d" : ", %d", array[i].microamp);
3980 
3981 		if (added_len >= remaining_size)
3982 			break;
3983 
3984 		ptr += added_len;
3985 		remaining_size -= added_len;
3986 	}
3987 
3988 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
3989 		microamp, supported_values);
3990 }
3991 
3992 /**
3993  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
3994  *				    chip variants.
3995  * @dev:       ksz device
3996  * @props:     Array of drive strength properties to be applied
3997  * @num_props: Number of properties in the array
3998  *
3999  * This function configures the drive strength for various KSZ9477 chip variants
4000  * based on the provided properties. It handles chip-specific nuances and
4001  * ensures only valid drive strengths are written to the respective chip.
4002  *
4003  * Return: 0 on successful configuration, a negative error code on failure.
4004  */
4005 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4006 					struct ksz_driver_strength_prop *props,
4007 					int num_props)
4008 {
4009 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4010 	int i, ret, reg;
4011 	u8 mask = 0;
4012 	u8 val = 0;
4013 
4014 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4015 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4016 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4017 
4018 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4019 	    dev->chip_id == KSZ8794_CHIP_ID ||
4020 	    dev->chip_id == KSZ8765_CHIP_ID)
4021 		reg = KSZ8795_REG_SW_CTRL_20;
4022 	else
4023 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4024 
4025 	for (i = 0; i < num_props; i++) {
4026 		if (props[i].value == -1)
4027 			continue;
4028 
4029 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4030 						array_size, props[i].value);
4031 		if (ret < 0) {
4032 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4033 						 array_size, props[i].value);
4034 			return ret;
4035 		}
4036 
4037 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4038 		val |= ret << props[i].offset;
4039 	}
4040 
4041 	return ksz_rmw8(dev, reg, mask, val);
4042 }
4043 
4044 /**
4045  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4046  *				    KSZ8830 compatible chip variants.
4047  * @dev:       ksz device
4048  * @props:     Array of drive strength properties to be set
4049  * @num_props: Number of properties in the array
4050  *
4051  * This function applies the specified drive strength settings to KSZ8830 chip
4052  * variants (KSZ8873, KSZ8863).
4053  * It ensures the configurations align with what the chip variant supports and
4054  * warns or errors out on unsupported settings.
4055  *
4056  * Return: 0 on success, error code otherwise
4057  */
4058 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4059 					struct ksz_driver_strength_prop *props,
4060 					int num_props)
4061 {
4062 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4063 	int microamp;
4064 	int i, ret;
4065 
4066 	for (i = 0; i < num_props; i++) {
4067 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4068 			continue;
4069 
4070 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4071 			 props[i].name);
4072 	}
4073 
4074 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4075 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4076 					microamp);
4077 	if (ret < 0) {
4078 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4079 					 array_size, microamp);
4080 		return ret;
4081 	}
4082 
4083 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4084 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4085 }
4086 
4087 /**
4088  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4089  *				from device tree properties.
4090  * @dev:	ksz device
4091  *
4092  * This function reads the specified drive strength properties from the
4093  * device tree, validates against the supported chip variants, and sets
4094  * them accordingly. An error should be critical here, as the drive strength
4095  * settings are crucial for EMI compliance.
4096  *
4097  * Return: 0 on success, error code otherwise
4098  */
4099 static int ksz_parse_drive_strength(struct ksz_device *dev)
4100 {
4101 	struct ksz_driver_strength_prop of_props[] = {
4102 		[KSZ_DRIVER_STRENGTH_HI] = {
4103 			.name = "microchip,hi-drive-strength-microamp",
4104 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4105 			.value = -1,
4106 		},
4107 		[KSZ_DRIVER_STRENGTH_LO] = {
4108 			.name = "microchip,lo-drive-strength-microamp",
4109 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4110 			.value = -1,
4111 		},
4112 		[KSZ_DRIVER_STRENGTH_IO] = {
4113 			.name = "microchip,io-drive-strength-microamp",
4114 			.offset = 0, /* don't care */
4115 			.value = -1,
4116 		},
4117 	};
4118 	struct device_node *np = dev->dev->of_node;
4119 	bool have_any_prop = false;
4120 	int i, ret;
4121 
4122 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4123 		ret = of_property_read_u32(np, of_props[i].name,
4124 					   &of_props[i].value);
4125 		if (ret && ret != -EINVAL)
4126 			dev_warn(dev->dev, "Failed to read %s\n",
4127 				 of_props[i].name);
4128 		if (ret)
4129 			continue;
4130 
4131 		have_any_prop = true;
4132 	}
4133 
4134 	if (!have_any_prop)
4135 		return 0;
4136 
4137 	switch (dev->chip_id) {
4138 	case KSZ8830_CHIP_ID:
4139 		return ksz8830_drive_strength_write(dev, of_props,
4140 						    ARRAY_SIZE(of_props));
4141 	case KSZ8795_CHIP_ID:
4142 	case KSZ8794_CHIP_ID:
4143 	case KSZ8765_CHIP_ID:
4144 	case KSZ8563_CHIP_ID:
4145 	case KSZ9477_CHIP_ID:
4146 	case KSZ9563_CHIP_ID:
4147 	case KSZ9567_CHIP_ID:
4148 	case KSZ9893_CHIP_ID:
4149 	case KSZ9896_CHIP_ID:
4150 	case KSZ9897_CHIP_ID:
4151 		return ksz9477_drive_strength_write(dev, of_props,
4152 						    ARRAY_SIZE(of_props));
4153 	default:
4154 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4155 			if (of_props[i].value == -1)
4156 				continue;
4157 
4158 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4159 				 of_props[i].name);
4160 		}
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 int ksz_switch_register(struct ksz_device *dev)
4167 {
4168 	const struct ksz_chip_data *info;
4169 	struct device_node *port, *ports;
4170 	phy_interface_t interface;
4171 	unsigned int port_num;
4172 	int ret;
4173 	int i;
4174 
4175 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4176 						  GPIOD_OUT_LOW);
4177 	if (IS_ERR(dev->reset_gpio))
4178 		return PTR_ERR(dev->reset_gpio);
4179 
4180 	if (dev->reset_gpio) {
4181 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4182 		usleep_range(10000, 12000);
4183 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4184 		msleep(100);
4185 	}
4186 
4187 	mutex_init(&dev->dev_mutex);
4188 	mutex_init(&dev->regmap_mutex);
4189 	mutex_init(&dev->alu_mutex);
4190 	mutex_init(&dev->vlan_mutex);
4191 
4192 	ret = ksz_switch_detect(dev);
4193 	if (ret)
4194 		return ret;
4195 
4196 	info = ksz_lookup_info(dev->chip_id);
4197 	if (!info)
4198 		return -ENODEV;
4199 
4200 	/* Update the compatible info with the probed one */
4201 	dev->info = info;
4202 
4203 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4204 		 dev->info->dev_name, dev->chip_rev);
4205 
4206 	ret = ksz_check_device_id(dev);
4207 	if (ret)
4208 		return ret;
4209 
4210 	dev->dev_ops = dev->info->ops;
4211 
4212 	ret = dev->dev_ops->init(dev);
4213 	if (ret)
4214 		return ret;
4215 
4216 	dev->ports = devm_kzalloc(dev->dev,
4217 				  dev->info->port_cnt * sizeof(struct ksz_port),
4218 				  GFP_KERNEL);
4219 	if (!dev->ports)
4220 		return -ENOMEM;
4221 
4222 	for (i = 0; i < dev->info->port_cnt; i++) {
4223 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4224 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4225 		dev->ports[i].mib.counters =
4226 			devm_kzalloc(dev->dev,
4227 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4228 				     GFP_KERNEL);
4229 		if (!dev->ports[i].mib.counters)
4230 			return -ENOMEM;
4231 
4232 		dev->ports[i].ksz_dev = dev;
4233 		dev->ports[i].num = i;
4234 	}
4235 
4236 	/* set the real number of ports */
4237 	dev->ds->num_ports = dev->info->port_cnt;
4238 
4239 	/* Host port interface will be self detected, or specifically set in
4240 	 * device tree.
4241 	 */
4242 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4243 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4244 	if (dev->dev->of_node) {
4245 		ret = ksz_parse_drive_strength(dev);
4246 		if (ret)
4247 			return ret;
4248 
4249 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4250 		if (ret == 0)
4251 			dev->compat_interface = interface;
4252 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4253 		if (!ports)
4254 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4255 		if (ports) {
4256 			for_each_available_child_of_node(ports, port) {
4257 				if (of_property_read_u32(port, "reg",
4258 							 &port_num))
4259 					continue;
4260 				if (!(dev->port_mask & BIT(port_num))) {
4261 					of_node_put(port);
4262 					of_node_put(ports);
4263 					return -EINVAL;
4264 				}
4265 				of_get_phy_mode(port,
4266 						&dev->ports[port_num].interface);
4267 
4268 				ksz_parse_rgmii_delay(dev, port_num, port);
4269 			}
4270 			of_node_put(ports);
4271 		}
4272 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4273 							 "microchip,synclko-125");
4274 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4275 							     "microchip,synclko-disable");
4276 		if (dev->synclko_125 && dev->synclko_disable) {
4277 			dev_err(dev->dev, "inconsistent synclko settings\n");
4278 			return -EINVAL;
4279 		}
4280 
4281 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4282 							   "wakeup-source");
4283 	}
4284 
4285 	ret = dsa_register_switch(dev->ds);
4286 	if (ret) {
4287 		dev->dev_ops->exit(dev);
4288 		return ret;
4289 	}
4290 
4291 	/* Read MIB counters every 30 seconds to avoid overflow. */
4292 	dev->mib_read_interval = msecs_to_jiffies(5000);
4293 
4294 	/* Start the MIB timer. */
4295 	schedule_delayed_work(&dev->mib_read, 0);
4296 
4297 	return ret;
4298 }
4299 EXPORT_SYMBOL(ksz_switch_register);
4300 
4301 void ksz_switch_remove(struct ksz_device *dev)
4302 {
4303 	/* timer started */
4304 	if (dev->mib_read_interval) {
4305 		dev->mib_read_interval = 0;
4306 		cancel_delayed_work_sync(&dev->mib_read);
4307 	}
4308 
4309 	dev->dev_ops->exit(dev);
4310 	dsa_unregister_switch(dev->ds);
4311 
4312 	if (dev->reset_gpio)
4313 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4314 
4315 }
4316 EXPORT_SYMBOL(ksz_switch_remove);
4317 
4318 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4319 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4320 MODULE_LICENSE("GPL");
4321