xref: /linux/drivers/net/ethernet/atheros/ag71xx.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Atheros AR71xx built-in ethernet mac driver
3  *
4  *  Copyright (C) 2019 Oleksij Rempel <o.rempel@pengutronix.de>
5  *
6  *  List of authors contributed to this driver before mainlining:
7  *  Alexander Couzens <lynxis@fe80.eu>
8  *  Christian Lamparter <chunkeey@gmail.com>
9  *  Chuanhong Guo <gch981213@gmail.com>
10  *  Daniel F. Dickinson <cshored@thecshore.com>
11  *  David Bauer <mail@david-bauer.net>
12  *  Felix Fietkau <nbd@nbd.name>
13  *  Gabor Juhos <juhosg@freemail.hu>
14  *  Hauke Mehrtens <hauke@hauke-m.de>
15  *  Johann Neuhauser <johann@it-neuhauser.de>
16  *  John Crispin <john@phrozen.org>
17  *  Jo-Philipp Wich <jo@mein.io>
18  *  Koen Vandeputte <koen.vandeputte@ncentric.com>
19  *  Lucian Cristian <lucian.cristian@gmail.com>
20  *  Matt Merhar <mattmerhar@protonmail.com>
21  *  Milan Krstic <milan.krstic@gmail.com>
22  *  Petr Štetiar <ynezz@true.cz>
23  *  Rosen Penev <rosenp@gmail.com>
24  *  Stephen Walker <stephendwalker+github@gmail.com>
25  *  Vittorio Gambaletta <openwrt@vittgam.net>
26  *  Weijie Gao <hackpascal@gmail.com>
27  *  Imre Kaloz <kaloz@openwrt.org>
28  */
29 
30 #include <linux/if_vlan.h>
31 #include <linux/mfd/syscon.h>
32 #include <linux/of_mdio.h>
33 #include <linux/of_net.h>
34 #include <linux/of_platform.h>
35 #include <linux/regmap.h>
36 #include <linux/reset.h>
37 #include <linux/clk.h>
38 #include <linux/io.h>
39 
40 /* For our NAPI weight bigger does *NOT* mean better - it means more
41  * D-cache misses and lots more wasted cycles than we'll ever
42  * possibly gain from saving instructions.
43  */
44 #define AG71XX_NAPI_WEIGHT	32
45 #define AG71XX_OOM_REFILL	(1 + HZ / 10)
46 
47 #define AG71XX_INT_ERR	(AG71XX_INT_RX_BE | AG71XX_INT_TX_BE)
48 #define AG71XX_INT_TX	(AG71XX_INT_TX_PS)
49 #define AG71XX_INT_RX	(AG71XX_INT_RX_PR | AG71XX_INT_RX_OF)
50 
51 #define AG71XX_INT_POLL	(AG71XX_INT_RX | AG71XX_INT_TX)
52 #define AG71XX_INT_INIT	(AG71XX_INT_ERR | AG71XX_INT_POLL)
53 
54 #define AG71XX_TX_MTU_LEN	1540
55 
56 #define AG71XX_TX_RING_SPLIT		512
57 #define AG71XX_TX_RING_DS_PER_PKT	DIV_ROUND_UP(AG71XX_TX_MTU_LEN, \
58 						     AG71XX_TX_RING_SPLIT)
59 #define AG71XX_TX_RING_SIZE_DEFAULT	128
60 #define AG71XX_RX_RING_SIZE_DEFAULT	256
61 
62 #define AG71XX_MDIO_RETRY	1000
63 #define AG71XX_MDIO_DELAY	5
64 #define AG71XX_MDIO_MAX_CLK	5000000
65 
66 /* Register offsets */
67 #define AG71XX_REG_MAC_CFG1	0x0000
68 #define MAC_CFG1_TXE		BIT(0)	/* Tx Enable */
69 #define MAC_CFG1_STX		BIT(1)	/* Synchronize Tx Enable */
70 #define MAC_CFG1_RXE		BIT(2)	/* Rx Enable */
71 #define MAC_CFG1_SRX		BIT(3)	/* Synchronize Rx Enable */
72 #define MAC_CFG1_TFC		BIT(4)	/* Tx Flow Control Enable */
73 #define MAC_CFG1_RFC		BIT(5)	/* Rx Flow Control Enable */
74 #define MAC_CFG1_SR		BIT(31)	/* Soft Reset */
75 #define MAC_CFG1_INIT	(MAC_CFG1_RXE | MAC_CFG1_TXE | \
76 			 MAC_CFG1_SRX | MAC_CFG1_STX)
77 
78 #define AG71XX_REG_MAC_CFG2	0x0004
79 #define MAC_CFG2_FDX		BIT(0)
80 #define MAC_CFG2_PAD_CRC_EN	BIT(2)
81 #define MAC_CFG2_LEN_CHECK	BIT(4)
82 #define MAC_CFG2_IF_1000	BIT(9)
83 #define MAC_CFG2_IF_10_100	BIT(8)
84 
85 #define AG71XX_REG_MAC_MFL	0x0010
86 
87 #define AG71XX_REG_MII_CFG	0x0020
88 #define MII_CFG_CLK_DIV_4	0
89 #define MII_CFG_CLK_DIV_6	2
90 #define MII_CFG_CLK_DIV_8	3
91 #define MII_CFG_CLK_DIV_10	4
92 #define MII_CFG_CLK_DIV_14	5
93 #define MII_CFG_CLK_DIV_20	6
94 #define MII_CFG_CLK_DIV_28	7
95 #define MII_CFG_CLK_DIV_34	8
96 #define MII_CFG_CLK_DIV_42	9
97 #define MII_CFG_CLK_DIV_50	10
98 #define MII_CFG_CLK_DIV_58	11
99 #define MII_CFG_CLK_DIV_66	12
100 #define MII_CFG_CLK_DIV_74	13
101 #define MII_CFG_CLK_DIV_82	14
102 #define MII_CFG_CLK_DIV_98	15
103 #define MII_CFG_RESET		BIT(31)
104 
105 #define AG71XX_REG_MII_CMD	0x0024
106 #define MII_CMD_READ		BIT(0)
107 
108 #define AG71XX_REG_MII_ADDR	0x0028
109 #define MII_ADDR_SHIFT		8
110 
111 #define AG71XX_REG_MII_CTRL	0x002c
112 #define AG71XX_REG_MII_STATUS	0x0030
113 #define AG71XX_REG_MII_IND	0x0034
114 #define MII_IND_BUSY		BIT(0)
115 #define MII_IND_INVALID		BIT(2)
116 
117 #define AG71XX_REG_MAC_IFCTL	0x0038
118 #define MAC_IFCTL_SPEED		BIT(16)
119 
120 #define AG71XX_REG_MAC_ADDR1	0x0040
121 #define AG71XX_REG_MAC_ADDR2	0x0044
122 #define AG71XX_REG_FIFO_CFG0	0x0048
123 #define FIFO_CFG0_WTM		BIT(0)	/* Watermark Module */
124 #define FIFO_CFG0_RXS		BIT(1)	/* Rx System Module */
125 #define FIFO_CFG0_RXF		BIT(2)	/* Rx Fabric Module */
126 #define FIFO_CFG0_TXS		BIT(3)	/* Tx System Module */
127 #define FIFO_CFG0_TXF		BIT(4)	/* Tx Fabric Module */
128 #define FIFO_CFG0_ALL	(FIFO_CFG0_WTM | FIFO_CFG0_RXS | FIFO_CFG0_RXF \
129 			| FIFO_CFG0_TXS | FIFO_CFG0_TXF)
130 #define FIFO_CFG0_INIT	(FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT)
131 
132 #define FIFO_CFG0_ENABLE_SHIFT	8
133 
134 #define AG71XX_REG_FIFO_CFG1	0x004c
135 #define AG71XX_REG_FIFO_CFG2	0x0050
136 #define AG71XX_REG_FIFO_CFG3	0x0054
137 #define AG71XX_REG_FIFO_CFG4	0x0058
138 #define FIFO_CFG4_DE		BIT(0)	/* Drop Event */
139 #define FIFO_CFG4_DV		BIT(1)	/* RX_DV Event */
140 #define FIFO_CFG4_FC		BIT(2)	/* False Carrier */
141 #define FIFO_CFG4_CE		BIT(3)	/* Code Error */
142 #define FIFO_CFG4_CR		BIT(4)	/* CRC error */
143 #define FIFO_CFG4_LM		BIT(5)	/* Length Mismatch */
144 #define FIFO_CFG4_LO		BIT(6)	/* Length out of range */
145 #define FIFO_CFG4_OK		BIT(7)	/* Packet is OK */
146 #define FIFO_CFG4_MC		BIT(8)	/* Multicast Packet */
147 #define FIFO_CFG4_BC		BIT(9)	/* Broadcast Packet */
148 #define FIFO_CFG4_DR		BIT(10)	/* Dribble */
149 #define FIFO_CFG4_LE		BIT(11)	/* Long Event */
150 #define FIFO_CFG4_CF		BIT(12)	/* Control Frame */
151 #define FIFO_CFG4_PF		BIT(13)	/* Pause Frame */
152 #define FIFO_CFG4_UO		BIT(14)	/* Unsupported Opcode */
153 #define FIFO_CFG4_VT		BIT(15)	/* VLAN tag detected */
154 #define FIFO_CFG4_FT		BIT(16)	/* Frame Truncated */
155 #define FIFO_CFG4_UC		BIT(17)	/* Unicast Packet */
156 #define FIFO_CFG4_INIT	(FIFO_CFG4_DE | FIFO_CFG4_DV | FIFO_CFG4_FC | \
157 			 FIFO_CFG4_CE | FIFO_CFG4_CR | FIFO_CFG4_LM | \
158 			 FIFO_CFG4_LO | FIFO_CFG4_OK | FIFO_CFG4_MC | \
159 			 FIFO_CFG4_BC | FIFO_CFG4_DR | FIFO_CFG4_LE | \
160 			 FIFO_CFG4_CF | FIFO_CFG4_PF | FIFO_CFG4_UO | \
161 			 FIFO_CFG4_VT)
162 
163 #define AG71XX_REG_FIFO_CFG5	0x005c
164 #define FIFO_CFG5_DE		BIT(0)	/* Drop Event */
165 #define FIFO_CFG5_DV		BIT(1)	/* RX_DV Event */
166 #define FIFO_CFG5_FC		BIT(2)	/* False Carrier */
167 #define FIFO_CFG5_CE		BIT(3)	/* Code Error */
168 #define FIFO_CFG5_LM		BIT(4)	/* Length Mismatch */
169 #define FIFO_CFG5_LO		BIT(5)	/* Length Out of Range */
170 #define FIFO_CFG5_OK		BIT(6)	/* Packet is OK */
171 #define FIFO_CFG5_MC		BIT(7)	/* Multicast Packet */
172 #define FIFO_CFG5_BC		BIT(8)	/* Broadcast Packet */
173 #define FIFO_CFG5_DR		BIT(9)	/* Dribble */
174 #define FIFO_CFG5_CF		BIT(10)	/* Control Frame */
175 #define FIFO_CFG5_PF		BIT(11)	/* Pause Frame */
176 #define FIFO_CFG5_UO		BIT(12)	/* Unsupported Opcode */
177 #define FIFO_CFG5_VT		BIT(13)	/* VLAN tag detected */
178 #define FIFO_CFG5_LE		BIT(14)	/* Long Event */
179 #define FIFO_CFG5_FT		BIT(15)	/* Frame Truncated */
180 #define FIFO_CFG5_16		BIT(16)	/* unknown */
181 #define FIFO_CFG5_17		BIT(17)	/* unknown */
182 #define FIFO_CFG5_SF		BIT(18)	/* Short Frame */
183 #define FIFO_CFG5_BM		BIT(19)	/* Byte Mode */
184 #define FIFO_CFG5_INIT	(FIFO_CFG5_DE | FIFO_CFG5_DV | FIFO_CFG5_FC | \
185 			 FIFO_CFG5_CE | FIFO_CFG5_LO | FIFO_CFG5_OK | \
186 			 FIFO_CFG5_MC | FIFO_CFG5_BC | FIFO_CFG5_DR | \
187 			 FIFO_CFG5_CF | FIFO_CFG5_PF | FIFO_CFG5_VT | \
188 			 FIFO_CFG5_LE | FIFO_CFG5_FT | FIFO_CFG5_16 | \
189 			 FIFO_CFG5_17 | FIFO_CFG5_SF)
190 
191 #define AG71XX_REG_TX_CTRL	0x0180
192 #define TX_CTRL_TXE		BIT(0)	/* Tx Enable */
193 
194 #define AG71XX_REG_TX_DESC	0x0184
195 #define AG71XX_REG_TX_STATUS	0x0188
196 #define TX_STATUS_PS		BIT(0)	/* Packet Sent */
197 #define TX_STATUS_UR		BIT(1)	/* Tx Underrun */
198 #define TX_STATUS_BE		BIT(3)	/* Bus Error */
199 
200 #define AG71XX_REG_RX_CTRL	0x018c
201 #define RX_CTRL_RXE		BIT(0)	/* Rx Enable */
202 
203 #define AG71XX_DMA_RETRY	10
204 #define AG71XX_DMA_DELAY	1
205 
206 #define AG71XX_REG_RX_DESC	0x0190
207 #define AG71XX_REG_RX_STATUS	0x0194
208 #define RX_STATUS_PR		BIT(0)	/* Packet Received */
209 #define RX_STATUS_OF		BIT(2)	/* Rx Overflow */
210 #define RX_STATUS_BE		BIT(3)	/* Bus Error */
211 
212 #define AG71XX_REG_INT_ENABLE	0x0198
213 #define AG71XX_REG_INT_STATUS	0x019c
214 #define AG71XX_INT_TX_PS	BIT(0)
215 #define AG71XX_INT_TX_UR	BIT(1)
216 #define AG71XX_INT_TX_BE	BIT(3)
217 #define AG71XX_INT_RX_PR	BIT(4)
218 #define AG71XX_INT_RX_OF	BIT(6)
219 #define AG71XX_INT_RX_BE	BIT(7)
220 
221 #define AG71XX_REG_FIFO_DEPTH	0x01a8
222 #define AG71XX_REG_RX_SM	0x01b0
223 #define AG71XX_REG_TX_SM	0x01b4
224 
225 #define ETH_SWITCH_HEADER_LEN	2
226 
227 #define AG71XX_DEFAULT_MSG_ENABLE	\
228 	(NETIF_MSG_DRV			\
229 	| NETIF_MSG_PROBE		\
230 	| NETIF_MSG_LINK		\
231 	| NETIF_MSG_TIMER		\
232 	| NETIF_MSG_IFDOWN		\
233 	| NETIF_MSG_IFUP		\
234 	| NETIF_MSG_RX_ERR		\
235 	| NETIF_MSG_TX_ERR)
236 
237 #define DESC_EMPTY		BIT(31)
238 #define DESC_MORE		BIT(24)
239 #define DESC_PKTLEN_M		0xfff
240 struct ag71xx_desc {
241 	u32 data;
242 	u32 ctrl;
243 	u32 next;
244 	u32 pad;
245 } __aligned(4);
246 
247 #define AG71XX_DESC_SIZE	roundup(sizeof(struct ag71xx_desc), \
248 					L1_CACHE_BYTES)
249 
250 struct ag71xx_buf {
251 	union {
252 		struct {
253 			struct sk_buff *skb;
254 			unsigned int len;
255 		} tx;
256 		struct {
257 			dma_addr_t dma_addr;
258 			void *rx_buf;
259 		} rx;
260 	};
261 };
262 
263 struct ag71xx_ring {
264 	/* "Hot" fields in the data path. */
265 	unsigned int curr;
266 	unsigned int dirty;
267 
268 	/* "Cold" fields - not used in the data path. */
269 	struct ag71xx_buf *buf;
270 	u16 order;
271 	u16 desc_split;
272 	dma_addr_t descs_dma;
273 	u8 *descs_cpu;
274 };
275 
276 enum ag71xx_type {
277 	AR7100,
278 	AR7240,
279 	AR9130,
280 	AR9330,
281 	AR9340,
282 	QCA9530,
283 	QCA9550,
284 };
285 
286 struct ag71xx_dcfg {
287 	u32 max_frame_len;
288 	const u32 *fifodata;
289 	u16 desc_pktlen_mask;
290 	bool tx_hang_workaround;
291 	enum ag71xx_type type;
292 };
293 
294 struct ag71xx {
295 	/* Critical data related to the per-packet data path are clustered
296 	 * early in this structure to help improve the D-cache footprint.
297 	 */
298 	struct ag71xx_ring rx_ring ____cacheline_aligned;
299 	struct ag71xx_ring tx_ring ____cacheline_aligned;
300 
301 	u16 rx_buf_size;
302 	u8 rx_buf_offset;
303 
304 	struct net_device *ndev;
305 	struct platform_device *pdev;
306 	struct napi_struct napi;
307 	u32 msg_enable;
308 	const struct ag71xx_dcfg *dcfg;
309 
310 	/* From this point onwards we're not looking at per-packet fields. */
311 	void __iomem *mac_base;
312 
313 	struct ag71xx_desc *stop_desc;
314 	dma_addr_t stop_desc_dma;
315 
316 	int phy_if_mode;
317 
318 	struct delayed_work restart_work;
319 	struct timer_list oom_timer;
320 
321 	struct reset_control *mac_reset;
322 
323 	u32 fifodata[3];
324 	int mac_idx;
325 
326 	struct reset_control *mdio_reset;
327 	struct mii_bus *mii_bus;
328 	struct clk *clk_mdio;
329 	struct clk *clk_eth;
330 };
331 
332 static int ag71xx_desc_empty(struct ag71xx_desc *desc)
333 {
334 	return (desc->ctrl & DESC_EMPTY) != 0;
335 }
336 
337 static struct ag71xx_desc *ag71xx_ring_desc(struct ag71xx_ring *ring, int idx)
338 {
339 	return (struct ag71xx_desc *)&ring->descs_cpu[idx * AG71XX_DESC_SIZE];
340 }
341 
342 static int ag71xx_ring_size_order(int size)
343 {
344 	return fls(size - 1);
345 }
346 
347 static bool ag71xx_is(struct ag71xx *ag, enum ag71xx_type type)
348 {
349 	return ag->dcfg->type == type;
350 }
351 
352 static void ag71xx_wr(struct ag71xx *ag, unsigned int reg, u32 value)
353 {
354 	iowrite32(value, ag->mac_base + reg);
355 	/* flush write */
356 	(void)ioread32(ag->mac_base + reg);
357 }
358 
359 static u32 ag71xx_rr(struct ag71xx *ag, unsigned int reg)
360 {
361 	return ioread32(ag->mac_base + reg);
362 }
363 
364 static void ag71xx_sb(struct ag71xx *ag, unsigned int reg, u32 mask)
365 {
366 	void __iomem *r;
367 
368 	r = ag->mac_base + reg;
369 	iowrite32(ioread32(r) | mask, r);
370 	/* flush write */
371 	(void)ioread32(r);
372 }
373 
374 static void ag71xx_cb(struct ag71xx *ag, unsigned int reg, u32 mask)
375 {
376 	void __iomem *r;
377 
378 	r = ag->mac_base + reg;
379 	iowrite32(ioread32(r) & ~mask, r);
380 	/* flush write */
381 	(void)ioread32(r);
382 }
383 
384 static void ag71xx_int_enable(struct ag71xx *ag, u32 ints)
385 {
386 	ag71xx_sb(ag, AG71XX_REG_INT_ENABLE, ints);
387 }
388 
389 static void ag71xx_int_disable(struct ag71xx *ag, u32 ints)
390 {
391 	ag71xx_cb(ag, AG71XX_REG_INT_ENABLE, ints);
392 }
393 
394 static int ag71xx_mdio_wait_busy(struct ag71xx *ag)
395 {
396 	struct net_device *ndev = ag->ndev;
397 	int i;
398 
399 	for (i = 0; i < AG71XX_MDIO_RETRY; i++) {
400 		u32 busy;
401 
402 		udelay(AG71XX_MDIO_DELAY);
403 
404 		busy = ag71xx_rr(ag, AG71XX_REG_MII_IND);
405 		if (!busy)
406 			return 0;
407 
408 		udelay(AG71XX_MDIO_DELAY);
409 	}
410 
411 	netif_err(ag, link, ndev, "MDIO operation timed out\n");
412 
413 	return -ETIMEDOUT;
414 }
415 
416 static int ag71xx_mdio_mii_read(struct mii_bus *bus, int addr, int reg)
417 {
418 	struct ag71xx *ag = bus->priv;
419 	int err, val;
420 
421 	err = ag71xx_mdio_wait_busy(ag);
422 	if (err)
423 		return err;
424 
425 	ag71xx_wr(ag, AG71XX_REG_MII_ADDR,
426 		  ((addr & 0x1f) << MII_ADDR_SHIFT) | (reg & 0xff));
427 	/* enable read mode */
428 	ag71xx_wr(ag, AG71XX_REG_MII_CMD, MII_CMD_READ);
429 
430 	err = ag71xx_mdio_wait_busy(ag);
431 	if (err)
432 		return err;
433 
434 	val = ag71xx_rr(ag, AG71XX_REG_MII_STATUS);
435 	/* disable read mode */
436 	ag71xx_wr(ag, AG71XX_REG_MII_CMD, 0);
437 
438 	netif_dbg(ag, link, ag->ndev, "mii_read: addr=%04x, reg=%04x, value=%04x\n",
439 		  addr, reg, val);
440 
441 	return val;
442 }
443 
444 static int ag71xx_mdio_mii_write(struct mii_bus *bus, int addr, int reg,
445 				 u16 val)
446 {
447 	struct ag71xx *ag = bus->priv;
448 
449 	netif_dbg(ag, link, ag->ndev, "mii_write: addr=%04x, reg=%04x, value=%04x\n",
450 		  addr, reg, val);
451 
452 	ag71xx_wr(ag, AG71XX_REG_MII_ADDR,
453 		  ((addr & 0x1f) << MII_ADDR_SHIFT) | (reg & 0xff));
454 	ag71xx_wr(ag, AG71XX_REG_MII_CTRL, val);
455 
456 	return ag71xx_mdio_wait_busy(ag);
457 }
458 
459 static const u32 ar71xx_mdio_div_table[] = {
460 	4, 4, 6, 8, 10, 14, 20, 28,
461 };
462 
463 static const u32 ar7240_mdio_div_table[] = {
464 	2, 2, 4, 6, 8, 12, 18, 26, 32, 40, 48, 56, 62, 70, 78, 96,
465 };
466 
467 static const u32 ar933x_mdio_div_table[] = {
468 	4, 4, 6, 8, 10, 14, 20, 28, 34, 42, 50, 58, 66, 74, 82, 98,
469 };
470 
471 static int ag71xx_mdio_get_divider(struct ag71xx *ag, u32 *div)
472 {
473 	unsigned long ref_clock;
474 	const u32 *table;
475 	int ndivs, i;
476 
477 	ref_clock = clk_get_rate(ag->clk_mdio);
478 	if (!ref_clock)
479 		return -EINVAL;
480 
481 	if (ag71xx_is(ag, AR9330) || ag71xx_is(ag, AR9340)) {
482 		table = ar933x_mdio_div_table;
483 		ndivs = ARRAY_SIZE(ar933x_mdio_div_table);
484 	} else if (ag71xx_is(ag, AR7240)) {
485 		table = ar7240_mdio_div_table;
486 		ndivs = ARRAY_SIZE(ar7240_mdio_div_table);
487 	} else {
488 		table = ar71xx_mdio_div_table;
489 		ndivs = ARRAY_SIZE(ar71xx_mdio_div_table);
490 	}
491 
492 	for (i = 0; i < ndivs; i++) {
493 		unsigned long t;
494 
495 		t = ref_clock / table[i];
496 		if (t <= AG71XX_MDIO_MAX_CLK) {
497 			*div = i;
498 			return 0;
499 		}
500 	}
501 
502 	return -ENOENT;
503 }
504 
505 static int ag71xx_mdio_reset(struct mii_bus *bus)
506 {
507 	struct ag71xx *ag = bus->priv;
508 	int err;
509 	u32 t;
510 
511 	err = ag71xx_mdio_get_divider(ag, &t);
512 	if (err)
513 		return err;
514 
515 	ag71xx_wr(ag, AG71XX_REG_MII_CFG, t | MII_CFG_RESET);
516 	usleep_range(100, 200);
517 
518 	ag71xx_wr(ag, AG71XX_REG_MII_CFG, t);
519 	usleep_range(100, 200);
520 
521 	return 0;
522 }
523 
524 static int ag71xx_mdio_probe(struct ag71xx *ag)
525 {
526 	struct device *dev = &ag->pdev->dev;
527 	struct net_device *ndev = ag->ndev;
528 	static struct mii_bus *mii_bus;
529 	struct device_node *np, *mnp;
530 	int err;
531 
532 	np = dev->of_node;
533 	ag->mii_bus = NULL;
534 
535 	ag->clk_mdio = devm_clk_get(dev, "mdio");
536 	if (IS_ERR(ag->clk_mdio)) {
537 		netif_err(ag, probe, ndev, "Failed to get mdio clk.\n");
538 		return PTR_ERR(ag->clk_mdio);
539 	}
540 
541 	err = clk_prepare_enable(ag->clk_mdio);
542 	if (err) {
543 		netif_err(ag, probe, ndev, "Failed to enable mdio clk.\n");
544 		return err;
545 	}
546 
547 	mii_bus = devm_mdiobus_alloc(dev);
548 	if (!mii_bus) {
549 		err = -ENOMEM;
550 		goto mdio_err_put_clk;
551 	}
552 
553 	ag->mdio_reset = of_reset_control_get_exclusive(np, "mdio");
554 	if (IS_ERR(ag->mdio_reset)) {
555 		netif_err(ag, probe, ndev, "Failed to get reset mdio.\n");
556 		return PTR_ERR(ag->mdio_reset);
557 	}
558 
559 	mii_bus->name = "ag71xx_mdio";
560 	mii_bus->read = ag71xx_mdio_mii_read;
561 	mii_bus->write = ag71xx_mdio_mii_write;
562 	mii_bus->reset = ag71xx_mdio_reset;
563 	mii_bus->priv = ag;
564 	mii_bus->parent = dev;
565 	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s.%d", np->name, ag->mac_idx);
566 
567 	if (!IS_ERR(ag->mdio_reset)) {
568 		reset_control_assert(ag->mdio_reset);
569 		msleep(100);
570 		reset_control_deassert(ag->mdio_reset);
571 		msleep(200);
572 	}
573 
574 	mnp = of_get_child_by_name(np, "mdio");
575 	err = of_mdiobus_register(mii_bus, mnp);
576 	of_node_put(mnp);
577 	if (err)
578 		goto mdio_err_put_clk;
579 
580 	ag->mii_bus = mii_bus;
581 
582 	return 0;
583 
584 mdio_err_put_clk:
585 	clk_disable_unprepare(ag->clk_mdio);
586 	return err;
587 }
588 
589 static void ag71xx_mdio_remove(struct ag71xx *ag)
590 {
591 	if (ag->mii_bus)
592 		mdiobus_unregister(ag->mii_bus);
593 	clk_disable_unprepare(ag->clk_mdio);
594 }
595 
596 static void ag71xx_hw_stop(struct ag71xx *ag)
597 {
598 	/* disable all interrupts and stop the rx/tx engine */
599 	ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, 0);
600 	ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0);
601 	ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0);
602 }
603 
604 static bool ag71xx_check_dma_stuck(struct ag71xx *ag)
605 {
606 	unsigned long timestamp;
607 	u32 rx_sm, tx_sm, rx_fd;
608 
609 	timestamp = netdev_get_tx_queue(ag->ndev, 0)->trans_start;
610 	if (likely(time_before(jiffies, timestamp + HZ / 10)))
611 		return false;
612 
613 	if (!netif_carrier_ok(ag->ndev))
614 		return false;
615 
616 	rx_sm = ag71xx_rr(ag, AG71XX_REG_RX_SM);
617 	if ((rx_sm & 0x7) == 0x3 && ((rx_sm >> 4) & 0x7) == 0x6)
618 		return true;
619 
620 	tx_sm = ag71xx_rr(ag, AG71XX_REG_TX_SM);
621 	rx_fd = ag71xx_rr(ag, AG71XX_REG_FIFO_DEPTH);
622 	if (((tx_sm >> 4) & 0x7) == 0 && ((rx_sm & 0x7) == 0) &&
623 	    ((rx_sm >> 4) & 0x7) == 0 && rx_fd == 0)
624 		return true;
625 
626 	return false;
627 }
628 
629 static int ag71xx_tx_packets(struct ag71xx *ag, bool flush)
630 {
631 	struct ag71xx_ring *ring = &ag->tx_ring;
632 	int sent = 0, bytes_compl = 0, n = 0;
633 	struct net_device *ndev = ag->ndev;
634 	int ring_mask, ring_size;
635 	bool dma_stuck = false;
636 
637 	ring_mask = BIT(ring->order) - 1;
638 	ring_size = BIT(ring->order);
639 
640 	netif_dbg(ag, tx_queued, ndev, "processing TX ring\n");
641 
642 	while (ring->dirty + n != ring->curr) {
643 		struct ag71xx_desc *desc;
644 		struct sk_buff *skb;
645 		unsigned int i;
646 
647 		i = (ring->dirty + n) & ring_mask;
648 		desc = ag71xx_ring_desc(ring, i);
649 		skb = ring->buf[i].tx.skb;
650 
651 		if (!flush && !ag71xx_desc_empty(desc)) {
652 			if (ag->dcfg->tx_hang_workaround &&
653 			    ag71xx_check_dma_stuck(ag)) {
654 				schedule_delayed_work(&ag->restart_work,
655 						      HZ / 2);
656 				dma_stuck = true;
657 			}
658 			break;
659 		}
660 
661 		if (flush)
662 			desc->ctrl |= DESC_EMPTY;
663 
664 		n++;
665 		if (!skb)
666 			continue;
667 
668 		dev_kfree_skb_any(skb);
669 		ring->buf[i].tx.skb = NULL;
670 
671 		bytes_compl += ring->buf[i].tx.len;
672 
673 		sent++;
674 		ring->dirty += n;
675 
676 		while (n > 0) {
677 			ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS);
678 			n--;
679 		}
680 	}
681 
682 	netif_dbg(ag, tx_done, ndev, "%d packets sent out\n", sent);
683 
684 	if (!sent)
685 		return 0;
686 
687 	ag->ndev->stats.tx_bytes += bytes_compl;
688 	ag->ndev->stats.tx_packets += sent;
689 
690 	netdev_completed_queue(ag->ndev, sent, bytes_compl);
691 	if ((ring->curr - ring->dirty) < (ring_size * 3) / 4)
692 		netif_wake_queue(ag->ndev);
693 
694 	if (!dma_stuck)
695 		cancel_delayed_work(&ag->restart_work);
696 
697 	return sent;
698 }
699 
700 static void ag71xx_dma_wait_stop(struct ag71xx *ag)
701 {
702 	struct net_device *ndev = ag->ndev;
703 	int i;
704 
705 	for (i = 0; i < AG71XX_DMA_RETRY; i++) {
706 		u32 rx, tx;
707 
708 		mdelay(AG71XX_DMA_DELAY);
709 
710 		rx = ag71xx_rr(ag, AG71XX_REG_RX_CTRL) & RX_CTRL_RXE;
711 		tx = ag71xx_rr(ag, AG71XX_REG_TX_CTRL) & TX_CTRL_TXE;
712 		if (!rx && !tx)
713 			return;
714 	}
715 
716 	netif_err(ag, hw, ndev, "DMA stop operation timed out\n");
717 }
718 
719 static void ag71xx_dma_reset(struct ag71xx *ag)
720 {
721 	struct net_device *ndev = ag->ndev;
722 	u32 val;
723 	int i;
724 
725 	/* stop RX and TX */
726 	ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0);
727 	ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0);
728 
729 	/* give the hardware some time to really stop all rx/tx activity
730 	 * clearing the descriptors too early causes random memory corruption
731 	 */
732 	ag71xx_dma_wait_stop(ag);
733 
734 	/* clear descriptor addresses */
735 	ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->stop_desc_dma);
736 	ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->stop_desc_dma);
737 
738 	/* clear pending RX/TX interrupts */
739 	for (i = 0; i < 256; i++) {
740 		ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR);
741 		ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS);
742 	}
743 
744 	/* clear pending errors */
745 	ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE | RX_STATUS_OF);
746 	ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE | TX_STATUS_UR);
747 
748 	val = ag71xx_rr(ag, AG71XX_REG_RX_STATUS);
749 	if (val)
750 		netif_err(ag, hw, ndev, "unable to clear DMA Rx status: %08x\n",
751 			  val);
752 
753 	val = ag71xx_rr(ag, AG71XX_REG_TX_STATUS);
754 
755 	/* mask out reserved bits */
756 	val &= ~0xff000000;
757 
758 	if (val)
759 		netif_err(ag, hw, ndev, "unable to clear DMA Tx status: %08x\n",
760 			  val);
761 }
762 
763 static void ag71xx_hw_setup(struct ag71xx *ag)
764 {
765 	u32 init = MAC_CFG1_INIT;
766 
767 	/* setup MAC configuration registers */
768 	ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, init);
769 
770 	ag71xx_sb(ag, AG71XX_REG_MAC_CFG2,
771 		  MAC_CFG2_PAD_CRC_EN | MAC_CFG2_LEN_CHECK);
772 
773 	/* setup max frame length to zero */
774 	ag71xx_wr(ag, AG71XX_REG_MAC_MFL, 0);
775 
776 	/* setup FIFO configuration registers */
777 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG0, FIFO_CFG0_INIT);
778 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG1, ag->fifodata[0]);
779 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG2, ag->fifodata[1]);
780 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG4, FIFO_CFG4_INIT);
781 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, FIFO_CFG5_INIT);
782 }
783 
784 static unsigned int ag71xx_max_frame_len(unsigned int mtu)
785 {
786 	return ETH_SWITCH_HEADER_LEN + ETH_HLEN + VLAN_HLEN + mtu + ETH_FCS_LEN;
787 }
788 
789 static void ag71xx_hw_set_macaddr(struct ag71xx *ag, unsigned char *mac)
790 {
791 	u32 t;
792 
793 	t = (((u32)mac[5]) << 24) | (((u32)mac[4]) << 16)
794 	  | (((u32)mac[3]) << 8) | ((u32)mac[2]);
795 
796 	ag71xx_wr(ag, AG71XX_REG_MAC_ADDR1, t);
797 
798 	t = (((u32)mac[1]) << 24) | (((u32)mac[0]) << 16);
799 	ag71xx_wr(ag, AG71XX_REG_MAC_ADDR2, t);
800 }
801 
802 static void ag71xx_fast_reset(struct ag71xx *ag)
803 {
804 	struct net_device *dev = ag->ndev;
805 	u32 rx_ds;
806 	u32 mii_reg;
807 
808 	ag71xx_hw_stop(ag);
809 
810 	mii_reg = ag71xx_rr(ag, AG71XX_REG_MII_CFG);
811 	rx_ds = ag71xx_rr(ag, AG71XX_REG_RX_DESC);
812 
813 	ag71xx_tx_packets(ag, true);
814 
815 	reset_control_assert(ag->mac_reset);
816 	usleep_range(10, 20);
817 	reset_control_deassert(ag->mac_reset);
818 	usleep_range(10, 20);
819 
820 	ag71xx_dma_reset(ag);
821 	ag71xx_hw_setup(ag);
822 	ag->tx_ring.curr = 0;
823 	ag->tx_ring.dirty = 0;
824 	netdev_reset_queue(ag->ndev);
825 
826 	/* setup max frame length */
827 	ag71xx_wr(ag, AG71XX_REG_MAC_MFL,
828 		  ag71xx_max_frame_len(ag->ndev->mtu));
829 
830 	ag71xx_wr(ag, AG71XX_REG_RX_DESC, rx_ds);
831 	ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma);
832 	ag71xx_wr(ag, AG71XX_REG_MII_CFG, mii_reg);
833 
834 	ag71xx_hw_set_macaddr(ag, dev->dev_addr);
835 }
836 
837 static void ag71xx_hw_start(struct ag71xx *ag)
838 {
839 	/* start RX engine */
840 	ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE);
841 
842 	/* enable interrupts */
843 	ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, AG71XX_INT_INIT);
844 
845 	netif_wake_queue(ag->ndev);
846 }
847 
848 static void ag71xx_link_adjust(struct ag71xx *ag, bool update)
849 {
850 	struct phy_device *phydev = ag->ndev->phydev;
851 	u32 cfg2;
852 	u32 ifctl;
853 	u32 fifo5;
854 
855 	if (!phydev->link && update) {
856 		ag71xx_hw_stop(ag);
857 		return;
858 	}
859 
860 	if (!ag71xx_is(ag, AR7100) && !ag71xx_is(ag, AR9130))
861 		ag71xx_fast_reset(ag);
862 
863 	cfg2 = ag71xx_rr(ag, AG71XX_REG_MAC_CFG2);
864 	cfg2 &= ~(MAC_CFG2_IF_1000 | MAC_CFG2_IF_10_100 | MAC_CFG2_FDX);
865 	cfg2 |= (phydev->duplex) ? MAC_CFG2_FDX : 0;
866 
867 	ifctl = ag71xx_rr(ag, AG71XX_REG_MAC_IFCTL);
868 	ifctl &= ~(MAC_IFCTL_SPEED);
869 
870 	fifo5 = ag71xx_rr(ag, AG71XX_REG_FIFO_CFG5);
871 	fifo5 &= ~FIFO_CFG5_BM;
872 
873 	switch (phydev->speed) {
874 	case SPEED_1000:
875 		cfg2 |= MAC_CFG2_IF_1000;
876 		fifo5 |= FIFO_CFG5_BM;
877 		break;
878 	case SPEED_100:
879 		cfg2 |= MAC_CFG2_IF_10_100;
880 		ifctl |= MAC_IFCTL_SPEED;
881 		break;
882 	case SPEED_10:
883 		cfg2 |= MAC_CFG2_IF_10_100;
884 		break;
885 	default:
886 		WARN(1, "not supported speed %i\n", phydev->speed);
887 		return;
888 	}
889 
890 	if (ag->tx_ring.desc_split) {
891 		ag->fifodata[2] &= 0xffff;
892 		ag->fifodata[2] |= ((2048 - ag->tx_ring.desc_split) / 4) << 16;
893 	}
894 
895 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG3, ag->fifodata[2]);
896 
897 	ag71xx_wr(ag, AG71XX_REG_MAC_CFG2, cfg2);
898 	ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, fifo5);
899 	ag71xx_wr(ag, AG71XX_REG_MAC_IFCTL, ifctl);
900 
901 	ag71xx_hw_start(ag);
902 
903 	if (update)
904 		phy_print_status(phydev);
905 }
906 
907 static void ag71xx_phy_link_adjust(struct net_device *ndev)
908 {
909 	struct ag71xx *ag = netdev_priv(ndev);
910 
911 	ag71xx_link_adjust(ag, true);
912 }
913 
914 static int ag71xx_phy_connect(struct ag71xx *ag)
915 {
916 	struct device_node *np = ag->pdev->dev.of_node;
917 	struct net_device *ndev = ag->ndev;
918 	struct device_node *phy_node;
919 	struct phy_device *phydev;
920 	int ret;
921 
922 	if (of_phy_is_fixed_link(np)) {
923 		ret = of_phy_register_fixed_link(np);
924 		if (ret < 0) {
925 			netif_err(ag, probe, ndev, "Failed to register fixed PHY link: %d\n",
926 				  ret);
927 			return ret;
928 		}
929 
930 		phy_node = of_node_get(np);
931 	} else {
932 		phy_node = of_parse_phandle(np, "phy-handle", 0);
933 	}
934 
935 	if (!phy_node) {
936 		netif_err(ag, probe, ndev, "Could not find valid phy node\n");
937 		return -ENODEV;
938 	}
939 
940 	phydev = of_phy_connect(ag->ndev, phy_node, ag71xx_phy_link_adjust,
941 				0, ag->phy_if_mode);
942 
943 	of_node_put(phy_node);
944 
945 	if (!phydev) {
946 		netif_err(ag, probe, ndev, "Could not connect to PHY device\n");
947 		return -ENODEV;
948 	}
949 
950 	phy_attached_info(phydev);
951 
952 	return 0;
953 }
954 
955 static void ag71xx_ring_tx_clean(struct ag71xx *ag)
956 {
957 	struct ag71xx_ring *ring = &ag->tx_ring;
958 	int ring_mask = BIT(ring->order) - 1;
959 	u32 bytes_compl = 0, pkts_compl = 0;
960 	struct net_device *ndev = ag->ndev;
961 
962 	while (ring->curr != ring->dirty) {
963 		struct ag71xx_desc *desc;
964 		u32 i = ring->dirty & ring_mask;
965 
966 		desc = ag71xx_ring_desc(ring, i);
967 		if (!ag71xx_desc_empty(desc)) {
968 			desc->ctrl = 0;
969 			ndev->stats.tx_errors++;
970 		}
971 
972 		if (ring->buf[i].tx.skb) {
973 			bytes_compl += ring->buf[i].tx.len;
974 			pkts_compl++;
975 			dev_kfree_skb_any(ring->buf[i].tx.skb);
976 		}
977 		ring->buf[i].tx.skb = NULL;
978 		ring->dirty++;
979 	}
980 
981 	/* flush descriptors */
982 	wmb();
983 
984 	netdev_completed_queue(ndev, pkts_compl, bytes_compl);
985 }
986 
987 static void ag71xx_ring_tx_init(struct ag71xx *ag)
988 {
989 	struct ag71xx_ring *ring = &ag->tx_ring;
990 	int ring_size = BIT(ring->order);
991 	int ring_mask = ring_size - 1;
992 	int i;
993 
994 	for (i = 0; i < ring_size; i++) {
995 		struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
996 
997 		desc->next = (u32)(ring->descs_dma +
998 			AG71XX_DESC_SIZE * ((i + 1) & ring_mask));
999 
1000 		desc->ctrl = DESC_EMPTY;
1001 		ring->buf[i].tx.skb = NULL;
1002 	}
1003 
1004 	/* flush descriptors */
1005 	wmb();
1006 
1007 	ring->curr = 0;
1008 	ring->dirty = 0;
1009 	netdev_reset_queue(ag->ndev);
1010 }
1011 
1012 static void ag71xx_ring_rx_clean(struct ag71xx *ag)
1013 {
1014 	struct ag71xx_ring *ring = &ag->rx_ring;
1015 	int ring_size = BIT(ring->order);
1016 	int i;
1017 
1018 	if (!ring->buf)
1019 		return;
1020 
1021 	for (i = 0; i < ring_size; i++)
1022 		if (ring->buf[i].rx.rx_buf) {
1023 			dma_unmap_single(&ag->pdev->dev,
1024 					 ring->buf[i].rx.dma_addr,
1025 					 ag->rx_buf_size, DMA_FROM_DEVICE);
1026 			skb_free_frag(ring->buf[i].rx.rx_buf);
1027 		}
1028 }
1029 
1030 static int ag71xx_buffer_size(struct ag71xx *ag)
1031 {
1032 	return ag->rx_buf_size +
1033 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1034 }
1035 
1036 static bool ag71xx_fill_rx_buf(struct ag71xx *ag, struct ag71xx_buf *buf,
1037 			       int offset,
1038 			       void *(*alloc)(unsigned int size))
1039 {
1040 	struct ag71xx_ring *ring = &ag->rx_ring;
1041 	struct ag71xx_desc *desc;
1042 	void *data;
1043 
1044 	desc = ag71xx_ring_desc(ring, buf - &ring->buf[0]);
1045 
1046 	data = alloc(ag71xx_buffer_size(ag));
1047 	if (!data)
1048 		return false;
1049 
1050 	buf->rx.rx_buf = data;
1051 	buf->rx.dma_addr = dma_map_single(&ag->pdev->dev, data, ag->rx_buf_size,
1052 					  DMA_FROM_DEVICE);
1053 	desc->data = (u32)buf->rx.dma_addr + offset;
1054 	return true;
1055 }
1056 
1057 static int ag71xx_ring_rx_init(struct ag71xx *ag)
1058 {
1059 	struct ag71xx_ring *ring = &ag->rx_ring;
1060 	struct net_device *ndev = ag->ndev;
1061 	int ring_mask = BIT(ring->order) - 1;
1062 	int ring_size = BIT(ring->order);
1063 	unsigned int i;
1064 	int ret;
1065 
1066 	ret = 0;
1067 	for (i = 0; i < ring_size; i++) {
1068 		struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
1069 
1070 		desc->next = (u32)(ring->descs_dma +
1071 			AG71XX_DESC_SIZE * ((i + 1) & ring_mask));
1072 
1073 		netif_dbg(ag, rx_status, ndev, "RX desc at %p, next is %08x\n",
1074 			  desc, desc->next);
1075 	}
1076 
1077 	for (i = 0; i < ring_size; i++) {
1078 		struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
1079 
1080 		if (!ag71xx_fill_rx_buf(ag, &ring->buf[i], ag->rx_buf_offset,
1081 					netdev_alloc_frag)) {
1082 			ret = -ENOMEM;
1083 			break;
1084 		}
1085 
1086 		desc->ctrl = DESC_EMPTY;
1087 	}
1088 
1089 	/* flush descriptors */
1090 	wmb();
1091 
1092 	ring->curr = 0;
1093 	ring->dirty = 0;
1094 
1095 	return ret;
1096 }
1097 
1098 static int ag71xx_ring_rx_refill(struct ag71xx *ag)
1099 {
1100 	struct ag71xx_ring *ring = &ag->rx_ring;
1101 	int ring_mask = BIT(ring->order) - 1;
1102 	int offset = ag->rx_buf_offset;
1103 	unsigned int count;
1104 
1105 	count = 0;
1106 	for (; ring->curr - ring->dirty > 0; ring->dirty++) {
1107 		struct ag71xx_desc *desc;
1108 		unsigned int i;
1109 
1110 		i = ring->dirty & ring_mask;
1111 		desc = ag71xx_ring_desc(ring, i);
1112 
1113 		if (!ring->buf[i].rx.rx_buf &&
1114 		    !ag71xx_fill_rx_buf(ag, &ring->buf[i], offset,
1115 					napi_alloc_frag))
1116 			break;
1117 
1118 		desc->ctrl = DESC_EMPTY;
1119 		count++;
1120 	}
1121 
1122 	/* flush descriptors */
1123 	wmb();
1124 
1125 	netif_dbg(ag, rx_status, ag->ndev, "%u rx descriptors refilled\n",
1126 		  count);
1127 
1128 	return count;
1129 }
1130 
1131 static int ag71xx_rings_init(struct ag71xx *ag)
1132 {
1133 	struct ag71xx_ring *tx = &ag->tx_ring;
1134 	struct ag71xx_ring *rx = &ag->rx_ring;
1135 	int ring_size, tx_size;
1136 
1137 	ring_size = BIT(tx->order) + BIT(rx->order);
1138 	tx_size = BIT(tx->order);
1139 
1140 	tx->buf = kcalloc(ring_size, sizeof(*tx->buf), GFP_KERNEL);
1141 	if (!tx->buf)
1142 		return -ENOMEM;
1143 
1144 	tx->descs_cpu = dma_alloc_coherent(&ag->pdev->dev,
1145 					   ring_size * AG71XX_DESC_SIZE,
1146 					   &tx->descs_dma, GFP_KERNEL);
1147 	if (!tx->descs_cpu) {
1148 		kfree(tx->buf);
1149 		tx->buf = NULL;
1150 		return -ENOMEM;
1151 	}
1152 
1153 	rx->buf = &tx->buf[tx_size];
1154 	rx->descs_cpu = ((void *)tx->descs_cpu) + tx_size * AG71XX_DESC_SIZE;
1155 	rx->descs_dma = tx->descs_dma + tx_size * AG71XX_DESC_SIZE;
1156 
1157 	ag71xx_ring_tx_init(ag);
1158 	return ag71xx_ring_rx_init(ag);
1159 }
1160 
1161 static void ag71xx_rings_free(struct ag71xx *ag)
1162 {
1163 	struct ag71xx_ring *tx = &ag->tx_ring;
1164 	struct ag71xx_ring *rx = &ag->rx_ring;
1165 	int ring_size;
1166 
1167 	ring_size = BIT(tx->order) + BIT(rx->order);
1168 
1169 	if (tx->descs_cpu)
1170 		dma_free_coherent(&ag->pdev->dev, ring_size * AG71XX_DESC_SIZE,
1171 				  tx->descs_cpu, tx->descs_dma);
1172 
1173 	kfree(tx->buf);
1174 
1175 	tx->descs_cpu = NULL;
1176 	rx->descs_cpu = NULL;
1177 	tx->buf = NULL;
1178 	rx->buf = NULL;
1179 }
1180 
1181 static void ag71xx_rings_cleanup(struct ag71xx *ag)
1182 {
1183 	ag71xx_ring_rx_clean(ag);
1184 	ag71xx_ring_tx_clean(ag);
1185 	ag71xx_rings_free(ag);
1186 
1187 	netdev_reset_queue(ag->ndev);
1188 }
1189 
1190 static void ag71xx_hw_init(struct ag71xx *ag)
1191 {
1192 	ag71xx_hw_stop(ag);
1193 
1194 	ag71xx_sb(ag, AG71XX_REG_MAC_CFG1, MAC_CFG1_SR);
1195 	usleep_range(20, 30);
1196 
1197 	reset_control_assert(ag->mac_reset);
1198 	msleep(100);
1199 	reset_control_deassert(ag->mac_reset);
1200 	msleep(200);
1201 
1202 	ag71xx_hw_setup(ag);
1203 
1204 	ag71xx_dma_reset(ag);
1205 }
1206 
1207 static int ag71xx_hw_enable(struct ag71xx *ag)
1208 {
1209 	int ret;
1210 
1211 	ret = ag71xx_rings_init(ag);
1212 	if (ret)
1213 		return ret;
1214 
1215 	napi_enable(&ag->napi);
1216 	ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma);
1217 	ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->rx_ring.descs_dma);
1218 	netif_start_queue(ag->ndev);
1219 
1220 	return 0;
1221 }
1222 
1223 static void ag71xx_hw_disable(struct ag71xx *ag)
1224 {
1225 	netif_stop_queue(ag->ndev);
1226 
1227 	ag71xx_hw_stop(ag);
1228 	ag71xx_dma_reset(ag);
1229 
1230 	napi_disable(&ag->napi);
1231 	del_timer_sync(&ag->oom_timer);
1232 
1233 	ag71xx_rings_cleanup(ag);
1234 }
1235 
1236 static int ag71xx_open(struct net_device *ndev)
1237 {
1238 	struct ag71xx *ag = netdev_priv(ndev);
1239 	unsigned int max_frame_len;
1240 	int ret;
1241 
1242 	max_frame_len = ag71xx_max_frame_len(ndev->mtu);
1243 	ag->rx_buf_size =
1244 		SKB_DATA_ALIGN(max_frame_len + NET_SKB_PAD + NET_IP_ALIGN);
1245 
1246 	/* setup max frame length */
1247 	ag71xx_wr(ag, AG71XX_REG_MAC_MFL, max_frame_len);
1248 	ag71xx_hw_set_macaddr(ag, ndev->dev_addr);
1249 
1250 	ret = ag71xx_hw_enable(ag);
1251 	if (ret)
1252 		goto err;
1253 
1254 	ret = ag71xx_phy_connect(ag);
1255 	if (ret)
1256 		goto err;
1257 
1258 	phy_start(ndev->phydev);
1259 
1260 	return 0;
1261 
1262 err:
1263 	ag71xx_rings_cleanup(ag);
1264 	return ret;
1265 }
1266 
1267 static int ag71xx_stop(struct net_device *ndev)
1268 {
1269 	struct ag71xx *ag = netdev_priv(ndev);
1270 
1271 	phy_stop(ndev->phydev);
1272 	phy_disconnect(ndev->phydev);
1273 	ag71xx_hw_disable(ag);
1274 
1275 	return 0;
1276 }
1277 
1278 static int ag71xx_fill_dma_desc(struct ag71xx_ring *ring, u32 addr, int len)
1279 {
1280 	int i, ring_mask, ndesc, split;
1281 	struct ag71xx_desc *desc;
1282 
1283 	ring_mask = BIT(ring->order) - 1;
1284 	ndesc = 0;
1285 	split = ring->desc_split;
1286 
1287 	if (!split)
1288 		split = len;
1289 
1290 	while (len > 0) {
1291 		unsigned int cur_len = len;
1292 
1293 		i = (ring->curr + ndesc) & ring_mask;
1294 		desc = ag71xx_ring_desc(ring, i);
1295 
1296 		if (!ag71xx_desc_empty(desc))
1297 			return -1;
1298 
1299 		if (cur_len > split) {
1300 			cur_len = split;
1301 
1302 			/*  TX will hang if DMA transfers <= 4 bytes,
1303 			 * make sure next segment is more than 4 bytes long.
1304 			 */
1305 			if (len <= split + 4)
1306 				cur_len -= 4;
1307 		}
1308 
1309 		desc->data = addr;
1310 		addr += cur_len;
1311 		len -= cur_len;
1312 
1313 		if (len > 0)
1314 			cur_len |= DESC_MORE;
1315 
1316 		/* prevent early tx attempt of this descriptor */
1317 		if (!ndesc)
1318 			cur_len |= DESC_EMPTY;
1319 
1320 		desc->ctrl = cur_len;
1321 		ndesc++;
1322 	}
1323 
1324 	return ndesc;
1325 }
1326 
1327 static netdev_tx_t ag71xx_hard_start_xmit(struct sk_buff *skb,
1328 					  struct net_device *ndev)
1329 {
1330 	int i, n, ring_min, ring_mask, ring_size;
1331 	struct ag71xx *ag = netdev_priv(ndev);
1332 	struct ag71xx_ring *ring;
1333 	struct ag71xx_desc *desc;
1334 	dma_addr_t dma_addr;
1335 
1336 	ring = &ag->tx_ring;
1337 	ring_mask = BIT(ring->order) - 1;
1338 	ring_size = BIT(ring->order);
1339 
1340 	if (skb->len <= 4) {
1341 		netif_dbg(ag, tx_err, ndev, "packet len is too small\n");
1342 		goto err_drop;
1343 	}
1344 
1345 	dma_addr = dma_map_single(&ag->pdev->dev, skb->data, skb->len,
1346 				  DMA_TO_DEVICE);
1347 
1348 	i = ring->curr & ring_mask;
1349 	desc = ag71xx_ring_desc(ring, i);
1350 
1351 	/* setup descriptor fields */
1352 	n = ag71xx_fill_dma_desc(ring, (u32)dma_addr,
1353 				 skb->len & ag->dcfg->desc_pktlen_mask);
1354 	if (n < 0)
1355 		goto err_drop_unmap;
1356 
1357 	i = (ring->curr + n - 1) & ring_mask;
1358 	ring->buf[i].tx.len = skb->len;
1359 	ring->buf[i].tx.skb = skb;
1360 
1361 	netdev_sent_queue(ndev, skb->len);
1362 
1363 	skb_tx_timestamp(skb);
1364 
1365 	desc->ctrl &= ~DESC_EMPTY;
1366 	ring->curr += n;
1367 
1368 	/* flush descriptor */
1369 	wmb();
1370 
1371 	ring_min = 2;
1372 	if (ring->desc_split)
1373 		ring_min *= AG71XX_TX_RING_DS_PER_PKT;
1374 
1375 	if (ring->curr - ring->dirty >= ring_size - ring_min) {
1376 		netif_dbg(ag, tx_err, ndev, "tx queue full\n");
1377 		netif_stop_queue(ndev);
1378 	}
1379 
1380 	netif_dbg(ag, tx_queued, ndev, "packet injected into TX queue\n");
1381 
1382 	/* enable TX engine */
1383 	ag71xx_wr(ag, AG71XX_REG_TX_CTRL, TX_CTRL_TXE);
1384 
1385 	return NETDEV_TX_OK;
1386 
1387 err_drop_unmap:
1388 	dma_unmap_single(&ag->pdev->dev, dma_addr, skb->len, DMA_TO_DEVICE);
1389 
1390 err_drop:
1391 	ndev->stats.tx_dropped++;
1392 
1393 	dev_kfree_skb(skb);
1394 	return NETDEV_TX_OK;
1395 }
1396 
1397 static int ag71xx_do_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
1398 {
1399 	if (!ndev->phydev)
1400 		return -EINVAL;
1401 
1402 	return phy_mii_ioctl(ndev->phydev, ifr, cmd);
1403 }
1404 
1405 static void ag71xx_oom_timer_handler(struct timer_list *t)
1406 {
1407 	struct ag71xx *ag = from_timer(ag, t, oom_timer);
1408 
1409 	napi_schedule(&ag->napi);
1410 }
1411 
1412 static void ag71xx_tx_timeout(struct net_device *ndev)
1413 {
1414 	struct ag71xx *ag = netdev_priv(ndev);
1415 
1416 	netif_err(ag, tx_err, ndev, "tx timeout\n");
1417 
1418 	schedule_delayed_work(&ag->restart_work, 1);
1419 }
1420 
1421 static void ag71xx_restart_work_func(struct work_struct *work)
1422 {
1423 	struct ag71xx *ag = container_of(work, struct ag71xx,
1424 					 restart_work.work);
1425 	struct net_device *ndev = ag->ndev;
1426 
1427 	rtnl_lock();
1428 	ag71xx_hw_disable(ag);
1429 	ag71xx_hw_enable(ag);
1430 	if (ndev->phydev->link)
1431 		ag71xx_link_adjust(ag, false);
1432 	rtnl_unlock();
1433 }
1434 
1435 static int ag71xx_rx_packets(struct ag71xx *ag, int limit)
1436 {
1437 	struct net_device *ndev = ag->ndev;
1438 	int ring_mask, ring_size, done = 0;
1439 	unsigned int pktlen_mask, offset;
1440 	struct sk_buff *next, *skb;
1441 	struct ag71xx_ring *ring;
1442 	struct list_head rx_list;
1443 
1444 	ring = &ag->rx_ring;
1445 	pktlen_mask = ag->dcfg->desc_pktlen_mask;
1446 	offset = ag->rx_buf_offset;
1447 	ring_mask = BIT(ring->order) - 1;
1448 	ring_size = BIT(ring->order);
1449 
1450 	netif_dbg(ag, rx_status, ndev, "rx packets, limit=%d, curr=%u, dirty=%u\n",
1451 		  limit, ring->curr, ring->dirty);
1452 
1453 	INIT_LIST_HEAD(&rx_list);
1454 
1455 	while (done < limit) {
1456 		unsigned int i = ring->curr & ring_mask;
1457 		struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
1458 		int pktlen;
1459 		int err = 0;
1460 
1461 		if (ag71xx_desc_empty(desc))
1462 			break;
1463 
1464 		if ((ring->dirty + ring_size) == ring->curr) {
1465 			WARN_ONCE(1, "RX out of ring");
1466 			break;
1467 		}
1468 
1469 		ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR);
1470 
1471 		pktlen = desc->ctrl & pktlen_mask;
1472 		pktlen -= ETH_FCS_LEN;
1473 
1474 		dma_unmap_single(&ag->pdev->dev, ring->buf[i].rx.dma_addr,
1475 				 ag->rx_buf_size, DMA_FROM_DEVICE);
1476 
1477 		ndev->stats.rx_packets++;
1478 		ndev->stats.rx_bytes += pktlen;
1479 
1480 		skb = build_skb(ring->buf[i].rx.rx_buf, ag71xx_buffer_size(ag));
1481 		if (!skb) {
1482 			skb_free_frag(ring->buf[i].rx.rx_buf);
1483 			goto next;
1484 		}
1485 
1486 		skb_reserve(skb, offset);
1487 		skb_put(skb, pktlen);
1488 
1489 		if (err) {
1490 			ndev->stats.rx_dropped++;
1491 			kfree_skb(skb);
1492 		} else {
1493 			skb->dev = ndev;
1494 			skb->ip_summed = CHECKSUM_NONE;
1495 			list_add_tail(&skb->list, &rx_list);
1496 		}
1497 
1498 next:
1499 		ring->buf[i].rx.rx_buf = NULL;
1500 		done++;
1501 
1502 		ring->curr++;
1503 	}
1504 
1505 	ag71xx_ring_rx_refill(ag);
1506 
1507 	list_for_each_entry_safe(skb, next, &rx_list, list)
1508 		skb->protocol = eth_type_trans(skb, ndev);
1509 	netif_receive_skb_list(&rx_list);
1510 
1511 	netif_dbg(ag, rx_status, ndev, "rx finish, curr=%u, dirty=%u, done=%d\n",
1512 		  ring->curr, ring->dirty, done);
1513 
1514 	return done;
1515 }
1516 
1517 static int ag71xx_poll(struct napi_struct *napi, int limit)
1518 {
1519 	struct ag71xx *ag = container_of(napi, struct ag71xx, napi);
1520 	struct ag71xx_ring *rx_ring = &ag->rx_ring;
1521 	int rx_ring_size = BIT(rx_ring->order);
1522 	struct net_device *ndev = ag->ndev;
1523 	int tx_done, rx_done;
1524 	u32 status;
1525 
1526 	tx_done = ag71xx_tx_packets(ag, false);
1527 
1528 	netif_dbg(ag, rx_status, ndev, "processing RX ring\n");
1529 	rx_done = ag71xx_rx_packets(ag, limit);
1530 
1531 	if (!rx_ring->buf[rx_ring->dirty % rx_ring_size].rx.rx_buf)
1532 		goto oom;
1533 
1534 	status = ag71xx_rr(ag, AG71XX_REG_RX_STATUS);
1535 	if (unlikely(status & RX_STATUS_OF)) {
1536 		ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_OF);
1537 		ndev->stats.rx_fifo_errors++;
1538 
1539 		/* restart RX */
1540 		ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE);
1541 	}
1542 
1543 	if (rx_done < limit) {
1544 		if (status & RX_STATUS_PR)
1545 			goto more;
1546 
1547 		status = ag71xx_rr(ag, AG71XX_REG_TX_STATUS);
1548 		if (status & TX_STATUS_PS)
1549 			goto more;
1550 
1551 		netif_dbg(ag, rx_status, ndev, "disable polling mode, rx=%d, tx=%d,limit=%d\n",
1552 			  rx_done, tx_done, limit);
1553 
1554 		napi_complete(napi);
1555 
1556 		/* enable interrupts */
1557 		ag71xx_int_enable(ag, AG71XX_INT_POLL);
1558 		return rx_done;
1559 	}
1560 
1561 more:
1562 	netif_dbg(ag, rx_status, ndev, "stay in polling mode, rx=%d, tx=%d, limit=%d\n",
1563 		  rx_done, tx_done, limit);
1564 	return limit;
1565 
1566 oom:
1567 	netif_err(ag, rx_err, ndev, "out of memory\n");
1568 
1569 	mod_timer(&ag->oom_timer, jiffies + AG71XX_OOM_REFILL);
1570 	napi_complete(napi);
1571 	return 0;
1572 }
1573 
1574 static irqreturn_t ag71xx_interrupt(int irq, void *dev_id)
1575 {
1576 	struct net_device *ndev = dev_id;
1577 	struct ag71xx *ag;
1578 	u32 status;
1579 
1580 	ag = netdev_priv(ndev);
1581 	status = ag71xx_rr(ag, AG71XX_REG_INT_STATUS);
1582 
1583 	if (unlikely(!status))
1584 		return IRQ_NONE;
1585 
1586 	if (unlikely(status & AG71XX_INT_ERR)) {
1587 		if (status & AG71XX_INT_TX_BE) {
1588 			ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE);
1589 			netif_err(ag, intr, ndev, "TX BUS error\n");
1590 		}
1591 		if (status & AG71XX_INT_RX_BE) {
1592 			ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE);
1593 			netif_err(ag, intr, ndev, "RX BUS error\n");
1594 		}
1595 	}
1596 
1597 	if (likely(status & AG71XX_INT_POLL)) {
1598 		ag71xx_int_disable(ag, AG71XX_INT_POLL);
1599 		netif_dbg(ag, intr, ndev, "enable polling mode\n");
1600 		napi_schedule(&ag->napi);
1601 	}
1602 
1603 	return IRQ_HANDLED;
1604 }
1605 
1606 static int ag71xx_change_mtu(struct net_device *ndev, int new_mtu)
1607 {
1608 	struct ag71xx *ag = netdev_priv(ndev);
1609 
1610 	ndev->mtu = new_mtu;
1611 	ag71xx_wr(ag, AG71XX_REG_MAC_MFL,
1612 		  ag71xx_max_frame_len(ndev->mtu));
1613 
1614 	return 0;
1615 }
1616 
1617 static const struct net_device_ops ag71xx_netdev_ops = {
1618 	.ndo_open		= ag71xx_open,
1619 	.ndo_stop		= ag71xx_stop,
1620 	.ndo_start_xmit		= ag71xx_hard_start_xmit,
1621 	.ndo_do_ioctl		= ag71xx_do_ioctl,
1622 	.ndo_tx_timeout		= ag71xx_tx_timeout,
1623 	.ndo_change_mtu		= ag71xx_change_mtu,
1624 	.ndo_set_mac_address	= eth_mac_addr,
1625 	.ndo_validate_addr	= eth_validate_addr,
1626 };
1627 
1628 static const u32 ar71xx_addr_ar7100[] = {
1629 	0x19000000, 0x1a000000,
1630 };
1631 
1632 static int ag71xx_probe(struct platform_device *pdev)
1633 {
1634 	struct device_node *np = pdev->dev.of_node;
1635 	const struct ag71xx_dcfg *dcfg;
1636 	struct net_device *ndev;
1637 	struct resource *res;
1638 	const void *mac_addr;
1639 	int tx_size, err, i;
1640 	struct ag71xx *ag;
1641 
1642 	if (!np)
1643 		return -ENODEV;
1644 
1645 	ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*ag));
1646 	if (!ndev)
1647 		return -ENOMEM;
1648 
1649 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1650 	if (!res)
1651 		return -EINVAL;
1652 
1653 	dcfg = of_device_get_match_data(&pdev->dev);
1654 	if (!dcfg)
1655 		return -EINVAL;
1656 
1657 	ag = netdev_priv(ndev);
1658 	ag->mac_idx = -1;
1659 	for (i = 0; i < ARRAY_SIZE(ar71xx_addr_ar7100); i++) {
1660 		if (ar71xx_addr_ar7100[i] == res->start)
1661 			ag->mac_idx = i;
1662 	}
1663 
1664 	if (ag->mac_idx < 0) {
1665 		netif_err(ag, probe, ndev, "unknown mac idx\n");
1666 		return -EINVAL;
1667 	}
1668 
1669 	ag->clk_eth = devm_clk_get(&pdev->dev, "eth");
1670 	if (IS_ERR(ag->clk_eth)) {
1671 		netif_err(ag, probe, ndev, "Failed to get eth clk.\n");
1672 		return PTR_ERR(ag->clk_eth);
1673 	}
1674 
1675 	SET_NETDEV_DEV(ndev, &pdev->dev);
1676 
1677 	ag->pdev = pdev;
1678 	ag->ndev = ndev;
1679 	ag->dcfg = dcfg;
1680 	ag->msg_enable = netif_msg_init(-1, AG71XX_DEFAULT_MSG_ENABLE);
1681 	memcpy(ag->fifodata, dcfg->fifodata, sizeof(ag->fifodata));
1682 
1683 	ag->mac_reset = devm_reset_control_get(&pdev->dev, "mac");
1684 	if (IS_ERR(ag->mac_reset)) {
1685 		netif_err(ag, probe, ndev, "missing mac reset\n");
1686 		err = PTR_ERR(ag->mac_reset);
1687 		goto err_free;
1688 	}
1689 
1690 	ag->mac_base = devm_ioremap_nocache(&pdev->dev, res->start,
1691 					    resource_size(res));
1692 	if (!ag->mac_base) {
1693 		err = -ENOMEM;
1694 		goto err_free;
1695 	}
1696 
1697 	ndev->irq = platform_get_irq(pdev, 0);
1698 	err = devm_request_irq(&pdev->dev, ndev->irq, ag71xx_interrupt,
1699 			       0x0, dev_name(&pdev->dev), ndev);
1700 	if (err) {
1701 		netif_err(ag, probe, ndev, "unable to request IRQ %d\n",
1702 			  ndev->irq);
1703 		goto err_free;
1704 	}
1705 
1706 	ndev->netdev_ops = &ag71xx_netdev_ops;
1707 
1708 	INIT_DELAYED_WORK(&ag->restart_work, ag71xx_restart_work_func);
1709 	timer_setup(&ag->oom_timer, ag71xx_oom_timer_handler, 0);
1710 
1711 	tx_size = AG71XX_TX_RING_SIZE_DEFAULT;
1712 	ag->rx_ring.order = ag71xx_ring_size_order(AG71XX_RX_RING_SIZE_DEFAULT);
1713 
1714 	ndev->min_mtu = 68;
1715 	ndev->max_mtu = dcfg->max_frame_len - ag71xx_max_frame_len(0);
1716 
1717 	ag->rx_buf_offset = NET_SKB_PAD;
1718 	if (!ag71xx_is(ag, AR7100) && !ag71xx_is(ag, AR9130))
1719 		ag->rx_buf_offset += NET_IP_ALIGN;
1720 
1721 	if (ag71xx_is(ag, AR7100)) {
1722 		ag->tx_ring.desc_split = AG71XX_TX_RING_SPLIT;
1723 		tx_size *= AG71XX_TX_RING_DS_PER_PKT;
1724 	}
1725 	ag->tx_ring.order = ag71xx_ring_size_order(tx_size);
1726 
1727 	ag->stop_desc = dmam_alloc_coherent(&pdev->dev,
1728 					    sizeof(struct ag71xx_desc),
1729 					    &ag->stop_desc_dma, GFP_KERNEL);
1730 	if (!ag->stop_desc) {
1731 		err = -ENOMEM;
1732 		goto err_free;
1733 	}
1734 
1735 	ag->stop_desc->data = 0;
1736 	ag->stop_desc->ctrl = 0;
1737 	ag->stop_desc->next = (u32)ag->stop_desc_dma;
1738 
1739 	mac_addr = of_get_mac_address(np);
1740 	if (!IS_ERR(mac_addr))
1741 		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1742 	if (IS_ERR(mac_addr) || !is_valid_ether_addr(ndev->dev_addr)) {
1743 		netif_err(ag, probe, ndev, "invalid MAC address, using random address\n");
1744 		eth_random_addr(ndev->dev_addr);
1745 	}
1746 
1747 	ag->phy_if_mode = of_get_phy_mode(np);
1748 	if (ag->phy_if_mode < 0) {
1749 		netif_err(ag, probe, ndev, "missing phy-mode property in DT\n");
1750 		err = ag->phy_if_mode;
1751 		goto err_free;
1752 	}
1753 
1754 	netif_napi_add(ndev, &ag->napi, ag71xx_poll, AG71XX_NAPI_WEIGHT);
1755 
1756 	err = clk_prepare_enable(ag->clk_eth);
1757 	if (err) {
1758 		netif_err(ag, probe, ndev, "Failed to enable eth clk.\n");
1759 		goto err_free;
1760 	}
1761 
1762 	ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, 0);
1763 
1764 	ag71xx_hw_init(ag);
1765 
1766 	err = ag71xx_mdio_probe(ag);
1767 	if (err)
1768 		goto err_put_clk;
1769 
1770 	platform_set_drvdata(pdev, ndev);
1771 
1772 	err = register_netdev(ndev);
1773 	if (err) {
1774 		netif_err(ag, probe, ndev, "unable to register net device\n");
1775 		platform_set_drvdata(pdev, NULL);
1776 		goto err_mdio_remove;
1777 	}
1778 
1779 	netif_info(ag, probe, ndev, "Atheros AG71xx at 0x%08lx, irq %d, mode:%s\n",
1780 		   (unsigned long)ag->mac_base, ndev->irq,
1781 		   phy_modes(ag->phy_if_mode));
1782 
1783 	return 0;
1784 
1785 err_mdio_remove:
1786 	ag71xx_mdio_remove(ag);
1787 err_put_clk:
1788 	clk_disable_unprepare(ag->clk_eth);
1789 err_free:
1790 	free_netdev(ndev);
1791 	return err;
1792 }
1793 
1794 static int ag71xx_remove(struct platform_device *pdev)
1795 {
1796 	struct net_device *ndev = platform_get_drvdata(pdev);
1797 	struct ag71xx *ag;
1798 
1799 	if (!ndev)
1800 		return 0;
1801 
1802 	ag = netdev_priv(ndev);
1803 	unregister_netdev(ndev);
1804 	ag71xx_mdio_remove(ag);
1805 	clk_disable_unprepare(ag->clk_eth);
1806 	platform_set_drvdata(pdev, NULL);
1807 
1808 	return 0;
1809 }
1810 
1811 static const u32 ar71xx_fifo_ar7100[] = {
1812 	0x0fff0000, 0x00001fff, 0x00780fff,
1813 };
1814 
1815 static const u32 ar71xx_fifo_ar9130[] = {
1816 	0x0fff0000, 0x00001fff, 0x008001ff,
1817 };
1818 
1819 static const u32 ar71xx_fifo_ar9330[] = {
1820 	0x0010ffff, 0x015500aa, 0x01f00140,
1821 };
1822 
1823 static const struct ag71xx_dcfg ag71xx_dcfg_ar7100 = {
1824 	.type = AR7100,
1825 	.fifodata = ar71xx_fifo_ar7100,
1826 	.max_frame_len = 1540,
1827 	.desc_pktlen_mask = SZ_4K - 1,
1828 	.tx_hang_workaround = false,
1829 };
1830 
1831 static const struct ag71xx_dcfg ag71xx_dcfg_ar7240 = {
1832 	.type = AR7240,
1833 	.fifodata = ar71xx_fifo_ar7100,
1834 	.max_frame_len = 1540,
1835 	.desc_pktlen_mask = SZ_4K - 1,
1836 	.tx_hang_workaround = true,
1837 };
1838 
1839 static const struct ag71xx_dcfg ag71xx_dcfg_ar9130 = {
1840 	.type = AR9130,
1841 	.fifodata = ar71xx_fifo_ar9130,
1842 	.max_frame_len = 1540,
1843 	.desc_pktlen_mask = SZ_4K - 1,
1844 	.tx_hang_workaround = false,
1845 };
1846 
1847 static const struct ag71xx_dcfg ag71xx_dcfg_ar9330 = {
1848 	.type = AR9330,
1849 	.fifodata = ar71xx_fifo_ar9330,
1850 	.max_frame_len = 1540,
1851 	.desc_pktlen_mask = SZ_4K - 1,
1852 	.tx_hang_workaround = true,
1853 };
1854 
1855 static const struct ag71xx_dcfg ag71xx_dcfg_ar9340 = {
1856 	.type = AR9340,
1857 	.fifodata = ar71xx_fifo_ar9330,
1858 	.max_frame_len = SZ_16K - 1,
1859 	.desc_pktlen_mask = SZ_16K - 1,
1860 	.tx_hang_workaround = true,
1861 };
1862 
1863 static const struct ag71xx_dcfg ag71xx_dcfg_qca9530 = {
1864 	.type = QCA9530,
1865 	.fifodata = ar71xx_fifo_ar9330,
1866 	.max_frame_len = SZ_16K - 1,
1867 	.desc_pktlen_mask = SZ_16K - 1,
1868 	.tx_hang_workaround = true,
1869 };
1870 
1871 static const struct ag71xx_dcfg ag71xx_dcfg_qca9550 = {
1872 	.type = QCA9550,
1873 	.fifodata = ar71xx_fifo_ar9330,
1874 	.max_frame_len = 1540,
1875 	.desc_pktlen_mask = SZ_16K - 1,
1876 	.tx_hang_workaround = true,
1877 };
1878 
1879 static const struct of_device_id ag71xx_match[] = {
1880 	{ .compatible = "qca,ar7100-eth", .data = &ag71xx_dcfg_ar7100 },
1881 	{ .compatible = "qca,ar7240-eth", .data = &ag71xx_dcfg_ar7240 },
1882 	{ .compatible = "qca,ar7241-eth", .data = &ag71xx_dcfg_ar7240 },
1883 	{ .compatible = "qca,ar7242-eth", .data = &ag71xx_dcfg_ar7240 },
1884 	{ .compatible = "qca,ar9130-eth", .data = &ag71xx_dcfg_ar9130 },
1885 	{ .compatible = "qca,ar9330-eth", .data = &ag71xx_dcfg_ar9330 },
1886 	{ .compatible = "qca,ar9340-eth", .data = &ag71xx_dcfg_ar9340 },
1887 	{ .compatible = "qca,qca9530-eth", .data = &ag71xx_dcfg_qca9530 },
1888 	{ .compatible = "qca,qca9550-eth", .data = &ag71xx_dcfg_qca9550 },
1889 	{ .compatible = "qca,qca9560-eth", .data = &ag71xx_dcfg_qca9550 },
1890 	{}
1891 };
1892 
1893 static struct platform_driver ag71xx_driver = {
1894 	.probe		= ag71xx_probe,
1895 	.remove		= ag71xx_remove,
1896 	.driver = {
1897 		.name	= "ag71xx",
1898 		.of_match_table = ag71xx_match,
1899 	}
1900 };
1901 
1902 module_platform_driver(ag71xx_driver);
1903 MODULE_LICENSE("GPL v2");
1904