xref: /linux/drivers/net/ethernet/amd/xgbe/xgbe-dev.c (revision d6fd48ef)
1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 #include <linux/crc32poly.h>
123 
124 #include "xgbe.h"
125 #include "xgbe-common.h"
126 
127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
128 {
129 	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
130 }
131 
132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133 				      unsigned int usec)
134 {
135 	unsigned long rate;
136 	unsigned int ret;
137 
138 	DBGPR("-->xgbe_usec_to_riwt\n");
139 
140 	rate = pdata->sysclk_rate;
141 
142 	/*
143 	 * Convert the input usec value to the watchdog timer value. Each
144 	 * watchdog timer value is equivalent to 256 clock cycles.
145 	 * Calculate the required value as:
146 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
147 	 */
148 	ret = (usec * (rate / 1000000)) / 256;
149 
150 	DBGPR("<--xgbe_usec_to_riwt\n");
151 
152 	return ret;
153 }
154 
155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156 				      unsigned int riwt)
157 {
158 	unsigned long rate;
159 	unsigned int ret;
160 
161 	DBGPR("-->xgbe_riwt_to_usec\n");
162 
163 	rate = pdata->sysclk_rate;
164 
165 	/*
166 	 * Convert the input watchdog timer value to the usec value. Each
167 	 * watchdog timer value is equivalent to 256 clock cycles.
168 	 * Calculate the required value as:
169 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
170 	 */
171 	ret = (riwt * 256) / (rate / 1000000);
172 
173 	DBGPR("<--xgbe_riwt_to_usec\n");
174 
175 	return ret;
176 }
177 
178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
179 {
180 	unsigned int pblx8, pbl;
181 	unsigned int i;
182 
183 	pblx8 = DMA_PBL_X8_DISABLE;
184 	pbl = pdata->pbl;
185 
186 	if (pdata->pbl > 32) {
187 		pblx8 = DMA_PBL_X8_ENABLE;
188 		pbl >>= 3;
189 	}
190 
191 	for (i = 0; i < pdata->channel_count; i++) {
192 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193 				       pblx8);
194 
195 		if (pdata->channel[i]->tx_ring)
196 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197 					       PBL, pbl);
198 
199 		if (pdata->channel[i]->rx_ring)
200 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201 					       PBL, pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < pdata->channel_count; i++) {
212 		if (!pdata->channel[i]->tx_ring)
213 			break;
214 
215 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216 				       pdata->tx_osp_mode);
217 	}
218 
219 	return 0;
220 }
221 
222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
223 {
224 	unsigned int i;
225 
226 	for (i = 0; i < pdata->rx_q_count; i++)
227 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
228 
229 	return 0;
230 }
231 
232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 	unsigned int i;
235 
236 	for (i = 0; i < pdata->tx_q_count; i++)
237 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
238 
239 	return 0;
240 }
241 
242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243 				    unsigned int val)
244 {
245 	unsigned int i;
246 
247 	for (i = 0; i < pdata->rx_q_count; i++)
248 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
249 
250 	return 0;
251 }
252 
253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254 				    unsigned int val)
255 {
256 	unsigned int i;
257 
258 	for (i = 0; i < pdata->tx_q_count; i++)
259 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
260 
261 	return 0;
262 }
263 
264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
265 {
266 	unsigned int i;
267 
268 	for (i = 0; i < pdata->channel_count; i++) {
269 		if (!pdata->channel[i]->rx_ring)
270 			break;
271 
272 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273 				       pdata->rx_riwt);
274 	}
275 
276 	return 0;
277 }
278 
279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
280 {
281 	return 0;
282 }
283 
284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
285 {
286 	unsigned int i;
287 
288 	for (i = 0; i < pdata->channel_count; i++) {
289 		if (!pdata->channel[i]->rx_ring)
290 			break;
291 
292 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293 				       pdata->rx_buf_size);
294 	}
295 }
296 
297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
298 {
299 	unsigned int i;
300 
301 	for (i = 0; i < pdata->channel_count; i++) {
302 		if (!pdata->channel[i]->tx_ring)
303 			break;
304 
305 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
306 	}
307 }
308 
309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
310 {
311 	unsigned int i;
312 
313 	for (i = 0; i < pdata->channel_count; i++) {
314 		if (!pdata->channel[i]->rx_ring)
315 			break;
316 
317 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
318 	}
319 
320 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
321 }
322 
323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324 			      unsigned int index, unsigned int val)
325 {
326 	unsigned int wait;
327 	int ret = 0;
328 
329 	mutex_lock(&pdata->rss_mutex);
330 
331 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332 		ret = -EBUSY;
333 		goto unlock;
334 	}
335 
336 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
337 
338 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
342 
343 	wait = 1000;
344 	while (wait--) {
345 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346 			goto unlock;
347 
348 		usleep_range(1000, 1500);
349 	}
350 
351 	ret = -EBUSY;
352 
353 unlock:
354 	mutex_unlock(&pdata->rss_mutex);
355 
356 	return ret;
357 }
358 
359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
360 {
361 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362 	unsigned int *key = (unsigned int *)&pdata->rss_key;
363 	int ret;
364 
365 	while (key_regs--) {
366 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367 					 key_regs, *key++);
368 		if (ret)
369 			return ret;
370 	}
371 
372 	return 0;
373 }
374 
375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376 {
377 	unsigned int i;
378 	int ret;
379 
380 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 		ret = xgbe_write_rss_reg(pdata,
382 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383 					 pdata->rss_table[i]);
384 		if (ret)
385 			return ret;
386 	}
387 
388 	return 0;
389 }
390 
391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
392 {
393 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394 
395 	return xgbe_write_rss_hash_key(pdata);
396 }
397 
398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399 				     const u32 *table)
400 {
401 	unsigned int i;
402 
403 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405 
406 	return xgbe_write_rss_lookup_table(pdata);
407 }
408 
409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
410 {
411 	int ret;
412 
413 	if (!pdata->hw_feat.rss)
414 		return -EOPNOTSUPP;
415 
416 	/* Program the hash key */
417 	ret = xgbe_write_rss_hash_key(pdata);
418 	if (ret)
419 		return ret;
420 
421 	/* Program the lookup table */
422 	ret = xgbe_write_rss_lookup_table(pdata);
423 	if (ret)
424 		return ret;
425 
426 	/* Set the RSS options */
427 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
428 
429 	/* Enable RSS */
430 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
431 
432 	return 0;
433 }
434 
435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
436 {
437 	if (!pdata->hw_feat.rss)
438 		return -EOPNOTSUPP;
439 
440 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
441 
442 	return 0;
443 }
444 
445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
446 {
447 	int ret;
448 
449 	if (!pdata->hw_feat.rss)
450 		return;
451 
452 	if (pdata->netdev->features & NETIF_F_RXHASH)
453 		ret = xgbe_enable_rss(pdata);
454 	else
455 		ret = xgbe_disable_rss(pdata);
456 
457 	if (ret)
458 		netdev_err(pdata->netdev,
459 			   "error configuring RSS, RSS disabled\n");
460 }
461 
462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463 			      unsigned int queue)
464 {
465 	unsigned int prio, tc;
466 
467 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468 		/* Does this queue handle the priority? */
469 		if (pdata->prio2q_map[prio] != queue)
470 			continue;
471 
472 		/* Get the Traffic Class for this priority */
473 		tc = pdata->ets->prio_tc[prio];
474 
475 		/* Check if PFC is enabled for this traffic class */
476 		if (pdata->pfc->pfc_en & (1 << tc))
477 			return true;
478 	}
479 
480 	return false;
481 }
482 
483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
484 {
485 	/* Program the VXLAN port */
486 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
487 
488 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489 		  pdata->vxlan_port);
490 }
491 
492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
493 {
494 	if (!pdata->hw_feat.vxn)
495 		return;
496 
497 	/* Program the VXLAN port */
498 	xgbe_set_vxlan_id(pdata);
499 
500 	/* Allow for IPv6/UDP zero-checksum VXLAN packets */
501 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
502 
503 	/* Enable VXLAN tunneling mode */
504 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
506 
507 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
508 }
509 
510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
511 {
512 	if (!pdata->hw_feat.vxn)
513 		return;
514 
515 	/* Disable tunneling mode */
516 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
517 
518 	/* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
520 
521 	/* Clear the VXLAN port */
522 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
523 
524 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
525 }
526 
527 static unsigned int xgbe_get_fc_queue_count(struct xgbe_prv_data *pdata)
528 {
529 	unsigned int max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
530 
531 	/* From MAC ver 30H the TFCR is per priority, instead of per queue */
532 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) >= 0x30)
533 		return max_q_count;
534 	else
535 		return min_t(unsigned int, pdata->tx_q_count, max_q_count);
536 }
537 
538 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
539 {
540 	unsigned int reg, reg_val;
541 	unsigned int i, q_count;
542 
543 	/* Clear MTL flow control */
544 	for (i = 0; i < pdata->rx_q_count; i++)
545 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
546 
547 	/* Clear MAC flow control */
548 	q_count = xgbe_get_fc_queue_count(pdata);
549 	reg = MAC_Q0TFCR;
550 	for (i = 0; i < q_count; i++) {
551 		reg_val = XGMAC_IOREAD(pdata, reg);
552 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
553 		XGMAC_IOWRITE(pdata, reg, reg_val);
554 
555 		reg += MAC_QTFCR_INC;
556 	}
557 
558 	return 0;
559 }
560 
561 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
562 {
563 	struct ieee_pfc *pfc = pdata->pfc;
564 	struct ieee_ets *ets = pdata->ets;
565 	unsigned int reg, reg_val;
566 	unsigned int i, q_count;
567 
568 	/* Set MTL flow control */
569 	for (i = 0; i < pdata->rx_q_count; i++) {
570 		unsigned int ehfc = 0;
571 
572 		if (pdata->rx_rfd[i]) {
573 			/* Flow control thresholds are established */
574 			if (pfc && ets) {
575 				if (xgbe_is_pfc_queue(pdata, i))
576 					ehfc = 1;
577 			} else {
578 				ehfc = 1;
579 			}
580 		}
581 
582 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
583 
584 		netif_dbg(pdata, drv, pdata->netdev,
585 			  "flow control %s for RXq%u\n",
586 			  ehfc ? "enabled" : "disabled", i);
587 	}
588 
589 	/* Set MAC flow control */
590 	q_count = xgbe_get_fc_queue_count(pdata);
591 	reg = MAC_Q0TFCR;
592 	for (i = 0; i < q_count; i++) {
593 		reg_val = XGMAC_IOREAD(pdata, reg);
594 
595 		/* Enable transmit flow control */
596 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
597 		/* Set pause time */
598 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
599 
600 		XGMAC_IOWRITE(pdata, reg, reg_val);
601 
602 		reg += MAC_QTFCR_INC;
603 	}
604 
605 	return 0;
606 }
607 
608 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
609 {
610 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
611 
612 	return 0;
613 }
614 
615 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
616 {
617 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
618 
619 	return 0;
620 }
621 
622 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
623 {
624 	struct ieee_pfc *pfc = pdata->pfc;
625 
626 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
627 		xgbe_enable_tx_flow_control(pdata);
628 	else
629 		xgbe_disable_tx_flow_control(pdata);
630 
631 	return 0;
632 }
633 
634 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
635 {
636 	struct ieee_pfc *pfc = pdata->pfc;
637 
638 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
639 		xgbe_enable_rx_flow_control(pdata);
640 	else
641 		xgbe_disable_rx_flow_control(pdata);
642 
643 	return 0;
644 }
645 
646 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
647 {
648 	struct ieee_pfc *pfc = pdata->pfc;
649 
650 	xgbe_config_tx_flow_control(pdata);
651 	xgbe_config_rx_flow_control(pdata);
652 
653 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
654 			   (pfc && pfc->pfc_en) ? 1 : 0);
655 }
656 
657 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
658 {
659 	struct xgbe_channel *channel;
660 	unsigned int i, ver;
661 
662 	/* Set the interrupt mode if supported */
663 	if (pdata->channel_irq_mode)
664 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
665 				   pdata->channel_irq_mode);
666 
667 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
668 
669 	for (i = 0; i < pdata->channel_count; i++) {
670 		channel = pdata->channel[i];
671 
672 		/* Clear all the interrupts which are set */
673 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
674 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
675 
676 		/* Clear all interrupt enable bits */
677 		channel->curr_ier = 0;
678 
679 		/* Enable following interrupts
680 		 *   NIE  - Normal Interrupt Summary Enable
681 		 *   AIE  - Abnormal Interrupt Summary Enable
682 		 *   FBEE - Fatal Bus Error Enable
683 		 */
684 		if (ver < 0x21) {
685 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
686 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
687 		} else {
688 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
689 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
690 		}
691 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
692 
693 		if (channel->tx_ring) {
694 			/* Enable the following Tx interrupts
695 			 *   TIE  - Transmit Interrupt Enable (unless using
696 			 *          per channel interrupts in edge triggered
697 			 *          mode)
698 			 */
699 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
700 				XGMAC_SET_BITS(channel->curr_ier,
701 					       DMA_CH_IER, TIE, 1);
702 		}
703 		if (channel->rx_ring) {
704 			/* Enable following Rx interrupts
705 			 *   RBUE - Receive Buffer Unavailable Enable
706 			 *   RIE  - Receive Interrupt Enable (unless using
707 			 *          per channel interrupts in edge triggered
708 			 *          mode)
709 			 */
710 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
711 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
712 				XGMAC_SET_BITS(channel->curr_ier,
713 					       DMA_CH_IER, RIE, 1);
714 		}
715 
716 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
717 	}
718 }
719 
720 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
721 {
722 	unsigned int mtl_q_isr;
723 	unsigned int q_count, i;
724 
725 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
726 	for (i = 0; i < q_count; i++) {
727 		/* Clear all the interrupts which are set */
728 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
729 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
730 
731 		/* No MTL interrupts to be enabled */
732 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
733 	}
734 }
735 
736 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
737 {
738 	unsigned int mac_ier = 0;
739 
740 	/* Enable Timestamp interrupt */
741 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
742 
743 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
744 
745 	/* Enable all counter interrupts */
746 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
747 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
748 
749 	/* Enable MDIO single command completion interrupt */
750 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
751 }
752 
753 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
754 {
755 	unsigned int ecc_isr, ecc_ier = 0;
756 
757 	if (!pdata->vdata->ecc_support)
758 		return;
759 
760 	/* Clear all the interrupts which are set */
761 	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
762 	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
763 
764 	/* Enable ECC interrupts */
765 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
766 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
767 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
768 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
769 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
770 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
771 
772 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
773 }
774 
775 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
776 {
777 	unsigned int ecc_ier;
778 
779 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
780 
781 	/* Disable ECC DED interrupts */
782 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
783 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
784 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
785 
786 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
787 }
788 
789 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
790 				 enum xgbe_ecc_sec sec)
791 {
792 	unsigned int ecc_ier;
793 
794 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
795 
796 	/* Disable ECC SEC interrupt */
797 	switch (sec) {
798 	case XGBE_ECC_SEC_TX:
799 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
800 		break;
801 	case XGBE_ECC_SEC_RX:
802 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
803 		break;
804 	case XGBE_ECC_SEC_DESC:
805 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
806 		break;
807 	}
808 
809 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
810 }
811 
812 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
813 {
814 	unsigned int ss;
815 
816 	switch (speed) {
817 	case SPEED_10:
818 		ss = 0x07;
819 		break;
820 	case SPEED_1000:
821 		ss = 0x03;
822 		break;
823 	case SPEED_2500:
824 		ss = 0x02;
825 		break;
826 	case SPEED_10000:
827 		ss = 0x00;
828 		break;
829 	default:
830 		return -EINVAL;
831 	}
832 
833 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
834 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
835 
836 	return 0;
837 }
838 
839 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
840 {
841 	/* Put the VLAN tag in the Rx descriptor */
842 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
843 
844 	/* Don't check the VLAN type */
845 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
846 
847 	/* Check only C-TAG (0x8100) packets */
848 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
849 
850 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
851 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
852 
853 	/* Enable VLAN tag stripping */
854 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
855 
856 	return 0;
857 }
858 
859 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
860 {
861 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
862 
863 	return 0;
864 }
865 
866 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
867 {
868 	/* Enable VLAN filtering */
869 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
870 
871 	/* Enable VLAN Hash Table filtering */
872 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
873 
874 	/* Disable VLAN tag inverse matching */
875 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
876 
877 	/* Only filter on the lower 12-bits of the VLAN tag */
878 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
879 
880 	/* In order for the VLAN Hash Table filtering to be effective,
881 	 * the VLAN tag identifier in the VLAN Tag Register must not
882 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
883 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
884 	 * 1 will always pass filtering.
885 	 */
886 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
887 
888 	return 0;
889 }
890 
891 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
892 {
893 	/* Disable VLAN filtering */
894 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
895 
896 	return 0;
897 }
898 
899 static u32 xgbe_vid_crc32_le(__le16 vid_le)
900 {
901 	u32 crc = ~0;
902 	u32 temp = 0;
903 	unsigned char *data = (unsigned char *)&vid_le;
904 	unsigned char data_byte = 0;
905 	int i, bits;
906 
907 	bits = get_bitmask_order(VLAN_VID_MASK);
908 	for (i = 0; i < bits; i++) {
909 		if ((i % 8) == 0)
910 			data_byte = data[i / 8];
911 
912 		temp = ((crc & 1) ^ data_byte) & 1;
913 		crc >>= 1;
914 		data_byte >>= 1;
915 
916 		if (temp)
917 			crc ^= CRC32_POLY_LE;
918 	}
919 
920 	return crc;
921 }
922 
923 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
924 {
925 	u32 crc;
926 	u16 vid;
927 	__le16 vid_le;
928 	u16 vlan_hash_table = 0;
929 
930 	/* Generate the VLAN Hash Table value */
931 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
932 		/* Get the CRC32 value of the VLAN ID */
933 		vid_le = cpu_to_le16(vid);
934 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
935 
936 		vlan_hash_table |= (1 << crc);
937 	}
938 
939 	/* Set the VLAN Hash Table filtering register */
940 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
941 
942 	return 0;
943 }
944 
945 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
946 				     unsigned int enable)
947 {
948 	unsigned int val = enable ? 1 : 0;
949 
950 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
951 		return 0;
952 
953 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
954 		  enable ? "entering" : "leaving");
955 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
956 
957 	/* Hardware will still perform VLAN filtering in promiscuous mode */
958 	if (enable) {
959 		xgbe_disable_rx_vlan_filtering(pdata);
960 	} else {
961 		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
962 			xgbe_enable_rx_vlan_filtering(pdata);
963 	}
964 
965 	return 0;
966 }
967 
968 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
969 				       unsigned int enable)
970 {
971 	unsigned int val = enable ? 1 : 0;
972 
973 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
974 		return 0;
975 
976 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
977 		  enable ? "entering" : "leaving");
978 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
979 
980 	return 0;
981 }
982 
983 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
984 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
985 {
986 	unsigned int mac_addr_hi, mac_addr_lo;
987 	u8 *mac_addr;
988 
989 	mac_addr_lo = 0;
990 	mac_addr_hi = 0;
991 
992 	if (ha) {
993 		mac_addr = (u8 *)&mac_addr_lo;
994 		mac_addr[0] = ha->addr[0];
995 		mac_addr[1] = ha->addr[1];
996 		mac_addr[2] = ha->addr[2];
997 		mac_addr[3] = ha->addr[3];
998 		mac_addr = (u8 *)&mac_addr_hi;
999 		mac_addr[0] = ha->addr[4];
1000 		mac_addr[1] = ha->addr[5];
1001 
1002 		netif_dbg(pdata, drv, pdata->netdev,
1003 			  "adding mac address %pM at %#x\n",
1004 			  ha->addr, *mac_reg);
1005 
1006 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
1007 	}
1008 
1009 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1010 	*mac_reg += MAC_MACA_INC;
1011 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1012 	*mac_reg += MAC_MACA_INC;
1013 }
1014 
1015 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1016 {
1017 	struct net_device *netdev = pdata->netdev;
1018 	struct netdev_hw_addr *ha;
1019 	unsigned int mac_reg;
1020 	unsigned int addn_macs;
1021 
1022 	mac_reg = MAC_MACA1HR;
1023 	addn_macs = pdata->hw_feat.addn_mac;
1024 
1025 	if (netdev_uc_count(netdev) > addn_macs) {
1026 		xgbe_set_promiscuous_mode(pdata, 1);
1027 	} else {
1028 		netdev_for_each_uc_addr(ha, netdev) {
1029 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1030 			addn_macs--;
1031 		}
1032 
1033 		if (netdev_mc_count(netdev) > addn_macs) {
1034 			xgbe_set_all_multicast_mode(pdata, 1);
1035 		} else {
1036 			netdev_for_each_mc_addr(ha, netdev) {
1037 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1038 				addn_macs--;
1039 			}
1040 		}
1041 	}
1042 
1043 	/* Clear remaining additional MAC address entries */
1044 	while (addn_macs--)
1045 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1046 }
1047 
1048 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1049 {
1050 	struct net_device *netdev = pdata->netdev;
1051 	struct netdev_hw_addr *ha;
1052 	unsigned int hash_reg;
1053 	unsigned int hash_table_shift, hash_table_count;
1054 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1055 	u32 crc;
1056 	unsigned int i;
1057 
1058 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1059 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1060 	memset(hash_table, 0, sizeof(hash_table));
1061 
1062 	/* Build the MAC Hash Table register values */
1063 	netdev_for_each_uc_addr(ha, netdev) {
1064 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1065 		crc >>= hash_table_shift;
1066 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1067 	}
1068 
1069 	netdev_for_each_mc_addr(ha, netdev) {
1070 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1071 		crc >>= hash_table_shift;
1072 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1073 	}
1074 
1075 	/* Set the MAC Hash Table registers */
1076 	hash_reg = MAC_HTR0;
1077 	for (i = 0; i < hash_table_count; i++) {
1078 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1079 		hash_reg += MAC_HTR_INC;
1080 	}
1081 }
1082 
1083 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1084 {
1085 	if (pdata->hw_feat.hash_table_size)
1086 		xgbe_set_mac_hash_table(pdata);
1087 	else
1088 		xgbe_set_mac_addn_addrs(pdata);
1089 
1090 	return 0;
1091 }
1092 
1093 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, const u8 *addr)
1094 {
1095 	unsigned int mac_addr_hi, mac_addr_lo;
1096 
1097 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1098 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1099 		      (addr[1] <<  8) | (addr[0] <<  0);
1100 
1101 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1102 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1103 
1104 	return 0;
1105 }
1106 
1107 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1108 {
1109 	struct net_device *netdev = pdata->netdev;
1110 	unsigned int pr_mode, am_mode;
1111 
1112 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1113 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1114 
1115 	xgbe_set_promiscuous_mode(pdata, pr_mode);
1116 	xgbe_set_all_multicast_mode(pdata, am_mode);
1117 
1118 	xgbe_add_mac_addresses(pdata);
1119 
1120 	return 0;
1121 }
1122 
1123 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1124 {
1125 	unsigned int reg;
1126 
1127 	if (gpio > 15)
1128 		return -EINVAL;
1129 
1130 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1131 
1132 	reg &= ~(1 << (gpio + 16));
1133 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1134 
1135 	return 0;
1136 }
1137 
1138 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1139 {
1140 	unsigned int reg;
1141 
1142 	if (gpio > 15)
1143 		return -EINVAL;
1144 
1145 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1146 
1147 	reg |= (1 << (gpio + 16));
1148 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1149 
1150 	return 0;
1151 }
1152 
1153 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1154 				 int mmd_reg)
1155 {
1156 	unsigned long flags;
1157 	unsigned int mmd_address, index, offset;
1158 	int mmd_data;
1159 
1160 	if (mmd_reg & XGBE_ADDR_C45)
1161 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1162 	else
1163 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1164 
1165 	/* The PCS registers are accessed using mmio. The underlying
1166 	 * management interface uses indirect addressing to access the MMD
1167 	 * register sets. This requires accessing of the PCS register in two
1168 	 * phases, an address phase and a data phase.
1169 	 *
1170 	 * The mmio interface is based on 16-bit offsets and values. All
1171 	 * register offsets must therefore be adjusted by left shifting the
1172 	 * offset 1 bit and reading 16 bits of data.
1173 	 */
1174 	mmd_address <<= 1;
1175 	index = mmd_address & ~pdata->xpcs_window_mask;
1176 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1177 
1178 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1179 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1180 	mmd_data = XPCS16_IOREAD(pdata, offset);
1181 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1182 
1183 	return mmd_data;
1184 }
1185 
1186 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1187 				   int mmd_reg, int mmd_data)
1188 {
1189 	unsigned long flags;
1190 	unsigned int mmd_address, index, offset;
1191 
1192 	if (mmd_reg & XGBE_ADDR_C45)
1193 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1194 	else
1195 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1196 
1197 	/* The PCS registers are accessed using mmio. The underlying
1198 	 * management interface uses indirect addressing to access the MMD
1199 	 * register sets. This requires accessing of the PCS register in two
1200 	 * phases, an address phase and a data phase.
1201 	 *
1202 	 * The mmio interface is based on 16-bit offsets and values. All
1203 	 * register offsets must therefore be adjusted by left shifting the
1204 	 * offset 1 bit and writing 16 bits of data.
1205 	 */
1206 	mmd_address <<= 1;
1207 	index = mmd_address & ~pdata->xpcs_window_mask;
1208 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1209 
1210 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1211 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1212 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1213 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1214 }
1215 
1216 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1217 				 int mmd_reg)
1218 {
1219 	unsigned long flags;
1220 	unsigned int mmd_address;
1221 	int mmd_data;
1222 
1223 	if (mmd_reg & XGBE_ADDR_C45)
1224 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1225 	else
1226 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1227 
1228 	/* The PCS registers are accessed using mmio. The underlying APB3
1229 	 * management interface uses indirect addressing to access the MMD
1230 	 * register sets. This requires accessing of the PCS register in two
1231 	 * phases, an address phase and a data phase.
1232 	 *
1233 	 * The mmio interface is based on 32-bit offsets and values. All
1234 	 * register offsets must therefore be adjusted by left shifting the
1235 	 * offset 2 bits and reading 32 bits of data.
1236 	 */
1237 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1238 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1239 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1240 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1241 
1242 	return mmd_data;
1243 }
1244 
1245 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1246 				   int mmd_reg, int mmd_data)
1247 {
1248 	unsigned int mmd_address;
1249 	unsigned long flags;
1250 
1251 	if (mmd_reg & XGBE_ADDR_C45)
1252 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1253 	else
1254 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1255 
1256 	/* The PCS registers are accessed using mmio. The underlying APB3
1257 	 * management interface uses indirect addressing to access the MMD
1258 	 * register sets. This requires accessing of the PCS register in two
1259 	 * phases, an address phase and a data phase.
1260 	 *
1261 	 * The mmio interface is based on 32-bit offsets and values. All
1262 	 * register offsets must therefore be adjusted by left shifting the
1263 	 * offset 2 bits and writing 32 bits of data.
1264 	 */
1265 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1266 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1267 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1268 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1269 }
1270 
1271 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1272 			      int mmd_reg)
1273 {
1274 	switch (pdata->vdata->xpcs_access) {
1275 	case XGBE_XPCS_ACCESS_V1:
1276 		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1277 
1278 	case XGBE_XPCS_ACCESS_V2:
1279 	default:
1280 		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1281 	}
1282 }
1283 
1284 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1285 				int mmd_reg, int mmd_data)
1286 {
1287 	switch (pdata->vdata->xpcs_access) {
1288 	case XGBE_XPCS_ACCESS_V1:
1289 		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1290 
1291 	case XGBE_XPCS_ACCESS_V2:
1292 	default:
1293 		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1294 	}
1295 }
1296 
1297 static unsigned int xgbe_create_mdio_sca_c22(int port, int reg)
1298 {
1299 	unsigned int mdio_sca;
1300 
1301 	mdio_sca = 0;
1302 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1303 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1304 
1305 	return mdio_sca;
1306 }
1307 
1308 static unsigned int xgbe_create_mdio_sca_c45(int port, unsigned int da, int reg)
1309 {
1310 	unsigned int mdio_sca;
1311 
1312 	mdio_sca = 0;
1313 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1314 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1315 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1316 
1317 	return mdio_sca;
1318 }
1319 
1320 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata,
1321 				   unsigned int mdio_sca, u16 val)
1322 {
1323 	unsigned int mdio_sccd;
1324 
1325 	reinit_completion(&pdata->mdio_complete);
1326 
1327 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1328 
1329 	mdio_sccd = 0;
1330 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1331 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1332 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1333 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1334 
1335 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1336 		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1337 		return -ETIMEDOUT;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static int xgbe_write_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1344 				       int reg, u16 val)
1345 {
1346 	unsigned int mdio_sca;
1347 
1348 	mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1349 
1350 	return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1351 }
1352 
1353 static int xgbe_write_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1354 				       int devad, int reg, u16 val)
1355 {
1356 	unsigned int mdio_sca;
1357 
1358 	mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1359 
1360 	return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1361 }
1362 
1363 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata,
1364 				  unsigned int mdio_sca)
1365 {
1366 	unsigned int mdio_sccd;
1367 
1368 	reinit_completion(&pdata->mdio_complete);
1369 
1370 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1371 
1372 	mdio_sccd = 0;
1373 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1374 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1375 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1376 
1377 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1378 		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1379 		return -ETIMEDOUT;
1380 	}
1381 
1382 	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1383 }
1384 
1385 static int xgbe_read_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1386 				      int reg)
1387 {
1388 	unsigned int mdio_sca;
1389 
1390 	mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1391 
1392 	return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1393 }
1394 
1395 static int xgbe_read_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1396 				      int devad, int reg)
1397 {
1398 	unsigned int mdio_sca;
1399 
1400 	mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1401 
1402 	return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1403 }
1404 
1405 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1406 				 enum xgbe_mdio_mode mode)
1407 {
1408 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1409 
1410 	switch (mode) {
1411 	case XGBE_MDIO_MODE_CL22:
1412 		if (port > XGMAC_MAX_C22_PORT)
1413 			return -EINVAL;
1414 		reg_val |= (1 << port);
1415 		break;
1416 	case XGBE_MDIO_MODE_CL45:
1417 		break;
1418 	default:
1419 		return -EINVAL;
1420 	}
1421 
1422 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1423 
1424 	return 0;
1425 }
1426 
1427 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1428 {
1429 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1430 }
1431 
1432 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1433 {
1434 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1435 
1436 	return 0;
1437 }
1438 
1439 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1440 {
1441 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1442 
1443 	return 0;
1444 }
1445 
1446 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1447 {
1448 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1449 
1450 	/* Reset the Tx descriptor
1451 	 *   Set buffer 1 (lo) address to zero
1452 	 *   Set buffer 1 (hi) address to zero
1453 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1454 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1455 	 */
1456 	rdesc->desc0 = 0;
1457 	rdesc->desc1 = 0;
1458 	rdesc->desc2 = 0;
1459 	rdesc->desc3 = 0;
1460 
1461 	/* Make sure ownership is written to the descriptor */
1462 	dma_wmb();
1463 }
1464 
1465 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1466 {
1467 	struct xgbe_ring *ring = channel->tx_ring;
1468 	struct xgbe_ring_data *rdata;
1469 	int i;
1470 	int start_index = ring->cur;
1471 
1472 	DBGPR("-->tx_desc_init\n");
1473 
1474 	/* Initialze all descriptors */
1475 	for (i = 0; i < ring->rdesc_count; i++) {
1476 		rdata = XGBE_GET_DESC_DATA(ring, i);
1477 
1478 		/* Initialize Tx descriptor */
1479 		xgbe_tx_desc_reset(rdata);
1480 	}
1481 
1482 	/* Update the total number of Tx descriptors */
1483 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1484 
1485 	/* Update the starting address of descriptor ring */
1486 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1487 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1488 			  upper_32_bits(rdata->rdesc_dma));
1489 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1490 			  lower_32_bits(rdata->rdesc_dma));
1491 
1492 	DBGPR("<--tx_desc_init\n");
1493 }
1494 
1495 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1496 			       struct xgbe_ring_data *rdata, unsigned int index)
1497 {
1498 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1499 	unsigned int rx_usecs = pdata->rx_usecs;
1500 	unsigned int rx_frames = pdata->rx_frames;
1501 	unsigned int inte;
1502 	dma_addr_t hdr_dma, buf_dma;
1503 
1504 	if (!rx_usecs && !rx_frames) {
1505 		/* No coalescing, interrupt for every descriptor */
1506 		inte = 1;
1507 	} else {
1508 		/* Set interrupt based on Rx frame coalescing setting */
1509 		if (rx_frames && !((index + 1) % rx_frames))
1510 			inte = 1;
1511 		else
1512 			inte = 0;
1513 	}
1514 
1515 	/* Reset the Rx descriptor
1516 	 *   Set buffer 1 (lo) address to header dma address (lo)
1517 	 *   Set buffer 1 (hi) address to header dma address (hi)
1518 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1519 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1520 	 *     set control bits OWN and INTE
1521 	 */
1522 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1523 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1524 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1525 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1526 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1527 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1528 
1529 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1530 
1531 	/* Since the Rx DMA engine is likely running, make sure everything
1532 	 * is written to the descriptor(s) before setting the OWN bit
1533 	 * for the descriptor
1534 	 */
1535 	dma_wmb();
1536 
1537 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1538 
1539 	/* Make sure ownership is written to the descriptor */
1540 	dma_wmb();
1541 }
1542 
1543 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1544 {
1545 	struct xgbe_prv_data *pdata = channel->pdata;
1546 	struct xgbe_ring *ring = channel->rx_ring;
1547 	struct xgbe_ring_data *rdata;
1548 	unsigned int start_index = ring->cur;
1549 	unsigned int i;
1550 
1551 	DBGPR("-->rx_desc_init\n");
1552 
1553 	/* Initialize all descriptors */
1554 	for (i = 0; i < ring->rdesc_count; i++) {
1555 		rdata = XGBE_GET_DESC_DATA(ring, i);
1556 
1557 		/* Initialize Rx descriptor */
1558 		xgbe_rx_desc_reset(pdata, rdata, i);
1559 	}
1560 
1561 	/* Update the total number of Rx descriptors */
1562 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1563 
1564 	/* Update the starting address of descriptor ring */
1565 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1566 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1567 			  upper_32_bits(rdata->rdesc_dma));
1568 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1569 			  lower_32_bits(rdata->rdesc_dma));
1570 
1571 	/* Update the Rx Descriptor Tail Pointer */
1572 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1573 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1574 			  lower_32_bits(rdata->rdesc_dma));
1575 
1576 	DBGPR("<--rx_desc_init\n");
1577 }
1578 
1579 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1580 				      unsigned int addend)
1581 {
1582 	unsigned int count = 10000;
1583 
1584 	/* Set the addend register value and tell the device */
1585 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1586 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1587 
1588 	/* Wait for addend update to complete */
1589 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1590 		udelay(5);
1591 
1592 	if (!count)
1593 		netdev_err(pdata->netdev,
1594 			   "timed out updating timestamp addend register\n");
1595 }
1596 
1597 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1598 				 unsigned int nsec)
1599 {
1600 	unsigned int count = 10000;
1601 
1602 	/* Set the time values and tell the device */
1603 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1604 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1605 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1606 
1607 	/* Wait for time update to complete */
1608 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1609 		udelay(5);
1610 
1611 	if (!count)
1612 		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1613 }
1614 
1615 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1616 {
1617 	u64 nsec;
1618 
1619 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1620 	nsec *= NSEC_PER_SEC;
1621 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1622 
1623 	return nsec;
1624 }
1625 
1626 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1627 {
1628 	unsigned int tx_snr, tx_ssr;
1629 	u64 nsec;
1630 
1631 	if (pdata->vdata->tx_tstamp_workaround) {
1632 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1633 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1634 	} else {
1635 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1636 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1637 	}
1638 
1639 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1640 		return 0;
1641 
1642 	nsec = tx_ssr;
1643 	nsec *= NSEC_PER_SEC;
1644 	nsec += tx_snr;
1645 
1646 	return nsec;
1647 }
1648 
1649 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1650 			       struct xgbe_ring_desc *rdesc)
1651 {
1652 	u64 nsec;
1653 
1654 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1655 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1656 		nsec = le32_to_cpu(rdesc->desc1);
1657 		nsec <<= 32;
1658 		nsec |= le32_to_cpu(rdesc->desc0);
1659 		if (nsec != 0xffffffffffffffffULL) {
1660 			packet->rx_tstamp = nsec;
1661 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1662 				       RX_TSTAMP, 1);
1663 		}
1664 	}
1665 }
1666 
1667 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1668 			      unsigned int mac_tscr)
1669 {
1670 	/* Set one nano-second accuracy */
1671 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1672 
1673 	/* Set fine timestamp update */
1674 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1675 
1676 	/* Overwrite earlier timestamps */
1677 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1678 
1679 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1680 
1681 	/* Exit if timestamping is not enabled */
1682 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1683 		return 0;
1684 
1685 	/* Initialize time registers */
1686 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1687 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1688 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1689 	xgbe_set_tstamp_time(pdata, 0, 0);
1690 
1691 	/* Initialize the timecounter */
1692 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1693 			 ktime_to_ns(ktime_get_real()));
1694 
1695 	return 0;
1696 }
1697 
1698 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1699 			       struct xgbe_ring *ring)
1700 {
1701 	struct xgbe_prv_data *pdata = channel->pdata;
1702 	struct xgbe_ring_data *rdata;
1703 
1704 	/* Make sure everything is written before the register write */
1705 	wmb();
1706 
1707 	/* Issue a poll command to Tx DMA by writing address
1708 	 * of next immediate free descriptor */
1709 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1710 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1711 			  lower_32_bits(rdata->rdesc_dma));
1712 
1713 	/* Start the Tx timer */
1714 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1715 		channel->tx_timer_active = 1;
1716 		mod_timer(&channel->tx_timer,
1717 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1718 	}
1719 
1720 	ring->tx.xmit_more = 0;
1721 }
1722 
1723 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1724 {
1725 	struct xgbe_prv_data *pdata = channel->pdata;
1726 	struct xgbe_ring *ring = channel->tx_ring;
1727 	struct xgbe_ring_data *rdata;
1728 	struct xgbe_ring_desc *rdesc;
1729 	struct xgbe_packet_data *packet = &ring->packet_data;
1730 	unsigned int tx_packets, tx_bytes;
1731 	unsigned int csum, tso, vlan, vxlan;
1732 	unsigned int tso_context, vlan_context;
1733 	unsigned int tx_set_ic;
1734 	int start_index = ring->cur;
1735 	int cur_index = ring->cur;
1736 	int i;
1737 
1738 	DBGPR("-->xgbe_dev_xmit\n");
1739 
1740 	tx_packets = packet->tx_packets;
1741 	tx_bytes = packet->tx_bytes;
1742 
1743 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1744 			      CSUM_ENABLE);
1745 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1746 			     TSO_ENABLE);
1747 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1748 			      VLAN_CTAG);
1749 	vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1750 			       VXLAN);
1751 
1752 	if (tso && (packet->mss != ring->tx.cur_mss))
1753 		tso_context = 1;
1754 	else
1755 		tso_context = 0;
1756 
1757 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1758 		vlan_context = 1;
1759 	else
1760 		vlan_context = 0;
1761 
1762 	/* Determine if an interrupt should be generated for this Tx:
1763 	 *   Interrupt:
1764 	 *     - Tx frame count exceeds the frame count setting
1765 	 *     - Addition of Tx frame count to the frame count since the
1766 	 *       last interrupt was set exceeds the frame count setting
1767 	 *   No interrupt:
1768 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1769 	 *     - Addition of Tx frame count to the frame count since the
1770 	 *       last interrupt was set does not exceed the frame count setting
1771 	 */
1772 	ring->coalesce_count += tx_packets;
1773 	if (!pdata->tx_frames)
1774 		tx_set_ic = 0;
1775 	else if (tx_packets > pdata->tx_frames)
1776 		tx_set_ic = 1;
1777 	else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1778 		tx_set_ic = 1;
1779 	else
1780 		tx_set_ic = 0;
1781 
1782 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1783 	rdesc = rdata->rdesc;
1784 
1785 	/* Create a context descriptor if this is a TSO packet */
1786 	if (tso_context || vlan_context) {
1787 		if (tso_context) {
1788 			netif_dbg(pdata, tx_queued, pdata->netdev,
1789 				  "TSO context descriptor, mss=%u\n",
1790 				  packet->mss);
1791 
1792 			/* Set the MSS size */
1793 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1794 					  MSS, packet->mss);
1795 
1796 			/* Mark it as a CONTEXT descriptor */
1797 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1798 					  CTXT, 1);
1799 
1800 			/* Indicate this descriptor contains the MSS */
1801 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1802 					  TCMSSV, 1);
1803 
1804 			ring->tx.cur_mss = packet->mss;
1805 		}
1806 
1807 		if (vlan_context) {
1808 			netif_dbg(pdata, tx_queued, pdata->netdev,
1809 				  "VLAN context descriptor, ctag=%u\n",
1810 				  packet->vlan_ctag);
1811 
1812 			/* Mark it as a CONTEXT descriptor */
1813 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1814 					  CTXT, 1);
1815 
1816 			/* Set the VLAN tag */
1817 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1818 					  VT, packet->vlan_ctag);
1819 
1820 			/* Indicate this descriptor contains the VLAN tag */
1821 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1822 					  VLTV, 1);
1823 
1824 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1825 		}
1826 
1827 		cur_index++;
1828 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1829 		rdesc = rdata->rdesc;
1830 	}
1831 
1832 	/* Update buffer address (for TSO this is the header) */
1833 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1834 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1835 
1836 	/* Update the buffer length */
1837 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1838 			  rdata->skb_dma_len);
1839 
1840 	/* VLAN tag insertion check */
1841 	if (vlan)
1842 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1843 				  TX_NORMAL_DESC2_VLAN_INSERT);
1844 
1845 	/* Timestamp enablement check */
1846 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1847 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1848 
1849 	/* Mark it as First Descriptor */
1850 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1851 
1852 	/* Mark it as a NORMAL descriptor */
1853 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1854 
1855 	/* Set OWN bit if not the first descriptor */
1856 	if (cur_index != start_index)
1857 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1858 
1859 	if (tso) {
1860 		/* Enable TSO */
1861 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1862 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1863 				  packet->tcp_payload_len);
1864 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1865 				  packet->tcp_header_len / 4);
1866 
1867 		pdata->ext_stats.tx_tso_packets += tx_packets;
1868 	} else {
1869 		/* Enable CRC and Pad Insertion */
1870 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1871 
1872 		/* Enable HW CSUM */
1873 		if (csum)
1874 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1875 					  CIC, 0x3);
1876 
1877 		/* Set the total length to be transmitted */
1878 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1879 				  packet->length);
1880 	}
1881 
1882 	if (vxlan) {
1883 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1884 				  TX_NORMAL_DESC3_VXLAN_PACKET);
1885 
1886 		pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1887 	}
1888 
1889 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1890 		cur_index++;
1891 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1892 		rdesc = rdata->rdesc;
1893 
1894 		/* Update buffer address */
1895 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1896 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1897 
1898 		/* Update the buffer length */
1899 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1900 				  rdata->skb_dma_len);
1901 
1902 		/* Set OWN bit */
1903 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1904 
1905 		/* Mark it as NORMAL descriptor */
1906 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1907 
1908 		/* Enable HW CSUM */
1909 		if (csum)
1910 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1911 					  CIC, 0x3);
1912 	}
1913 
1914 	/* Set LAST bit for the last descriptor */
1915 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1916 
1917 	/* Set IC bit based on Tx coalescing settings */
1918 	if (tx_set_ic)
1919 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1920 
1921 	/* Save the Tx info to report back during cleanup */
1922 	rdata->tx.packets = tx_packets;
1923 	rdata->tx.bytes = tx_bytes;
1924 
1925 	pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1926 	pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1927 
1928 	/* In case the Tx DMA engine is running, make sure everything
1929 	 * is written to the descriptor(s) before setting the OWN bit
1930 	 * for the first descriptor
1931 	 */
1932 	dma_wmb();
1933 
1934 	/* Set OWN bit for the first descriptor */
1935 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1936 	rdesc = rdata->rdesc;
1937 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1938 
1939 	if (netif_msg_tx_queued(pdata))
1940 		xgbe_dump_tx_desc(pdata, ring, start_index,
1941 				  packet->rdesc_count, 1);
1942 
1943 	/* Make sure ownership is written to the descriptor */
1944 	smp_wmb();
1945 
1946 	ring->cur = cur_index + 1;
1947 	if (!netdev_xmit_more() ||
1948 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1949 						   channel->queue_index)))
1950 		xgbe_tx_start_xmit(channel, ring);
1951 	else
1952 		ring->tx.xmit_more = 1;
1953 
1954 	DBGPR("  %s: descriptors %u to %u written\n",
1955 	      channel->name, start_index & (ring->rdesc_count - 1),
1956 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1957 
1958 	DBGPR("<--xgbe_dev_xmit\n");
1959 }
1960 
1961 static int xgbe_dev_read(struct xgbe_channel *channel)
1962 {
1963 	struct xgbe_prv_data *pdata = channel->pdata;
1964 	struct xgbe_ring *ring = channel->rx_ring;
1965 	struct xgbe_ring_data *rdata;
1966 	struct xgbe_ring_desc *rdesc;
1967 	struct xgbe_packet_data *packet = &ring->packet_data;
1968 	struct net_device *netdev = pdata->netdev;
1969 	unsigned int err, etlt, l34t;
1970 
1971 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1972 
1973 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1974 	rdesc = rdata->rdesc;
1975 
1976 	/* Check for data availability */
1977 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1978 		return 1;
1979 
1980 	/* Make sure descriptor fields are read after reading the OWN bit */
1981 	dma_rmb();
1982 
1983 	if (netif_msg_rx_status(pdata))
1984 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1985 
1986 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1987 		/* Timestamp Context Descriptor */
1988 		xgbe_get_rx_tstamp(packet, rdesc);
1989 
1990 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1991 			       CONTEXT, 1);
1992 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1993 			       CONTEXT_NEXT, 0);
1994 		return 0;
1995 	}
1996 
1997 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1998 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1999 
2000 	/* Indicate if a Context Descriptor is next */
2001 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
2002 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003 			       CONTEXT_NEXT, 1);
2004 
2005 	/* Get the header length */
2006 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
2007 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2008 			       FIRST, 1);
2009 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
2010 						      RX_NORMAL_DESC2, HL);
2011 		if (rdata->rx.hdr_len)
2012 			pdata->ext_stats.rx_split_header_packets++;
2013 	} else {
2014 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2015 			       FIRST, 0);
2016 	}
2017 
2018 	/* Get the RSS hash */
2019 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
2020 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2021 			       RSS_HASH, 1);
2022 
2023 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
2024 
2025 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2026 		switch (l34t) {
2027 		case RX_DESC3_L34T_IPV4_TCP:
2028 		case RX_DESC3_L34T_IPV4_UDP:
2029 		case RX_DESC3_L34T_IPV6_TCP:
2030 		case RX_DESC3_L34T_IPV6_UDP:
2031 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
2032 			break;
2033 		default:
2034 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
2035 		}
2036 	}
2037 
2038 	/* Not all the data has been transferred for this packet */
2039 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
2040 		return 0;
2041 
2042 	/* This is the last of the data for this packet */
2043 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2044 		       LAST, 1);
2045 
2046 	/* Get the packet length */
2047 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
2048 
2049 	/* Set checksum done indicator as appropriate */
2050 	if (netdev->features & NETIF_F_RXCSUM) {
2051 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2052 			       CSUM_DONE, 1);
2053 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2054 			       TNPCSUM_DONE, 1);
2055 	}
2056 
2057 	/* Set the tunneled packet indicator */
2058 	if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2059 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2060 			       TNP, 1);
2061 		pdata->ext_stats.rx_vxlan_packets++;
2062 
2063 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2064 		switch (l34t) {
2065 		case RX_DESC3_L34T_IPV4_UNKNOWN:
2066 		case RX_DESC3_L34T_IPV6_UNKNOWN:
2067 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2068 				       TNPCSUM_DONE, 0);
2069 			break;
2070 		}
2071 	}
2072 
2073 	/* Check for errors (only valid in last descriptor) */
2074 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2075 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2076 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2077 
2078 	if (!err || !etlt) {
2079 		/* No error if err is 0 or etlt is 0 */
2080 		if ((etlt == 0x09) &&
2081 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2082 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2083 				       VLAN_CTAG, 1);
2084 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2085 							      RX_NORMAL_DESC0,
2086 							      OVT);
2087 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2088 				  packet->vlan_ctag);
2089 		}
2090 	} else {
2091 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2092 						  RX_PACKET_ATTRIBUTES, TNP);
2093 
2094 		if ((etlt == 0x05) || (etlt == 0x06)) {
2095 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2096 				       CSUM_DONE, 0);
2097 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2098 				       TNPCSUM_DONE, 0);
2099 			pdata->ext_stats.rx_csum_errors++;
2100 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2101 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2102 				       CSUM_DONE, 0);
2103 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2104 				       TNPCSUM_DONE, 0);
2105 			pdata->ext_stats.rx_vxlan_csum_errors++;
2106 		} else {
2107 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2108 				       FRAME, 1);
2109 		}
2110 	}
2111 
2112 	pdata->ext_stats.rxq_packets[channel->queue_index]++;
2113 	pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2114 
2115 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2116 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
2117 
2118 	return 0;
2119 }
2120 
2121 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2122 {
2123 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2124 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2125 }
2126 
2127 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2128 {
2129 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
2130 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2131 }
2132 
2133 static int xgbe_enable_int(struct xgbe_channel *channel,
2134 			   enum xgbe_int int_id)
2135 {
2136 	switch (int_id) {
2137 	case XGMAC_INT_DMA_CH_SR_TI:
2138 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2139 		break;
2140 	case XGMAC_INT_DMA_CH_SR_TPS:
2141 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2142 		break;
2143 	case XGMAC_INT_DMA_CH_SR_TBU:
2144 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2145 		break;
2146 	case XGMAC_INT_DMA_CH_SR_RI:
2147 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2148 		break;
2149 	case XGMAC_INT_DMA_CH_SR_RBU:
2150 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2151 		break;
2152 	case XGMAC_INT_DMA_CH_SR_RPS:
2153 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2154 		break;
2155 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2156 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2157 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2158 		break;
2159 	case XGMAC_INT_DMA_CH_SR_FBE:
2160 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2161 		break;
2162 	case XGMAC_INT_DMA_ALL:
2163 		channel->curr_ier |= channel->saved_ier;
2164 		break;
2165 	default:
2166 		return -1;
2167 	}
2168 
2169 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2170 
2171 	return 0;
2172 }
2173 
2174 static int xgbe_disable_int(struct xgbe_channel *channel,
2175 			    enum xgbe_int int_id)
2176 {
2177 	switch (int_id) {
2178 	case XGMAC_INT_DMA_CH_SR_TI:
2179 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2180 		break;
2181 	case XGMAC_INT_DMA_CH_SR_TPS:
2182 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2183 		break;
2184 	case XGMAC_INT_DMA_CH_SR_TBU:
2185 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2186 		break;
2187 	case XGMAC_INT_DMA_CH_SR_RI:
2188 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2189 		break;
2190 	case XGMAC_INT_DMA_CH_SR_RBU:
2191 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2192 		break;
2193 	case XGMAC_INT_DMA_CH_SR_RPS:
2194 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2195 		break;
2196 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2197 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2198 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2199 		break;
2200 	case XGMAC_INT_DMA_CH_SR_FBE:
2201 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2202 		break;
2203 	case XGMAC_INT_DMA_ALL:
2204 		channel->saved_ier = channel->curr_ier;
2205 		channel->curr_ier = 0;
2206 		break;
2207 	default:
2208 		return -1;
2209 	}
2210 
2211 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2212 
2213 	return 0;
2214 }
2215 
2216 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2217 {
2218 	unsigned int count = 2000;
2219 
2220 	DBGPR("-->xgbe_exit\n");
2221 
2222 	/* Issue a software reset */
2223 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2224 	usleep_range(10, 15);
2225 
2226 	/* Poll Until Poll Condition */
2227 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2228 		usleep_range(500, 600);
2229 
2230 	if (!count)
2231 		return -EBUSY;
2232 
2233 	DBGPR("<--xgbe_exit\n");
2234 
2235 	return 0;
2236 }
2237 
2238 static int xgbe_exit(struct xgbe_prv_data *pdata)
2239 {
2240 	int ret;
2241 
2242 	/* To guard against possible incorrectly generated interrupts,
2243 	 * issue the software reset twice.
2244 	 */
2245 	ret = __xgbe_exit(pdata);
2246 	if (ret)
2247 		return ret;
2248 
2249 	return __xgbe_exit(pdata);
2250 }
2251 
2252 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2253 {
2254 	unsigned int i, count;
2255 
2256 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2257 		return 0;
2258 
2259 	for (i = 0; i < pdata->tx_q_count; i++)
2260 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2261 
2262 	/* Poll Until Poll Condition */
2263 	for (i = 0; i < pdata->tx_q_count; i++) {
2264 		count = 2000;
2265 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2266 							MTL_Q_TQOMR, FTQ))
2267 			usleep_range(500, 600);
2268 
2269 		if (!count)
2270 			return -EBUSY;
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2277 {
2278 	unsigned int sbmr;
2279 
2280 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2281 
2282 	/* Set enhanced addressing mode */
2283 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2284 
2285 	/* Set the System Bus mode */
2286 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2287 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2288 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2289 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2290 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2291 
2292 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2293 
2294 	/* Set descriptor fetching threshold */
2295 	if (pdata->vdata->tx_desc_prefetch)
2296 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2297 				   pdata->vdata->tx_desc_prefetch);
2298 
2299 	if (pdata->vdata->rx_desc_prefetch)
2300 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2301 				   pdata->vdata->rx_desc_prefetch);
2302 }
2303 
2304 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2305 {
2306 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2307 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2308 	if (pdata->awarcr)
2309 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2310 }
2311 
2312 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2313 {
2314 	unsigned int i;
2315 
2316 	/* Set Tx to weighted round robin scheduling algorithm */
2317 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2318 
2319 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2320 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2321 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2322 				       MTL_TSA_ETS);
2323 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2324 	}
2325 
2326 	/* Set Rx to strict priority algorithm */
2327 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2328 }
2329 
2330 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2331 					      unsigned int queue,
2332 					      unsigned int q_fifo_size)
2333 {
2334 	unsigned int frame_fifo_size;
2335 	unsigned int rfa, rfd;
2336 
2337 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2338 
2339 	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2340 		/* PFC is active for this queue */
2341 		rfa = pdata->pfc_rfa;
2342 		rfd = rfa + frame_fifo_size;
2343 		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2344 			rfd = XGMAC_FLOW_CONTROL_MAX;
2345 		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2346 			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2347 	} else {
2348 		/* This path deals with just maximum frame sizes which are
2349 		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2350 		 * so we can never exceed the maximum allowable RFA/RFD
2351 		 * values.
2352 		 */
2353 		if (q_fifo_size <= 2048) {
2354 			/* rx_rfd to zero to signal no flow control */
2355 			pdata->rx_rfa[queue] = 0;
2356 			pdata->rx_rfd[queue] = 0;
2357 			return;
2358 		}
2359 
2360 		if (q_fifo_size <= 4096) {
2361 			/* Between 2048 and 4096 */
2362 			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2363 			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2364 			return;
2365 		}
2366 
2367 		if (q_fifo_size <= frame_fifo_size) {
2368 			/* Between 4096 and max-frame */
2369 			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2370 			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2371 			return;
2372 		}
2373 
2374 		if (q_fifo_size <= (frame_fifo_size * 3)) {
2375 			/* Between max-frame and 3 max-frames,
2376 			 * trigger if we get just over a frame of data and
2377 			 * resume when we have just under half a frame left.
2378 			 */
2379 			rfa = q_fifo_size - frame_fifo_size;
2380 			rfd = rfa + (frame_fifo_size / 2);
2381 		} else {
2382 			/* Above 3 max-frames - trigger when just over
2383 			 * 2 frames of space available
2384 			 */
2385 			rfa = frame_fifo_size * 2;
2386 			rfa += XGMAC_FLOW_CONTROL_UNIT;
2387 			rfd = rfa + frame_fifo_size;
2388 		}
2389 	}
2390 
2391 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2392 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2393 }
2394 
2395 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2396 						  unsigned int *fifo)
2397 {
2398 	unsigned int q_fifo_size;
2399 	unsigned int i;
2400 
2401 	for (i = 0; i < pdata->rx_q_count; i++) {
2402 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2403 
2404 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2405 	}
2406 }
2407 
2408 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2409 {
2410 	unsigned int i;
2411 
2412 	for (i = 0; i < pdata->rx_q_count; i++) {
2413 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2414 				       pdata->rx_rfa[i]);
2415 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2416 				       pdata->rx_rfd[i]);
2417 	}
2418 }
2419 
2420 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2421 {
2422 	/* The configured value may not be the actual amount of fifo RAM */
2423 	return min_t(unsigned int, pdata->tx_max_fifo_size,
2424 		     pdata->hw_feat.tx_fifo_size);
2425 }
2426 
2427 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2428 {
2429 	/* The configured value may not be the actual amount of fifo RAM */
2430 	return min_t(unsigned int, pdata->rx_max_fifo_size,
2431 		     pdata->hw_feat.rx_fifo_size);
2432 }
2433 
2434 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2435 				      unsigned int queue_count,
2436 				      unsigned int *fifo)
2437 {
2438 	unsigned int q_fifo_size;
2439 	unsigned int p_fifo;
2440 	unsigned int i;
2441 
2442 	q_fifo_size = fifo_size / queue_count;
2443 
2444 	/* Calculate the fifo setting by dividing the queue's fifo size
2445 	 * by the fifo allocation increment (with 0 representing the
2446 	 * base allocation increment so decrement the result by 1).
2447 	 */
2448 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2449 	if (p_fifo)
2450 		p_fifo--;
2451 
2452 	/* Distribute the fifo equally amongst the queues */
2453 	for (i = 0; i < queue_count; i++)
2454 		fifo[i] = p_fifo;
2455 }
2456 
2457 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2458 					   unsigned int queue_count,
2459 					   unsigned int *fifo)
2460 {
2461 	unsigned int i;
2462 
2463 	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2464 
2465 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2466 		return fifo_size;
2467 
2468 	/* Rx queues 9 and up are for specialized packets,
2469 	 * such as PTP or DCB control packets, etc. and
2470 	 * don't require a large fifo
2471 	 */
2472 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2473 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2474 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2475 	}
2476 
2477 	return fifo_size;
2478 }
2479 
2480 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2481 {
2482 	unsigned int delay;
2483 
2484 	/* If a delay has been provided, use that */
2485 	if (pdata->pfc->delay)
2486 		return pdata->pfc->delay / 8;
2487 
2488 	/* Allow for two maximum size frames */
2489 	delay = xgbe_get_max_frame(pdata);
2490 	delay += XGMAC_ETH_PREAMBLE;
2491 	delay *= 2;
2492 
2493 	/* Allow for PFC frame */
2494 	delay += XGMAC_PFC_DATA_LEN;
2495 	delay += ETH_HLEN + ETH_FCS_LEN;
2496 	delay += XGMAC_ETH_PREAMBLE;
2497 
2498 	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2499 	delay += XGMAC_PFC_DELAYS;
2500 
2501 	return delay;
2502 }
2503 
2504 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2505 {
2506 	unsigned int count, prio_queues;
2507 	unsigned int i;
2508 
2509 	if (!pdata->pfc->pfc_en)
2510 		return 0;
2511 
2512 	count = 0;
2513 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2514 	for (i = 0; i < prio_queues; i++) {
2515 		if (!xgbe_is_pfc_queue(pdata, i))
2516 			continue;
2517 
2518 		pdata->pfcq[i] = 1;
2519 		count++;
2520 	}
2521 
2522 	return count;
2523 }
2524 
2525 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2526 				    unsigned int fifo_size,
2527 				    unsigned int *fifo)
2528 {
2529 	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2530 	unsigned int prio_queues;
2531 	unsigned int pfc_count;
2532 	unsigned int i;
2533 
2534 	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2535 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2536 	pfc_count = xgbe_get_pfc_queues(pdata);
2537 
2538 	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2539 		/* No traffic classes with PFC enabled or can't do lossless */
2540 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2541 		return;
2542 	}
2543 
2544 	/* Calculate how much fifo we have to play with */
2545 	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2546 
2547 	/* Calculate how much more than base fifo PFC needs, which also
2548 	 * becomes the threshold activation point (RFA)
2549 	 */
2550 	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2551 	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2552 
2553 	if (pdata->pfc_rfa > q_fifo_size) {
2554 		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2555 		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2556 	} else {
2557 		addn_fifo = 0;
2558 	}
2559 
2560 	/* Calculate DCB fifo settings:
2561 	 *   - distribute remaining fifo between the VLAN priority
2562 	 *     queues based on traffic class PFC enablement and overall
2563 	 *     priority (0 is lowest priority, so start at highest)
2564 	 */
2565 	i = prio_queues;
2566 	while (i > 0) {
2567 		i--;
2568 
2569 		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2570 
2571 		if (!pdata->pfcq[i] || !addn_fifo)
2572 			continue;
2573 
2574 		if (addn_fifo > rem_fifo) {
2575 			netdev_warn(pdata->netdev,
2576 				    "RXq%u cannot set needed fifo size\n", i);
2577 			if (!rem_fifo)
2578 				continue;
2579 
2580 			addn_fifo = rem_fifo;
2581 		}
2582 
2583 		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2584 		rem_fifo -= addn_fifo;
2585 	}
2586 
2587 	if (rem_fifo) {
2588 		unsigned int inc_fifo = rem_fifo / prio_queues;
2589 
2590 		/* Distribute remaining fifo across queues */
2591 		for (i = 0; i < prio_queues; i++)
2592 			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2593 	}
2594 }
2595 
2596 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2597 {
2598 	unsigned int fifo_size;
2599 	unsigned int fifo[XGBE_MAX_QUEUES];
2600 	unsigned int i;
2601 
2602 	fifo_size = xgbe_get_tx_fifo_size(pdata);
2603 
2604 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2605 
2606 	for (i = 0; i < pdata->tx_q_count; i++)
2607 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2608 
2609 	netif_info(pdata, drv, pdata->netdev,
2610 		   "%d Tx hardware queues, %d byte fifo per queue\n",
2611 		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2612 }
2613 
2614 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2615 {
2616 	unsigned int fifo_size;
2617 	unsigned int fifo[XGBE_MAX_QUEUES];
2618 	unsigned int prio_queues;
2619 	unsigned int i;
2620 
2621 	/* Clear any DCB related fifo/queue information */
2622 	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2623 	pdata->pfc_rfa = 0;
2624 
2625 	fifo_size = xgbe_get_rx_fifo_size(pdata);
2626 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2627 
2628 	/* Assign a minimum fifo to the non-VLAN priority queues */
2629 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2630 
2631 	if (pdata->pfc && pdata->ets)
2632 		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2633 	else
2634 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2635 
2636 	for (i = 0; i < pdata->rx_q_count; i++)
2637 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2638 
2639 	xgbe_calculate_flow_control_threshold(pdata, fifo);
2640 	xgbe_config_flow_control_threshold(pdata);
2641 
2642 	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2643 		netif_info(pdata, drv, pdata->netdev,
2644 			   "%u Rx hardware queues\n", pdata->rx_q_count);
2645 		for (i = 0; i < pdata->rx_q_count; i++)
2646 			netif_info(pdata, drv, pdata->netdev,
2647 				   "RxQ%u, %u byte fifo queue\n", i,
2648 				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2649 	} else {
2650 		netif_info(pdata, drv, pdata->netdev,
2651 			   "%u Rx hardware queues, %u byte fifo per queue\n",
2652 			   pdata->rx_q_count,
2653 			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2654 	}
2655 }
2656 
2657 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2658 {
2659 	unsigned int qptc, qptc_extra, queue;
2660 	unsigned int prio_queues;
2661 	unsigned int ppq, ppq_extra, prio;
2662 	unsigned int mask;
2663 	unsigned int i, j, reg, reg_val;
2664 
2665 	/* Map the MTL Tx Queues to Traffic Classes
2666 	 *   Note: Tx Queues >= Traffic Classes
2667 	 */
2668 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2669 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2670 
2671 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2672 		for (j = 0; j < qptc; j++) {
2673 			netif_dbg(pdata, drv, pdata->netdev,
2674 				  "TXq%u mapped to TC%u\n", queue, i);
2675 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2676 					       Q2TCMAP, i);
2677 			pdata->q2tc_map[queue++] = i;
2678 		}
2679 
2680 		if (i < qptc_extra) {
2681 			netif_dbg(pdata, drv, pdata->netdev,
2682 				  "TXq%u mapped to TC%u\n", queue, i);
2683 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2684 					       Q2TCMAP, i);
2685 			pdata->q2tc_map[queue++] = i;
2686 		}
2687 	}
2688 
2689 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2690 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2691 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2692 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2693 
2694 	reg = MAC_RQC2R;
2695 	reg_val = 0;
2696 	for (i = 0, prio = 0; i < prio_queues;) {
2697 		mask = 0;
2698 		for (j = 0; j < ppq; j++) {
2699 			netif_dbg(pdata, drv, pdata->netdev,
2700 				  "PRIO%u mapped to RXq%u\n", prio, i);
2701 			mask |= (1 << prio);
2702 			pdata->prio2q_map[prio++] = i;
2703 		}
2704 
2705 		if (i < ppq_extra) {
2706 			netif_dbg(pdata, drv, pdata->netdev,
2707 				  "PRIO%u mapped to RXq%u\n", prio, i);
2708 			mask |= (1 << prio);
2709 			pdata->prio2q_map[prio++] = i;
2710 		}
2711 
2712 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2713 
2714 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2715 			continue;
2716 
2717 		XGMAC_IOWRITE(pdata, reg, reg_val);
2718 		reg += MAC_RQC2_INC;
2719 		reg_val = 0;
2720 	}
2721 
2722 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2723 	reg = MTL_RQDCM0R;
2724 	reg_val = 0;
2725 	for (i = 0; i < pdata->rx_q_count;) {
2726 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2727 
2728 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2729 			continue;
2730 
2731 		XGMAC_IOWRITE(pdata, reg, reg_val);
2732 
2733 		reg += MTL_RQDCM_INC;
2734 		reg_val = 0;
2735 	}
2736 }
2737 
2738 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2739 {
2740 	unsigned int offset, queue, prio;
2741 	u8 i;
2742 
2743 	netdev_reset_tc(pdata->netdev);
2744 	if (!pdata->num_tcs)
2745 		return;
2746 
2747 	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2748 
2749 	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2750 		while ((queue < pdata->tx_q_count) &&
2751 		       (pdata->q2tc_map[queue] == i))
2752 			queue++;
2753 
2754 		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2755 			  i, offset, queue - 1);
2756 		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2757 		offset = queue;
2758 	}
2759 
2760 	if (!pdata->ets)
2761 		return;
2762 
2763 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2764 		netdev_set_prio_tc_map(pdata->netdev, prio,
2765 				       pdata->ets->prio_tc[prio]);
2766 }
2767 
2768 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2769 {
2770 	struct ieee_ets *ets = pdata->ets;
2771 	unsigned int total_weight, min_weight, weight;
2772 	unsigned int mask, reg, reg_val;
2773 	unsigned int i, prio;
2774 
2775 	if (!ets)
2776 		return;
2777 
2778 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2779 	 * traffic class is using ETS algorithm)
2780 	 */
2781 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2782 
2783 	/* Set Traffic Class algorithms */
2784 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2785 	min_weight = total_weight / 100;
2786 	if (!min_weight)
2787 		min_weight = 1;
2788 
2789 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2790 		/* Map the priorities to the traffic class */
2791 		mask = 0;
2792 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2793 			if (ets->prio_tc[prio] == i)
2794 				mask |= (1 << prio);
2795 		}
2796 		mask &= 0xff;
2797 
2798 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2799 			  i, mask);
2800 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2801 		reg_val = XGMAC_IOREAD(pdata, reg);
2802 
2803 		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2804 		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2805 
2806 		XGMAC_IOWRITE(pdata, reg, reg_val);
2807 
2808 		/* Set the traffic class algorithm */
2809 		switch (ets->tc_tsa[i]) {
2810 		case IEEE_8021QAZ_TSA_STRICT:
2811 			netif_dbg(pdata, drv, pdata->netdev,
2812 				  "TC%u using SP\n", i);
2813 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2814 					       MTL_TSA_SP);
2815 			break;
2816 		case IEEE_8021QAZ_TSA_ETS:
2817 			weight = total_weight * ets->tc_tx_bw[i] / 100;
2818 			weight = clamp(weight, min_weight, total_weight);
2819 
2820 			netif_dbg(pdata, drv, pdata->netdev,
2821 				  "TC%u using DWRR (weight %u)\n", i, weight);
2822 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2823 					       MTL_TSA_ETS);
2824 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2825 					       weight);
2826 			break;
2827 		}
2828 	}
2829 
2830 	xgbe_config_tc(pdata);
2831 }
2832 
2833 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2834 {
2835 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2836 		/* Just stop the Tx queues while Rx fifo is changed */
2837 		netif_tx_stop_all_queues(pdata->netdev);
2838 
2839 		/* Suspend Rx so that fifo's can be adjusted */
2840 		pdata->hw_if.disable_rx(pdata);
2841 	}
2842 
2843 	xgbe_config_rx_fifo_size(pdata);
2844 	xgbe_config_flow_control(pdata);
2845 
2846 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2847 		/* Resume Rx */
2848 		pdata->hw_if.enable_rx(pdata);
2849 
2850 		/* Resume Tx queues */
2851 		netif_tx_start_all_queues(pdata->netdev);
2852 	}
2853 }
2854 
2855 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2856 {
2857 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2858 
2859 	/* Filtering is done using perfect filtering and hash filtering */
2860 	if (pdata->hw_feat.hash_table_size) {
2861 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2862 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2863 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2864 	}
2865 }
2866 
2867 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2868 {
2869 	unsigned int val;
2870 
2871 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2872 
2873 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2874 }
2875 
2876 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2877 {
2878 	xgbe_set_speed(pdata, pdata->phy_speed);
2879 }
2880 
2881 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2882 {
2883 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2884 		xgbe_enable_rx_csum(pdata);
2885 	else
2886 		xgbe_disable_rx_csum(pdata);
2887 }
2888 
2889 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2890 {
2891 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2892 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2893 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2894 
2895 	/* Set the current VLAN Hash Table register value */
2896 	xgbe_update_vlan_hash_table(pdata);
2897 
2898 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2899 		xgbe_enable_rx_vlan_filtering(pdata);
2900 	else
2901 		xgbe_disable_rx_vlan_filtering(pdata);
2902 
2903 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2904 		xgbe_enable_rx_vlan_stripping(pdata);
2905 	else
2906 		xgbe_disable_rx_vlan_stripping(pdata);
2907 }
2908 
2909 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2910 {
2911 	bool read_hi;
2912 	u64 val;
2913 
2914 	if (pdata->vdata->mmc_64bit) {
2915 		switch (reg_lo) {
2916 		/* These registers are always 32 bit */
2917 		case MMC_RXRUNTERROR:
2918 		case MMC_RXJABBERERROR:
2919 		case MMC_RXUNDERSIZE_G:
2920 		case MMC_RXOVERSIZE_G:
2921 		case MMC_RXWATCHDOGERROR:
2922 			read_hi = false;
2923 			break;
2924 
2925 		default:
2926 			read_hi = true;
2927 		}
2928 	} else {
2929 		switch (reg_lo) {
2930 		/* These registers are always 64 bit */
2931 		case MMC_TXOCTETCOUNT_GB_LO:
2932 		case MMC_TXOCTETCOUNT_G_LO:
2933 		case MMC_RXOCTETCOUNT_GB_LO:
2934 		case MMC_RXOCTETCOUNT_G_LO:
2935 			read_hi = true;
2936 			break;
2937 
2938 		default:
2939 			read_hi = false;
2940 		}
2941 	}
2942 
2943 	val = XGMAC_IOREAD(pdata, reg_lo);
2944 
2945 	if (read_hi)
2946 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2947 
2948 	return val;
2949 }
2950 
2951 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2952 {
2953 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2954 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2955 
2956 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2957 		stats->txoctetcount_gb +=
2958 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2959 
2960 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2961 		stats->txframecount_gb +=
2962 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2963 
2964 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2965 		stats->txbroadcastframes_g +=
2966 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2967 
2968 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2969 		stats->txmulticastframes_g +=
2970 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2971 
2972 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2973 		stats->tx64octets_gb +=
2974 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2975 
2976 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2977 		stats->tx65to127octets_gb +=
2978 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2979 
2980 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2981 		stats->tx128to255octets_gb +=
2982 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2983 
2984 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2985 		stats->tx256to511octets_gb +=
2986 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2987 
2988 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2989 		stats->tx512to1023octets_gb +=
2990 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2991 
2992 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2993 		stats->tx1024tomaxoctets_gb +=
2994 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2995 
2996 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2997 		stats->txunicastframes_gb +=
2998 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2999 
3000 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
3001 		stats->txmulticastframes_gb +=
3002 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3003 
3004 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
3005 		stats->txbroadcastframes_g +=
3006 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3007 
3008 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
3009 		stats->txunderflowerror +=
3010 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3011 
3012 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
3013 		stats->txoctetcount_g +=
3014 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3015 
3016 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
3017 		stats->txframecount_g +=
3018 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3019 
3020 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
3021 		stats->txpauseframes +=
3022 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3023 
3024 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
3025 		stats->txvlanframes_g +=
3026 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3027 }
3028 
3029 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
3030 {
3031 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3032 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
3033 
3034 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
3035 		stats->rxframecount_gb +=
3036 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3037 
3038 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
3039 		stats->rxoctetcount_gb +=
3040 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3041 
3042 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
3043 		stats->rxoctetcount_g +=
3044 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3045 
3046 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
3047 		stats->rxbroadcastframes_g +=
3048 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3049 
3050 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
3051 		stats->rxmulticastframes_g +=
3052 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3053 
3054 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
3055 		stats->rxcrcerror +=
3056 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3057 
3058 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3059 		stats->rxrunterror +=
3060 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3061 
3062 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3063 		stats->rxjabbererror +=
3064 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3065 
3066 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3067 		stats->rxundersize_g +=
3068 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3069 
3070 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3071 		stats->rxoversize_g +=
3072 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3073 
3074 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3075 		stats->rx64octets_gb +=
3076 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3077 
3078 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3079 		stats->rx65to127octets_gb +=
3080 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3081 
3082 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3083 		stats->rx128to255octets_gb +=
3084 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3085 
3086 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3087 		stats->rx256to511octets_gb +=
3088 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3089 
3090 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3091 		stats->rx512to1023octets_gb +=
3092 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3093 
3094 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3095 		stats->rx1024tomaxoctets_gb +=
3096 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3097 
3098 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3099 		stats->rxunicastframes_g +=
3100 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3101 
3102 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3103 		stats->rxlengtherror +=
3104 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3105 
3106 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3107 		stats->rxoutofrangetype +=
3108 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3109 
3110 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3111 		stats->rxpauseframes +=
3112 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3113 
3114 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3115 		stats->rxfifooverflow +=
3116 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3117 
3118 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3119 		stats->rxvlanframes_gb +=
3120 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3121 
3122 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3123 		stats->rxwatchdogerror +=
3124 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3125 }
3126 
3127 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3128 {
3129 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3130 
3131 	/* Freeze counters */
3132 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3133 
3134 	stats->txoctetcount_gb +=
3135 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3136 
3137 	stats->txframecount_gb +=
3138 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3139 
3140 	stats->txbroadcastframes_g +=
3141 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3142 
3143 	stats->txmulticastframes_g +=
3144 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3145 
3146 	stats->tx64octets_gb +=
3147 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3148 
3149 	stats->tx65to127octets_gb +=
3150 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3151 
3152 	stats->tx128to255octets_gb +=
3153 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3154 
3155 	stats->tx256to511octets_gb +=
3156 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3157 
3158 	stats->tx512to1023octets_gb +=
3159 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3160 
3161 	stats->tx1024tomaxoctets_gb +=
3162 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3163 
3164 	stats->txunicastframes_gb +=
3165 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3166 
3167 	stats->txmulticastframes_gb +=
3168 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3169 
3170 	stats->txbroadcastframes_g +=
3171 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3172 
3173 	stats->txunderflowerror +=
3174 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3175 
3176 	stats->txoctetcount_g +=
3177 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3178 
3179 	stats->txframecount_g +=
3180 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3181 
3182 	stats->txpauseframes +=
3183 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3184 
3185 	stats->txvlanframes_g +=
3186 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3187 
3188 	stats->rxframecount_gb +=
3189 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3190 
3191 	stats->rxoctetcount_gb +=
3192 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3193 
3194 	stats->rxoctetcount_g +=
3195 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3196 
3197 	stats->rxbroadcastframes_g +=
3198 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3199 
3200 	stats->rxmulticastframes_g +=
3201 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3202 
3203 	stats->rxcrcerror +=
3204 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3205 
3206 	stats->rxrunterror +=
3207 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3208 
3209 	stats->rxjabbererror +=
3210 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3211 
3212 	stats->rxundersize_g +=
3213 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3214 
3215 	stats->rxoversize_g +=
3216 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3217 
3218 	stats->rx64octets_gb +=
3219 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3220 
3221 	stats->rx65to127octets_gb +=
3222 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3223 
3224 	stats->rx128to255octets_gb +=
3225 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3226 
3227 	stats->rx256to511octets_gb +=
3228 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3229 
3230 	stats->rx512to1023octets_gb +=
3231 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3232 
3233 	stats->rx1024tomaxoctets_gb +=
3234 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3235 
3236 	stats->rxunicastframes_g +=
3237 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3238 
3239 	stats->rxlengtherror +=
3240 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3241 
3242 	stats->rxoutofrangetype +=
3243 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3244 
3245 	stats->rxpauseframes +=
3246 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3247 
3248 	stats->rxfifooverflow +=
3249 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3250 
3251 	stats->rxvlanframes_gb +=
3252 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3253 
3254 	stats->rxwatchdogerror +=
3255 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3256 
3257 	/* Un-freeze counters */
3258 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3259 }
3260 
3261 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3262 {
3263 	/* Set counters to reset on read */
3264 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3265 
3266 	/* Reset the counters */
3267 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3268 }
3269 
3270 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3271 				     unsigned int queue)
3272 {
3273 	unsigned int tx_status;
3274 	unsigned long tx_timeout;
3275 
3276 	/* The Tx engine cannot be stopped if it is actively processing
3277 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3278 	 * wait forever though...
3279 	 */
3280 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3281 	while (time_before(jiffies, tx_timeout)) {
3282 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3283 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3284 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3285 			break;
3286 
3287 		usleep_range(500, 1000);
3288 	}
3289 
3290 	if (!time_before(jiffies, tx_timeout))
3291 		netdev_info(pdata->netdev,
3292 			    "timed out waiting for Tx queue %u to empty\n",
3293 			    queue);
3294 }
3295 
3296 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3297 				 unsigned int queue)
3298 {
3299 	unsigned int tx_dsr, tx_pos, tx_qidx;
3300 	unsigned int tx_status;
3301 	unsigned long tx_timeout;
3302 
3303 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3304 		return xgbe_txq_prepare_tx_stop(pdata, queue);
3305 
3306 	/* Calculate the status register to read and the position within */
3307 	if (queue < DMA_DSRX_FIRST_QUEUE) {
3308 		tx_dsr = DMA_DSR0;
3309 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3310 	} else {
3311 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3312 
3313 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3314 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3315 			 DMA_DSRX_TPS_START;
3316 	}
3317 
3318 	/* The Tx engine cannot be stopped if it is actively processing
3319 	 * descriptors. Wait for the Tx engine to enter the stopped or
3320 	 * suspended state.  Don't wait forever though...
3321 	 */
3322 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3323 	while (time_before(jiffies, tx_timeout)) {
3324 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3325 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3326 		if ((tx_status == DMA_TPS_STOPPED) ||
3327 		    (tx_status == DMA_TPS_SUSPENDED))
3328 			break;
3329 
3330 		usleep_range(500, 1000);
3331 	}
3332 
3333 	if (!time_before(jiffies, tx_timeout))
3334 		netdev_info(pdata->netdev,
3335 			    "timed out waiting for Tx DMA channel %u to stop\n",
3336 			    queue);
3337 }
3338 
3339 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3340 {
3341 	unsigned int i;
3342 
3343 	/* Enable each Tx DMA channel */
3344 	for (i = 0; i < pdata->channel_count; i++) {
3345 		if (!pdata->channel[i]->tx_ring)
3346 			break;
3347 
3348 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3349 	}
3350 
3351 	/* Enable each Tx queue */
3352 	for (i = 0; i < pdata->tx_q_count; i++)
3353 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3354 				       MTL_Q_ENABLED);
3355 
3356 	/* Enable MAC Tx */
3357 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3358 }
3359 
3360 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3361 {
3362 	unsigned int i;
3363 
3364 	/* Prepare for Tx DMA channel stop */
3365 	for (i = 0; i < pdata->tx_q_count; i++)
3366 		xgbe_prepare_tx_stop(pdata, i);
3367 
3368 	/* Disable MAC Tx */
3369 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3370 
3371 	/* Disable each Tx queue */
3372 	for (i = 0; i < pdata->tx_q_count; i++)
3373 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3374 
3375 	/* Disable each Tx DMA channel */
3376 	for (i = 0; i < pdata->channel_count; i++) {
3377 		if (!pdata->channel[i]->tx_ring)
3378 			break;
3379 
3380 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3381 	}
3382 }
3383 
3384 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3385 				 unsigned int queue)
3386 {
3387 	unsigned int rx_status;
3388 	unsigned long rx_timeout;
3389 
3390 	/* The Rx engine cannot be stopped if it is actively processing
3391 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3392 	 * wait forever though...
3393 	 */
3394 	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3395 	while (time_before(jiffies, rx_timeout)) {
3396 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3397 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3398 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3399 			break;
3400 
3401 		usleep_range(500, 1000);
3402 	}
3403 
3404 	if (!time_before(jiffies, rx_timeout))
3405 		netdev_info(pdata->netdev,
3406 			    "timed out waiting for Rx queue %u to empty\n",
3407 			    queue);
3408 }
3409 
3410 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3411 {
3412 	unsigned int reg_val, i;
3413 
3414 	/* Enable each Rx DMA channel */
3415 	for (i = 0; i < pdata->channel_count; i++) {
3416 		if (!pdata->channel[i]->rx_ring)
3417 			break;
3418 
3419 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3420 	}
3421 
3422 	/* Enable each Rx queue */
3423 	reg_val = 0;
3424 	for (i = 0; i < pdata->rx_q_count; i++)
3425 		reg_val |= (0x02 << (i << 1));
3426 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3427 
3428 	/* Enable MAC Rx */
3429 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3430 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3431 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3432 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3433 }
3434 
3435 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3436 {
3437 	unsigned int i;
3438 
3439 	/* Disable MAC Rx */
3440 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3441 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3442 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3443 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3444 
3445 	/* Prepare for Rx DMA channel stop */
3446 	for (i = 0; i < pdata->rx_q_count; i++)
3447 		xgbe_prepare_rx_stop(pdata, i);
3448 
3449 	/* Disable each Rx queue */
3450 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3451 
3452 	/* Disable each Rx DMA channel */
3453 	for (i = 0; i < pdata->channel_count; i++) {
3454 		if (!pdata->channel[i]->rx_ring)
3455 			break;
3456 
3457 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3458 	}
3459 }
3460 
3461 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3462 {
3463 	unsigned int i;
3464 
3465 	/* Enable each Tx DMA channel */
3466 	for (i = 0; i < pdata->channel_count; i++) {
3467 		if (!pdata->channel[i]->tx_ring)
3468 			break;
3469 
3470 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3471 	}
3472 
3473 	/* Enable MAC Tx */
3474 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3475 }
3476 
3477 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3478 {
3479 	unsigned int i;
3480 
3481 	/* Prepare for Tx DMA channel stop */
3482 	for (i = 0; i < pdata->tx_q_count; i++)
3483 		xgbe_prepare_tx_stop(pdata, i);
3484 
3485 	/* Disable MAC Tx */
3486 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3487 
3488 	/* Disable each Tx DMA channel */
3489 	for (i = 0; i < pdata->channel_count; i++) {
3490 		if (!pdata->channel[i]->tx_ring)
3491 			break;
3492 
3493 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3494 	}
3495 }
3496 
3497 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3498 {
3499 	unsigned int i;
3500 
3501 	/* Enable each Rx DMA channel */
3502 	for (i = 0; i < pdata->channel_count; i++) {
3503 		if (!pdata->channel[i]->rx_ring)
3504 			break;
3505 
3506 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3507 	}
3508 }
3509 
3510 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3511 {
3512 	unsigned int i;
3513 
3514 	/* Disable each Rx DMA channel */
3515 	for (i = 0; i < pdata->channel_count; i++) {
3516 		if (!pdata->channel[i]->rx_ring)
3517 			break;
3518 
3519 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3520 	}
3521 }
3522 
3523 static int xgbe_init(struct xgbe_prv_data *pdata)
3524 {
3525 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3526 	int ret;
3527 
3528 	DBGPR("-->xgbe_init\n");
3529 
3530 	/* Flush Tx queues */
3531 	ret = xgbe_flush_tx_queues(pdata);
3532 	if (ret) {
3533 		netdev_err(pdata->netdev, "error flushing TX queues\n");
3534 		return ret;
3535 	}
3536 
3537 	/*
3538 	 * Initialize DMA related features
3539 	 */
3540 	xgbe_config_dma_bus(pdata);
3541 	xgbe_config_dma_cache(pdata);
3542 	xgbe_config_osp_mode(pdata);
3543 	xgbe_config_pbl_val(pdata);
3544 	xgbe_config_rx_coalesce(pdata);
3545 	xgbe_config_tx_coalesce(pdata);
3546 	xgbe_config_rx_buffer_size(pdata);
3547 	xgbe_config_tso_mode(pdata);
3548 	xgbe_config_sph_mode(pdata);
3549 	xgbe_config_rss(pdata);
3550 	desc_if->wrapper_tx_desc_init(pdata);
3551 	desc_if->wrapper_rx_desc_init(pdata);
3552 	xgbe_enable_dma_interrupts(pdata);
3553 
3554 	/*
3555 	 * Initialize MTL related features
3556 	 */
3557 	xgbe_config_mtl_mode(pdata);
3558 	xgbe_config_queue_mapping(pdata);
3559 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3560 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3561 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3562 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3563 	xgbe_config_tx_fifo_size(pdata);
3564 	xgbe_config_rx_fifo_size(pdata);
3565 	/*TODO: Error Packet and undersized good Packet forwarding enable
3566 		(FEP and FUP)
3567 	 */
3568 	xgbe_config_dcb_tc(pdata);
3569 	xgbe_enable_mtl_interrupts(pdata);
3570 
3571 	/*
3572 	 * Initialize MAC related features
3573 	 */
3574 	xgbe_config_mac_address(pdata);
3575 	xgbe_config_rx_mode(pdata);
3576 	xgbe_config_jumbo_enable(pdata);
3577 	xgbe_config_flow_control(pdata);
3578 	xgbe_config_mac_speed(pdata);
3579 	xgbe_config_checksum_offload(pdata);
3580 	xgbe_config_vlan_support(pdata);
3581 	xgbe_config_mmc(pdata);
3582 	xgbe_enable_mac_interrupts(pdata);
3583 
3584 	/*
3585 	 * Initialize ECC related features
3586 	 */
3587 	xgbe_enable_ecc_interrupts(pdata);
3588 
3589 	DBGPR("<--xgbe_init\n");
3590 
3591 	return 0;
3592 }
3593 
3594 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3595 {
3596 	DBGPR("-->xgbe_init_function_ptrs\n");
3597 
3598 	hw_if->tx_complete = xgbe_tx_complete;
3599 
3600 	hw_if->set_mac_address = xgbe_set_mac_address;
3601 	hw_if->config_rx_mode = xgbe_config_rx_mode;
3602 
3603 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3604 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3605 
3606 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3607 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3608 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3609 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3610 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3611 
3612 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3613 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3614 
3615 	hw_if->set_speed = xgbe_set_speed;
3616 
3617 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3618 	hw_if->read_ext_mii_regs_c22 = xgbe_read_ext_mii_regs_c22;
3619 	hw_if->write_ext_mii_regs_c22 = xgbe_write_ext_mii_regs_c22;
3620 	hw_if->read_ext_mii_regs_c45 = xgbe_read_ext_mii_regs_c45;
3621 	hw_if->write_ext_mii_regs_c45 = xgbe_write_ext_mii_regs_c45;
3622 
3623 	hw_if->set_gpio = xgbe_set_gpio;
3624 	hw_if->clr_gpio = xgbe_clr_gpio;
3625 
3626 	hw_if->enable_tx = xgbe_enable_tx;
3627 	hw_if->disable_tx = xgbe_disable_tx;
3628 	hw_if->enable_rx = xgbe_enable_rx;
3629 	hw_if->disable_rx = xgbe_disable_rx;
3630 
3631 	hw_if->powerup_tx = xgbe_powerup_tx;
3632 	hw_if->powerdown_tx = xgbe_powerdown_tx;
3633 	hw_if->powerup_rx = xgbe_powerup_rx;
3634 	hw_if->powerdown_rx = xgbe_powerdown_rx;
3635 
3636 	hw_if->dev_xmit = xgbe_dev_xmit;
3637 	hw_if->dev_read = xgbe_dev_read;
3638 	hw_if->enable_int = xgbe_enable_int;
3639 	hw_if->disable_int = xgbe_disable_int;
3640 	hw_if->init = xgbe_init;
3641 	hw_if->exit = xgbe_exit;
3642 
3643 	/* Descriptor related Sequences have to be initialized here */
3644 	hw_if->tx_desc_init = xgbe_tx_desc_init;
3645 	hw_if->rx_desc_init = xgbe_rx_desc_init;
3646 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3647 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3648 	hw_if->is_last_desc = xgbe_is_last_desc;
3649 	hw_if->is_context_desc = xgbe_is_context_desc;
3650 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3651 
3652 	/* For FLOW ctrl */
3653 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3654 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3655 
3656 	/* For RX coalescing */
3657 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3658 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3659 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3660 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3661 
3662 	/* For RX and TX threshold config */
3663 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3664 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3665 
3666 	/* For RX and TX Store and Forward Mode config */
3667 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3668 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3669 
3670 	/* For TX DMA Operating on Second Frame config */
3671 	hw_if->config_osp_mode = xgbe_config_osp_mode;
3672 
3673 	/* For MMC statistics support */
3674 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3675 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3676 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3677 
3678 	/* For PTP config */
3679 	hw_if->config_tstamp = xgbe_config_tstamp;
3680 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3681 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3682 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3683 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3684 
3685 	/* For Data Center Bridging config */
3686 	hw_if->config_tc = xgbe_config_tc;
3687 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3688 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3689 
3690 	/* For Receive Side Scaling */
3691 	hw_if->enable_rss = xgbe_enable_rss;
3692 	hw_if->disable_rss = xgbe_disable_rss;
3693 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3694 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3695 
3696 	/* For ECC */
3697 	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3698 	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3699 
3700 	/* For VXLAN */
3701 	hw_if->enable_vxlan = xgbe_enable_vxlan;
3702 	hw_if->disable_vxlan = xgbe_disable_vxlan;
3703 	hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3704 
3705 	DBGPR("<--xgbe_init_function_ptrs\n");
3706 }
3707