1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34 
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39 
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 	int i;
43 
44 	/* Add NAPI objects */
45 	for_each_rx_queue_cnic(bp, i) {
46 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 			       bnx2x_poll, NAPI_POLL_WEIGHT);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 			       bnx2x_poll, NAPI_POLL_WEIGHT);
59 	}
60 }
61 
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65 
66 	/* Reduce memory usage in kdump environment by using only one queue */
67 	if (is_kdump_kernel())
68 		nq = 1;
69 
70 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 	return nq;
72 }
73 
74 /**
75  * bnx2x_move_fp - move content of the fastpath structure.
76  *
77  * @bp:		driver handle
78  * @from:	source FP index
79  * @to:		destination FP index
80  *
81  * Makes sure the contents of the bp->fp[to].napi is kept
82  * intact. This is done by first copying the napi struct from
83  * the target to the source, and then mem copying the entire
84  * source onto the target. Update txdata pointers and related
85  * content.
86  */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 	int old_max_eth_txqs, new_max_eth_txqs;
96 	int old_txdata_index = 0, new_txdata_index = 0;
97 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98 
99 	/* Copy the NAPI object as it has been already initialized */
100 	from_fp->napi = to_fp->napi;
101 
102 	/* Move bnx2x_fastpath contents */
103 	memcpy(to_fp, from_fp, sizeof(*to_fp));
104 	to_fp->index = to;
105 
106 	/* Retain the tpa_info of the original `to' version as we don't want
107 	 * 2 FPs to contain the same tpa_info pointer.
108 	 */
109 	to_fp->tpa_info = old_tpa_info;
110 
111 	/* move sp_objs contents as well, as their indices match fp ones */
112 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113 
114 	/* move fp_stats contents as well, as their indices match fp ones */
115 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116 
117 	/* Update txdata pointers in fp and move txdata content accordingly:
118 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 	 * decremented by max_cos x delta.
120 	 */
121 
122 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 				(bp)->max_cos;
125 	if (from == FCOE_IDX(bp)) {
126 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 	}
129 
130 	memcpy(&bp->bnx2x_txq[new_txdata_index],
131 	       &bp->bnx2x_txq[old_txdata_index],
132 	       sizeof(struct bnx2x_fp_txdata));
133 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135 
136 /**
137  * bnx2x_fill_fw_str - Fill buffer with FW version string.
138  *
139  * @bp:        driver handle
140  * @buf:       character buffer to fill with the fw name
141  * @buf_len:   length of the above buffer
142  *
143  */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 	if (IS_PF(bp)) {
147 		u8 phy_fw_ver[PHY_FW_VER_LEN];
148 
149 		phy_fw_ver[0] = '\0';
150 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 					     phy_fw_ver, PHY_FW_VER_LEN);
152 		strlcpy(buf, bp->fw_ver, buf_len);
153 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 			 "bc %d.%d.%d%s%s",
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	while (sw_cons != hw_cons) {
289 		u16 pkt_cons;
290 
291 		pkt_cons = TX_BD(sw_cons);
292 
293 		DP(NETIF_MSG_TX_DONE,
294 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
295 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
296 
297 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
298 					    &pkts_compl, &bytes_compl);
299 
300 		sw_cons++;
301 	}
302 
303 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
304 
305 	txdata->tx_pkt_cons = sw_cons;
306 	txdata->tx_bd_cons = bd_cons;
307 
308 	/* Need to make the tx_bd_cons update visible to start_xmit()
309 	 * before checking for netif_tx_queue_stopped().  Without the
310 	 * memory barrier, there is a small possibility that
311 	 * start_xmit() will miss it and cause the queue to be stopped
312 	 * forever.
313 	 * On the other hand we need an rmb() here to ensure the proper
314 	 * ordering of bit testing in the following
315 	 * netif_tx_queue_stopped(txq) call.
316 	 */
317 	smp_mb();
318 
319 	if (unlikely(netif_tx_queue_stopped(txq))) {
320 		/* Taking tx_lock() is needed to prevent re-enabling the queue
321 		 * while it's empty. This could have happen if rx_action() gets
322 		 * suspended in bnx2x_tx_int() after the condition before
323 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
324 		 *
325 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
326 		 * sends some packets consuming the whole queue again->
327 		 * stops the queue
328 		 */
329 
330 		__netif_tx_lock(txq, smp_processor_id());
331 
332 		if ((netif_tx_queue_stopped(txq)) &&
333 		    (bp->state == BNX2X_STATE_OPEN) &&
334 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
335 			netif_tx_wake_queue(txq);
336 
337 		__netif_tx_unlock(txq);
338 	}
339 	return 0;
340 }
341 
342 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
343 					     u16 idx)
344 {
345 	u16 last_max = fp->last_max_sge;
346 
347 	if (SUB_S16(idx, last_max) > 0)
348 		fp->last_max_sge = idx;
349 }
350 
351 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
352 					 u16 sge_len,
353 					 struct eth_end_agg_rx_cqe *cqe)
354 {
355 	struct bnx2x *bp = fp->bp;
356 	u16 last_max, last_elem, first_elem;
357 	u16 delta = 0;
358 	u16 i;
359 
360 	if (!sge_len)
361 		return;
362 
363 	/* First mark all used pages */
364 	for (i = 0; i < sge_len; i++)
365 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
366 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
367 
368 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
369 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
370 
371 	/* Here we assume that the last SGE index is the biggest */
372 	prefetch((void *)(fp->sge_mask));
373 	bnx2x_update_last_max_sge(fp,
374 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
375 
376 	last_max = RX_SGE(fp->last_max_sge);
377 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
378 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
379 
380 	/* If ring is not full */
381 	if (last_elem + 1 != first_elem)
382 		last_elem++;
383 
384 	/* Now update the prod */
385 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
386 		if (likely(fp->sge_mask[i]))
387 			break;
388 
389 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
390 		delta += BIT_VEC64_ELEM_SZ;
391 	}
392 
393 	if (delta > 0) {
394 		fp->rx_sge_prod += delta;
395 		/* clear page-end entries */
396 		bnx2x_clear_sge_mask_next_elems(fp);
397 	}
398 
399 	DP(NETIF_MSG_RX_STATUS,
400 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
401 	   fp->last_max_sge, fp->rx_sge_prod);
402 }
403 
404 /* Get Toeplitz hash value in the skb using the value from the
405  * CQE (calculated by HW).
406  */
407 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
408 			    const struct eth_fast_path_rx_cqe *cqe,
409 			    enum pkt_hash_types *rxhash_type)
410 {
411 	/* Get Toeplitz hash from CQE */
412 	if ((bp->dev->features & NETIF_F_RXHASH) &&
413 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
414 		enum eth_rss_hash_type htype;
415 
416 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
417 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
418 				(htype == TCP_IPV6_HASH_TYPE)) ?
419 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
420 
421 		return le32_to_cpu(cqe->rss_hash_result);
422 	}
423 	*rxhash_type = PKT_HASH_TYPE_NONE;
424 	return 0;
425 }
426 
427 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
428 			    u16 cons, u16 prod,
429 			    struct eth_fast_path_rx_cqe *cqe)
430 {
431 	struct bnx2x *bp = fp->bp;
432 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
433 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
434 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
435 	dma_addr_t mapping;
436 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
437 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
438 
439 	/* print error if current state != stop */
440 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
441 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
442 
443 	/* Try to map an empty data buffer from the aggregation info  */
444 	mapping = dma_map_single(&bp->pdev->dev,
445 				 first_buf->data + NET_SKB_PAD,
446 				 fp->rx_buf_size, DMA_FROM_DEVICE);
447 	/*
448 	 *  ...if it fails - move the skb from the consumer to the producer
449 	 *  and set the current aggregation state as ERROR to drop it
450 	 *  when TPA_STOP arrives.
451 	 */
452 
453 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
454 		/* Move the BD from the consumer to the producer */
455 		bnx2x_reuse_rx_data(fp, cons, prod);
456 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
457 		return;
458 	}
459 
460 	/* move empty data from pool to prod */
461 	prod_rx_buf->data = first_buf->data;
462 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
463 	/* point prod_bd to new data */
464 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
465 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
466 
467 	/* move partial skb from cons to pool (don't unmap yet) */
468 	*first_buf = *cons_rx_buf;
469 
470 	/* mark bin state as START */
471 	tpa_info->parsing_flags =
472 		le16_to_cpu(cqe->pars_flags.flags);
473 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
474 	tpa_info->tpa_state = BNX2X_TPA_START;
475 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
476 	tpa_info->placement_offset = cqe->placement_offset;
477 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
478 	if (fp->mode == TPA_MODE_GRO) {
479 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
480 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
481 		tpa_info->gro_size = gro_size;
482 	}
483 
484 #ifdef BNX2X_STOP_ON_ERROR
485 	fp->tpa_queue_used |= (1 << queue);
486 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
487 	   fp->tpa_queue_used);
488 #endif
489 }
490 
491 /* Timestamp option length allowed for TPA aggregation:
492  *
493  *		nop nop kind length echo val
494  */
495 #define TPA_TSTAMP_OPT_LEN	12
496 /**
497  * bnx2x_set_gro_params - compute GRO values
498  *
499  * @skb:		packet skb
500  * @parsing_flags:	parsing flags from the START CQE
501  * @len_on_bd:		total length of the first packet for the
502  *			aggregation.
503  * @pkt_len:		length of all segments
504  *
505  * Approximate value of the MSS for this aggregation calculated using
506  * the first packet of it.
507  * Compute number of aggregated segments, and gso_type.
508  */
509 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
510 				 u16 len_on_bd, unsigned int pkt_len,
511 				 u16 num_of_coalesced_segs)
512 {
513 	/* TPA aggregation won't have either IP options or TCP options
514 	 * other than timestamp or IPv6 extension headers.
515 	 */
516 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
517 
518 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
519 	    PRS_FLAG_OVERETH_IPV6) {
520 		hdrs_len += sizeof(struct ipv6hdr);
521 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
522 	} else {
523 		hdrs_len += sizeof(struct iphdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
525 	}
526 
527 	/* Check if there was a TCP timestamp, if there is it's will
528 	 * always be 12 bytes length: nop nop kind length echo val.
529 	 *
530 	 * Otherwise FW would close the aggregation.
531 	 */
532 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
533 		hdrs_len += TPA_TSTAMP_OPT_LEN;
534 
535 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
536 
537 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
538 	 * to skb_shinfo(skb)->gso_segs
539 	 */
540 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
541 }
542 
543 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
544 			      u16 index, gfp_t gfp_mask)
545 {
546 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
547 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
548 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
549 	dma_addr_t mapping;
550 
551 	if (!pool->page) {
552 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
553 		if (unlikely(!pool->page))
554 			return -ENOMEM;
555 
556 		pool->offset = 0;
557 	}
558 
559 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
560 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
561 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
562 		BNX2X_ERR("Can't map sge\n");
563 		return -ENOMEM;
564 	}
565 
566 	sw_buf->page = pool->page;
567 	sw_buf->offset = pool->offset;
568 
569 	dma_unmap_addr_set(sw_buf, mapping, mapping);
570 
571 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
572 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
573 
574 	pool->offset += SGE_PAGE_SIZE;
575 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
576 		get_page(pool->page);
577 	else
578 		pool->page = NULL;
579 	return 0;
580 }
581 
582 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
583 			       struct bnx2x_agg_info *tpa_info,
584 			       u16 pages,
585 			       struct sk_buff *skb,
586 			       struct eth_end_agg_rx_cqe *cqe,
587 			       u16 cqe_idx)
588 {
589 	struct sw_rx_page *rx_pg, old_rx_pg;
590 	u32 i, frag_len, frag_size;
591 	int err, j, frag_id = 0;
592 	u16 len_on_bd = tpa_info->len_on_bd;
593 	u16 full_page = 0, gro_size = 0;
594 
595 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
596 
597 	if (fp->mode == TPA_MODE_GRO) {
598 		gro_size = tpa_info->gro_size;
599 		full_page = tpa_info->full_page;
600 	}
601 
602 	/* This is needed in order to enable forwarding support */
603 	if (frag_size)
604 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
605 				     le16_to_cpu(cqe->pkt_len),
606 				     le16_to_cpu(cqe->num_of_coalesced_segs));
607 
608 #ifdef BNX2X_STOP_ON_ERROR
609 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
610 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
611 			  pages, cqe_idx);
612 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
613 		bnx2x_panic();
614 		return -EINVAL;
615 	}
616 #endif
617 
618 	/* Run through the SGL and compose the fragmented skb */
619 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
620 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
621 
622 		/* FW gives the indices of the SGE as if the ring is an array
623 		   (meaning that "next" element will consume 2 indices) */
624 		if (fp->mode == TPA_MODE_GRO)
625 			frag_len = min_t(u32, frag_size, (u32)full_page);
626 		else /* LRO */
627 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
628 
629 		rx_pg = &fp->rx_page_ring[sge_idx];
630 		old_rx_pg = *rx_pg;
631 
632 		/* If we fail to allocate a substitute page, we simply stop
633 		   where we are and drop the whole packet */
634 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
635 		if (unlikely(err)) {
636 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
637 			return err;
638 		}
639 
640 		dma_unmap_page(&bp->pdev->dev,
641 			       dma_unmap_addr(&old_rx_pg, mapping),
642 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
643 		/* Add one frag and update the appropriate fields in the skb */
644 		if (fp->mode == TPA_MODE_LRO)
645 			skb_fill_page_desc(skb, j, old_rx_pg.page,
646 					   old_rx_pg.offset, frag_len);
647 		else { /* GRO */
648 			int rem;
649 			int offset = 0;
650 			for (rem = frag_len; rem > 0; rem -= gro_size) {
651 				int len = rem > gro_size ? gro_size : rem;
652 				skb_fill_page_desc(skb, frag_id++,
653 						   old_rx_pg.page,
654 						   old_rx_pg.offset + offset,
655 						   len);
656 				if (offset)
657 					get_page(old_rx_pg.page);
658 				offset += len;
659 			}
660 		}
661 
662 		skb->data_len += frag_len;
663 		skb->truesize += SGE_PAGES;
664 		skb->len += frag_len;
665 
666 		frag_size -= frag_len;
667 	}
668 
669 	return 0;
670 }
671 
672 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
673 {
674 	if (fp->rx_frag_size)
675 		skb_free_frag(data);
676 	else
677 		kfree(data);
678 }
679 
680 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
681 {
682 	if (fp->rx_frag_size) {
683 		/* GFP_KERNEL allocations are used only during initialization */
684 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
685 			return (void *)__get_free_page(gfp_mask);
686 
687 		return netdev_alloc_frag(fp->rx_frag_size);
688 	}
689 
690 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
691 }
692 
693 #ifdef CONFIG_INET
694 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
695 {
696 	const struct iphdr *iph = ip_hdr(skb);
697 	struct tcphdr *th;
698 
699 	skb_set_transport_header(skb, sizeof(struct iphdr));
700 	th = tcp_hdr(skb);
701 
702 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
703 				  iph->saddr, iph->daddr, 0);
704 }
705 
706 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
707 {
708 	struct ipv6hdr *iph = ipv6_hdr(skb);
709 	struct tcphdr *th;
710 
711 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
712 	th = tcp_hdr(skb);
713 
714 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
715 				  &iph->saddr, &iph->daddr, 0);
716 }
717 
718 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
719 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
720 {
721 	skb_reset_network_header(skb);
722 	gro_func(bp, skb);
723 	tcp_gro_complete(skb);
724 }
725 #endif
726 
727 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
728 			       struct sk_buff *skb)
729 {
730 #ifdef CONFIG_INET
731 	if (skb_shinfo(skb)->gso_size) {
732 		switch (be16_to_cpu(skb->protocol)) {
733 		case ETH_P_IP:
734 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
735 			break;
736 		case ETH_P_IPV6:
737 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
738 			break;
739 		default:
740 			netdev_WARN_ONCE(bp->dev,
741 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
742 					 be16_to_cpu(skb->protocol));
743 		}
744 	}
745 #endif
746 	skb_record_rx_queue(skb, fp->rx_queue);
747 	napi_gro_receive(&fp->napi, skb);
748 }
749 
750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
751 			   struct bnx2x_agg_info *tpa_info,
752 			   u16 pages,
753 			   struct eth_end_agg_rx_cqe *cqe,
754 			   u16 cqe_idx)
755 {
756 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
757 	u8 pad = tpa_info->placement_offset;
758 	u16 len = tpa_info->len_on_bd;
759 	struct sk_buff *skb = NULL;
760 	u8 *new_data, *data = rx_buf->data;
761 	u8 old_tpa_state = tpa_info->tpa_state;
762 
763 	tpa_info->tpa_state = BNX2X_TPA_STOP;
764 
765 	/* If we there was an error during the handling of the TPA_START -
766 	 * drop this aggregation.
767 	 */
768 	if (old_tpa_state == BNX2X_TPA_ERROR)
769 		goto drop;
770 
771 	/* Try to allocate the new data */
772 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
773 	/* Unmap skb in the pool anyway, as we are going to change
774 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
775 	   fails. */
776 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
777 			 fp->rx_buf_size, DMA_FROM_DEVICE);
778 	if (likely(new_data))
779 		skb = build_skb(data, fp->rx_frag_size);
780 
781 	if (likely(skb)) {
782 #ifdef BNX2X_STOP_ON_ERROR
783 		if (pad + len > fp->rx_buf_size) {
784 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
785 				  pad, len, fp->rx_buf_size);
786 			bnx2x_panic();
787 			return;
788 		}
789 #endif
790 
791 		skb_reserve(skb, pad + NET_SKB_PAD);
792 		skb_put(skb, len);
793 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
794 
795 		skb->protocol = eth_type_trans(skb, bp->dev);
796 		skb->ip_summed = CHECKSUM_UNNECESSARY;
797 
798 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
799 					 skb, cqe, cqe_idx)) {
800 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
801 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
802 			bnx2x_gro_receive(bp, fp, skb);
803 		} else {
804 			DP(NETIF_MSG_RX_STATUS,
805 			   "Failed to allocate new pages - dropping packet!\n");
806 			dev_kfree_skb_any(skb);
807 		}
808 
809 		/* put new data in bin */
810 		rx_buf->data = new_data;
811 
812 		return;
813 	}
814 	if (new_data)
815 		bnx2x_frag_free(fp, new_data);
816 drop:
817 	/* drop the packet and keep the buffer in the bin */
818 	DP(NETIF_MSG_RX_STATUS,
819 	   "Failed to allocate or map a new skb - dropping packet!\n");
820 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
821 }
822 
823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
824 			       u16 index, gfp_t gfp_mask)
825 {
826 	u8 *data;
827 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
828 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
829 	dma_addr_t mapping;
830 
831 	data = bnx2x_frag_alloc(fp, gfp_mask);
832 	if (unlikely(data == NULL))
833 		return -ENOMEM;
834 
835 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
836 				 fp->rx_buf_size,
837 				 DMA_FROM_DEVICE);
838 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
839 		bnx2x_frag_free(fp, data);
840 		BNX2X_ERR("Can't map rx data\n");
841 		return -ENOMEM;
842 	}
843 
844 	rx_buf->data = data;
845 	dma_unmap_addr_set(rx_buf, mapping, mapping);
846 
847 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
848 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
849 
850 	return 0;
851 }
852 
853 static
854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
855 				 struct bnx2x_fastpath *fp,
856 				 struct bnx2x_eth_q_stats *qstats)
857 {
858 	/* Do nothing if no L4 csum validation was done.
859 	 * We do not check whether IP csum was validated. For IPv4 we assume
860 	 * that if the card got as far as validating the L4 csum, it also
861 	 * validated the IP csum. IPv6 has no IP csum.
862 	 */
863 	if (cqe->fast_path_cqe.status_flags &
864 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
865 		return;
866 
867 	/* If L4 validation was done, check if an error was found. */
868 
869 	if (cqe->fast_path_cqe.type_error_flags &
870 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
871 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
872 		qstats->hw_csum_err++;
873 	else
874 		skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876 
877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
878 {
879 	struct bnx2x *bp = fp->bp;
880 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
881 	u16 sw_comp_cons, sw_comp_prod;
882 	int rx_pkt = 0;
883 	union eth_rx_cqe *cqe;
884 	struct eth_fast_path_rx_cqe *cqe_fp;
885 
886 #ifdef BNX2X_STOP_ON_ERROR
887 	if (unlikely(bp->panic))
888 		return 0;
889 #endif
890 	if (budget <= 0)
891 		return rx_pkt;
892 
893 	bd_cons = fp->rx_bd_cons;
894 	bd_prod = fp->rx_bd_prod;
895 	bd_prod_fw = bd_prod;
896 	sw_comp_cons = fp->rx_comp_cons;
897 	sw_comp_prod = fp->rx_comp_prod;
898 
899 	comp_ring_cons = RCQ_BD(sw_comp_cons);
900 	cqe = &fp->rx_comp_ring[comp_ring_cons];
901 	cqe_fp = &cqe->fast_path_cqe;
902 
903 	DP(NETIF_MSG_RX_STATUS,
904 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
905 
906 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
907 		struct sw_rx_bd *rx_buf = NULL;
908 		struct sk_buff *skb;
909 		u8 cqe_fp_flags;
910 		enum eth_rx_cqe_type cqe_fp_type;
911 		u16 len, pad, queue;
912 		u8 *data;
913 		u32 rxhash;
914 		enum pkt_hash_types rxhash_type;
915 
916 #ifdef BNX2X_STOP_ON_ERROR
917 		if (unlikely(bp->panic))
918 			return 0;
919 #endif
920 
921 		bd_prod = RX_BD(bd_prod);
922 		bd_cons = RX_BD(bd_cons);
923 
924 		/* A rmb() is required to ensure that the CQE is not read
925 		 * before it is written by the adapter DMA.  PCI ordering
926 		 * rules will make sure the other fields are written before
927 		 * the marker at the end of struct eth_fast_path_rx_cqe
928 		 * but without rmb() a weakly ordered processor can process
929 		 * stale data.  Without the barrier TPA state-machine might
930 		 * enter inconsistent state and kernel stack might be
931 		 * provided with incorrect packet description - these lead
932 		 * to various kernel crashed.
933 		 */
934 		rmb();
935 
936 		cqe_fp_flags = cqe_fp->type_error_flags;
937 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
938 
939 		DP(NETIF_MSG_RX_STATUS,
940 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
941 		   CQE_TYPE(cqe_fp_flags),
942 		   cqe_fp_flags, cqe_fp->status_flags,
943 		   le32_to_cpu(cqe_fp->rss_hash_result),
944 		   le16_to_cpu(cqe_fp->vlan_tag),
945 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
946 
947 		/* is this a slowpath msg? */
948 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
949 			bnx2x_sp_event(fp, cqe);
950 			goto next_cqe;
951 		}
952 
953 		rx_buf = &fp->rx_buf_ring[bd_cons];
954 		data = rx_buf->data;
955 
956 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
957 			struct bnx2x_agg_info *tpa_info;
958 			u16 frag_size, pages;
959 #ifdef BNX2X_STOP_ON_ERROR
960 			/* sanity check */
961 			if (fp->mode == TPA_MODE_DISABLED &&
962 			    (CQE_TYPE_START(cqe_fp_type) ||
963 			     CQE_TYPE_STOP(cqe_fp_type)))
964 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
965 					  CQE_TYPE(cqe_fp_type));
966 #endif
967 
968 			if (CQE_TYPE_START(cqe_fp_type)) {
969 				u16 queue = cqe_fp->queue_index;
970 				DP(NETIF_MSG_RX_STATUS,
971 				   "calling tpa_start on queue %d\n",
972 				   queue);
973 
974 				bnx2x_tpa_start(fp, queue,
975 						bd_cons, bd_prod,
976 						cqe_fp);
977 
978 				goto next_rx;
979 			}
980 			queue = cqe->end_agg_cqe.queue_index;
981 			tpa_info = &fp->tpa_info[queue];
982 			DP(NETIF_MSG_RX_STATUS,
983 			   "calling tpa_stop on queue %d\n",
984 			   queue);
985 
986 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
987 				    tpa_info->len_on_bd;
988 
989 			if (fp->mode == TPA_MODE_GRO)
990 				pages = (frag_size + tpa_info->full_page - 1) /
991 					 tpa_info->full_page;
992 			else
993 				pages = SGE_PAGE_ALIGN(frag_size) >>
994 					SGE_PAGE_SHIFT;
995 
996 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
997 				       &cqe->end_agg_cqe, comp_ring_cons);
998 #ifdef BNX2X_STOP_ON_ERROR
999 			if (bp->panic)
1000 				return 0;
1001 #endif
1002 
1003 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1004 			goto next_cqe;
1005 		}
1006 		/* non TPA */
1007 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1008 		pad = cqe_fp->placement_offset;
1009 		dma_sync_single_for_cpu(&bp->pdev->dev,
1010 					dma_unmap_addr(rx_buf, mapping),
1011 					pad + RX_COPY_THRESH,
1012 					DMA_FROM_DEVICE);
1013 		pad += NET_SKB_PAD;
1014 		prefetch(data + pad); /* speedup eth_type_trans() */
1015 		/* is this an error packet? */
1016 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1017 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1018 			   "ERROR  flags %x  rx packet %u\n",
1019 			   cqe_fp_flags, sw_comp_cons);
1020 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1021 			goto reuse_rx;
1022 		}
1023 
1024 		/* Since we don't have a jumbo ring
1025 		 * copy small packets if mtu > 1500
1026 		 */
1027 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1028 		    (len <= RX_COPY_THRESH)) {
1029 			skb = napi_alloc_skb(&fp->napi, len);
1030 			if (skb == NULL) {
1031 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1032 				   "ERROR  packet dropped because of alloc failure\n");
1033 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1034 				goto reuse_rx;
1035 			}
1036 			memcpy(skb->data, data + pad, len);
1037 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1038 		} else {
1039 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1040 						       GFP_ATOMIC) == 0)) {
1041 				dma_unmap_single(&bp->pdev->dev,
1042 						 dma_unmap_addr(rx_buf, mapping),
1043 						 fp->rx_buf_size,
1044 						 DMA_FROM_DEVICE);
1045 				skb = build_skb(data, fp->rx_frag_size);
1046 				if (unlikely(!skb)) {
1047 					bnx2x_frag_free(fp, data);
1048 					bnx2x_fp_qstats(bp, fp)->
1049 							rx_skb_alloc_failed++;
1050 					goto next_rx;
1051 				}
1052 				skb_reserve(skb, pad);
1053 			} else {
1054 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1055 				   "ERROR  packet dropped because of alloc failure\n");
1056 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1057 reuse_rx:
1058 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1059 				goto next_rx;
1060 			}
1061 		}
1062 
1063 		skb_put(skb, len);
1064 		skb->protocol = eth_type_trans(skb, bp->dev);
1065 
1066 		/* Set Toeplitz hash for a none-LRO skb */
1067 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1068 		skb_set_hash(skb, rxhash, rxhash_type);
1069 
1070 		skb_checksum_none_assert(skb);
1071 
1072 		if (bp->dev->features & NETIF_F_RXCSUM)
1073 			bnx2x_csum_validate(skb, cqe, fp,
1074 					    bnx2x_fp_qstats(bp, fp));
1075 
1076 		skb_record_rx_queue(skb, fp->rx_queue);
1077 
1078 		/* Check if this packet was timestamped */
1079 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1080 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1081 			bnx2x_set_rx_ts(bp, skb);
1082 
1083 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1084 		    PARSING_FLAGS_VLAN)
1085 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1086 					       le16_to_cpu(cqe_fp->vlan_tag));
1087 
1088 		napi_gro_receive(&fp->napi, skb);
1089 next_rx:
1090 		rx_buf->data = NULL;
1091 
1092 		bd_cons = NEXT_RX_IDX(bd_cons);
1093 		bd_prod = NEXT_RX_IDX(bd_prod);
1094 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1095 		rx_pkt++;
1096 next_cqe:
1097 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1098 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1099 
1100 		/* mark CQE as free */
1101 		BNX2X_SEED_CQE(cqe_fp);
1102 
1103 		if (rx_pkt == budget)
1104 			break;
1105 
1106 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1107 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1108 		cqe_fp = &cqe->fast_path_cqe;
1109 	} /* while */
1110 
1111 	fp->rx_bd_cons = bd_cons;
1112 	fp->rx_bd_prod = bd_prod_fw;
1113 	fp->rx_comp_cons = sw_comp_cons;
1114 	fp->rx_comp_prod = sw_comp_prod;
1115 
1116 	/* Update producers */
1117 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1118 			     fp->rx_sge_prod);
1119 
1120 	return rx_pkt;
1121 }
1122 
1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1124 {
1125 	struct bnx2x_fastpath *fp = fp_cookie;
1126 	struct bnx2x *bp = fp->bp;
1127 	u8 cos;
1128 
1129 	DP(NETIF_MSG_INTR,
1130 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1131 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1132 
1133 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1134 
1135 #ifdef BNX2X_STOP_ON_ERROR
1136 	if (unlikely(bp->panic))
1137 		return IRQ_HANDLED;
1138 #endif
1139 
1140 	/* Handle Rx and Tx according to MSI-X vector */
1141 	for_each_cos_in_tx_queue(fp, cos)
1142 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1143 
1144 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1145 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1146 
1147 	return IRQ_HANDLED;
1148 }
1149 
1150 /* HW Lock for shared dual port PHYs */
1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1152 {
1153 	mutex_lock(&bp->port.phy_mutex);
1154 
1155 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1156 }
1157 
1158 void bnx2x_release_phy_lock(struct bnx2x *bp)
1159 {
1160 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 
1162 	mutex_unlock(&bp->port.phy_mutex);
1163 }
1164 
1165 /* calculates MF speed according to current linespeed and MF configuration */
1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1167 {
1168 	u16 line_speed = bp->link_vars.line_speed;
1169 	if (IS_MF(bp)) {
1170 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1171 						   bp->mf_config[BP_VN(bp)]);
1172 
1173 		/* Calculate the current MAX line speed limit for the MF
1174 		 * devices
1175 		 */
1176 		if (IS_MF_PERCENT_BW(bp))
1177 			line_speed = (line_speed * maxCfg) / 100;
1178 		else { /* SD mode */
1179 			u16 vn_max_rate = maxCfg * 100;
1180 
1181 			if (vn_max_rate < line_speed)
1182 				line_speed = vn_max_rate;
1183 		}
1184 	}
1185 
1186 	return line_speed;
1187 }
1188 
1189 /**
1190  * bnx2x_fill_report_data - fill link report data to report
1191  *
1192  * @bp:		driver handle
1193  * @data:	link state to update
1194  *
1195  * It uses a none-atomic bit operations because is called under the mutex.
1196  */
1197 static void bnx2x_fill_report_data(struct bnx2x *bp,
1198 				   struct bnx2x_link_report_data *data)
1199 {
1200 	memset(data, 0, sizeof(*data));
1201 
1202 	if (IS_PF(bp)) {
1203 		/* Fill the report data: effective line speed */
1204 		data->line_speed = bnx2x_get_mf_speed(bp);
1205 
1206 		/* Link is down */
1207 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1208 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1209 				  &data->link_report_flags);
1210 
1211 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1212 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 				  &data->link_report_flags);
1214 
1215 		/* Full DUPLEX */
1216 		if (bp->link_vars.duplex == DUPLEX_FULL)
1217 			__set_bit(BNX2X_LINK_REPORT_FD,
1218 				  &data->link_report_flags);
1219 
1220 		/* Rx Flow Control is ON */
1221 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1222 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1223 				  &data->link_report_flags);
1224 
1225 		/* Tx Flow Control is ON */
1226 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1227 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1228 				  &data->link_report_flags);
1229 	} else { /* VF */
1230 		*data = bp->vf_link_vars;
1231 	}
1232 }
1233 
1234 /**
1235  * bnx2x_link_report - report link status to OS.
1236  *
1237  * @bp:		driver handle
1238  *
1239  * Calls the __bnx2x_link_report() under the same locking scheme
1240  * as a link/PHY state managing code to ensure a consistent link
1241  * reporting.
1242  */
1243 
1244 void bnx2x_link_report(struct bnx2x *bp)
1245 {
1246 	bnx2x_acquire_phy_lock(bp);
1247 	__bnx2x_link_report(bp);
1248 	bnx2x_release_phy_lock(bp);
1249 }
1250 
1251 /**
1252  * __bnx2x_link_report - report link status to OS.
1253  *
1254  * @bp:		driver handle
1255  *
1256  * None atomic implementation.
1257  * Should be called under the phy_lock.
1258  */
1259 void __bnx2x_link_report(struct bnx2x *bp)
1260 {
1261 	struct bnx2x_link_report_data cur_data;
1262 
1263 	if (bp->force_link_down) {
1264 		bp->link_vars.link_up = 0;
1265 		return;
1266 	}
1267 
1268 	/* reread mf_cfg */
1269 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1270 		bnx2x_read_mf_cfg(bp);
1271 
1272 	/* Read the current link report info */
1273 	bnx2x_fill_report_data(bp, &cur_data);
1274 
1275 	/* Don't report link down or exactly the same link status twice */
1276 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1277 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1278 		      &bp->last_reported_link.link_report_flags) &&
1279 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1280 		      &cur_data.link_report_flags)))
1281 		return;
1282 
1283 	bp->link_cnt++;
1284 
1285 	/* We are going to report a new link parameters now -
1286 	 * remember the current data for the next time.
1287 	 */
1288 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1289 
1290 	/* propagate status to VFs */
1291 	if (IS_PF(bp))
1292 		bnx2x_iov_link_update(bp);
1293 
1294 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 		     &cur_data.link_report_flags)) {
1296 		netif_carrier_off(bp->dev);
1297 		netdev_err(bp->dev, "NIC Link is Down\n");
1298 		return;
1299 	} else {
1300 		const char *duplex;
1301 		const char *flow;
1302 
1303 		netif_carrier_on(bp->dev);
1304 
1305 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1306 				       &cur_data.link_report_flags))
1307 			duplex = "full";
1308 		else
1309 			duplex = "half";
1310 
1311 		/* Handle the FC at the end so that only these flags would be
1312 		 * possibly set. This way we may easily check if there is no FC
1313 		 * enabled.
1314 		 */
1315 		if (cur_data.link_report_flags) {
1316 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1317 				     &cur_data.link_report_flags)) {
1318 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1319 				     &cur_data.link_report_flags))
1320 					flow = "ON - receive & transmit";
1321 				else
1322 					flow = "ON - receive";
1323 			} else {
1324 				flow = "ON - transmit";
1325 			}
1326 		} else {
1327 			flow = "none";
1328 		}
1329 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1330 			    cur_data.line_speed, duplex, flow);
1331 	}
1332 }
1333 
1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1335 {
1336 	int i;
1337 
1338 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1339 		struct eth_rx_sge *sge;
1340 
1341 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1342 		sge->addr_hi =
1343 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1344 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1345 
1346 		sge->addr_lo =
1347 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1348 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 	}
1350 }
1351 
1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1353 				struct bnx2x_fastpath *fp, int last)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < last; i++) {
1358 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1359 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1360 		u8 *data = first_buf->data;
1361 
1362 		if (data == NULL) {
1363 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1364 			continue;
1365 		}
1366 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1367 			dma_unmap_single(&bp->pdev->dev,
1368 					 dma_unmap_addr(first_buf, mapping),
1369 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1370 		bnx2x_frag_free(fp, data);
1371 		first_buf->data = NULL;
1372 	}
1373 }
1374 
1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1376 {
1377 	int j;
1378 
1379 	for_each_rx_queue_cnic(bp, j) {
1380 		struct bnx2x_fastpath *fp = &bp->fp[j];
1381 
1382 		fp->rx_bd_cons = 0;
1383 
1384 		/* Activate BD ring */
1385 		/* Warning!
1386 		 * this will generate an interrupt (to the TSTORM)
1387 		 * must only be done after chip is initialized
1388 		 */
1389 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1390 				     fp->rx_sge_prod);
1391 	}
1392 }
1393 
1394 void bnx2x_init_rx_rings(struct bnx2x *bp)
1395 {
1396 	int func = BP_FUNC(bp);
1397 	u16 ring_prod;
1398 	int i, j;
1399 
1400 	/* Allocate TPA resources */
1401 	for_each_eth_queue(bp, j) {
1402 		struct bnx2x_fastpath *fp = &bp->fp[j];
1403 
1404 		DP(NETIF_MSG_IFUP,
1405 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1406 
1407 		if (fp->mode != TPA_MODE_DISABLED) {
1408 			/* Fill the per-aggregation pool */
1409 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1410 				struct bnx2x_agg_info *tpa_info =
1411 					&fp->tpa_info[i];
1412 				struct sw_rx_bd *first_buf =
1413 					&tpa_info->first_buf;
1414 
1415 				first_buf->data =
1416 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1417 				if (!first_buf->data) {
1418 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1419 						  j);
1420 					bnx2x_free_tpa_pool(bp, fp, i);
1421 					fp->mode = TPA_MODE_DISABLED;
1422 					break;
1423 				}
1424 				dma_unmap_addr_set(first_buf, mapping, 0);
1425 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1426 			}
1427 
1428 			/* "next page" elements initialization */
1429 			bnx2x_set_next_page_sgl(fp);
1430 
1431 			/* set SGEs bit mask */
1432 			bnx2x_init_sge_ring_bit_mask(fp);
1433 
1434 			/* Allocate SGEs and initialize the ring elements */
1435 			for (i = 0, ring_prod = 0;
1436 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1437 
1438 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1439 						       GFP_KERNEL) < 0) {
1440 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1441 						  i);
1442 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1443 						  j);
1444 					/* Cleanup already allocated elements */
1445 					bnx2x_free_rx_sge_range(bp, fp,
1446 								ring_prod);
1447 					bnx2x_free_tpa_pool(bp, fp,
1448 							    MAX_AGG_QS(bp));
1449 					fp->mode = TPA_MODE_DISABLED;
1450 					ring_prod = 0;
1451 					break;
1452 				}
1453 				ring_prod = NEXT_SGE_IDX(ring_prod);
1454 			}
1455 
1456 			fp->rx_sge_prod = ring_prod;
1457 		}
1458 	}
1459 
1460 	for_each_eth_queue(bp, j) {
1461 		struct bnx2x_fastpath *fp = &bp->fp[j];
1462 
1463 		fp->rx_bd_cons = 0;
1464 
1465 		/* Activate BD ring */
1466 		/* Warning!
1467 		 * this will generate an interrupt (to the TSTORM)
1468 		 * must only be done after chip is initialized
1469 		 */
1470 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1471 				     fp->rx_sge_prod);
1472 
1473 		if (j != 0)
1474 			continue;
1475 
1476 		if (CHIP_IS_E1(bp)) {
1477 			REG_WR(bp, BAR_USTRORM_INTMEM +
1478 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1479 			       U64_LO(fp->rx_comp_mapping));
1480 			REG_WR(bp, BAR_USTRORM_INTMEM +
1481 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1482 			       U64_HI(fp->rx_comp_mapping));
1483 		}
1484 	}
1485 }
1486 
1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1488 {
1489 	u8 cos;
1490 	struct bnx2x *bp = fp->bp;
1491 
1492 	for_each_cos_in_tx_queue(fp, cos) {
1493 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1494 		unsigned pkts_compl = 0, bytes_compl = 0;
1495 
1496 		u16 sw_prod = txdata->tx_pkt_prod;
1497 		u16 sw_cons = txdata->tx_pkt_cons;
1498 
1499 		while (sw_cons != sw_prod) {
1500 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1501 					  &pkts_compl, &bytes_compl);
1502 			sw_cons++;
1503 		}
1504 
1505 		netdev_tx_reset_queue(
1506 			netdev_get_tx_queue(bp->dev,
1507 					    txdata->txq_index));
1508 	}
1509 }
1510 
1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 	int i;
1514 
1515 	for_each_tx_queue_cnic(bp, i) {
1516 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1517 	}
1518 }
1519 
1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1521 {
1522 	int i;
1523 
1524 	for_each_eth_queue(bp, i) {
1525 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1526 	}
1527 }
1528 
1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1530 {
1531 	struct bnx2x *bp = fp->bp;
1532 	int i;
1533 
1534 	/* ring wasn't allocated */
1535 	if (fp->rx_buf_ring == NULL)
1536 		return;
1537 
1538 	for (i = 0; i < NUM_RX_BD; i++) {
1539 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1540 		u8 *data = rx_buf->data;
1541 
1542 		if (data == NULL)
1543 			continue;
1544 		dma_unmap_single(&bp->pdev->dev,
1545 				 dma_unmap_addr(rx_buf, mapping),
1546 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1547 
1548 		rx_buf->data = NULL;
1549 		bnx2x_frag_free(fp, data);
1550 	}
1551 }
1552 
1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1554 {
1555 	int j;
1556 
1557 	for_each_rx_queue_cnic(bp, j) {
1558 		bnx2x_free_rx_bds(&bp->fp[j]);
1559 	}
1560 }
1561 
1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1563 {
1564 	int j;
1565 
1566 	for_each_eth_queue(bp, j) {
1567 		struct bnx2x_fastpath *fp = &bp->fp[j];
1568 
1569 		bnx2x_free_rx_bds(fp);
1570 
1571 		if (fp->mode != TPA_MODE_DISABLED)
1572 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1573 	}
1574 }
1575 
1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1577 {
1578 	bnx2x_free_tx_skbs_cnic(bp);
1579 	bnx2x_free_rx_skbs_cnic(bp);
1580 }
1581 
1582 void bnx2x_free_skbs(struct bnx2x *bp)
1583 {
1584 	bnx2x_free_tx_skbs(bp);
1585 	bnx2x_free_rx_skbs(bp);
1586 }
1587 
1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1589 {
1590 	/* load old values */
1591 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1592 
1593 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1594 		/* leave all but MAX value */
1595 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1596 
1597 		/* set new MAX value */
1598 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1599 				& FUNC_MF_CFG_MAX_BW_MASK;
1600 
1601 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 	}
1603 }
1604 
1605 /**
1606  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1607  *
1608  * @bp:		driver handle
1609  * @nvecs:	number of vectors to be released
1610  */
1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1612 {
1613 	int i, offset = 0;
1614 
1615 	if (nvecs == offset)
1616 		return;
1617 
1618 	/* VFs don't have a default SB */
1619 	if (IS_PF(bp)) {
1620 		free_irq(bp->msix_table[offset].vector, bp->dev);
1621 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1622 		   bp->msix_table[offset].vector);
1623 		offset++;
1624 	}
1625 
1626 	if (CNIC_SUPPORT(bp)) {
1627 		if (nvecs == offset)
1628 			return;
1629 		offset++;
1630 	}
1631 
1632 	for_each_eth_queue(bp, i) {
1633 		if (nvecs == offset)
1634 			return;
1635 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1636 		   i, bp->msix_table[offset].vector);
1637 
1638 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1639 	}
1640 }
1641 
1642 void bnx2x_free_irq(struct bnx2x *bp)
1643 {
1644 	if (bp->flags & USING_MSIX_FLAG &&
1645 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1646 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1647 
1648 		/* vfs don't have a default status block */
1649 		if (IS_PF(bp))
1650 			nvecs++;
1651 
1652 		bnx2x_free_msix_irqs(bp, nvecs);
1653 	} else {
1654 		free_irq(bp->dev->irq, bp->dev);
1655 	}
1656 }
1657 
1658 int bnx2x_enable_msix(struct bnx2x *bp)
1659 {
1660 	int msix_vec = 0, i, rc;
1661 
1662 	/* VFs don't have a default status block */
1663 	if (IS_PF(bp)) {
1664 		bp->msix_table[msix_vec].entry = msix_vec;
1665 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1666 			       bp->msix_table[0].entry);
1667 		msix_vec++;
1668 	}
1669 
1670 	/* Cnic requires an msix vector for itself */
1671 	if (CNIC_SUPPORT(bp)) {
1672 		bp->msix_table[msix_vec].entry = msix_vec;
1673 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1674 			       msix_vec, bp->msix_table[msix_vec].entry);
1675 		msix_vec++;
1676 	}
1677 
1678 	/* We need separate vectors for ETH queues only (not FCoE) */
1679 	for_each_eth_queue(bp, i) {
1680 		bp->msix_table[msix_vec].entry = msix_vec;
1681 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1682 			       msix_vec, msix_vec, i);
1683 		msix_vec++;
1684 	}
1685 
1686 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1687 	   msix_vec);
1688 
1689 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1690 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1691 	/*
1692 	 * reconfigure number of tx/rx queues according to available
1693 	 * MSI-X vectors
1694 	 */
1695 	if (rc == -ENOSPC) {
1696 		/* Get by with single vector */
1697 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1698 		if (rc < 0) {
1699 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1700 				       rc);
1701 			goto no_msix;
1702 		}
1703 
1704 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1705 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1706 
1707 		BNX2X_DEV_INFO("set number of queues to 1\n");
1708 		bp->num_ethernet_queues = 1;
1709 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1710 	} else if (rc < 0) {
1711 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1712 		goto no_msix;
1713 	} else if (rc < msix_vec) {
1714 		/* how less vectors we will have? */
1715 		int diff = msix_vec - rc;
1716 
1717 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1718 
1719 		/*
1720 		 * decrease number of queues by number of unallocated entries
1721 		 */
1722 		bp->num_ethernet_queues -= diff;
1723 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1724 
1725 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1726 			       bp->num_queues);
1727 	}
1728 
1729 	bp->flags |= USING_MSIX_FLAG;
1730 
1731 	return 0;
1732 
1733 no_msix:
1734 	/* fall to INTx if not enough memory */
1735 	if (rc == -ENOMEM)
1736 		bp->flags |= DISABLE_MSI_FLAG;
1737 
1738 	return rc;
1739 }
1740 
1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1742 {
1743 	int i, rc, offset = 0;
1744 
1745 	/* no default status block for vf */
1746 	if (IS_PF(bp)) {
1747 		rc = request_irq(bp->msix_table[offset++].vector,
1748 				 bnx2x_msix_sp_int, 0,
1749 				 bp->dev->name, bp->dev);
1750 		if (rc) {
1751 			BNX2X_ERR("request sp irq failed\n");
1752 			return -EBUSY;
1753 		}
1754 	}
1755 
1756 	if (CNIC_SUPPORT(bp))
1757 		offset++;
1758 
1759 	for_each_eth_queue(bp, i) {
1760 		struct bnx2x_fastpath *fp = &bp->fp[i];
1761 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1762 			 bp->dev->name, i);
1763 
1764 		rc = request_irq(bp->msix_table[offset].vector,
1765 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1766 		if (rc) {
1767 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1768 			      bp->msix_table[offset].vector, rc);
1769 			bnx2x_free_msix_irqs(bp, offset);
1770 			return -EBUSY;
1771 		}
1772 
1773 		offset++;
1774 	}
1775 
1776 	i = BNX2X_NUM_ETH_QUEUES(bp);
1777 	if (IS_PF(bp)) {
1778 		offset = 1 + CNIC_SUPPORT(bp);
1779 		netdev_info(bp->dev,
1780 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1781 			    bp->msix_table[0].vector,
1782 			    0, bp->msix_table[offset].vector,
1783 			    i - 1, bp->msix_table[offset + i - 1].vector);
1784 	} else {
1785 		offset = CNIC_SUPPORT(bp);
1786 		netdev_info(bp->dev,
1787 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1788 			    0, bp->msix_table[offset].vector,
1789 			    i - 1, bp->msix_table[offset + i - 1].vector);
1790 	}
1791 	return 0;
1792 }
1793 
1794 int bnx2x_enable_msi(struct bnx2x *bp)
1795 {
1796 	int rc;
1797 
1798 	rc = pci_enable_msi(bp->pdev);
1799 	if (rc) {
1800 		BNX2X_DEV_INFO("MSI is not attainable\n");
1801 		return -1;
1802 	}
1803 	bp->flags |= USING_MSI_FLAG;
1804 
1805 	return 0;
1806 }
1807 
1808 static int bnx2x_req_irq(struct bnx2x *bp)
1809 {
1810 	unsigned long flags;
1811 	unsigned int irq;
1812 
1813 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1814 		flags = 0;
1815 	else
1816 		flags = IRQF_SHARED;
1817 
1818 	if (bp->flags & USING_MSIX_FLAG)
1819 		irq = bp->msix_table[0].vector;
1820 	else
1821 		irq = bp->pdev->irq;
1822 
1823 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1824 }
1825 
1826 static int bnx2x_setup_irqs(struct bnx2x *bp)
1827 {
1828 	int rc = 0;
1829 	if (bp->flags & USING_MSIX_FLAG &&
1830 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1831 		rc = bnx2x_req_msix_irqs(bp);
1832 		if (rc)
1833 			return rc;
1834 	} else {
1835 		rc = bnx2x_req_irq(bp);
1836 		if (rc) {
1837 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1838 			return rc;
1839 		}
1840 		if (bp->flags & USING_MSI_FLAG) {
1841 			bp->dev->irq = bp->pdev->irq;
1842 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1843 				    bp->dev->irq);
1844 		}
1845 		if (bp->flags & USING_MSIX_FLAG) {
1846 			bp->dev->irq = bp->msix_table[0].vector;
1847 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1848 				    bp->dev->irq);
1849 		}
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1856 {
1857 	int i;
1858 
1859 	for_each_rx_queue_cnic(bp, i) {
1860 		napi_enable(&bnx2x_fp(bp, i, napi));
1861 	}
1862 }
1863 
1864 static void bnx2x_napi_enable(struct bnx2x *bp)
1865 {
1866 	int i;
1867 
1868 	for_each_eth_queue(bp, i) {
1869 		napi_enable(&bnx2x_fp(bp, i, napi));
1870 	}
1871 }
1872 
1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1874 {
1875 	int i;
1876 
1877 	for_each_rx_queue_cnic(bp, i) {
1878 		napi_disable(&bnx2x_fp(bp, i, napi));
1879 	}
1880 }
1881 
1882 static void bnx2x_napi_disable(struct bnx2x *bp)
1883 {
1884 	int i;
1885 
1886 	for_each_eth_queue(bp, i) {
1887 		napi_disable(&bnx2x_fp(bp, i, napi));
1888 	}
1889 }
1890 
1891 void bnx2x_netif_start(struct bnx2x *bp)
1892 {
1893 	if (netif_running(bp->dev)) {
1894 		bnx2x_napi_enable(bp);
1895 		if (CNIC_LOADED(bp))
1896 			bnx2x_napi_enable_cnic(bp);
1897 		bnx2x_int_enable(bp);
1898 		if (bp->state == BNX2X_STATE_OPEN)
1899 			netif_tx_wake_all_queues(bp->dev);
1900 	}
1901 }
1902 
1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1904 {
1905 	bnx2x_int_disable_sync(bp, disable_hw);
1906 	bnx2x_napi_disable(bp);
1907 	if (CNIC_LOADED(bp))
1908 		bnx2x_napi_disable_cnic(bp);
1909 }
1910 
1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1912 		       struct net_device *sb_dev)
1913 {
1914 	struct bnx2x *bp = netdev_priv(dev);
1915 
1916 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1917 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1918 		u16 ether_type = ntohs(hdr->h_proto);
1919 
1920 		/* Skip VLAN tag if present */
1921 		if (ether_type == ETH_P_8021Q) {
1922 			struct vlan_ethhdr *vhdr =
1923 				(struct vlan_ethhdr *)skb->data;
1924 
1925 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1926 		}
1927 
1928 		/* If ethertype is FCoE or FIP - use FCoE ring */
1929 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1930 			return bnx2x_fcoe_tx(bp, txq_index);
1931 	}
1932 
1933 	/* select a non-FCoE queue */
1934 	return netdev_pick_tx(dev, skb, NULL) %
1935 	       (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1936 }
1937 
1938 void bnx2x_set_num_queues(struct bnx2x *bp)
1939 {
1940 	/* RSS queues */
1941 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1942 
1943 	/* override in STORAGE SD modes */
1944 	if (IS_MF_STORAGE_ONLY(bp))
1945 		bp->num_ethernet_queues = 1;
1946 
1947 	/* Add special queues */
1948 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1949 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1950 
1951 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1952 }
1953 
1954 /**
1955  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1956  *
1957  * @bp:		Driver handle
1958  *
1959  * We currently support for at most 16 Tx queues for each CoS thus we will
1960  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1961  * bp->max_cos.
1962  *
1963  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1964  * index after all ETH L2 indices.
1965  *
1966  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1967  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1968  * 16..31,...) with indices that are not coupled with any real Tx queue.
1969  *
1970  * The proper configuration of skb->queue_mapping is handled by
1971  * bnx2x_select_queue() and __skb_tx_hash().
1972  *
1973  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1974  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1975  */
1976 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1977 {
1978 	int rc, tx, rx;
1979 
1980 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1981 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1982 
1983 /* account for fcoe queue */
1984 	if (include_cnic && !NO_FCOE(bp)) {
1985 		rx++;
1986 		tx++;
1987 	}
1988 
1989 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1990 	if (rc) {
1991 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1992 		return rc;
1993 	}
1994 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1995 	if (rc) {
1996 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1997 		return rc;
1998 	}
1999 
2000 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2001 			  tx, rx);
2002 
2003 	return rc;
2004 }
2005 
2006 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2007 {
2008 	int i;
2009 
2010 	for_each_queue(bp, i) {
2011 		struct bnx2x_fastpath *fp = &bp->fp[i];
2012 		u32 mtu;
2013 
2014 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2015 		if (IS_FCOE_IDX(i))
2016 			/*
2017 			 * Although there are no IP frames expected to arrive to
2018 			 * this ring we still want to add an
2019 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2020 			 * overrun attack.
2021 			 */
2022 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2023 		else
2024 			mtu = bp->dev->mtu;
2025 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2026 				  IP_HEADER_ALIGNMENT_PADDING +
2027 				  ETH_OVERHEAD +
2028 				  mtu +
2029 				  BNX2X_FW_RX_ALIGN_END;
2030 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2031 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2032 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2033 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2034 		else
2035 			fp->rx_frag_size = 0;
2036 	}
2037 }
2038 
2039 static int bnx2x_init_rss(struct bnx2x *bp)
2040 {
2041 	int i;
2042 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2043 
2044 	/* Prepare the initial contents for the indirection table if RSS is
2045 	 * enabled
2046 	 */
2047 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2048 		bp->rss_conf_obj.ind_table[i] =
2049 			bp->fp->cl_id +
2050 			ethtool_rxfh_indir_default(i, num_eth_queues);
2051 
2052 	/*
2053 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2054 	 * per-port, so if explicit configuration is needed , do it only
2055 	 * for a PMF.
2056 	 *
2057 	 * For 57712 and newer on the other hand it's a per-function
2058 	 * configuration.
2059 	 */
2060 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2061 }
2062 
2063 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2064 	      bool config_hash, bool enable)
2065 {
2066 	struct bnx2x_config_rss_params params = {NULL};
2067 
2068 	/* Although RSS is meaningless when there is a single HW queue we
2069 	 * still need it enabled in order to have HW Rx hash generated.
2070 	 *
2071 	 * if (!is_eth_multi(bp))
2072 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2073 	 */
2074 
2075 	params.rss_obj = rss_obj;
2076 
2077 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2078 
2079 	if (enable) {
2080 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2081 
2082 		/* RSS configuration */
2083 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2084 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2085 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2086 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2087 		if (rss_obj->udp_rss_v4)
2088 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2089 		if (rss_obj->udp_rss_v6)
2090 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2091 
2092 		if (!CHIP_IS_E1x(bp)) {
2093 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2094 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2095 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2096 
2097 			/* valid only for TUNN_MODE_GRE tunnel mode */
2098 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2099 		}
2100 	} else {
2101 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2102 	}
2103 
2104 	/* Hash bits */
2105 	params.rss_result_mask = MULTI_MASK;
2106 
2107 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2108 
2109 	if (config_hash) {
2110 		/* RSS keys */
2111 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2112 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2113 	}
2114 
2115 	if (IS_PF(bp))
2116 		return bnx2x_config_rss(bp, &params);
2117 	else
2118 		return bnx2x_vfpf_config_rss(bp, &params);
2119 }
2120 
2121 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2122 {
2123 	struct bnx2x_func_state_params func_params = {NULL};
2124 
2125 	/* Prepare parameters for function state transitions */
2126 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2127 
2128 	func_params.f_obj = &bp->func_obj;
2129 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2130 
2131 	func_params.params.hw_init.load_phase = load_code;
2132 
2133 	return bnx2x_func_state_change(bp, &func_params);
2134 }
2135 
2136 /*
2137  * Cleans the object that have internal lists without sending
2138  * ramrods. Should be run when interrupts are disabled.
2139  */
2140 void bnx2x_squeeze_objects(struct bnx2x *bp)
2141 {
2142 	int rc;
2143 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2144 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2145 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2146 
2147 	/***************** Cleanup MACs' object first *************************/
2148 
2149 	/* Wait for completion of requested */
2150 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2151 	/* Perform a dry cleanup */
2152 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2153 
2154 	/* Clean ETH primary MAC */
2155 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2156 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2157 				 &ramrod_flags);
2158 	if (rc != 0)
2159 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2160 
2161 	/* Cleanup UC list */
2162 	vlan_mac_flags = 0;
2163 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2164 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2165 				 &ramrod_flags);
2166 	if (rc != 0)
2167 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2168 
2169 	/***************** Now clean mcast object *****************************/
2170 	rparam.mcast_obj = &bp->mcast_obj;
2171 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2172 
2173 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2174 	 * we take a lock surrounding both the initial send and the CONTs,
2175 	 * as we don't want a true completion to disrupt us in the middle.
2176 	 */
2177 	netif_addr_lock_bh(bp->dev);
2178 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2179 	if (rc < 0)
2180 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2181 			  rc);
2182 
2183 	/* ...and wait until all pending commands are cleared */
2184 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2185 	while (rc != 0) {
2186 		if (rc < 0) {
2187 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2188 				  rc);
2189 			netif_addr_unlock_bh(bp->dev);
2190 			return;
2191 		}
2192 
2193 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2194 	}
2195 	netif_addr_unlock_bh(bp->dev);
2196 }
2197 
2198 #ifndef BNX2X_STOP_ON_ERROR
2199 #define LOAD_ERROR_EXIT(bp, label) \
2200 	do { \
2201 		(bp)->state = BNX2X_STATE_ERROR; \
2202 		goto label; \
2203 	} while (0)
2204 
2205 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2206 	do { \
2207 		bp->cnic_loaded = false; \
2208 		goto label; \
2209 	} while (0)
2210 #else /*BNX2X_STOP_ON_ERROR*/
2211 #define LOAD_ERROR_EXIT(bp, label) \
2212 	do { \
2213 		(bp)->state = BNX2X_STATE_ERROR; \
2214 		(bp)->panic = 1; \
2215 		return -EBUSY; \
2216 	} while (0)
2217 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2218 	do { \
2219 		bp->cnic_loaded = false; \
2220 		(bp)->panic = 1; \
2221 		return -EBUSY; \
2222 	} while (0)
2223 #endif /*BNX2X_STOP_ON_ERROR*/
2224 
2225 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2226 {
2227 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2228 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2229 	return;
2230 }
2231 
2232 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2233 {
2234 	int num_groups, vf_headroom = 0;
2235 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2236 
2237 	/* number of queues for statistics is number of eth queues + FCoE */
2238 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2239 
2240 	/* Total number of FW statistics requests =
2241 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2242 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2243 	 * for fcoe l2 queue if applicable)
2244 	 */
2245 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2246 
2247 	/* vf stats appear in the request list, but their data is allocated by
2248 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2249 	 * it is used to determine where to place the vf stats queries in the
2250 	 * request struct
2251 	 */
2252 	if (IS_SRIOV(bp))
2253 		vf_headroom = bnx2x_vf_headroom(bp);
2254 
2255 	/* Request is built from stats_query_header and an array of
2256 	 * stats_query_cmd_group each of which contains
2257 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2258 	 * configured in the stats_query_header.
2259 	 */
2260 	num_groups =
2261 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2262 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2263 		 1 : 0));
2264 
2265 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2266 	   bp->fw_stats_num, vf_headroom, num_groups);
2267 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2268 		num_groups * sizeof(struct stats_query_cmd_group);
2269 
2270 	/* Data for statistics requests + stats_counter
2271 	 * stats_counter holds per-STORM counters that are incremented
2272 	 * when STORM has finished with the current request.
2273 	 * memory for FCoE offloaded statistics are counted anyway,
2274 	 * even if they will not be sent.
2275 	 * VF stats are not accounted for here as the data of VF stats is stored
2276 	 * in memory allocated by the VF, not here.
2277 	 */
2278 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2279 		sizeof(struct per_pf_stats) +
2280 		sizeof(struct fcoe_statistics_params) +
2281 		sizeof(struct per_queue_stats) * num_queue_stats +
2282 		sizeof(struct stats_counter);
2283 
2284 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2285 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2286 	if (!bp->fw_stats)
2287 		goto alloc_mem_err;
2288 
2289 	/* Set shortcuts */
2290 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2291 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2292 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2293 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2294 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2295 		bp->fw_stats_req_sz;
2296 
2297 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2298 	   U64_HI(bp->fw_stats_req_mapping),
2299 	   U64_LO(bp->fw_stats_req_mapping));
2300 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2301 	   U64_HI(bp->fw_stats_data_mapping),
2302 	   U64_LO(bp->fw_stats_data_mapping));
2303 	return 0;
2304 
2305 alloc_mem_err:
2306 	bnx2x_free_fw_stats_mem(bp);
2307 	BNX2X_ERR("Can't allocate FW stats memory\n");
2308 	return -ENOMEM;
2309 }
2310 
2311 /* send load request to mcp and analyze response */
2312 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2313 {
2314 	u32 param;
2315 
2316 	/* init fw_seq */
2317 	bp->fw_seq =
2318 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2319 		 DRV_MSG_SEQ_NUMBER_MASK);
2320 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2321 
2322 	/* Get current FW pulse sequence */
2323 	bp->fw_drv_pulse_wr_seq =
2324 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2325 		 DRV_PULSE_SEQ_MASK);
2326 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2327 
2328 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2329 
2330 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2331 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2332 
2333 	/* load request */
2334 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2335 
2336 	/* if mcp fails to respond we must abort */
2337 	if (!(*load_code)) {
2338 		BNX2X_ERR("MCP response failure, aborting\n");
2339 		return -EBUSY;
2340 	}
2341 
2342 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2343 	 * must abort
2344 	 */
2345 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2346 		BNX2X_ERR("MCP refused load request, aborting\n");
2347 		return -EBUSY;
2348 	}
2349 	return 0;
2350 }
2351 
2352 /* check whether another PF has already loaded FW to chip. In
2353  * virtualized environments a pf from another VM may have already
2354  * initialized the device including loading FW
2355  */
2356 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2357 {
2358 	/* is another pf loaded on this engine? */
2359 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2360 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2361 		/* build my FW version dword */
2362 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2363 			(BCM_5710_FW_MINOR_VERSION << 8) +
2364 			(BCM_5710_FW_REVISION_VERSION << 16) +
2365 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2366 
2367 		/* read loaded FW from chip */
2368 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2369 
2370 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2371 		   loaded_fw, my_fw);
2372 
2373 		/* abort nic load if version mismatch */
2374 		if (my_fw != loaded_fw) {
2375 			if (print_err)
2376 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2377 					  loaded_fw, my_fw);
2378 			else
2379 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2380 					       loaded_fw, my_fw);
2381 			return -EBUSY;
2382 		}
2383 	}
2384 	return 0;
2385 }
2386 
2387 /* returns the "mcp load_code" according to global load_count array */
2388 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2389 {
2390 	int path = BP_PATH(bp);
2391 
2392 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2393 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2394 	   bnx2x_load_count[path][2]);
2395 	bnx2x_load_count[path][0]++;
2396 	bnx2x_load_count[path][1 + port]++;
2397 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2398 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2399 	   bnx2x_load_count[path][2]);
2400 	if (bnx2x_load_count[path][0] == 1)
2401 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2402 	else if (bnx2x_load_count[path][1 + port] == 1)
2403 		return FW_MSG_CODE_DRV_LOAD_PORT;
2404 	else
2405 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2406 }
2407 
2408 /* mark PMF if applicable */
2409 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2410 {
2411 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2412 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2413 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2414 		bp->port.pmf = 1;
2415 		/* We need the barrier to ensure the ordering between the
2416 		 * writing to bp->port.pmf here and reading it from the
2417 		 * bnx2x_periodic_task().
2418 		 */
2419 		smp_mb();
2420 	} else {
2421 		bp->port.pmf = 0;
2422 	}
2423 
2424 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2425 }
2426 
2427 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2428 {
2429 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2430 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2431 	    (bp->common.shmem2_base)) {
2432 		if (SHMEM2_HAS(bp, dcc_support))
2433 			SHMEM2_WR(bp, dcc_support,
2434 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2435 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2436 		if (SHMEM2_HAS(bp, afex_driver_support))
2437 			SHMEM2_WR(bp, afex_driver_support,
2438 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2439 	}
2440 
2441 	/* Set AFEX default VLAN tag to an invalid value */
2442 	bp->afex_def_vlan_tag = -1;
2443 }
2444 
2445 /**
2446  * bnx2x_bz_fp - zero content of the fastpath structure.
2447  *
2448  * @bp:		driver handle
2449  * @index:	fastpath index to be zeroed
2450  *
2451  * Makes sure the contents of the bp->fp[index].napi is kept
2452  * intact.
2453  */
2454 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2455 {
2456 	struct bnx2x_fastpath *fp = &bp->fp[index];
2457 	int cos;
2458 	struct napi_struct orig_napi = fp->napi;
2459 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2460 
2461 	/* bzero bnx2x_fastpath contents */
2462 	if (fp->tpa_info)
2463 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2464 		       sizeof(struct bnx2x_agg_info));
2465 	memset(fp, 0, sizeof(*fp));
2466 
2467 	/* Restore the NAPI object as it has been already initialized */
2468 	fp->napi = orig_napi;
2469 	fp->tpa_info = orig_tpa_info;
2470 	fp->bp = bp;
2471 	fp->index = index;
2472 	if (IS_ETH_FP(fp))
2473 		fp->max_cos = bp->max_cos;
2474 	else
2475 		/* Special queues support only one CoS */
2476 		fp->max_cos = 1;
2477 
2478 	/* Init txdata pointers */
2479 	if (IS_FCOE_FP(fp))
2480 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2481 	if (IS_ETH_FP(fp))
2482 		for_each_cos_in_tx_queue(fp, cos)
2483 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2484 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2485 
2486 	/* set the tpa flag for each queue. The tpa flag determines the queue
2487 	 * minimal size so it must be set prior to queue memory allocation
2488 	 */
2489 	if (bp->dev->features & NETIF_F_LRO)
2490 		fp->mode = TPA_MODE_LRO;
2491 	else if (bp->dev->features & NETIF_F_GRO_HW)
2492 		fp->mode = TPA_MODE_GRO;
2493 	else
2494 		fp->mode = TPA_MODE_DISABLED;
2495 
2496 	/* We don't want TPA if it's disabled in bp
2497 	 * or if this is an FCoE L2 ring.
2498 	 */
2499 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2500 		fp->mode = TPA_MODE_DISABLED;
2501 }
2502 
2503 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2504 {
2505 	u32 cur;
2506 
2507 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2508 		return;
2509 
2510 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2511 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2512 	   cur, state);
2513 
2514 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2515 }
2516 
2517 int bnx2x_load_cnic(struct bnx2x *bp)
2518 {
2519 	int i, rc, port = BP_PORT(bp);
2520 
2521 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2522 
2523 	mutex_init(&bp->cnic_mutex);
2524 
2525 	if (IS_PF(bp)) {
2526 		rc = bnx2x_alloc_mem_cnic(bp);
2527 		if (rc) {
2528 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2529 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2530 		}
2531 	}
2532 
2533 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2534 	if (rc) {
2535 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2536 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2537 	}
2538 
2539 	/* Update the number of queues with the cnic queues */
2540 	rc = bnx2x_set_real_num_queues(bp, 1);
2541 	if (rc) {
2542 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2543 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2544 	}
2545 
2546 	/* Add all CNIC NAPI objects */
2547 	bnx2x_add_all_napi_cnic(bp);
2548 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2549 	bnx2x_napi_enable_cnic(bp);
2550 
2551 	rc = bnx2x_init_hw_func_cnic(bp);
2552 	if (rc)
2553 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2554 
2555 	bnx2x_nic_init_cnic(bp);
2556 
2557 	if (IS_PF(bp)) {
2558 		/* Enable Timer scan */
2559 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2560 
2561 		/* setup cnic queues */
2562 		for_each_cnic_queue(bp, i) {
2563 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2564 			if (rc) {
2565 				BNX2X_ERR("Queue setup failed\n");
2566 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2567 			}
2568 		}
2569 	}
2570 
2571 	/* Initialize Rx filter. */
2572 	bnx2x_set_rx_mode_inner(bp);
2573 
2574 	/* re-read iscsi info */
2575 	bnx2x_get_iscsi_info(bp);
2576 	bnx2x_setup_cnic_irq_info(bp);
2577 	bnx2x_setup_cnic_info(bp);
2578 	bp->cnic_loaded = true;
2579 	if (bp->state == BNX2X_STATE_OPEN)
2580 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2581 
2582 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2583 
2584 	return 0;
2585 
2586 #ifndef BNX2X_STOP_ON_ERROR
2587 load_error_cnic2:
2588 	/* Disable Timer scan */
2589 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2590 
2591 load_error_cnic1:
2592 	bnx2x_napi_disable_cnic(bp);
2593 	/* Update the number of queues without the cnic queues */
2594 	if (bnx2x_set_real_num_queues(bp, 0))
2595 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2596 load_error_cnic0:
2597 	BNX2X_ERR("CNIC-related load failed\n");
2598 	bnx2x_free_fp_mem_cnic(bp);
2599 	bnx2x_free_mem_cnic(bp);
2600 	return rc;
2601 #endif /* ! BNX2X_STOP_ON_ERROR */
2602 }
2603 
2604 /* must be called with rtnl_lock */
2605 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2606 {
2607 	int port = BP_PORT(bp);
2608 	int i, rc = 0, load_code = 0;
2609 
2610 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2611 	DP(NETIF_MSG_IFUP,
2612 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2613 
2614 #ifdef BNX2X_STOP_ON_ERROR
2615 	if (unlikely(bp->panic)) {
2616 		BNX2X_ERR("Can't load NIC when there is panic\n");
2617 		return -EPERM;
2618 	}
2619 #endif
2620 
2621 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2622 
2623 	/* zero the structure w/o any lock, before SP handler is initialized */
2624 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2625 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2626 		&bp->last_reported_link.link_report_flags);
2627 
2628 	if (IS_PF(bp))
2629 		/* must be called before memory allocation and HW init */
2630 		bnx2x_ilt_set_info(bp);
2631 
2632 	/*
2633 	 * Zero fastpath structures preserving invariants like napi, which are
2634 	 * allocated only once, fp index, max_cos, bp pointer.
2635 	 * Also set fp->mode and txdata_ptr.
2636 	 */
2637 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2638 	for_each_queue(bp, i)
2639 		bnx2x_bz_fp(bp, i);
2640 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2641 				  bp->num_cnic_queues) *
2642 				  sizeof(struct bnx2x_fp_txdata));
2643 
2644 	bp->fcoe_init = false;
2645 
2646 	/* Set the receive queues buffer size */
2647 	bnx2x_set_rx_buf_size(bp);
2648 
2649 	if (IS_PF(bp)) {
2650 		rc = bnx2x_alloc_mem(bp);
2651 		if (rc) {
2652 			BNX2X_ERR("Unable to allocate bp memory\n");
2653 			return rc;
2654 		}
2655 	}
2656 
2657 	/* need to be done after alloc mem, since it's self adjusting to amount
2658 	 * of memory available for RSS queues
2659 	 */
2660 	rc = bnx2x_alloc_fp_mem(bp);
2661 	if (rc) {
2662 		BNX2X_ERR("Unable to allocate memory for fps\n");
2663 		LOAD_ERROR_EXIT(bp, load_error0);
2664 	}
2665 
2666 	/* Allocated memory for FW statistics  */
2667 	if (bnx2x_alloc_fw_stats_mem(bp))
2668 		LOAD_ERROR_EXIT(bp, load_error0);
2669 
2670 	/* request pf to initialize status blocks */
2671 	if (IS_VF(bp)) {
2672 		rc = bnx2x_vfpf_init(bp);
2673 		if (rc)
2674 			LOAD_ERROR_EXIT(bp, load_error0);
2675 	}
2676 
2677 	/* As long as bnx2x_alloc_mem() may possibly update
2678 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2679 	 * come after it. At this stage cnic queues are not counted.
2680 	 */
2681 	rc = bnx2x_set_real_num_queues(bp, 0);
2682 	if (rc) {
2683 		BNX2X_ERR("Unable to set real_num_queues\n");
2684 		LOAD_ERROR_EXIT(bp, load_error0);
2685 	}
2686 
2687 	/* configure multi cos mappings in kernel.
2688 	 * this configuration may be overridden by a multi class queue
2689 	 * discipline or by a dcbx negotiation result.
2690 	 */
2691 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2692 
2693 	/* Add all NAPI objects */
2694 	bnx2x_add_all_napi(bp);
2695 	DP(NETIF_MSG_IFUP, "napi added\n");
2696 	bnx2x_napi_enable(bp);
2697 
2698 	if (IS_PF(bp)) {
2699 		/* set pf load just before approaching the MCP */
2700 		bnx2x_set_pf_load(bp);
2701 
2702 		/* if mcp exists send load request and analyze response */
2703 		if (!BP_NOMCP(bp)) {
2704 			/* attempt to load pf */
2705 			rc = bnx2x_nic_load_request(bp, &load_code);
2706 			if (rc)
2707 				LOAD_ERROR_EXIT(bp, load_error1);
2708 
2709 			/* what did mcp say? */
2710 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2711 			if (rc) {
2712 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2713 				LOAD_ERROR_EXIT(bp, load_error2);
2714 			}
2715 		} else {
2716 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2717 		}
2718 
2719 		/* mark pmf if applicable */
2720 		bnx2x_nic_load_pmf(bp, load_code);
2721 
2722 		/* Init Function state controlling object */
2723 		bnx2x__init_func_obj(bp);
2724 
2725 		/* Initialize HW */
2726 		rc = bnx2x_init_hw(bp, load_code);
2727 		if (rc) {
2728 			BNX2X_ERR("HW init failed, aborting\n");
2729 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2730 			LOAD_ERROR_EXIT(bp, load_error2);
2731 		}
2732 	}
2733 
2734 	bnx2x_pre_irq_nic_init(bp);
2735 
2736 	/* Connect to IRQs */
2737 	rc = bnx2x_setup_irqs(bp);
2738 	if (rc) {
2739 		BNX2X_ERR("setup irqs failed\n");
2740 		if (IS_PF(bp))
2741 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2742 		LOAD_ERROR_EXIT(bp, load_error2);
2743 	}
2744 
2745 	/* Init per-function objects */
2746 	if (IS_PF(bp)) {
2747 		/* Setup NIC internals and enable interrupts */
2748 		bnx2x_post_irq_nic_init(bp, load_code);
2749 
2750 		bnx2x_init_bp_objs(bp);
2751 		bnx2x_iov_nic_init(bp);
2752 
2753 		/* Set AFEX default VLAN tag to an invalid value */
2754 		bp->afex_def_vlan_tag = -1;
2755 		bnx2x_nic_load_afex_dcc(bp, load_code);
2756 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2757 		rc = bnx2x_func_start(bp);
2758 		if (rc) {
2759 			BNX2X_ERR("Function start failed!\n");
2760 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2761 
2762 			LOAD_ERROR_EXIT(bp, load_error3);
2763 		}
2764 
2765 		/* Send LOAD_DONE command to MCP */
2766 		if (!BP_NOMCP(bp)) {
2767 			load_code = bnx2x_fw_command(bp,
2768 						     DRV_MSG_CODE_LOAD_DONE, 0);
2769 			if (!load_code) {
2770 				BNX2X_ERR("MCP response failure, aborting\n");
2771 				rc = -EBUSY;
2772 				LOAD_ERROR_EXIT(bp, load_error3);
2773 			}
2774 		}
2775 
2776 		/* initialize FW coalescing state machines in RAM */
2777 		bnx2x_update_coalesce(bp);
2778 	}
2779 
2780 	/* setup the leading queue */
2781 	rc = bnx2x_setup_leading(bp);
2782 	if (rc) {
2783 		BNX2X_ERR("Setup leading failed!\n");
2784 		LOAD_ERROR_EXIT(bp, load_error3);
2785 	}
2786 
2787 	/* set up the rest of the queues */
2788 	for_each_nondefault_eth_queue(bp, i) {
2789 		if (IS_PF(bp))
2790 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2791 		else /* VF */
2792 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2793 		if (rc) {
2794 			BNX2X_ERR("Queue %d setup failed\n", i);
2795 			LOAD_ERROR_EXIT(bp, load_error3);
2796 		}
2797 	}
2798 
2799 	/* setup rss */
2800 	rc = bnx2x_init_rss(bp);
2801 	if (rc) {
2802 		BNX2X_ERR("PF RSS init failed\n");
2803 		LOAD_ERROR_EXIT(bp, load_error3);
2804 	}
2805 
2806 	/* Now when Clients are configured we are ready to work */
2807 	bp->state = BNX2X_STATE_OPEN;
2808 
2809 	/* Configure a ucast MAC */
2810 	if (IS_PF(bp))
2811 		rc = bnx2x_set_eth_mac(bp, true);
2812 	else /* vf */
2813 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2814 					   true);
2815 	if (rc) {
2816 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2817 		LOAD_ERROR_EXIT(bp, load_error3);
2818 	}
2819 
2820 	if (IS_PF(bp) && bp->pending_max) {
2821 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2822 		bp->pending_max = 0;
2823 	}
2824 
2825 	bp->force_link_down = false;
2826 	if (bp->port.pmf) {
2827 		rc = bnx2x_initial_phy_init(bp, load_mode);
2828 		if (rc)
2829 			LOAD_ERROR_EXIT(bp, load_error3);
2830 	}
2831 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2832 
2833 	/* Start fast path */
2834 
2835 	/* Re-configure vlan filters */
2836 	rc = bnx2x_vlan_reconfigure_vid(bp);
2837 	if (rc)
2838 		LOAD_ERROR_EXIT(bp, load_error3);
2839 
2840 	/* Initialize Rx filter. */
2841 	bnx2x_set_rx_mode_inner(bp);
2842 
2843 	if (bp->flags & PTP_SUPPORTED) {
2844 		bnx2x_register_phc(bp);
2845 		bnx2x_init_ptp(bp);
2846 		bnx2x_configure_ptp_filters(bp);
2847 	}
2848 	/* Start Tx */
2849 	switch (load_mode) {
2850 	case LOAD_NORMAL:
2851 		/* Tx queue should be only re-enabled */
2852 		netif_tx_wake_all_queues(bp->dev);
2853 		break;
2854 
2855 	case LOAD_OPEN:
2856 		netif_tx_start_all_queues(bp->dev);
2857 		smp_mb__after_atomic();
2858 		break;
2859 
2860 	case LOAD_DIAG:
2861 	case LOAD_LOOPBACK_EXT:
2862 		bp->state = BNX2X_STATE_DIAG;
2863 		break;
2864 
2865 	default:
2866 		break;
2867 	}
2868 
2869 	if (bp->port.pmf)
2870 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2871 	else
2872 		bnx2x__link_status_update(bp);
2873 
2874 	/* start the timer */
2875 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2876 
2877 	if (CNIC_ENABLED(bp))
2878 		bnx2x_load_cnic(bp);
2879 
2880 	if (IS_PF(bp))
2881 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2882 
2883 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2884 		/* mark driver is loaded in shmem2 */
2885 		u32 val;
2886 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2887 		val &= ~DRV_FLAGS_MTU_MASK;
2888 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2889 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2890 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2891 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2892 	}
2893 
2894 	/* Wait for all pending SP commands to complete */
2895 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2896 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2897 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2898 		return -EBUSY;
2899 	}
2900 
2901 	/* Update driver data for On-Chip MFW dump. */
2902 	if (IS_PF(bp))
2903 		bnx2x_update_mfw_dump(bp);
2904 
2905 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2906 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2907 		bnx2x_dcbx_init(bp, false);
2908 
2909 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2910 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2911 
2912 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2913 
2914 	return 0;
2915 
2916 #ifndef BNX2X_STOP_ON_ERROR
2917 load_error3:
2918 	if (IS_PF(bp)) {
2919 		bnx2x_int_disable_sync(bp, 1);
2920 
2921 		/* Clean queueable objects */
2922 		bnx2x_squeeze_objects(bp);
2923 	}
2924 
2925 	/* Free SKBs, SGEs, TPA pool and driver internals */
2926 	bnx2x_free_skbs(bp);
2927 	for_each_rx_queue(bp, i)
2928 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2929 
2930 	/* Release IRQs */
2931 	bnx2x_free_irq(bp);
2932 load_error2:
2933 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2934 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2935 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2936 	}
2937 
2938 	bp->port.pmf = 0;
2939 load_error1:
2940 	bnx2x_napi_disable(bp);
2941 	bnx2x_del_all_napi(bp);
2942 
2943 	/* clear pf_load status, as it was already set */
2944 	if (IS_PF(bp))
2945 		bnx2x_clear_pf_load(bp);
2946 load_error0:
2947 	bnx2x_free_fw_stats_mem(bp);
2948 	bnx2x_free_fp_mem(bp);
2949 	bnx2x_free_mem(bp);
2950 
2951 	return rc;
2952 #endif /* ! BNX2X_STOP_ON_ERROR */
2953 }
2954 
2955 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2956 {
2957 	u8 rc = 0, cos, i;
2958 
2959 	/* Wait until tx fastpath tasks complete */
2960 	for_each_tx_queue(bp, i) {
2961 		struct bnx2x_fastpath *fp = &bp->fp[i];
2962 
2963 		for_each_cos_in_tx_queue(fp, cos)
2964 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2965 		if (rc)
2966 			return rc;
2967 	}
2968 	return 0;
2969 }
2970 
2971 /* must be called with rtnl_lock */
2972 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2973 {
2974 	int i;
2975 	bool global = false;
2976 
2977 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2978 
2979 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2980 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2981 
2982 	/* mark driver is unloaded in shmem2 */
2983 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2984 		u32 val;
2985 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2986 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2987 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2988 	}
2989 
2990 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2991 	    (bp->state == BNX2X_STATE_CLOSED ||
2992 	     bp->state == BNX2X_STATE_ERROR)) {
2993 		/* We can get here if the driver has been unloaded
2994 		 * during parity error recovery and is either waiting for a
2995 		 * leader to complete or for other functions to unload and
2996 		 * then ifdown has been issued. In this case we want to
2997 		 * unload and let other functions to complete a recovery
2998 		 * process.
2999 		 */
3000 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3001 		bp->is_leader = 0;
3002 		bnx2x_release_leader_lock(bp);
3003 		smp_mb();
3004 
3005 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3006 		BNX2X_ERR("Can't unload in closed or error state\n");
3007 		return -EINVAL;
3008 	}
3009 
3010 	/* Nothing to do during unload if previous bnx2x_nic_load()
3011 	 * have not completed successfully - all resources are released.
3012 	 *
3013 	 * we can get here only after unsuccessful ndo_* callback, during which
3014 	 * dev->IFF_UP flag is still on.
3015 	 */
3016 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3017 		return 0;
3018 
3019 	/* It's important to set the bp->state to the value different from
3020 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3021 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3022 	 */
3023 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3024 	smp_mb();
3025 
3026 	/* indicate to VFs that the PF is going down */
3027 	bnx2x_iov_channel_down(bp);
3028 
3029 	if (CNIC_LOADED(bp))
3030 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3031 
3032 	/* Stop Tx */
3033 	bnx2x_tx_disable(bp);
3034 	netdev_reset_tc(bp->dev);
3035 
3036 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3037 
3038 	del_timer_sync(&bp->timer);
3039 
3040 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3041 		/* Set ALWAYS_ALIVE bit in shmem */
3042 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3043 		bnx2x_drv_pulse(bp);
3044 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3045 		bnx2x_save_statistics(bp);
3046 	}
3047 
3048 	/* wait till consumers catch up with producers in all queues.
3049 	 * If we're recovering, FW can't write to host so no reason
3050 	 * to wait for the queues to complete all Tx.
3051 	 */
3052 	if (unload_mode != UNLOAD_RECOVERY)
3053 		bnx2x_drain_tx_queues(bp);
3054 
3055 	/* if VF indicate to PF this function is going down (PF will delete sp
3056 	 * elements and clear initializations
3057 	 */
3058 	if (IS_VF(bp))
3059 		bnx2x_vfpf_close_vf(bp);
3060 	else if (unload_mode != UNLOAD_RECOVERY)
3061 		/* if this is a normal/close unload need to clean up chip*/
3062 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3063 	else {
3064 		/* Send the UNLOAD_REQUEST to the MCP */
3065 		bnx2x_send_unload_req(bp, unload_mode);
3066 
3067 		/* Prevent transactions to host from the functions on the
3068 		 * engine that doesn't reset global blocks in case of global
3069 		 * attention once global blocks are reset and gates are opened
3070 		 * (the engine which leader will perform the recovery
3071 		 * last).
3072 		 */
3073 		if (!CHIP_IS_E1x(bp))
3074 			bnx2x_pf_disable(bp);
3075 
3076 		/* Disable HW interrupts, NAPI */
3077 		bnx2x_netif_stop(bp, 1);
3078 		/* Delete all NAPI objects */
3079 		bnx2x_del_all_napi(bp);
3080 		if (CNIC_LOADED(bp))
3081 			bnx2x_del_all_napi_cnic(bp);
3082 		/* Release IRQs */
3083 		bnx2x_free_irq(bp);
3084 
3085 		/* Report UNLOAD_DONE to MCP */
3086 		bnx2x_send_unload_done(bp, false);
3087 	}
3088 
3089 	/*
3090 	 * At this stage no more interrupts will arrive so we may safely clean
3091 	 * the queueable objects here in case they failed to get cleaned so far.
3092 	 */
3093 	if (IS_PF(bp))
3094 		bnx2x_squeeze_objects(bp);
3095 
3096 	/* There should be no more pending SP commands at this stage */
3097 	bp->sp_state = 0;
3098 
3099 	bp->port.pmf = 0;
3100 
3101 	/* clear pending work in rtnl task */
3102 	bp->sp_rtnl_state = 0;
3103 	smp_mb();
3104 
3105 	/* Free SKBs, SGEs, TPA pool and driver internals */
3106 	bnx2x_free_skbs(bp);
3107 	if (CNIC_LOADED(bp))
3108 		bnx2x_free_skbs_cnic(bp);
3109 	for_each_rx_queue(bp, i)
3110 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3111 
3112 	bnx2x_free_fp_mem(bp);
3113 	if (CNIC_LOADED(bp))
3114 		bnx2x_free_fp_mem_cnic(bp);
3115 
3116 	if (IS_PF(bp)) {
3117 		if (CNIC_LOADED(bp))
3118 			bnx2x_free_mem_cnic(bp);
3119 	}
3120 	bnx2x_free_mem(bp);
3121 
3122 	bp->state = BNX2X_STATE_CLOSED;
3123 	bp->cnic_loaded = false;
3124 
3125 	/* Clear driver version indication in shmem */
3126 	if (IS_PF(bp) && !BP_NOMCP(bp))
3127 		bnx2x_update_mng_version(bp);
3128 
3129 	/* Check if there are pending parity attentions. If there are - set
3130 	 * RECOVERY_IN_PROGRESS.
3131 	 */
3132 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3133 		bnx2x_set_reset_in_progress(bp);
3134 
3135 		/* Set RESET_IS_GLOBAL if needed */
3136 		if (global)
3137 			bnx2x_set_reset_global(bp);
3138 	}
3139 
3140 	/* The last driver must disable a "close the gate" if there is no
3141 	 * parity attention or "process kill" pending.
3142 	 */
3143 	if (IS_PF(bp) &&
3144 	    !bnx2x_clear_pf_load(bp) &&
3145 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3146 		bnx2x_disable_close_the_gate(bp);
3147 
3148 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3149 
3150 	return 0;
3151 }
3152 
3153 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3154 {
3155 	u16 pmcsr;
3156 
3157 	/* If there is no power capability, silently succeed */
3158 	if (!bp->pdev->pm_cap) {
3159 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3160 		return 0;
3161 	}
3162 
3163 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3164 
3165 	switch (state) {
3166 	case PCI_D0:
3167 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3168 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3169 				       PCI_PM_CTRL_PME_STATUS));
3170 
3171 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3172 			/* delay required during transition out of D3hot */
3173 			msleep(20);
3174 		break;
3175 
3176 	case PCI_D3hot:
3177 		/* If there are other clients above don't
3178 		   shut down the power */
3179 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3180 			return 0;
3181 		/* Don't shut down the power for emulation and FPGA */
3182 		if (CHIP_REV_IS_SLOW(bp))
3183 			return 0;
3184 
3185 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3186 		pmcsr |= 3;
3187 
3188 		if (bp->wol)
3189 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3190 
3191 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3192 				      pmcsr);
3193 
3194 		/* No more memory access after this point until
3195 		* device is brought back to D0.
3196 		*/
3197 		break;
3198 
3199 	default:
3200 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3201 		return -EINVAL;
3202 	}
3203 	return 0;
3204 }
3205 
3206 /*
3207  * net_device service functions
3208  */
3209 static int bnx2x_poll(struct napi_struct *napi, int budget)
3210 {
3211 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3212 						 napi);
3213 	struct bnx2x *bp = fp->bp;
3214 	int rx_work_done;
3215 	u8 cos;
3216 
3217 #ifdef BNX2X_STOP_ON_ERROR
3218 	if (unlikely(bp->panic)) {
3219 		napi_complete(napi);
3220 		return 0;
3221 	}
3222 #endif
3223 	for_each_cos_in_tx_queue(fp, cos)
3224 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3225 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3226 
3227 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3228 
3229 	if (rx_work_done < budget) {
3230 		/* No need to update SB for FCoE L2 ring as long as
3231 		 * it's connected to the default SB and the SB
3232 		 * has been updated when NAPI was scheduled.
3233 		 */
3234 		if (IS_FCOE_FP(fp)) {
3235 			napi_complete_done(napi, rx_work_done);
3236 		} else {
3237 			bnx2x_update_fpsb_idx(fp);
3238 			/* bnx2x_has_rx_work() reads the status block,
3239 			 * thus we need to ensure that status block indices
3240 			 * have been actually read (bnx2x_update_fpsb_idx)
3241 			 * prior to this check (bnx2x_has_rx_work) so that
3242 			 * we won't write the "newer" value of the status block
3243 			 * to IGU (if there was a DMA right after
3244 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3245 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3246 			 * to right before bnx2x_ack_sb). In this case there
3247 			 * will never be another interrupt until there is
3248 			 * another update of the status block, while there
3249 			 * is still unhandled work.
3250 			 */
3251 			rmb();
3252 
3253 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3254 				if (napi_complete_done(napi, rx_work_done)) {
3255 					/* Re-enable interrupts */
3256 					DP(NETIF_MSG_RX_STATUS,
3257 					   "Update index to %d\n", fp->fp_hc_idx);
3258 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3259 						     le16_to_cpu(fp->fp_hc_idx),
3260 						     IGU_INT_ENABLE, 1);
3261 				}
3262 			} else {
3263 				rx_work_done = budget;
3264 			}
3265 		}
3266 	}
3267 
3268 	return rx_work_done;
3269 }
3270 
3271 /* we split the first BD into headers and data BDs
3272  * to ease the pain of our fellow microcode engineers
3273  * we use one mapping for both BDs
3274  */
3275 static u16 bnx2x_tx_split(struct bnx2x *bp,
3276 			  struct bnx2x_fp_txdata *txdata,
3277 			  struct sw_tx_bd *tx_buf,
3278 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3279 			  u16 bd_prod)
3280 {
3281 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3282 	struct eth_tx_bd *d_tx_bd;
3283 	dma_addr_t mapping;
3284 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3285 
3286 	/* first fix first BD */
3287 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3288 
3289 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3290 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3291 
3292 	/* now get a new data BD
3293 	 * (after the pbd) and fill it */
3294 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3295 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3296 
3297 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3298 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3299 
3300 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3301 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3302 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3303 
3304 	/* this marks the BD as one that has no individual mapping */
3305 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3306 
3307 	DP(NETIF_MSG_TX_QUEUED,
3308 	   "TSO split data size is %d (%x:%x)\n",
3309 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3310 
3311 	/* update tx_bd */
3312 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3313 
3314 	return bd_prod;
3315 }
3316 
3317 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3318 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3319 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3320 {
3321 	__sum16 tsum = (__force __sum16) csum;
3322 
3323 	if (fix > 0)
3324 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3325 				  csum_partial(t_header - fix, fix, 0)));
3326 
3327 	else if (fix < 0)
3328 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3329 				  csum_partial(t_header, -fix, 0)));
3330 
3331 	return bswab16(tsum);
3332 }
3333 
3334 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3335 {
3336 	u32 rc;
3337 	__u8 prot = 0;
3338 	__be16 protocol;
3339 
3340 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3341 		return XMIT_PLAIN;
3342 
3343 	protocol = vlan_get_protocol(skb);
3344 	if (protocol == htons(ETH_P_IPV6)) {
3345 		rc = XMIT_CSUM_V6;
3346 		prot = ipv6_hdr(skb)->nexthdr;
3347 	} else {
3348 		rc = XMIT_CSUM_V4;
3349 		prot = ip_hdr(skb)->protocol;
3350 	}
3351 
3352 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3353 		if (inner_ip_hdr(skb)->version == 6) {
3354 			rc |= XMIT_CSUM_ENC_V6;
3355 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3356 				rc |= XMIT_CSUM_TCP;
3357 		} else {
3358 			rc |= XMIT_CSUM_ENC_V4;
3359 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3360 				rc |= XMIT_CSUM_TCP;
3361 		}
3362 	}
3363 	if (prot == IPPROTO_TCP)
3364 		rc |= XMIT_CSUM_TCP;
3365 
3366 	if (skb_is_gso(skb)) {
3367 		if (skb_is_gso_v6(skb)) {
3368 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3369 			if (rc & XMIT_CSUM_ENC)
3370 				rc |= XMIT_GSO_ENC_V6;
3371 		} else {
3372 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3373 			if (rc & XMIT_CSUM_ENC)
3374 				rc |= XMIT_GSO_ENC_V4;
3375 		}
3376 	}
3377 
3378 	return rc;
3379 }
3380 
3381 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3382 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3383 
3384 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3385 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3386 
3387 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3388 /* check if packet requires linearization (packet is too fragmented)
3389    no need to check fragmentation if page size > 8K (there will be no
3390    violation to FW restrictions) */
3391 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3392 			     u32 xmit_type)
3393 {
3394 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3395 	int to_copy = 0, hlen = 0;
3396 
3397 	if (xmit_type & XMIT_GSO_ENC)
3398 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3399 
3400 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3401 		if (xmit_type & XMIT_GSO) {
3402 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3403 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3404 			/* Number of windows to check */
3405 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3406 			int wnd_idx = 0;
3407 			int frag_idx = 0;
3408 			u32 wnd_sum = 0;
3409 
3410 			/* Headers length */
3411 			if (xmit_type & XMIT_GSO_ENC)
3412 				hlen = (int)(skb_inner_transport_header(skb) -
3413 					     skb->data) +
3414 					     inner_tcp_hdrlen(skb);
3415 			else
3416 				hlen = (int)(skb_transport_header(skb) -
3417 					     skb->data) + tcp_hdrlen(skb);
3418 
3419 			/* Amount of data (w/o headers) on linear part of SKB*/
3420 			first_bd_sz = skb_headlen(skb) - hlen;
3421 
3422 			wnd_sum  = first_bd_sz;
3423 
3424 			/* Calculate the first sum - it's special */
3425 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3426 				wnd_sum +=
3427 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3428 
3429 			/* If there was data on linear skb data - check it */
3430 			if (first_bd_sz > 0) {
3431 				if (unlikely(wnd_sum < lso_mss)) {
3432 					to_copy = 1;
3433 					goto exit_lbl;
3434 				}
3435 
3436 				wnd_sum -= first_bd_sz;
3437 			}
3438 
3439 			/* Others are easier: run through the frag list and
3440 			   check all windows */
3441 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3442 				wnd_sum +=
3443 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3444 
3445 				if (unlikely(wnd_sum < lso_mss)) {
3446 					to_copy = 1;
3447 					break;
3448 				}
3449 				wnd_sum -=
3450 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3451 			}
3452 		} else {
3453 			/* in non-LSO too fragmented packet should always
3454 			   be linearized */
3455 			to_copy = 1;
3456 		}
3457 	}
3458 
3459 exit_lbl:
3460 	if (unlikely(to_copy))
3461 		DP(NETIF_MSG_TX_QUEUED,
3462 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3463 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3464 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3465 
3466 	return to_copy;
3467 }
3468 #endif
3469 
3470 /**
3471  * bnx2x_set_pbd_gso - update PBD in GSO case.
3472  *
3473  * @skb:	packet skb
3474  * @pbd:	parse BD
3475  * @xmit_type:	xmit flags
3476  */
3477 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3478 			      struct eth_tx_parse_bd_e1x *pbd,
3479 			      u32 xmit_type)
3480 {
3481 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3482 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3483 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3484 
3485 	if (xmit_type & XMIT_GSO_V4) {
3486 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3487 		pbd->tcp_pseudo_csum =
3488 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3489 						   ip_hdr(skb)->daddr,
3490 						   0, IPPROTO_TCP, 0));
3491 	} else {
3492 		pbd->tcp_pseudo_csum =
3493 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3494 						 &ipv6_hdr(skb)->daddr,
3495 						 0, IPPROTO_TCP, 0));
3496 	}
3497 
3498 	pbd->global_data |=
3499 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3500 }
3501 
3502 /**
3503  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3504  *
3505  * @bp:			driver handle
3506  * @skb:		packet skb
3507  * @parsing_data:	data to be updated
3508  * @xmit_type:		xmit flags
3509  *
3510  * 57712/578xx related, when skb has encapsulation
3511  */
3512 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3513 				 u32 *parsing_data, u32 xmit_type)
3514 {
3515 	*parsing_data |=
3516 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3517 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3518 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3519 
3520 	if (xmit_type & XMIT_CSUM_TCP) {
3521 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3522 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3523 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3524 
3525 		return skb_inner_transport_header(skb) +
3526 			inner_tcp_hdrlen(skb) - skb->data;
3527 	}
3528 
3529 	/* We support checksum offload for TCP and UDP only.
3530 	 * No need to pass the UDP header length - it's a constant.
3531 	 */
3532 	return skb_inner_transport_header(skb) +
3533 		sizeof(struct udphdr) - skb->data;
3534 }
3535 
3536 /**
3537  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3538  *
3539  * @bp:			driver handle
3540  * @skb:		packet skb
3541  * @parsing_data:	data to be updated
3542  * @xmit_type:		xmit flags
3543  *
3544  * 57712/578xx related
3545  */
3546 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3547 				u32 *parsing_data, u32 xmit_type)
3548 {
3549 	*parsing_data |=
3550 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3551 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3552 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3553 
3554 	if (xmit_type & XMIT_CSUM_TCP) {
3555 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3556 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3557 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3558 
3559 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3560 	}
3561 	/* We support checksum offload for TCP and UDP only.
3562 	 * No need to pass the UDP header length - it's a constant.
3563 	 */
3564 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3565 }
3566 
3567 /* set FW indication according to inner or outer protocols if tunneled */
3568 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3569 			       struct eth_tx_start_bd *tx_start_bd,
3570 			       u32 xmit_type)
3571 {
3572 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3573 
3574 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3575 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3576 
3577 	if (!(xmit_type & XMIT_CSUM_TCP))
3578 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3579 }
3580 
3581 /**
3582  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3583  *
3584  * @bp:		driver handle
3585  * @skb:	packet skb
3586  * @pbd:	parse BD to be updated
3587  * @xmit_type:	xmit flags
3588  */
3589 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3590 			     struct eth_tx_parse_bd_e1x *pbd,
3591 			     u32 xmit_type)
3592 {
3593 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3594 
3595 	/* for now NS flag is not used in Linux */
3596 	pbd->global_data =
3597 		cpu_to_le16(hlen |
3598 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3599 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3600 
3601 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3602 			skb_network_header(skb)) >> 1;
3603 
3604 	hlen += pbd->ip_hlen_w;
3605 
3606 	/* We support checksum offload for TCP and UDP only */
3607 	if (xmit_type & XMIT_CSUM_TCP)
3608 		hlen += tcp_hdrlen(skb) / 2;
3609 	else
3610 		hlen += sizeof(struct udphdr) / 2;
3611 
3612 	pbd->total_hlen_w = cpu_to_le16(hlen);
3613 	hlen = hlen*2;
3614 
3615 	if (xmit_type & XMIT_CSUM_TCP) {
3616 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3617 
3618 	} else {
3619 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3620 
3621 		DP(NETIF_MSG_TX_QUEUED,
3622 		   "hlen %d  fix %d  csum before fix %x\n",
3623 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3624 
3625 		/* HW bug: fixup the CSUM */
3626 		pbd->tcp_pseudo_csum =
3627 			bnx2x_csum_fix(skb_transport_header(skb),
3628 				       SKB_CS(skb), fix);
3629 
3630 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3631 		   pbd->tcp_pseudo_csum);
3632 	}
3633 
3634 	return hlen;
3635 }
3636 
3637 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3638 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3639 				      struct eth_tx_parse_2nd_bd *pbd2,
3640 				      u16 *global_data,
3641 				      u32 xmit_type)
3642 {
3643 	u16 hlen_w = 0;
3644 	u8 outerip_off, outerip_len = 0;
3645 
3646 	/* from outer IP to transport */
3647 	hlen_w = (skb_inner_transport_header(skb) -
3648 		  skb_network_header(skb)) >> 1;
3649 
3650 	/* transport len */
3651 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3652 
3653 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3654 
3655 	/* outer IP header info */
3656 	if (xmit_type & XMIT_CSUM_V4) {
3657 		struct iphdr *iph = ip_hdr(skb);
3658 		u32 csum = (__force u32)(~iph->check) -
3659 			   (__force u32)iph->tot_len -
3660 			   (__force u32)iph->frag_off;
3661 
3662 		outerip_len = iph->ihl << 1;
3663 
3664 		pbd2->fw_ip_csum_wo_len_flags_frag =
3665 			bswab16(csum_fold((__force __wsum)csum));
3666 	} else {
3667 		pbd2->fw_ip_hdr_to_payload_w =
3668 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3669 		pbd_e2->data.tunnel_data.flags |=
3670 			ETH_TUNNEL_DATA_IPV6_OUTER;
3671 	}
3672 
3673 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3674 
3675 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3676 
3677 	/* inner IP header info */
3678 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3679 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3680 
3681 		pbd_e2->data.tunnel_data.pseudo_csum =
3682 			bswab16(~csum_tcpudp_magic(
3683 					inner_ip_hdr(skb)->saddr,
3684 					inner_ip_hdr(skb)->daddr,
3685 					0, IPPROTO_TCP, 0));
3686 	} else {
3687 		pbd_e2->data.tunnel_data.pseudo_csum =
3688 			bswab16(~csum_ipv6_magic(
3689 					&inner_ipv6_hdr(skb)->saddr,
3690 					&inner_ipv6_hdr(skb)->daddr,
3691 					0, IPPROTO_TCP, 0));
3692 	}
3693 
3694 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3695 
3696 	*global_data |=
3697 		outerip_off |
3698 		(outerip_len <<
3699 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3700 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3701 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3702 
3703 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3704 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3705 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3706 	}
3707 }
3708 
3709 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3710 					 u32 xmit_type)
3711 {
3712 	struct ipv6hdr *ipv6;
3713 
3714 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3715 		return;
3716 
3717 	if (xmit_type & XMIT_GSO_ENC_V6)
3718 		ipv6 = inner_ipv6_hdr(skb);
3719 	else /* XMIT_GSO_V6 */
3720 		ipv6 = ipv6_hdr(skb);
3721 
3722 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3723 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3724 }
3725 
3726 /* called with netif_tx_lock
3727  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3728  * netif_wake_queue()
3729  */
3730 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3731 {
3732 	struct bnx2x *bp = netdev_priv(dev);
3733 
3734 	struct netdev_queue *txq;
3735 	struct bnx2x_fp_txdata *txdata;
3736 	struct sw_tx_bd *tx_buf;
3737 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3738 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3739 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3740 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3741 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3742 	u32 pbd_e2_parsing_data = 0;
3743 	u16 pkt_prod, bd_prod;
3744 	int nbd, txq_index;
3745 	dma_addr_t mapping;
3746 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3747 	int i;
3748 	u8 hlen = 0;
3749 	__le16 pkt_size = 0;
3750 	struct ethhdr *eth;
3751 	u8 mac_type = UNICAST_ADDRESS;
3752 
3753 #ifdef BNX2X_STOP_ON_ERROR
3754 	if (unlikely(bp->panic))
3755 		return NETDEV_TX_BUSY;
3756 #endif
3757 
3758 	txq_index = skb_get_queue_mapping(skb);
3759 	txq = netdev_get_tx_queue(dev, txq_index);
3760 
3761 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3762 
3763 	txdata = &bp->bnx2x_txq[txq_index];
3764 
3765 	/* enable this debug print to view the transmission queue being used
3766 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3767 	   txq_index, fp_index, txdata_index); */
3768 
3769 	/* enable this debug print to view the transmission details
3770 	DP(NETIF_MSG_TX_QUEUED,
3771 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3772 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3773 
3774 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3775 			skb_shinfo(skb)->nr_frags +
3776 			BDS_PER_TX_PKT +
3777 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3778 		/* Handle special storage cases separately */
3779 		if (txdata->tx_ring_size == 0) {
3780 			struct bnx2x_eth_q_stats *q_stats =
3781 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3782 			q_stats->driver_filtered_tx_pkt++;
3783 			dev_kfree_skb(skb);
3784 			return NETDEV_TX_OK;
3785 		}
3786 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3787 		netif_tx_stop_queue(txq);
3788 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3789 
3790 		return NETDEV_TX_BUSY;
3791 	}
3792 
3793 	DP(NETIF_MSG_TX_QUEUED,
3794 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3795 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3796 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3797 	   skb->len);
3798 
3799 	eth = (struct ethhdr *)skb->data;
3800 
3801 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3802 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3803 		if (is_broadcast_ether_addr(eth->h_dest))
3804 			mac_type = BROADCAST_ADDRESS;
3805 		else
3806 			mac_type = MULTICAST_ADDRESS;
3807 	}
3808 
3809 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3810 	/* First, check if we need to linearize the skb (due to FW
3811 	   restrictions). No need to check fragmentation if page size > 8K
3812 	   (there will be no violation to FW restrictions) */
3813 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3814 		/* Statistics of linearization */
3815 		bp->lin_cnt++;
3816 		if (skb_linearize(skb) != 0) {
3817 			DP(NETIF_MSG_TX_QUEUED,
3818 			   "SKB linearization failed - silently dropping this SKB\n");
3819 			dev_kfree_skb_any(skb);
3820 			return NETDEV_TX_OK;
3821 		}
3822 	}
3823 #endif
3824 	/* Map skb linear data for DMA */
3825 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3826 				 skb_headlen(skb), DMA_TO_DEVICE);
3827 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3828 		DP(NETIF_MSG_TX_QUEUED,
3829 		   "SKB mapping failed - silently dropping this SKB\n");
3830 		dev_kfree_skb_any(skb);
3831 		return NETDEV_TX_OK;
3832 	}
3833 	/*
3834 	Please read carefully. First we use one BD which we mark as start,
3835 	then we have a parsing info BD (used for TSO or xsum),
3836 	and only then we have the rest of the TSO BDs.
3837 	(don't forget to mark the last one as last,
3838 	and to unmap only AFTER you write to the BD ...)
3839 	And above all, all pdb sizes are in words - NOT DWORDS!
3840 	*/
3841 
3842 	/* get current pkt produced now - advance it just before sending packet
3843 	 * since mapping of pages may fail and cause packet to be dropped
3844 	 */
3845 	pkt_prod = txdata->tx_pkt_prod;
3846 	bd_prod = TX_BD(txdata->tx_bd_prod);
3847 
3848 	/* get a tx_buf and first BD
3849 	 * tx_start_bd may be changed during SPLIT,
3850 	 * but first_bd will always stay first
3851 	 */
3852 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3853 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3854 	first_bd = tx_start_bd;
3855 
3856 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3857 
3858 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3859 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3860 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3861 		} else if (bp->ptp_tx_skb) {
3862 			BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3863 		} else {
3864 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3865 			/* schedule check for Tx timestamp */
3866 			bp->ptp_tx_skb = skb_get(skb);
3867 			bp->ptp_tx_start = jiffies;
3868 			schedule_work(&bp->ptp_task);
3869 		}
3870 	}
3871 
3872 	/* header nbd: indirectly zero other flags! */
3873 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3874 
3875 	/* remember the first BD of the packet */
3876 	tx_buf->first_bd = txdata->tx_bd_prod;
3877 	tx_buf->skb = skb;
3878 	tx_buf->flags = 0;
3879 
3880 	DP(NETIF_MSG_TX_QUEUED,
3881 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3882 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3883 
3884 	if (skb_vlan_tag_present(skb)) {
3885 		tx_start_bd->vlan_or_ethertype =
3886 		    cpu_to_le16(skb_vlan_tag_get(skb));
3887 		tx_start_bd->bd_flags.as_bitfield |=
3888 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3889 	} else {
3890 		/* when transmitting in a vf, start bd must hold the ethertype
3891 		 * for fw to enforce it
3892 		 */
3893 		u16 vlan_tci = 0;
3894 #ifndef BNX2X_STOP_ON_ERROR
3895 		if (IS_VF(bp)) {
3896 #endif
3897 			/* Still need to consider inband vlan for enforced */
3898 			if (__vlan_get_tag(skb, &vlan_tci)) {
3899 				tx_start_bd->vlan_or_ethertype =
3900 					cpu_to_le16(ntohs(eth->h_proto));
3901 			} else {
3902 				tx_start_bd->bd_flags.as_bitfield |=
3903 					(X_ETH_INBAND_VLAN <<
3904 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3905 				tx_start_bd->vlan_or_ethertype =
3906 					cpu_to_le16(vlan_tci);
3907 			}
3908 #ifndef BNX2X_STOP_ON_ERROR
3909 		} else {
3910 			/* used by FW for packet accounting */
3911 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3912 		}
3913 #endif
3914 	}
3915 
3916 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3917 
3918 	/* turn on parsing and get a BD */
3919 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3920 
3921 	if (xmit_type & XMIT_CSUM)
3922 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3923 
3924 	if (!CHIP_IS_E1x(bp)) {
3925 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3926 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3927 
3928 		if (xmit_type & XMIT_CSUM_ENC) {
3929 			u16 global_data = 0;
3930 
3931 			/* Set PBD in enc checksum offload case */
3932 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3933 						      &pbd_e2_parsing_data,
3934 						      xmit_type);
3935 
3936 			/* turn on 2nd parsing and get a BD */
3937 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3938 
3939 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3940 
3941 			memset(pbd2, 0, sizeof(*pbd2));
3942 
3943 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3944 				(skb_inner_network_header(skb) -
3945 				 skb->data) >> 1;
3946 
3947 			if (xmit_type & XMIT_GSO_ENC)
3948 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3949 							  &global_data,
3950 							  xmit_type);
3951 
3952 			pbd2->global_data = cpu_to_le16(global_data);
3953 
3954 			/* add addition parse BD indication to start BD */
3955 			SET_FLAG(tx_start_bd->general_data,
3956 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3957 			/* set encapsulation flag in start BD */
3958 			SET_FLAG(tx_start_bd->general_data,
3959 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3960 
3961 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3962 
3963 			nbd++;
3964 		} else if (xmit_type & XMIT_CSUM) {
3965 			/* Set PBD in checksum offload case w/o encapsulation */
3966 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3967 						     &pbd_e2_parsing_data,
3968 						     xmit_type);
3969 		}
3970 
3971 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3972 		/* Add the macs to the parsing BD if this is a vf or if
3973 		 * Tx Switching is enabled.
3974 		 */
3975 		if (IS_VF(bp)) {
3976 			/* override GRE parameters in BD */
3977 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3978 					      &pbd_e2->data.mac_addr.src_mid,
3979 					      &pbd_e2->data.mac_addr.src_lo,
3980 					      eth->h_source);
3981 
3982 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3983 					      &pbd_e2->data.mac_addr.dst_mid,
3984 					      &pbd_e2->data.mac_addr.dst_lo,
3985 					      eth->h_dest);
3986 		} else {
3987 			if (bp->flags & TX_SWITCHING)
3988 				bnx2x_set_fw_mac_addr(
3989 						&pbd_e2->data.mac_addr.dst_hi,
3990 						&pbd_e2->data.mac_addr.dst_mid,
3991 						&pbd_e2->data.mac_addr.dst_lo,
3992 						eth->h_dest);
3993 #ifdef BNX2X_STOP_ON_ERROR
3994 			/* Enforce security is always set in Stop on Error -
3995 			 * source mac should be present in the parsing BD
3996 			 */
3997 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3998 					      &pbd_e2->data.mac_addr.src_mid,
3999 					      &pbd_e2->data.mac_addr.src_lo,
4000 					      eth->h_source);
4001 #endif
4002 		}
4003 
4004 		SET_FLAG(pbd_e2_parsing_data,
4005 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4006 	} else {
4007 		u16 global_data = 0;
4008 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4009 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4010 		/* Set PBD in checksum offload case */
4011 		if (xmit_type & XMIT_CSUM)
4012 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4013 
4014 		SET_FLAG(global_data,
4015 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4016 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4017 	}
4018 
4019 	/* Setup the data pointer of the first BD of the packet */
4020 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4021 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4022 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4023 	pkt_size = tx_start_bd->nbytes;
4024 
4025 	DP(NETIF_MSG_TX_QUEUED,
4026 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4027 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4028 	   le16_to_cpu(tx_start_bd->nbytes),
4029 	   tx_start_bd->bd_flags.as_bitfield,
4030 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4031 
4032 	if (xmit_type & XMIT_GSO) {
4033 
4034 		DP(NETIF_MSG_TX_QUEUED,
4035 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4036 		   skb->len, hlen, skb_headlen(skb),
4037 		   skb_shinfo(skb)->gso_size);
4038 
4039 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4040 
4041 		if (unlikely(skb_headlen(skb) > hlen)) {
4042 			nbd++;
4043 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4044 						 &tx_start_bd, hlen,
4045 						 bd_prod);
4046 		}
4047 		if (!CHIP_IS_E1x(bp))
4048 			pbd_e2_parsing_data |=
4049 				(skb_shinfo(skb)->gso_size <<
4050 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4051 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4052 		else
4053 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4054 	}
4055 
4056 	/* Set the PBD's parsing_data field if not zero
4057 	 * (for the chips newer than 57711).
4058 	 */
4059 	if (pbd_e2_parsing_data)
4060 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4061 
4062 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4063 
4064 	/* Handle fragmented skb */
4065 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4066 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4067 
4068 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4069 					   skb_frag_size(frag), DMA_TO_DEVICE);
4070 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4071 			unsigned int pkts_compl = 0, bytes_compl = 0;
4072 
4073 			DP(NETIF_MSG_TX_QUEUED,
4074 			   "Unable to map page - dropping packet...\n");
4075 
4076 			/* we need unmap all buffers already mapped
4077 			 * for this SKB;
4078 			 * first_bd->nbd need to be properly updated
4079 			 * before call to bnx2x_free_tx_pkt
4080 			 */
4081 			first_bd->nbd = cpu_to_le16(nbd);
4082 			bnx2x_free_tx_pkt(bp, txdata,
4083 					  TX_BD(txdata->tx_pkt_prod),
4084 					  &pkts_compl, &bytes_compl);
4085 			return NETDEV_TX_OK;
4086 		}
4087 
4088 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4089 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4090 		if (total_pkt_bd == NULL)
4091 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4092 
4093 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4094 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4095 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4096 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4097 		nbd++;
4098 
4099 		DP(NETIF_MSG_TX_QUEUED,
4100 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4101 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4102 		   le16_to_cpu(tx_data_bd->nbytes));
4103 	}
4104 
4105 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4106 
4107 	/* update with actual num BDs */
4108 	first_bd->nbd = cpu_to_le16(nbd);
4109 
4110 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4111 
4112 	/* now send a tx doorbell, counting the next BD
4113 	 * if the packet contains or ends with it
4114 	 */
4115 	if (TX_BD_POFF(bd_prod) < nbd)
4116 		nbd++;
4117 
4118 	/* total_pkt_bytes should be set on the first data BD if
4119 	 * it's not an LSO packet and there is more than one
4120 	 * data BD. In this case pkt_size is limited by an MTU value.
4121 	 * However we prefer to set it for an LSO packet (while we don't
4122 	 * have to) in order to save some CPU cycles in a none-LSO
4123 	 * case, when we much more care about them.
4124 	 */
4125 	if (total_pkt_bd != NULL)
4126 		total_pkt_bd->total_pkt_bytes = pkt_size;
4127 
4128 	if (pbd_e1x)
4129 		DP(NETIF_MSG_TX_QUEUED,
4130 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4131 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4132 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4133 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4134 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4135 	if (pbd_e2)
4136 		DP(NETIF_MSG_TX_QUEUED,
4137 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4138 		   pbd_e2,
4139 		   pbd_e2->data.mac_addr.dst_hi,
4140 		   pbd_e2->data.mac_addr.dst_mid,
4141 		   pbd_e2->data.mac_addr.dst_lo,
4142 		   pbd_e2->data.mac_addr.src_hi,
4143 		   pbd_e2->data.mac_addr.src_mid,
4144 		   pbd_e2->data.mac_addr.src_lo,
4145 		   pbd_e2->parsing_data);
4146 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4147 
4148 	netdev_tx_sent_queue(txq, skb->len);
4149 
4150 	skb_tx_timestamp(skb);
4151 
4152 	txdata->tx_pkt_prod++;
4153 	/*
4154 	 * Make sure that the BD data is updated before updating the producer
4155 	 * since FW might read the BD right after the producer is updated.
4156 	 * This is only applicable for weak-ordered memory model archs such
4157 	 * as IA-64. The following barrier is also mandatory since FW will
4158 	 * assumes packets must have BDs.
4159 	 */
4160 	wmb();
4161 
4162 	txdata->tx_db.data.prod += nbd;
4163 	/* make sure descriptor update is observed by HW */
4164 	wmb();
4165 
4166 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4167 
4168 	txdata->tx_bd_prod += nbd;
4169 
4170 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4171 		netif_tx_stop_queue(txq);
4172 
4173 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4174 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4175 		 * fp->bd_tx_cons */
4176 		smp_mb();
4177 
4178 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4179 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4180 			netif_tx_wake_queue(txq);
4181 	}
4182 	txdata->tx_pkt++;
4183 
4184 	return NETDEV_TX_OK;
4185 }
4186 
4187 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4188 {
4189 	int mfw_vn = BP_FW_MB_IDX(bp);
4190 	u32 tmp;
4191 
4192 	/* If the shmem shouldn't affect configuration, reflect */
4193 	if (!IS_MF_BD(bp)) {
4194 		int i;
4195 
4196 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4197 			c2s_map[i] = i;
4198 		*c2s_default = 0;
4199 
4200 		return;
4201 	}
4202 
4203 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4204 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4205 	c2s_map[0] = tmp & 0xff;
4206 	c2s_map[1] = (tmp >> 8) & 0xff;
4207 	c2s_map[2] = (tmp >> 16) & 0xff;
4208 	c2s_map[3] = (tmp >> 24) & 0xff;
4209 
4210 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4211 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4212 	c2s_map[4] = tmp & 0xff;
4213 	c2s_map[5] = (tmp >> 8) & 0xff;
4214 	c2s_map[6] = (tmp >> 16) & 0xff;
4215 	c2s_map[7] = (tmp >> 24) & 0xff;
4216 
4217 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4218 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4219 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4220 }
4221 
4222 /**
4223  * bnx2x_setup_tc - routine to configure net_device for multi tc
4224  *
4225  * @netdev: net device to configure
4226  * @tc: number of traffic classes to enable
4227  *
4228  * callback connected to the ndo_setup_tc function pointer
4229  */
4230 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4231 {
4232 	struct bnx2x *bp = netdev_priv(dev);
4233 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4234 	int cos, prio, count, offset;
4235 
4236 	/* setup tc must be called under rtnl lock */
4237 	ASSERT_RTNL();
4238 
4239 	/* no traffic classes requested. Aborting */
4240 	if (!num_tc) {
4241 		netdev_reset_tc(dev);
4242 		return 0;
4243 	}
4244 
4245 	/* requested to support too many traffic classes */
4246 	if (num_tc > bp->max_cos) {
4247 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4248 			  num_tc, bp->max_cos);
4249 		return -EINVAL;
4250 	}
4251 
4252 	/* declare amount of supported traffic classes */
4253 	if (netdev_set_num_tc(dev, num_tc)) {
4254 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4255 		return -EINVAL;
4256 	}
4257 
4258 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4259 
4260 	/* configure priority to traffic class mapping */
4261 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4262 		int outer_prio = c2s_map[prio];
4263 
4264 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4265 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4266 		   "mapping priority %d to tc %d\n",
4267 		   outer_prio, bp->prio_to_cos[outer_prio]);
4268 	}
4269 
4270 	/* Use this configuration to differentiate tc0 from other COSes
4271 	   This can be used for ets or pfc, and save the effort of setting
4272 	   up a multio class queue disc or negotiating DCBX with a switch
4273 	netdev_set_prio_tc_map(dev, 0, 0);
4274 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4275 	for (prio = 1; prio < 16; prio++) {
4276 		netdev_set_prio_tc_map(dev, prio, 1);
4277 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4278 	} */
4279 
4280 	/* configure traffic class to transmission queue mapping */
4281 	for (cos = 0; cos < bp->max_cos; cos++) {
4282 		count = BNX2X_NUM_ETH_QUEUES(bp);
4283 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4284 		netdev_set_tc_queue(dev, cos, count, offset);
4285 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4286 		   "mapping tc %d to offset %d count %d\n",
4287 		   cos, offset, count);
4288 	}
4289 
4290 	return 0;
4291 }
4292 
4293 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4294 		     void *type_data)
4295 {
4296 	struct tc_mqprio_qopt *mqprio = type_data;
4297 
4298 	if (type != TC_SETUP_QDISC_MQPRIO)
4299 		return -EOPNOTSUPP;
4300 
4301 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4302 
4303 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4304 }
4305 
4306 /* called with rtnl_lock */
4307 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4308 {
4309 	struct sockaddr *addr = p;
4310 	struct bnx2x *bp = netdev_priv(dev);
4311 	int rc = 0;
4312 
4313 	if (!is_valid_ether_addr(addr->sa_data)) {
4314 		BNX2X_ERR("Requested MAC address is not valid\n");
4315 		return -EINVAL;
4316 	}
4317 
4318 	if (IS_MF_STORAGE_ONLY(bp)) {
4319 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4320 		return -EINVAL;
4321 	}
4322 
4323 	if (netif_running(dev))  {
4324 		rc = bnx2x_set_eth_mac(bp, false);
4325 		if (rc)
4326 			return rc;
4327 	}
4328 
4329 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4330 
4331 	if (netif_running(dev))
4332 		rc = bnx2x_set_eth_mac(bp, true);
4333 
4334 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4335 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4336 
4337 	return rc;
4338 }
4339 
4340 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4341 {
4342 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4343 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4344 	u8 cos;
4345 
4346 	/* Common */
4347 
4348 	if (IS_FCOE_IDX(fp_index)) {
4349 		memset(sb, 0, sizeof(union host_hc_status_block));
4350 		fp->status_blk_mapping = 0;
4351 	} else {
4352 		/* status blocks */
4353 		if (!CHIP_IS_E1x(bp))
4354 			BNX2X_PCI_FREE(sb->e2_sb,
4355 				       bnx2x_fp(bp, fp_index,
4356 						status_blk_mapping),
4357 				       sizeof(struct host_hc_status_block_e2));
4358 		else
4359 			BNX2X_PCI_FREE(sb->e1x_sb,
4360 				       bnx2x_fp(bp, fp_index,
4361 						status_blk_mapping),
4362 				       sizeof(struct host_hc_status_block_e1x));
4363 	}
4364 
4365 	/* Rx */
4366 	if (!skip_rx_queue(bp, fp_index)) {
4367 		bnx2x_free_rx_bds(fp);
4368 
4369 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4370 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4371 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4372 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4373 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4374 
4375 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4376 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4377 			       sizeof(struct eth_fast_path_rx_cqe) *
4378 			       NUM_RCQ_BD);
4379 
4380 		/* SGE ring */
4381 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4382 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4383 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4384 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4385 	}
4386 
4387 	/* Tx */
4388 	if (!skip_tx_queue(bp, fp_index)) {
4389 		/* fastpath tx rings: tx_buf tx_desc */
4390 		for_each_cos_in_tx_queue(fp, cos) {
4391 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4392 
4393 			DP(NETIF_MSG_IFDOWN,
4394 			   "freeing tx memory of fp %d cos %d cid %d\n",
4395 			   fp_index, cos, txdata->cid);
4396 
4397 			BNX2X_FREE(txdata->tx_buf_ring);
4398 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4399 				txdata->tx_desc_mapping,
4400 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4401 		}
4402 	}
4403 	/* end of fastpath */
4404 }
4405 
4406 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4407 {
4408 	int i;
4409 	for_each_cnic_queue(bp, i)
4410 		bnx2x_free_fp_mem_at(bp, i);
4411 }
4412 
4413 void bnx2x_free_fp_mem(struct bnx2x *bp)
4414 {
4415 	int i;
4416 	for_each_eth_queue(bp, i)
4417 		bnx2x_free_fp_mem_at(bp, i);
4418 }
4419 
4420 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4421 {
4422 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4423 	if (!CHIP_IS_E1x(bp)) {
4424 		bnx2x_fp(bp, index, sb_index_values) =
4425 			(__le16 *)status_blk.e2_sb->sb.index_values;
4426 		bnx2x_fp(bp, index, sb_running_index) =
4427 			(__le16 *)status_blk.e2_sb->sb.running_index;
4428 	} else {
4429 		bnx2x_fp(bp, index, sb_index_values) =
4430 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4431 		bnx2x_fp(bp, index, sb_running_index) =
4432 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4433 	}
4434 }
4435 
4436 /* Returns the number of actually allocated BDs */
4437 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4438 			      int rx_ring_size)
4439 {
4440 	struct bnx2x *bp = fp->bp;
4441 	u16 ring_prod, cqe_ring_prod;
4442 	int i, failure_cnt = 0;
4443 
4444 	fp->rx_comp_cons = 0;
4445 	cqe_ring_prod = ring_prod = 0;
4446 
4447 	/* This routine is called only during fo init so
4448 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4449 	 */
4450 	for (i = 0; i < rx_ring_size; i++) {
4451 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4452 			failure_cnt++;
4453 			continue;
4454 		}
4455 		ring_prod = NEXT_RX_IDX(ring_prod);
4456 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4457 		WARN_ON(ring_prod <= (i - failure_cnt));
4458 	}
4459 
4460 	if (failure_cnt)
4461 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4462 			  i - failure_cnt, fp->index);
4463 
4464 	fp->rx_bd_prod = ring_prod;
4465 	/* Limit the CQE producer by the CQE ring size */
4466 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4467 			       cqe_ring_prod);
4468 
4469 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4470 
4471 	return i - failure_cnt;
4472 }
4473 
4474 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4475 {
4476 	int i;
4477 
4478 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4479 		struct eth_rx_cqe_next_page *nextpg;
4480 
4481 		nextpg = (struct eth_rx_cqe_next_page *)
4482 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4483 		nextpg->addr_hi =
4484 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4485 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4486 		nextpg->addr_lo =
4487 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4488 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4489 	}
4490 }
4491 
4492 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4493 {
4494 	union host_hc_status_block *sb;
4495 	struct bnx2x_fastpath *fp = &bp->fp[index];
4496 	int ring_size = 0;
4497 	u8 cos;
4498 	int rx_ring_size = 0;
4499 
4500 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4501 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4502 		bp->rx_ring_size = rx_ring_size;
4503 	} else if (!bp->rx_ring_size) {
4504 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4505 
4506 		if (CHIP_IS_E3(bp)) {
4507 			u32 cfg = SHMEM_RD(bp,
4508 					   dev_info.port_hw_config[BP_PORT(bp)].
4509 					   default_cfg);
4510 
4511 			/* Decrease ring size for 1G functions */
4512 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4513 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4514 				rx_ring_size /= 10;
4515 		}
4516 
4517 		/* allocate at least number of buffers required by FW */
4518 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4519 				     MIN_RX_SIZE_TPA, rx_ring_size);
4520 
4521 		bp->rx_ring_size = rx_ring_size;
4522 	} else /* if rx_ring_size specified - use it */
4523 		rx_ring_size = bp->rx_ring_size;
4524 
4525 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4526 
4527 	/* Common */
4528 	sb = &bnx2x_fp(bp, index, status_blk);
4529 
4530 	if (!IS_FCOE_IDX(index)) {
4531 		/* status blocks */
4532 		if (!CHIP_IS_E1x(bp)) {
4533 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4534 						    sizeof(struct host_hc_status_block_e2));
4535 			if (!sb->e2_sb)
4536 				goto alloc_mem_err;
4537 		} else {
4538 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4539 						     sizeof(struct host_hc_status_block_e1x));
4540 			if (!sb->e1x_sb)
4541 				goto alloc_mem_err;
4542 		}
4543 	}
4544 
4545 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4546 	 * set shortcuts for it.
4547 	 */
4548 	if (!IS_FCOE_IDX(index))
4549 		set_sb_shortcuts(bp, index);
4550 
4551 	/* Tx */
4552 	if (!skip_tx_queue(bp, index)) {
4553 		/* fastpath tx rings: tx_buf tx_desc */
4554 		for_each_cos_in_tx_queue(fp, cos) {
4555 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4556 
4557 			DP(NETIF_MSG_IFUP,
4558 			   "allocating tx memory of fp %d cos %d\n",
4559 			   index, cos);
4560 
4561 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4562 						      sizeof(struct sw_tx_bd),
4563 						      GFP_KERNEL);
4564 			if (!txdata->tx_buf_ring)
4565 				goto alloc_mem_err;
4566 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4567 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4568 			if (!txdata->tx_desc_ring)
4569 				goto alloc_mem_err;
4570 		}
4571 	}
4572 
4573 	/* Rx */
4574 	if (!skip_rx_queue(bp, index)) {
4575 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4576 		bnx2x_fp(bp, index, rx_buf_ring) =
4577 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4578 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4579 			goto alloc_mem_err;
4580 		bnx2x_fp(bp, index, rx_desc_ring) =
4581 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4582 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4583 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4584 			goto alloc_mem_err;
4585 
4586 		/* Seed all CQEs by 1s */
4587 		bnx2x_fp(bp, index, rx_comp_ring) =
4588 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4589 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4590 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4591 			goto alloc_mem_err;
4592 
4593 		/* SGE ring */
4594 		bnx2x_fp(bp, index, rx_page_ring) =
4595 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4596 				GFP_KERNEL);
4597 		if (!bnx2x_fp(bp, index, rx_page_ring))
4598 			goto alloc_mem_err;
4599 		bnx2x_fp(bp, index, rx_sge_ring) =
4600 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4601 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4602 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4603 			goto alloc_mem_err;
4604 		/* RX BD ring */
4605 		bnx2x_set_next_page_rx_bd(fp);
4606 
4607 		/* CQ ring */
4608 		bnx2x_set_next_page_rx_cq(fp);
4609 
4610 		/* BDs */
4611 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4612 		if (ring_size < rx_ring_size)
4613 			goto alloc_mem_err;
4614 	}
4615 
4616 	return 0;
4617 
4618 /* handles low memory cases */
4619 alloc_mem_err:
4620 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4621 						index, ring_size);
4622 	/* FW will drop all packets if queue is not big enough,
4623 	 * In these cases we disable the queue
4624 	 * Min size is different for OOO, TPA and non-TPA queues
4625 	 */
4626 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4627 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4628 			/* release memory allocated for this queue */
4629 			bnx2x_free_fp_mem_at(bp, index);
4630 			return -ENOMEM;
4631 	}
4632 	return 0;
4633 }
4634 
4635 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4636 {
4637 	if (!NO_FCOE(bp))
4638 		/* FCoE */
4639 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4640 			/* we will fail load process instead of mark
4641 			 * NO_FCOE_FLAG
4642 			 */
4643 			return -ENOMEM;
4644 
4645 	return 0;
4646 }
4647 
4648 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4649 {
4650 	int i;
4651 
4652 	/* 1. Allocate FP for leading - fatal if error
4653 	 * 2. Allocate RSS - fix number of queues if error
4654 	 */
4655 
4656 	/* leading */
4657 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4658 		return -ENOMEM;
4659 
4660 	/* RSS */
4661 	for_each_nondefault_eth_queue(bp, i)
4662 		if (bnx2x_alloc_fp_mem_at(bp, i))
4663 			break;
4664 
4665 	/* handle memory failures */
4666 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4667 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4668 
4669 		WARN_ON(delta < 0);
4670 		bnx2x_shrink_eth_fp(bp, delta);
4671 		if (CNIC_SUPPORT(bp))
4672 			/* move non eth FPs next to last eth FP
4673 			 * must be done in that order
4674 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4675 			 */
4676 
4677 			/* move FCoE fp even NO_FCOE_FLAG is on */
4678 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4679 		bp->num_ethernet_queues -= delta;
4680 		bp->num_queues = bp->num_ethernet_queues +
4681 				 bp->num_cnic_queues;
4682 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4683 			  bp->num_queues + delta, bp->num_queues);
4684 	}
4685 
4686 	return 0;
4687 }
4688 
4689 void bnx2x_free_mem_bp(struct bnx2x *bp)
4690 {
4691 	int i;
4692 
4693 	for (i = 0; i < bp->fp_array_size; i++)
4694 		kfree(bp->fp[i].tpa_info);
4695 	kfree(bp->fp);
4696 	kfree(bp->sp_objs);
4697 	kfree(bp->fp_stats);
4698 	kfree(bp->bnx2x_txq);
4699 	kfree(bp->msix_table);
4700 	kfree(bp->ilt);
4701 }
4702 
4703 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4704 {
4705 	struct bnx2x_fastpath *fp;
4706 	struct msix_entry *tbl;
4707 	struct bnx2x_ilt *ilt;
4708 	int msix_table_size = 0;
4709 	int fp_array_size, txq_array_size;
4710 	int i;
4711 
4712 	/*
4713 	 * The biggest MSI-X table we might need is as a maximum number of fast
4714 	 * path IGU SBs plus default SB (for PF only).
4715 	 */
4716 	msix_table_size = bp->igu_sb_cnt;
4717 	if (IS_PF(bp))
4718 		msix_table_size++;
4719 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4720 
4721 	/* fp array: RSS plus CNIC related L2 queues */
4722 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4723 	bp->fp_array_size = fp_array_size;
4724 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4725 
4726 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4727 	if (!fp)
4728 		goto alloc_err;
4729 	for (i = 0; i < bp->fp_array_size; i++) {
4730 		fp[i].tpa_info =
4731 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4732 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4733 		if (!(fp[i].tpa_info))
4734 			goto alloc_err;
4735 	}
4736 
4737 	bp->fp = fp;
4738 
4739 	/* allocate sp objs */
4740 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4741 			      GFP_KERNEL);
4742 	if (!bp->sp_objs)
4743 		goto alloc_err;
4744 
4745 	/* allocate fp_stats */
4746 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4747 			       GFP_KERNEL);
4748 	if (!bp->fp_stats)
4749 		goto alloc_err;
4750 
4751 	/* Allocate memory for the transmission queues array */
4752 	txq_array_size =
4753 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4754 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4755 
4756 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4757 				GFP_KERNEL);
4758 	if (!bp->bnx2x_txq)
4759 		goto alloc_err;
4760 
4761 	/* msix table */
4762 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4763 	if (!tbl)
4764 		goto alloc_err;
4765 	bp->msix_table = tbl;
4766 
4767 	/* ilt */
4768 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4769 	if (!ilt)
4770 		goto alloc_err;
4771 	bp->ilt = ilt;
4772 
4773 	return 0;
4774 alloc_err:
4775 	bnx2x_free_mem_bp(bp);
4776 	return -ENOMEM;
4777 }
4778 
4779 int bnx2x_reload_if_running(struct net_device *dev)
4780 {
4781 	struct bnx2x *bp = netdev_priv(dev);
4782 
4783 	if (unlikely(!netif_running(dev)))
4784 		return 0;
4785 
4786 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4787 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4788 }
4789 
4790 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4791 {
4792 	u32 sel_phy_idx = 0;
4793 	if (bp->link_params.num_phys <= 1)
4794 		return INT_PHY;
4795 
4796 	if (bp->link_vars.link_up) {
4797 		sel_phy_idx = EXT_PHY1;
4798 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4799 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4800 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4801 			sel_phy_idx = EXT_PHY2;
4802 	} else {
4803 
4804 		switch (bnx2x_phy_selection(&bp->link_params)) {
4805 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4806 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4807 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4808 		       sel_phy_idx = EXT_PHY1;
4809 		       break;
4810 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4811 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4812 		       sel_phy_idx = EXT_PHY2;
4813 		       break;
4814 		}
4815 	}
4816 
4817 	return sel_phy_idx;
4818 }
4819 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4820 {
4821 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4822 	/*
4823 	 * The selected activated PHY is always after swapping (in case PHY
4824 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4825 	 * the configuration
4826 	 */
4827 
4828 	if (bp->link_params.multi_phy_config &
4829 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4830 		if (sel_phy_idx == EXT_PHY1)
4831 			sel_phy_idx = EXT_PHY2;
4832 		else if (sel_phy_idx == EXT_PHY2)
4833 			sel_phy_idx = EXT_PHY1;
4834 	}
4835 	return LINK_CONFIG_IDX(sel_phy_idx);
4836 }
4837 
4838 #ifdef NETDEV_FCOE_WWNN
4839 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4840 {
4841 	struct bnx2x *bp = netdev_priv(dev);
4842 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4843 
4844 	switch (type) {
4845 	case NETDEV_FCOE_WWNN:
4846 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4847 				cp->fcoe_wwn_node_name_lo);
4848 		break;
4849 	case NETDEV_FCOE_WWPN:
4850 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4851 				cp->fcoe_wwn_port_name_lo);
4852 		break;
4853 	default:
4854 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4855 		return -EINVAL;
4856 	}
4857 
4858 	return 0;
4859 }
4860 #endif
4861 
4862 /* called with rtnl_lock */
4863 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4864 {
4865 	struct bnx2x *bp = netdev_priv(dev);
4866 
4867 	if (pci_num_vf(bp->pdev)) {
4868 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4869 		return -EPERM;
4870 	}
4871 
4872 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4873 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4874 		return -EAGAIN;
4875 	}
4876 
4877 	/* This does not race with packet allocation
4878 	 * because the actual alloc size is
4879 	 * only updated as part of load
4880 	 */
4881 	dev->mtu = new_mtu;
4882 
4883 	if (!bnx2x_mtu_allows_gro(new_mtu))
4884 		dev->features &= ~NETIF_F_GRO_HW;
4885 
4886 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4887 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4888 
4889 	return bnx2x_reload_if_running(dev);
4890 }
4891 
4892 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4893 				     netdev_features_t features)
4894 {
4895 	struct bnx2x *bp = netdev_priv(dev);
4896 
4897 	if (pci_num_vf(bp->pdev)) {
4898 		netdev_features_t changed = dev->features ^ features;
4899 
4900 		/* Revert the requested changes in features if they
4901 		 * would require internal reload of PF in bnx2x_set_features().
4902 		 */
4903 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4904 			features &= ~NETIF_F_RXCSUM;
4905 			features |= dev->features & NETIF_F_RXCSUM;
4906 		}
4907 
4908 		if (changed & NETIF_F_LOOPBACK) {
4909 			features &= ~NETIF_F_LOOPBACK;
4910 			features |= dev->features & NETIF_F_LOOPBACK;
4911 		}
4912 	}
4913 
4914 	/* TPA requires Rx CSUM offloading */
4915 	if (!(features & NETIF_F_RXCSUM))
4916 		features &= ~NETIF_F_LRO;
4917 
4918 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4919 		features &= ~NETIF_F_GRO_HW;
4920 	if (features & NETIF_F_GRO_HW)
4921 		features &= ~NETIF_F_LRO;
4922 
4923 	return features;
4924 }
4925 
4926 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4927 {
4928 	struct bnx2x *bp = netdev_priv(dev);
4929 	netdev_features_t changes = features ^ dev->features;
4930 	bool bnx2x_reload = false;
4931 	int rc;
4932 
4933 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4934 	if (!pci_num_vf(bp->pdev)) {
4935 		if (features & NETIF_F_LOOPBACK) {
4936 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4937 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4938 				bnx2x_reload = true;
4939 			}
4940 		} else {
4941 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4942 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4943 				bnx2x_reload = true;
4944 			}
4945 		}
4946 	}
4947 
4948 	/* Don't care about GRO changes */
4949 	changes &= ~NETIF_F_GRO;
4950 
4951 	if (changes)
4952 		bnx2x_reload = true;
4953 
4954 	if (bnx2x_reload) {
4955 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4956 			dev->features = features;
4957 			rc = bnx2x_reload_if_running(dev);
4958 			return rc ? rc : 1;
4959 		}
4960 		/* else: bnx2x_nic_load() will be called at end of recovery */
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 void bnx2x_tx_timeout(struct net_device *dev)
4967 {
4968 	struct bnx2x *bp = netdev_priv(dev);
4969 
4970 	/* We want the information of the dump logged,
4971 	 * but calling bnx2x_panic() would kill all chances of recovery.
4972 	 */
4973 	if (!bp->panic)
4974 #ifndef BNX2X_STOP_ON_ERROR
4975 		bnx2x_panic_dump(bp, false);
4976 #else
4977 		bnx2x_panic();
4978 #endif
4979 
4980 	/* This allows the netif to be shutdown gracefully before resetting */
4981 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4982 }
4983 
4984 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4985 {
4986 	struct net_device *dev = pci_get_drvdata(pdev);
4987 	struct bnx2x *bp;
4988 
4989 	if (!dev) {
4990 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4991 		return -ENODEV;
4992 	}
4993 	bp = netdev_priv(dev);
4994 
4995 	rtnl_lock();
4996 
4997 	pci_save_state(pdev);
4998 
4999 	if (!netif_running(dev)) {
5000 		rtnl_unlock();
5001 		return 0;
5002 	}
5003 
5004 	netif_device_detach(dev);
5005 
5006 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5007 
5008 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5009 
5010 	rtnl_unlock();
5011 
5012 	return 0;
5013 }
5014 
5015 int bnx2x_resume(struct pci_dev *pdev)
5016 {
5017 	struct net_device *dev = pci_get_drvdata(pdev);
5018 	struct bnx2x *bp;
5019 	int rc;
5020 
5021 	if (!dev) {
5022 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5023 		return -ENODEV;
5024 	}
5025 	bp = netdev_priv(dev);
5026 
5027 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5028 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5029 		return -EAGAIN;
5030 	}
5031 
5032 	rtnl_lock();
5033 
5034 	pci_restore_state(pdev);
5035 
5036 	if (!netif_running(dev)) {
5037 		rtnl_unlock();
5038 		return 0;
5039 	}
5040 
5041 	bnx2x_set_power_state(bp, PCI_D0);
5042 	netif_device_attach(dev);
5043 
5044 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5045 
5046 	rtnl_unlock();
5047 
5048 	return rc;
5049 }
5050 
5051 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5052 			      u32 cid)
5053 {
5054 	if (!cxt) {
5055 		BNX2X_ERR("bad context pointer %p\n", cxt);
5056 		return;
5057 	}
5058 
5059 	/* ustorm cxt validation */
5060 	cxt->ustorm_ag_context.cdu_usage =
5061 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5062 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5063 	/* xcontext validation */
5064 	cxt->xstorm_ag_context.cdu_reserved =
5065 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5066 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5067 }
5068 
5069 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5070 				    u8 fw_sb_id, u8 sb_index,
5071 				    u8 ticks)
5072 {
5073 	u32 addr = BAR_CSTRORM_INTMEM +
5074 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5075 	REG_WR8(bp, addr, ticks);
5076 	DP(NETIF_MSG_IFUP,
5077 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5078 	   port, fw_sb_id, sb_index, ticks);
5079 }
5080 
5081 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5082 				    u16 fw_sb_id, u8 sb_index,
5083 				    u8 disable)
5084 {
5085 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5086 	u32 addr = BAR_CSTRORM_INTMEM +
5087 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5088 	u8 flags = REG_RD8(bp, addr);
5089 	/* clear and set */
5090 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5091 	flags |= enable_flag;
5092 	REG_WR8(bp, addr, flags);
5093 	DP(NETIF_MSG_IFUP,
5094 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5095 	   port, fw_sb_id, sb_index, disable);
5096 }
5097 
5098 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5099 				    u8 sb_index, u8 disable, u16 usec)
5100 {
5101 	int port = BP_PORT(bp);
5102 	u8 ticks = usec / BNX2X_BTR;
5103 
5104 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5105 
5106 	disable = disable ? 1 : (usec ? 0 : 1);
5107 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5108 }
5109 
5110 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5111 			    u32 verbose)
5112 {
5113 	smp_mb__before_atomic();
5114 	set_bit(flag, &bp->sp_rtnl_state);
5115 	smp_mb__after_atomic();
5116 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5117 	   flag);
5118 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5119 }
5120