xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 77c819cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/pkt_cls.h>
28 #include <net/switchdev.h>
29 
30 #include "ksz_common.h"
31 #include "ksz_ptp.h"
32 #include "ksz8.h"
33 #include "ksz9477.h"
34 #include "lan937x.h"
35 
36 #define MIB_COUNTER_NUM 0x20
37 
38 struct ksz_stats_raw {
39 	u64 rx_hi;
40 	u64 rx_undersize;
41 	u64 rx_fragments;
42 	u64 rx_oversize;
43 	u64 rx_jabbers;
44 	u64 rx_symbol_err;
45 	u64 rx_crc_err;
46 	u64 rx_align_err;
47 	u64 rx_mac_ctrl;
48 	u64 rx_pause;
49 	u64 rx_bcast;
50 	u64 rx_mcast;
51 	u64 rx_ucast;
52 	u64 rx_64_or_less;
53 	u64 rx_65_127;
54 	u64 rx_128_255;
55 	u64 rx_256_511;
56 	u64 rx_512_1023;
57 	u64 rx_1024_1522;
58 	u64 rx_1523_2000;
59 	u64 rx_2001;
60 	u64 tx_hi;
61 	u64 tx_late_col;
62 	u64 tx_pause;
63 	u64 tx_bcast;
64 	u64 tx_mcast;
65 	u64 tx_ucast;
66 	u64 tx_deferred;
67 	u64 tx_total_col;
68 	u64 tx_exc_col;
69 	u64 tx_single_col;
70 	u64 tx_mult_col;
71 	u64 rx_total;
72 	u64 tx_total;
73 	u64 rx_discards;
74 	u64 tx_discards;
75 };
76 
77 struct ksz88xx_stats_raw {
78 	u64 rx;
79 	u64 rx_hi;
80 	u64 rx_undersize;
81 	u64 rx_fragments;
82 	u64 rx_oversize;
83 	u64 rx_jabbers;
84 	u64 rx_symbol_err;
85 	u64 rx_crc_err;
86 	u64 rx_align_err;
87 	u64 rx_mac_ctrl;
88 	u64 rx_pause;
89 	u64 rx_bcast;
90 	u64 rx_mcast;
91 	u64 rx_ucast;
92 	u64 rx_64_or_less;
93 	u64 rx_65_127;
94 	u64 rx_128_255;
95 	u64 rx_256_511;
96 	u64 rx_512_1023;
97 	u64 rx_1024_1522;
98 	u64 tx;
99 	u64 tx_hi;
100 	u64 tx_late_col;
101 	u64 tx_pause;
102 	u64 tx_bcast;
103 	u64 tx_mcast;
104 	u64 tx_ucast;
105 	u64 tx_deferred;
106 	u64 tx_total_col;
107 	u64 tx_exc_col;
108 	u64 tx_single_col;
109 	u64 tx_mult_col;
110 	u64 rx_discards;
111 	u64 tx_discards;
112 };
113 
114 static const struct ksz_mib_names ksz88xx_mib_names[] = {
115 	{ 0x00, "rx" },
116 	{ 0x01, "rx_hi" },
117 	{ 0x02, "rx_undersize" },
118 	{ 0x03, "rx_fragments" },
119 	{ 0x04, "rx_oversize" },
120 	{ 0x05, "rx_jabbers" },
121 	{ 0x06, "rx_symbol_err" },
122 	{ 0x07, "rx_crc_err" },
123 	{ 0x08, "rx_align_err" },
124 	{ 0x09, "rx_mac_ctrl" },
125 	{ 0x0a, "rx_pause" },
126 	{ 0x0b, "rx_bcast" },
127 	{ 0x0c, "rx_mcast" },
128 	{ 0x0d, "rx_ucast" },
129 	{ 0x0e, "rx_64_or_less" },
130 	{ 0x0f, "rx_65_127" },
131 	{ 0x10, "rx_128_255" },
132 	{ 0x11, "rx_256_511" },
133 	{ 0x12, "rx_512_1023" },
134 	{ 0x13, "rx_1024_1522" },
135 	{ 0x14, "tx" },
136 	{ 0x15, "tx_hi" },
137 	{ 0x16, "tx_late_col" },
138 	{ 0x17, "tx_pause" },
139 	{ 0x18, "tx_bcast" },
140 	{ 0x19, "tx_mcast" },
141 	{ 0x1a, "tx_ucast" },
142 	{ 0x1b, "tx_deferred" },
143 	{ 0x1c, "tx_total_col" },
144 	{ 0x1d, "tx_exc_col" },
145 	{ 0x1e, "tx_single_col" },
146 	{ 0x1f, "tx_mult_col" },
147 	{ 0x100, "rx_discards" },
148 	{ 0x101, "tx_discards" },
149 };
150 
151 static const struct ksz_mib_names ksz9477_mib_names[] = {
152 	{ 0x00, "rx_hi" },
153 	{ 0x01, "rx_undersize" },
154 	{ 0x02, "rx_fragments" },
155 	{ 0x03, "rx_oversize" },
156 	{ 0x04, "rx_jabbers" },
157 	{ 0x05, "rx_symbol_err" },
158 	{ 0x06, "rx_crc_err" },
159 	{ 0x07, "rx_align_err" },
160 	{ 0x08, "rx_mac_ctrl" },
161 	{ 0x09, "rx_pause" },
162 	{ 0x0A, "rx_bcast" },
163 	{ 0x0B, "rx_mcast" },
164 	{ 0x0C, "rx_ucast" },
165 	{ 0x0D, "rx_64_or_less" },
166 	{ 0x0E, "rx_65_127" },
167 	{ 0x0F, "rx_128_255" },
168 	{ 0x10, "rx_256_511" },
169 	{ 0x11, "rx_512_1023" },
170 	{ 0x12, "rx_1024_1522" },
171 	{ 0x13, "rx_1523_2000" },
172 	{ 0x14, "rx_2001" },
173 	{ 0x15, "tx_hi" },
174 	{ 0x16, "tx_late_col" },
175 	{ 0x17, "tx_pause" },
176 	{ 0x18, "tx_bcast" },
177 	{ 0x19, "tx_mcast" },
178 	{ 0x1A, "tx_ucast" },
179 	{ 0x1B, "tx_deferred" },
180 	{ 0x1C, "tx_total_col" },
181 	{ 0x1D, "tx_exc_col" },
182 	{ 0x1E, "tx_single_col" },
183 	{ 0x1F, "tx_mult_col" },
184 	{ 0x80, "rx_total" },
185 	{ 0x81, "tx_total" },
186 	{ 0x82, "rx_discards" },
187 	{ 0x83, "tx_discards" },
188 };
189 
190 struct ksz_driver_strength_prop {
191 	const char *name;
192 	int offset;
193 	int value;
194 };
195 
196 enum ksz_driver_strength_type {
197 	KSZ_DRIVER_STRENGTH_HI,
198 	KSZ_DRIVER_STRENGTH_LO,
199 	KSZ_DRIVER_STRENGTH_IO,
200 };
201 
202 /**
203  * struct ksz_drive_strength - drive strength mapping
204  * @reg_val:	register value
205  * @microamp:	microamp value
206  */
207 struct ksz_drive_strength {
208 	u32 reg_val;
209 	u32 microamp;
210 };
211 
212 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213  *
214  * This values are not documented in KSZ9477 variants but confirmed by
215  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217  *
218  * Documentation in KSZ8795CLX provides more information with some
219  * recommendations:
220  * - for high speed signals
221  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222  *      2.5V or 3.3V VDDIO.
223  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224  *      using 1.8V VDDIO.
225  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226  *      or 3.3V VDDIO.
227  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228  *   5. In same interface, the heavy loading should use higher one of the
229  *      drive current strength.
230  * - for low speed signals
231  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234  *   4. If it is heavy loading, can use higher drive current strength.
235  */
236 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245 };
246 
247 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248  *			     variants.
249  * This values are documented in KSZ8873 and KSZ8863 datasheets.
250  */
251 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252 	{ 0,  8000 },
253 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254 };
255 
256 static const struct ksz_dev_ops ksz8_dev_ops = {
257 	.setup = ksz8_setup,
258 	.get_port_addr = ksz8_get_port_addr,
259 	.cfg_port_member = ksz8_cfg_port_member,
260 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
261 	.port_setup = ksz8_port_setup,
262 	.r_phy = ksz8_r_phy,
263 	.w_phy = ksz8_w_phy,
264 	.r_mib_cnt = ksz8_r_mib_cnt,
265 	.r_mib_pkt = ksz8_r_mib_pkt,
266 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
267 	.freeze_mib = ksz8_freeze_mib,
268 	.port_init_cnt = ksz8_port_init_cnt,
269 	.fdb_dump = ksz8_fdb_dump,
270 	.fdb_add = ksz8_fdb_add,
271 	.fdb_del = ksz8_fdb_del,
272 	.mdb_add = ksz8_mdb_add,
273 	.mdb_del = ksz8_mdb_del,
274 	.vlan_filtering = ksz8_port_vlan_filtering,
275 	.vlan_add = ksz8_port_vlan_add,
276 	.vlan_del = ksz8_port_vlan_del,
277 	.mirror_add = ksz8_port_mirror_add,
278 	.mirror_del = ksz8_port_mirror_del,
279 	.get_caps = ksz8_get_caps,
280 	.config_cpu_port = ksz8_config_cpu_port,
281 	.enable_stp_addr = ksz8_enable_stp_addr,
282 	.reset = ksz8_reset_switch,
283 	.init = ksz8_switch_init,
284 	.exit = ksz8_switch_exit,
285 	.change_mtu = ksz8_change_mtu,
286 };
287 
288 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
289 					unsigned int mode,
290 					phy_interface_t interface,
291 					struct phy_device *phydev, int speed,
292 					int duplex, bool tx_pause,
293 					bool rx_pause);
294 
295 static const struct ksz_dev_ops ksz9477_dev_ops = {
296 	.setup = ksz9477_setup,
297 	.get_port_addr = ksz9477_get_port_addr,
298 	.cfg_port_member = ksz9477_cfg_port_member,
299 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
300 	.port_setup = ksz9477_port_setup,
301 	.set_ageing_time = ksz9477_set_ageing_time,
302 	.r_phy = ksz9477_r_phy,
303 	.w_phy = ksz9477_w_phy,
304 	.r_mib_cnt = ksz9477_r_mib_cnt,
305 	.r_mib_pkt = ksz9477_r_mib_pkt,
306 	.r_mib_stat64 = ksz_r_mib_stats64,
307 	.freeze_mib = ksz9477_freeze_mib,
308 	.port_init_cnt = ksz9477_port_init_cnt,
309 	.vlan_filtering = ksz9477_port_vlan_filtering,
310 	.vlan_add = ksz9477_port_vlan_add,
311 	.vlan_del = ksz9477_port_vlan_del,
312 	.mirror_add = ksz9477_port_mirror_add,
313 	.mirror_del = ksz9477_port_mirror_del,
314 	.get_caps = ksz9477_get_caps,
315 	.fdb_dump = ksz9477_fdb_dump,
316 	.fdb_add = ksz9477_fdb_add,
317 	.fdb_del = ksz9477_fdb_del,
318 	.mdb_add = ksz9477_mdb_add,
319 	.mdb_del = ksz9477_mdb_del,
320 	.change_mtu = ksz9477_change_mtu,
321 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
322 	.get_wol = ksz9477_get_wol,
323 	.set_wol = ksz9477_set_wol,
324 	.config_cpu_port = ksz9477_config_cpu_port,
325 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
326 	.enable_stp_addr = ksz9477_enable_stp_addr,
327 	.reset = ksz9477_reset_switch,
328 	.init = ksz9477_switch_init,
329 	.exit = ksz9477_switch_exit,
330 };
331 
332 static const struct ksz_dev_ops lan937x_dev_ops = {
333 	.setup = lan937x_setup,
334 	.teardown = lan937x_teardown,
335 	.get_port_addr = ksz9477_get_port_addr,
336 	.cfg_port_member = ksz9477_cfg_port_member,
337 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
338 	.port_setup = lan937x_port_setup,
339 	.set_ageing_time = lan937x_set_ageing_time,
340 	.r_phy = lan937x_r_phy,
341 	.w_phy = lan937x_w_phy,
342 	.r_mib_cnt = ksz9477_r_mib_cnt,
343 	.r_mib_pkt = ksz9477_r_mib_pkt,
344 	.r_mib_stat64 = ksz_r_mib_stats64,
345 	.freeze_mib = ksz9477_freeze_mib,
346 	.port_init_cnt = ksz9477_port_init_cnt,
347 	.vlan_filtering = ksz9477_port_vlan_filtering,
348 	.vlan_add = ksz9477_port_vlan_add,
349 	.vlan_del = ksz9477_port_vlan_del,
350 	.mirror_add = ksz9477_port_mirror_add,
351 	.mirror_del = ksz9477_port_mirror_del,
352 	.get_caps = lan937x_phylink_get_caps,
353 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
354 	.fdb_dump = ksz9477_fdb_dump,
355 	.fdb_add = ksz9477_fdb_add,
356 	.fdb_del = ksz9477_fdb_del,
357 	.mdb_add = ksz9477_mdb_add,
358 	.mdb_del = ksz9477_mdb_del,
359 	.change_mtu = lan937x_change_mtu,
360 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
361 	.config_cpu_port = lan937x_config_cpu_port,
362 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
363 	.enable_stp_addr = ksz9477_enable_stp_addr,
364 	.reset = lan937x_reset_switch,
365 	.init = lan937x_switch_init,
366 	.exit = lan937x_switch_exit,
367 };
368 
369 static const u16 ksz8795_regs[] = {
370 	[REG_SW_MAC_ADDR]		= 0x68,
371 	[REG_IND_CTRL_0]		= 0x6E,
372 	[REG_IND_DATA_8]		= 0x70,
373 	[REG_IND_DATA_CHECK]		= 0x72,
374 	[REG_IND_DATA_HI]		= 0x71,
375 	[REG_IND_DATA_LO]		= 0x75,
376 	[REG_IND_MIB_CHECK]		= 0x74,
377 	[REG_IND_BYTE]			= 0xA0,
378 	[P_FORCE_CTRL]			= 0x0C,
379 	[P_LINK_STATUS]			= 0x0E,
380 	[P_LOCAL_CTRL]			= 0x07,
381 	[P_NEG_RESTART_CTRL]		= 0x0D,
382 	[P_REMOTE_STATUS]		= 0x08,
383 	[P_SPEED_STATUS]		= 0x09,
384 	[S_TAIL_TAG_CTRL]		= 0x0C,
385 	[P_STP_CTRL]			= 0x02,
386 	[S_START_CTRL]			= 0x01,
387 	[S_BROADCAST_CTRL]		= 0x06,
388 	[S_MULTICAST_CTRL]		= 0x04,
389 	[P_XMII_CTRL_0]			= 0x06,
390 	[P_XMII_CTRL_1]			= 0x06,
391 };
392 
393 static const u32 ksz8795_masks[] = {
394 	[PORT_802_1P_REMAPPING]		= BIT(7),
395 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
396 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
397 	[MIB_COUNTER_VALID]		= BIT(5),
398 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
399 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
400 	[VLAN_TABLE_VALID]		= BIT(12),
401 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
402 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
403 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
404 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
405 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
406 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
407 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
408 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
409 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
410 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
411 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
412 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
413 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
414 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
415 };
416 
417 static const u8 ksz8795_xmii_ctrl0[] = {
418 	[P_MII_100MBIT]			= 0,
419 	[P_MII_10MBIT]			= 1,
420 	[P_MII_FULL_DUPLEX]		= 0,
421 	[P_MII_HALF_DUPLEX]		= 1,
422 };
423 
424 static const u8 ksz8795_xmii_ctrl1[] = {
425 	[P_RGMII_SEL]			= 3,
426 	[P_GMII_SEL]			= 2,
427 	[P_RMII_SEL]			= 1,
428 	[P_MII_SEL]			= 0,
429 	[P_GMII_1GBIT]			= 1,
430 	[P_GMII_NOT_1GBIT]		= 0,
431 };
432 
433 static const u8 ksz8795_shifts[] = {
434 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
435 	[VLAN_TABLE]			= 16,
436 	[STATIC_MAC_FWD_PORTS]		= 16,
437 	[STATIC_MAC_FID]		= 24,
438 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
439 	[DYNAMIC_MAC_ENTRIES]		= 29,
440 	[DYNAMIC_MAC_FID]		= 16,
441 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
442 	[DYNAMIC_MAC_SRC_PORT]		= 24,
443 };
444 
445 static const u16 ksz8863_regs[] = {
446 	[REG_SW_MAC_ADDR]		= 0x70,
447 	[REG_IND_CTRL_0]		= 0x79,
448 	[REG_IND_DATA_8]		= 0x7B,
449 	[REG_IND_DATA_CHECK]		= 0x7B,
450 	[REG_IND_DATA_HI]		= 0x7C,
451 	[REG_IND_DATA_LO]		= 0x80,
452 	[REG_IND_MIB_CHECK]		= 0x80,
453 	[P_FORCE_CTRL]			= 0x0C,
454 	[P_LINK_STATUS]			= 0x0E,
455 	[P_LOCAL_CTRL]			= 0x0C,
456 	[P_NEG_RESTART_CTRL]		= 0x0D,
457 	[P_REMOTE_STATUS]		= 0x0E,
458 	[P_SPEED_STATUS]		= 0x0F,
459 	[S_TAIL_TAG_CTRL]		= 0x03,
460 	[P_STP_CTRL]			= 0x02,
461 	[S_START_CTRL]			= 0x01,
462 	[S_BROADCAST_CTRL]		= 0x06,
463 	[S_MULTICAST_CTRL]		= 0x04,
464 };
465 
466 static const u32 ksz8863_masks[] = {
467 	[PORT_802_1P_REMAPPING]		= BIT(3),
468 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
469 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
470 	[MIB_COUNTER_VALID]		= BIT(6),
471 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
472 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
473 	[VLAN_TABLE_VALID]		= BIT(19),
474 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
475 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
476 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
477 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
478 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
479 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
480 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
481 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
482 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
483 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
484 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
485 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
486 };
487 
488 static u8 ksz8863_shifts[] = {
489 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
490 	[STATIC_MAC_FWD_PORTS]		= 16,
491 	[STATIC_MAC_FID]		= 22,
492 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
493 	[DYNAMIC_MAC_ENTRIES]		= 24,
494 	[DYNAMIC_MAC_FID]		= 16,
495 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
496 	[DYNAMIC_MAC_SRC_PORT]		= 20,
497 };
498 
499 static const u16 ksz9477_regs[] = {
500 	[REG_SW_MAC_ADDR]		= 0x0302,
501 	[P_STP_CTRL]			= 0x0B04,
502 	[S_START_CTRL]			= 0x0300,
503 	[S_BROADCAST_CTRL]		= 0x0332,
504 	[S_MULTICAST_CTRL]		= 0x0331,
505 	[P_XMII_CTRL_0]			= 0x0300,
506 	[P_XMII_CTRL_1]			= 0x0301,
507 };
508 
509 static const u32 ksz9477_masks[] = {
510 	[ALU_STAT_WRITE]		= 0,
511 	[ALU_STAT_READ]			= 1,
512 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
513 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
514 };
515 
516 static const u8 ksz9477_shifts[] = {
517 	[ALU_STAT_INDEX]		= 16,
518 };
519 
520 static const u8 ksz9477_xmii_ctrl0[] = {
521 	[P_MII_100MBIT]			= 1,
522 	[P_MII_10MBIT]			= 0,
523 	[P_MII_FULL_DUPLEX]		= 1,
524 	[P_MII_HALF_DUPLEX]		= 0,
525 };
526 
527 static const u8 ksz9477_xmii_ctrl1[] = {
528 	[P_RGMII_SEL]			= 0,
529 	[P_RMII_SEL]			= 1,
530 	[P_GMII_SEL]			= 2,
531 	[P_MII_SEL]			= 3,
532 	[P_GMII_1GBIT]			= 0,
533 	[P_GMII_NOT_1GBIT]		= 1,
534 };
535 
536 static const u32 lan937x_masks[] = {
537 	[ALU_STAT_WRITE]		= 1,
538 	[ALU_STAT_READ]			= 2,
539 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
540 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
541 };
542 
543 static const u8 lan937x_shifts[] = {
544 	[ALU_STAT_INDEX]		= 8,
545 };
546 
547 static const struct regmap_range ksz8563_valid_regs[] = {
548 	regmap_reg_range(0x0000, 0x0003),
549 	regmap_reg_range(0x0006, 0x0006),
550 	regmap_reg_range(0x000f, 0x001f),
551 	regmap_reg_range(0x0100, 0x0100),
552 	regmap_reg_range(0x0104, 0x0107),
553 	regmap_reg_range(0x010d, 0x010d),
554 	regmap_reg_range(0x0110, 0x0113),
555 	regmap_reg_range(0x0120, 0x012b),
556 	regmap_reg_range(0x0201, 0x0201),
557 	regmap_reg_range(0x0210, 0x0213),
558 	regmap_reg_range(0x0300, 0x0300),
559 	regmap_reg_range(0x0302, 0x031b),
560 	regmap_reg_range(0x0320, 0x032b),
561 	regmap_reg_range(0x0330, 0x0336),
562 	regmap_reg_range(0x0338, 0x033e),
563 	regmap_reg_range(0x0340, 0x035f),
564 	regmap_reg_range(0x0370, 0x0370),
565 	regmap_reg_range(0x0378, 0x0378),
566 	regmap_reg_range(0x037c, 0x037d),
567 	regmap_reg_range(0x0390, 0x0393),
568 	regmap_reg_range(0x0400, 0x040e),
569 	regmap_reg_range(0x0410, 0x042f),
570 	regmap_reg_range(0x0500, 0x0519),
571 	regmap_reg_range(0x0520, 0x054b),
572 	regmap_reg_range(0x0550, 0x05b3),
573 
574 	/* port 1 */
575 	regmap_reg_range(0x1000, 0x1001),
576 	regmap_reg_range(0x1004, 0x100b),
577 	regmap_reg_range(0x1013, 0x1013),
578 	regmap_reg_range(0x1017, 0x1017),
579 	regmap_reg_range(0x101b, 0x101b),
580 	regmap_reg_range(0x101f, 0x1021),
581 	regmap_reg_range(0x1030, 0x1030),
582 	regmap_reg_range(0x1100, 0x1111),
583 	regmap_reg_range(0x111a, 0x111d),
584 	regmap_reg_range(0x1122, 0x1127),
585 	regmap_reg_range(0x112a, 0x112b),
586 	regmap_reg_range(0x1136, 0x1139),
587 	regmap_reg_range(0x113e, 0x113f),
588 	regmap_reg_range(0x1400, 0x1401),
589 	regmap_reg_range(0x1403, 0x1403),
590 	regmap_reg_range(0x1410, 0x1417),
591 	regmap_reg_range(0x1420, 0x1423),
592 	regmap_reg_range(0x1500, 0x1507),
593 	regmap_reg_range(0x1600, 0x1612),
594 	regmap_reg_range(0x1800, 0x180f),
595 	regmap_reg_range(0x1900, 0x1907),
596 	regmap_reg_range(0x1914, 0x191b),
597 	regmap_reg_range(0x1a00, 0x1a03),
598 	regmap_reg_range(0x1a04, 0x1a08),
599 	regmap_reg_range(0x1b00, 0x1b01),
600 	regmap_reg_range(0x1b04, 0x1b04),
601 	regmap_reg_range(0x1c00, 0x1c05),
602 	regmap_reg_range(0x1c08, 0x1c1b),
603 
604 	/* port 2 */
605 	regmap_reg_range(0x2000, 0x2001),
606 	regmap_reg_range(0x2004, 0x200b),
607 	regmap_reg_range(0x2013, 0x2013),
608 	regmap_reg_range(0x2017, 0x2017),
609 	regmap_reg_range(0x201b, 0x201b),
610 	regmap_reg_range(0x201f, 0x2021),
611 	regmap_reg_range(0x2030, 0x2030),
612 	regmap_reg_range(0x2100, 0x2111),
613 	regmap_reg_range(0x211a, 0x211d),
614 	regmap_reg_range(0x2122, 0x2127),
615 	regmap_reg_range(0x212a, 0x212b),
616 	regmap_reg_range(0x2136, 0x2139),
617 	regmap_reg_range(0x213e, 0x213f),
618 	regmap_reg_range(0x2400, 0x2401),
619 	regmap_reg_range(0x2403, 0x2403),
620 	regmap_reg_range(0x2410, 0x2417),
621 	regmap_reg_range(0x2420, 0x2423),
622 	regmap_reg_range(0x2500, 0x2507),
623 	regmap_reg_range(0x2600, 0x2612),
624 	regmap_reg_range(0x2800, 0x280f),
625 	regmap_reg_range(0x2900, 0x2907),
626 	regmap_reg_range(0x2914, 0x291b),
627 	regmap_reg_range(0x2a00, 0x2a03),
628 	regmap_reg_range(0x2a04, 0x2a08),
629 	regmap_reg_range(0x2b00, 0x2b01),
630 	regmap_reg_range(0x2b04, 0x2b04),
631 	regmap_reg_range(0x2c00, 0x2c05),
632 	regmap_reg_range(0x2c08, 0x2c1b),
633 
634 	/* port 3 */
635 	regmap_reg_range(0x3000, 0x3001),
636 	regmap_reg_range(0x3004, 0x300b),
637 	regmap_reg_range(0x3013, 0x3013),
638 	regmap_reg_range(0x3017, 0x3017),
639 	regmap_reg_range(0x301b, 0x301b),
640 	regmap_reg_range(0x301f, 0x3021),
641 	regmap_reg_range(0x3030, 0x3030),
642 	regmap_reg_range(0x3300, 0x3301),
643 	regmap_reg_range(0x3303, 0x3303),
644 	regmap_reg_range(0x3400, 0x3401),
645 	regmap_reg_range(0x3403, 0x3403),
646 	regmap_reg_range(0x3410, 0x3417),
647 	regmap_reg_range(0x3420, 0x3423),
648 	regmap_reg_range(0x3500, 0x3507),
649 	regmap_reg_range(0x3600, 0x3612),
650 	regmap_reg_range(0x3800, 0x380f),
651 	regmap_reg_range(0x3900, 0x3907),
652 	regmap_reg_range(0x3914, 0x391b),
653 	regmap_reg_range(0x3a00, 0x3a03),
654 	regmap_reg_range(0x3a04, 0x3a08),
655 	regmap_reg_range(0x3b00, 0x3b01),
656 	regmap_reg_range(0x3b04, 0x3b04),
657 	regmap_reg_range(0x3c00, 0x3c05),
658 	regmap_reg_range(0x3c08, 0x3c1b),
659 };
660 
661 static const struct regmap_access_table ksz8563_register_set = {
662 	.yes_ranges = ksz8563_valid_regs,
663 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
664 };
665 
666 static const struct regmap_range ksz9477_valid_regs[] = {
667 	regmap_reg_range(0x0000, 0x0003),
668 	regmap_reg_range(0x0006, 0x0006),
669 	regmap_reg_range(0x0010, 0x001f),
670 	regmap_reg_range(0x0100, 0x0100),
671 	regmap_reg_range(0x0103, 0x0107),
672 	regmap_reg_range(0x010d, 0x010d),
673 	regmap_reg_range(0x0110, 0x0113),
674 	regmap_reg_range(0x0120, 0x012b),
675 	regmap_reg_range(0x0201, 0x0201),
676 	regmap_reg_range(0x0210, 0x0213),
677 	regmap_reg_range(0x0300, 0x0300),
678 	regmap_reg_range(0x0302, 0x031b),
679 	regmap_reg_range(0x0320, 0x032b),
680 	regmap_reg_range(0x0330, 0x0336),
681 	regmap_reg_range(0x0338, 0x033b),
682 	regmap_reg_range(0x033e, 0x033e),
683 	regmap_reg_range(0x0340, 0x035f),
684 	regmap_reg_range(0x0370, 0x0370),
685 	regmap_reg_range(0x0378, 0x0378),
686 	regmap_reg_range(0x037c, 0x037d),
687 	regmap_reg_range(0x0390, 0x0393),
688 	regmap_reg_range(0x0400, 0x040e),
689 	regmap_reg_range(0x0410, 0x042f),
690 	regmap_reg_range(0x0444, 0x044b),
691 	regmap_reg_range(0x0450, 0x046f),
692 	regmap_reg_range(0x0500, 0x0519),
693 	regmap_reg_range(0x0520, 0x054b),
694 	regmap_reg_range(0x0550, 0x05b3),
695 	regmap_reg_range(0x0604, 0x060b),
696 	regmap_reg_range(0x0610, 0x0612),
697 	regmap_reg_range(0x0614, 0x062c),
698 	regmap_reg_range(0x0640, 0x0645),
699 	regmap_reg_range(0x0648, 0x064d),
700 
701 	/* port 1 */
702 	regmap_reg_range(0x1000, 0x1001),
703 	regmap_reg_range(0x1013, 0x1013),
704 	regmap_reg_range(0x1017, 0x1017),
705 	regmap_reg_range(0x101b, 0x101b),
706 	regmap_reg_range(0x101f, 0x1020),
707 	regmap_reg_range(0x1030, 0x1030),
708 	regmap_reg_range(0x1100, 0x1115),
709 	regmap_reg_range(0x111a, 0x111f),
710 	regmap_reg_range(0x1120, 0x112b),
711 	regmap_reg_range(0x1134, 0x113b),
712 	regmap_reg_range(0x113c, 0x113f),
713 	regmap_reg_range(0x1400, 0x1401),
714 	regmap_reg_range(0x1403, 0x1403),
715 	regmap_reg_range(0x1410, 0x1417),
716 	regmap_reg_range(0x1420, 0x1423),
717 	regmap_reg_range(0x1500, 0x1507),
718 	regmap_reg_range(0x1600, 0x1613),
719 	regmap_reg_range(0x1800, 0x180f),
720 	regmap_reg_range(0x1820, 0x1827),
721 	regmap_reg_range(0x1830, 0x1837),
722 	regmap_reg_range(0x1840, 0x184b),
723 	regmap_reg_range(0x1900, 0x1907),
724 	regmap_reg_range(0x1914, 0x191b),
725 	regmap_reg_range(0x1920, 0x1920),
726 	regmap_reg_range(0x1923, 0x1927),
727 	regmap_reg_range(0x1a00, 0x1a03),
728 	regmap_reg_range(0x1a04, 0x1a07),
729 	regmap_reg_range(0x1b00, 0x1b01),
730 	regmap_reg_range(0x1b04, 0x1b04),
731 	regmap_reg_range(0x1c00, 0x1c05),
732 	regmap_reg_range(0x1c08, 0x1c1b),
733 
734 	/* port 2 */
735 	regmap_reg_range(0x2000, 0x2001),
736 	regmap_reg_range(0x2013, 0x2013),
737 	regmap_reg_range(0x2017, 0x2017),
738 	regmap_reg_range(0x201b, 0x201b),
739 	regmap_reg_range(0x201f, 0x2020),
740 	regmap_reg_range(0x2030, 0x2030),
741 	regmap_reg_range(0x2100, 0x2115),
742 	regmap_reg_range(0x211a, 0x211f),
743 	regmap_reg_range(0x2120, 0x212b),
744 	regmap_reg_range(0x2134, 0x213b),
745 	regmap_reg_range(0x213c, 0x213f),
746 	regmap_reg_range(0x2400, 0x2401),
747 	regmap_reg_range(0x2403, 0x2403),
748 	regmap_reg_range(0x2410, 0x2417),
749 	regmap_reg_range(0x2420, 0x2423),
750 	regmap_reg_range(0x2500, 0x2507),
751 	regmap_reg_range(0x2600, 0x2613),
752 	regmap_reg_range(0x2800, 0x280f),
753 	regmap_reg_range(0x2820, 0x2827),
754 	regmap_reg_range(0x2830, 0x2837),
755 	regmap_reg_range(0x2840, 0x284b),
756 	regmap_reg_range(0x2900, 0x2907),
757 	regmap_reg_range(0x2914, 0x291b),
758 	regmap_reg_range(0x2920, 0x2920),
759 	regmap_reg_range(0x2923, 0x2927),
760 	regmap_reg_range(0x2a00, 0x2a03),
761 	regmap_reg_range(0x2a04, 0x2a07),
762 	regmap_reg_range(0x2b00, 0x2b01),
763 	regmap_reg_range(0x2b04, 0x2b04),
764 	regmap_reg_range(0x2c00, 0x2c05),
765 	regmap_reg_range(0x2c08, 0x2c1b),
766 
767 	/* port 3 */
768 	regmap_reg_range(0x3000, 0x3001),
769 	regmap_reg_range(0x3013, 0x3013),
770 	regmap_reg_range(0x3017, 0x3017),
771 	regmap_reg_range(0x301b, 0x301b),
772 	regmap_reg_range(0x301f, 0x3020),
773 	regmap_reg_range(0x3030, 0x3030),
774 	regmap_reg_range(0x3100, 0x3115),
775 	regmap_reg_range(0x311a, 0x311f),
776 	regmap_reg_range(0x3120, 0x312b),
777 	regmap_reg_range(0x3134, 0x313b),
778 	regmap_reg_range(0x313c, 0x313f),
779 	regmap_reg_range(0x3400, 0x3401),
780 	regmap_reg_range(0x3403, 0x3403),
781 	regmap_reg_range(0x3410, 0x3417),
782 	regmap_reg_range(0x3420, 0x3423),
783 	regmap_reg_range(0x3500, 0x3507),
784 	regmap_reg_range(0x3600, 0x3613),
785 	regmap_reg_range(0x3800, 0x380f),
786 	regmap_reg_range(0x3820, 0x3827),
787 	regmap_reg_range(0x3830, 0x3837),
788 	regmap_reg_range(0x3840, 0x384b),
789 	regmap_reg_range(0x3900, 0x3907),
790 	regmap_reg_range(0x3914, 0x391b),
791 	regmap_reg_range(0x3920, 0x3920),
792 	regmap_reg_range(0x3923, 0x3927),
793 	regmap_reg_range(0x3a00, 0x3a03),
794 	regmap_reg_range(0x3a04, 0x3a07),
795 	regmap_reg_range(0x3b00, 0x3b01),
796 	regmap_reg_range(0x3b04, 0x3b04),
797 	regmap_reg_range(0x3c00, 0x3c05),
798 	regmap_reg_range(0x3c08, 0x3c1b),
799 
800 	/* port 4 */
801 	regmap_reg_range(0x4000, 0x4001),
802 	regmap_reg_range(0x4013, 0x4013),
803 	regmap_reg_range(0x4017, 0x4017),
804 	regmap_reg_range(0x401b, 0x401b),
805 	regmap_reg_range(0x401f, 0x4020),
806 	regmap_reg_range(0x4030, 0x4030),
807 	regmap_reg_range(0x4100, 0x4115),
808 	regmap_reg_range(0x411a, 0x411f),
809 	regmap_reg_range(0x4120, 0x412b),
810 	regmap_reg_range(0x4134, 0x413b),
811 	regmap_reg_range(0x413c, 0x413f),
812 	regmap_reg_range(0x4400, 0x4401),
813 	regmap_reg_range(0x4403, 0x4403),
814 	regmap_reg_range(0x4410, 0x4417),
815 	regmap_reg_range(0x4420, 0x4423),
816 	regmap_reg_range(0x4500, 0x4507),
817 	regmap_reg_range(0x4600, 0x4613),
818 	regmap_reg_range(0x4800, 0x480f),
819 	regmap_reg_range(0x4820, 0x4827),
820 	regmap_reg_range(0x4830, 0x4837),
821 	regmap_reg_range(0x4840, 0x484b),
822 	regmap_reg_range(0x4900, 0x4907),
823 	regmap_reg_range(0x4914, 0x491b),
824 	regmap_reg_range(0x4920, 0x4920),
825 	regmap_reg_range(0x4923, 0x4927),
826 	regmap_reg_range(0x4a00, 0x4a03),
827 	regmap_reg_range(0x4a04, 0x4a07),
828 	regmap_reg_range(0x4b00, 0x4b01),
829 	regmap_reg_range(0x4b04, 0x4b04),
830 	regmap_reg_range(0x4c00, 0x4c05),
831 	regmap_reg_range(0x4c08, 0x4c1b),
832 
833 	/* port 5 */
834 	regmap_reg_range(0x5000, 0x5001),
835 	regmap_reg_range(0x5013, 0x5013),
836 	regmap_reg_range(0x5017, 0x5017),
837 	regmap_reg_range(0x501b, 0x501b),
838 	regmap_reg_range(0x501f, 0x5020),
839 	regmap_reg_range(0x5030, 0x5030),
840 	regmap_reg_range(0x5100, 0x5115),
841 	regmap_reg_range(0x511a, 0x511f),
842 	regmap_reg_range(0x5120, 0x512b),
843 	regmap_reg_range(0x5134, 0x513b),
844 	regmap_reg_range(0x513c, 0x513f),
845 	regmap_reg_range(0x5400, 0x5401),
846 	regmap_reg_range(0x5403, 0x5403),
847 	regmap_reg_range(0x5410, 0x5417),
848 	regmap_reg_range(0x5420, 0x5423),
849 	regmap_reg_range(0x5500, 0x5507),
850 	regmap_reg_range(0x5600, 0x5613),
851 	regmap_reg_range(0x5800, 0x580f),
852 	regmap_reg_range(0x5820, 0x5827),
853 	regmap_reg_range(0x5830, 0x5837),
854 	regmap_reg_range(0x5840, 0x584b),
855 	regmap_reg_range(0x5900, 0x5907),
856 	regmap_reg_range(0x5914, 0x591b),
857 	regmap_reg_range(0x5920, 0x5920),
858 	regmap_reg_range(0x5923, 0x5927),
859 	regmap_reg_range(0x5a00, 0x5a03),
860 	regmap_reg_range(0x5a04, 0x5a07),
861 	regmap_reg_range(0x5b00, 0x5b01),
862 	regmap_reg_range(0x5b04, 0x5b04),
863 	regmap_reg_range(0x5c00, 0x5c05),
864 	regmap_reg_range(0x5c08, 0x5c1b),
865 
866 	/* port 6 */
867 	regmap_reg_range(0x6000, 0x6001),
868 	regmap_reg_range(0x6013, 0x6013),
869 	regmap_reg_range(0x6017, 0x6017),
870 	regmap_reg_range(0x601b, 0x601b),
871 	regmap_reg_range(0x601f, 0x6020),
872 	regmap_reg_range(0x6030, 0x6030),
873 	regmap_reg_range(0x6300, 0x6301),
874 	regmap_reg_range(0x6400, 0x6401),
875 	regmap_reg_range(0x6403, 0x6403),
876 	regmap_reg_range(0x6410, 0x6417),
877 	regmap_reg_range(0x6420, 0x6423),
878 	regmap_reg_range(0x6500, 0x6507),
879 	regmap_reg_range(0x6600, 0x6613),
880 	regmap_reg_range(0x6800, 0x680f),
881 	regmap_reg_range(0x6820, 0x6827),
882 	regmap_reg_range(0x6830, 0x6837),
883 	regmap_reg_range(0x6840, 0x684b),
884 	regmap_reg_range(0x6900, 0x6907),
885 	regmap_reg_range(0x6914, 0x691b),
886 	regmap_reg_range(0x6920, 0x6920),
887 	regmap_reg_range(0x6923, 0x6927),
888 	regmap_reg_range(0x6a00, 0x6a03),
889 	regmap_reg_range(0x6a04, 0x6a07),
890 	regmap_reg_range(0x6b00, 0x6b01),
891 	regmap_reg_range(0x6b04, 0x6b04),
892 	regmap_reg_range(0x6c00, 0x6c05),
893 	regmap_reg_range(0x6c08, 0x6c1b),
894 
895 	/* port 7 */
896 	regmap_reg_range(0x7000, 0x7001),
897 	regmap_reg_range(0x7013, 0x7013),
898 	regmap_reg_range(0x7017, 0x7017),
899 	regmap_reg_range(0x701b, 0x701b),
900 	regmap_reg_range(0x701f, 0x7020),
901 	regmap_reg_range(0x7030, 0x7030),
902 	regmap_reg_range(0x7200, 0x7203),
903 	regmap_reg_range(0x7206, 0x7207),
904 	regmap_reg_range(0x7300, 0x7301),
905 	regmap_reg_range(0x7400, 0x7401),
906 	regmap_reg_range(0x7403, 0x7403),
907 	regmap_reg_range(0x7410, 0x7417),
908 	regmap_reg_range(0x7420, 0x7423),
909 	regmap_reg_range(0x7500, 0x7507),
910 	regmap_reg_range(0x7600, 0x7613),
911 	regmap_reg_range(0x7800, 0x780f),
912 	regmap_reg_range(0x7820, 0x7827),
913 	regmap_reg_range(0x7830, 0x7837),
914 	regmap_reg_range(0x7840, 0x784b),
915 	regmap_reg_range(0x7900, 0x7907),
916 	regmap_reg_range(0x7914, 0x791b),
917 	regmap_reg_range(0x7920, 0x7920),
918 	regmap_reg_range(0x7923, 0x7927),
919 	regmap_reg_range(0x7a00, 0x7a03),
920 	regmap_reg_range(0x7a04, 0x7a07),
921 	regmap_reg_range(0x7b00, 0x7b01),
922 	regmap_reg_range(0x7b04, 0x7b04),
923 	regmap_reg_range(0x7c00, 0x7c05),
924 	regmap_reg_range(0x7c08, 0x7c1b),
925 };
926 
927 static const struct regmap_access_table ksz9477_register_set = {
928 	.yes_ranges = ksz9477_valid_regs,
929 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
930 };
931 
932 static const struct regmap_range ksz9896_valid_regs[] = {
933 	regmap_reg_range(0x0000, 0x0003),
934 	regmap_reg_range(0x0006, 0x0006),
935 	regmap_reg_range(0x0010, 0x001f),
936 	regmap_reg_range(0x0100, 0x0100),
937 	regmap_reg_range(0x0103, 0x0107),
938 	regmap_reg_range(0x010d, 0x010d),
939 	regmap_reg_range(0x0110, 0x0113),
940 	regmap_reg_range(0x0120, 0x0127),
941 	regmap_reg_range(0x0201, 0x0201),
942 	regmap_reg_range(0x0210, 0x0213),
943 	regmap_reg_range(0x0300, 0x0300),
944 	regmap_reg_range(0x0302, 0x030b),
945 	regmap_reg_range(0x0310, 0x031b),
946 	regmap_reg_range(0x0320, 0x032b),
947 	regmap_reg_range(0x0330, 0x0336),
948 	regmap_reg_range(0x0338, 0x033b),
949 	regmap_reg_range(0x033e, 0x033e),
950 	regmap_reg_range(0x0340, 0x035f),
951 	regmap_reg_range(0x0370, 0x0370),
952 	regmap_reg_range(0x0378, 0x0378),
953 	regmap_reg_range(0x037c, 0x037d),
954 	regmap_reg_range(0x0390, 0x0393),
955 	regmap_reg_range(0x0400, 0x040e),
956 	regmap_reg_range(0x0410, 0x042f),
957 
958 	/* port 1 */
959 	regmap_reg_range(0x1000, 0x1001),
960 	regmap_reg_range(0x1013, 0x1013),
961 	regmap_reg_range(0x1017, 0x1017),
962 	regmap_reg_range(0x101b, 0x101b),
963 	regmap_reg_range(0x101f, 0x1020),
964 	regmap_reg_range(0x1030, 0x1030),
965 	regmap_reg_range(0x1100, 0x1115),
966 	regmap_reg_range(0x111a, 0x111f),
967 	regmap_reg_range(0x1122, 0x1127),
968 	regmap_reg_range(0x112a, 0x112b),
969 	regmap_reg_range(0x1136, 0x1139),
970 	regmap_reg_range(0x113e, 0x113f),
971 	regmap_reg_range(0x1400, 0x1401),
972 	regmap_reg_range(0x1403, 0x1403),
973 	regmap_reg_range(0x1410, 0x1417),
974 	regmap_reg_range(0x1420, 0x1423),
975 	regmap_reg_range(0x1500, 0x1507),
976 	regmap_reg_range(0x1600, 0x1612),
977 	regmap_reg_range(0x1800, 0x180f),
978 	regmap_reg_range(0x1820, 0x1827),
979 	regmap_reg_range(0x1830, 0x1837),
980 	regmap_reg_range(0x1840, 0x184b),
981 	regmap_reg_range(0x1900, 0x1907),
982 	regmap_reg_range(0x1914, 0x1915),
983 	regmap_reg_range(0x1a00, 0x1a03),
984 	regmap_reg_range(0x1a04, 0x1a07),
985 	regmap_reg_range(0x1b00, 0x1b01),
986 	regmap_reg_range(0x1b04, 0x1b04),
987 
988 	/* port 2 */
989 	regmap_reg_range(0x2000, 0x2001),
990 	regmap_reg_range(0x2013, 0x2013),
991 	regmap_reg_range(0x2017, 0x2017),
992 	regmap_reg_range(0x201b, 0x201b),
993 	regmap_reg_range(0x201f, 0x2020),
994 	regmap_reg_range(0x2030, 0x2030),
995 	regmap_reg_range(0x2100, 0x2115),
996 	regmap_reg_range(0x211a, 0x211f),
997 	regmap_reg_range(0x2122, 0x2127),
998 	regmap_reg_range(0x212a, 0x212b),
999 	regmap_reg_range(0x2136, 0x2139),
1000 	regmap_reg_range(0x213e, 0x213f),
1001 	regmap_reg_range(0x2400, 0x2401),
1002 	regmap_reg_range(0x2403, 0x2403),
1003 	regmap_reg_range(0x2410, 0x2417),
1004 	regmap_reg_range(0x2420, 0x2423),
1005 	regmap_reg_range(0x2500, 0x2507),
1006 	regmap_reg_range(0x2600, 0x2612),
1007 	regmap_reg_range(0x2800, 0x280f),
1008 	regmap_reg_range(0x2820, 0x2827),
1009 	regmap_reg_range(0x2830, 0x2837),
1010 	regmap_reg_range(0x2840, 0x284b),
1011 	regmap_reg_range(0x2900, 0x2907),
1012 	regmap_reg_range(0x2914, 0x2915),
1013 	regmap_reg_range(0x2a00, 0x2a03),
1014 	regmap_reg_range(0x2a04, 0x2a07),
1015 	regmap_reg_range(0x2b00, 0x2b01),
1016 	regmap_reg_range(0x2b04, 0x2b04),
1017 
1018 	/* port 3 */
1019 	regmap_reg_range(0x3000, 0x3001),
1020 	regmap_reg_range(0x3013, 0x3013),
1021 	regmap_reg_range(0x3017, 0x3017),
1022 	regmap_reg_range(0x301b, 0x301b),
1023 	regmap_reg_range(0x301f, 0x3020),
1024 	regmap_reg_range(0x3030, 0x3030),
1025 	regmap_reg_range(0x3100, 0x3115),
1026 	regmap_reg_range(0x311a, 0x311f),
1027 	regmap_reg_range(0x3122, 0x3127),
1028 	regmap_reg_range(0x312a, 0x312b),
1029 	regmap_reg_range(0x3136, 0x3139),
1030 	regmap_reg_range(0x313e, 0x313f),
1031 	regmap_reg_range(0x3400, 0x3401),
1032 	regmap_reg_range(0x3403, 0x3403),
1033 	regmap_reg_range(0x3410, 0x3417),
1034 	regmap_reg_range(0x3420, 0x3423),
1035 	regmap_reg_range(0x3500, 0x3507),
1036 	regmap_reg_range(0x3600, 0x3612),
1037 	regmap_reg_range(0x3800, 0x380f),
1038 	regmap_reg_range(0x3820, 0x3827),
1039 	regmap_reg_range(0x3830, 0x3837),
1040 	regmap_reg_range(0x3840, 0x384b),
1041 	regmap_reg_range(0x3900, 0x3907),
1042 	regmap_reg_range(0x3914, 0x3915),
1043 	regmap_reg_range(0x3a00, 0x3a03),
1044 	regmap_reg_range(0x3a04, 0x3a07),
1045 	regmap_reg_range(0x3b00, 0x3b01),
1046 	regmap_reg_range(0x3b04, 0x3b04),
1047 
1048 	/* port 4 */
1049 	regmap_reg_range(0x4000, 0x4001),
1050 	regmap_reg_range(0x4013, 0x4013),
1051 	regmap_reg_range(0x4017, 0x4017),
1052 	regmap_reg_range(0x401b, 0x401b),
1053 	regmap_reg_range(0x401f, 0x4020),
1054 	regmap_reg_range(0x4030, 0x4030),
1055 	regmap_reg_range(0x4100, 0x4115),
1056 	regmap_reg_range(0x411a, 0x411f),
1057 	regmap_reg_range(0x4122, 0x4127),
1058 	regmap_reg_range(0x412a, 0x412b),
1059 	regmap_reg_range(0x4136, 0x4139),
1060 	regmap_reg_range(0x413e, 0x413f),
1061 	regmap_reg_range(0x4400, 0x4401),
1062 	regmap_reg_range(0x4403, 0x4403),
1063 	regmap_reg_range(0x4410, 0x4417),
1064 	regmap_reg_range(0x4420, 0x4423),
1065 	regmap_reg_range(0x4500, 0x4507),
1066 	regmap_reg_range(0x4600, 0x4612),
1067 	regmap_reg_range(0x4800, 0x480f),
1068 	regmap_reg_range(0x4820, 0x4827),
1069 	regmap_reg_range(0x4830, 0x4837),
1070 	regmap_reg_range(0x4840, 0x484b),
1071 	regmap_reg_range(0x4900, 0x4907),
1072 	regmap_reg_range(0x4914, 0x4915),
1073 	regmap_reg_range(0x4a00, 0x4a03),
1074 	regmap_reg_range(0x4a04, 0x4a07),
1075 	regmap_reg_range(0x4b00, 0x4b01),
1076 	regmap_reg_range(0x4b04, 0x4b04),
1077 
1078 	/* port 5 */
1079 	regmap_reg_range(0x5000, 0x5001),
1080 	regmap_reg_range(0x5013, 0x5013),
1081 	regmap_reg_range(0x5017, 0x5017),
1082 	regmap_reg_range(0x501b, 0x501b),
1083 	regmap_reg_range(0x501f, 0x5020),
1084 	regmap_reg_range(0x5030, 0x5030),
1085 	regmap_reg_range(0x5100, 0x5115),
1086 	regmap_reg_range(0x511a, 0x511f),
1087 	regmap_reg_range(0x5122, 0x5127),
1088 	regmap_reg_range(0x512a, 0x512b),
1089 	regmap_reg_range(0x5136, 0x5139),
1090 	regmap_reg_range(0x513e, 0x513f),
1091 	regmap_reg_range(0x5400, 0x5401),
1092 	regmap_reg_range(0x5403, 0x5403),
1093 	regmap_reg_range(0x5410, 0x5417),
1094 	regmap_reg_range(0x5420, 0x5423),
1095 	regmap_reg_range(0x5500, 0x5507),
1096 	regmap_reg_range(0x5600, 0x5612),
1097 	regmap_reg_range(0x5800, 0x580f),
1098 	regmap_reg_range(0x5820, 0x5827),
1099 	regmap_reg_range(0x5830, 0x5837),
1100 	regmap_reg_range(0x5840, 0x584b),
1101 	regmap_reg_range(0x5900, 0x5907),
1102 	regmap_reg_range(0x5914, 0x5915),
1103 	regmap_reg_range(0x5a00, 0x5a03),
1104 	regmap_reg_range(0x5a04, 0x5a07),
1105 	regmap_reg_range(0x5b00, 0x5b01),
1106 	regmap_reg_range(0x5b04, 0x5b04),
1107 
1108 	/* port 6 */
1109 	regmap_reg_range(0x6000, 0x6001),
1110 	regmap_reg_range(0x6013, 0x6013),
1111 	regmap_reg_range(0x6017, 0x6017),
1112 	regmap_reg_range(0x601b, 0x601b),
1113 	regmap_reg_range(0x601f, 0x6020),
1114 	regmap_reg_range(0x6030, 0x6030),
1115 	regmap_reg_range(0x6100, 0x6115),
1116 	regmap_reg_range(0x611a, 0x611f),
1117 	regmap_reg_range(0x6122, 0x6127),
1118 	regmap_reg_range(0x612a, 0x612b),
1119 	regmap_reg_range(0x6136, 0x6139),
1120 	regmap_reg_range(0x613e, 0x613f),
1121 	regmap_reg_range(0x6300, 0x6301),
1122 	regmap_reg_range(0x6400, 0x6401),
1123 	regmap_reg_range(0x6403, 0x6403),
1124 	regmap_reg_range(0x6410, 0x6417),
1125 	regmap_reg_range(0x6420, 0x6423),
1126 	regmap_reg_range(0x6500, 0x6507),
1127 	regmap_reg_range(0x6600, 0x6612),
1128 	regmap_reg_range(0x6800, 0x680f),
1129 	regmap_reg_range(0x6820, 0x6827),
1130 	regmap_reg_range(0x6830, 0x6837),
1131 	regmap_reg_range(0x6840, 0x684b),
1132 	regmap_reg_range(0x6900, 0x6907),
1133 	regmap_reg_range(0x6914, 0x6915),
1134 	regmap_reg_range(0x6a00, 0x6a03),
1135 	regmap_reg_range(0x6a04, 0x6a07),
1136 	regmap_reg_range(0x6b00, 0x6b01),
1137 	regmap_reg_range(0x6b04, 0x6b04),
1138 };
1139 
1140 static const struct regmap_access_table ksz9896_register_set = {
1141 	.yes_ranges = ksz9896_valid_regs,
1142 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1143 };
1144 
1145 static const struct regmap_range ksz8873_valid_regs[] = {
1146 	regmap_reg_range(0x00, 0x01),
1147 	/* global control register */
1148 	regmap_reg_range(0x02, 0x0f),
1149 
1150 	/* port registers */
1151 	regmap_reg_range(0x10, 0x1d),
1152 	regmap_reg_range(0x1e, 0x1f),
1153 	regmap_reg_range(0x20, 0x2d),
1154 	regmap_reg_range(0x2e, 0x2f),
1155 	regmap_reg_range(0x30, 0x39),
1156 	regmap_reg_range(0x3f, 0x3f),
1157 
1158 	/* advanced control registers */
1159 	regmap_reg_range(0x60, 0x6f),
1160 	regmap_reg_range(0x70, 0x75),
1161 	regmap_reg_range(0x76, 0x78),
1162 	regmap_reg_range(0x79, 0x7a),
1163 	regmap_reg_range(0x7b, 0x83),
1164 	regmap_reg_range(0x8e, 0x99),
1165 	regmap_reg_range(0x9a, 0xa5),
1166 	regmap_reg_range(0xa6, 0xa6),
1167 	regmap_reg_range(0xa7, 0xaa),
1168 	regmap_reg_range(0xab, 0xae),
1169 	regmap_reg_range(0xaf, 0xba),
1170 	regmap_reg_range(0xbb, 0xbc),
1171 	regmap_reg_range(0xbd, 0xbd),
1172 	regmap_reg_range(0xc0, 0xc0),
1173 	regmap_reg_range(0xc2, 0xc2),
1174 	regmap_reg_range(0xc3, 0xc3),
1175 	regmap_reg_range(0xc4, 0xc4),
1176 	regmap_reg_range(0xc6, 0xc6),
1177 };
1178 
1179 static const struct regmap_access_table ksz8873_register_set = {
1180 	.yes_ranges = ksz8873_valid_regs,
1181 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1182 };
1183 
1184 const struct ksz_chip_data ksz_switch_chips[] = {
1185 	[KSZ8563] = {
1186 		.chip_id = KSZ8563_CHIP_ID,
1187 		.dev_name = "KSZ8563",
1188 		.num_vlans = 4096,
1189 		.num_alus = 4096,
1190 		.num_statics = 16,
1191 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1192 		.port_cnt = 3,		/* total port count */
1193 		.port_nirqs = 3,
1194 		.num_tx_queues = 4,
1195 		.tc_cbs_supported = true,
1196 		.tc_ets_supported = true,
1197 		.ops = &ksz9477_dev_ops,
1198 		.mib_names = ksz9477_mib_names,
1199 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1200 		.reg_mib_cnt = MIB_COUNTER_NUM,
1201 		.regs = ksz9477_regs,
1202 		.masks = ksz9477_masks,
1203 		.shifts = ksz9477_shifts,
1204 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1205 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1206 		.supports_mii = {false, false, true},
1207 		.supports_rmii = {false, false, true},
1208 		.supports_rgmii = {false, false, true},
1209 		.internal_phy = {true, true, false},
1210 		.gbit_capable = {false, false, true},
1211 		.wr_table = &ksz8563_register_set,
1212 		.rd_table = &ksz8563_register_set,
1213 	},
1214 
1215 	[KSZ8795] = {
1216 		.chip_id = KSZ8795_CHIP_ID,
1217 		.dev_name = "KSZ8795",
1218 		.num_vlans = 4096,
1219 		.num_alus = 0,
1220 		.num_statics = 8,
1221 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1222 		.port_cnt = 5,		/* total cpu and user ports */
1223 		.num_tx_queues = 4,
1224 		.ops = &ksz8_dev_ops,
1225 		.ksz87xx_eee_link_erratum = true,
1226 		.mib_names = ksz9477_mib_names,
1227 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1228 		.reg_mib_cnt = MIB_COUNTER_NUM,
1229 		.regs = ksz8795_regs,
1230 		.masks = ksz8795_masks,
1231 		.shifts = ksz8795_shifts,
1232 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1233 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1234 		.supports_mii = {false, false, false, false, true},
1235 		.supports_rmii = {false, false, false, false, true},
1236 		.supports_rgmii = {false, false, false, false, true},
1237 		.internal_phy = {true, true, true, true, false},
1238 	},
1239 
1240 	[KSZ8794] = {
1241 		/* WARNING
1242 		 * =======
1243 		 * KSZ8794 is similar to KSZ8795, except the port map
1244 		 * contains a gap between external and CPU ports, the
1245 		 * port map is NOT continuous. The per-port register
1246 		 * map is shifted accordingly too, i.e. registers at
1247 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1248 		 * used on KSZ8795 for external port 3.
1249 		 *           external  cpu
1250 		 * KSZ8794   0,1,2      4
1251 		 * KSZ8795   0,1,2,3    4
1252 		 * KSZ8765   0,1,2,3    4
1253 		 * port_cnt is configured as 5, even though it is 4
1254 		 */
1255 		.chip_id = KSZ8794_CHIP_ID,
1256 		.dev_name = "KSZ8794",
1257 		.num_vlans = 4096,
1258 		.num_alus = 0,
1259 		.num_statics = 8,
1260 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1261 		.port_cnt = 5,		/* total cpu and user ports */
1262 		.num_tx_queues = 4,
1263 		.ops = &ksz8_dev_ops,
1264 		.ksz87xx_eee_link_erratum = true,
1265 		.mib_names = ksz9477_mib_names,
1266 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1267 		.reg_mib_cnt = MIB_COUNTER_NUM,
1268 		.regs = ksz8795_regs,
1269 		.masks = ksz8795_masks,
1270 		.shifts = ksz8795_shifts,
1271 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1272 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1273 		.supports_mii = {false, false, false, false, true},
1274 		.supports_rmii = {false, false, false, false, true},
1275 		.supports_rgmii = {false, false, false, false, true},
1276 		.internal_phy = {true, true, true, false, false},
1277 	},
1278 
1279 	[KSZ8765] = {
1280 		.chip_id = KSZ8765_CHIP_ID,
1281 		.dev_name = "KSZ8765",
1282 		.num_vlans = 4096,
1283 		.num_alus = 0,
1284 		.num_statics = 8,
1285 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1286 		.port_cnt = 5,		/* total cpu and user ports */
1287 		.num_tx_queues = 4,
1288 		.ops = &ksz8_dev_ops,
1289 		.ksz87xx_eee_link_erratum = true,
1290 		.mib_names = ksz9477_mib_names,
1291 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1292 		.reg_mib_cnt = MIB_COUNTER_NUM,
1293 		.regs = ksz8795_regs,
1294 		.masks = ksz8795_masks,
1295 		.shifts = ksz8795_shifts,
1296 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1297 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1298 		.supports_mii = {false, false, false, false, true},
1299 		.supports_rmii = {false, false, false, false, true},
1300 		.supports_rgmii = {false, false, false, false, true},
1301 		.internal_phy = {true, true, true, true, false},
1302 	},
1303 
1304 	[KSZ8830] = {
1305 		.chip_id = KSZ8830_CHIP_ID,
1306 		.dev_name = "KSZ8863/KSZ8873",
1307 		.num_vlans = 16,
1308 		.num_alus = 0,
1309 		.num_statics = 8,
1310 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1311 		.port_cnt = 3,
1312 		.num_tx_queues = 4,
1313 		.ops = &ksz8_dev_ops,
1314 		.mib_names = ksz88xx_mib_names,
1315 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1316 		.reg_mib_cnt = MIB_COUNTER_NUM,
1317 		.regs = ksz8863_regs,
1318 		.masks = ksz8863_masks,
1319 		.shifts = ksz8863_shifts,
1320 		.supports_mii = {false, false, true},
1321 		.supports_rmii = {false, false, true},
1322 		.internal_phy = {true, true, false},
1323 		.wr_table = &ksz8873_register_set,
1324 		.rd_table = &ksz8873_register_set,
1325 	},
1326 
1327 	[KSZ9477] = {
1328 		.chip_id = KSZ9477_CHIP_ID,
1329 		.dev_name = "KSZ9477",
1330 		.num_vlans = 4096,
1331 		.num_alus = 4096,
1332 		.num_statics = 16,
1333 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1334 		.port_cnt = 7,		/* total physical port count */
1335 		.port_nirqs = 4,
1336 		.num_tx_queues = 4,
1337 		.tc_cbs_supported = true,
1338 		.tc_ets_supported = true,
1339 		.ops = &ksz9477_dev_ops,
1340 		.mib_names = ksz9477_mib_names,
1341 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1342 		.reg_mib_cnt = MIB_COUNTER_NUM,
1343 		.regs = ksz9477_regs,
1344 		.masks = ksz9477_masks,
1345 		.shifts = ksz9477_shifts,
1346 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1347 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1348 		.supports_mii	= {false, false, false, false,
1349 				   false, true, false},
1350 		.supports_rmii	= {false, false, false, false,
1351 				   false, true, false},
1352 		.supports_rgmii = {false, false, false, false,
1353 				   false, true, false},
1354 		.internal_phy	= {true, true, true, true,
1355 				   true, false, false},
1356 		.gbit_capable	= {true, true, true, true, true, true, true},
1357 		.wr_table = &ksz9477_register_set,
1358 		.rd_table = &ksz9477_register_set,
1359 	},
1360 
1361 	[KSZ9896] = {
1362 		.chip_id = KSZ9896_CHIP_ID,
1363 		.dev_name = "KSZ9896",
1364 		.num_vlans = 4096,
1365 		.num_alus = 4096,
1366 		.num_statics = 16,
1367 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1368 		.port_cnt = 6,		/* total physical port count */
1369 		.port_nirqs = 2,
1370 		.num_tx_queues = 4,
1371 		.ops = &ksz9477_dev_ops,
1372 		.mib_names = ksz9477_mib_names,
1373 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1374 		.reg_mib_cnt = MIB_COUNTER_NUM,
1375 		.regs = ksz9477_regs,
1376 		.masks = ksz9477_masks,
1377 		.shifts = ksz9477_shifts,
1378 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1379 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1380 		.supports_mii	= {false, false, false, false,
1381 				   false, true},
1382 		.supports_rmii	= {false, false, false, false,
1383 				   false, true},
1384 		.supports_rgmii = {false, false, false, false,
1385 				   false, true},
1386 		.internal_phy	= {true, true, true, true,
1387 				   true, false},
1388 		.gbit_capable	= {true, true, true, true, true, true},
1389 		.wr_table = &ksz9896_register_set,
1390 		.rd_table = &ksz9896_register_set,
1391 	},
1392 
1393 	[KSZ9897] = {
1394 		.chip_id = KSZ9897_CHIP_ID,
1395 		.dev_name = "KSZ9897",
1396 		.num_vlans = 4096,
1397 		.num_alus = 4096,
1398 		.num_statics = 16,
1399 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1400 		.port_cnt = 7,		/* total physical port count */
1401 		.port_nirqs = 2,
1402 		.num_tx_queues = 4,
1403 		.ops = &ksz9477_dev_ops,
1404 		.mib_names = ksz9477_mib_names,
1405 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1406 		.reg_mib_cnt = MIB_COUNTER_NUM,
1407 		.regs = ksz9477_regs,
1408 		.masks = ksz9477_masks,
1409 		.shifts = ksz9477_shifts,
1410 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1411 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1412 		.supports_mii	= {false, false, false, false,
1413 				   false, true, true},
1414 		.supports_rmii	= {false, false, false, false,
1415 				   false, true, true},
1416 		.supports_rgmii = {false, false, false, false,
1417 				   false, true, true},
1418 		.internal_phy	= {true, true, true, true,
1419 				   true, false, false},
1420 		.gbit_capable	= {true, true, true, true, true, true, true},
1421 	},
1422 
1423 	[KSZ9893] = {
1424 		.chip_id = KSZ9893_CHIP_ID,
1425 		.dev_name = "KSZ9893",
1426 		.num_vlans = 4096,
1427 		.num_alus = 4096,
1428 		.num_statics = 16,
1429 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1430 		.port_cnt = 3,		/* total port count */
1431 		.port_nirqs = 2,
1432 		.num_tx_queues = 4,
1433 		.ops = &ksz9477_dev_ops,
1434 		.mib_names = ksz9477_mib_names,
1435 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1436 		.reg_mib_cnt = MIB_COUNTER_NUM,
1437 		.regs = ksz9477_regs,
1438 		.masks = ksz9477_masks,
1439 		.shifts = ksz9477_shifts,
1440 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1441 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1442 		.supports_mii = {false, false, true},
1443 		.supports_rmii = {false, false, true},
1444 		.supports_rgmii = {false, false, true},
1445 		.internal_phy = {true, true, false},
1446 		.gbit_capable = {true, true, true},
1447 	},
1448 
1449 	[KSZ9563] = {
1450 		.chip_id = KSZ9563_CHIP_ID,
1451 		.dev_name = "KSZ9563",
1452 		.num_vlans = 4096,
1453 		.num_alus = 4096,
1454 		.num_statics = 16,
1455 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1456 		.port_cnt = 3,		/* total port count */
1457 		.port_nirqs = 3,
1458 		.num_tx_queues = 4,
1459 		.tc_cbs_supported = true,
1460 		.tc_ets_supported = true,
1461 		.ops = &ksz9477_dev_ops,
1462 		.mib_names = ksz9477_mib_names,
1463 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1464 		.reg_mib_cnt = MIB_COUNTER_NUM,
1465 		.regs = ksz9477_regs,
1466 		.masks = ksz9477_masks,
1467 		.shifts = ksz9477_shifts,
1468 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1469 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1470 		.supports_mii = {false, false, true},
1471 		.supports_rmii = {false, false, true},
1472 		.supports_rgmii = {false, false, true},
1473 		.internal_phy = {true, true, false},
1474 		.gbit_capable = {true, true, true},
1475 	},
1476 
1477 	[KSZ9567] = {
1478 		.chip_id = KSZ9567_CHIP_ID,
1479 		.dev_name = "KSZ9567",
1480 		.num_vlans = 4096,
1481 		.num_alus = 4096,
1482 		.num_statics = 16,
1483 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1484 		.port_cnt = 7,		/* total physical port count */
1485 		.port_nirqs = 3,
1486 		.num_tx_queues = 4,
1487 		.tc_cbs_supported = true,
1488 		.tc_ets_supported = true,
1489 		.ops = &ksz9477_dev_ops,
1490 		.mib_names = ksz9477_mib_names,
1491 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1492 		.reg_mib_cnt = MIB_COUNTER_NUM,
1493 		.regs = ksz9477_regs,
1494 		.masks = ksz9477_masks,
1495 		.shifts = ksz9477_shifts,
1496 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1497 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1498 		.supports_mii	= {false, false, false, false,
1499 				   false, true, true},
1500 		.supports_rmii	= {false, false, false, false,
1501 				   false, true, true},
1502 		.supports_rgmii = {false, false, false, false,
1503 				   false, true, true},
1504 		.internal_phy	= {true, true, true, true,
1505 				   true, false, false},
1506 		.gbit_capable	= {true, true, true, true, true, true, true},
1507 	},
1508 
1509 	[LAN9370] = {
1510 		.chip_id = LAN9370_CHIP_ID,
1511 		.dev_name = "LAN9370",
1512 		.num_vlans = 4096,
1513 		.num_alus = 1024,
1514 		.num_statics = 256,
1515 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1516 		.port_cnt = 5,		/* total physical port count */
1517 		.port_nirqs = 6,
1518 		.num_tx_queues = 8,
1519 		.tc_cbs_supported = true,
1520 		.tc_ets_supported = true,
1521 		.ops = &lan937x_dev_ops,
1522 		.mib_names = ksz9477_mib_names,
1523 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1524 		.reg_mib_cnt = MIB_COUNTER_NUM,
1525 		.regs = ksz9477_regs,
1526 		.masks = lan937x_masks,
1527 		.shifts = lan937x_shifts,
1528 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1529 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1530 		.supports_mii = {false, false, false, false, true},
1531 		.supports_rmii = {false, false, false, false, true},
1532 		.supports_rgmii = {false, false, false, false, true},
1533 		.internal_phy = {true, true, true, true, false},
1534 	},
1535 
1536 	[LAN9371] = {
1537 		.chip_id = LAN9371_CHIP_ID,
1538 		.dev_name = "LAN9371",
1539 		.num_vlans = 4096,
1540 		.num_alus = 1024,
1541 		.num_statics = 256,
1542 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1543 		.port_cnt = 6,		/* total physical port count */
1544 		.port_nirqs = 6,
1545 		.num_tx_queues = 8,
1546 		.tc_cbs_supported = true,
1547 		.tc_ets_supported = true,
1548 		.ops = &lan937x_dev_ops,
1549 		.mib_names = ksz9477_mib_names,
1550 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1551 		.reg_mib_cnt = MIB_COUNTER_NUM,
1552 		.regs = ksz9477_regs,
1553 		.masks = lan937x_masks,
1554 		.shifts = lan937x_shifts,
1555 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1556 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1557 		.supports_mii = {false, false, false, false, true, true},
1558 		.supports_rmii = {false, false, false, false, true, true},
1559 		.supports_rgmii = {false, false, false, false, true, true},
1560 		.internal_phy = {true, true, true, true, false, false},
1561 	},
1562 
1563 	[LAN9372] = {
1564 		.chip_id = LAN9372_CHIP_ID,
1565 		.dev_name = "LAN9372",
1566 		.num_vlans = 4096,
1567 		.num_alus = 1024,
1568 		.num_statics = 256,
1569 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1570 		.port_cnt = 8,		/* total physical port count */
1571 		.port_nirqs = 6,
1572 		.num_tx_queues = 8,
1573 		.tc_cbs_supported = true,
1574 		.tc_ets_supported = true,
1575 		.ops = &lan937x_dev_ops,
1576 		.mib_names = ksz9477_mib_names,
1577 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1578 		.reg_mib_cnt = MIB_COUNTER_NUM,
1579 		.regs = ksz9477_regs,
1580 		.masks = lan937x_masks,
1581 		.shifts = lan937x_shifts,
1582 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1583 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1584 		.supports_mii	= {false, false, false, false,
1585 				   true, true, false, false},
1586 		.supports_rmii	= {false, false, false, false,
1587 				   true, true, false, false},
1588 		.supports_rgmii = {false, false, false, false,
1589 				   true, true, false, false},
1590 		.internal_phy	= {true, true, true, true,
1591 				   false, false, true, true},
1592 	},
1593 
1594 	[LAN9373] = {
1595 		.chip_id = LAN9373_CHIP_ID,
1596 		.dev_name = "LAN9373",
1597 		.num_vlans = 4096,
1598 		.num_alus = 1024,
1599 		.num_statics = 256,
1600 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1601 		.port_cnt = 5,		/* total physical port count */
1602 		.port_nirqs = 6,
1603 		.num_tx_queues = 8,
1604 		.tc_cbs_supported = true,
1605 		.tc_ets_supported = true,
1606 		.ops = &lan937x_dev_ops,
1607 		.mib_names = ksz9477_mib_names,
1608 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1609 		.reg_mib_cnt = MIB_COUNTER_NUM,
1610 		.regs = ksz9477_regs,
1611 		.masks = lan937x_masks,
1612 		.shifts = lan937x_shifts,
1613 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1614 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1615 		.supports_mii	= {false, false, false, false,
1616 				   true, true, false, false},
1617 		.supports_rmii	= {false, false, false, false,
1618 				   true, true, false, false},
1619 		.supports_rgmii = {false, false, false, false,
1620 				   true, true, false, false},
1621 		.internal_phy	= {true, true, true, false,
1622 				   false, false, true, true},
1623 	},
1624 
1625 	[LAN9374] = {
1626 		.chip_id = LAN9374_CHIP_ID,
1627 		.dev_name = "LAN9374",
1628 		.num_vlans = 4096,
1629 		.num_alus = 1024,
1630 		.num_statics = 256,
1631 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1632 		.port_cnt = 8,		/* total physical port count */
1633 		.port_nirqs = 6,
1634 		.num_tx_queues = 8,
1635 		.tc_cbs_supported = true,
1636 		.tc_ets_supported = true,
1637 		.ops = &lan937x_dev_ops,
1638 		.mib_names = ksz9477_mib_names,
1639 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1640 		.reg_mib_cnt = MIB_COUNTER_NUM,
1641 		.regs = ksz9477_regs,
1642 		.masks = lan937x_masks,
1643 		.shifts = lan937x_shifts,
1644 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1645 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1646 		.supports_mii	= {false, false, false, false,
1647 				   true, true, false, false},
1648 		.supports_rmii	= {false, false, false, false,
1649 				   true, true, false, false},
1650 		.supports_rgmii = {false, false, false, false,
1651 				   true, true, false, false},
1652 		.internal_phy	= {true, true, true, true,
1653 				   false, false, true, true},
1654 	},
1655 };
1656 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1657 
1658 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1659 {
1660 	int i;
1661 
1662 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1663 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1664 
1665 		if (chip->chip_id == prod_num)
1666 			return chip;
1667 	}
1668 
1669 	return NULL;
1670 }
1671 
1672 static int ksz_check_device_id(struct ksz_device *dev)
1673 {
1674 	const struct ksz_chip_data *dt_chip_data;
1675 
1676 	dt_chip_data = of_device_get_match_data(dev->dev);
1677 
1678 	/* Check for Device Tree and Chip ID */
1679 	if (dt_chip_data->chip_id != dev->chip_id) {
1680 		dev_err(dev->dev,
1681 			"Device tree specifies chip %s but found %s, please fix it!\n",
1682 			dt_chip_data->dev_name, dev->info->dev_name);
1683 		return -ENODEV;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1690 				 struct phylink_config *config)
1691 {
1692 	struct ksz_device *dev = ds->priv;
1693 
1694 	if (dev->info->supports_mii[port])
1695 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1696 
1697 	if (dev->info->supports_rmii[port])
1698 		__set_bit(PHY_INTERFACE_MODE_RMII,
1699 			  config->supported_interfaces);
1700 
1701 	if (dev->info->supports_rgmii[port])
1702 		phy_interface_set_rgmii(config->supported_interfaces);
1703 
1704 	if (dev->info->internal_phy[port]) {
1705 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1706 			  config->supported_interfaces);
1707 		/* Compatibility for phylib's default interface type when the
1708 		 * phy-mode property is absent
1709 		 */
1710 		__set_bit(PHY_INTERFACE_MODE_GMII,
1711 			  config->supported_interfaces);
1712 	}
1713 
1714 	if (dev->dev_ops->get_caps)
1715 		dev->dev_ops->get_caps(dev, port, config);
1716 }
1717 
1718 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1719 {
1720 	struct ethtool_pause_stats *pstats;
1721 	struct rtnl_link_stats64 *stats;
1722 	struct ksz_stats_raw *raw;
1723 	struct ksz_port_mib *mib;
1724 
1725 	mib = &dev->ports[port].mib;
1726 	stats = &mib->stats64;
1727 	pstats = &mib->pause_stats;
1728 	raw = (struct ksz_stats_raw *)mib->counters;
1729 
1730 	spin_lock(&mib->stats64_lock);
1731 
1732 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1733 		raw->rx_pause;
1734 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1735 		raw->tx_pause;
1736 
1737 	/* HW counters are counting bytes + FCS which is not acceptable
1738 	 * for rtnl_link_stats64 interface
1739 	 */
1740 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1741 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1742 
1743 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1744 		raw->rx_oversize;
1745 
1746 	stats->rx_crc_errors = raw->rx_crc_err;
1747 	stats->rx_frame_errors = raw->rx_align_err;
1748 	stats->rx_dropped = raw->rx_discards;
1749 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1750 		stats->rx_frame_errors  + stats->rx_dropped;
1751 
1752 	stats->tx_window_errors = raw->tx_late_col;
1753 	stats->tx_fifo_errors = raw->tx_discards;
1754 	stats->tx_aborted_errors = raw->tx_exc_col;
1755 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1756 		stats->tx_aborted_errors;
1757 
1758 	stats->multicast = raw->rx_mcast;
1759 	stats->collisions = raw->tx_total_col;
1760 
1761 	pstats->tx_pause_frames = raw->tx_pause;
1762 	pstats->rx_pause_frames = raw->rx_pause;
1763 
1764 	spin_unlock(&mib->stats64_lock);
1765 }
1766 
1767 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1768 {
1769 	struct ethtool_pause_stats *pstats;
1770 	struct rtnl_link_stats64 *stats;
1771 	struct ksz88xx_stats_raw *raw;
1772 	struct ksz_port_mib *mib;
1773 
1774 	mib = &dev->ports[port].mib;
1775 	stats = &mib->stats64;
1776 	pstats = &mib->pause_stats;
1777 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1778 
1779 	spin_lock(&mib->stats64_lock);
1780 
1781 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1782 		raw->rx_pause;
1783 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1784 		raw->tx_pause;
1785 
1786 	/* HW counters are counting bytes + FCS which is not acceptable
1787 	 * for rtnl_link_stats64 interface
1788 	 */
1789 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1790 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1791 
1792 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1793 		raw->rx_oversize;
1794 
1795 	stats->rx_crc_errors = raw->rx_crc_err;
1796 	stats->rx_frame_errors = raw->rx_align_err;
1797 	stats->rx_dropped = raw->rx_discards;
1798 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1799 		stats->rx_frame_errors  + stats->rx_dropped;
1800 
1801 	stats->tx_window_errors = raw->tx_late_col;
1802 	stats->tx_fifo_errors = raw->tx_discards;
1803 	stats->tx_aborted_errors = raw->tx_exc_col;
1804 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1805 		stats->tx_aborted_errors;
1806 
1807 	stats->multicast = raw->rx_mcast;
1808 	stats->collisions = raw->tx_total_col;
1809 
1810 	pstats->tx_pause_frames = raw->tx_pause;
1811 	pstats->rx_pause_frames = raw->rx_pause;
1812 
1813 	spin_unlock(&mib->stats64_lock);
1814 }
1815 
1816 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1817 			    struct rtnl_link_stats64 *s)
1818 {
1819 	struct ksz_device *dev = ds->priv;
1820 	struct ksz_port_mib *mib;
1821 
1822 	mib = &dev->ports[port].mib;
1823 
1824 	spin_lock(&mib->stats64_lock);
1825 	memcpy(s, &mib->stats64, sizeof(*s));
1826 	spin_unlock(&mib->stats64_lock);
1827 }
1828 
1829 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1830 				struct ethtool_pause_stats *pause_stats)
1831 {
1832 	struct ksz_device *dev = ds->priv;
1833 	struct ksz_port_mib *mib;
1834 
1835 	mib = &dev->ports[port].mib;
1836 
1837 	spin_lock(&mib->stats64_lock);
1838 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1839 	spin_unlock(&mib->stats64_lock);
1840 }
1841 
1842 static void ksz_get_strings(struct dsa_switch *ds, int port,
1843 			    u32 stringset, uint8_t *buf)
1844 {
1845 	struct ksz_device *dev = ds->priv;
1846 	int i;
1847 
1848 	if (stringset != ETH_SS_STATS)
1849 		return;
1850 
1851 	for (i = 0; i < dev->info->mib_cnt; i++) {
1852 		memcpy(buf + i * ETH_GSTRING_LEN,
1853 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1854 	}
1855 }
1856 
1857 static void ksz_update_port_member(struct ksz_device *dev, int port)
1858 {
1859 	struct ksz_port *p = &dev->ports[port];
1860 	struct dsa_switch *ds = dev->ds;
1861 	u8 port_member = 0, cpu_port;
1862 	const struct dsa_port *dp;
1863 	int i, j;
1864 
1865 	if (!dsa_is_user_port(ds, port))
1866 		return;
1867 
1868 	dp = dsa_to_port(ds, port);
1869 	cpu_port = BIT(dsa_upstream_port(ds, port));
1870 
1871 	for (i = 0; i < ds->num_ports; i++) {
1872 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1873 		struct ksz_port *other_p = &dev->ports[i];
1874 		u8 val = 0;
1875 
1876 		if (!dsa_is_user_port(ds, i))
1877 			continue;
1878 		if (port == i)
1879 			continue;
1880 		if (!dsa_port_bridge_same(dp, other_dp))
1881 			continue;
1882 		if (other_p->stp_state != BR_STATE_FORWARDING)
1883 			continue;
1884 
1885 		if (p->stp_state == BR_STATE_FORWARDING) {
1886 			val |= BIT(port);
1887 			port_member |= BIT(i);
1888 		}
1889 
1890 		/* Retain port [i]'s relationship to other ports than [port] */
1891 		for (j = 0; j < ds->num_ports; j++) {
1892 			const struct dsa_port *third_dp;
1893 			struct ksz_port *third_p;
1894 
1895 			if (j == i)
1896 				continue;
1897 			if (j == port)
1898 				continue;
1899 			if (!dsa_is_user_port(ds, j))
1900 				continue;
1901 			third_p = &dev->ports[j];
1902 			if (third_p->stp_state != BR_STATE_FORWARDING)
1903 				continue;
1904 			third_dp = dsa_to_port(ds, j);
1905 			if (dsa_port_bridge_same(other_dp, third_dp))
1906 				val |= BIT(j);
1907 		}
1908 
1909 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
1910 	}
1911 
1912 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
1913 }
1914 
1915 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
1916 {
1917 	struct ksz_device *dev = bus->priv;
1918 	u16 val;
1919 	int ret;
1920 
1921 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
1922 	if (ret < 0)
1923 		return ret;
1924 
1925 	return val;
1926 }
1927 
1928 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
1929 			     u16 val)
1930 {
1931 	struct ksz_device *dev = bus->priv;
1932 
1933 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
1934 }
1935 
1936 static int ksz_irq_phy_setup(struct ksz_device *dev)
1937 {
1938 	struct dsa_switch *ds = dev->ds;
1939 	int phy;
1940 	int irq;
1941 	int ret;
1942 
1943 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
1944 		if (BIT(phy) & ds->phys_mii_mask) {
1945 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
1946 					       PORT_SRC_PHY_INT);
1947 			if (irq < 0) {
1948 				ret = irq;
1949 				goto out;
1950 			}
1951 			ds->user_mii_bus->irq[phy] = irq;
1952 		}
1953 	}
1954 	return 0;
1955 out:
1956 	while (phy--)
1957 		if (BIT(phy) & ds->phys_mii_mask)
1958 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
1959 
1960 	return ret;
1961 }
1962 
1963 static void ksz_irq_phy_free(struct ksz_device *dev)
1964 {
1965 	struct dsa_switch *ds = dev->ds;
1966 	int phy;
1967 
1968 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
1969 		if (BIT(phy) & ds->phys_mii_mask)
1970 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
1971 }
1972 
1973 static int ksz_mdio_register(struct ksz_device *dev)
1974 {
1975 	struct dsa_switch *ds = dev->ds;
1976 	struct device_node *mdio_np;
1977 	struct mii_bus *bus;
1978 	int ret;
1979 
1980 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
1981 	if (!mdio_np)
1982 		return 0;
1983 
1984 	bus = devm_mdiobus_alloc(ds->dev);
1985 	if (!bus) {
1986 		of_node_put(mdio_np);
1987 		return -ENOMEM;
1988 	}
1989 
1990 	bus->priv = dev;
1991 	bus->read = ksz_sw_mdio_read;
1992 	bus->write = ksz_sw_mdio_write;
1993 	bus->name = "ksz user smi";
1994 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
1995 	bus->parent = ds->dev;
1996 	bus->phy_mask = ~ds->phys_mii_mask;
1997 
1998 	ds->user_mii_bus = bus;
1999 
2000 	if (dev->irq > 0) {
2001 		ret = ksz_irq_phy_setup(dev);
2002 		if (ret) {
2003 			of_node_put(mdio_np);
2004 			return ret;
2005 		}
2006 	}
2007 
2008 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2009 	if (ret) {
2010 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2011 			bus->id);
2012 		if (dev->irq > 0)
2013 			ksz_irq_phy_free(dev);
2014 	}
2015 
2016 	of_node_put(mdio_np);
2017 
2018 	return ret;
2019 }
2020 
2021 static void ksz_irq_mask(struct irq_data *d)
2022 {
2023 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2024 
2025 	kirq->masked |= BIT(d->hwirq);
2026 }
2027 
2028 static void ksz_irq_unmask(struct irq_data *d)
2029 {
2030 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2031 
2032 	kirq->masked &= ~BIT(d->hwirq);
2033 }
2034 
2035 static void ksz_irq_bus_lock(struct irq_data *d)
2036 {
2037 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2038 
2039 	mutex_lock(&kirq->dev->lock_irq);
2040 }
2041 
2042 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2043 {
2044 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2045 	struct ksz_device *dev = kirq->dev;
2046 	int ret;
2047 
2048 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2049 	if (ret)
2050 		dev_err(dev->dev, "failed to change IRQ mask\n");
2051 
2052 	mutex_unlock(&dev->lock_irq);
2053 }
2054 
2055 static const struct irq_chip ksz_irq_chip = {
2056 	.name			= "ksz-irq",
2057 	.irq_mask		= ksz_irq_mask,
2058 	.irq_unmask		= ksz_irq_unmask,
2059 	.irq_bus_lock		= ksz_irq_bus_lock,
2060 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2061 };
2062 
2063 static int ksz_irq_domain_map(struct irq_domain *d,
2064 			      unsigned int irq, irq_hw_number_t hwirq)
2065 {
2066 	irq_set_chip_data(irq, d->host_data);
2067 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2068 	irq_set_noprobe(irq);
2069 
2070 	return 0;
2071 }
2072 
2073 static const struct irq_domain_ops ksz_irq_domain_ops = {
2074 	.map	= ksz_irq_domain_map,
2075 	.xlate	= irq_domain_xlate_twocell,
2076 };
2077 
2078 static void ksz_irq_free(struct ksz_irq *kirq)
2079 {
2080 	int irq, virq;
2081 
2082 	free_irq(kirq->irq_num, kirq);
2083 
2084 	for (irq = 0; irq < kirq->nirqs; irq++) {
2085 		virq = irq_find_mapping(kirq->domain, irq);
2086 		irq_dispose_mapping(virq);
2087 	}
2088 
2089 	irq_domain_remove(kirq->domain);
2090 }
2091 
2092 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2093 {
2094 	struct ksz_irq *kirq = dev_id;
2095 	unsigned int nhandled = 0;
2096 	struct ksz_device *dev;
2097 	unsigned int sub_irq;
2098 	u8 data;
2099 	int ret;
2100 	u8 n;
2101 
2102 	dev = kirq->dev;
2103 
2104 	/* Read interrupt status register */
2105 	ret = ksz_read8(dev, kirq->reg_status, &data);
2106 	if (ret)
2107 		goto out;
2108 
2109 	for (n = 0; n < kirq->nirqs; ++n) {
2110 		if (data & BIT(n)) {
2111 			sub_irq = irq_find_mapping(kirq->domain, n);
2112 			handle_nested_irq(sub_irq);
2113 			++nhandled;
2114 		}
2115 	}
2116 out:
2117 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2118 }
2119 
2120 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2121 {
2122 	int ret, n;
2123 
2124 	kirq->dev = dev;
2125 	kirq->masked = ~0;
2126 
2127 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2128 					     &ksz_irq_domain_ops, kirq);
2129 	if (!kirq->domain)
2130 		return -ENOMEM;
2131 
2132 	for (n = 0; n < kirq->nirqs; n++)
2133 		irq_create_mapping(kirq->domain, n);
2134 
2135 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2136 				   IRQF_ONESHOT, kirq->name, kirq);
2137 	if (ret)
2138 		goto out;
2139 
2140 	return 0;
2141 
2142 out:
2143 	ksz_irq_free(kirq);
2144 
2145 	return ret;
2146 }
2147 
2148 static int ksz_girq_setup(struct ksz_device *dev)
2149 {
2150 	struct ksz_irq *girq = &dev->girq;
2151 
2152 	girq->nirqs = dev->info->port_cnt;
2153 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2154 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2155 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2156 
2157 	girq->irq_num = dev->irq;
2158 
2159 	return ksz_irq_common_setup(dev, girq);
2160 }
2161 
2162 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2163 {
2164 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2165 
2166 	pirq->nirqs = dev->info->port_nirqs;
2167 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2168 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2169 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2170 
2171 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2172 	if (pirq->irq_num < 0)
2173 		return pirq->irq_num;
2174 
2175 	return ksz_irq_common_setup(dev, pirq);
2176 }
2177 
2178 static int ksz_setup(struct dsa_switch *ds)
2179 {
2180 	struct ksz_device *dev = ds->priv;
2181 	struct dsa_port *dp;
2182 	struct ksz_port *p;
2183 	const u16 *regs;
2184 	int ret;
2185 
2186 	regs = dev->info->regs;
2187 
2188 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2189 				       dev->info->num_vlans, GFP_KERNEL);
2190 	if (!dev->vlan_cache)
2191 		return -ENOMEM;
2192 
2193 	ret = dev->dev_ops->reset(dev);
2194 	if (ret) {
2195 		dev_err(ds->dev, "failed to reset switch\n");
2196 		return ret;
2197 	}
2198 
2199 	/* set broadcast storm protection 10% rate */
2200 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2201 			   BROADCAST_STORM_RATE,
2202 			   (BROADCAST_STORM_VALUE *
2203 			   BROADCAST_STORM_PROT_RATE) / 100);
2204 
2205 	dev->dev_ops->config_cpu_port(ds);
2206 
2207 	dev->dev_ops->enable_stp_addr(dev);
2208 
2209 	ds->num_tx_queues = dev->info->num_tx_queues;
2210 
2211 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2212 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2213 
2214 	ksz_init_mib_timer(dev);
2215 
2216 	ds->configure_vlan_while_not_filtering = false;
2217 
2218 	if (dev->dev_ops->setup) {
2219 		ret = dev->dev_ops->setup(ds);
2220 		if (ret)
2221 			return ret;
2222 	}
2223 
2224 	/* Start with learning disabled on standalone user ports, and enabled
2225 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2226 	 * CPU port will avoid flooding bridge local addresses on the network
2227 	 * in some cases.
2228 	 */
2229 	p = &dev->ports[dev->cpu_port];
2230 	p->learning = true;
2231 
2232 	if (dev->irq > 0) {
2233 		ret = ksz_girq_setup(dev);
2234 		if (ret)
2235 			return ret;
2236 
2237 		dsa_switch_for_each_user_port(dp, dev->ds) {
2238 			ret = ksz_pirq_setup(dev, dp->index);
2239 			if (ret)
2240 				goto out_girq;
2241 
2242 			ret = ksz_ptp_irq_setup(ds, dp->index);
2243 			if (ret)
2244 				goto out_pirq;
2245 		}
2246 	}
2247 
2248 	ret = ksz_ptp_clock_register(ds);
2249 	if (ret) {
2250 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2251 		goto out_ptpirq;
2252 	}
2253 
2254 	ret = ksz_mdio_register(dev);
2255 	if (ret < 0) {
2256 		dev_err(dev->dev, "failed to register the mdio");
2257 		goto out_ptp_clock_unregister;
2258 	}
2259 
2260 	/* start switch */
2261 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2262 			   SW_START, SW_START);
2263 
2264 	return 0;
2265 
2266 out_ptp_clock_unregister:
2267 	ksz_ptp_clock_unregister(ds);
2268 out_ptpirq:
2269 	if (dev->irq > 0)
2270 		dsa_switch_for_each_user_port(dp, dev->ds)
2271 			ksz_ptp_irq_free(ds, dp->index);
2272 out_pirq:
2273 	if (dev->irq > 0)
2274 		dsa_switch_for_each_user_port(dp, dev->ds)
2275 			ksz_irq_free(&dev->ports[dp->index].pirq);
2276 out_girq:
2277 	if (dev->irq > 0)
2278 		ksz_irq_free(&dev->girq);
2279 
2280 	return ret;
2281 }
2282 
2283 static void ksz_teardown(struct dsa_switch *ds)
2284 {
2285 	struct ksz_device *dev = ds->priv;
2286 	struct dsa_port *dp;
2287 
2288 	ksz_ptp_clock_unregister(ds);
2289 
2290 	if (dev->irq > 0) {
2291 		dsa_switch_for_each_user_port(dp, dev->ds) {
2292 			ksz_ptp_irq_free(ds, dp->index);
2293 
2294 			ksz_irq_free(&dev->ports[dp->index].pirq);
2295 		}
2296 
2297 		ksz_irq_free(&dev->girq);
2298 	}
2299 
2300 	if (dev->dev_ops->teardown)
2301 		dev->dev_ops->teardown(ds);
2302 }
2303 
2304 static void port_r_cnt(struct ksz_device *dev, int port)
2305 {
2306 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2307 	u64 *dropped;
2308 
2309 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2310 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2311 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2312 					&mib->counters[mib->cnt_ptr]);
2313 		++mib->cnt_ptr;
2314 	}
2315 
2316 	/* last one in storage */
2317 	dropped = &mib->counters[dev->info->mib_cnt];
2318 
2319 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2320 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2321 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2322 					dropped, &mib->counters[mib->cnt_ptr]);
2323 		++mib->cnt_ptr;
2324 	}
2325 	mib->cnt_ptr = 0;
2326 }
2327 
2328 static void ksz_mib_read_work(struct work_struct *work)
2329 {
2330 	struct ksz_device *dev = container_of(work, struct ksz_device,
2331 					      mib_read.work);
2332 	struct ksz_port_mib *mib;
2333 	struct ksz_port *p;
2334 	int i;
2335 
2336 	for (i = 0; i < dev->info->port_cnt; i++) {
2337 		if (dsa_is_unused_port(dev->ds, i))
2338 			continue;
2339 
2340 		p = &dev->ports[i];
2341 		mib = &p->mib;
2342 		mutex_lock(&mib->cnt_mutex);
2343 
2344 		/* Only read MIB counters when the port is told to do.
2345 		 * If not, read only dropped counters when link is not up.
2346 		 */
2347 		if (!p->read) {
2348 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2349 
2350 			if (!netif_carrier_ok(dp->user))
2351 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2352 		}
2353 		port_r_cnt(dev, i);
2354 		p->read = false;
2355 
2356 		if (dev->dev_ops->r_mib_stat64)
2357 			dev->dev_ops->r_mib_stat64(dev, i);
2358 
2359 		mutex_unlock(&mib->cnt_mutex);
2360 	}
2361 
2362 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2363 }
2364 
2365 void ksz_init_mib_timer(struct ksz_device *dev)
2366 {
2367 	int i;
2368 
2369 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2370 
2371 	for (i = 0; i < dev->info->port_cnt; i++) {
2372 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2373 
2374 		dev->dev_ops->port_init_cnt(dev, i);
2375 
2376 		mib->cnt_ptr = 0;
2377 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2378 	}
2379 }
2380 
2381 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2382 {
2383 	struct ksz_device *dev = ds->priv;
2384 	u16 val = 0xffff;
2385 	int ret;
2386 
2387 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2388 	if (ret)
2389 		return ret;
2390 
2391 	return val;
2392 }
2393 
2394 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2395 {
2396 	struct ksz_device *dev = ds->priv;
2397 	int ret;
2398 
2399 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2400 	if (ret)
2401 		return ret;
2402 
2403 	return 0;
2404 }
2405 
2406 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2407 {
2408 	struct ksz_device *dev = ds->priv;
2409 
2410 	switch (dev->chip_id) {
2411 	case KSZ8830_CHIP_ID:
2412 		/* Silicon Errata Sheet (DS80000830A):
2413 		 * Port 1 does not work with LinkMD Cable-Testing.
2414 		 * Port 1 does not respond to received PAUSE control frames.
2415 		 */
2416 		if (!port)
2417 			return MICREL_KSZ8_P1_ERRATA;
2418 		break;
2419 	case KSZ9477_CHIP_ID:
2420 		/* KSZ9477 Errata DS80000754C
2421 		 *
2422 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2423 		 * be manually disabled
2424 		 *   The EEE feature is enabled by default, but it is not fully
2425 		 *   operational. It must be manually disabled through register
2426 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2427 		 *   to enable EEE, and this feature can cause link drops when
2428 		 *   linked to another device supporting EEE.
2429 		 */
2430 		return MICREL_NO_EEE;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 static void ksz_mac_link_down(struct dsa_switch *ds, int port,
2437 			      unsigned int mode, phy_interface_t interface)
2438 {
2439 	struct ksz_device *dev = ds->priv;
2440 	struct ksz_port *p = &dev->ports[port];
2441 
2442 	/* Read all MIB counters when the link is going down. */
2443 	p->read = true;
2444 	/* timer started */
2445 	if (dev->mib_read_interval)
2446 		schedule_delayed_work(&dev->mib_read, 0);
2447 }
2448 
2449 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2450 {
2451 	struct ksz_device *dev = ds->priv;
2452 
2453 	if (sset != ETH_SS_STATS)
2454 		return 0;
2455 
2456 	return dev->info->mib_cnt;
2457 }
2458 
2459 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2460 				  uint64_t *buf)
2461 {
2462 	const struct dsa_port *dp = dsa_to_port(ds, port);
2463 	struct ksz_device *dev = ds->priv;
2464 	struct ksz_port_mib *mib;
2465 
2466 	mib = &dev->ports[port].mib;
2467 	mutex_lock(&mib->cnt_mutex);
2468 
2469 	/* Only read dropped counters if no link. */
2470 	if (!netif_carrier_ok(dp->user))
2471 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2472 	port_r_cnt(dev, port);
2473 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2474 	mutex_unlock(&mib->cnt_mutex);
2475 }
2476 
2477 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2478 				struct dsa_bridge bridge,
2479 				bool *tx_fwd_offload,
2480 				struct netlink_ext_ack *extack)
2481 {
2482 	/* port_stp_state_set() will be called after to put the port in
2483 	 * appropriate state so there is no need to do anything.
2484 	 */
2485 
2486 	return 0;
2487 }
2488 
2489 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2490 				  struct dsa_bridge bridge)
2491 {
2492 	/* port_stp_state_set() will be called after to put the port in
2493 	 * forwarding state so there is no need to do anything.
2494 	 */
2495 }
2496 
2497 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2498 {
2499 	struct ksz_device *dev = ds->priv;
2500 
2501 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2502 }
2503 
2504 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2505 {
2506 	struct ksz_device *dev = ds->priv;
2507 
2508 	if (!dev->dev_ops->set_ageing_time)
2509 		return -EOPNOTSUPP;
2510 
2511 	return dev->dev_ops->set_ageing_time(dev, msecs);
2512 }
2513 
2514 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2515 			    const unsigned char *addr, u16 vid,
2516 			    struct dsa_db db)
2517 {
2518 	struct ksz_device *dev = ds->priv;
2519 
2520 	if (!dev->dev_ops->fdb_add)
2521 		return -EOPNOTSUPP;
2522 
2523 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2524 }
2525 
2526 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2527 			    const unsigned char *addr,
2528 			    u16 vid, struct dsa_db db)
2529 {
2530 	struct ksz_device *dev = ds->priv;
2531 
2532 	if (!dev->dev_ops->fdb_del)
2533 		return -EOPNOTSUPP;
2534 
2535 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2536 }
2537 
2538 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2539 			     dsa_fdb_dump_cb_t *cb, void *data)
2540 {
2541 	struct ksz_device *dev = ds->priv;
2542 
2543 	if (!dev->dev_ops->fdb_dump)
2544 		return -EOPNOTSUPP;
2545 
2546 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2547 }
2548 
2549 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2550 			    const struct switchdev_obj_port_mdb *mdb,
2551 			    struct dsa_db db)
2552 {
2553 	struct ksz_device *dev = ds->priv;
2554 
2555 	if (!dev->dev_ops->mdb_add)
2556 		return -EOPNOTSUPP;
2557 
2558 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2559 }
2560 
2561 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2562 			    const struct switchdev_obj_port_mdb *mdb,
2563 			    struct dsa_db db)
2564 {
2565 	struct ksz_device *dev = ds->priv;
2566 
2567 	if (!dev->dev_ops->mdb_del)
2568 		return -EOPNOTSUPP;
2569 
2570 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2571 }
2572 
2573 static int ksz_port_setup(struct dsa_switch *ds, int port)
2574 {
2575 	struct ksz_device *dev = ds->priv;
2576 
2577 	if (!dsa_is_user_port(ds, port))
2578 		return 0;
2579 
2580 	/* setup user port */
2581 	dev->dev_ops->port_setup(dev, port, false);
2582 
2583 	/* port_stp_state_set() will be called after to enable the port so
2584 	 * there is no need to do anything.
2585 	 */
2586 
2587 	return 0;
2588 }
2589 
2590 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2591 {
2592 	struct ksz_device *dev = ds->priv;
2593 	struct ksz_port *p;
2594 	const u16 *regs;
2595 	u8 data;
2596 
2597 	regs = dev->info->regs;
2598 
2599 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2600 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2601 
2602 	p = &dev->ports[port];
2603 
2604 	switch (state) {
2605 	case BR_STATE_DISABLED:
2606 		data |= PORT_LEARN_DISABLE;
2607 		break;
2608 	case BR_STATE_LISTENING:
2609 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2610 		break;
2611 	case BR_STATE_LEARNING:
2612 		data |= PORT_RX_ENABLE;
2613 		if (!p->learning)
2614 			data |= PORT_LEARN_DISABLE;
2615 		break;
2616 	case BR_STATE_FORWARDING:
2617 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2618 		if (!p->learning)
2619 			data |= PORT_LEARN_DISABLE;
2620 		break;
2621 	case BR_STATE_BLOCKING:
2622 		data |= PORT_LEARN_DISABLE;
2623 		break;
2624 	default:
2625 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2626 		return;
2627 	}
2628 
2629 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2630 
2631 	p->stp_state = state;
2632 
2633 	ksz_update_port_member(dev, port);
2634 }
2635 
2636 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2637 {
2638 	struct ksz_device *dev = ds->priv;
2639 
2640 	switch (dev->chip_id) {
2641 	case KSZ8563_CHIP_ID:
2642 	case KSZ9477_CHIP_ID:
2643 	case KSZ9563_CHIP_ID:
2644 	case KSZ9567_CHIP_ID:
2645 	case KSZ9893_CHIP_ID:
2646 	case KSZ9896_CHIP_ID:
2647 	case KSZ9897_CHIP_ID:
2648 		if (dsa_is_user_port(ds, port))
2649 			ksz9477_port_acl_free(dev, port);
2650 	}
2651 }
2652 
2653 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2654 				     struct switchdev_brport_flags flags,
2655 				     struct netlink_ext_ack *extack)
2656 {
2657 	if (flags.mask & ~BR_LEARNING)
2658 		return -EINVAL;
2659 
2660 	return 0;
2661 }
2662 
2663 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2664 				 struct switchdev_brport_flags flags,
2665 				 struct netlink_ext_ack *extack)
2666 {
2667 	struct ksz_device *dev = ds->priv;
2668 	struct ksz_port *p = &dev->ports[port];
2669 
2670 	if (flags.mask & BR_LEARNING) {
2671 		p->learning = !!(flags.val & BR_LEARNING);
2672 
2673 		/* Make the change take effect immediately */
2674 		ksz_port_stp_state_set(ds, port, p->stp_state);
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2681 						  int port,
2682 						  enum dsa_tag_protocol mp)
2683 {
2684 	struct ksz_device *dev = ds->priv;
2685 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2686 
2687 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2688 	    dev->chip_id == KSZ8794_CHIP_ID ||
2689 	    dev->chip_id == KSZ8765_CHIP_ID)
2690 		proto = DSA_TAG_PROTO_KSZ8795;
2691 
2692 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2693 	    dev->chip_id == KSZ8563_CHIP_ID ||
2694 	    dev->chip_id == KSZ9893_CHIP_ID ||
2695 	    dev->chip_id == KSZ9563_CHIP_ID)
2696 		proto = DSA_TAG_PROTO_KSZ9893;
2697 
2698 	if (dev->chip_id == KSZ9477_CHIP_ID ||
2699 	    dev->chip_id == KSZ9896_CHIP_ID ||
2700 	    dev->chip_id == KSZ9897_CHIP_ID ||
2701 	    dev->chip_id == KSZ9567_CHIP_ID)
2702 		proto = DSA_TAG_PROTO_KSZ9477;
2703 
2704 	if (is_lan937x(dev))
2705 		proto = DSA_TAG_PROTO_LAN937X_VALUE;
2706 
2707 	return proto;
2708 }
2709 
2710 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2711 				    enum dsa_tag_protocol proto)
2712 {
2713 	struct ksz_tagger_data *tagger_data;
2714 
2715 	tagger_data = ksz_tagger_data(ds);
2716 	tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2717 
2718 	return 0;
2719 }
2720 
2721 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2722 				   bool flag, struct netlink_ext_ack *extack)
2723 {
2724 	struct ksz_device *dev = ds->priv;
2725 
2726 	if (!dev->dev_ops->vlan_filtering)
2727 		return -EOPNOTSUPP;
2728 
2729 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2730 }
2731 
2732 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2733 			     const struct switchdev_obj_port_vlan *vlan,
2734 			     struct netlink_ext_ack *extack)
2735 {
2736 	struct ksz_device *dev = ds->priv;
2737 
2738 	if (!dev->dev_ops->vlan_add)
2739 		return -EOPNOTSUPP;
2740 
2741 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2742 }
2743 
2744 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2745 			     const struct switchdev_obj_port_vlan *vlan)
2746 {
2747 	struct ksz_device *dev = ds->priv;
2748 
2749 	if (!dev->dev_ops->vlan_del)
2750 		return -EOPNOTSUPP;
2751 
2752 	return dev->dev_ops->vlan_del(dev, port, vlan);
2753 }
2754 
2755 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2756 			       struct dsa_mall_mirror_tc_entry *mirror,
2757 			       bool ingress, struct netlink_ext_ack *extack)
2758 {
2759 	struct ksz_device *dev = ds->priv;
2760 
2761 	if (!dev->dev_ops->mirror_add)
2762 		return -EOPNOTSUPP;
2763 
2764 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2765 }
2766 
2767 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2768 				struct dsa_mall_mirror_tc_entry *mirror)
2769 {
2770 	struct ksz_device *dev = ds->priv;
2771 
2772 	if (dev->dev_ops->mirror_del)
2773 		dev->dev_ops->mirror_del(dev, port, mirror);
2774 }
2775 
2776 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2777 {
2778 	struct ksz_device *dev = ds->priv;
2779 
2780 	if (!dev->dev_ops->change_mtu)
2781 		return -EOPNOTSUPP;
2782 
2783 	return dev->dev_ops->change_mtu(dev, port, mtu);
2784 }
2785 
2786 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2787 {
2788 	struct ksz_device *dev = ds->priv;
2789 
2790 	switch (dev->chip_id) {
2791 	case KSZ8795_CHIP_ID:
2792 	case KSZ8794_CHIP_ID:
2793 	case KSZ8765_CHIP_ID:
2794 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2795 	case KSZ8830_CHIP_ID:
2796 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2797 	case KSZ8563_CHIP_ID:
2798 	case KSZ9477_CHIP_ID:
2799 	case KSZ9563_CHIP_ID:
2800 	case KSZ9567_CHIP_ID:
2801 	case KSZ9893_CHIP_ID:
2802 	case KSZ9896_CHIP_ID:
2803 	case KSZ9897_CHIP_ID:
2804 	case LAN9370_CHIP_ID:
2805 	case LAN9371_CHIP_ID:
2806 	case LAN9372_CHIP_ID:
2807 	case LAN9373_CHIP_ID:
2808 	case LAN9374_CHIP_ID:
2809 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2810 	}
2811 
2812 	return -EOPNOTSUPP;
2813 }
2814 
2815 static int ksz_validate_eee(struct dsa_switch *ds, int port)
2816 {
2817 	struct ksz_device *dev = ds->priv;
2818 
2819 	if (!dev->info->internal_phy[port])
2820 		return -EOPNOTSUPP;
2821 
2822 	switch (dev->chip_id) {
2823 	case KSZ8563_CHIP_ID:
2824 	case KSZ9477_CHIP_ID:
2825 	case KSZ9563_CHIP_ID:
2826 	case KSZ9567_CHIP_ID:
2827 	case KSZ9893_CHIP_ID:
2828 	case KSZ9896_CHIP_ID:
2829 	case KSZ9897_CHIP_ID:
2830 		return 0;
2831 	}
2832 
2833 	return -EOPNOTSUPP;
2834 }
2835 
2836 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2837 			   struct ethtool_eee *e)
2838 {
2839 	int ret;
2840 
2841 	ret = ksz_validate_eee(ds, port);
2842 	if (ret)
2843 		return ret;
2844 
2845 	/* There is no documented control of Tx LPI configuration. */
2846 	e->tx_lpi_enabled = true;
2847 
2848 	/* There is no documented control of Tx LPI timer. According to tests
2849 	 * Tx LPI timer seems to be set by default to minimal value.
2850 	 */
2851 	e->tx_lpi_timer = 0;
2852 
2853 	return 0;
2854 }
2855 
2856 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
2857 			   struct ethtool_eee *e)
2858 {
2859 	struct ksz_device *dev = ds->priv;
2860 	int ret;
2861 
2862 	ret = ksz_validate_eee(ds, port);
2863 	if (ret)
2864 		return ret;
2865 
2866 	if (!e->tx_lpi_enabled) {
2867 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
2868 		return -EINVAL;
2869 	}
2870 
2871 	if (e->tx_lpi_timer) {
2872 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
2873 		return -EINVAL;
2874 	}
2875 
2876 	return 0;
2877 }
2878 
2879 static void ksz_set_xmii(struct ksz_device *dev, int port,
2880 			 phy_interface_t interface)
2881 {
2882 	const u8 *bitval = dev->info->xmii_ctrl1;
2883 	struct ksz_port *p = &dev->ports[port];
2884 	const u16 *regs = dev->info->regs;
2885 	u8 data8;
2886 
2887 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2888 
2889 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
2890 		   P_RGMII_ID_EG_ENABLE);
2891 
2892 	switch (interface) {
2893 	case PHY_INTERFACE_MODE_MII:
2894 		data8 |= bitval[P_MII_SEL];
2895 		break;
2896 	case PHY_INTERFACE_MODE_RMII:
2897 		data8 |= bitval[P_RMII_SEL];
2898 		break;
2899 	case PHY_INTERFACE_MODE_GMII:
2900 		data8 |= bitval[P_GMII_SEL];
2901 		break;
2902 	case PHY_INTERFACE_MODE_RGMII:
2903 	case PHY_INTERFACE_MODE_RGMII_ID:
2904 	case PHY_INTERFACE_MODE_RGMII_TXID:
2905 	case PHY_INTERFACE_MODE_RGMII_RXID:
2906 		data8 |= bitval[P_RGMII_SEL];
2907 		/* On KSZ9893, disable RGMII in-band status support */
2908 		if (dev->chip_id == KSZ9893_CHIP_ID ||
2909 		    dev->chip_id == KSZ8563_CHIP_ID ||
2910 		    dev->chip_id == KSZ9563_CHIP_ID)
2911 			data8 &= ~P_MII_MAC_MODE;
2912 		break;
2913 	default:
2914 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
2915 			phy_modes(interface), port);
2916 		return;
2917 	}
2918 
2919 	if (p->rgmii_tx_val)
2920 		data8 |= P_RGMII_ID_EG_ENABLE;
2921 
2922 	if (p->rgmii_rx_val)
2923 		data8 |= P_RGMII_ID_IG_ENABLE;
2924 
2925 	/* Write the updated value */
2926 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
2927 }
2928 
2929 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
2930 {
2931 	const u8 *bitval = dev->info->xmii_ctrl1;
2932 	const u16 *regs = dev->info->regs;
2933 	phy_interface_t interface;
2934 	u8 data8;
2935 	u8 val;
2936 
2937 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2938 
2939 	val = FIELD_GET(P_MII_SEL_M, data8);
2940 
2941 	if (val == bitval[P_MII_SEL]) {
2942 		if (gbit)
2943 			interface = PHY_INTERFACE_MODE_GMII;
2944 		else
2945 			interface = PHY_INTERFACE_MODE_MII;
2946 	} else if (val == bitval[P_RMII_SEL]) {
2947 		interface = PHY_INTERFACE_MODE_RGMII;
2948 	} else {
2949 		interface = PHY_INTERFACE_MODE_RGMII;
2950 		if (data8 & P_RGMII_ID_EG_ENABLE)
2951 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
2952 		if (data8 & P_RGMII_ID_IG_ENABLE) {
2953 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
2954 			if (data8 & P_RGMII_ID_EG_ENABLE)
2955 				interface = PHY_INTERFACE_MODE_RGMII_ID;
2956 		}
2957 	}
2958 
2959 	return interface;
2960 }
2961 
2962 static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
2963 				   unsigned int mode,
2964 				   const struct phylink_link_state *state)
2965 {
2966 	struct ksz_device *dev = ds->priv;
2967 
2968 	if (ksz_is_ksz88x3(dev))
2969 		return;
2970 
2971 	/* Internal PHYs */
2972 	if (dev->info->internal_phy[port])
2973 		return;
2974 
2975 	if (phylink_autoneg_inband(mode)) {
2976 		dev_err(dev->dev, "In-band AN not supported!\n");
2977 		return;
2978 	}
2979 
2980 	ksz_set_xmii(dev, port, state->interface);
2981 
2982 	if (dev->dev_ops->phylink_mac_config)
2983 		dev->dev_ops->phylink_mac_config(dev, port, mode, state);
2984 
2985 	if (dev->dev_ops->setup_rgmii_delay)
2986 		dev->dev_ops->setup_rgmii_delay(dev, port);
2987 }
2988 
2989 bool ksz_get_gbit(struct ksz_device *dev, int port)
2990 {
2991 	const u8 *bitval = dev->info->xmii_ctrl1;
2992 	const u16 *regs = dev->info->regs;
2993 	bool gbit = false;
2994 	u8 data8;
2995 	bool val;
2996 
2997 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2998 
2999 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3000 
3001 	if (val == bitval[P_GMII_1GBIT])
3002 		gbit = true;
3003 
3004 	return gbit;
3005 }
3006 
3007 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3008 {
3009 	const u8 *bitval = dev->info->xmii_ctrl1;
3010 	const u16 *regs = dev->info->regs;
3011 	u8 data8;
3012 
3013 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3014 
3015 	data8 &= ~P_GMII_1GBIT_M;
3016 
3017 	if (gbit)
3018 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3019 	else
3020 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3021 
3022 	/* Write the updated value */
3023 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3024 }
3025 
3026 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3027 {
3028 	const u8 *bitval = dev->info->xmii_ctrl0;
3029 	const u16 *regs = dev->info->regs;
3030 	u8 data8;
3031 
3032 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3033 
3034 	data8 &= ~P_MII_100MBIT_M;
3035 
3036 	if (speed == SPEED_100)
3037 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3038 	else
3039 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3040 
3041 	/* Write the updated value */
3042 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3043 }
3044 
3045 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3046 {
3047 	if (speed == SPEED_1000)
3048 		ksz_set_gbit(dev, port, true);
3049 	else
3050 		ksz_set_gbit(dev, port, false);
3051 
3052 	if (speed == SPEED_100 || speed == SPEED_10)
3053 		ksz_set_100_10mbit(dev, port, speed);
3054 }
3055 
3056 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3057 				bool tx_pause, bool rx_pause)
3058 {
3059 	const u8 *bitval = dev->info->xmii_ctrl0;
3060 	const u32 *masks = dev->info->masks;
3061 	const u16 *regs = dev->info->regs;
3062 	u8 mask;
3063 	u8 val;
3064 
3065 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3066 	       masks[P_MII_RX_FLOW_CTRL];
3067 
3068 	if (duplex == DUPLEX_FULL)
3069 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3070 	else
3071 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3072 
3073 	if (tx_pause)
3074 		val |= masks[P_MII_TX_FLOW_CTRL];
3075 
3076 	if (rx_pause)
3077 		val |= masks[P_MII_RX_FLOW_CTRL];
3078 
3079 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3080 }
3081 
3082 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
3083 					unsigned int mode,
3084 					phy_interface_t interface,
3085 					struct phy_device *phydev, int speed,
3086 					int duplex, bool tx_pause,
3087 					bool rx_pause)
3088 {
3089 	struct ksz_port *p;
3090 
3091 	p = &dev->ports[port];
3092 
3093 	/* Internal PHYs */
3094 	if (dev->info->internal_phy[port])
3095 		return;
3096 
3097 	p->phydev.speed = speed;
3098 
3099 	ksz_port_set_xmii_speed(dev, port, speed);
3100 
3101 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3102 }
3103 
3104 static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
3105 				    unsigned int mode,
3106 				    phy_interface_t interface,
3107 				    struct phy_device *phydev, int speed,
3108 				    int duplex, bool tx_pause, bool rx_pause)
3109 {
3110 	struct ksz_device *dev = ds->priv;
3111 
3112 	if (dev->dev_ops->phylink_mac_link_up)
3113 		dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface,
3114 						  phydev, speed, duplex,
3115 						  tx_pause, rx_pause);
3116 }
3117 
3118 static int ksz_switch_detect(struct ksz_device *dev)
3119 {
3120 	u8 id1, id2, id4;
3121 	u16 id16;
3122 	u32 id32;
3123 	int ret;
3124 
3125 	/* read chip id */
3126 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3127 	if (ret)
3128 		return ret;
3129 
3130 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3131 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3132 
3133 	switch (id1) {
3134 	case KSZ87_FAMILY_ID:
3135 		if (id2 == KSZ87_CHIP_ID_95) {
3136 			u8 val;
3137 
3138 			dev->chip_id = KSZ8795_CHIP_ID;
3139 
3140 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3141 			if (val & KSZ8_PORT_FIBER_MODE)
3142 				dev->chip_id = KSZ8765_CHIP_ID;
3143 		} else if (id2 == KSZ87_CHIP_ID_94) {
3144 			dev->chip_id = KSZ8794_CHIP_ID;
3145 		} else {
3146 			return -ENODEV;
3147 		}
3148 		break;
3149 	case KSZ88_FAMILY_ID:
3150 		if (id2 == KSZ88_CHIP_ID_63)
3151 			dev->chip_id = KSZ8830_CHIP_ID;
3152 		else
3153 			return -ENODEV;
3154 		break;
3155 	default:
3156 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3157 		if (ret)
3158 			return ret;
3159 
3160 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3161 		id32 &= ~0xFF;
3162 
3163 		switch (id32) {
3164 		case KSZ9477_CHIP_ID:
3165 		case KSZ9896_CHIP_ID:
3166 		case KSZ9897_CHIP_ID:
3167 		case KSZ9567_CHIP_ID:
3168 		case LAN9370_CHIP_ID:
3169 		case LAN9371_CHIP_ID:
3170 		case LAN9372_CHIP_ID:
3171 		case LAN9373_CHIP_ID:
3172 		case LAN9374_CHIP_ID:
3173 			dev->chip_id = id32;
3174 			break;
3175 		case KSZ9893_CHIP_ID:
3176 			ret = ksz_read8(dev, REG_CHIP_ID4,
3177 					&id4);
3178 			if (ret)
3179 				return ret;
3180 
3181 			if (id4 == SKU_ID_KSZ8563)
3182 				dev->chip_id = KSZ8563_CHIP_ID;
3183 			else if (id4 == SKU_ID_KSZ9563)
3184 				dev->chip_id = KSZ9563_CHIP_ID;
3185 			else
3186 				dev->chip_id = KSZ9893_CHIP_ID;
3187 
3188 			break;
3189 		default:
3190 			dev_err(dev->dev,
3191 				"unsupported switch detected %x)\n", id32);
3192 			return -ENODEV;
3193 		}
3194 	}
3195 	return 0;
3196 }
3197 
3198 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3199 			      struct flow_cls_offload *cls, bool ingress)
3200 {
3201 	struct ksz_device *dev = ds->priv;
3202 
3203 	switch (dev->chip_id) {
3204 	case KSZ8563_CHIP_ID:
3205 	case KSZ9477_CHIP_ID:
3206 	case KSZ9563_CHIP_ID:
3207 	case KSZ9567_CHIP_ID:
3208 	case KSZ9893_CHIP_ID:
3209 	case KSZ9896_CHIP_ID:
3210 	case KSZ9897_CHIP_ID:
3211 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3212 	}
3213 
3214 	return -EOPNOTSUPP;
3215 }
3216 
3217 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3218 			      struct flow_cls_offload *cls, bool ingress)
3219 {
3220 	struct ksz_device *dev = ds->priv;
3221 
3222 	switch (dev->chip_id) {
3223 	case KSZ8563_CHIP_ID:
3224 	case KSZ9477_CHIP_ID:
3225 	case KSZ9563_CHIP_ID:
3226 	case KSZ9567_CHIP_ID:
3227 	case KSZ9893_CHIP_ID:
3228 	case KSZ9896_CHIP_ID:
3229 	case KSZ9897_CHIP_ID:
3230 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3231 	}
3232 
3233 	return -EOPNOTSUPP;
3234 }
3235 
3236 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3237  * is converted to Hex-decimal using the successive multiplication method. On
3238  * every step, integer part is taken and decimal part is carry forwarded.
3239  */
3240 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3241 {
3242 	u32 cinc = 0;
3243 	u32 txrate;
3244 	u32 rate;
3245 	u8 temp;
3246 	u8 i;
3247 
3248 	txrate = idle_slope - send_slope;
3249 
3250 	if (!txrate)
3251 		return -EINVAL;
3252 
3253 	rate = idle_slope;
3254 
3255 	/* 24 bit register */
3256 	for (i = 0; i < 6; i++) {
3257 		rate = rate * 16;
3258 
3259 		temp = rate / txrate;
3260 
3261 		rate %= txrate;
3262 
3263 		cinc = ((cinc << 4) | temp);
3264 	}
3265 
3266 	*bw = cinc;
3267 
3268 	return 0;
3269 }
3270 
3271 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3272 			     u8 shaper)
3273 {
3274 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3275 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3276 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3277 }
3278 
3279 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3280 			    struct tc_cbs_qopt_offload *qopt)
3281 {
3282 	struct ksz_device *dev = ds->priv;
3283 	int ret;
3284 	u32 bw;
3285 
3286 	if (!dev->info->tc_cbs_supported)
3287 		return -EOPNOTSUPP;
3288 
3289 	if (qopt->queue > dev->info->num_tx_queues)
3290 		return -EINVAL;
3291 
3292 	/* Queue Selection */
3293 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3294 	if (ret)
3295 		return ret;
3296 
3297 	if (!qopt->enable)
3298 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3299 					 MTI_SHAPING_OFF);
3300 
3301 	/* High Credit */
3302 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3303 			   qopt->hicredit);
3304 	if (ret)
3305 		return ret;
3306 
3307 	/* Low Credit */
3308 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3309 			   qopt->locredit);
3310 	if (ret)
3311 		return ret;
3312 
3313 	/* Credit Increment Register */
3314 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3315 	if (ret)
3316 		return ret;
3317 
3318 	if (dev->dev_ops->tc_cbs_set_cinc) {
3319 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3320 		if (ret)
3321 			return ret;
3322 	}
3323 
3324 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3325 				 MTI_SHAPING_SRP);
3326 }
3327 
3328 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3329 {
3330 	int queue, ret;
3331 
3332 	/* Configuration will not take effect until the last Port Queue X
3333 	 * Egress Limit Control Register is written.
3334 	 */
3335 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3336 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3337 				  KSZ9477_OUT_RATE_NO_LIMIT);
3338 		if (ret)
3339 			return ret;
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3346 				 int band)
3347 {
3348 	/* Compared to queues, bands prioritize packets differently. In strict
3349 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3350 	 * highest priority is given to Band 0.
3351 	 */
3352 	return p->bands - 1 - band;
3353 }
3354 
3355 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3356 {
3357 	int ret;
3358 
3359 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3360 	if (ret)
3361 		return ret;
3362 
3363 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3364 				 MTI_SHAPING_OFF);
3365 }
3366 
3367 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3368 			     int weight)
3369 {
3370 	int ret;
3371 
3372 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3373 	if (ret)
3374 		return ret;
3375 
3376 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3377 				MTI_SHAPING_OFF);
3378 	if (ret)
3379 		return ret;
3380 
3381 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3382 }
3383 
3384 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3385 			  struct tc_ets_qopt_offload_replace_params *p)
3386 {
3387 	int ret, band, tc_prio;
3388 	u32 queue_map = 0;
3389 
3390 	/* In order to ensure proper prioritization, it is necessary to set the
3391 	 * rate limit for the related queue to zero. Otherwise strict priority
3392 	 * or WRR mode will not work. This is a hardware limitation.
3393 	 */
3394 	ret = ksz_disable_egress_rate_limit(dev, port);
3395 	if (ret)
3396 		return ret;
3397 
3398 	/* Configure queue scheduling mode for all bands. Currently only strict
3399 	 * prio mode is supported.
3400 	 */
3401 	for (band = 0; band < p->bands; band++) {
3402 		int queue = ksz_ets_band_to_queue(p, band);
3403 
3404 		ret = ksz_queue_set_strict(dev, port, queue);
3405 		if (ret)
3406 			return ret;
3407 	}
3408 
3409 	/* Configure the mapping between traffic classes and queues. Note:
3410 	 * priomap variable support 16 traffic classes, but the chip can handle
3411 	 * only 8 classes.
3412 	 */
3413 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3414 		int queue;
3415 
3416 		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3417 			break;
3418 
3419 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3420 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3421 	}
3422 
3423 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3424 }
3425 
3426 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3427 {
3428 	int ret, queue, tc_prio, s;
3429 	u32 queue_map = 0;
3430 
3431 	/* To restore the default chip configuration, set all queues to use the
3432 	 * WRR scheduler with a weight of 1.
3433 	 */
3434 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3435 		ret = ksz_queue_set_wrr(dev, port, queue,
3436 					KSZ9477_DEFAULT_WRR_WEIGHT);
3437 		if (ret)
3438 			return ret;
3439 	}
3440 
3441 	switch (dev->info->num_tx_queues) {
3442 	case 2:
3443 		s = 2;
3444 		break;
3445 	case 4:
3446 		s = 1;
3447 		break;
3448 	case 8:
3449 		s = 0;
3450 		break;
3451 	default:
3452 		return -EINVAL;
3453 	}
3454 
3455 	/* Revert the queue mapping for TC-priority to its default setting on
3456 	 * the chip.
3457 	 */
3458 	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3459 		int queue;
3460 
3461 		queue = tc_prio >> s;
3462 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3463 	}
3464 
3465 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3466 }
3467 
3468 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3469 			       struct tc_ets_qopt_offload_replace_params *p)
3470 {
3471 	int band;
3472 
3473 	/* Since it is not feasible to share one port among multiple qdisc,
3474 	 * the user must configure all available queues appropriately.
3475 	 */
3476 	if (p->bands != dev->info->num_tx_queues) {
3477 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3478 			dev->info->num_tx_queues);
3479 		return -EOPNOTSUPP;
3480 	}
3481 
3482 	for (band = 0; band < p->bands; ++band) {
3483 		/* The KSZ switches utilize a weighted round robin configuration
3484 		 * where a certain number of packets can be transmitted from a
3485 		 * queue before the next queue is serviced. For more information
3486 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3487 		 * documentation on the Port Transmit Queue Control 1 Register.
3488 		 * However, the current ETS Qdisc implementation (as of February
3489 		 * 2023) assigns a weight to each queue based on the number of
3490 		 * bytes or extrapolated bandwidth in percentages. Since this
3491 		 * differs from the KSZ switches' method and we don't want to
3492 		 * fake support by converting bytes to packets, it is better to
3493 		 * return an error instead.
3494 		 */
3495 		if (p->quanta[band]) {
3496 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3497 			return -EOPNOTSUPP;
3498 		}
3499 	}
3500 
3501 	return 0;
3502 }
3503 
3504 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3505 				  struct tc_ets_qopt_offload *qopt)
3506 {
3507 	struct ksz_device *dev = ds->priv;
3508 	int ret;
3509 
3510 	if (!dev->info->tc_ets_supported)
3511 		return -EOPNOTSUPP;
3512 
3513 	if (qopt->parent != TC_H_ROOT) {
3514 		dev_err(dev->dev, "Parent should be \"root\"\n");
3515 		return -EOPNOTSUPP;
3516 	}
3517 
3518 	switch (qopt->command) {
3519 	case TC_ETS_REPLACE:
3520 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3521 		if (ret)
3522 			return ret;
3523 
3524 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3525 	case TC_ETS_DESTROY:
3526 		return ksz_tc_ets_del(dev, port);
3527 	case TC_ETS_STATS:
3528 	case TC_ETS_GRAFT:
3529 		return -EOPNOTSUPP;
3530 	}
3531 
3532 	return -EOPNOTSUPP;
3533 }
3534 
3535 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3536 			enum tc_setup_type type, void *type_data)
3537 {
3538 	switch (type) {
3539 	case TC_SETUP_QDISC_CBS:
3540 		return ksz_setup_tc_cbs(ds, port, type_data);
3541 	case TC_SETUP_QDISC_ETS:
3542 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3543 	default:
3544 		return -EOPNOTSUPP;
3545 	}
3546 }
3547 
3548 static void ksz_get_wol(struct dsa_switch *ds, int port,
3549 			struct ethtool_wolinfo *wol)
3550 {
3551 	struct ksz_device *dev = ds->priv;
3552 
3553 	if (dev->dev_ops->get_wol)
3554 		dev->dev_ops->get_wol(dev, port, wol);
3555 }
3556 
3557 static int ksz_set_wol(struct dsa_switch *ds, int port,
3558 		       struct ethtool_wolinfo *wol)
3559 {
3560 	struct ksz_device *dev = ds->priv;
3561 
3562 	if (dev->dev_ops->set_wol)
3563 		return dev->dev_ops->set_wol(dev, port, wol);
3564 
3565 	return -EOPNOTSUPP;
3566 }
3567 
3568 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3569 				    const unsigned char *addr)
3570 {
3571 	struct dsa_port *dp = dsa_to_port(ds, port);
3572 	struct ethtool_wolinfo wol;
3573 
3574 	if (dp->hsr_dev) {
3575 		dev_err(ds->dev,
3576 			"Cannot change MAC address on port %d with active HSR offload\n",
3577 			port);
3578 		return -EBUSY;
3579 	}
3580 
3581 	ksz_get_wol(ds, dp->index, &wol);
3582 	if (wol.wolopts & WAKE_MAGIC) {
3583 		dev_err(ds->dev,
3584 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3585 			port);
3586 		return -EBUSY;
3587 	}
3588 
3589 	return 0;
3590 }
3591 
3592 /**
3593  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3594  *                                 can be used as a global address.
3595  * @ds: Pointer to the DSA switch structure.
3596  * @port: The port number on which the MAC address is to be checked.
3597  *
3598  * This function examines the MAC address set on the specified port and
3599  * determines if it can be used as a global address for the switch.
3600  *
3601  * Return: true if the port's MAC address can be used as a global address, false
3602  * otherwise.
3603  */
3604 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3605 {
3606 	struct net_device *user = dsa_to_port(ds, port)->user;
3607 	const unsigned char *addr = user->dev_addr;
3608 	struct ksz_switch_macaddr *switch_macaddr;
3609 	struct ksz_device *dev = ds->priv;
3610 
3611 	ASSERT_RTNL();
3612 
3613 	switch_macaddr = dev->switch_macaddr;
3614 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3615 		return false;
3616 
3617 	return true;
3618 }
3619 
3620 /**
3621  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3622  * @ds: DSA switch instance.
3623  * @port: Port number.
3624  * @extack: Netlink extended acknowledgment.
3625  *
3626  * This function programs the switch's MAC address register with the MAC address
3627  * of the requesting user port. This single address is used by the switch for
3628  * multiple features like HSR self-address filtering and WoL. Other user ports
3629  * can share ownership of this address as long as their MAC address is the same.
3630  * The MAC addresses of user ports must not change while they have ownership of
3631  * the switch MAC address.
3632  *
3633  * Return: 0 on success, or other error codes on failure.
3634  */
3635 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3636 			   struct netlink_ext_ack *extack)
3637 {
3638 	struct net_device *user = dsa_to_port(ds, port)->user;
3639 	const unsigned char *addr = user->dev_addr;
3640 	struct ksz_switch_macaddr *switch_macaddr;
3641 	struct ksz_device *dev = ds->priv;
3642 	const u16 *regs = dev->info->regs;
3643 	int i, ret;
3644 
3645 	/* Make sure concurrent MAC address changes are blocked */
3646 	ASSERT_RTNL();
3647 
3648 	switch_macaddr = dev->switch_macaddr;
3649 	if (switch_macaddr) {
3650 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3651 			NL_SET_ERR_MSG_FMT_MOD(extack,
3652 					       "Switch already configured for MAC address %pM",
3653 					       switch_macaddr->addr);
3654 			return -EBUSY;
3655 		}
3656 
3657 		refcount_inc(&switch_macaddr->refcount);
3658 		return 0;
3659 	}
3660 
3661 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3662 	if (!switch_macaddr)
3663 		return -ENOMEM;
3664 
3665 	ether_addr_copy(switch_macaddr->addr, addr);
3666 	refcount_set(&switch_macaddr->refcount, 1);
3667 	dev->switch_macaddr = switch_macaddr;
3668 
3669 	/* Program the switch MAC address to hardware */
3670 	for (i = 0; i < ETH_ALEN; i++) {
3671 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3672 		if (ret)
3673 			goto macaddr_drop;
3674 	}
3675 
3676 	return 0;
3677 
3678 macaddr_drop:
3679 	dev->switch_macaddr = NULL;
3680 	refcount_set(&switch_macaddr->refcount, 0);
3681 	kfree(switch_macaddr);
3682 
3683 	return ret;
3684 }
3685 
3686 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3687 {
3688 	struct ksz_switch_macaddr *switch_macaddr;
3689 	struct ksz_device *dev = ds->priv;
3690 	const u16 *regs = dev->info->regs;
3691 	int i;
3692 
3693 	/* Make sure concurrent MAC address changes are blocked */
3694 	ASSERT_RTNL();
3695 
3696 	switch_macaddr = dev->switch_macaddr;
3697 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3698 		return;
3699 
3700 	for (i = 0; i < ETH_ALEN; i++)
3701 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3702 
3703 	dev->switch_macaddr = NULL;
3704 	kfree(switch_macaddr);
3705 }
3706 
3707 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3708 			struct netlink_ext_ack *extack)
3709 {
3710 	struct ksz_device *dev = ds->priv;
3711 	enum hsr_version ver;
3712 	int ret;
3713 
3714 	ret = hsr_get_version(hsr, &ver);
3715 	if (ret)
3716 		return ret;
3717 
3718 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3719 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3720 		return -EOPNOTSUPP;
3721 	}
3722 
3723 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3724 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3725 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3726 		return -EOPNOTSUPP;
3727 	}
3728 
3729 	/* KSZ9477 only supports HSR v0 and v1 */
3730 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3731 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3732 		return -EOPNOTSUPP;
3733 	}
3734 
3735 	/* Self MAC address filtering, to avoid frames traversing
3736 	 * the HSR ring more than once.
3737 	 */
3738 	ret = ksz_switch_macaddr_get(ds, port, extack);
3739 	if (ret)
3740 		return ret;
3741 
3742 	ksz9477_hsr_join(ds, port, hsr);
3743 	dev->hsr_dev = hsr;
3744 	dev->hsr_ports |= BIT(port);
3745 
3746 	return 0;
3747 }
3748 
3749 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3750 			 struct net_device *hsr)
3751 {
3752 	struct ksz_device *dev = ds->priv;
3753 
3754 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3755 
3756 	ksz9477_hsr_leave(ds, port, hsr);
3757 	dev->hsr_ports &= ~BIT(port);
3758 	if (!dev->hsr_ports)
3759 		dev->hsr_dev = NULL;
3760 
3761 	ksz_switch_macaddr_put(ds);
3762 
3763 	return 0;
3764 }
3765 
3766 static const struct dsa_switch_ops ksz_switch_ops = {
3767 	.get_tag_protocol	= ksz_get_tag_protocol,
3768 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3769 	.get_phy_flags		= ksz_get_phy_flags,
3770 	.setup			= ksz_setup,
3771 	.teardown		= ksz_teardown,
3772 	.phy_read		= ksz_phy_read16,
3773 	.phy_write		= ksz_phy_write16,
3774 	.phylink_get_caps	= ksz_phylink_get_caps,
3775 	.phylink_mac_config	= ksz_phylink_mac_config,
3776 	.phylink_mac_link_up	= ksz_phylink_mac_link_up,
3777 	.phylink_mac_link_down	= ksz_mac_link_down,
3778 	.port_setup		= ksz_port_setup,
3779 	.set_ageing_time	= ksz_set_ageing_time,
3780 	.get_strings		= ksz_get_strings,
3781 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3782 	.get_sset_count		= ksz_sset_count,
3783 	.port_bridge_join	= ksz_port_bridge_join,
3784 	.port_bridge_leave	= ksz_port_bridge_leave,
3785 	.port_hsr_join		= ksz_hsr_join,
3786 	.port_hsr_leave		= ksz_hsr_leave,
3787 	.port_set_mac_address	= ksz_port_set_mac_address,
3788 	.port_stp_state_set	= ksz_port_stp_state_set,
3789 	.port_teardown		= ksz_port_teardown,
3790 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3791 	.port_bridge_flags	= ksz_port_bridge_flags,
3792 	.port_fast_age		= ksz_port_fast_age,
3793 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3794 	.port_vlan_add		= ksz_port_vlan_add,
3795 	.port_vlan_del		= ksz_port_vlan_del,
3796 	.port_fdb_dump		= ksz_port_fdb_dump,
3797 	.port_fdb_add		= ksz_port_fdb_add,
3798 	.port_fdb_del		= ksz_port_fdb_del,
3799 	.port_mdb_add           = ksz_port_mdb_add,
3800 	.port_mdb_del           = ksz_port_mdb_del,
3801 	.port_mirror_add	= ksz_port_mirror_add,
3802 	.port_mirror_del	= ksz_port_mirror_del,
3803 	.get_stats64		= ksz_get_stats64,
3804 	.get_pause_stats	= ksz_get_pause_stats,
3805 	.port_change_mtu	= ksz_change_mtu,
3806 	.port_max_mtu		= ksz_max_mtu,
3807 	.get_wol		= ksz_get_wol,
3808 	.set_wol		= ksz_set_wol,
3809 	.get_ts_info		= ksz_get_ts_info,
3810 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3811 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3812 	.port_txtstamp		= ksz_port_txtstamp,
3813 	.port_rxtstamp		= ksz_port_rxtstamp,
3814 	.cls_flower_add		= ksz_cls_flower_add,
3815 	.cls_flower_del		= ksz_cls_flower_del,
3816 	.port_setup_tc		= ksz_setup_tc,
3817 	.get_mac_eee		= ksz_get_mac_eee,
3818 	.set_mac_eee		= ksz_set_mac_eee,
3819 };
3820 
3821 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3822 {
3823 	struct dsa_switch *ds;
3824 	struct ksz_device *swdev;
3825 
3826 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3827 	if (!ds)
3828 		return NULL;
3829 
3830 	ds->dev = base;
3831 	ds->num_ports = DSA_MAX_PORTS;
3832 	ds->ops = &ksz_switch_ops;
3833 
3834 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3835 	if (!swdev)
3836 		return NULL;
3837 
3838 	ds->priv = swdev;
3839 	swdev->dev = base;
3840 
3841 	swdev->ds = ds;
3842 	swdev->priv = priv;
3843 
3844 	return swdev;
3845 }
3846 EXPORT_SYMBOL(ksz_switch_alloc);
3847 
3848 /**
3849  * ksz_switch_shutdown - Shutdown routine for the switch device.
3850  * @dev: The switch device structure.
3851  *
3852  * This function is responsible for initiating a shutdown sequence for the
3853  * switch device. It invokes the reset operation defined in the device
3854  * operations, if available, to reset the switch. Subsequently, it calls the
3855  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
3856  * switch.
3857  */
3858 void ksz_switch_shutdown(struct ksz_device *dev)
3859 {
3860 	if (dev->dev_ops->reset)
3861 		dev->dev_ops->reset(dev);
3862 
3863 	dsa_switch_shutdown(dev->ds);
3864 }
3865 EXPORT_SYMBOL(ksz_switch_shutdown);
3866 
3867 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
3868 				  struct device_node *port_dn)
3869 {
3870 	phy_interface_t phy_mode = dev->ports[port_num].interface;
3871 	int rx_delay = -1, tx_delay = -1;
3872 
3873 	if (!phy_interface_mode_is_rgmii(phy_mode))
3874 		return;
3875 
3876 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
3877 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
3878 
3879 	if (rx_delay == -1 && tx_delay == -1) {
3880 		dev_warn(dev->dev,
3881 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
3882 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
3883 			 "\"tx-internal-delay-ps\"",
3884 			 port_num);
3885 
3886 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
3887 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3888 			rx_delay = 2000;
3889 
3890 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
3891 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3892 			tx_delay = 2000;
3893 	}
3894 
3895 	if (rx_delay < 0)
3896 		rx_delay = 0;
3897 	if (tx_delay < 0)
3898 		tx_delay = 0;
3899 
3900 	dev->ports[port_num].rgmii_rx_val = rx_delay;
3901 	dev->ports[port_num].rgmii_tx_val = tx_delay;
3902 }
3903 
3904 /**
3905  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
3906  *				 register value.
3907  * @array:	The array of drive strength values to search.
3908  * @array_size:	The size of the array.
3909  * @microamp:	The drive strength value in microamp to be converted.
3910  *
3911  * This function searches the array of drive strength values for the given
3912  * microamp value and returns the corresponding register value for that drive.
3913  *
3914  * Returns: If found, the corresponding register value for that drive strength
3915  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
3916  */
3917 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
3918 				     size_t array_size, int microamp)
3919 {
3920 	int i;
3921 
3922 	for (i = 0; i < array_size; i++) {
3923 		if (array[i].microamp == microamp)
3924 			return array[i].reg_val;
3925 	}
3926 
3927 	return -EINVAL;
3928 }
3929 
3930 /**
3931  * ksz_drive_strength_error() - Report invalid drive strength value
3932  * @dev:	ksz device
3933  * @array:	The array of drive strength values to search.
3934  * @array_size:	The size of the array.
3935  * @microamp:	Invalid drive strength value in microamp
3936  *
3937  * This function logs an error message when an unsupported drive strength value
3938  * is detected. It lists out all the supported drive strength values for
3939  * reference in the error message.
3940  */
3941 static void ksz_drive_strength_error(struct ksz_device *dev,
3942 				     const struct ksz_drive_strength *array,
3943 				     size_t array_size, int microamp)
3944 {
3945 	char supported_values[100];
3946 	size_t remaining_size;
3947 	int added_len;
3948 	char *ptr;
3949 	int i;
3950 
3951 	remaining_size = sizeof(supported_values);
3952 	ptr = supported_values;
3953 
3954 	for (i = 0; i < array_size; i++) {
3955 		added_len = snprintf(ptr, remaining_size,
3956 				     i == 0 ? "%d" : ", %d", array[i].microamp);
3957 
3958 		if (added_len >= remaining_size)
3959 			break;
3960 
3961 		ptr += added_len;
3962 		remaining_size -= added_len;
3963 	}
3964 
3965 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
3966 		microamp, supported_values);
3967 }
3968 
3969 /**
3970  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
3971  *				    chip variants.
3972  * @dev:       ksz device
3973  * @props:     Array of drive strength properties to be applied
3974  * @num_props: Number of properties in the array
3975  *
3976  * This function configures the drive strength for various KSZ9477 chip variants
3977  * based on the provided properties. It handles chip-specific nuances and
3978  * ensures only valid drive strengths are written to the respective chip.
3979  *
3980  * Return: 0 on successful configuration, a negative error code on failure.
3981  */
3982 static int ksz9477_drive_strength_write(struct ksz_device *dev,
3983 					struct ksz_driver_strength_prop *props,
3984 					int num_props)
3985 {
3986 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
3987 	int i, ret, reg;
3988 	u8 mask = 0;
3989 	u8 val = 0;
3990 
3991 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
3992 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
3993 			 props[KSZ_DRIVER_STRENGTH_IO].name);
3994 
3995 	if (dev->chip_id == KSZ8795_CHIP_ID ||
3996 	    dev->chip_id == KSZ8794_CHIP_ID ||
3997 	    dev->chip_id == KSZ8765_CHIP_ID)
3998 		reg = KSZ8795_REG_SW_CTRL_20;
3999 	else
4000 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4001 
4002 	for (i = 0; i < num_props; i++) {
4003 		if (props[i].value == -1)
4004 			continue;
4005 
4006 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4007 						array_size, props[i].value);
4008 		if (ret < 0) {
4009 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4010 						 array_size, props[i].value);
4011 			return ret;
4012 		}
4013 
4014 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4015 		val |= ret << props[i].offset;
4016 	}
4017 
4018 	return ksz_rmw8(dev, reg, mask, val);
4019 }
4020 
4021 /**
4022  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4023  *				    KSZ8830 compatible chip variants.
4024  * @dev:       ksz device
4025  * @props:     Array of drive strength properties to be set
4026  * @num_props: Number of properties in the array
4027  *
4028  * This function applies the specified drive strength settings to KSZ8830 chip
4029  * variants (KSZ8873, KSZ8863).
4030  * It ensures the configurations align with what the chip variant supports and
4031  * warns or errors out on unsupported settings.
4032  *
4033  * Return: 0 on success, error code otherwise
4034  */
4035 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4036 					struct ksz_driver_strength_prop *props,
4037 					int num_props)
4038 {
4039 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4040 	int microamp;
4041 	int i, ret;
4042 
4043 	for (i = 0; i < num_props; i++) {
4044 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4045 			continue;
4046 
4047 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4048 			 props[i].name);
4049 	}
4050 
4051 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4052 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4053 					microamp);
4054 	if (ret < 0) {
4055 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4056 					 array_size, microamp);
4057 		return ret;
4058 	}
4059 
4060 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4061 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4062 }
4063 
4064 /**
4065  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4066  *				from device tree properties.
4067  * @dev:	ksz device
4068  *
4069  * This function reads the specified drive strength properties from the
4070  * device tree, validates against the supported chip variants, and sets
4071  * them accordingly. An error should be critical here, as the drive strength
4072  * settings are crucial for EMI compliance.
4073  *
4074  * Return: 0 on success, error code otherwise
4075  */
4076 static int ksz_parse_drive_strength(struct ksz_device *dev)
4077 {
4078 	struct ksz_driver_strength_prop of_props[] = {
4079 		[KSZ_DRIVER_STRENGTH_HI] = {
4080 			.name = "microchip,hi-drive-strength-microamp",
4081 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4082 			.value = -1,
4083 		},
4084 		[KSZ_DRIVER_STRENGTH_LO] = {
4085 			.name = "microchip,lo-drive-strength-microamp",
4086 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4087 			.value = -1,
4088 		},
4089 		[KSZ_DRIVER_STRENGTH_IO] = {
4090 			.name = "microchip,io-drive-strength-microamp",
4091 			.offset = 0, /* don't care */
4092 			.value = -1,
4093 		},
4094 	};
4095 	struct device_node *np = dev->dev->of_node;
4096 	bool have_any_prop = false;
4097 	int i, ret;
4098 
4099 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4100 		ret = of_property_read_u32(np, of_props[i].name,
4101 					   &of_props[i].value);
4102 		if (ret && ret != -EINVAL)
4103 			dev_warn(dev->dev, "Failed to read %s\n",
4104 				 of_props[i].name);
4105 		if (ret)
4106 			continue;
4107 
4108 		have_any_prop = true;
4109 	}
4110 
4111 	if (!have_any_prop)
4112 		return 0;
4113 
4114 	switch (dev->chip_id) {
4115 	case KSZ8830_CHIP_ID:
4116 		return ksz8830_drive_strength_write(dev, of_props,
4117 						    ARRAY_SIZE(of_props));
4118 	case KSZ8795_CHIP_ID:
4119 	case KSZ8794_CHIP_ID:
4120 	case KSZ8765_CHIP_ID:
4121 	case KSZ8563_CHIP_ID:
4122 	case KSZ9477_CHIP_ID:
4123 	case KSZ9563_CHIP_ID:
4124 	case KSZ9567_CHIP_ID:
4125 	case KSZ9893_CHIP_ID:
4126 	case KSZ9896_CHIP_ID:
4127 	case KSZ9897_CHIP_ID:
4128 		return ksz9477_drive_strength_write(dev, of_props,
4129 						    ARRAY_SIZE(of_props));
4130 	default:
4131 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4132 			if (of_props[i].value == -1)
4133 				continue;
4134 
4135 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4136 				 of_props[i].name);
4137 		}
4138 	}
4139 
4140 	return 0;
4141 }
4142 
4143 int ksz_switch_register(struct ksz_device *dev)
4144 {
4145 	const struct ksz_chip_data *info;
4146 	struct device_node *port, *ports;
4147 	phy_interface_t interface;
4148 	unsigned int port_num;
4149 	int ret;
4150 	int i;
4151 
4152 	if (dev->pdata)
4153 		dev->chip_id = dev->pdata->chip_id;
4154 
4155 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4156 						  GPIOD_OUT_LOW);
4157 	if (IS_ERR(dev->reset_gpio))
4158 		return PTR_ERR(dev->reset_gpio);
4159 
4160 	if (dev->reset_gpio) {
4161 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4162 		usleep_range(10000, 12000);
4163 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4164 		msleep(100);
4165 	}
4166 
4167 	mutex_init(&dev->dev_mutex);
4168 	mutex_init(&dev->regmap_mutex);
4169 	mutex_init(&dev->alu_mutex);
4170 	mutex_init(&dev->vlan_mutex);
4171 
4172 	ret = ksz_switch_detect(dev);
4173 	if (ret)
4174 		return ret;
4175 
4176 	info = ksz_lookup_info(dev->chip_id);
4177 	if (!info)
4178 		return -ENODEV;
4179 
4180 	/* Update the compatible info with the probed one */
4181 	dev->info = info;
4182 
4183 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4184 		 dev->info->dev_name, dev->chip_rev);
4185 
4186 	ret = ksz_check_device_id(dev);
4187 	if (ret)
4188 		return ret;
4189 
4190 	dev->dev_ops = dev->info->ops;
4191 
4192 	ret = dev->dev_ops->init(dev);
4193 	if (ret)
4194 		return ret;
4195 
4196 	dev->ports = devm_kzalloc(dev->dev,
4197 				  dev->info->port_cnt * sizeof(struct ksz_port),
4198 				  GFP_KERNEL);
4199 	if (!dev->ports)
4200 		return -ENOMEM;
4201 
4202 	for (i = 0; i < dev->info->port_cnt; i++) {
4203 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4204 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4205 		dev->ports[i].mib.counters =
4206 			devm_kzalloc(dev->dev,
4207 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4208 				     GFP_KERNEL);
4209 		if (!dev->ports[i].mib.counters)
4210 			return -ENOMEM;
4211 
4212 		dev->ports[i].ksz_dev = dev;
4213 		dev->ports[i].num = i;
4214 	}
4215 
4216 	/* set the real number of ports */
4217 	dev->ds->num_ports = dev->info->port_cnt;
4218 
4219 	/* Host port interface will be self detected, or specifically set in
4220 	 * device tree.
4221 	 */
4222 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4223 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4224 	if (dev->dev->of_node) {
4225 		ret = ksz_parse_drive_strength(dev);
4226 		if (ret)
4227 			return ret;
4228 
4229 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4230 		if (ret == 0)
4231 			dev->compat_interface = interface;
4232 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4233 		if (!ports)
4234 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4235 		if (ports) {
4236 			for_each_available_child_of_node(ports, port) {
4237 				if (of_property_read_u32(port, "reg",
4238 							 &port_num))
4239 					continue;
4240 				if (!(dev->port_mask & BIT(port_num))) {
4241 					of_node_put(port);
4242 					of_node_put(ports);
4243 					return -EINVAL;
4244 				}
4245 				of_get_phy_mode(port,
4246 						&dev->ports[port_num].interface);
4247 
4248 				ksz_parse_rgmii_delay(dev, port_num, port);
4249 			}
4250 			of_node_put(ports);
4251 		}
4252 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4253 							 "microchip,synclko-125");
4254 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4255 							     "microchip,synclko-disable");
4256 		if (dev->synclko_125 && dev->synclko_disable) {
4257 			dev_err(dev->dev, "inconsistent synclko settings\n");
4258 			return -EINVAL;
4259 		}
4260 
4261 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4262 							   "wakeup-source");
4263 	}
4264 
4265 	ret = dsa_register_switch(dev->ds);
4266 	if (ret) {
4267 		dev->dev_ops->exit(dev);
4268 		return ret;
4269 	}
4270 
4271 	/* Read MIB counters every 30 seconds to avoid overflow. */
4272 	dev->mib_read_interval = msecs_to_jiffies(5000);
4273 
4274 	/* Start the MIB timer. */
4275 	schedule_delayed_work(&dev->mib_read, 0);
4276 
4277 	return ret;
4278 }
4279 EXPORT_SYMBOL(ksz_switch_register);
4280 
4281 void ksz_switch_remove(struct ksz_device *dev)
4282 {
4283 	/* timer started */
4284 	if (dev->mib_read_interval) {
4285 		dev->mib_read_interval = 0;
4286 		cancel_delayed_work_sync(&dev->mib_read);
4287 	}
4288 
4289 	dev->dev_ops->exit(dev);
4290 	dsa_unregister_switch(dev->ds);
4291 
4292 	if (dev->reset_gpio)
4293 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4294 
4295 }
4296 EXPORT_SYMBOL(ksz_switch_remove);
4297 
4298 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4299 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4300 MODULE_LICENSE("GPL");
4301