1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2007 Atheros Corporation. All rights reserved.
4  *
5  * Derived from Intel e1000 driver
6  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7  */
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/mii.h>
11 #include <linux/crc32.h>
12 
13 #include "atl1e.h"
14 
15 /*
16  * check_eeprom_exist
17  * return 0 if eeprom exist
18  */
19 int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
20 {
21 	u32 value;
22 
23 	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
24 	if (value & SPI_FLASH_CTRL_EN_VPD) {
25 		value &= ~SPI_FLASH_CTRL_EN_VPD;
26 		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
27 	}
28 	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
29 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
30 }
31 
32 void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
33 {
34 	u32 value;
35 	/*
36 	 * 00-0B-6A-F6-00-DC
37 	 * 0:  6AF600DC 1: 000B
38 	 * low dword
39 	 */
40 	value = (((u32)hw->mac_addr[2]) << 24) |
41 		(((u32)hw->mac_addr[3]) << 16) |
42 		(((u32)hw->mac_addr[4]) << 8)  |
43 		(((u32)hw->mac_addr[5])) ;
44 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
45 	/* hight dword */
46 	value = (((u32)hw->mac_addr[0]) << 8) |
47 		(((u32)hw->mac_addr[1])) ;
48 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
49 }
50 
51 /*
52  * atl1e_get_permanent_address
53  * return 0 if get valid mac address,
54  */
55 static int atl1e_get_permanent_address(struct atl1e_hw *hw)
56 {
57 	u32 addr[2];
58 	u32 i;
59 	u32 twsi_ctrl_data;
60 	u8  eth_addr[ETH_ALEN];
61 
62 	if (is_valid_ether_addr(hw->perm_mac_addr))
63 		return 0;
64 
65 	/* init */
66 	addr[0] = addr[1] = 0;
67 
68 	if (!atl1e_check_eeprom_exist(hw)) {
69 		/* eeprom exist */
70 		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
71 		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
72 		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
73 		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
74 			msleep(10);
75 			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
76 			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
77 				break;
78 		}
79 		if (i >= AT_TWSI_EEPROM_TIMEOUT)
80 			return AT_ERR_TIMEOUT;
81 	}
82 
83 	/* maybe MAC-address is from BIOS */
84 	addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
85 	addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
86 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
87 	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
88 
89 	if (is_valid_ether_addr(eth_addr)) {
90 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
91 		return 0;
92 	}
93 
94 	return AT_ERR_EEPROM;
95 }
96 
97 bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
98 {
99 	return true;
100 }
101 
102 bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
103 {
104 	int i;
105 	u32 control;
106 
107 	if (offset & 3)
108 		return false; /* address do not align */
109 
110 	AT_WRITE_REG(hw, REG_VPD_DATA, 0);
111 	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
112 	AT_WRITE_REG(hw, REG_VPD_CAP, control);
113 
114 	for (i = 0; i < 10; i++) {
115 		msleep(2);
116 		control = AT_READ_REG(hw, REG_VPD_CAP);
117 		if (control & VPD_CAP_VPD_FLAG)
118 			break;
119 	}
120 	if (control & VPD_CAP_VPD_FLAG) {
121 		*p_value = AT_READ_REG(hw, REG_VPD_DATA);
122 		return true;
123 	}
124 	return false; /* timeout */
125 }
126 
127 void atl1e_force_ps(struct atl1e_hw *hw)
128 {
129 	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
130 			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
131 }
132 
133 /*
134  * Reads the adapter's MAC address from the EEPROM
135  *
136  * hw - Struct containing variables accessed by shared code
137  */
138 int atl1e_read_mac_addr(struct atl1e_hw *hw)
139 {
140 	int err = 0;
141 
142 	err = atl1e_get_permanent_address(hw);
143 	if (err)
144 		return AT_ERR_EEPROM;
145 	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
146 	return 0;
147 }
148 
149 /*
150  * atl1e_hash_mc_addr
151  *  purpose
152  *      set hash value for a multicast address
153  */
154 u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
155 {
156 	u32 crc32;
157 	u32 value = 0;
158 	int i;
159 
160 	crc32 = ether_crc_le(6, mc_addr);
161 	for (i = 0; i < 32; i++)
162 		value |= (((crc32 >> i) & 1) << (31 - i));
163 
164 	return value;
165 }
166 
167 /*
168  * Sets the bit in the multicast table corresponding to the hash value.
169  * hw - Struct containing variables accessed by shared code
170  * hash_value - Multicast address hash value
171  */
172 void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
173 {
174 	u32 hash_bit, hash_reg;
175 	u32 mta;
176 
177 	/*
178 	 * The HASH Table  is a register array of 2 32-bit registers.
179 	 * It is treated like an array of 64 bits.  We want to set
180 	 * bit BitArray[hash_value]. So we figure out what register
181 	 * the bit is in, read it, OR in the new bit, then write
182 	 * back the new value.  The register is determined by the
183 	 * upper 7 bits of the hash value and the bit within that
184 	 * register are determined by the lower 5 bits of the value.
185 	 */
186 	hash_reg = (hash_value >> 31) & 0x1;
187 	hash_bit = (hash_value >> 26) & 0x1F;
188 
189 	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
190 
191 	mta |= (1 << hash_bit);
192 
193 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
194 }
195 /*
196  * Reads the value from a PHY register
197  * hw - Struct containing variables accessed by shared code
198  * reg_addr - address of the PHY register to read
199  */
200 int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
201 {
202 	u32 val;
203 	int i;
204 
205 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
206 		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
207 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
208 
209 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
210 
211 	wmb();
212 
213 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
214 		udelay(2);
215 		val = AT_READ_REG(hw, REG_MDIO_CTRL);
216 		if (!(val & (MDIO_START | MDIO_BUSY)))
217 			break;
218 		wmb();
219 	}
220 	if (!(val & (MDIO_START | MDIO_BUSY))) {
221 		*phy_data = (u16)val;
222 		return 0;
223 	}
224 
225 	return AT_ERR_PHY;
226 }
227 
228 /*
229  * Writes a value to a PHY register
230  * hw - Struct containing variables accessed by shared code
231  * reg_addr - address of the PHY register to write
232  * data - data to write to the PHY
233  */
234 int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
235 {
236 	int i;
237 	u32 val;
238 
239 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
240 	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
241 	       MDIO_SUP_PREAMBLE |
242 	       MDIO_START |
243 	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
244 
245 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
246 	wmb();
247 
248 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
249 		udelay(2);
250 		val = AT_READ_REG(hw, REG_MDIO_CTRL);
251 		if (!(val & (MDIO_START | MDIO_BUSY)))
252 			break;
253 		wmb();
254 	}
255 
256 	if (!(val & (MDIO_START | MDIO_BUSY)))
257 		return 0;
258 
259 	return AT_ERR_PHY;
260 }
261 
262 /*
263  * atl1e_init_pcie - init PCIE module
264  */
265 static void atl1e_init_pcie(struct atl1e_hw *hw)
266 {
267 	u32 value;
268 	/* comment 2lines below to save more power when sususpend
269 	   value = LTSSM_TEST_MODE_DEF;
270 	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
271 	 */
272 
273 	/* pcie flow control mode change */
274 	value = AT_READ_REG(hw, 0x1008);
275 	value |= 0x8000;
276 	AT_WRITE_REG(hw, 0x1008, value);
277 }
278 /*
279  * Configures PHY autoneg and flow control advertisement settings
280  *
281  * hw - Struct containing variables accessed by shared code
282  */
283 static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
284 {
285 	s32 ret_val;
286 	u16 mii_autoneg_adv_reg;
287 	u16 mii_1000t_ctrl_reg;
288 
289 	if (0 != hw->mii_autoneg_adv_reg)
290 		return 0;
291 	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
292 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
293 	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
294 
295 	/*
296 	 * Need to parse autoneg_advertised  and set up
297 	 * the appropriate PHY registers.  First we will parse for
298 	 * autoneg_advertised software override.  Since we can advertise
299 	 * a plethora of combinations, we need to check each bit
300 	 * individually.
301 	 */
302 
303 	/*
304 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
305 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
306 	 * the  1000Base-T control Register (Address 9).
307 	 */
308 	mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
309 	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
310 
311 	/*
312 	 * Need to parse MediaType and setup the
313 	 * appropriate PHY registers.
314 	 */
315 	switch (hw->media_type) {
316 	case MEDIA_TYPE_AUTO_SENSOR:
317 		mii_autoneg_adv_reg |= ADVERTISE_ALL;
318 		hw->autoneg_advertised = ADVERTISE_ALL;
319 		if (hw->nic_type == athr_l1e) {
320 			mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
321 			hw->autoneg_advertised |= ADVERTISE_1000_FULL;
322 		}
323 		break;
324 
325 	case MEDIA_TYPE_100M_FULL:
326 		mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
327 		hw->autoneg_advertised = ADVERTISE_100_FULL;
328 		break;
329 
330 	case MEDIA_TYPE_100M_HALF:
331 		mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
332 		hw->autoneg_advertised = ADVERTISE_100_HALF;
333 		break;
334 
335 	case MEDIA_TYPE_10M_FULL:
336 		mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
337 		hw->autoneg_advertised = ADVERTISE_10_FULL;
338 		break;
339 
340 	default:
341 		mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
342 		hw->autoneg_advertised = ADVERTISE_10_HALF;
343 		break;
344 	}
345 
346 	/* flow control fixed to enable all */
347 	mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
348 
349 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
350 	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
351 
352 	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
353 	if (ret_val)
354 		return ret_val;
355 
356 	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
357 		ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
358 					   mii_1000t_ctrl_reg);
359 		if (ret_val)
360 			return ret_val;
361 	}
362 
363 	return 0;
364 }
365 
366 
367 /*
368  * Resets the PHY and make all config validate
369  *
370  * hw - Struct containing variables accessed by shared code
371  *
372  * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
373  */
374 int atl1e_phy_commit(struct atl1e_hw *hw)
375 {
376 	struct atl1e_adapter *adapter = hw->adapter;
377 	int ret_val;
378 	u16 phy_data;
379 
380 	phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
381 
382 	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
383 	if (ret_val) {
384 		u32 val;
385 		int i;
386 		/**************************************
387 		 * pcie serdes link may be down !
388 		 **************************************/
389 		for (i = 0; i < 25; i++) {
390 			msleep(1);
391 			val = AT_READ_REG(hw, REG_MDIO_CTRL);
392 			if (!(val & (MDIO_START | MDIO_BUSY)))
393 				break;
394 		}
395 
396 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
397 			netdev_err(adapter->netdev,
398 				   "pcie linkdown at least for 25ms\n");
399 			return ret_val;
400 		}
401 
402 		netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
403 	}
404 	return 0;
405 }
406 
407 int atl1e_phy_init(struct atl1e_hw *hw)
408 {
409 	struct atl1e_adapter *adapter = hw->adapter;
410 	s32 ret_val;
411 	u16 phy_val;
412 
413 	if (hw->phy_configured) {
414 		if (hw->re_autoneg) {
415 			hw->re_autoneg = false;
416 			return atl1e_restart_autoneg(hw);
417 		}
418 		return 0;
419 	}
420 
421 	/* RESET GPHY Core */
422 	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
423 	msleep(2);
424 	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
425 		      GPHY_CTRL_EXT_RESET);
426 	msleep(2);
427 
428 	/* patches */
429 	/* p1. eable hibernation mode */
430 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
431 	if (ret_val)
432 		return ret_val;
433 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
434 	if (ret_val)
435 		return ret_val;
436 	/* p2. set Class A/B for all modes */
437 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
438 	if (ret_val)
439 		return ret_val;
440 	phy_val = 0x02ef;
441 	/* remove Class AB */
442 	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
443 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
444 	if (ret_val)
445 		return ret_val;
446 	/* p3. 10B ??? */
447 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
448 	if (ret_val)
449 		return ret_val;
450 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
451 	if (ret_val)
452 		return ret_val;
453 	/* p4. 1000T power */
454 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
455 	if (ret_val)
456 		return ret_val;
457 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
458 	if (ret_val)
459 		return ret_val;
460 
461 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
462 	if (ret_val)
463 		return ret_val;
464 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
465 	if (ret_val)
466 		return ret_val;
467 
468 	msleep(1);
469 
470 	/*Enable PHY LinkChange Interrupt */
471 	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
472 	if (ret_val) {
473 		netdev_err(adapter->netdev,
474 			   "Error enable PHY linkChange Interrupt\n");
475 		return ret_val;
476 	}
477 	/* setup AutoNeg parameters */
478 	ret_val = atl1e_phy_setup_autoneg_adv(hw);
479 	if (ret_val) {
480 		netdev_err(adapter->netdev,
481 			   "Error Setting up Auto-Negotiation\n");
482 		return ret_val;
483 	}
484 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
485 	netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
486 	ret_val = atl1e_phy_commit(hw);
487 	if (ret_val) {
488 		netdev_err(adapter->netdev, "Error resetting the phy\n");
489 		return ret_val;
490 	}
491 
492 	hw->phy_configured = true;
493 
494 	return 0;
495 }
496 
497 /*
498  * Reset the transmit and receive units; mask and clear all interrupts.
499  * hw - Struct containing variables accessed by shared code
500  * return : 0  or  idle status (if error)
501  */
502 int atl1e_reset_hw(struct atl1e_hw *hw)
503 {
504 	struct atl1e_adapter *adapter = hw->adapter;
505 	struct pci_dev *pdev = adapter->pdev;
506 
507 	u32 idle_status_data = 0;
508 	u16 pci_cfg_cmd_word = 0;
509 	int timeout = 0;
510 
511 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
512 	pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
513 	if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
514 				CMD_MEMORY_SPACE | CMD_BUS_MASTER))
515 			!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
516 		pci_cfg_cmd_word |= (CMD_IO_SPACE |
517 				     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
518 		pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
519 	}
520 
521 	/*
522 	 * Issue Soft Reset to the MAC.  This will reset the chip's
523 	 * transmit, receive, DMA.  It will not effect
524 	 * the current PCI configuration.  The global reset bit is self-
525 	 * clearing, and should clear within a microsecond.
526 	 */
527 	AT_WRITE_REG(hw, REG_MASTER_CTRL,
528 			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
529 	wmb();
530 	msleep(1);
531 
532 	/* Wait at least 10ms for All module to be Idle */
533 	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
534 		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
535 		if (idle_status_data == 0)
536 			break;
537 		msleep(1);
538 		cpu_relax();
539 	}
540 
541 	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
542 		netdev_err(adapter->netdev,
543 			   "MAC state machine can't be idle since disabled for 10ms second\n");
544 		return AT_ERR_TIMEOUT;
545 	}
546 
547 	return 0;
548 }
549 
550 
551 /*
552  * Performs basic configuration of the adapter.
553  *
554  * hw - Struct containing variables accessed by shared code
555  * Assumes that the controller has previously been reset and is in a
556  * post-reset uninitialized state. Initializes multicast table,
557  * and  Calls routines to setup link
558  * Leaves the transmit and receive units disabled and uninitialized.
559  */
560 int atl1e_init_hw(struct atl1e_hw *hw)
561 {
562 	s32 ret_val = 0;
563 
564 	atl1e_init_pcie(hw);
565 
566 	/* Zero out the Multicast HASH table */
567 	/* clear the old settings from the multicast hash table */
568 	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
569 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
570 
571 	ret_val = atl1e_phy_init(hw);
572 
573 	return ret_val;
574 }
575 
576 /*
577  * Detects the current speed and duplex settings of the hardware.
578  *
579  * hw - Struct containing variables accessed by shared code
580  * speed - Speed of the connection
581  * duplex - Duplex setting of the connection
582  */
583 int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
584 {
585 	int err;
586 	u16 phy_data;
587 
588 	/* Read   PHY Specific Status Register (17) */
589 	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
590 	if (err)
591 		return err;
592 
593 	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
594 		return AT_ERR_PHY_RES;
595 
596 	switch (phy_data & MII_AT001_PSSR_SPEED) {
597 	case MII_AT001_PSSR_1000MBS:
598 		*speed = SPEED_1000;
599 		break;
600 	case MII_AT001_PSSR_100MBS:
601 		*speed = SPEED_100;
602 		break;
603 	case MII_AT001_PSSR_10MBS:
604 		*speed = SPEED_10;
605 		break;
606 	default:
607 		return AT_ERR_PHY_SPEED;
608 	}
609 
610 	if (phy_data & MII_AT001_PSSR_DPLX)
611 		*duplex = FULL_DUPLEX;
612 	else
613 		*duplex = HALF_DUPLEX;
614 
615 	return 0;
616 }
617 
618 int atl1e_restart_autoneg(struct atl1e_hw *hw)
619 {
620 	int err = 0;
621 
622 	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
623 	if (err)
624 		return err;
625 
626 	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
627 		err = atl1e_write_phy_reg(hw, MII_CTRL1000,
628 				       hw->mii_1000t_ctrl_reg);
629 		if (err)
630 			return err;
631 	}
632 
633 	err = atl1e_write_phy_reg(hw, MII_BMCR,
634 			BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
635 	return err;
636 }
637 
638