xref: /linux/drivers/net/ethernet/arc/emac_main.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
4  *
5  * Driver for the ARC EMAC 10100 (hardware revision 5)
6  *
7  * Contributors:
8  *		Amit Bhor
9  *		Sameer Dhavale
10  *		Vineet Gupta
11  */
12 
13 #include <linux/crc32.h>
14 #include <linux/etherdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_mdio.h>
21 #include <linux/of_net.h>
22 #include <linux/of_platform.h>
23 
24 #include "emac.h"
25 
26 static void arc_emac_restart(struct net_device *ndev);
27 
28 /**
29  * arc_emac_tx_avail - Return the number of available slots in the tx ring.
30  * @priv: Pointer to ARC EMAC private data structure.
31  *
32  * returns: the number of slots available for transmission in tx the ring.
33  */
34 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
35 {
36 	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
37 }
38 
39 /**
40  * arc_emac_adjust_link - Adjust the PHY link duplex.
41  * @ndev:	Pointer to the net_device structure.
42  *
43  * This function is called to change the duplex setting after auto negotiation
44  * is done by the PHY.
45  */
46 static void arc_emac_adjust_link(struct net_device *ndev)
47 {
48 	struct arc_emac_priv *priv = netdev_priv(ndev);
49 	struct phy_device *phy_dev = ndev->phydev;
50 	unsigned int reg, state_changed = 0;
51 
52 	if (priv->link != phy_dev->link) {
53 		priv->link = phy_dev->link;
54 		state_changed = 1;
55 	}
56 
57 	if (priv->speed != phy_dev->speed) {
58 		priv->speed = phy_dev->speed;
59 		state_changed = 1;
60 		if (priv->set_mac_speed)
61 			priv->set_mac_speed(priv, priv->speed);
62 	}
63 
64 	if (priv->duplex != phy_dev->duplex) {
65 		reg = arc_reg_get(priv, R_CTRL);
66 
67 		if (phy_dev->duplex == DUPLEX_FULL)
68 			reg |= ENFL_MASK;
69 		else
70 			reg &= ~ENFL_MASK;
71 
72 		arc_reg_set(priv, R_CTRL, reg);
73 		priv->duplex = phy_dev->duplex;
74 		state_changed = 1;
75 	}
76 
77 	if (state_changed)
78 		phy_print_status(phy_dev);
79 }
80 
81 /**
82  * arc_emac_get_drvinfo - Get EMAC driver information.
83  * @ndev:	Pointer to net_device structure.
84  * @info:	Pointer to ethtool_drvinfo structure.
85  *
86  * This implements ethtool command for getting the driver information.
87  * Issue "ethtool -i ethX" under linux prompt to execute this function.
88  */
89 static void arc_emac_get_drvinfo(struct net_device *ndev,
90 				 struct ethtool_drvinfo *info)
91 {
92 	struct arc_emac_priv *priv = netdev_priv(ndev);
93 
94 	strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
95 	strlcpy(info->version, priv->drv_version, sizeof(info->version));
96 }
97 
98 static const struct ethtool_ops arc_emac_ethtool_ops = {
99 	.get_drvinfo	= arc_emac_get_drvinfo,
100 	.get_link	= ethtool_op_get_link,
101 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
102 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
103 };
104 
105 #define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
106 
107 /**
108  * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
109  * @ndev:	Pointer to the network device.
110  */
111 static void arc_emac_tx_clean(struct net_device *ndev)
112 {
113 	struct arc_emac_priv *priv = netdev_priv(ndev);
114 	struct net_device_stats *stats = &ndev->stats;
115 	unsigned int i;
116 
117 	for (i = 0; i < TX_BD_NUM; i++) {
118 		unsigned int *txbd_dirty = &priv->txbd_dirty;
119 		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
120 		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
121 		struct sk_buff *skb = tx_buff->skb;
122 		unsigned int info = le32_to_cpu(txbd->info);
123 
124 		if ((info & FOR_EMAC) || !txbd->data || !skb)
125 			break;
126 
127 		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
128 			stats->tx_errors++;
129 			stats->tx_dropped++;
130 
131 			if (info & DEFR)
132 				stats->tx_carrier_errors++;
133 
134 			if (info & LTCL)
135 				stats->collisions++;
136 
137 			if (info & UFLO)
138 				stats->tx_fifo_errors++;
139 		} else if (likely(info & FIRST_OR_LAST_MASK)) {
140 			stats->tx_packets++;
141 			stats->tx_bytes += skb->len;
142 		}
143 
144 		dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
145 				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
146 
147 		/* return the sk_buff to system */
148 		dev_consume_skb_irq(skb);
149 
150 		txbd->data = 0;
151 		txbd->info = 0;
152 		tx_buff->skb = NULL;
153 
154 		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
155 	}
156 
157 	/* Ensure that txbd_dirty is visible to tx() before checking
158 	 * for queue stopped.
159 	 */
160 	smp_mb();
161 
162 	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
163 		netif_wake_queue(ndev);
164 }
165 
166 /**
167  * arc_emac_rx - processing of Rx packets.
168  * @ndev:	Pointer to the network device.
169  * @budget:	How many BDs to process on 1 call.
170  *
171  * returns:	Number of processed BDs
172  *
173  * Iterate through Rx BDs and deliver received packages to upper layer.
174  */
175 static int arc_emac_rx(struct net_device *ndev, int budget)
176 {
177 	struct arc_emac_priv *priv = netdev_priv(ndev);
178 	unsigned int work_done;
179 
180 	for (work_done = 0; work_done < budget; work_done++) {
181 		unsigned int *last_rx_bd = &priv->last_rx_bd;
182 		struct net_device_stats *stats = &ndev->stats;
183 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
184 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
185 		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
186 		struct sk_buff *skb;
187 		dma_addr_t addr;
188 
189 		if (unlikely((info & OWN_MASK) == FOR_EMAC))
190 			break;
191 
192 		/* Make a note that we saw a packet at this BD.
193 		 * So next time, driver starts from this + 1
194 		 */
195 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
196 
197 		if (unlikely((info & FIRST_OR_LAST_MASK) !=
198 			     FIRST_OR_LAST_MASK)) {
199 			/* We pre-allocate buffers of MTU size so incoming
200 			 * packets won't be split/chained.
201 			 */
202 			if (net_ratelimit())
203 				netdev_err(ndev, "incomplete packet received\n");
204 
205 			/* Return ownership to EMAC */
206 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
207 			stats->rx_errors++;
208 			stats->rx_length_errors++;
209 			continue;
210 		}
211 
212 		/* Prepare the BD for next cycle. netif_receive_skb()
213 		 * only if new skb was allocated and mapped to avoid holes
214 		 * in the RX fifo.
215 		 */
216 		skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
217 		if (unlikely(!skb)) {
218 			if (net_ratelimit())
219 				netdev_err(ndev, "cannot allocate skb\n");
220 			/* Return ownership to EMAC */
221 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
222 			stats->rx_errors++;
223 			stats->rx_dropped++;
224 			continue;
225 		}
226 
227 		addr = dma_map_single(&ndev->dev, (void *)skb->data,
228 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
229 		if (dma_mapping_error(&ndev->dev, addr)) {
230 			if (net_ratelimit())
231 				netdev_err(ndev, "cannot map dma buffer\n");
232 			dev_kfree_skb(skb);
233 			/* Return ownership to EMAC */
234 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
235 			stats->rx_errors++;
236 			stats->rx_dropped++;
237 			continue;
238 		}
239 
240 		/* unmap previosly mapped skb */
241 		dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
242 				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
243 
244 		pktlen = info & LEN_MASK;
245 		stats->rx_packets++;
246 		stats->rx_bytes += pktlen;
247 		skb_put(rx_buff->skb, pktlen);
248 		rx_buff->skb->dev = ndev;
249 		rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
250 
251 		netif_receive_skb(rx_buff->skb);
252 
253 		rx_buff->skb = skb;
254 		dma_unmap_addr_set(rx_buff, addr, addr);
255 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
256 
257 		rxbd->data = cpu_to_le32(addr);
258 
259 		/* Make sure pointer to data buffer is set */
260 		wmb();
261 
262 		/* Return ownership to EMAC */
263 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
264 	}
265 
266 	return work_done;
267 }
268 
269 /**
270  * arc_emac_rx_miss_handle - handle R_MISS register
271  * @ndev:	Pointer to the net_device structure.
272  */
273 static void arc_emac_rx_miss_handle(struct net_device *ndev)
274 {
275 	struct arc_emac_priv *priv = netdev_priv(ndev);
276 	struct net_device_stats *stats = &ndev->stats;
277 	unsigned int miss;
278 
279 	miss = arc_reg_get(priv, R_MISS);
280 	if (miss) {
281 		stats->rx_errors += miss;
282 		stats->rx_missed_errors += miss;
283 		priv->rx_missed_errors += miss;
284 	}
285 }
286 
287 /**
288  * arc_emac_rx_stall_check - check RX stall
289  * @ndev:	Pointer to the net_device structure.
290  * @budget:	How many BDs requested to process on 1 call.
291  * @work_done:	How many BDs processed
292  *
293  * Under certain conditions EMAC stop reception of incoming packets and
294  * continuously increment R_MISS register instead of saving data into
295  * provided buffer. This function detect that condition and restart
296  * EMAC.
297  */
298 static void arc_emac_rx_stall_check(struct net_device *ndev,
299 				    int budget, unsigned int work_done)
300 {
301 	struct arc_emac_priv *priv = netdev_priv(ndev);
302 	struct arc_emac_bd *rxbd;
303 
304 	if (work_done)
305 		priv->rx_missed_errors = 0;
306 
307 	if (priv->rx_missed_errors && budget) {
308 		rxbd = &priv->rxbd[priv->last_rx_bd];
309 		if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
310 			arc_emac_restart(ndev);
311 			priv->rx_missed_errors = 0;
312 		}
313 	}
314 }
315 
316 /**
317  * arc_emac_poll - NAPI poll handler.
318  * @napi:	Pointer to napi_struct structure.
319  * @budget:	How many BDs to process on 1 call.
320  *
321  * returns:	Number of processed BDs
322  */
323 static int arc_emac_poll(struct napi_struct *napi, int budget)
324 {
325 	struct net_device *ndev = napi->dev;
326 	struct arc_emac_priv *priv = netdev_priv(ndev);
327 	unsigned int work_done;
328 
329 	arc_emac_tx_clean(ndev);
330 	arc_emac_rx_miss_handle(ndev);
331 
332 	work_done = arc_emac_rx(ndev, budget);
333 	if (work_done < budget) {
334 		napi_complete_done(napi, work_done);
335 		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
336 	}
337 
338 	arc_emac_rx_stall_check(ndev, budget, work_done);
339 
340 	return work_done;
341 }
342 
343 /**
344  * arc_emac_intr - Global interrupt handler for EMAC.
345  * @irq:		irq number.
346  * @dev_instance:	device instance.
347  *
348  * returns: IRQ_HANDLED for all cases.
349  *
350  * ARC EMAC has only 1 interrupt line, and depending on bits raised in
351  * STATUS register we may tell what is a reason for interrupt to fire.
352  */
353 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
354 {
355 	struct net_device *ndev = dev_instance;
356 	struct arc_emac_priv *priv = netdev_priv(ndev);
357 	struct net_device_stats *stats = &ndev->stats;
358 	unsigned int status;
359 
360 	status = arc_reg_get(priv, R_STATUS);
361 	status &= ~MDIO_MASK;
362 
363 	/* Reset all flags except "MDIO complete" */
364 	arc_reg_set(priv, R_STATUS, status);
365 
366 	if (status & (RXINT_MASK | TXINT_MASK)) {
367 		if (likely(napi_schedule_prep(&priv->napi))) {
368 			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
369 			__napi_schedule(&priv->napi);
370 		}
371 	}
372 
373 	if (status & ERR_MASK) {
374 		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
375 		 * 8-bit error counter overrun.
376 		 */
377 
378 		if (status & MSER_MASK) {
379 			stats->rx_missed_errors += 0x100;
380 			stats->rx_errors += 0x100;
381 			priv->rx_missed_errors += 0x100;
382 			napi_schedule(&priv->napi);
383 		}
384 
385 		if (status & RXCR_MASK) {
386 			stats->rx_crc_errors += 0x100;
387 			stats->rx_errors += 0x100;
388 		}
389 
390 		if (status & RXFR_MASK) {
391 			stats->rx_frame_errors += 0x100;
392 			stats->rx_errors += 0x100;
393 		}
394 
395 		if (status & RXFL_MASK) {
396 			stats->rx_over_errors += 0x100;
397 			stats->rx_errors += 0x100;
398 		}
399 	}
400 
401 	return IRQ_HANDLED;
402 }
403 
404 #ifdef CONFIG_NET_POLL_CONTROLLER
405 static void arc_emac_poll_controller(struct net_device *dev)
406 {
407 	disable_irq(dev->irq);
408 	arc_emac_intr(dev->irq, dev);
409 	enable_irq(dev->irq);
410 }
411 #endif
412 
413 /**
414  * arc_emac_open - Open the network device.
415  * @ndev:	Pointer to the network device.
416  *
417  * returns: 0, on success or non-zero error value on failure.
418  *
419  * This function sets the MAC address, requests and enables an IRQ
420  * for the EMAC device and starts the Tx queue.
421  * It also connects to the phy device.
422  */
423 static int arc_emac_open(struct net_device *ndev)
424 {
425 	struct arc_emac_priv *priv = netdev_priv(ndev);
426 	struct phy_device *phy_dev = ndev->phydev;
427 	int i;
428 
429 	phy_dev->autoneg = AUTONEG_ENABLE;
430 	phy_dev->speed = 0;
431 	phy_dev->duplex = 0;
432 	linkmode_and(phy_dev->advertising, phy_dev->advertising,
433 		     phy_dev->supported);
434 
435 	priv->last_rx_bd = 0;
436 
437 	/* Allocate and set buffers for Rx BD's */
438 	for (i = 0; i < RX_BD_NUM; i++) {
439 		dma_addr_t addr;
440 		unsigned int *last_rx_bd = &priv->last_rx_bd;
441 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
442 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
443 
444 		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
445 							 EMAC_BUFFER_SIZE);
446 		if (unlikely(!rx_buff->skb))
447 			return -ENOMEM;
448 
449 		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
450 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
451 		if (dma_mapping_error(&ndev->dev, addr)) {
452 			netdev_err(ndev, "cannot dma map\n");
453 			dev_kfree_skb(rx_buff->skb);
454 			return -ENOMEM;
455 		}
456 		dma_unmap_addr_set(rx_buff, addr, addr);
457 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
458 
459 		rxbd->data = cpu_to_le32(addr);
460 
461 		/* Make sure pointer to data buffer is set */
462 		wmb();
463 
464 		/* Return ownership to EMAC */
465 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
466 
467 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
468 	}
469 
470 	priv->txbd_curr = 0;
471 	priv->txbd_dirty = 0;
472 
473 	/* Clean Tx BD's */
474 	memset(priv->txbd, 0, TX_RING_SZ);
475 
476 	/* Initialize logical address filter */
477 	arc_reg_set(priv, R_LAFL, 0);
478 	arc_reg_set(priv, R_LAFH, 0);
479 
480 	/* Set BD ring pointers for device side */
481 	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
482 	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
483 
484 	/* Enable interrupts */
485 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
486 
487 	/* Set CONTROL */
488 	arc_reg_set(priv, R_CTRL,
489 		    (RX_BD_NUM << 24) |	/* RX BD table length */
490 		    (TX_BD_NUM << 16) |	/* TX BD table length */
491 		    TXRN_MASK | RXRN_MASK);
492 
493 	napi_enable(&priv->napi);
494 
495 	/* Enable EMAC */
496 	arc_reg_or(priv, R_CTRL, EN_MASK);
497 
498 	phy_start(ndev->phydev);
499 
500 	netif_start_queue(ndev);
501 
502 	return 0;
503 }
504 
505 /**
506  * arc_emac_set_rx_mode - Change the receive filtering mode.
507  * @ndev:	Pointer to the network device.
508  *
509  * This function enables/disables promiscuous or all-multicast mode
510  * and updates the multicast filtering list of the network device.
511  */
512 static void arc_emac_set_rx_mode(struct net_device *ndev)
513 {
514 	struct arc_emac_priv *priv = netdev_priv(ndev);
515 
516 	if (ndev->flags & IFF_PROMISC) {
517 		arc_reg_or(priv, R_CTRL, PROM_MASK);
518 	} else {
519 		arc_reg_clr(priv, R_CTRL, PROM_MASK);
520 
521 		if (ndev->flags & IFF_ALLMULTI) {
522 			arc_reg_set(priv, R_LAFL, ~0);
523 			arc_reg_set(priv, R_LAFH, ~0);
524 		} else if (ndev->flags & IFF_MULTICAST) {
525 			struct netdev_hw_addr *ha;
526 			unsigned int filter[2] = { 0, 0 };
527 			int bit;
528 
529 			netdev_for_each_mc_addr(ha, ndev) {
530 				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
531 				filter[bit >> 5] |= 1 << (bit & 31);
532 			}
533 
534 			arc_reg_set(priv, R_LAFL, filter[0]);
535 			arc_reg_set(priv, R_LAFH, filter[1]);
536 		} else {
537 			arc_reg_set(priv, R_LAFL, 0);
538 			arc_reg_set(priv, R_LAFH, 0);
539 		}
540 	}
541 }
542 
543 /**
544  * arc_free_tx_queue - free skb from tx queue
545  * @ndev:	Pointer to the network device.
546  *
547  * This function must be called while EMAC disable
548  */
549 static void arc_free_tx_queue(struct net_device *ndev)
550 {
551 	struct arc_emac_priv *priv = netdev_priv(ndev);
552 	unsigned int i;
553 
554 	for (i = 0; i < TX_BD_NUM; i++) {
555 		struct arc_emac_bd *txbd = &priv->txbd[i];
556 		struct buffer_state *tx_buff = &priv->tx_buff[i];
557 
558 		if (tx_buff->skb) {
559 			dma_unmap_single(&ndev->dev,
560 					 dma_unmap_addr(tx_buff, addr),
561 					 dma_unmap_len(tx_buff, len),
562 					 DMA_TO_DEVICE);
563 
564 			/* return the sk_buff to system */
565 			dev_kfree_skb_irq(tx_buff->skb);
566 		}
567 
568 		txbd->info = 0;
569 		txbd->data = 0;
570 		tx_buff->skb = NULL;
571 	}
572 }
573 
574 /**
575  * arc_free_rx_queue - free skb from rx queue
576  * @ndev:	Pointer to the network device.
577  *
578  * This function must be called while EMAC disable
579  */
580 static void arc_free_rx_queue(struct net_device *ndev)
581 {
582 	struct arc_emac_priv *priv = netdev_priv(ndev);
583 	unsigned int i;
584 
585 	for (i = 0; i < RX_BD_NUM; i++) {
586 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
587 		struct buffer_state *rx_buff = &priv->rx_buff[i];
588 
589 		if (rx_buff->skb) {
590 			dma_unmap_single(&ndev->dev,
591 					 dma_unmap_addr(rx_buff, addr),
592 					 dma_unmap_len(rx_buff, len),
593 					 DMA_FROM_DEVICE);
594 
595 			/* return the sk_buff to system */
596 			dev_kfree_skb_irq(rx_buff->skb);
597 		}
598 
599 		rxbd->info = 0;
600 		rxbd->data = 0;
601 		rx_buff->skb = NULL;
602 	}
603 }
604 
605 /**
606  * arc_emac_stop - Close the network device.
607  * @ndev:	Pointer to the network device.
608  *
609  * This function stops the Tx queue, disables interrupts and frees the IRQ for
610  * the EMAC device.
611  * It also disconnects the PHY device associated with the EMAC device.
612  */
613 static int arc_emac_stop(struct net_device *ndev)
614 {
615 	struct arc_emac_priv *priv = netdev_priv(ndev);
616 
617 	napi_disable(&priv->napi);
618 	netif_stop_queue(ndev);
619 
620 	phy_stop(ndev->phydev);
621 
622 	/* Disable interrupts */
623 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
624 
625 	/* Disable EMAC */
626 	arc_reg_clr(priv, R_CTRL, EN_MASK);
627 
628 	/* Return the sk_buff to system */
629 	arc_free_tx_queue(ndev);
630 	arc_free_rx_queue(ndev);
631 
632 	return 0;
633 }
634 
635 /**
636  * arc_emac_stats - Get system network statistics.
637  * @ndev:	Pointer to net_device structure.
638  *
639  * Returns the address of the device statistics structure.
640  * Statistics are updated in interrupt handler.
641  */
642 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
643 {
644 	struct arc_emac_priv *priv = netdev_priv(ndev);
645 	struct net_device_stats *stats = &ndev->stats;
646 	unsigned long miss, rxerr;
647 	u8 rxcrc, rxfram, rxoflow;
648 
649 	rxerr = arc_reg_get(priv, R_RXERR);
650 	miss = arc_reg_get(priv, R_MISS);
651 
652 	rxcrc = rxerr;
653 	rxfram = rxerr >> 8;
654 	rxoflow = rxerr >> 16;
655 
656 	stats->rx_errors += miss;
657 	stats->rx_errors += rxcrc + rxfram + rxoflow;
658 
659 	stats->rx_over_errors += rxoflow;
660 	stats->rx_frame_errors += rxfram;
661 	stats->rx_crc_errors += rxcrc;
662 	stats->rx_missed_errors += miss;
663 
664 	return stats;
665 }
666 
667 /**
668  * arc_emac_tx - Starts the data transmission.
669  * @skb:	sk_buff pointer that contains data to be Transmitted.
670  * @ndev:	Pointer to net_device structure.
671  *
672  * returns: NETDEV_TX_OK, on success
673  *		NETDEV_TX_BUSY, if any of the descriptors are not free.
674  *
675  * This function is invoked from upper layers to initiate transmission.
676  */
677 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
678 {
679 	struct arc_emac_priv *priv = netdev_priv(ndev);
680 	unsigned int len, *txbd_curr = &priv->txbd_curr;
681 	struct net_device_stats *stats = &ndev->stats;
682 	__le32 *info = &priv->txbd[*txbd_curr].info;
683 	dma_addr_t addr;
684 
685 	if (skb_padto(skb, ETH_ZLEN))
686 		return NETDEV_TX_OK;
687 
688 	len = max_t(unsigned int, ETH_ZLEN, skb->len);
689 
690 	if (unlikely(!arc_emac_tx_avail(priv))) {
691 		netif_stop_queue(ndev);
692 		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
693 		return NETDEV_TX_BUSY;
694 	}
695 
696 	addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
697 			      DMA_TO_DEVICE);
698 
699 	if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
700 		stats->tx_dropped++;
701 		stats->tx_errors++;
702 		dev_kfree_skb_any(skb);
703 		return NETDEV_TX_OK;
704 	}
705 	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
706 	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
707 
708 	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
709 
710 	/* Make sure pointer to data buffer is set */
711 	wmb();
712 
713 	skb_tx_timestamp(skb);
714 
715 	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
716 
717 	/* Make sure info word is set */
718 	wmb();
719 
720 	priv->tx_buff[*txbd_curr].skb = skb;
721 
722 	/* Increment index to point to the next BD */
723 	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
724 
725 	/* Ensure that tx_clean() sees the new txbd_curr before
726 	 * checking the queue status. This prevents an unneeded wake
727 	 * of the queue in tx_clean().
728 	 */
729 	smp_mb();
730 
731 	if (!arc_emac_tx_avail(priv)) {
732 		netif_stop_queue(ndev);
733 		/* Refresh tx_dirty */
734 		smp_mb();
735 		if (arc_emac_tx_avail(priv))
736 			netif_start_queue(ndev);
737 	}
738 
739 	arc_reg_set(priv, R_STATUS, TXPL_MASK);
740 
741 	return NETDEV_TX_OK;
742 }
743 
744 static void arc_emac_set_address_internal(struct net_device *ndev)
745 {
746 	struct arc_emac_priv *priv = netdev_priv(ndev);
747 	unsigned int addr_low, addr_hi;
748 
749 	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
750 	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
751 
752 	arc_reg_set(priv, R_ADDRL, addr_low);
753 	arc_reg_set(priv, R_ADDRH, addr_hi);
754 }
755 
756 /**
757  * arc_emac_set_address - Set the MAC address for this device.
758  * @ndev:	Pointer to net_device structure.
759  * @p:		6 byte Address to be written as MAC address.
760  *
761  * This function copies the HW address from the sockaddr structure to the
762  * net_device structure and updates the address in HW.
763  *
764  * returns:	-EBUSY if the net device is busy or 0 if the address is set
765  *		successfully.
766  */
767 static int arc_emac_set_address(struct net_device *ndev, void *p)
768 {
769 	struct sockaddr *addr = p;
770 
771 	if (netif_running(ndev))
772 		return -EBUSY;
773 
774 	if (!is_valid_ether_addr(addr->sa_data))
775 		return -EADDRNOTAVAIL;
776 
777 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
778 
779 	arc_emac_set_address_internal(ndev);
780 
781 	return 0;
782 }
783 
784 /**
785  * arc_emac_restart - Restart EMAC
786  * @ndev:	Pointer to net_device structure.
787  *
788  * This function do hardware reset of EMAC in order to restore
789  * network packets reception.
790  */
791 static void arc_emac_restart(struct net_device *ndev)
792 {
793 	struct arc_emac_priv *priv = netdev_priv(ndev);
794 	struct net_device_stats *stats = &ndev->stats;
795 	int i;
796 
797 	if (net_ratelimit())
798 		netdev_warn(ndev, "restarting stalled EMAC\n");
799 
800 	netif_stop_queue(ndev);
801 
802 	/* Disable interrupts */
803 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
804 
805 	/* Disable EMAC */
806 	arc_reg_clr(priv, R_CTRL, EN_MASK);
807 
808 	/* Return the sk_buff to system */
809 	arc_free_tx_queue(ndev);
810 
811 	/* Clean Tx BD's */
812 	priv->txbd_curr = 0;
813 	priv->txbd_dirty = 0;
814 	memset(priv->txbd, 0, TX_RING_SZ);
815 
816 	for (i = 0; i < RX_BD_NUM; i++) {
817 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
818 		unsigned int info = le32_to_cpu(rxbd->info);
819 
820 		if (!(info & FOR_EMAC)) {
821 			stats->rx_errors++;
822 			stats->rx_dropped++;
823 		}
824 		/* Return ownership to EMAC */
825 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
826 	}
827 	priv->last_rx_bd = 0;
828 
829 	/* Make sure info is visible to EMAC before enable */
830 	wmb();
831 
832 	/* Enable interrupts */
833 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
834 
835 	/* Enable EMAC */
836 	arc_reg_or(priv, R_CTRL, EN_MASK);
837 
838 	netif_start_queue(ndev);
839 }
840 
841 static const struct net_device_ops arc_emac_netdev_ops = {
842 	.ndo_open		= arc_emac_open,
843 	.ndo_stop		= arc_emac_stop,
844 	.ndo_start_xmit		= arc_emac_tx,
845 	.ndo_set_mac_address	= arc_emac_set_address,
846 	.ndo_get_stats		= arc_emac_stats,
847 	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
848 	.ndo_do_ioctl		= phy_do_ioctl_running,
849 #ifdef CONFIG_NET_POLL_CONTROLLER
850 	.ndo_poll_controller	= arc_emac_poll_controller,
851 #endif
852 };
853 
854 int arc_emac_probe(struct net_device *ndev, int interface)
855 {
856 	struct device *dev = ndev->dev.parent;
857 	struct resource res_regs;
858 	struct device_node *phy_node;
859 	struct phy_device *phydev = NULL;
860 	struct arc_emac_priv *priv;
861 	const char *mac_addr;
862 	unsigned int id, clock_frequency, irq;
863 	int err;
864 
865 	/* Get PHY from device tree */
866 	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
867 	if (!phy_node) {
868 		dev_err(dev, "failed to retrieve phy description from device tree\n");
869 		return -ENODEV;
870 	}
871 
872 	/* Get EMAC registers base address from device tree */
873 	err = of_address_to_resource(dev->of_node, 0, &res_regs);
874 	if (err) {
875 		dev_err(dev, "failed to retrieve registers base from device tree\n");
876 		err = -ENODEV;
877 		goto out_put_node;
878 	}
879 
880 	/* Get IRQ from device tree */
881 	irq = irq_of_parse_and_map(dev->of_node, 0);
882 	if (!irq) {
883 		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
884 		err = -ENODEV;
885 		goto out_put_node;
886 	}
887 
888 	ndev->netdev_ops = &arc_emac_netdev_ops;
889 	ndev->ethtool_ops = &arc_emac_ethtool_ops;
890 	ndev->watchdog_timeo = TX_TIMEOUT;
891 
892 	priv = netdev_priv(ndev);
893 	priv->dev = dev;
894 
895 	priv->regs = devm_ioremap_resource(dev, &res_regs);
896 	if (IS_ERR(priv->regs)) {
897 		err = PTR_ERR(priv->regs);
898 		goto out_put_node;
899 	}
900 
901 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
902 
903 	if (priv->clk) {
904 		err = clk_prepare_enable(priv->clk);
905 		if (err) {
906 			dev_err(dev, "failed to enable clock\n");
907 			goto out_put_node;
908 		}
909 
910 		clock_frequency = clk_get_rate(priv->clk);
911 	} else {
912 		/* Get CPU clock frequency from device tree */
913 		if (of_property_read_u32(dev->of_node, "clock-frequency",
914 					 &clock_frequency)) {
915 			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
916 			err = -EINVAL;
917 			goto out_put_node;
918 		}
919 	}
920 
921 	id = arc_reg_get(priv, R_ID);
922 
923 	/* Check for EMAC revision 5 or 7, magic number */
924 	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
925 		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
926 		err = -ENODEV;
927 		goto out_clken;
928 	}
929 	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
930 
931 	/* Set poll rate so that it polls every 1 ms */
932 	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
933 
934 	ndev->irq = irq;
935 	dev_info(dev, "IRQ is %d\n", ndev->irq);
936 
937 	/* Register interrupt handler for device */
938 	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
939 			       ndev->name, ndev);
940 	if (err) {
941 		dev_err(dev, "could not allocate IRQ\n");
942 		goto out_clken;
943 	}
944 
945 	/* Get MAC address from device tree */
946 	mac_addr = of_get_mac_address(dev->of_node);
947 
948 	if (!IS_ERR(mac_addr))
949 		ether_addr_copy(ndev->dev_addr, mac_addr);
950 	else
951 		eth_hw_addr_random(ndev);
952 
953 	arc_emac_set_address_internal(ndev);
954 	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
955 
956 	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
957 	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
958 					 &priv->rxbd_dma, GFP_KERNEL);
959 
960 	if (!priv->rxbd) {
961 		dev_err(dev, "failed to allocate data buffers\n");
962 		err = -ENOMEM;
963 		goto out_clken;
964 	}
965 
966 	priv->txbd = priv->rxbd + RX_BD_NUM;
967 
968 	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
969 	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
970 		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
971 
972 	err = arc_mdio_probe(priv);
973 	if (err) {
974 		dev_err(dev, "failed to probe MII bus\n");
975 		goto out_clken;
976 	}
977 
978 	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
979 				interface);
980 	if (!phydev) {
981 		dev_err(dev, "of_phy_connect() failed\n");
982 		err = -ENODEV;
983 		goto out_mdio;
984 	}
985 
986 	dev_info(dev, "connected to %s phy with id 0x%x\n",
987 		 phydev->drv->name, phydev->phy_id);
988 
989 	netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
990 
991 	err = register_netdev(ndev);
992 	if (err) {
993 		dev_err(dev, "failed to register network device\n");
994 		goto out_netif_api;
995 	}
996 
997 	of_node_put(phy_node);
998 	return 0;
999 
1000 out_netif_api:
1001 	netif_napi_del(&priv->napi);
1002 	phy_disconnect(phydev);
1003 out_mdio:
1004 	arc_mdio_remove(priv);
1005 out_clken:
1006 	if (priv->clk)
1007 		clk_disable_unprepare(priv->clk);
1008 out_put_node:
1009 	of_node_put(phy_node);
1010 
1011 	return err;
1012 }
1013 EXPORT_SYMBOL_GPL(arc_emac_probe);
1014 
1015 int arc_emac_remove(struct net_device *ndev)
1016 {
1017 	struct arc_emac_priv *priv = netdev_priv(ndev);
1018 
1019 	phy_disconnect(ndev->phydev);
1020 	arc_mdio_remove(priv);
1021 	unregister_netdev(ndev);
1022 	netif_napi_del(&priv->napi);
1023 
1024 	if (!IS_ERR(priv->clk))
1025 		clk_disable_unprepare(priv->clk);
1026 
1027 	return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(arc_emac_remove);
1030 
1031 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1032 MODULE_DESCRIPTION("ARC EMAC driver");
1033 MODULE_LICENSE("GPL");
1034