xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision c6fbb759)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	length = skb->len;
393 	len = skb_headlen(skb);
394 	last_frag = skb_shinfo(skb)->nr_frags;
395 
396 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
397 
398 	txbd->tx_bd_opaque = prod;
399 
400 	tx_buf = &txr->tx_buf_ring[prod];
401 	tx_buf->skb = skb;
402 	tx_buf->nr_frags = last_frag;
403 
404 	vlan_tag_flags = 0;
405 	cfa_action = bnxt_xmit_get_cfa_action(skb);
406 	if (skb_vlan_tag_present(skb)) {
407 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
408 				 skb_vlan_tag_get(skb);
409 		/* Currently supports 8021Q, 8021AD vlan offloads
410 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
411 		 */
412 		if (skb->vlan_proto == htons(ETH_P_8021Q))
413 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
414 	}
415 
416 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
417 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
418 
419 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
420 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
421 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
422 					    &ptp->tx_hdr_off)) {
423 				if (vlan_tag_flags)
424 					ptp->tx_hdr_off += VLAN_HLEN;
425 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
426 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
427 			} else {
428 				atomic_inc(&bp->ptp_cfg->tx_avail);
429 			}
430 		}
431 	}
432 
433 	if (unlikely(skb->no_fcs))
434 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
435 
436 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
437 	    !lflags) {
438 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
439 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
440 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
441 		void __iomem *db = txr->tx_db.doorbell;
442 		void *pdata = tx_push_buf->data;
443 		u64 *end;
444 		int j, push_len;
445 
446 		/* Set COAL_NOW to be ready quickly for the next push */
447 		tx_push->tx_bd_len_flags_type =
448 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
449 					TX_BD_TYPE_LONG_TX_BD |
450 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
451 					TX_BD_FLAGS_COAL_NOW |
452 					TX_BD_FLAGS_PACKET_END |
453 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
454 
455 		if (skb->ip_summed == CHECKSUM_PARTIAL)
456 			tx_push1->tx_bd_hsize_lflags =
457 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
458 		else
459 			tx_push1->tx_bd_hsize_lflags = 0;
460 
461 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 		tx_push1->tx_bd_cfa_action =
463 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 
465 		end = pdata + length;
466 		end = PTR_ALIGN(end, 8) - 1;
467 		*end = 0;
468 
469 		skb_copy_from_linear_data(skb, pdata, len);
470 		pdata += len;
471 		for (j = 0; j < last_frag; j++) {
472 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
473 			void *fptr;
474 
475 			fptr = skb_frag_address_safe(frag);
476 			if (!fptr)
477 				goto normal_tx;
478 
479 			memcpy(pdata, fptr, skb_frag_size(frag));
480 			pdata += skb_frag_size(frag);
481 		}
482 
483 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
484 		txbd->tx_bd_haddr = txr->data_mapping;
485 		prod = NEXT_TX(prod);
486 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
487 		memcpy(txbd, tx_push1, sizeof(*txbd));
488 		prod = NEXT_TX(prod);
489 		tx_push->doorbell =
490 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
491 		txr->tx_prod = prod;
492 
493 		tx_buf->is_push = 1;
494 		netdev_tx_sent_queue(txq, skb->len);
495 		wmb();	/* Sync is_push and byte queue before pushing data */
496 
497 		push_len = (length + sizeof(*tx_push) + 7) / 8;
498 		if (push_len > 16) {
499 			__iowrite64_copy(db, tx_push_buf, 16);
500 			__iowrite32_copy(db + 4, tx_push_buf + 1,
501 					 (push_len - 16) << 1);
502 		} else {
503 			__iowrite64_copy(db, tx_push_buf, push_len);
504 		}
505 
506 		goto tx_done;
507 	}
508 
509 normal_tx:
510 	if (length < BNXT_MIN_PKT_SIZE) {
511 		pad = BNXT_MIN_PKT_SIZE - length;
512 		if (skb_pad(skb, pad))
513 			/* SKB already freed. */
514 			goto tx_kick_pending;
515 		length = BNXT_MIN_PKT_SIZE;
516 	}
517 
518 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
519 
520 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
521 		goto tx_free;
522 
523 	dma_unmap_addr_set(tx_buf, mapping, mapping);
524 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
525 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
526 
527 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
528 
529 	prod = NEXT_TX(prod);
530 	txbd1 = (struct tx_bd_ext *)
531 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
532 
533 	txbd1->tx_bd_hsize_lflags = lflags;
534 	if (skb_is_gso(skb)) {
535 		u32 hdr_len;
536 
537 		if (skb->encapsulation)
538 			hdr_len = skb_inner_tcp_all_headers(skb);
539 		else
540 			hdr_len = skb_tcp_all_headers(skb);
541 
542 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
543 					TX_BD_FLAGS_T_IPID |
544 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
545 		length = skb_shinfo(skb)->gso_size;
546 		txbd1->tx_bd_mss = cpu_to_le32(length);
547 		length += hdr_len;
548 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
549 		txbd1->tx_bd_hsize_lflags |=
550 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
551 		txbd1->tx_bd_mss = 0;
552 	}
553 
554 	length >>= 9;
555 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
556 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
557 				     skb->len);
558 		i = 0;
559 		goto tx_dma_error;
560 	}
561 	flags |= bnxt_lhint_arr[length];
562 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
563 
564 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
565 	txbd1->tx_bd_cfa_action =
566 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
567 	for (i = 0; i < last_frag; i++) {
568 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
569 
570 		prod = NEXT_TX(prod);
571 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
572 
573 		len = skb_frag_size(frag);
574 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
575 					   DMA_TO_DEVICE);
576 
577 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
578 			goto tx_dma_error;
579 
580 		tx_buf = &txr->tx_buf_ring[prod];
581 		dma_unmap_addr_set(tx_buf, mapping, mapping);
582 
583 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
584 
585 		flags = len << TX_BD_LEN_SHIFT;
586 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
587 	}
588 
589 	flags &= ~TX_BD_LEN;
590 	txbd->tx_bd_len_flags_type =
591 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
592 			    TX_BD_FLAGS_PACKET_END);
593 
594 	netdev_tx_sent_queue(txq, skb->len);
595 
596 	skb_tx_timestamp(skb);
597 
598 	/* Sync BD data before updating doorbell */
599 	wmb();
600 
601 	prod = NEXT_TX(prod);
602 	txr->tx_prod = prod;
603 
604 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
605 		bnxt_txr_db_kick(bp, txr, prod);
606 	else
607 		txr->kick_pending = 1;
608 
609 tx_done:
610 
611 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
612 		if (netdev_xmit_more() && !tx_buf->is_push)
613 			bnxt_txr_db_kick(bp, txr, prod);
614 
615 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
616 	}
617 	return NETDEV_TX_OK;
618 
619 tx_dma_error:
620 	if (BNXT_TX_PTP_IS_SET(lflags))
621 		atomic_inc(&bp->ptp_cfg->tx_avail);
622 
623 	last_frag = i;
624 
625 	/* start back at beginning and unmap skb */
626 	prod = txr->tx_prod;
627 	tx_buf = &txr->tx_buf_ring[prod];
628 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
629 			 skb_headlen(skb), DMA_TO_DEVICE);
630 	prod = NEXT_TX(prod);
631 
632 	/* unmap remaining mapped pages */
633 	for (i = 0; i < last_frag; i++) {
634 		prod = NEXT_TX(prod);
635 		tx_buf = &txr->tx_buf_ring[prod];
636 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
637 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
638 			       DMA_TO_DEVICE);
639 	}
640 
641 tx_free:
642 	dev_kfree_skb_any(skb);
643 tx_kick_pending:
644 	if (txr->kick_pending)
645 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
646 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
647 	dev_core_stats_tx_dropped_inc(dev);
648 	return NETDEV_TX_OK;
649 }
650 
651 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
652 {
653 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
654 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
655 	u16 cons = txr->tx_cons;
656 	struct pci_dev *pdev = bp->pdev;
657 	int i;
658 	unsigned int tx_bytes = 0;
659 
660 	for (i = 0; i < nr_pkts; i++) {
661 		struct bnxt_sw_tx_bd *tx_buf;
662 		struct sk_buff *skb;
663 		int j, last;
664 
665 		tx_buf = &txr->tx_buf_ring[cons];
666 		cons = NEXT_TX(cons);
667 		skb = tx_buf->skb;
668 		tx_buf->skb = NULL;
669 
670 		tx_bytes += skb->len;
671 
672 		if (tx_buf->is_push) {
673 			tx_buf->is_push = 0;
674 			goto next_tx_int;
675 		}
676 
677 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
678 				 skb_headlen(skb), DMA_TO_DEVICE);
679 		last = tx_buf->nr_frags;
680 
681 		for (j = 0; j < last; j++) {
682 			cons = NEXT_TX(cons);
683 			tx_buf = &txr->tx_buf_ring[cons];
684 			dma_unmap_page(
685 				&pdev->dev,
686 				dma_unmap_addr(tx_buf, mapping),
687 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
688 				DMA_TO_DEVICE);
689 		}
690 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
691 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
692 				/* PTP worker takes ownership of the skb */
693 				if (!bnxt_get_tx_ts_p5(bp, skb))
694 					skb = NULL;
695 				else
696 					atomic_inc(&bp->ptp_cfg->tx_avail);
697 			}
698 		}
699 
700 next_tx_int:
701 		cons = NEXT_TX(cons);
702 
703 		dev_kfree_skb_any(skb);
704 	}
705 
706 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
707 	txr->tx_cons = cons;
708 
709 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
710 	 * before checking for netif_tx_queue_stopped().  Without the
711 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
712 	 * will miss it and cause the queue to be stopped forever.
713 	 */
714 	smp_mb();
715 
716 	if (unlikely(netif_tx_queue_stopped(txq)) &&
717 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
718 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
719 		netif_tx_wake_queue(txq);
720 }
721 
722 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
723 					 struct bnxt_rx_ring_info *rxr,
724 					 gfp_t gfp)
725 {
726 	struct device *dev = &bp->pdev->dev;
727 	struct page *page;
728 
729 	page = page_pool_dev_alloc_pages(rxr->page_pool);
730 	if (!page)
731 		return NULL;
732 
733 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
734 				      DMA_ATTR_WEAK_ORDERING);
735 	if (dma_mapping_error(dev, *mapping)) {
736 		page_pool_recycle_direct(rxr->page_pool, page);
737 		return NULL;
738 	}
739 	return page;
740 }
741 
742 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
743 				       gfp_t gfp)
744 {
745 	u8 *data;
746 	struct pci_dev *pdev = bp->pdev;
747 
748 	if (gfp == GFP_ATOMIC)
749 		data = napi_alloc_frag(bp->rx_buf_size);
750 	else
751 		data = netdev_alloc_frag(bp->rx_buf_size);
752 	if (!data)
753 		return NULL;
754 
755 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
756 					bp->rx_buf_use_size, bp->rx_dir,
757 					DMA_ATTR_WEAK_ORDERING);
758 
759 	if (dma_mapping_error(&pdev->dev, *mapping)) {
760 		skb_free_frag(data);
761 		data = NULL;
762 	}
763 	return data;
764 }
765 
766 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
767 		       u16 prod, gfp_t gfp)
768 {
769 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
771 	dma_addr_t mapping;
772 
773 	if (BNXT_RX_PAGE_MODE(bp)) {
774 		struct page *page =
775 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
776 
777 		if (!page)
778 			return -ENOMEM;
779 
780 		mapping += bp->rx_dma_offset;
781 		rx_buf->data = page;
782 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
783 	} else {
784 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
785 
786 		if (!data)
787 			return -ENOMEM;
788 
789 		rx_buf->data = data;
790 		rx_buf->data_ptr = data + bp->rx_offset;
791 	}
792 	rx_buf->mapping = mapping;
793 
794 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
795 	return 0;
796 }
797 
798 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
799 {
800 	u16 prod = rxr->rx_prod;
801 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
802 	struct rx_bd *cons_bd, *prod_bd;
803 
804 	prod_rx_buf = &rxr->rx_buf_ring[prod];
805 	cons_rx_buf = &rxr->rx_buf_ring[cons];
806 
807 	prod_rx_buf->data = data;
808 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
809 
810 	prod_rx_buf->mapping = cons_rx_buf->mapping;
811 
812 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
813 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
814 
815 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
816 }
817 
818 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
819 {
820 	u16 next, max = rxr->rx_agg_bmap_size;
821 
822 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
823 	if (next >= max)
824 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
825 	return next;
826 }
827 
828 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
829 				     struct bnxt_rx_ring_info *rxr,
830 				     u16 prod, gfp_t gfp)
831 {
832 	struct rx_bd *rxbd =
833 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
834 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
835 	struct pci_dev *pdev = bp->pdev;
836 	struct page *page;
837 	dma_addr_t mapping;
838 	u16 sw_prod = rxr->rx_sw_agg_prod;
839 	unsigned int offset = 0;
840 
841 	if (BNXT_RX_PAGE_MODE(bp)) {
842 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
843 
844 		if (!page)
845 			return -ENOMEM;
846 
847 	} else {
848 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
849 			page = rxr->rx_page;
850 			if (!page) {
851 				page = alloc_page(gfp);
852 				if (!page)
853 					return -ENOMEM;
854 				rxr->rx_page = page;
855 				rxr->rx_page_offset = 0;
856 			}
857 			offset = rxr->rx_page_offset;
858 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
859 			if (rxr->rx_page_offset == PAGE_SIZE)
860 				rxr->rx_page = NULL;
861 			else
862 				get_page(page);
863 		} else {
864 			page = alloc_page(gfp);
865 			if (!page)
866 				return -ENOMEM;
867 		}
868 
869 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
870 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
871 					     DMA_ATTR_WEAK_ORDERING);
872 		if (dma_mapping_error(&pdev->dev, mapping)) {
873 			__free_page(page);
874 			return -EIO;
875 		}
876 	}
877 
878 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
879 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
880 
881 	__set_bit(sw_prod, rxr->rx_agg_bmap);
882 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
883 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
884 
885 	rx_agg_buf->page = page;
886 	rx_agg_buf->offset = offset;
887 	rx_agg_buf->mapping = mapping;
888 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
889 	rxbd->rx_bd_opaque = sw_prod;
890 	return 0;
891 }
892 
893 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
894 				       struct bnxt_cp_ring_info *cpr,
895 				       u16 cp_cons, u16 curr)
896 {
897 	struct rx_agg_cmp *agg;
898 
899 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
900 	agg = (struct rx_agg_cmp *)
901 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
902 	return agg;
903 }
904 
905 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
906 					      struct bnxt_rx_ring_info *rxr,
907 					      u16 agg_id, u16 curr)
908 {
909 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
910 
911 	return &tpa_info->agg_arr[curr];
912 }
913 
914 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
915 				   u16 start, u32 agg_bufs, bool tpa)
916 {
917 	struct bnxt_napi *bnapi = cpr->bnapi;
918 	struct bnxt *bp = bnapi->bp;
919 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
920 	u16 prod = rxr->rx_agg_prod;
921 	u16 sw_prod = rxr->rx_sw_agg_prod;
922 	bool p5_tpa = false;
923 	u32 i;
924 
925 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
926 		p5_tpa = true;
927 
928 	for (i = 0; i < agg_bufs; i++) {
929 		u16 cons;
930 		struct rx_agg_cmp *agg;
931 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
932 		struct rx_bd *prod_bd;
933 		struct page *page;
934 
935 		if (p5_tpa)
936 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
937 		else
938 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
939 		cons = agg->rx_agg_cmp_opaque;
940 		__clear_bit(cons, rxr->rx_agg_bmap);
941 
942 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
943 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
944 
945 		__set_bit(sw_prod, rxr->rx_agg_bmap);
946 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
947 		cons_rx_buf = &rxr->rx_agg_ring[cons];
948 
949 		/* It is possible for sw_prod to be equal to cons, so
950 		 * set cons_rx_buf->page to NULL first.
951 		 */
952 		page = cons_rx_buf->page;
953 		cons_rx_buf->page = NULL;
954 		prod_rx_buf->page = page;
955 		prod_rx_buf->offset = cons_rx_buf->offset;
956 
957 		prod_rx_buf->mapping = cons_rx_buf->mapping;
958 
959 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
960 
961 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
962 		prod_bd->rx_bd_opaque = sw_prod;
963 
964 		prod = NEXT_RX_AGG(prod);
965 		sw_prod = NEXT_RX_AGG(sw_prod);
966 	}
967 	rxr->rx_agg_prod = prod;
968 	rxr->rx_sw_agg_prod = sw_prod;
969 }
970 
971 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
972 					      struct bnxt_rx_ring_info *rxr,
973 					      u16 cons, void *data, u8 *data_ptr,
974 					      dma_addr_t dma_addr,
975 					      unsigned int offset_and_len)
976 {
977 	unsigned int len = offset_and_len & 0xffff;
978 	struct page *page = data;
979 	u16 prod = rxr->rx_prod;
980 	struct sk_buff *skb;
981 	int err;
982 
983 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
984 	if (unlikely(err)) {
985 		bnxt_reuse_rx_data(rxr, cons, data);
986 		return NULL;
987 	}
988 	dma_addr -= bp->rx_dma_offset;
989 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
990 			     DMA_ATTR_WEAK_ORDERING);
991 	skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE +
992 					    bp->rx_dma_offset);
993 	if (!skb) {
994 		__free_page(page);
995 		return NULL;
996 	}
997 	skb_mark_for_recycle(skb);
998 	skb_reserve(skb, bp->rx_dma_offset);
999 	__skb_put(skb, len);
1000 
1001 	return skb;
1002 }
1003 
1004 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1005 					struct bnxt_rx_ring_info *rxr,
1006 					u16 cons, void *data, u8 *data_ptr,
1007 					dma_addr_t dma_addr,
1008 					unsigned int offset_and_len)
1009 {
1010 	unsigned int payload = offset_and_len >> 16;
1011 	unsigned int len = offset_and_len & 0xffff;
1012 	skb_frag_t *frag;
1013 	struct page *page = data;
1014 	u16 prod = rxr->rx_prod;
1015 	struct sk_buff *skb;
1016 	int off, err;
1017 
1018 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1019 	if (unlikely(err)) {
1020 		bnxt_reuse_rx_data(rxr, cons, data);
1021 		return NULL;
1022 	}
1023 	dma_addr -= bp->rx_dma_offset;
1024 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1025 			     DMA_ATTR_WEAK_ORDERING);
1026 
1027 	if (unlikely(!payload))
1028 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1029 
1030 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1031 	if (!skb) {
1032 		__free_page(page);
1033 		return NULL;
1034 	}
1035 
1036 	skb_mark_for_recycle(skb);
1037 	off = (void *)data_ptr - page_address(page);
1038 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1039 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1040 	       payload + NET_IP_ALIGN);
1041 
1042 	frag = &skb_shinfo(skb)->frags[0];
1043 	skb_frag_size_sub(frag, payload);
1044 	skb_frag_off_add(frag, payload);
1045 	skb->data_len -= payload;
1046 	skb->tail += payload;
1047 
1048 	return skb;
1049 }
1050 
1051 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1052 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1053 				   void *data, u8 *data_ptr,
1054 				   dma_addr_t dma_addr,
1055 				   unsigned int offset_and_len)
1056 {
1057 	u16 prod = rxr->rx_prod;
1058 	struct sk_buff *skb;
1059 	int err;
1060 
1061 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1062 	if (unlikely(err)) {
1063 		bnxt_reuse_rx_data(rxr, cons, data);
1064 		return NULL;
1065 	}
1066 
1067 	skb = build_skb(data, bp->rx_buf_size);
1068 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1069 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1070 	if (!skb) {
1071 		skb_free_frag(data);
1072 		return NULL;
1073 	}
1074 
1075 	skb_reserve(skb, bp->rx_offset);
1076 	skb_put(skb, offset_and_len & 0xffff);
1077 	return skb;
1078 }
1079 
1080 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1081 			       struct bnxt_cp_ring_info *cpr,
1082 			       struct skb_shared_info *shinfo,
1083 			       u16 idx, u32 agg_bufs, bool tpa,
1084 			       struct xdp_buff *xdp)
1085 {
1086 	struct bnxt_napi *bnapi = cpr->bnapi;
1087 	struct pci_dev *pdev = bp->pdev;
1088 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1089 	u16 prod = rxr->rx_agg_prod;
1090 	u32 i, total_frag_len = 0;
1091 	bool p5_tpa = false;
1092 
1093 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1094 		p5_tpa = true;
1095 
1096 	for (i = 0; i < agg_bufs; i++) {
1097 		skb_frag_t *frag = &shinfo->frags[i];
1098 		u16 cons, frag_len;
1099 		struct rx_agg_cmp *agg;
1100 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1101 		struct page *page;
1102 		dma_addr_t mapping;
1103 
1104 		if (p5_tpa)
1105 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1106 		else
1107 			agg = bnxt_get_agg(bp, cpr, idx, i);
1108 		cons = agg->rx_agg_cmp_opaque;
1109 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1110 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1111 
1112 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1113 		skb_frag_off_set(frag, cons_rx_buf->offset);
1114 		skb_frag_size_set(frag, frag_len);
1115 		__skb_frag_set_page(frag, cons_rx_buf->page);
1116 		shinfo->nr_frags = i + 1;
1117 		__clear_bit(cons, rxr->rx_agg_bmap);
1118 
1119 		/* It is possible for bnxt_alloc_rx_page() to allocate
1120 		 * a sw_prod index that equals the cons index, so we
1121 		 * need to clear the cons entry now.
1122 		 */
1123 		mapping = cons_rx_buf->mapping;
1124 		page = cons_rx_buf->page;
1125 		cons_rx_buf->page = NULL;
1126 
1127 		if (xdp && page_is_pfmemalloc(page))
1128 			xdp_buff_set_frag_pfmemalloc(xdp);
1129 
1130 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1131 			unsigned int nr_frags;
1132 
1133 			nr_frags = --shinfo->nr_frags;
1134 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1135 			cons_rx_buf->page = page;
1136 
1137 			/* Update prod since possibly some pages have been
1138 			 * allocated already.
1139 			 */
1140 			rxr->rx_agg_prod = prod;
1141 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1142 			return 0;
1143 		}
1144 
1145 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1146 				     bp->rx_dir,
1147 				     DMA_ATTR_WEAK_ORDERING);
1148 
1149 		total_frag_len += frag_len;
1150 		prod = NEXT_RX_AGG(prod);
1151 	}
1152 	rxr->rx_agg_prod = prod;
1153 	return total_frag_len;
1154 }
1155 
1156 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1157 					     struct bnxt_cp_ring_info *cpr,
1158 					     struct sk_buff *skb, u16 idx,
1159 					     u32 agg_bufs, bool tpa)
1160 {
1161 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1162 	u32 total_frag_len = 0;
1163 
1164 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1165 					     agg_bufs, tpa, NULL);
1166 	if (!total_frag_len) {
1167 		dev_kfree_skb(skb);
1168 		return NULL;
1169 	}
1170 
1171 	skb->data_len += total_frag_len;
1172 	skb->len += total_frag_len;
1173 	skb->truesize += PAGE_SIZE * agg_bufs;
1174 	return skb;
1175 }
1176 
1177 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1178 				 struct bnxt_cp_ring_info *cpr,
1179 				 struct xdp_buff *xdp, u16 idx,
1180 				 u32 agg_bufs, bool tpa)
1181 {
1182 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1183 	u32 total_frag_len = 0;
1184 
1185 	if (!xdp_buff_has_frags(xdp))
1186 		shinfo->nr_frags = 0;
1187 
1188 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1189 					     idx, agg_bufs, tpa, xdp);
1190 	if (total_frag_len) {
1191 		xdp_buff_set_frags_flag(xdp);
1192 		shinfo->nr_frags = agg_bufs;
1193 		shinfo->xdp_frags_size = total_frag_len;
1194 	}
1195 	return total_frag_len;
1196 }
1197 
1198 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1199 			       u8 agg_bufs, u32 *raw_cons)
1200 {
1201 	u16 last;
1202 	struct rx_agg_cmp *agg;
1203 
1204 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1205 	last = RING_CMP(*raw_cons);
1206 	agg = (struct rx_agg_cmp *)
1207 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1208 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1209 }
1210 
1211 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1212 					    unsigned int len,
1213 					    dma_addr_t mapping)
1214 {
1215 	struct bnxt *bp = bnapi->bp;
1216 	struct pci_dev *pdev = bp->pdev;
1217 	struct sk_buff *skb;
1218 
1219 	skb = napi_alloc_skb(&bnapi->napi, len);
1220 	if (!skb)
1221 		return NULL;
1222 
1223 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1224 				bp->rx_dir);
1225 
1226 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1227 	       len + NET_IP_ALIGN);
1228 
1229 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1230 				   bp->rx_dir);
1231 
1232 	skb_put(skb, len);
1233 	return skb;
1234 }
1235 
1236 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1237 			   u32 *raw_cons, void *cmp)
1238 {
1239 	struct rx_cmp *rxcmp = cmp;
1240 	u32 tmp_raw_cons = *raw_cons;
1241 	u8 cmp_type, agg_bufs = 0;
1242 
1243 	cmp_type = RX_CMP_TYPE(rxcmp);
1244 
1245 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1246 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1247 			    RX_CMP_AGG_BUFS) >>
1248 			   RX_CMP_AGG_BUFS_SHIFT;
1249 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1250 		struct rx_tpa_end_cmp *tpa_end = cmp;
1251 
1252 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1253 			return 0;
1254 
1255 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1256 	}
1257 
1258 	if (agg_bufs) {
1259 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1260 			return -EBUSY;
1261 	}
1262 	*raw_cons = tmp_raw_cons;
1263 	return 0;
1264 }
1265 
1266 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1267 {
1268 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1269 		return;
1270 
1271 	if (BNXT_PF(bp))
1272 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1273 	else
1274 		schedule_delayed_work(&bp->fw_reset_task, delay);
1275 }
1276 
1277 static void bnxt_queue_sp_work(struct bnxt *bp)
1278 {
1279 	if (BNXT_PF(bp))
1280 		queue_work(bnxt_pf_wq, &bp->sp_task);
1281 	else
1282 		schedule_work(&bp->sp_task);
1283 }
1284 
1285 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1286 {
1287 	if (!rxr->bnapi->in_reset) {
1288 		rxr->bnapi->in_reset = true;
1289 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1290 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1291 		else
1292 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1293 		bnxt_queue_sp_work(bp);
1294 	}
1295 	rxr->rx_next_cons = 0xffff;
1296 }
1297 
1298 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1299 {
1300 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1301 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1302 
1303 	if (test_bit(idx, map->agg_idx_bmap))
1304 		idx = find_first_zero_bit(map->agg_idx_bmap,
1305 					  BNXT_AGG_IDX_BMAP_SIZE);
1306 	__set_bit(idx, map->agg_idx_bmap);
1307 	map->agg_id_tbl[agg_id] = idx;
1308 	return idx;
1309 }
1310 
1311 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1312 {
1313 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1314 
1315 	__clear_bit(idx, map->agg_idx_bmap);
1316 }
1317 
1318 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1319 {
1320 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1321 
1322 	return map->agg_id_tbl[agg_id];
1323 }
1324 
1325 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1326 			   struct rx_tpa_start_cmp *tpa_start,
1327 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1328 {
1329 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1330 	struct bnxt_tpa_info *tpa_info;
1331 	u16 cons, prod, agg_id;
1332 	struct rx_bd *prod_bd;
1333 	dma_addr_t mapping;
1334 
1335 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1336 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1337 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1338 	} else {
1339 		agg_id = TPA_START_AGG_ID(tpa_start);
1340 	}
1341 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1342 	prod = rxr->rx_prod;
1343 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1344 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1345 	tpa_info = &rxr->rx_tpa[agg_id];
1346 
1347 	if (unlikely(cons != rxr->rx_next_cons ||
1348 		     TPA_START_ERROR(tpa_start))) {
1349 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1350 			    cons, rxr->rx_next_cons,
1351 			    TPA_START_ERROR_CODE(tpa_start1));
1352 		bnxt_sched_reset(bp, rxr);
1353 		return;
1354 	}
1355 	/* Store cfa_code in tpa_info to use in tpa_end
1356 	 * completion processing.
1357 	 */
1358 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1359 	prod_rx_buf->data = tpa_info->data;
1360 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1361 
1362 	mapping = tpa_info->mapping;
1363 	prod_rx_buf->mapping = mapping;
1364 
1365 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1366 
1367 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1368 
1369 	tpa_info->data = cons_rx_buf->data;
1370 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1371 	cons_rx_buf->data = NULL;
1372 	tpa_info->mapping = cons_rx_buf->mapping;
1373 
1374 	tpa_info->len =
1375 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1376 				RX_TPA_START_CMP_LEN_SHIFT;
1377 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1378 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1379 
1380 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1381 		tpa_info->gso_type = SKB_GSO_TCPV4;
1382 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1383 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1384 			tpa_info->gso_type = SKB_GSO_TCPV6;
1385 		tpa_info->rss_hash =
1386 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1387 	} else {
1388 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1389 		tpa_info->gso_type = 0;
1390 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1391 	}
1392 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1393 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1394 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1395 	tpa_info->agg_count = 0;
1396 
1397 	rxr->rx_prod = NEXT_RX(prod);
1398 	cons = NEXT_RX(cons);
1399 	rxr->rx_next_cons = NEXT_RX(cons);
1400 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1401 
1402 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1403 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1404 	cons_rx_buf->data = NULL;
1405 }
1406 
1407 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1408 {
1409 	if (agg_bufs)
1410 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1411 }
1412 
1413 #ifdef CONFIG_INET
1414 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1415 {
1416 	struct udphdr *uh = NULL;
1417 
1418 	if (ip_proto == htons(ETH_P_IP)) {
1419 		struct iphdr *iph = (struct iphdr *)skb->data;
1420 
1421 		if (iph->protocol == IPPROTO_UDP)
1422 			uh = (struct udphdr *)(iph + 1);
1423 	} else {
1424 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1425 
1426 		if (iph->nexthdr == IPPROTO_UDP)
1427 			uh = (struct udphdr *)(iph + 1);
1428 	}
1429 	if (uh) {
1430 		if (uh->check)
1431 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1432 		else
1433 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1434 	}
1435 }
1436 #endif
1437 
1438 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1439 					   int payload_off, int tcp_ts,
1440 					   struct sk_buff *skb)
1441 {
1442 #ifdef CONFIG_INET
1443 	struct tcphdr *th;
1444 	int len, nw_off;
1445 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1446 	u32 hdr_info = tpa_info->hdr_info;
1447 	bool loopback = false;
1448 
1449 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1450 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1451 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1452 
1453 	/* If the packet is an internal loopback packet, the offsets will
1454 	 * have an extra 4 bytes.
1455 	 */
1456 	if (inner_mac_off == 4) {
1457 		loopback = true;
1458 	} else if (inner_mac_off > 4) {
1459 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1460 					    ETH_HLEN - 2));
1461 
1462 		/* We only support inner iPv4/ipv6.  If we don't see the
1463 		 * correct protocol ID, it must be a loopback packet where
1464 		 * the offsets are off by 4.
1465 		 */
1466 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1467 			loopback = true;
1468 	}
1469 	if (loopback) {
1470 		/* internal loopback packet, subtract all offsets by 4 */
1471 		inner_ip_off -= 4;
1472 		inner_mac_off -= 4;
1473 		outer_ip_off -= 4;
1474 	}
1475 
1476 	nw_off = inner_ip_off - ETH_HLEN;
1477 	skb_set_network_header(skb, nw_off);
1478 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1479 		struct ipv6hdr *iph = ipv6_hdr(skb);
1480 
1481 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1482 		len = skb->len - skb_transport_offset(skb);
1483 		th = tcp_hdr(skb);
1484 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1485 	} else {
1486 		struct iphdr *iph = ip_hdr(skb);
1487 
1488 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1489 		len = skb->len - skb_transport_offset(skb);
1490 		th = tcp_hdr(skb);
1491 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1492 	}
1493 
1494 	if (inner_mac_off) { /* tunnel */
1495 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1496 					    ETH_HLEN - 2));
1497 
1498 		bnxt_gro_tunnel(skb, proto);
1499 	}
1500 #endif
1501 	return skb;
1502 }
1503 
1504 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1505 					   int payload_off, int tcp_ts,
1506 					   struct sk_buff *skb)
1507 {
1508 #ifdef CONFIG_INET
1509 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1510 	u32 hdr_info = tpa_info->hdr_info;
1511 	int iphdr_len, nw_off;
1512 
1513 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1514 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1515 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1516 
1517 	nw_off = inner_ip_off - ETH_HLEN;
1518 	skb_set_network_header(skb, nw_off);
1519 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1520 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1521 	skb_set_transport_header(skb, nw_off + iphdr_len);
1522 
1523 	if (inner_mac_off) { /* tunnel */
1524 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1525 					    ETH_HLEN - 2));
1526 
1527 		bnxt_gro_tunnel(skb, proto);
1528 	}
1529 #endif
1530 	return skb;
1531 }
1532 
1533 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1534 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1535 
1536 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1537 					   int payload_off, int tcp_ts,
1538 					   struct sk_buff *skb)
1539 {
1540 #ifdef CONFIG_INET
1541 	struct tcphdr *th;
1542 	int len, nw_off, tcp_opt_len = 0;
1543 
1544 	if (tcp_ts)
1545 		tcp_opt_len = 12;
1546 
1547 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1548 		struct iphdr *iph;
1549 
1550 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1551 			 ETH_HLEN;
1552 		skb_set_network_header(skb, nw_off);
1553 		iph = ip_hdr(skb);
1554 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1555 		len = skb->len - skb_transport_offset(skb);
1556 		th = tcp_hdr(skb);
1557 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1558 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1559 		struct ipv6hdr *iph;
1560 
1561 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1562 			 ETH_HLEN;
1563 		skb_set_network_header(skb, nw_off);
1564 		iph = ipv6_hdr(skb);
1565 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1566 		len = skb->len - skb_transport_offset(skb);
1567 		th = tcp_hdr(skb);
1568 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1569 	} else {
1570 		dev_kfree_skb_any(skb);
1571 		return NULL;
1572 	}
1573 
1574 	if (nw_off) /* tunnel */
1575 		bnxt_gro_tunnel(skb, skb->protocol);
1576 #endif
1577 	return skb;
1578 }
1579 
1580 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1581 					   struct bnxt_tpa_info *tpa_info,
1582 					   struct rx_tpa_end_cmp *tpa_end,
1583 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1584 					   struct sk_buff *skb)
1585 {
1586 #ifdef CONFIG_INET
1587 	int payload_off;
1588 	u16 segs;
1589 
1590 	segs = TPA_END_TPA_SEGS(tpa_end);
1591 	if (segs == 1)
1592 		return skb;
1593 
1594 	NAPI_GRO_CB(skb)->count = segs;
1595 	skb_shinfo(skb)->gso_size =
1596 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1597 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1598 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1599 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1600 	else
1601 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1602 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1603 	if (likely(skb))
1604 		tcp_gro_complete(skb);
1605 #endif
1606 	return skb;
1607 }
1608 
1609 /* Given the cfa_code of a received packet determine which
1610  * netdev (vf-rep or PF) the packet is destined to.
1611  */
1612 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1613 {
1614 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1615 
1616 	/* if vf-rep dev is NULL, the must belongs to the PF */
1617 	return dev ? dev : bp->dev;
1618 }
1619 
1620 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1621 					   struct bnxt_cp_ring_info *cpr,
1622 					   u32 *raw_cons,
1623 					   struct rx_tpa_end_cmp *tpa_end,
1624 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1625 					   u8 *event)
1626 {
1627 	struct bnxt_napi *bnapi = cpr->bnapi;
1628 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1629 	u8 *data_ptr, agg_bufs;
1630 	unsigned int len;
1631 	struct bnxt_tpa_info *tpa_info;
1632 	dma_addr_t mapping;
1633 	struct sk_buff *skb;
1634 	u16 idx = 0, agg_id;
1635 	void *data;
1636 	bool gro;
1637 
1638 	if (unlikely(bnapi->in_reset)) {
1639 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1640 
1641 		if (rc < 0)
1642 			return ERR_PTR(-EBUSY);
1643 		return NULL;
1644 	}
1645 
1646 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1647 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1648 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1649 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1650 		tpa_info = &rxr->rx_tpa[agg_id];
1651 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1652 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1653 				    agg_bufs, tpa_info->agg_count);
1654 			agg_bufs = tpa_info->agg_count;
1655 		}
1656 		tpa_info->agg_count = 0;
1657 		*event |= BNXT_AGG_EVENT;
1658 		bnxt_free_agg_idx(rxr, agg_id);
1659 		idx = agg_id;
1660 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1661 	} else {
1662 		agg_id = TPA_END_AGG_ID(tpa_end);
1663 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1664 		tpa_info = &rxr->rx_tpa[agg_id];
1665 		idx = RING_CMP(*raw_cons);
1666 		if (agg_bufs) {
1667 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1668 				return ERR_PTR(-EBUSY);
1669 
1670 			*event |= BNXT_AGG_EVENT;
1671 			idx = NEXT_CMP(idx);
1672 		}
1673 		gro = !!TPA_END_GRO(tpa_end);
1674 	}
1675 	data = tpa_info->data;
1676 	data_ptr = tpa_info->data_ptr;
1677 	prefetch(data_ptr);
1678 	len = tpa_info->len;
1679 	mapping = tpa_info->mapping;
1680 
1681 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1682 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1683 		if (agg_bufs > MAX_SKB_FRAGS)
1684 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1685 				    agg_bufs, (int)MAX_SKB_FRAGS);
1686 		return NULL;
1687 	}
1688 
1689 	if (len <= bp->rx_copy_thresh) {
1690 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1691 		if (!skb) {
1692 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1693 			cpr->sw_stats.rx.rx_oom_discards += 1;
1694 			return NULL;
1695 		}
1696 	} else {
1697 		u8 *new_data;
1698 		dma_addr_t new_mapping;
1699 
1700 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1701 		if (!new_data) {
1702 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1703 			cpr->sw_stats.rx.rx_oom_discards += 1;
1704 			return NULL;
1705 		}
1706 
1707 		tpa_info->data = new_data;
1708 		tpa_info->data_ptr = new_data + bp->rx_offset;
1709 		tpa_info->mapping = new_mapping;
1710 
1711 		skb = build_skb(data, bp->rx_buf_size);
1712 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1713 				       bp->rx_buf_use_size, bp->rx_dir,
1714 				       DMA_ATTR_WEAK_ORDERING);
1715 
1716 		if (!skb) {
1717 			skb_free_frag(data);
1718 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1719 			cpr->sw_stats.rx.rx_oom_discards += 1;
1720 			return NULL;
1721 		}
1722 		skb_reserve(skb, bp->rx_offset);
1723 		skb_put(skb, len);
1724 	}
1725 
1726 	if (agg_bufs) {
1727 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1728 		if (!skb) {
1729 			/* Page reuse already handled by bnxt_rx_pages(). */
1730 			cpr->sw_stats.rx.rx_oom_discards += 1;
1731 			return NULL;
1732 		}
1733 	}
1734 
1735 	skb->protocol =
1736 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1737 
1738 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1739 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1740 
1741 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1742 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1743 		__be16 vlan_proto = htons(tpa_info->metadata >>
1744 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1745 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1746 
1747 		if (eth_type_vlan(vlan_proto)) {
1748 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1749 		} else {
1750 			dev_kfree_skb(skb);
1751 			return NULL;
1752 		}
1753 	}
1754 
1755 	skb_checksum_none_assert(skb);
1756 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1757 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1758 		skb->csum_level =
1759 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1760 	}
1761 
1762 	if (gro)
1763 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1764 
1765 	return skb;
1766 }
1767 
1768 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1769 			 struct rx_agg_cmp *rx_agg)
1770 {
1771 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1772 	struct bnxt_tpa_info *tpa_info;
1773 
1774 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1775 	tpa_info = &rxr->rx_tpa[agg_id];
1776 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1777 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1778 }
1779 
1780 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1781 			     struct sk_buff *skb)
1782 {
1783 	if (skb->dev != bp->dev) {
1784 		/* this packet belongs to a vf-rep */
1785 		bnxt_vf_rep_rx(bp, skb);
1786 		return;
1787 	}
1788 	skb_record_rx_queue(skb, bnapi->index);
1789 	napi_gro_receive(&bnapi->napi, skb);
1790 }
1791 
1792 /* returns the following:
1793  * 1       - 1 packet successfully received
1794  * 0       - successful TPA_START, packet not completed yet
1795  * -EBUSY  - completion ring does not have all the agg buffers yet
1796  * -ENOMEM - packet aborted due to out of memory
1797  * -EIO    - packet aborted due to hw error indicated in BD
1798  */
1799 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1800 		       u32 *raw_cons, u8 *event)
1801 {
1802 	struct bnxt_napi *bnapi = cpr->bnapi;
1803 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1804 	struct net_device *dev = bp->dev;
1805 	struct rx_cmp *rxcmp;
1806 	struct rx_cmp_ext *rxcmp1;
1807 	u32 tmp_raw_cons = *raw_cons;
1808 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1809 	struct bnxt_sw_rx_bd *rx_buf;
1810 	unsigned int len;
1811 	u8 *data_ptr, agg_bufs, cmp_type;
1812 	bool xdp_active = false;
1813 	dma_addr_t dma_addr;
1814 	struct sk_buff *skb;
1815 	struct xdp_buff xdp;
1816 	u32 flags, misc;
1817 	void *data;
1818 	int rc = 0;
1819 
1820 	rxcmp = (struct rx_cmp *)
1821 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1822 
1823 	cmp_type = RX_CMP_TYPE(rxcmp);
1824 
1825 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1826 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1827 		goto next_rx_no_prod_no_len;
1828 	}
1829 
1830 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1831 	cp_cons = RING_CMP(tmp_raw_cons);
1832 	rxcmp1 = (struct rx_cmp_ext *)
1833 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1834 
1835 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1836 		return -EBUSY;
1837 
1838 	/* The valid test of the entry must be done first before
1839 	 * reading any further.
1840 	 */
1841 	dma_rmb();
1842 	prod = rxr->rx_prod;
1843 
1844 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1845 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1846 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1847 
1848 		*event |= BNXT_RX_EVENT;
1849 		goto next_rx_no_prod_no_len;
1850 
1851 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1852 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1853 				   (struct rx_tpa_end_cmp *)rxcmp,
1854 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1855 
1856 		if (IS_ERR(skb))
1857 			return -EBUSY;
1858 
1859 		rc = -ENOMEM;
1860 		if (likely(skb)) {
1861 			bnxt_deliver_skb(bp, bnapi, skb);
1862 			rc = 1;
1863 		}
1864 		*event |= BNXT_RX_EVENT;
1865 		goto next_rx_no_prod_no_len;
1866 	}
1867 
1868 	cons = rxcmp->rx_cmp_opaque;
1869 	if (unlikely(cons != rxr->rx_next_cons)) {
1870 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1871 
1872 		/* 0xffff is forced error, don't print it */
1873 		if (rxr->rx_next_cons != 0xffff)
1874 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1875 				    cons, rxr->rx_next_cons);
1876 		bnxt_sched_reset(bp, rxr);
1877 		if (rc1)
1878 			return rc1;
1879 		goto next_rx_no_prod_no_len;
1880 	}
1881 	rx_buf = &rxr->rx_buf_ring[cons];
1882 	data = rx_buf->data;
1883 	data_ptr = rx_buf->data_ptr;
1884 	prefetch(data_ptr);
1885 
1886 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1887 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1888 
1889 	if (agg_bufs) {
1890 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1891 			return -EBUSY;
1892 
1893 		cp_cons = NEXT_CMP(cp_cons);
1894 		*event |= BNXT_AGG_EVENT;
1895 	}
1896 	*event |= BNXT_RX_EVENT;
1897 
1898 	rx_buf->data = NULL;
1899 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1900 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1901 
1902 		bnxt_reuse_rx_data(rxr, cons, data);
1903 		if (agg_bufs)
1904 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1905 					       false);
1906 
1907 		rc = -EIO;
1908 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1909 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1910 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1911 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1912 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1913 						 rx_err);
1914 				bnxt_sched_reset(bp, rxr);
1915 			}
1916 		}
1917 		goto next_rx_no_len;
1918 	}
1919 
1920 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1921 	len = flags >> RX_CMP_LEN_SHIFT;
1922 	dma_addr = rx_buf->mapping;
1923 
1924 	if (bnxt_xdp_attached(bp, rxr)) {
1925 		bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp);
1926 		if (agg_bufs) {
1927 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1928 							     cp_cons, agg_bufs,
1929 							     false);
1930 			if (!frag_len) {
1931 				cpr->sw_stats.rx.rx_oom_discards += 1;
1932 				rc = -ENOMEM;
1933 				goto next_rx;
1934 			}
1935 		}
1936 		xdp_active = true;
1937 	}
1938 
1939 	if (xdp_active) {
1940 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) {
1941 			rc = 1;
1942 			goto next_rx;
1943 		}
1944 	}
1945 
1946 	if (len <= bp->rx_copy_thresh) {
1947 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1948 		bnxt_reuse_rx_data(rxr, cons, data);
1949 		if (!skb) {
1950 			if (agg_bufs) {
1951 				if (!xdp_active)
1952 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1953 							       agg_bufs, false);
1954 				else
1955 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1956 			}
1957 			cpr->sw_stats.rx.rx_oom_discards += 1;
1958 			rc = -ENOMEM;
1959 			goto next_rx;
1960 		}
1961 	} else {
1962 		u32 payload;
1963 
1964 		if (rx_buf->data_ptr == data_ptr)
1965 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1966 		else
1967 			payload = 0;
1968 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1969 				      payload | len);
1970 		if (!skb) {
1971 			cpr->sw_stats.rx.rx_oom_discards += 1;
1972 			rc = -ENOMEM;
1973 			goto next_rx;
1974 		}
1975 	}
1976 
1977 	if (agg_bufs) {
1978 		if (!xdp_active) {
1979 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1980 			if (!skb) {
1981 				cpr->sw_stats.rx.rx_oom_discards += 1;
1982 				rc = -ENOMEM;
1983 				goto next_rx;
1984 			}
1985 		} else {
1986 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1987 			if (!skb) {
1988 				/* we should be able to free the old skb here */
1989 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1990 				cpr->sw_stats.rx.rx_oom_discards += 1;
1991 				rc = -ENOMEM;
1992 				goto next_rx;
1993 			}
1994 		}
1995 	}
1996 
1997 	if (RX_CMP_HASH_VALID(rxcmp)) {
1998 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1999 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2000 
2001 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2002 		if (hash_type != 1 && hash_type != 3)
2003 			type = PKT_HASH_TYPE_L3;
2004 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2005 	}
2006 
2007 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2008 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2009 
2010 	if ((rxcmp1->rx_cmp_flags2 &
2011 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2012 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2013 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2014 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2015 		__be16 vlan_proto = htons(meta_data >>
2016 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2017 
2018 		if (eth_type_vlan(vlan_proto)) {
2019 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2020 		} else {
2021 			dev_kfree_skb(skb);
2022 			goto next_rx;
2023 		}
2024 	}
2025 
2026 	skb_checksum_none_assert(skb);
2027 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2028 		if (dev->features & NETIF_F_RXCSUM) {
2029 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2030 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2031 		}
2032 	} else {
2033 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2034 			if (dev->features & NETIF_F_RXCSUM)
2035 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2036 		}
2037 	}
2038 
2039 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2040 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2041 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2042 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2043 			u64 ns, ts;
2044 
2045 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2046 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2047 
2048 				spin_lock_bh(&ptp->ptp_lock);
2049 				ns = timecounter_cyc2time(&ptp->tc, ts);
2050 				spin_unlock_bh(&ptp->ptp_lock);
2051 				memset(skb_hwtstamps(skb), 0,
2052 				       sizeof(*skb_hwtstamps(skb)));
2053 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2054 			}
2055 		}
2056 	}
2057 	bnxt_deliver_skb(bp, bnapi, skb);
2058 	rc = 1;
2059 
2060 next_rx:
2061 	cpr->rx_packets += 1;
2062 	cpr->rx_bytes += len;
2063 
2064 next_rx_no_len:
2065 	rxr->rx_prod = NEXT_RX(prod);
2066 	rxr->rx_next_cons = NEXT_RX(cons);
2067 
2068 next_rx_no_prod_no_len:
2069 	*raw_cons = tmp_raw_cons;
2070 
2071 	return rc;
2072 }
2073 
2074 /* In netpoll mode, if we are using a combined completion ring, we need to
2075  * discard the rx packets and recycle the buffers.
2076  */
2077 static int bnxt_force_rx_discard(struct bnxt *bp,
2078 				 struct bnxt_cp_ring_info *cpr,
2079 				 u32 *raw_cons, u8 *event)
2080 {
2081 	u32 tmp_raw_cons = *raw_cons;
2082 	struct rx_cmp_ext *rxcmp1;
2083 	struct rx_cmp *rxcmp;
2084 	u16 cp_cons;
2085 	u8 cmp_type;
2086 	int rc;
2087 
2088 	cp_cons = RING_CMP(tmp_raw_cons);
2089 	rxcmp = (struct rx_cmp *)
2090 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2091 
2092 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2093 	cp_cons = RING_CMP(tmp_raw_cons);
2094 	rxcmp1 = (struct rx_cmp_ext *)
2095 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2096 
2097 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2098 		return -EBUSY;
2099 
2100 	/* The valid test of the entry must be done first before
2101 	 * reading any further.
2102 	 */
2103 	dma_rmb();
2104 	cmp_type = RX_CMP_TYPE(rxcmp);
2105 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2106 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2107 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2108 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2109 		struct rx_tpa_end_cmp_ext *tpa_end1;
2110 
2111 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2112 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2113 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2114 	}
2115 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2116 	if (rc && rc != -EBUSY)
2117 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2118 	return rc;
2119 }
2120 
2121 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2122 {
2123 	struct bnxt_fw_health *fw_health = bp->fw_health;
2124 	u32 reg = fw_health->regs[reg_idx];
2125 	u32 reg_type, reg_off, val = 0;
2126 
2127 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2128 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2129 	switch (reg_type) {
2130 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2131 		pci_read_config_dword(bp->pdev, reg_off, &val);
2132 		break;
2133 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2134 		reg_off = fw_health->mapped_regs[reg_idx];
2135 		fallthrough;
2136 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2137 		val = readl(bp->bar0 + reg_off);
2138 		break;
2139 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2140 		val = readl(bp->bar1 + reg_off);
2141 		break;
2142 	}
2143 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2144 		val &= fw_health->fw_reset_inprog_reg_mask;
2145 	return val;
2146 }
2147 
2148 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2149 {
2150 	int i;
2151 
2152 	for (i = 0; i < bp->rx_nr_rings; i++) {
2153 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2154 		struct bnxt_ring_grp_info *grp_info;
2155 
2156 		grp_info = &bp->grp_info[grp_idx];
2157 		if (grp_info->agg_fw_ring_id == ring_id)
2158 			return grp_idx;
2159 	}
2160 	return INVALID_HW_RING_ID;
2161 }
2162 
2163 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2164 {
2165 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2166 
2167 	switch (err_type) {
2168 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2169 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2170 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2171 		break;
2172 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2173 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2174 		break;
2175 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2176 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2177 		break;
2178 	default:
2179 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2180 			   err_type);
2181 		break;
2182 	}
2183 }
2184 
2185 #define BNXT_GET_EVENT_PORT(data)	\
2186 	((data) &			\
2187 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2188 
2189 #define BNXT_EVENT_RING_TYPE(data2)	\
2190 	((data2) &			\
2191 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2192 
2193 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2194 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2195 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2196 
2197 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2198 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2199 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2200 
2201 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2202 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2203 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2204 
2205 #define BNXT_PHC_BITS	48
2206 
2207 static int bnxt_async_event_process(struct bnxt *bp,
2208 				    struct hwrm_async_event_cmpl *cmpl)
2209 {
2210 	u16 event_id = le16_to_cpu(cmpl->event_id);
2211 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2212 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2213 
2214 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2215 		   event_id, data1, data2);
2216 
2217 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2218 	switch (event_id) {
2219 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2220 		struct bnxt_link_info *link_info = &bp->link_info;
2221 
2222 		if (BNXT_VF(bp))
2223 			goto async_event_process_exit;
2224 
2225 		/* print unsupported speed warning in forced speed mode only */
2226 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2227 		    (data1 & 0x20000)) {
2228 			u16 fw_speed = link_info->force_link_speed;
2229 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2230 
2231 			if (speed != SPEED_UNKNOWN)
2232 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2233 					    speed);
2234 		}
2235 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2236 	}
2237 		fallthrough;
2238 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2239 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2240 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2241 		fallthrough;
2242 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2243 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2244 		break;
2245 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2246 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2247 		break;
2248 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2249 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2250 
2251 		if (BNXT_VF(bp))
2252 			break;
2253 
2254 		if (bp->pf.port_id != port_id)
2255 			break;
2256 
2257 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2258 		break;
2259 	}
2260 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2261 		if (BNXT_PF(bp))
2262 			goto async_event_process_exit;
2263 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2264 		break;
2265 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2266 		char *type_str = "Solicited";
2267 
2268 		if (!bp->fw_health)
2269 			goto async_event_process_exit;
2270 
2271 		bp->fw_reset_timestamp = jiffies;
2272 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2273 		if (!bp->fw_reset_min_dsecs)
2274 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2275 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2276 		if (!bp->fw_reset_max_dsecs)
2277 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2278 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2279 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2280 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2281 			type_str = "Fatal";
2282 			bp->fw_health->fatalities++;
2283 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2284 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2285 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2286 			type_str = "Non-fatal";
2287 			bp->fw_health->survivals++;
2288 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2289 		}
2290 		netif_warn(bp, hw, bp->dev,
2291 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2292 			   type_str, data1, data2,
2293 			   bp->fw_reset_min_dsecs * 100,
2294 			   bp->fw_reset_max_dsecs * 100);
2295 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2296 		break;
2297 	}
2298 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2299 		struct bnxt_fw_health *fw_health = bp->fw_health;
2300 		char *status_desc = "healthy";
2301 		u32 status;
2302 
2303 		if (!fw_health)
2304 			goto async_event_process_exit;
2305 
2306 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2307 			fw_health->enabled = false;
2308 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2309 			break;
2310 		}
2311 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2312 		fw_health->tmr_multiplier =
2313 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2314 				     bp->current_interval * 10);
2315 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2316 		if (!fw_health->enabled)
2317 			fw_health->last_fw_heartbeat =
2318 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2319 		fw_health->last_fw_reset_cnt =
2320 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2321 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2322 		if (status != BNXT_FW_STATUS_HEALTHY)
2323 			status_desc = "unhealthy";
2324 		netif_info(bp, drv, bp->dev,
2325 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2326 			   fw_health->primary ? "primary" : "backup", status,
2327 			   status_desc, fw_health->last_fw_reset_cnt);
2328 		if (!fw_health->enabled) {
2329 			/* Make sure tmr_counter is set and visible to
2330 			 * bnxt_health_check() before setting enabled to true.
2331 			 */
2332 			smp_wmb();
2333 			fw_health->enabled = true;
2334 		}
2335 		goto async_event_process_exit;
2336 	}
2337 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2338 		netif_notice(bp, hw, bp->dev,
2339 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2340 			     data1, data2);
2341 		goto async_event_process_exit;
2342 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2343 		struct bnxt_rx_ring_info *rxr;
2344 		u16 grp_idx;
2345 
2346 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2347 			goto async_event_process_exit;
2348 
2349 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2350 			    BNXT_EVENT_RING_TYPE(data2), data1);
2351 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2352 			goto async_event_process_exit;
2353 
2354 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2355 		if (grp_idx == INVALID_HW_RING_ID) {
2356 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2357 				    data1);
2358 			goto async_event_process_exit;
2359 		}
2360 		rxr = bp->bnapi[grp_idx]->rx_ring;
2361 		bnxt_sched_reset(bp, rxr);
2362 		goto async_event_process_exit;
2363 	}
2364 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2365 		struct bnxt_fw_health *fw_health = bp->fw_health;
2366 
2367 		netif_notice(bp, hw, bp->dev,
2368 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2369 			     data1, data2);
2370 		if (fw_health) {
2371 			fw_health->echo_req_data1 = data1;
2372 			fw_health->echo_req_data2 = data2;
2373 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2374 			break;
2375 		}
2376 		goto async_event_process_exit;
2377 	}
2378 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2379 		bnxt_ptp_pps_event(bp, data1, data2);
2380 		goto async_event_process_exit;
2381 	}
2382 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2383 		bnxt_event_error_report(bp, data1, data2);
2384 		goto async_event_process_exit;
2385 	}
2386 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2387 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2388 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2389 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2390 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2391 				u64 ns;
2392 
2393 				spin_lock_bh(&ptp->ptp_lock);
2394 				bnxt_ptp_update_current_time(bp);
2395 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2396 				       BNXT_PHC_BITS) | ptp->current_time);
2397 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2398 				spin_unlock_bh(&ptp->ptp_lock);
2399 			}
2400 			break;
2401 		}
2402 		goto async_event_process_exit;
2403 	}
2404 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2405 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2406 
2407 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2408 		goto async_event_process_exit;
2409 	}
2410 	default:
2411 		goto async_event_process_exit;
2412 	}
2413 	bnxt_queue_sp_work(bp);
2414 async_event_process_exit:
2415 	bnxt_ulp_async_events(bp, cmpl);
2416 	return 0;
2417 }
2418 
2419 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2420 {
2421 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2422 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2423 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2424 				(struct hwrm_fwd_req_cmpl *)txcmp;
2425 
2426 	switch (cmpl_type) {
2427 	case CMPL_BASE_TYPE_HWRM_DONE:
2428 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2429 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2430 		break;
2431 
2432 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2433 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2434 
2435 		if ((vf_id < bp->pf.first_vf_id) ||
2436 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2437 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2438 				   vf_id);
2439 			return -EINVAL;
2440 		}
2441 
2442 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2443 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2444 		bnxt_queue_sp_work(bp);
2445 		break;
2446 
2447 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2448 		bnxt_async_event_process(bp,
2449 					 (struct hwrm_async_event_cmpl *)txcmp);
2450 		break;
2451 
2452 	default:
2453 		break;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2460 {
2461 	struct bnxt_napi *bnapi = dev_instance;
2462 	struct bnxt *bp = bnapi->bp;
2463 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2464 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2465 
2466 	cpr->event_ctr++;
2467 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2468 	napi_schedule(&bnapi->napi);
2469 	return IRQ_HANDLED;
2470 }
2471 
2472 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2473 {
2474 	u32 raw_cons = cpr->cp_raw_cons;
2475 	u16 cons = RING_CMP(raw_cons);
2476 	struct tx_cmp *txcmp;
2477 
2478 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2479 
2480 	return TX_CMP_VALID(txcmp, raw_cons);
2481 }
2482 
2483 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2484 {
2485 	struct bnxt_napi *bnapi = dev_instance;
2486 	struct bnxt *bp = bnapi->bp;
2487 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2488 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2489 	u32 int_status;
2490 
2491 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2492 
2493 	if (!bnxt_has_work(bp, cpr)) {
2494 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2495 		/* return if erroneous interrupt */
2496 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2497 			return IRQ_NONE;
2498 	}
2499 
2500 	/* disable ring IRQ */
2501 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2502 
2503 	/* Return here if interrupt is shared and is disabled. */
2504 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2505 		return IRQ_HANDLED;
2506 
2507 	napi_schedule(&bnapi->napi);
2508 	return IRQ_HANDLED;
2509 }
2510 
2511 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2512 			    int budget)
2513 {
2514 	struct bnxt_napi *bnapi = cpr->bnapi;
2515 	u32 raw_cons = cpr->cp_raw_cons;
2516 	u32 cons;
2517 	int tx_pkts = 0;
2518 	int rx_pkts = 0;
2519 	u8 event = 0;
2520 	struct tx_cmp *txcmp;
2521 
2522 	cpr->has_more_work = 0;
2523 	cpr->had_work_done = 1;
2524 	while (1) {
2525 		int rc;
2526 
2527 		cons = RING_CMP(raw_cons);
2528 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2529 
2530 		if (!TX_CMP_VALID(txcmp, raw_cons))
2531 			break;
2532 
2533 		/* The valid test of the entry must be done first before
2534 		 * reading any further.
2535 		 */
2536 		dma_rmb();
2537 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2538 			tx_pkts++;
2539 			/* return full budget so NAPI will complete. */
2540 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2541 				rx_pkts = budget;
2542 				raw_cons = NEXT_RAW_CMP(raw_cons);
2543 				if (budget)
2544 					cpr->has_more_work = 1;
2545 				break;
2546 			}
2547 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2548 			if (likely(budget))
2549 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2550 			else
2551 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2552 							   &event);
2553 			if (likely(rc >= 0))
2554 				rx_pkts += rc;
2555 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2556 			 * the NAPI budget.  Otherwise, we may potentially loop
2557 			 * here forever if we consistently cannot allocate
2558 			 * buffers.
2559 			 */
2560 			else if (rc == -ENOMEM && budget)
2561 				rx_pkts++;
2562 			else if (rc == -EBUSY)	/* partial completion */
2563 				break;
2564 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2565 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2566 				    (TX_CMP_TYPE(txcmp) ==
2567 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2568 				    (TX_CMP_TYPE(txcmp) ==
2569 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2570 			bnxt_hwrm_handler(bp, txcmp);
2571 		}
2572 		raw_cons = NEXT_RAW_CMP(raw_cons);
2573 
2574 		if (rx_pkts && rx_pkts == budget) {
2575 			cpr->has_more_work = 1;
2576 			break;
2577 		}
2578 	}
2579 
2580 	if (event & BNXT_REDIRECT_EVENT)
2581 		xdp_do_flush();
2582 
2583 	if (event & BNXT_TX_EVENT) {
2584 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2585 		u16 prod = txr->tx_prod;
2586 
2587 		/* Sync BD data before updating doorbell */
2588 		wmb();
2589 
2590 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2591 	}
2592 
2593 	cpr->cp_raw_cons = raw_cons;
2594 	bnapi->tx_pkts += tx_pkts;
2595 	bnapi->events |= event;
2596 	return rx_pkts;
2597 }
2598 
2599 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2600 {
2601 	if (bnapi->tx_pkts) {
2602 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2603 		bnapi->tx_pkts = 0;
2604 	}
2605 
2606 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2607 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2608 
2609 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2610 	}
2611 	if (bnapi->events & BNXT_AGG_EVENT) {
2612 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2613 
2614 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2615 	}
2616 	bnapi->events = 0;
2617 }
2618 
2619 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2620 			  int budget)
2621 {
2622 	struct bnxt_napi *bnapi = cpr->bnapi;
2623 	int rx_pkts;
2624 
2625 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2626 
2627 	/* ACK completion ring before freeing tx ring and producing new
2628 	 * buffers in rx/agg rings to prevent overflowing the completion
2629 	 * ring.
2630 	 */
2631 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2632 
2633 	__bnxt_poll_work_done(bp, bnapi);
2634 	return rx_pkts;
2635 }
2636 
2637 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2638 {
2639 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2640 	struct bnxt *bp = bnapi->bp;
2641 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2642 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2643 	struct tx_cmp *txcmp;
2644 	struct rx_cmp_ext *rxcmp1;
2645 	u32 cp_cons, tmp_raw_cons;
2646 	u32 raw_cons = cpr->cp_raw_cons;
2647 	u32 rx_pkts = 0;
2648 	u8 event = 0;
2649 
2650 	while (1) {
2651 		int rc;
2652 
2653 		cp_cons = RING_CMP(raw_cons);
2654 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2655 
2656 		if (!TX_CMP_VALID(txcmp, raw_cons))
2657 			break;
2658 
2659 		/* The valid test of the entry must be done first before
2660 		 * reading any further.
2661 		 */
2662 		dma_rmb();
2663 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2664 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2665 			cp_cons = RING_CMP(tmp_raw_cons);
2666 			rxcmp1 = (struct rx_cmp_ext *)
2667 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2668 
2669 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2670 				break;
2671 
2672 			/* force an error to recycle the buffer */
2673 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2674 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2675 
2676 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2677 			if (likely(rc == -EIO) && budget)
2678 				rx_pkts++;
2679 			else if (rc == -EBUSY)	/* partial completion */
2680 				break;
2681 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2682 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2683 			bnxt_hwrm_handler(bp, txcmp);
2684 		} else {
2685 			netdev_err(bp->dev,
2686 				   "Invalid completion received on special ring\n");
2687 		}
2688 		raw_cons = NEXT_RAW_CMP(raw_cons);
2689 
2690 		if (rx_pkts == budget)
2691 			break;
2692 	}
2693 
2694 	cpr->cp_raw_cons = raw_cons;
2695 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2696 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2697 
2698 	if (event & BNXT_AGG_EVENT)
2699 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2700 
2701 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2702 		napi_complete_done(napi, rx_pkts);
2703 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2704 	}
2705 	return rx_pkts;
2706 }
2707 
2708 static int bnxt_poll(struct napi_struct *napi, int budget)
2709 {
2710 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2711 	struct bnxt *bp = bnapi->bp;
2712 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2713 	int work_done = 0;
2714 
2715 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2716 		napi_complete(napi);
2717 		return 0;
2718 	}
2719 	while (1) {
2720 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2721 
2722 		if (work_done >= budget) {
2723 			if (!budget)
2724 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2725 			break;
2726 		}
2727 
2728 		if (!bnxt_has_work(bp, cpr)) {
2729 			if (napi_complete_done(napi, work_done))
2730 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2731 			break;
2732 		}
2733 	}
2734 	if (bp->flags & BNXT_FLAG_DIM) {
2735 		struct dim_sample dim_sample = {};
2736 
2737 		dim_update_sample(cpr->event_ctr,
2738 				  cpr->rx_packets,
2739 				  cpr->rx_bytes,
2740 				  &dim_sample);
2741 		net_dim(&cpr->dim, dim_sample);
2742 	}
2743 	return work_done;
2744 }
2745 
2746 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2747 {
2748 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2749 	int i, work_done = 0;
2750 
2751 	for (i = 0; i < 2; i++) {
2752 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2753 
2754 		if (cpr2) {
2755 			work_done += __bnxt_poll_work(bp, cpr2,
2756 						      budget - work_done);
2757 			cpr->has_more_work |= cpr2->has_more_work;
2758 		}
2759 	}
2760 	return work_done;
2761 }
2762 
2763 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2764 				 u64 dbr_type)
2765 {
2766 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2767 	int i;
2768 
2769 	for (i = 0; i < 2; i++) {
2770 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2771 		struct bnxt_db_info *db;
2772 
2773 		if (cpr2 && cpr2->had_work_done) {
2774 			db = &cpr2->cp_db;
2775 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2776 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2777 			cpr2->had_work_done = 0;
2778 		}
2779 	}
2780 	__bnxt_poll_work_done(bp, bnapi);
2781 }
2782 
2783 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2784 {
2785 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2786 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2787 	struct bnxt_cp_ring_info *cpr_rx;
2788 	u32 raw_cons = cpr->cp_raw_cons;
2789 	struct bnxt *bp = bnapi->bp;
2790 	struct nqe_cn *nqcmp;
2791 	int work_done = 0;
2792 	u32 cons;
2793 
2794 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2795 		napi_complete(napi);
2796 		return 0;
2797 	}
2798 	if (cpr->has_more_work) {
2799 		cpr->has_more_work = 0;
2800 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2801 	}
2802 	while (1) {
2803 		cons = RING_CMP(raw_cons);
2804 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2805 
2806 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2807 			if (cpr->has_more_work)
2808 				break;
2809 
2810 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2811 			cpr->cp_raw_cons = raw_cons;
2812 			if (napi_complete_done(napi, work_done))
2813 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2814 						  cpr->cp_raw_cons);
2815 			goto poll_done;
2816 		}
2817 
2818 		/* The valid test of the entry must be done first before
2819 		 * reading any further.
2820 		 */
2821 		dma_rmb();
2822 
2823 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2824 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2825 			struct bnxt_cp_ring_info *cpr2;
2826 
2827 			/* No more budget for RX work */
2828 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2829 				break;
2830 
2831 			cpr2 = cpr->cp_ring_arr[idx];
2832 			work_done += __bnxt_poll_work(bp, cpr2,
2833 						      budget - work_done);
2834 			cpr->has_more_work |= cpr2->has_more_work;
2835 		} else {
2836 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2837 		}
2838 		raw_cons = NEXT_RAW_CMP(raw_cons);
2839 	}
2840 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2841 	if (raw_cons != cpr->cp_raw_cons) {
2842 		cpr->cp_raw_cons = raw_cons;
2843 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2844 	}
2845 poll_done:
2846 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2847 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2848 		struct dim_sample dim_sample = {};
2849 
2850 		dim_update_sample(cpr->event_ctr,
2851 				  cpr_rx->rx_packets,
2852 				  cpr_rx->rx_bytes,
2853 				  &dim_sample);
2854 		net_dim(&cpr->dim, dim_sample);
2855 	}
2856 	return work_done;
2857 }
2858 
2859 static void bnxt_free_tx_skbs(struct bnxt *bp)
2860 {
2861 	int i, max_idx;
2862 	struct pci_dev *pdev = bp->pdev;
2863 
2864 	if (!bp->tx_ring)
2865 		return;
2866 
2867 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2868 	for (i = 0; i < bp->tx_nr_rings; i++) {
2869 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2870 		int j;
2871 
2872 		if (!txr->tx_buf_ring)
2873 			continue;
2874 
2875 		for (j = 0; j < max_idx;) {
2876 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2877 			struct sk_buff *skb;
2878 			int k, last;
2879 
2880 			if (i < bp->tx_nr_rings_xdp &&
2881 			    tx_buf->action == XDP_REDIRECT) {
2882 				dma_unmap_single(&pdev->dev,
2883 					dma_unmap_addr(tx_buf, mapping),
2884 					dma_unmap_len(tx_buf, len),
2885 					DMA_TO_DEVICE);
2886 				xdp_return_frame(tx_buf->xdpf);
2887 				tx_buf->action = 0;
2888 				tx_buf->xdpf = NULL;
2889 				j++;
2890 				continue;
2891 			}
2892 
2893 			skb = tx_buf->skb;
2894 			if (!skb) {
2895 				j++;
2896 				continue;
2897 			}
2898 
2899 			tx_buf->skb = NULL;
2900 
2901 			if (tx_buf->is_push) {
2902 				dev_kfree_skb(skb);
2903 				j += 2;
2904 				continue;
2905 			}
2906 
2907 			dma_unmap_single(&pdev->dev,
2908 					 dma_unmap_addr(tx_buf, mapping),
2909 					 skb_headlen(skb),
2910 					 DMA_TO_DEVICE);
2911 
2912 			last = tx_buf->nr_frags;
2913 			j += 2;
2914 			for (k = 0; k < last; k++, j++) {
2915 				int ring_idx = j & bp->tx_ring_mask;
2916 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2917 
2918 				tx_buf = &txr->tx_buf_ring[ring_idx];
2919 				dma_unmap_page(
2920 					&pdev->dev,
2921 					dma_unmap_addr(tx_buf, mapping),
2922 					skb_frag_size(frag), DMA_TO_DEVICE);
2923 			}
2924 			dev_kfree_skb(skb);
2925 		}
2926 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2927 	}
2928 }
2929 
2930 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2931 {
2932 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2933 	struct pci_dev *pdev = bp->pdev;
2934 	struct bnxt_tpa_idx_map *map;
2935 	int i, max_idx, max_agg_idx;
2936 
2937 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2938 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2939 	if (!rxr->rx_tpa)
2940 		goto skip_rx_tpa_free;
2941 
2942 	for (i = 0; i < bp->max_tpa; i++) {
2943 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2944 		u8 *data = tpa_info->data;
2945 
2946 		if (!data)
2947 			continue;
2948 
2949 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2950 				       bp->rx_buf_use_size, bp->rx_dir,
2951 				       DMA_ATTR_WEAK_ORDERING);
2952 
2953 		tpa_info->data = NULL;
2954 
2955 		skb_free_frag(data);
2956 	}
2957 
2958 skip_rx_tpa_free:
2959 	if (!rxr->rx_buf_ring)
2960 		goto skip_rx_buf_free;
2961 
2962 	for (i = 0; i < max_idx; i++) {
2963 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2964 		dma_addr_t mapping = rx_buf->mapping;
2965 		void *data = rx_buf->data;
2966 
2967 		if (!data)
2968 			continue;
2969 
2970 		rx_buf->data = NULL;
2971 		if (BNXT_RX_PAGE_MODE(bp)) {
2972 			mapping -= bp->rx_dma_offset;
2973 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2974 					     bp->rx_dir,
2975 					     DMA_ATTR_WEAK_ORDERING);
2976 			page_pool_recycle_direct(rxr->page_pool, data);
2977 		} else {
2978 			dma_unmap_single_attrs(&pdev->dev, mapping,
2979 					       bp->rx_buf_use_size, bp->rx_dir,
2980 					       DMA_ATTR_WEAK_ORDERING);
2981 			skb_free_frag(data);
2982 		}
2983 	}
2984 
2985 skip_rx_buf_free:
2986 	if (!rxr->rx_agg_ring)
2987 		goto skip_rx_agg_free;
2988 
2989 	for (i = 0; i < max_agg_idx; i++) {
2990 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2991 		struct page *page = rx_agg_buf->page;
2992 
2993 		if (!page)
2994 			continue;
2995 
2996 		if (BNXT_RX_PAGE_MODE(bp)) {
2997 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2998 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2999 					     DMA_ATTR_WEAK_ORDERING);
3000 			rx_agg_buf->page = NULL;
3001 			__clear_bit(i, rxr->rx_agg_bmap);
3002 
3003 			page_pool_recycle_direct(rxr->page_pool, page);
3004 		} else {
3005 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3006 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3007 					     DMA_ATTR_WEAK_ORDERING);
3008 			rx_agg_buf->page = NULL;
3009 			__clear_bit(i, rxr->rx_agg_bmap);
3010 
3011 			__free_page(page);
3012 		}
3013 	}
3014 
3015 skip_rx_agg_free:
3016 	if (rxr->rx_page) {
3017 		__free_page(rxr->rx_page);
3018 		rxr->rx_page = NULL;
3019 	}
3020 	map = rxr->rx_tpa_idx_map;
3021 	if (map)
3022 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3023 }
3024 
3025 static void bnxt_free_rx_skbs(struct bnxt *bp)
3026 {
3027 	int i;
3028 
3029 	if (!bp->rx_ring)
3030 		return;
3031 
3032 	for (i = 0; i < bp->rx_nr_rings; i++)
3033 		bnxt_free_one_rx_ring_skbs(bp, i);
3034 }
3035 
3036 static void bnxt_free_skbs(struct bnxt *bp)
3037 {
3038 	bnxt_free_tx_skbs(bp);
3039 	bnxt_free_rx_skbs(bp);
3040 }
3041 
3042 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3043 {
3044 	u8 init_val = mem_init->init_val;
3045 	u16 offset = mem_init->offset;
3046 	u8 *p2 = p;
3047 	int i;
3048 
3049 	if (!init_val)
3050 		return;
3051 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3052 		memset(p, init_val, len);
3053 		return;
3054 	}
3055 	for (i = 0; i < len; i += mem_init->size)
3056 		*(p2 + i + offset) = init_val;
3057 }
3058 
3059 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3060 {
3061 	struct pci_dev *pdev = bp->pdev;
3062 	int i;
3063 
3064 	if (!rmem->pg_arr)
3065 		goto skip_pages;
3066 
3067 	for (i = 0; i < rmem->nr_pages; i++) {
3068 		if (!rmem->pg_arr[i])
3069 			continue;
3070 
3071 		dma_free_coherent(&pdev->dev, rmem->page_size,
3072 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3073 
3074 		rmem->pg_arr[i] = NULL;
3075 	}
3076 skip_pages:
3077 	if (rmem->pg_tbl) {
3078 		size_t pg_tbl_size = rmem->nr_pages * 8;
3079 
3080 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3081 			pg_tbl_size = rmem->page_size;
3082 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3083 				  rmem->pg_tbl, rmem->pg_tbl_map);
3084 		rmem->pg_tbl = NULL;
3085 	}
3086 	if (rmem->vmem_size && *rmem->vmem) {
3087 		vfree(*rmem->vmem);
3088 		*rmem->vmem = NULL;
3089 	}
3090 }
3091 
3092 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3093 {
3094 	struct pci_dev *pdev = bp->pdev;
3095 	u64 valid_bit = 0;
3096 	int i;
3097 
3098 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3099 		valid_bit = PTU_PTE_VALID;
3100 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3101 		size_t pg_tbl_size = rmem->nr_pages * 8;
3102 
3103 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3104 			pg_tbl_size = rmem->page_size;
3105 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3106 						  &rmem->pg_tbl_map,
3107 						  GFP_KERNEL);
3108 		if (!rmem->pg_tbl)
3109 			return -ENOMEM;
3110 	}
3111 
3112 	for (i = 0; i < rmem->nr_pages; i++) {
3113 		u64 extra_bits = valid_bit;
3114 
3115 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3116 						     rmem->page_size,
3117 						     &rmem->dma_arr[i],
3118 						     GFP_KERNEL);
3119 		if (!rmem->pg_arr[i])
3120 			return -ENOMEM;
3121 
3122 		if (rmem->mem_init)
3123 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3124 					  rmem->page_size);
3125 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3126 			if (i == rmem->nr_pages - 2 &&
3127 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3128 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3129 			else if (i == rmem->nr_pages - 1 &&
3130 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3131 				extra_bits |= PTU_PTE_LAST;
3132 			rmem->pg_tbl[i] =
3133 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3134 		}
3135 	}
3136 
3137 	if (rmem->vmem_size) {
3138 		*rmem->vmem = vzalloc(rmem->vmem_size);
3139 		if (!(*rmem->vmem))
3140 			return -ENOMEM;
3141 	}
3142 	return 0;
3143 }
3144 
3145 static void bnxt_free_tpa_info(struct bnxt *bp)
3146 {
3147 	int i;
3148 
3149 	for (i = 0; i < bp->rx_nr_rings; i++) {
3150 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3151 
3152 		kfree(rxr->rx_tpa_idx_map);
3153 		rxr->rx_tpa_idx_map = NULL;
3154 		if (rxr->rx_tpa) {
3155 			kfree(rxr->rx_tpa[0].agg_arr);
3156 			rxr->rx_tpa[0].agg_arr = NULL;
3157 		}
3158 		kfree(rxr->rx_tpa);
3159 		rxr->rx_tpa = NULL;
3160 	}
3161 }
3162 
3163 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3164 {
3165 	int i, j, total_aggs = 0;
3166 
3167 	bp->max_tpa = MAX_TPA;
3168 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3169 		if (!bp->max_tpa_v2)
3170 			return 0;
3171 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3172 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3173 	}
3174 
3175 	for (i = 0; i < bp->rx_nr_rings; i++) {
3176 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3177 		struct rx_agg_cmp *agg;
3178 
3179 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3180 				      GFP_KERNEL);
3181 		if (!rxr->rx_tpa)
3182 			return -ENOMEM;
3183 
3184 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3185 			continue;
3186 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3187 		rxr->rx_tpa[0].agg_arr = agg;
3188 		if (!agg)
3189 			return -ENOMEM;
3190 		for (j = 1; j < bp->max_tpa; j++)
3191 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3192 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3193 					      GFP_KERNEL);
3194 		if (!rxr->rx_tpa_idx_map)
3195 			return -ENOMEM;
3196 	}
3197 	return 0;
3198 }
3199 
3200 static void bnxt_free_rx_rings(struct bnxt *bp)
3201 {
3202 	int i;
3203 
3204 	if (!bp->rx_ring)
3205 		return;
3206 
3207 	bnxt_free_tpa_info(bp);
3208 	for (i = 0; i < bp->rx_nr_rings; i++) {
3209 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3210 		struct bnxt_ring_struct *ring;
3211 
3212 		if (rxr->xdp_prog)
3213 			bpf_prog_put(rxr->xdp_prog);
3214 
3215 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3216 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3217 
3218 		page_pool_destroy(rxr->page_pool);
3219 		rxr->page_pool = NULL;
3220 
3221 		kfree(rxr->rx_agg_bmap);
3222 		rxr->rx_agg_bmap = NULL;
3223 
3224 		ring = &rxr->rx_ring_struct;
3225 		bnxt_free_ring(bp, &ring->ring_mem);
3226 
3227 		ring = &rxr->rx_agg_ring_struct;
3228 		bnxt_free_ring(bp, &ring->ring_mem);
3229 	}
3230 }
3231 
3232 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3233 				   struct bnxt_rx_ring_info *rxr)
3234 {
3235 	struct page_pool_params pp = { 0 };
3236 
3237 	pp.pool_size = bp->rx_ring_size;
3238 	pp.nid = dev_to_node(&bp->pdev->dev);
3239 	pp.dev = &bp->pdev->dev;
3240 	pp.dma_dir = DMA_BIDIRECTIONAL;
3241 
3242 	rxr->page_pool = page_pool_create(&pp);
3243 	if (IS_ERR(rxr->page_pool)) {
3244 		int err = PTR_ERR(rxr->page_pool);
3245 
3246 		rxr->page_pool = NULL;
3247 		return err;
3248 	}
3249 	return 0;
3250 }
3251 
3252 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3253 {
3254 	int i, rc = 0, agg_rings = 0;
3255 
3256 	if (!bp->rx_ring)
3257 		return -ENOMEM;
3258 
3259 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3260 		agg_rings = 1;
3261 
3262 	for (i = 0; i < bp->rx_nr_rings; i++) {
3263 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3264 		struct bnxt_ring_struct *ring;
3265 
3266 		ring = &rxr->rx_ring_struct;
3267 
3268 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3269 		if (rc)
3270 			return rc;
3271 
3272 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3273 		if (rc < 0)
3274 			return rc;
3275 
3276 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3277 						MEM_TYPE_PAGE_POOL,
3278 						rxr->page_pool);
3279 		if (rc) {
3280 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3281 			return rc;
3282 		}
3283 
3284 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3285 		if (rc)
3286 			return rc;
3287 
3288 		ring->grp_idx = i;
3289 		if (agg_rings) {
3290 			u16 mem_size;
3291 
3292 			ring = &rxr->rx_agg_ring_struct;
3293 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3294 			if (rc)
3295 				return rc;
3296 
3297 			ring->grp_idx = i;
3298 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3299 			mem_size = rxr->rx_agg_bmap_size / 8;
3300 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3301 			if (!rxr->rx_agg_bmap)
3302 				return -ENOMEM;
3303 		}
3304 	}
3305 	if (bp->flags & BNXT_FLAG_TPA)
3306 		rc = bnxt_alloc_tpa_info(bp);
3307 	return rc;
3308 }
3309 
3310 static void bnxt_free_tx_rings(struct bnxt *bp)
3311 {
3312 	int i;
3313 	struct pci_dev *pdev = bp->pdev;
3314 
3315 	if (!bp->tx_ring)
3316 		return;
3317 
3318 	for (i = 0; i < bp->tx_nr_rings; i++) {
3319 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3320 		struct bnxt_ring_struct *ring;
3321 
3322 		if (txr->tx_push) {
3323 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3324 					  txr->tx_push, txr->tx_push_mapping);
3325 			txr->tx_push = NULL;
3326 		}
3327 
3328 		ring = &txr->tx_ring_struct;
3329 
3330 		bnxt_free_ring(bp, &ring->ring_mem);
3331 	}
3332 }
3333 
3334 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3335 {
3336 	int i, j, rc;
3337 	struct pci_dev *pdev = bp->pdev;
3338 
3339 	bp->tx_push_size = 0;
3340 	if (bp->tx_push_thresh) {
3341 		int push_size;
3342 
3343 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3344 					bp->tx_push_thresh);
3345 
3346 		if (push_size > 256) {
3347 			push_size = 0;
3348 			bp->tx_push_thresh = 0;
3349 		}
3350 
3351 		bp->tx_push_size = push_size;
3352 	}
3353 
3354 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3355 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3356 		struct bnxt_ring_struct *ring;
3357 		u8 qidx;
3358 
3359 		ring = &txr->tx_ring_struct;
3360 
3361 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3362 		if (rc)
3363 			return rc;
3364 
3365 		ring->grp_idx = txr->bnapi->index;
3366 		if (bp->tx_push_size) {
3367 			dma_addr_t mapping;
3368 
3369 			/* One pre-allocated DMA buffer to backup
3370 			 * TX push operation
3371 			 */
3372 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3373 						bp->tx_push_size,
3374 						&txr->tx_push_mapping,
3375 						GFP_KERNEL);
3376 
3377 			if (!txr->tx_push)
3378 				return -ENOMEM;
3379 
3380 			mapping = txr->tx_push_mapping +
3381 				sizeof(struct tx_push_bd);
3382 			txr->data_mapping = cpu_to_le64(mapping);
3383 		}
3384 		qidx = bp->tc_to_qidx[j];
3385 		ring->queue_id = bp->q_info[qidx].queue_id;
3386 		spin_lock_init(&txr->xdp_tx_lock);
3387 		if (i < bp->tx_nr_rings_xdp)
3388 			continue;
3389 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3390 			j++;
3391 	}
3392 	return 0;
3393 }
3394 
3395 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3396 {
3397 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3398 
3399 	kfree(cpr->cp_desc_ring);
3400 	cpr->cp_desc_ring = NULL;
3401 	ring->ring_mem.pg_arr = NULL;
3402 	kfree(cpr->cp_desc_mapping);
3403 	cpr->cp_desc_mapping = NULL;
3404 	ring->ring_mem.dma_arr = NULL;
3405 }
3406 
3407 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3408 {
3409 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3410 	if (!cpr->cp_desc_ring)
3411 		return -ENOMEM;
3412 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3413 				       GFP_KERNEL);
3414 	if (!cpr->cp_desc_mapping)
3415 		return -ENOMEM;
3416 	return 0;
3417 }
3418 
3419 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3420 {
3421 	int i;
3422 
3423 	if (!bp->bnapi)
3424 		return;
3425 	for (i = 0; i < bp->cp_nr_rings; i++) {
3426 		struct bnxt_napi *bnapi = bp->bnapi[i];
3427 
3428 		if (!bnapi)
3429 			continue;
3430 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3431 	}
3432 }
3433 
3434 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3435 {
3436 	int i, n = bp->cp_nr_pages;
3437 
3438 	for (i = 0; i < bp->cp_nr_rings; i++) {
3439 		struct bnxt_napi *bnapi = bp->bnapi[i];
3440 		int rc;
3441 
3442 		if (!bnapi)
3443 			continue;
3444 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3445 		if (rc)
3446 			return rc;
3447 	}
3448 	return 0;
3449 }
3450 
3451 static void bnxt_free_cp_rings(struct bnxt *bp)
3452 {
3453 	int i;
3454 
3455 	if (!bp->bnapi)
3456 		return;
3457 
3458 	for (i = 0; i < bp->cp_nr_rings; i++) {
3459 		struct bnxt_napi *bnapi = bp->bnapi[i];
3460 		struct bnxt_cp_ring_info *cpr;
3461 		struct bnxt_ring_struct *ring;
3462 		int j;
3463 
3464 		if (!bnapi)
3465 			continue;
3466 
3467 		cpr = &bnapi->cp_ring;
3468 		ring = &cpr->cp_ring_struct;
3469 
3470 		bnxt_free_ring(bp, &ring->ring_mem);
3471 
3472 		for (j = 0; j < 2; j++) {
3473 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3474 
3475 			if (cpr2) {
3476 				ring = &cpr2->cp_ring_struct;
3477 				bnxt_free_ring(bp, &ring->ring_mem);
3478 				bnxt_free_cp_arrays(cpr2);
3479 				kfree(cpr2);
3480 				cpr->cp_ring_arr[j] = NULL;
3481 			}
3482 		}
3483 	}
3484 }
3485 
3486 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3487 {
3488 	struct bnxt_ring_mem_info *rmem;
3489 	struct bnxt_ring_struct *ring;
3490 	struct bnxt_cp_ring_info *cpr;
3491 	int rc;
3492 
3493 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3494 	if (!cpr)
3495 		return NULL;
3496 
3497 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3498 	if (rc) {
3499 		bnxt_free_cp_arrays(cpr);
3500 		kfree(cpr);
3501 		return NULL;
3502 	}
3503 	ring = &cpr->cp_ring_struct;
3504 	rmem = &ring->ring_mem;
3505 	rmem->nr_pages = bp->cp_nr_pages;
3506 	rmem->page_size = HW_CMPD_RING_SIZE;
3507 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3508 	rmem->dma_arr = cpr->cp_desc_mapping;
3509 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3510 	rc = bnxt_alloc_ring(bp, rmem);
3511 	if (rc) {
3512 		bnxt_free_ring(bp, rmem);
3513 		bnxt_free_cp_arrays(cpr);
3514 		kfree(cpr);
3515 		cpr = NULL;
3516 	}
3517 	return cpr;
3518 }
3519 
3520 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3521 {
3522 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3523 	int i, rc, ulp_base_vec, ulp_msix;
3524 
3525 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3526 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3527 	for (i = 0; i < bp->cp_nr_rings; i++) {
3528 		struct bnxt_napi *bnapi = bp->bnapi[i];
3529 		struct bnxt_cp_ring_info *cpr;
3530 		struct bnxt_ring_struct *ring;
3531 
3532 		if (!bnapi)
3533 			continue;
3534 
3535 		cpr = &bnapi->cp_ring;
3536 		cpr->bnapi = bnapi;
3537 		ring = &cpr->cp_ring_struct;
3538 
3539 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3540 		if (rc)
3541 			return rc;
3542 
3543 		if (ulp_msix && i >= ulp_base_vec)
3544 			ring->map_idx = i + ulp_msix;
3545 		else
3546 			ring->map_idx = i;
3547 
3548 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3549 			continue;
3550 
3551 		if (i < bp->rx_nr_rings) {
3552 			struct bnxt_cp_ring_info *cpr2 =
3553 				bnxt_alloc_cp_sub_ring(bp);
3554 
3555 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3556 			if (!cpr2)
3557 				return -ENOMEM;
3558 			cpr2->bnapi = bnapi;
3559 		}
3560 		if ((sh && i < bp->tx_nr_rings) ||
3561 		    (!sh && i >= bp->rx_nr_rings)) {
3562 			struct bnxt_cp_ring_info *cpr2 =
3563 				bnxt_alloc_cp_sub_ring(bp);
3564 
3565 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3566 			if (!cpr2)
3567 				return -ENOMEM;
3568 			cpr2->bnapi = bnapi;
3569 		}
3570 	}
3571 	return 0;
3572 }
3573 
3574 static void bnxt_init_ring_struct(struct bnxt *bp)
3575 {
3576 	int i;
3577 
3578 	for (i = 0; i < bp->cp_nr_rings; i++) {
3579 		struct bnxt_napi *bnapi = bp->bnapi[i];
3580 		struct bnxt_ring_mem_info *rmem;
3581 		struct bnxt_cp_ring_info *cpr;
3582 		struct bnxt_rx_ring_info *rxr;
3583 		struct bnxt_tx_ring_info *txr;
3584 		struct bnxt_ring_struct *ring;
3585 
3586 		if (!bnapi)
3587 			continue;
3588 
3589 		cpr = &bnapi->cp_ring;
3590 		ring = &cpr->cp_ring_struct;
3591 		rmem = &ring->ring_mem;
3592 		rmem->nr_pages = bp->cp_nr_pages;
3593 		rmem->page_size = HW_CMPD_RING_SIZE;
3594 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3595 		rmem->dma_arr = cpr->cp_desc_mapping;
3596 		rmem->vmem_size = 0;
3597 
3598 		rxr = bnapi->rx_ring;
3599 		if (!rxr)
3600 			goto skip_rx;
3601 
3602 		ring = &rxr->rx_ring_struct;
3603 		rmem = &ring->ring_mem;
3604 		rmem->nr_pages = bp->rx_nr_pages;
3605 		rmem->page_size = HW_RXBD_RING_SIZE;
3606 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3607 		rmem->dma_arr = rxr->rx_desc_mapping;
3608 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3609 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3610 
3611 		ring = &rxr->rx_agg_ring_struct;
3612 		rmem = &ring->ring_mem;
3613 		rmem->nr_pages = bp->rx_agg_nr_pages;
3614 		rmem->page_size = HW_RXBD_RING_SIZE;
3615 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3616 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3617 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3618 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3619 
3620 skip_rx:
3621 		txr = bnapi->tx_ring;
3622 		if (!txr)
3623 			continue;
3624 
3625 		ring = &txr->tx_ring_struct;
3626 		rmem = &ring->ring_mem;
3627 		rmem->nr_pages = bp->tx_nr_pages;
3628 		rmem->page_size = HW_RXBD_RING_SIZE;
3629 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3630 		rmem->dma_arr = txr->tx_desc_mapping;
3631 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3632 		rmem->vmem = (void **)&txr->tx_buf_ring;
3633 	}
3634 }
3635 
3636 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3637 {
3638 	int i;
3639 	u32 prod;
3640 	struct rx_bd **rx_buf_ring;
3641 
3642 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3643 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3644 		int j;
3645 		struct rx_bd *rxbd;
3646 
3647 		rxbd = rx_buf_ring[i];
3648 		if (!rxbd)
3649 			continue;
3650 
3651 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3652 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3653 			rxbd->rx_bd_opaque = prod;
3654 		}
3655 	}
3656 }
3657 
3658 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3659 {
3660 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3661 	struct net_device *dev = bp->dev;
3662 	u32 prod;
3663 	int i;
3664 
3665 	prod = rxr->rx_prod;
3666 	for (i = 0; i < bp->rx_ring_size; i++) {
3667 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3668 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3669 				    ring_nr, i, bp->rx_ring_size);
3670 			break;
3671 		}
3672 		prod = NEXT_RX(prod);
3673 	}
3674 	rxr->rx_prod = prod;
3675 
3676 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3677 		return 0;
3678 
3679 	prod = rxr->rx_agg_prod;
3680 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3681 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3682 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3683 				    ring_nr, i, bp->rx_ring_size);
3684 			break;
3685 		}
3686 		prod = NEXT_RX_AGG(prod);
3687 	}
3688 	rxr->rx_agg_prod = prod;
3689 
3690 	if (rxr->rx_tpa) {
3691 		dma_addr_t mapping;
3692 		u8 *data;
3693 
3694 		for (i = 0; i < bp->max_tpa; i++) {
3695 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3696 			if (!data)
3697 				return -ENOMEM;
3698 
3699 			rxr->rx_tpa[i].data = data;
3700 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3701 			rxr->rx_tpa[i].mapping = mapping;
3702 		}
3703 	}
3704 	return 0;
3705 }
3706 
3707 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3708 {
3709 	struct bnxt_rx_ring_info *rxr;
3710 	struct bnxt_ring_struct *ring;
3711 	u32 type;
3712 
3713 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3714 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3715 
3716 	if (NET_IP_ALIGN == 2)
3717 		type |= RX_BD_FLAGS_SOP;
3718 
3719 	rxr = &bp->rx_ring[ring_nr];
3720 	ring = &rxr->rx_ring_struct;
3721 	bnxt_init_rxbd_pages(ring, type);
3722 
3723 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3724 		bpf_prog_add(bp->xdp_prog, 1);
3725 		rxr->xdp_prog = bp->xdp_prog;
3726 	}
3727 	ring->fw_ring_id = INVALID_HW_RING_ID;
3728 
3729 	ring = &rxr->rx_agg_ring_struct;
3730 	ring->fw_ring_id = INVALID_HW_RING_ID;
3731 
3732 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3733 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3734 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3735 
3736 		bnxt_init_rxbd_pages(ring, type);
3737 	}
3738 
3739 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3740 }
3741 
3742 static void bnxt_init_cp_rings(struct bnxt *bp)
3743 {
3744 	int i, j;
3745 
3746 	for (i = 0; i < bp->cp_nr_rings; i++) {
3747 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3748 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3749 
3750 		ring->fw_ring_id = INVALID_HW_RING_ID;
3751 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3752 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3753 		for (j = 0; j < 2; j++) {
3754 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3755 
3756 			if (!cpr2)
3757 				continue;
3758 
3759 			ring = &cpr2->cp_ring_struct;
3760 			ring->fw_ring_id = INVALID_HW_RING_ID;
3761 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3762 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3763 		}
3764 	}
3765 }
3766 
3767 static int bnxt_init_rx_rings(struct bnxt *bp)
3768 {
3769 	int i, rc = 0;
3770 
3771 	if (BNXT_RX_PAGE_MODE(bp)) {
3772 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3773 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3774 	} else {
3775 		bp->rx_offset = BNXT_RX_OFFSET;
3776 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3777 	}
3778 
3779 	for (i = 0; i < bp->rx_nr_rings; i++) {
3780 		rc = bnxt_init_one_rx_ring(bp, i);
3781 		if (rc)
3782 			break;
3783 	}
3784 
3785 	return rc;
3786 }
3787 
3788 static int bnxt_init_tx_rings(struct bnxt *bp)
3789 {
3790 	u16 i;
3791 
3792 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3793 				   BNXT_MIN_TX_DESC_CNT);
3794 
3795 	for (i = 0; i < bp->tx_nr_rings; i++) {
3796 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3797 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3798 
3799 		ring->fw_ring_id = INVALID_HW_RING_ID;
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 static void bnxt_free_ring_grps(struct bnxt *bp)
3806 {
3807 	kfree(bp->grp_info);
3808 	bp->grp_info = NULL;
3809 }
3810 
3811 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3812 {
3813 	int i;
3814 
3815 	if (irq_re_init) {
3816 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3817 				       sizeof(struct bnxt_ring_grp_info),
3818 				       GFP_KERNEL);
3819 		if (!bp->grp_info)
3820 			return -ENOMEM;
3821 	}
3822 	for (i = 0; i < bp->cp_nr_rings; i++) {
3823 		if (irq_re_init)
3824 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3825 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3826 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3827 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3829 	}
3830 	return 0;
3831 }
3832 
3833 static void bnxt_free_vnics(struct bnxt *bp)
3834 {
3835 	kfree(bp->vnic_info);
3836 	bp->vnic_info = NULL;
3837 	bp->nr_vnics = 0;
3838 }
3839 
3840 static int bnxt_alloc_vnics(struct bnxt *bp)
3841 {
3842 	int num_vnics = 1;
3843 
3844 #ifdef CONFIG_RFS_ACCEL
3845 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3846 		num_vnics += bp->rx_nr_rings;
3847 #endif
3848 
3849 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3850 		num_vnics++;
3851 
3852 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3853 				GFP_KERNEL);
3854 	if (!bp->vnic_info)
3855 		return -ENOMEM;
3856 
3857 	bp->nr_vnics = num_vnics;
3858 	return 0;
3859 }
3860 
3861 static void bnxt_init_vnics(struct bnxt *bp)
3862 {
3863 	int i;
3864 
3865 	for (i = 0; i < bp->nr_vnics; i++) {
3866 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3867 		int j;
3868 
3869 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3870 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3871 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3872 
3873 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3874 
3875 		if (bp->vnic_info[i].rss_hash_key) {
3876 			if (i == 0)
3877 				get_random_bytes(vnic->rss_hash_key,
3878 					      HW_HASH_KEY_SIZE);
3879 			else
3880 				memcpy(vnic->rss_hash_key,
3881 				       bp->vnic_info[0].rss_hash_key,
3882 				       HW_HASH_KEY_SIZE);
3883 		}
3884 	}
3885 }
3886 
3887 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3888 {
3889 	int pages;
3890 
3891 	pages = ring_size / desc_per_pg;
3892 
3893 	if (!pages)
3894 		return 1;
3895 
3896 	pages++;
3897 
3898 	while (pages & (pages - 1))
3899 		pages++;
3900 
3901 	return pages;
3902 }
3903 
3904 void bnxt_set_tpa_flags(struct bnxt *bp)
3905 {
3906 	bp->flags &= ~BNXT_FLAG_TPA;
3907 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3908 		return;
3909 	if (bp->dev->features & NETIF_F_LRO)
3910 		bp->flags |= BNXT_FLAG_LRO;
3911 	else if (bp->dev->features & NETIF_F_GRO_HW)
3912 		bp->flags |= BNXT_FLAG_GRO;
3913 }
3914 
3915 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3916  * be set on entry.
3917  */
3918 void bnxt_set_ring_params(struct bnxt *bp)
3919 {
3920 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3921 	u32 agg_factor = 0, agg_ring_size = 0;
3922 
3923 	/* 8 for CRC and VLAN */
3924 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3925 
3926 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3927 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3928 
3929 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3930 	ring_size = bp->rx_ring_size;
3931 	bp->rx_agg_ring_size = 0;
3932 	bp->rx_agg_nr_pages = 0;
3933 
3934 	if (bp->flags & BNXT_FLAG_TPA)
3935 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3936 
3937 	bp->flags &= ~BNXT_FLAG_JUMBO;
3938 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3939 		u32 jumbo_factor;
3940 
3941 		bp->flags |= BNXT_FLAG_JUMBO;
3942 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3943 		if (jumbo_factor > agg_factor)
3944 			agg_factor = jumbo_factor;
3945 	}
3946 	if (agg_factor) {
3947 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3948 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3949 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3950 				    bp->rx_ring_size, ring_size);
3951 			bp->rx_ring_size = ring_size;
3952 		}
3953 		agg_ring_size = ring_size * agg_factor;
3954 
3955 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3956 							RX_DESC_CNT);
3957 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3958 			u32 tmp = agg_ring_size;
3959 
3960 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3961 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3962 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3963 				    tmp, agg_ring_size);
3964 		}
3965 		bp->rx_agg_ring_size = agg_ring_size;
3966 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3967 
3968 		if (BNXT_RX_PAGE_MODE(bp)) {
3969 			rx_space = BNXT_PAGE_MODE_BUF_SIZE;
3970 			rx_size = BNXT_MAX_PAGE_MODE_MTU;
3971 		} else {
3972 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3973 			rx_space = rx_size + NET_SKB_PAD +
3974 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3975 		}
3976 	}
3977 
3978 	bp->rx_buf_use_size = rx_size;
3979 	bp->rx_buf_size = rx_space;
3980 
3981 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3982 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3983 
3984 	ring_size = bp->tx_ring_size;
3985 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3986 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3987 
3988 	max_rx_cmpl = bp->rx_ring_size;
3989 	/* MAX TPA needs to be added because TPA_START completions are
3990 	 * immediately recycled, so the TPA completions are not bound by
3991 	 * the RX ring size.
3992 	 */
3993 	if (bp->flags & BNXT_FLAG_TPA)
3994 		max_rx_cmpl += bp->max_tpa;
3995 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3996 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3997 	bp->cp_ring_size = ring_size;
3998 
3999 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4000 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4001 		bp->cp_nr_pages = MAX_CP_PAGES;
4002 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4003 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4004 			    ring_size, bp->cp_ring_size);
4005 	}
4006 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4007 	bp->cp_ring_mask = bp->cp_bit - 1;
4008 }
4009 
4010 /* Changing allocation mode of RX rings.
4011  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4012  */
4013 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4014 {
4015 	if (page_mode) {
4016 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4017 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4018 
4019 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4020 			bp->flags |= BNXT_FLAG_JUMBO;
4021 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4022 			bp->dev->max_mtu =
4023 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4024 		} else {
4025 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4026 			bp->rx_skb_func = bnxt_rx_page_skb;
4027 			bp->dev->max_mtu =
4028 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4029 		}
4030 		bp->rx_dir = DMA_BIDIRECTIONAL;
4031 		/* Disable LRO or GRO_HW */
4032 		netdev_update_features(bp->dev);
4033 	} else {
4034 		bp->dev->max_mtu = bp->max_mtu;
4035 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4036 		bp->rx_dir = DMA_FROM_DEVICE;
4037 		bp->rx_skb_func = bnxt_rx_skb;
4038 	}
4039 	return 0;
4040 }
4041 
4042 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4043 {
4044 	int i;
4045 	struct bnxt_vnic_info *vnic;
4046 	struct pci_dev *pdev = bp->pdev;
4047 
4048 	if (!bp->vnic_info)
4049 		return;
4050 
4051 	for (i = 0; i < bp->nr_vnics; i++) {
4052 		vnic = &bp->vnic_info[i];
4053 
4054 		kfree(vnic->fw_grp_ids);
4055 		vnic->fw_grp_ids = NULL;
4056 
4057 		kfree(vnic->uc_list);
4058 		vnic->uc_list = NULL;
4059 
4060 		if (vnic->mc_list) {
4061 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4062 					  vnic->mc_list, vnic->mc_list_mapping);
4063 			vnic->mc_list = NULL;
4064 		}
4065 
4066 		if (vnic->rss_table) {
4067 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4068 					  vnic->rss_table,
4069 					  vnic->rss_table_dma_addr);
4070 			vnic->rss_table = NULL;
4071 		}
4072 
4073 		vnic->rss_hash_key = NULL;
4074 		vnic->flags = 0;
4075 	}
4076 }
4077 
4078 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4079 {
4080 	int i, rc = 0, size;
4081 	struct bnxt_vnic_info *vnic;
4082 	struct pci_dev *pdev = bp->pdev;
4083 	int max_rings;
4084 
4085 	for (i = 0; i < bp->nr_vnics; i++) {
4086 		vnic = &bp->vnic_info[i];
4087 
4088 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4089 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4090 
4091 			if (mem_size > 0) {
4092 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4093 				if (!vnic->uc_list) {
4094 					rc = -ENOMEM;
4095 					goto out;
4096 				}
4097 			}
4098 		}
4099 
4100 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4101 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4102 			vnic->mc_list =
4103 				dma_alloc_coherent(&pdev->dev,
4104 						   vnic->mc_list_size,
4105 						   &vnic->mc_list_mapping,
4106 						   GFP_KERNEL);
4107 			if (!vnic->mc_list) {
4108 				rc = -ENOMEM;
4109 				goto out;
4110 			}
4111 		}
4112 
4113 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4114 			goto vnic_skip_grps;
4115 
4116 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4117 			max_rings = bp->rx_nr_rings;
4118 		else
4119 			max_rings = 1;
4120 
4121 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4122 		if (!vnic->fw_grp_ids) {
4123 			rc = -ENOMEM;
4124 			goto out;
4125 		}
4126 vnic_skip_grps:
4127 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4128 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4129 			continue;
4130 
4131 		/* Allocate rss table and hash key */
4132 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4133 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4134 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4135 
4136 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4137 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4138 						     vnic->rss_table_size,
4139 						     &vnic->rss_table_dma_addr,
4140 						     GFP_KERNEL);
4141 		if (!vnic->rss_table) {
4142 			rc = -ENOMEM;
4143 			goto out;
4144 		}
4145 
4146 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4147 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4148 	}
4149 	return 0;
4150 
4151 out:
4152 	return rc;
4153 }
4154 
4155 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4156 {
4157 	struct bnxt_hwrm_wait_token *token;
4158 
4159 	dma_pool_destroy(bp->hwrm_dma_pool);
4160 	bp->hwrm_dma_pool = NULL;
4161 
4162 	rcu_read_lock();
4163 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4164 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4165 	rcu_read_unlock();
4166 }
4167 
4168 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4169 {
4170 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4171 					    BNXT_HWRM_DMA_SIZE,
4172 					    BNXT_HWRM_DMA_ALIGN, 0);
4173 	if (!bp->hwrm_dma_pool)
4174 		return -ENOMEM;
4175 
4176 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4177 
4178 	return 0;
4179 }
4180 
4181 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4182 {
4183 	kfree(stats->hw_masks);
4184 	stats->hw_masks = NULL;
4185 	kfree(stats->sw_stats);
4186 	stats->sw_stats = NULL;
4187 	if (stats->hw_stats) {
4188 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4189 				  stats->hw_stats_map);
4190 		stats->hw_stats = NULL;
4191 	}
4192 }
4193 
4194 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4195 				bool alloc_masks)
4196 {
4197 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4198 					     &stats->hw_stats_map, GFP_KERNEL);
4199 	if (!stats->hw_stats)
4200 		return -ENOMEM;
4201 
4202 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4203 	if (!stats->sw_stats)
4204 		goto stats_mem_err;
4205 
4206 	if (alloc_masks) {
4207 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4208 		if (!stats->hw_masks)
4209 			goto stats_mem_err;
4210 	}
4211 	return 0;
4212 
4213 stats_mem_err:
4214 	bnxt_free_stats_mem(bp, stats);
4215 	return -ENOMEM;
4216 }
4217 
4218 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4219 {
4220 	int i;
4221 
4222 	for (i = 0; i < count; i++)
4223 		mask_arr[i] = mask;
4224 }
4225 
4226 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4227 {
4228 	int i;
4229 
4230 	for (i = 0; i < count; i++)
4231 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4232 }
4233 
4234 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4235 				    struct bnxt_stats_mem *stats)
4236 {
4237 	struct hwrm_func_qstats_ext_output *resp;
4238 	struct hwrm_func_qstats_ext_input *req;
4239 	__le64 *hw_masks;
4240 	int rc;
4241 
4242 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4243 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4244 		return -EOPNOTSUPP;
4245 
4246 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4247 	if (rc)
4248 		return rc;
4249 
4250 	req->fid = cpu_to_le16(0xffff);
4251 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4252 
4253 	resp = hwrm_req_hold(bp, req);
4254 	rc = hwrm_req_send(bp, req);
4255 	if (!rc) {
4256 		hw_masks = &resp->rx_ucast_pkts;
4257 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4258 	}
4259 	hwrm_req_drop(bp, req);
4260 	return rc;
4261 }
4262 
4263 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4264 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4265 
4266 static void bnxt_init_stats(struct bnxt *bp)
4267 {
4268 	struct bnxt_napi *bnapi = bp->bnapi[0];
4269 	struct bnxt_cp_ring_info *cpr;
4270 	struct bnxt_stats_mem *stats;
4271 	__le64 *rx_stats, *tx_stats;
4272 	int rc, rx_count, tx_count;
4273 	u64 *rx_masks, *tx_masks;
4274 	u64 mask;
4275 	u8 flags;
4276 
4277 	cpr = &bnapi->cp_ring;
4278 	stats = &cpr->stats;
4279 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4280 	if (rc) {
4281 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4282 			mask = (1ULL << 48) - 1;
4283 		else
4284 			mask = -1ULL;
4285 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4286 	}
4287 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4288 		stats = &bp->port_stats;
4289 		rx_stats = stats->hw_stats;
4290 		rx_masks = stats->hw_masks;
4291 		rx_count = sizeof(struct rx_port_stats) / 8;
4292 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4293 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4294 		tx_count = sizeof(struct tx_port_stats) / 8;
4295 
4296 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4297 		rc = bnxt_hwrm_port_qstats(bp, flags);
4298 		if (rc) {
4299 			mask = (1ULL << 40) - 1;
4300 
4301 			bnxt_fill_masks(rx_masks, mask, rx_count);
4302 			bnxt_fill_masks(tx_masks, mask, tx_count);
4303 		} else {
4304 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4305 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4306 			bnxt_hwrm_port_qstats(bp, 0);
4307 		}
4308 	}
4309 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4310 		stats = &bp->rx_port_stats_ext;
4311 		rx_stats = stats->hw_stats;
4312 		rx_masks = stats->hw_masks;
4313 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4314 		stats = &bp->tx_port_stats_ext;
4315 		tx_stats = stats->hw_stats;
4316 		tx_masks = stats->hw_masks;
4317 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4318 
4319 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4320 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4321 		if (rc) {
4322 			mask = (1ULL << 40) - 1;
4323 
4324 			bnxt_fill_masks(rx_masks, mask, rx_count);
4325 			if (tx_stats)
4326 				bnxt_fill_masks(tx_masks, mask, tx_count);
4327 		} else {
4328 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4329 			if (tx_stats)
4330 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4331 						   tx_count);
4332 			bnxt_hwrm_port_qstats_ext(bp, 0);
4333 		}
4334 	}
4335 }
4336 
4337 static void bnxt_free_port_stats(struct bnxt *bp)
4338 {
4339 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4340 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4341 
4342 	bnxt_free_stats_mem(bp, &bp->port_stats);
4343 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4344 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4345 }
4346 
4347 static void bnxt_free_ring_stats(struct bnxt *bp)
4348 {
4349 	int i;
4350 
4351 	if (!bp->bnapi)
4352 		return;
4353 
4354 	for (i = 0; i < bp->cp_nr_rings; i++) {
4355 		struct bnxt_napi *bnapi = bp->bnapi[i];
4356 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4357 
4358 		bnxt_free_stats_mem(bp, &cpr->stats);
4359 	}
4360 }
4361 
4362 static int bnxt_alloc_stats(struct bnxt *bp)
4363 {
4364 	u32 size, i;
4365 	int rc;
4366 
4367 	size = bp->hw_ring_stats_size;
4368 
4369 	for (i = 0; i < bp->cp_nr_rings; i++) {
4370 		struct bnxt_napi *bnapi = bp->bnapi[i];
4371 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4372 
4373 		cpr->stats.len = size;
4374 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4375 		if (rc)
4376 			return rc;
4377 
4378 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4379 	}
4380 
4381 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4382 		return 0;
4383 
4384 	if (bp->port_stats.hw_stats)
4385 		goto alloc_ext_stats;
4386 
4387 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4388 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4389 	if (rc)
4390 		return rc;
4391 
4392 	bp->flags |= BNXT_FLAG_PORT_STATS;
4393 
4394 alloc_ext_stats:
4395 	/* Display extended statistics only if FW supports it */
4396 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4397 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4398 			return 0;
4399 
4400 	if (bp->rx_port_stats_ext.hw_stats)
4401 		goto alloc_tx_ext_stats;
4402 
4403 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4404 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4405 	/* Extended stats are optional */
4406 	if (rc)
4407 		return 0;
4408 
4409 alloc_tx_ext_stats:
4410 	if (bp->tx_port_stats_ext.hw_stats)
4411 		return 0;
4412 
4413 	if (bp->hwrm_spec_code >= 0x10902 ||
4414 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4415 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4416 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4417 		/* Extended stats are optional */
4418 		if (rc)
4419 			return 0;
4420 	}
4421 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4422 	return 0;
4423 }
4424 
4425 static void bnxt_clear_ring_indices(struct bnxt *bp)
4426 {
4427 	int i;
4428 
4429 	if (!bp->bnapi)
4430 		return;
4431 
4432 	for (i = 0; i < bp->cp_nr_rings; i++) {
4433 		struct bnxt_napi *bnapi = bp->bnapi[i];
4434 		struct bnxt_cp_ring_info *cpr;
4435 		struct bnxt_rx_ring_info *rxr;
4436 		struct bnxt_tx_ring_info *txr;
4437 
4438 		if (!bnapi)
4439 			continue;
4440 
4441 		cpr = &bnapi->cp_ring;
4442 		cpr->cp_raw_cons = 0;
4443 
4444 		txr = bnapi->tx_ring;
4445 		if (txr) {
4446 			txr->tx_prod = 0;
4447 			txr->tx_cons = 0;
4448 		}
4449 
4450 		rxr = bnapi->rx_ring;
4451 		if (rxr) {
4452 			rxr->rx_prod = 0;
4453 			rxr->rx_agg_prod = 0;
4454 			rxr->rx_sw_agg_prod = 0;
4455 			rxr->rx_next_cons = 0;
4456 		}
4457 	}
4458 }
4459 
4460 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4461 {
4462 #ifdef CONFIG_RFS_ACCEL
4463 	int i;
4464 
4465 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4466 	 * safe to delete the hash table.
4467 	 */
4468 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4469 		struct hlist_head *head;
4470 		struct hlist_node *tmp;
4471 		struct bnxt_ntuple_filter *fltr;
4472 
4473 		head = &bp->ntp_fltr_hash_tbl[i];
4474 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4475 			hlist_del(&fltr->hash);
4476 			kfree(fltr);
4477 		}
4478 	}
4479 	if (irq_reinit) {
4480 		bitmap_free(bp->ntp_fltr_bmap);
4481 		bp->ntp_fltr_bmap = NULL;
4482 	}
4483 	bp->ntp_fltr_count = 0;
4484 #endif
4485 }
4486 
4487 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4488 {
4489 #ifdef CONFIG_RFS_ACCEL
4490 	int i, rc = 0;
4491 
4492 	if (!(bp->flags & BNXT_FLAG_RFS))
4493 		return 0;
4494 
4495 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4496 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4497 
4498 	bp->ntp_fltr_count = 0;
4499 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4500 
4501 	if (!bp->ntp_fltr_bmap)
4502 		rc = -ENOMEM;
4503 
4504 	return rc;
4505 #else
4506 	return 0;
4507 #endif
4508 }
4509 
4510 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4511 {
4512 	bnxt_free_vnic_attributes(bp);
4513 	bnxt_free_tx_rings(bp);
4514 	bnxt_free_rx_rings(bp);
4515 	bnxt_free_cp_rings(bp);
4516 	bnxt_free_all_cp_arrays(bp);
4517 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4518 	if (irq_re_init) {
4519 		bnxt_free_ring_stats(bp);
4520 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4521 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4522 			bnxt_free_port_stats(bp);
4523 		bnxt_free_ring_grps(bp);
4524 		bnxt_free_vnics(bp);
4525 		kfree(bp->tx_ring_map);
4526 		bp->tx_ring_map = NULL;
4527 		kfree(bp->tx_ring);
4528 		bp->tx_ring = NULL;
4529 		kfree(bp->rx_ring);
4530 		bp->rx_ring = NULL;
4531 		kfree(bp->bnapi);
4532 		bp->bnapi = NULL;
4533 	} else {
4534 		bnxt_clear_ring_indices(bp);
4535 	}
4536 }
4537 
4538 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4539 {
4540 	int i, j, rc, size, arr_size;
4541 	void *bnapi;
4542 
4543 	if (irq_re_init) {
4544 		/* Allocate bnapi mem pointer array and mem block for
4545 		 * all queues
4546 		 */
4547 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4548 				bp->cp_nr_rings);
4549 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4550 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4551 		if (!bnapi)
4552 			return -ENOMEM;
4553 
4554 		bp->bnapi = bnapi;
4555 		bnapi += arr_size;
4556 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4557 			bp->bnapi[i] = bnapi;
4558 			bp->bnapi[i]->index = i;
4559 			bp->bnapi[i]->bp = bp;
4560 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4561 				struct bnxt_cp_ring_info *cpr =
4562 					&bp->bnapi[i]->cp_ring;
4563 
4564 				cpr->cp_ring_struct.ring_mem.flags =
4565 					BNXT_RMEM_RING_PTE_FLAG;
4566 			}
4567 		}
4568 
4569 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4570 				      sizeof(struct bnxt_rx_ring_info),
4571 				      GFP_KERNEL);
4572 		if (!bp->rx_ring)
4573 			return -ENOMEM;
4574 
4575 		for (i = 0; i < bp->rx_nr_rings; i++) {
4576 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4577 
4578 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4579 				rxr->rx_ring_struct.ring_mem.flags =
4580 					BNXT_RMEM_RING_PTE_FLAG;
4581 				rxr->rx_agg_ring_struct.ring_mem.flags =
4582 					BNXT_RMEM_RING_PTE_FLAG;
4583 			}
4584 			rxr->bnapi = bp->bnapi[i];
4585 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4586 		}
4587 
4588 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4589 				      sizeof(struct bnxt_tx_ring_info),
4590 				      GFP_KERNEL);
4591 		if (!bp->tx_ring)
4592 			return -ENOMEM;
4593 
4594 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4595 					  GFP_KERNEL);
4596 
4597 		if (!bp->tx_ring_map)
4598 			return -ENOMEM;
4599 
4600 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4601 			j = 0;
4602 		else
4603 			j = bp->rx_nr_rings;
4604 
4605 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4606 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4607 
4608 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4609 				txr->tx_ring_struct.ring_mem.flags =
4610 					BNXT_RMEM_RING_PTE_FLAG;
4611 			txr->bnapi = bp->bnapi[j];
4612 			bp->bnapi[j]->tx_ring = txr;
4613 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4614 			if (i >= bp->tx_nr_rings_xdp) {
4615 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4616 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4617 			} else {
4618 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4619 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4620 			}
4621 		}
4622 
4623 		rc = bnxt_alloc_stats(bp);
4624 		if (rc)
4625 			goto alloc_mem_err;
4626 		bnxt_init_stats(bp);
4627 
4628 		rc = bnxt_alloc_ntp_fltrs(bp);
4629 		if (rc)
4630 			goto alloc_mem_err;
4631 
4632 		rc = bnxt_alloc_vnics(bp);
4633 		if (rc)
4634 			goto alloc_mem_err;
4635 	}
4636 
4637 	rc = bnxt_alloc_all_cp_arrays(bp);
4638 	if (rc)
4639 		goto alloc_mem_err;
4640 
4641 	bnxt_init_ring_struct(bp);
4642 
4643 	rc = bnxt_alloc_rx_rings(bp);
4644 	if (rc)
4645 		goto alloc_mem_err;
4646 
4647 	rc = bnxt_alloc_tx_rings(bp);
4648 	if (rc)
4649 		goto alloc_mem_err;
4650 
4651 	rc = bnxt_alloc_cp_rings(bp);
4652 	if (rc)
4653 		goto alloc_mem_err;
4654 
4655 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4656 				  BNXT_VNIC_UCAST_FLAG;
4657 	rc = bnxt_alloc_vnic_attributes(bp);
4658 	if (rc)
4659 		goto alloc_mem_err;
4660 	return 0;
4661 
4662 alloc_mem_err:
4663 	bnxt_free_mem(bp, true);
4664 	return rc;
4665 }
4666 
4667 static void bnxt_disable_int(struct bnxt *bp)
4668 {
4669 	int i;
4670 
4671 	if (!bp->bnapi)
4672 		return;
4673 
4674 	for (i = 0; i < bp->cp_nr_rings; i++) {
4675 		struct bnxt_napi *bnapi = bp->bnapi[i];
4676 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4677 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4678 
4679 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4680 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4681 	}
4682 }
4683 
4684 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4685 {
4686 	struct bnxt_napi *bnapi = bp->bnapi[n];
4687 	struct bnxt_cp_ring_info *cpr;
4688 
4689 	cpr = &bnapi->cp_ring;
4690 	return cpr->cp_ring_struct.map_idx;
4691 }
4692 
4693 static void bnxt_disable_int_sync(struct bnxt *bp)
4694 {
4695 	int i;
4696 
4697 	if (!bp->irq_tbl)
4698 		return;
4699 
4700 	atomic_inc(&bp->intr_sem);
4701 
4702 	bnxt_disable_int(bp);
4703 	for (i = 0; i < bp->cp_nr_rings; i++) {
4704 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4705 
4706 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4707 	}
4708 }
4709 
4710 static void bnxt_enable_int(struct bnxt *bp)
4711 {
4712 	int i;
4713 
4714 	atomic_set(&bp->intr_sem, 0);
4715 	for (i = 0; i < bp->cp_nr_rings; i++) {
4716 		struct bnxt_napi *bnapi = bp->bnapi[i];
4717 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4718 
4719 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4720 	}
4721 }
4722 
4723 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4724 			    bool async_only)
4725 {
4726 	DECLARE_BITMAP(async_events_bmap, 256);
4727 	u32 *events = (u32 *)async_events_bmap;
4728 	struct hwrm_func_drv_rgtr_output *resp;
4729 	struct hwrm_func_drv_rgtr_input *req;
4730 	u32 flags;
4731 	int rc, i;
4732 
4733 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4734 	if (rc)
4735 		return rc;
4736 
4737 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4738 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4739 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4740 
4741 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4742 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4743 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4744 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4745 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4746 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4747 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4748 	req->flags = cpu_to_le32(flags);
4749 	req->ver_maj_8b = DRV_VER_MAJ;
4750 	req->ver_min_8b = DRV_VER_MIN;
4751 	req->ver_upd_8b = DRV_VER_UPD;
4752 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4753 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4754 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4755 
4756 	if (BNXT_PF(bp)) {
4757 		u32 data[8];
4758 		int i;
4759 
4760 		memset(data, 0, sizeof(data));
4761 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4762 			u16 cmd = bnxt_vf_req_snif[i];
4763 			unsigned int bit, idx;
4764 
4765 			idx = cmd / 32;
4766 			bit = cmd % 32;
4767 			data[idx] |= 1 << bit;
4768 		}
4769 
4770 		for (i = 0; i < 8; i++)
4771 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4772 
4773 		req->enables |=
4774 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4775 	}
4776 
4777 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4778 		req->flags |= cpu_to_le32(
4779 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4780 
4781 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4782 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4783 		u16 event_id = bnxt_async_events_arr[i];
4784 
4785 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4786 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4787 			continue;
4788 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4789 	}
4790 	if (bmap && bmap_size) {
4791 		for (i = 0; i < bmap_size; i++) {
4792 			if (test_bit(i, bmap))
4793 				__set_bit(i, async_events_bmap);
4794 		}
4795 	}
4796 	for (i = 0; i < 8; i++)
4797 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4798 
4799 	if (async_only)
4800 		req->enables =
4801 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4802 
4803 	resp = hwrm_req_hold(bp, req);
4804 	rc = hwrm_req_send(bp, req);
4805 	if (!rc) {
4806 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4807 		if (resp->flags &
4808 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4809 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4810 	}
4811 	hwrm_req_drop(bp, req);
4812 	return rc;
4813 }
4814 
4815 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4816 {
4817 	struct hwrm_func_drv_unrgtr_input *req;
4818 	int rc;
4819 
4820 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4821 		return 0;
4822 
4823 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4824 	if (rc)
4825 		return rc;
4826 	return hwrm_req_send(bp, req);
4827 }
4828 
4829 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4830 {
4831 	struct hwrm_tunnel_dst_port_free_input *req;
4832 	int rc;
4833 
4834 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4835 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4836 		return 0;
4837 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4838 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4839 		return 0;
4840 
4841 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4842 	if (rc)
4843 		return rc;
4844 
4845 	req->tunnel_type = tunnel_type;
4846 
4847 	switch (tunnel_type) {
4848 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4849 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4850 		bp->vxlan_port = 0;
4851 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4852 		break;
4853 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4854 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4855 		bp->nge_port = 0;
4856 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4857 		break;
4858 	default:
4859 		break;
4860 	}
4861 
4862 	rc = hwrm_req_send(bp, req);
4863 	if (rc)
4864 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4865 			   rc);
4866 	return rc;
4867 }
4868 
4869 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4870 					   u8 tunnel_type)
4871 {
4872 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4873 	struct hwrm_tunnel_dst_port_alloc_input *req;
4874 	int rc;
4875 
4876 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4877 	if (rc)
4878 		return rc;
4879 
4880 	req->tunnel_type = tunnel_type;
4881 	req->tunnel_dst_port_val = port;
4882 
4883 	resp = hwrm_req_hold(bp, req);
4884 	rc = hwrm_req_send(bp, req);
4885 	if (rc) {
4886 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4887 			   rc);
4888 		goto err_out;
4889 	}
4890 
4891 	switch (tunnel_type) {
4892 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4893 		bp->vxlan_port = port;
4894 		bp->vxlan_fw_dst_port_id =
4895 			le16_to_cpu(resp->tunnel_dst_port_id);
4896 		break;
4897 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4898 		bp->nge_port = port;
4899 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4900 		break;
4901 	default:
4902 		break;
4903 	}
4904 
4905 err_out:
4906 	hwrm_req_drop(bp, req);
4907 	return rc;
4908 }
4909 
4910 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4911 {
4912 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4913 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4914 	int rc;
4915 
4916 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4917 	if (rc)
4918 		return rc;
4919 
4920 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4921 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4922 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4923 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4924 	}
4925 	req->mask = cpu_to_le32(vnic->rx_mask);
4926 	return hwrm_req_send_silent(bp, req);
4927 }
4928 
4929 #ifdef CONFIG_RFS_ACCEL
4930 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4931 					    struct bnxt_ntuple_filter *fltr)
4932 {
4933 	struct hwrm_cfa_ntuple_filter_free_input *req;
4934 	int rc;
4935 
4936 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4937 	if (rc)
4938 		return rc;
4939 
4940 	req->ntuple_filter_id = fltr->filter_id;
4941 	return hwrm_req_send(bp, req);
4942 }
4943 
4944 #define BNXT_NTP_FLTR_FLAGS					\
4945 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4946 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4947 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4948 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4959 
4960 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4961 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4962 
4963 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4964 					     struct bnxt_ntuple_filter *fltr)
4965 {
4966 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4967 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4968 	struct flow_keys *keys = &fltr->fkeys;
4969 	struct bnxt_vnic_info *vnic;
4970 	u32 flags = 0;
4971 	int rc;
4972 
4973 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4974 	if (rc)
4975 		return rc;
4976 
4977 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4978 
4979 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4980 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4981 		req->dst_id = cpu_to_le16(fltr->rxq);
4982 	} else {
4983 		vnic = &bp->vnic_info[fltr->rxq + 1];
4984 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4985 	}
4986 	req->flags = cpu_to_le32(flags);
4987 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4988 
4989 	req->ethertype = htons(ETH_P_IP);
4990 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4991 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4992 	req->ip_protocol = keys->basic.ip_proto;
4993 
4994 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4995 		int i;
4996 
4997 		req->ethertype = htons(ETH_P_IPV6);
4998 		req->ip_addr_type =
4999 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5000 		*(struct in6_addr *)&req->src_ipaddr[0] =
5001 			keys->addrs.v6addrs.src;
5002 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5003 			keys->addrs.v6addrs.dst;
5004 		for (i = 0; i < 4; i++) {
5005 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5006 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5007 		}
5008 	} else {
5009 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5010 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5011 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5012 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5013 	}
5014 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5015 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5016 		req->tunnel_type =
5017 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5018 	}
5019 
5020 	req->src_port = keys->ports.src;
5021 	req->src_port_mask = cpu_to_be16(0xffff);
5022 	req->dst_port = keys->ports.dst;
5023 	req->dst_port_mask = cpu_to_be16(0xffff);
5024 
5025 	resp = hwrm_req_hold(bp, req);
5026 	rc = hwrm_req_send(bp, req);
5027 	if (!rc)
5028 		fltr->filter_id = resp->ntuple_filter_id;
5029 	hwrm_req_drop(bp, req);
5030 	return rc;
5031 }
5032 #endif
5033 
5034 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5035 				     const u8 *mac_addr)
5036 {
5037 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5038 	struct hwrm_cfa_l2_filter_alloc_input *req;
5039 	int rc;
5040 
5041 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5042 	if (rc)
5043 		return rc;
5044 
5045 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5046 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5047 		req->flags |=
5048 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5049 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5050 	req->enables =
5051 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5052 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5053 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5054 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5055 	req->l2_addr_mask[0] = 0xff;
5056 	req->l2_addr_mask[1] = 0xff;
5057 	req->l2_addr_mask[2] = 0xff;
5058 	req->l2_addr_mask[3] = 0xff;
5059 	req->l2_addr_mask[4] = 0xff;
5060 	req->l2_addr_mask[5] = 0xff;
5061 
5062 	resp = hwrm_req_hold(bp, req);
5063 	rc = hwrm_req_send(bp, req);
5064 	if (!rc)
5065 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5066 							resp->l2_filter_id;
5067 	hwrm_req_drop(bp, req);
5068 	return rc;
5069 }
5070 
5071 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5072 {
5073 	struct hwrm_cfa_l2_filter_free_input *req;
5074 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5075 	int rc;
5076 
5077 	/* Any associated ntuple filters will also be cleared by firmware. */
5078 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5079 	if (rc)
5080 		return rc;
5081 	hwrm_req_hold(bp, req);
5082 	for (i = 0; i < num_of_vnics; i++) {
5083 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5084 
5085 		for (j = 0; j < vnic->uc_filter_count; j++) {
5086 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5087 
5088 			rc = hwrm_req_send(bp, req);
5089 		}
5090 		vnic->uc_filter_count = 0;
5091 	}
5092 	hwrm_req_drop(bp, req);
5093 	return rc;
5094 }
5095 
5096 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5097 {
5098 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5099 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5100 	struct hwrm_vnic_tpa_cfg_input *req;
5101 	int rc;
5102 
5103 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5104 		return 0;
5105 
5106 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5107 	if (rc)
5108 		return rc;
5109 
5110 	if (tpa_flags) {
5111 		u16 mss = bp->dev->mtu - 40;
5112 		u32 nsegs, n, segs = 0, flags;
5113 
5114 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5115 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5116 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5117 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5118 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5119 		if (tpa_flags & BNXT_FLAG_GRO)
5120 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5121 
5122 		req->flags = cpu_to_le32(flags);
5123 
5124 		req->enables =
5125 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5126 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5127 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5128 
5129 		/* Number of segs are log2 units, and first packet is not
5130 		 * included as part of this units.
5131 		 */
5132 		if (mss <= BNXT_RX_PAGE_SIZE) {
5133 			n = BNXT_RX_PAGE_SIZE / mss;
5134 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5135 		} else {
5136 			n = mss / BNXT_RX_PAGE_SIZE;
5137 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5138 				n++;
5139 			nsegs = (MAX_SKB_FRAGS - n) / n;
5140 		}
5141 
5142 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5143 			segs = MAX_TPA_SEGS_P5;
5144 			max_aggs = bp->max_tpa;
5145 		} else {
5146 			segs = ilog2(nsegs);
5147 		}
5148 		req->max_agg_segs = cpu_to_le16(segs);
5149 		req->max_aggs = cpu_to_le16(max_aggs);
5150 
5151 		req->min_agg_len = cpu_to_le32(512);
5152 	}
5153 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5154 
5155 	return hwrm_req_send(bp, req);
5156 }
5157 
5158 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5159 {
5160 	struct bnxt_ring_grp_info *grp_info;
5161 
5162 	grp_info = &bp->grp_info[ring->grp_idx];
5163 	return grp_info->cp_fw_ring_id;
5164 }
5165 
5166 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5167 {
5168 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5169 		struct bnxt_napi *bnapi = rxr->bnapi;
5170 		struct bnxt_cp_ring_info *cpr;
5171 
5172 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5173 		return cpr->cp_ring_struct.fw_ring_id;
5174 	} else {
5175 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5176 	}
5177 }
5178 
5179 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5180 {
5181 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5182 		struct bnxt_napi *bnapi = txr->bnapi;
5183 		struct bnxt_cp_ring_info *cpr;
5184 
5185 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5186 		return cpr->cp_ring_struct.fw_ring_id;
5187 	} else {
5188 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5189 	}
5190 }
5191 
5192 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5193 {
5194 	int entries;
5195 
5196 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5197 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5198 	else
5199 		entries = HW_HASH_INDEX_SIZE;
5200 
5201 	bp->rss_indir_tbl_entries = entries;
5202 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5203 					  GFP_KERNEL);
5204 	if (!bp->rss_indir_tbl)
5205 		return -ENOMEM;
5206 	return 0;
5207 }
5208 
5209 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5210 {
5211 	u16 max_rings, max_entries, pad, i;
5212 
5213 	if (!bp->rx_nr_rings)
5214 		return;
5215 
5216 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5217 		max_rings = bp->rx_nr_rings - 1;
5218 	else
5219 		max_rings = bp->rx_nr_rings;
5220 
5221 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5222 
5223 	for (i = 0; i < max_entries; i++)
5224 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5225 
5226 	pad = bp->rss_indir_tbl_entries - max_entries;
5227 	if (pad)
5228 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5229 }
5230 
5231 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5232 {
5233 	u16 i, tbl_size, max_ring = 0;
5234 
5235 	if (!bp->rss_indir_tbl)
5236 		return 0;
5237 
5238 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5239 	for (i = 0; i < tbl_size; i++)
5240 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5241 	return max_ring;
5242 }
5243 
5244 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5245 {
5246 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5247 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5248 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5249 		return 2;
5250 	return 1;
5251 }
5252 
5253 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5254 {
5255 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5256 	u16 i, j;
5257 
5258 	/* Fill the RSS indirection table with ring group ids */
5259 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5260 		if (!no_rss)
5261 			j = bp->rss_indir_tbl[i];
5262 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5263 	}
5264 }
5265 
5266 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5267 				      struct bnxt_vnic_info *vnic)
5268 {
5269 	__le16 *ring_tbl = vnic->rss_table;
5270 	struct bnxt_rx_ring_info *rxr;
5271 	u16 tbl_size, i;
5272 
5273 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5274 
5275 	for (i = 0; i < tbl_size; i++) {
5276 		u16 ring_id, j;
5277 
5278 		j = bp->rss_indir_tbl[i];
5279 		rxr = &bp->rx_ring[j];
5280 
5281 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5282 		*ring_tbl++ = cpu_to_le16(ring_id);
5283 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5284 		*ring_tbl++ = cpu_to_le16(ring_id);
5285 	}
5286 }
5287 
5288 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5289 {
5290 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5291 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5292 	else
5293 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5294 }
5295 
5296 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5297 {
5298 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5299 	struct hwrm_vnic_rss_cfg_input *req;
5300 	int rc;
5301 
5302 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5303 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5304 		return 0;
5305 
5306 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5307 	if (rc)
5308 		return rc;
5309 
5310 	if (set_rss) {
5311 		bnxt_fill_hw_rss_tbl(bp, vnic);
5312 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5313 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5314 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5315 		req->hash_key_tbl_addr =
5316 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5317 	}
5318 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5319 	return hwrm_req_send(bp, req);
5320 }
5321 
5322 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5323 {
5324 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5325 	struct hwrm_vnic_rss_cfg_input *req;
5326 	dma_addr_t ring_tbl_map;
5327 	u32 i, nr_ctxs;
5328 	int rc;
5329 
5330 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5331 	if (rc)
5332 		return rc;
5333 
5334 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5335 	if (!set_rss)
5336 		return hwrm_req_send(bp, req);
5337 
5338 	bnxt_fill_hw_rss_tbl(bp, vnic);
5339 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5340 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5341 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5342 	ring_tbl_map = vnic->rss_table_dma_addr;
5343 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5344 
5345 	hwrm_req_hold(bp, req);
5346 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5347 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5348 		req->ring_table_pair_index = i;
5349 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5350 		rc = hwrm_req_send(bp, req);
5351 		if (rc)
5352 			goto exit;
5353 	}
5354 
5355 exit:
5356 	hwrm_req_drop(bp, req);
5357 	return rc;
5358 }
5359 
5360 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5361 {
5362 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5363 	struct hwrm_vnic_plcmodes_cfg_input *req;
5364 	int rc;
5365 
5366 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5367 	if (rc)
5368 		return rc;
5369 
5370 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5371 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5372 
5373 	if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) {
5374 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5375 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5376 		req->enables |=
5377 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5378 	}
5379 	/* thresholds not implemented in firmware yet */
5380 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5381 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5382 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5383 	return hwrm_req_send(bp, req);
5384 }
5385 
5386 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5387 					u16 ctx_idx)
5388 {
5389 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5390 
5391 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5392 		return;
5393 
5394 	req->rss_cos_lb_ctx_id =
5395 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5396 
5397 	hwrm_req_send(bp, req);
5398 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5399 }
5400 
5401 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5402 {
5403 	int i, j;
5404 
5405 	for (i = 0; i < bp->nr_vnics; i++) {
5406 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5407 
5408 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5409 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5410 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5411 		}
5412 	}
5413 	bp->rsscos_nr_ctxs = 0;
5414 }
5415 
5416 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5417 {
5418 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5419 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5420 	int rc;
5421 
5422 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5423 	if (rc)
5424 		return rc;
5425 
5426 	resp = hwrm_req_hold(bp, req);
5427 	rc = hwrm_req_send(bp, req);
5428 	if (!rc)
5429 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5430 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5431 	hwrm_req_drop(bp, req);
5432 
5433 	return rc;
5434 }
5435 
5436 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5437 {
5438 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5439 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5440 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5441 }
5442 
5443 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5444 {
5445 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5446 	struct hwrm_vnic_cfg_input *req;
5447 	unsigned int ring = 0, grp_idx;
5448 	u16 def_vlan = 0;
5449 	int rc;
5450 
5451 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5452 	if (rc)
5453 		return rc;
5454 
5455 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5456 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5457 
5458 		req->default_rx_ring_id =
5459 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5460 		req->default_cmpl_ring_id =
5461 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5462 		req->enables =
5463 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5464 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5465 		goto vnic_mru;
5466 	}
5467 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5468 	/* Only RSS support for now TBD: COS & LB */
5469 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5470 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5471 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5472 					   VNIC_CFG_REQ_ENABLES_MRU);
5473 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5474 		req->rss_rule =
5475 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5476 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5477 					   VNIC_CFG_REQ_ENABLES_MRU);
5478 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5479 	} else {
5480 		req->rss_rule = cpu_to_le16(0xffff);
5481 	}
5482 
5483 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5484 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5485 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5486 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5487 	} else {
5488 		req->cos_rule = cpu_to_le16(0xffff);
5489 	}
5490 
5491 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5492 		ring = 0;
5493 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5494 		ring = vnic_id - 1;
5495 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5496 		ring = bp->rx_nr_rings - 1;
5497 
5498 	grp_idx = bp->rx_ring[ring].bnapi->index;
5499 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5500 	req->lb_rule = cpu_to_le16(0xffff);
5501 vnic_mru:
5502 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5503 
5504 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5505 #ifdef CONFIG_BNXT_SRIOV
5506 	if (BNXT_VF(bp))
5507 		def_vlan = bp->vf.vlan;
5508 #endif
5509 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5510 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5511 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5512 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5513 
5514 	return hwrm_req_send(bp, req);
5515 }
5516 
5517 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5518 {
5519 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5520 		struct hwrm_vnic_free_input *req;
5521 
5522 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5523 			return;
5524 
5525 		req->vnic_id =
5526 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5527 
5528 		hwrm_req_send(bp, req);
5529 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5530 	}
5531 }
5532 
5533 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5534 {
5535 	u16 i;
5536 
5537 	for (i = 0; i < bp->nr_vnics; i++)
5538 		bnxt_hwrm_vnic_free_one(bp, i);
5539 }
5540 
5541 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5542 				unsigned int start_rx_ring_idx,
5543 				unsigned int nr_rings)
5544 {
5545 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5546 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5547 	struct hwrm_vnic_alloc_output *resp;
5548 	struct hwrm_vnic_alloc_input *req;
5549 	int rc;
5550 
5551 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5552 	if (rc)
5553 		return rc;
5554 
5555 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5556 		goto vnic_no_ring_grps;
5557 
5558 	/* map ring groups to this vnic */
5559 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5560 		grp_idx = bp->rx_ring[i].bnapi->index;
5561 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5562 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5563 				   j, nr_rings);
5564 			break;
5565 		}
5566 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5567 	}
5568 
5569 vnic_no_ring_grps:
5570 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5571 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5572 	if (vnic_id == 0)
5573 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5574 
5575 	resp = hwrm_req_hold(bp, req);
5576 	rc = hwrm_req_send(bp, req);
5577 	if (!rc)
5578 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5579 	hwrm_req_drop(bp, req);
5580 	return rc;
5581 }
5582 
5583 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5584 {
5585 	struct hwrm_vnic_qcaps_output *resp;
5586 	struct hwrm_vnic_qcaps_input *req;
5587 	int rc;
5588 
5589 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5590 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5591 	if (bp->hwrm_spec_code < 0x10600)
5592 		return 0;
5593 
5594 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5595 	if (rc)
5596 		return rc;
5597 
5598 	resp = hwrm_req_hold(bp, req);
5599 	rc = hwrm_req_send(bp, req);
5600 	if (!rc) {
5601 		u32 flags = le32_to_cpu(resp->flags);
5602 
5603 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5604 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5605 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5606 		if (flags &
5607 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5608 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5609 
5610 		/* Older P5 fw before EXT_HW_STATS support did not set
5611 		 * VLAN_STRIP_CAP properly.
5612 		 */
5613 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5614 		    (BNXT_CHIP_P5_THOR(bp) &&
5615 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5616 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5617 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5618 		if (bp->max_tpa_v2) {
5619 			if (BNXT_CHIP_P5_THOR(bp))
5620 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5621 			else
5622 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5623 		}
5624 	}
5625 	hwrm_req_drop(bp, req);
5626 	return rc;
5627 }
5628 
5629 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5630 {
5631 	struct hwrm_ring_grp_alloc_output *resp;
5632 	struct hwrm_ring_grp_alloc_input *req;
5633 	int rc;
5634 	u16 i;
5635 
5636 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5637 		return 0;
5638 
5639 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5640 	if (rc)
5641 		return rc;
5642 
5643 	resp = hwrm_req_hold(bp, req);
5644 	for (i = 0; i < bp->rx_nr_rings; i++) {
5645 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5646 
5647 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5648 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5649 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5650 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5651 
5652 		rc = hwrm_req_send(bp, req);
5653 
5654 		if (rc)
5655 			break;
5656 
5657 		bp->grp_info[grp_idx].fw_grp_id =
5658 			le32_to_cpu(resp->ring_group_id);
5659 	}
5660 	hwrm_req_drop(bp, req);
5661 	return rc;
5662 }
5663 
5664 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5665 {
5666 	struct hwrm_ring_grp_free_input *req;
5667 	u16 i;
5668 
5669 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5670 		return;
5671 
5672 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5673 		return;
5674 
5675 	hwrm_req_hold(bp, req);
5676 	for (i = 0; i < bp->cp_nr_rings; i++) {
5677 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5678 			continue;
5679 		req->ring_group_id =
5680 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5681 
5682 		hwrm_req_send(bp, req);
5683 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5684 	}
5685 	hwrm_req_drop(bp, req);
5686 }
5687 
5688 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5689 				    struct bnxt_ring_struct *ring,
5690 				    u32 ring_type, u32 map_index)
5691 {
5692 	struct hwrm_ring_alloc_output *resp;
5693 	struct hwrm_ring_alloc_input *req;
5694 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5695 	struct bnxt_ring_grp_info *grp_info;
5696 	int rc, err = 0;
5697 	u16 ring_id;
5698 
5699 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5700 	if (rc)
5701 		goto exit;
5702 
5703 	req->enables = 0;
5704 	if (rmem->nr_pages > 1) {
5705 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5706 		/* Page size is in log2 units */
5707 		req->page_size = BNXT_PAGE_SHIFT;
5708 		req->page_tbl_depth = 1;
5709 	} else {
5710 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5711 	}
5712 	req->fbo = 0;
5713 	/* Association of ring index with doorbell index and MSIX number */
5714 	req->logical_id = cpu_to_le16(map_index);
5715 
5716 	switch (ring_type) {
5717 	case HWRM_RING_ALLOC_TX: {
5718 		struct bnxt_tx_ring_info *txr;
5719 
5720 		txr = container_of(ring, struct bnxt_tx_ring_info,
5721 				   tx_ring_struct);
5722 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5723 		/* Association of transmit ring with completion ring */
5724 		grp_info = &bp->grp_info[ring->grp_idx];
5725 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5726 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5727 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5728 		req->queue_id = cpu_to_le16(ring->queue_id);
5729 		break;
5730 	}
5731 	case HWRM_RING_ALLOC_RX:
5732 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5733 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5734 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5735 			u16 flags = 0;
5736 
5737 			/* Association of rx ring with stats context */
5738 			grp_info = &bp->grp_info[ring->grp_idx];
5739 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5740 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5741 			req->enables |= cpu_to_le32(
5742 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5743 			if (NET_IP_ALIGN == 2)
5744 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5745 			req->flags = cpu_to_le16(flags);
5746 		}
5747 		break;
5748 	case HWRM_RING_ALLOC_AGG:
5749 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5750 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5751 			/* Association of agg ring with rx ring */
5752 			grp_info = &bp->grp_info[ring->grp_idx];
5753 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5754 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5755 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5756 			req->enables |= cpu_to_le32(
5757 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5758 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5759 		} else {
5760 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5761 		}
5762 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5763 		break;
5764 	case HWRM_RING_ALLOC_CMPL:
5765 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5766 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5767 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5768 			/* Association of cp ring with nq */
5769 			grp_info = &bp->grp_info[map_index];
5770 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5771 			req->cq_handle = cpu_to_le64(ring->handle);
5772 			req->enables |= cpu_to_le32(
5773 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5774 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5775 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5776 		}
5777 		break;
5778 	case HWRM_RING_ALLOC_NQ:
5779 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5780 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5781 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5782 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5783 		break;
5784 	default:
5785 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5786 			   ring_type);
5787 		return -1;
5788 	}
5789 
5790 	resp = hwrm_req_hold(bp, req);
5791 	rc = hwrm_req_send(bp, req);
5792 	err = le16_to_cpu(resp->error_code);
5793 	ring_id = le16_to_cpu(resp->ring_id);
5794 	hwrm_req_drop(bp, req);
5795 
5796 exit:
5797 	if (rc || err) {
5798 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5799 			   ring_type, rc, err);
5800 		return -EIO;
5801 	}
5802 	ring->fw_ring_id = ring_id;
5803 	return rc;
5804 }
5805 
5806 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5807 {
5808 	int rc;
5809 
5810 	if (BNXT_PF(bp)) {
5811 		struct hwrm_func_cfg_input *req;
5812 
5813 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5814 		if (rc)
5815 			return rc;
5816 
5817 		req->fid = cpu_to_le16(0xffff);
5818 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5819 		req->async_event_cr = cpu_to_le16(idx);
5820 		return hwrm_req_send(bp, req);
5821 	} else {
5822 		struct hwrm_func_vf_cfg_input *req;
5823 
5824 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5825 		if (rc)
5826 			return rc;
5827 
5828 		req->enables =
5829 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5830 		req->async_event_cr = cpu_to_le16(idx);
5831 		return hwrm_req_send(bp, req);
5832 	}
5833 }
5834 
5835 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5836 			u32 map_idx, u32 xid)
5837 {
5838 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5839 		if (BNXT_PF(bp))
5840 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5841 		else
5842 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5843 		switch (ring_type) {
5844 		case HWRM_RING_ALLOC_TX:
5845 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5846 			break;
5847 		case HWRM_RING_ALLOC_RX:
5848 		case HWRM_RING_ALLOC_AGG:
5849 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5850 			break;
5851 		case HWRM_RING_ALLOC_CMPL:
5852 			db->db_key64 = DBR_PATH_L2;
5853 			break;
5854 		case HWRM_RING_ALLOC_NQ:
5855 			db->db_key64 = DBR_PATH_L2;
5856 			break;
5857 		}
5858 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5859 	} else {
5860 		db->doorbell = bp->bar1 + map_idx * 0x80;
5861 		switch (ring_type) {
5862 		case HWRM_RING_ALLOC_TX:
5863 			db->db_key32 = DB_KEY_TX;
5864 			break;
5865 		case HWRM_RING_ALLOC_RX:
5866 		case HWRM_RING_ALLOC_AGG:
5867 			db->db_key32 = DB_KEY_RX;
5868 			break;
5869 		case HWRM_RING_ALLOC_CMPL:
5870 			db->db_key32 = DB_KEY_CP;
5871 			break;
5872 		}
5873 	}
5874 }
5875 
5876 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5877 {
5878 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5879 	int i, rc = 0;
5880 	u32 type;
5881 
5882 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5883 		type = HWRM_RING_ALLOC_NQ;
5884 	else
5885 		type = HWRM_RING_ALLOC_CMPL;
5886 	for (i = 0; i < bp->cp_nr_rings; i++) {
5887 		struct bnxt_napi *bnapi = bp->bnapi[i];
5888 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5889 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5890 		u32 map_idx = ring->map_idx;
5891 		unsigned int vector;
5892 
5893 		vector = bp->irq_tbl[map_idx].vector;
5894 		disable_irq_nosync(vector);
5895 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5896 		if (rc) {
5897 			enable_irq(vector);
5898 			goto err_out;
5899 		}
5900 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5901 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5902 		enable_irq(vector);
5903 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5904 
5905 		if (!i) {
5906 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5907 			if (rc)
5908 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5909 		}
5910 	}
5911 
5912 	type = HWRM_RING_ALLOC_TX;
5913 	for (i = 0; i < bp->tx_nr_rings; i++) {
5914 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5915 		struct bnxt_ring_struct *ring;
5916 		u32 map_idx;
5917 
5918 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5919 			struct bnxt_napi *bnapi = txr->bnapi;
5920 			struct bnxt_cp_ring_info *cpr, *cpr2;
5921 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5922 
5923 			cpr = &bnapi->cp_ring;
5924 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5925 			ring = &cpr2->cp_ring_struct;
5926 			ring->handle = BNXT_TX_HDL;
5927 			map_idx = bnapi->index;
5928 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5929 			if (rc)
5930 				goto err_out;
5931 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5932 				    ring->fw_ring_id);
5933 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5934 		}
5935 		ring = &txr->tx_ring_struct;
5936 		map_idx = i;
5937 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5938 		if (rc)
5939 			goto err_out;
5940 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5941 	}
5942 
5943 	type = HWRM_RING_ALLOC_RX;
5944 	for (i = 0; i < bp->rx_nr_rings; i++) {
5945 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5946 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5947 		struct bnxt_napi *bnapi = rxr->bnapi;
5948 		u32 map_idx = bnapi->index;
5949 
5950 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5951 		if (rc)
5952 			goto err_out;
5953 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5954 		/* If we have agg rings, post agg buffers first. */
5955 		if (!agg_rings)
5956 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5957 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5958 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5959 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5960 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5961 			struct bnxt_cp_ring_info *cpr2;
5962 
5963 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5964 			ring = &cpr2->cp_ring_struct;
5965 			ring->handle = BNXT_RX_HDL;
5966 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5967 			if (rc)
5968 				goto err_out;
5969 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5970 				    ring->fw_ring_id);
5971 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5972 		}
5973 	}
5974 
5975 	if (agg_rings) {
5976 		type = HWRM_RING_ALLOC_AGG;
5977 		for (i = 0; i < bp->rx_nr_rings; i++) {
5978 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5979 			struct bnxt_ring_struct *ring =
5980 						&rxr->rx_agg_ring_struct;
5981 			u32 grp_idx = ring->grp_idx;
5982 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5983 
5984 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5985 			if (rc)
5986 				goto err_out;
5987 
5988 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5989 				    ring->fw_ring_id);
5990 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5991 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5992 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5993 		}
5994 	}
5995 err_out:
5996 	return rc;
5997 }
5998 
5999 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6000 				   struct bnxt_ring_struct *ring,
6001 				   u32 ring_type, int cmpl_ring_id)
6002 {
6003 	struct hwrm_ring_free_output *resp;
6004 	struct hwrm_ring_free_input *req;
6005 	u16 error_code = 0;
6006 	int rc;
6007 
6008 	if (BNXT_NO_FW_ACCESS(bp))
6009 		return 0;
6010 
6011 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6012 	if (rc)
6013 		goto exit;
6014 
6015 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6016 	req->ring_type = ring_type;
6017 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6018 
6019 	resp = hwrm_req_hold(bp, req);
6020 	rc = hwrm_req_send(bp, req);
6021 	error_code = le16_to_cpu(resp->error_code);
6022 	hwrm_req_drop(bp, req);
6023 exit:
6024 	if (rc || error_code) {
6025 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6026 			   ring_type, rc, error_code);
6027 		return -EIO;
6028 	}
6029 	return 0;
6030 }
6031 
6032 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6033 {
6034 	u32 type;
6035 	int i;
6036 
6037 	if (!bp->bnapi)
6038 		return;
6039 
6040 	for (i = 0; i < bp->tx_nr_rings; i++) {
6041 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6042 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6043 
6044 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6045 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6046 
6047 			hwrm_ring_free_send_msg(bp, ring,
6048 						RING_FREE_REQ_RING_TYPE_TX,
6049 						close_path ? cmpl_ring_id :
6050 						INVALID_HW_RING_ID);
6051 			ring->fw_ring_id = INVALID_HW_RING_ID;
6052 		}
6053 	}
6054 
6055 	for (i = 0; i < bp->rx_nr_rings; i++) {
6056 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6057 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6058 		u32 grp_idx = rxr->bnapi->index;
6059 
6060 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6061 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6062 
6063 			hwrm_ring_free_send_msg(bp, ring,
6064 						RING_FREE_REQ_RING_TYPE_RX,
6065 						close_path ? cmpl_ring_id :
6066 						INVALID_HW_RING_ID);
6067 			ring->fw_ring_id = INVALID_HW_RING_ID;
6068 			bp->grp_info[grp_idx].rx_fw_ring_id =
6069 				INVALID_HW_RING_ID;
6070 		}
6071 	}
6072 
6073 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6074 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6075 	else
6076 		type = RING_FREE_REQ_RING_TYPE_RX;
6077 	for (i = 0; i < bp->rx_nr_rings; i++) {
6078 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6079 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6080 		u32 grp_idx = rxr->bnapi->index;
6081 
6082 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6083 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6084 
6085 			hwrm_ring_free_send_msg(bp, ring, type,
6086 						close_path ? cmpl_ring_id :
6087 						INVALID_HW_RING_ID);
6088 			ring->fw_ring_id = INVALID_HW_RING_ID;
6089 			bp->grp_info[grp_idx].agg_fw_ring_id =
6090 				INVALID_HW_RING_ID;
6091 		}
6092 	}
6093 
6094 	/* The completion rings are about to be freed.  After that the
6095 	 * IRQ doorbell will not work anymore.  So we need to disable
6096 	 * IRQ here.
6097 	 */
6098 	bnxt_disable_int_sync(bp);
6099 
6100 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6101 		type = RING_FREE_REQ_RING_TYPE_NQ;
6102 	else
6103 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6104 	for (i = 0; i < bp->cp_nr_rings; i++) {
6105 		struct bnxt_napi *bnapi = bp->bnapi[i];
6106 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6107 		struct bnxt_ring_struct *ring;
6108 		int j;
6109 
6110 		for (j = 0; j < 2; j++) {
6111 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6112 
6113 			if (cpr2) {
6114 				ring = &cpr2->cp_ring_struct;
6115 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6116 					continue;
6117 				hwrm_ring_free_send_msg(bp, ring,
6118 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6119 					INVALID_HW_RING_ID);
6120 				ring->fw_ring_id = INVALID_HW_RING_ID;
6121 			}
6122 		}
6123 		ring = &cpr->cp_ring_struct;
6124 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6125 			hwrm_ring_free_send_msg(bp, ring, type,
6126 						INVALID_HW_RING_ID);
6127 			ring->fw_ring_id = INVALID_HW_RING_ID;
6128 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6129 		}
6130 	}
6131 }
6132 
6133 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6134 			   bool shared);
6135 
6136 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6137 {
6138 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6139 	struct hwrm_func_qcfg_output *resp;
6140 	struct hwrm_func_qcfg_input *req;
6141 	int rc;
6142 
6143 	if (bp->hwrm_spec_code < 0x10601)
6144 		return 0;
6145 
6146 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6147 	if (rc)
6148 		return rc;
6149 
6150 	req->fid = cpu_to_le16(0xffff);
6151 	resp = hwrm_req_hold(bp, req);
6152 	rc = hwrm_req_send(bp, req);
6153 	if (rc) {
6154 		hwrm_req_drop(bp, req);
6155 		return rc;
6156 	}
6157 
6158 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6159 	if (BNXT_NEW_RM(bp)) {
6160 		u16 cp, stats;
6161 
6162 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6163 		hw_resc->resv_hw_ring_grps =
6164 			le32_to_cpu(resp->alloc_hw_ring_grps);
6165 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6166 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6167 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6168 		hw_resc->resv_irqs = cp;
6169 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6170 			int rx = hw_resc->resv_rx_rings;
6171 			int tx = hw_resc->resv_tx_rings;
6172 
6173 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6174 				rx >>= 1;
6175 			if (cp < (rx + tx)) {
6176 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6177 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6178 					rx <<= 1;
6179 				hw_resc->resv_rx_rings = rx;
6180 				hw_resc->resv_tx_rings = tx;
6181 			}
6182 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6183 			hw_resc->resv_hw_ring_grps = rx;
6184 		}
6185 		hw_resc->resv_cp_rings = cp;
6186 		hw_resc->resv_stat_ctxs = stats;
6187 	}
6188 	hwrm_req_drop(bp, req);
6189 	return 0;
6190 }
6191 
6192 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6193 {
6194 	struct hwrm_func_qcfg_output *resp;
6195 	struct hwrm_func_qcfg_input *req;
6196 	int rc;
6197 
6198 	if (bp->hwrm_spec_code < 0x10601)
6199 		return 0;
6200 
6201 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6202 	if (rc)
6203 		return rc;
6204 
6205 	req->fid = cpu_to_le16(fid);
6206 	resp = hwrm_req_hold(bp, req);
6207 	rc = hwrm_req_send(bp, req);
6208 	if (!rc)
6209 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6210 
6211 	hwrm_req_drop(bp, req);
6212 	return rc;
6213 }
6214 
6215 static bool bnxt_rfs_supported(struct bnxt *bp);
6216 
6217 static struct hwrm_func_cfg_input *
6218 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6219 			     int ring_grps, int cp_rings, int stats, int vnics)
6220 {
6221 	struct hwrm_func_cfg_input *req;
6222 	u32 enables = 0;
6223 
6224 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6225 		return NULL;
6226 
6227 	req->fid = cpu_to_le16(0xffff);
6228 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6229 	req->num_tx_rings = cpu_to_le16(tx_rings);
6230 	if (BNXT_NEW_RM(bp)) {
6231 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6232 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6233 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6234 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6235 			enables |= tx_rings + ring_grps ?
6236 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6237 			enables |= rx_rings ?
6238 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6239 		} else {
6240 			enables |= cp_rings ?
6241 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6242 			enables |= ring_grps ?
6243 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6244 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6245 		}
6246 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6247 
6248 		req->num_rx_rings = cpu_to_le16(rx_rings);
6249 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6250 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6251 			req->num_msix = cpu_to_le16(cp_rings);
6252 			req->num_rsscos_ctxs =
6253 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6254 		} else {
6255 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6256 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6257 			req->num_rsscos_ctxs = cpu_to_le16(1);
6258 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6259 			    bnxt_rfs_supported(bp))
6260 				req->num_rsscos_ctxs =
6261 					cpu_to_le16(ring_grps + 1);
6262 		}
6263 		req->num_stat_ctxs = cpu_to_le16(stats);
6264 		req->num_vnics = cpu_to_le16(vnics);
6265 	}
6266 	req->enables = cpu_to_le32(enables);
6267 	return req;
6268 }
6269 
6270 static struct hwrm_func_vf_cfg_input *
6271 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6272 			     int ring_grps, int cp_rings, int stats, int vnics)
6273 {
6274 	struct hwrm_func_vf_cfg_input *req;
6275 	u32 enables = 0;
6276 
6277 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6278 		return NULL;
6279 
6280 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6281 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6282 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6283 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6284 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6285 		enables |= tx_rings + ring_grps ?
6286 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6287 	} else {
6288 		enables |= cp_rings ?
6289 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6290 		enables |= ring_grps ?
6291 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6292 	}
6293 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6294 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6295 
6296 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6297 	req->num_tx_rings = cpu_to_le16(tx_rings);
6298 	req->num_rx_rings = cpu_to_le16(rx_rings);
6299 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6300 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6301 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6302 	} else {
6303 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6304 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6305 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6306 	}
6307 	req->num_stat_ctxs = cpu_to_le16(stats);
6308 	req->num_vnics = cpu_to_le16(vnics);
6309 
6310 	req->enables = cpu_to_le32(enables);
6311 	return req;
6312 }
6313 
6314 static int
6315 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6316 			   int ring_grps, int cp_rings, int stats, int vnics)
6317 {
6318 	struct hwrm_func_cfg_input *req;
6319 	int rc;
6320 
6321 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6322 					   cp_rings, stats, vnics);
6323 	if (!req)
6324 		return -ENOMEM;
6325 
6326 	if (!req->enables) {
6327 		hwrm_req_drop(bp, req);
6328 		return 0;
6329 	}
6330 
6331 	rc = hwrm_req_send(bp, req);
6332 	if (rc)
6333 		return rc;
6334 
6335 	if (bp->hwrm_spec_code < 0x10601)
6336 		bp->hw_resc.resv_tx_rings = tx_rings;
6337 
6338 	return bnxt_hwrm_get_rings(bp);
6339 }
6340 
6341 static int
6342 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6343 			   int ring_grps, int cp_rings, int stats, int vnics)
6344 {
6345 	struct hwrm_func_vf_cfg_input *req;
6346 	int rc;
6347 
6348 	if (!BNXT_NEW_RM(bp)) {
6349 		bp->hw_resc.resv_tx_rings = tx_rings;
6350 		return 0;
6351 	}
6352 
6353 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6354 					   cp_rings, stats, vnics);
6355 	if (!req)
6356 		return -ENOMEM;
6357 
6358 	rc = hwrm_req_send(bp, req);
6359 	if (rc)
6360 		return rc;
6361 
6362 	return bnxt_hwrm_get_rings(bp);
6363 }
6364 
6365 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6366 				   int cp, int stat, int vnic)
6367 {
6368 	if (BNXT_PF(bp))
6369 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6370 						  vnic);
6371 	else
6372 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6373 						  vnic);
6374 }
6375 
6376 int bnxt_nq_rings_in_use(struct bnxt *bp)
6377 {
6378 	int cp = bp->cp_nr_rings;
6379 	int ulp_msix, ulp_base;
6380 
6381 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6382 	if (ulp_msix) {
6383 		ulp_base = bnxt_get_ulp_msix_base(bp);
6384 		cp += ulp_msix;
6385 		if ((ulp_base + ulp_msix) > cp)
6386 			cp = ulp_base + ulp_msix;
6387 	}
6388 	return cp;
6389 }
6390 
6391 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6392 {
6393 	int cp;
6394 
6395 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6396 		return bnxt_nq_rings_in_use(bp);
6397 
6398 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6399 	return cp;
6400 }
6401 
6402 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6403 {
6404 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6405 	int cp = bp->cp_nr_rings;
6406 
6407 	if (!ulp_stat)
6408 		return cp;
6409 
6410 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6411 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6412 
6413 	return cp + ulp_stat;
6414 }
6415 
6416 /* Check if a default RSS map needs to be setup.  This function is only
6417  * used on older firmware that does not require reserving RX rings.
6418  */
6419 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6420 {
6421 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6422 
6423 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6424 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6425 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6426 		if (!netif_is_rxfh_configured(bp->dev))
6427 			bnxt_set_dflt_rss_indir_tbl(bp);
6428 	}
6429 }
6430 
6431 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6432 {
6433 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6434 	int cp = bnxt_cp_rings_in_use(bp);
6435 	int nq = bnxt_nq_rings_in_use(bp);
6436 	int rx = bp->rx_nr_rings, stat;
6437 	int vnic = 1, grp = rx;
6438 
6439 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6440 	    bp->hwrm_spec_code >= 0x10601)
6441 		return true;
6442 
6443 	/* Old firmware does not need RX ring reservations but we still
6444 	 * need to setup a default RSS map when needed.  With new firmware
6445 	 * we go through RX ring reservations first and then set up the
6446 	 * RSS map for the successfully reserved RX rings when needed.
6447 	 */
6448 	if (!BNXT_NEW_RM(bp)) {
6449 		bnxt_check_rss_tbl_no_rmgr(bp);
6450 		return false;
6451 	}
6452 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6453 		vnic = rx + 1;
6454 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6455 		rx <<= 1;
6456 	stat = bnxt_get_func_stat_ctxs(bp);
6457 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6458 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6459 	    (hw_resc->resv_hw_ring_grps != grp &&
6460 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6461 		return true;
6462 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6463 	    hw_resc->resv_irqs != nq)
6464 		return true;
6465 	return false;
6466 }
6467 
6468 static int __bnxt_reserve_rings(struct bnxt *bp)
6469 {
6470 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6471 	int cp = bnxt_nq_rings_in_use(bp);
6472 	int tx = bp->tx_nr_rings;
6473 	int rx = bp->rx_nr_rings;
6474 	int grp, rx_rings, rc;
6475 	int vnic = 1, stat;
6476 	bool sh = false;
6477 
6478 	if (!bnxt_need_reserve_rings(bp))
6479 		return 0;
6480 
6481 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6482 		sh = true;
6483 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6484 		vnic = rx + 1;
6485 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6486 		rx <<= 1;
6487 	grp = bp->rx_nr_rings;
6488 	stat = bnxt_get_func_stat_ctxs(bp);
6489 
6490 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6491 	if (rc)
6492 		return rc;
6493 
6494 	tx = hw_resc->resv_tx_rings;
6495 	if (BNXT_NEW_RM(bp)) {
6496 		rx = hw_resc->resv_rx_rings;
6497 		cp = hw_resc->resv_irqs;
6498 		grp = hw_resc->resv_hw_ring_grps;
6499 		vnic = hw_resc->resv_vnics;
6500 		stat = hw_resc->resv_stat_ctxs;
6501 	}
6502 
6503 	rx_rings = rx;
6504 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6505 		if (rx >= 2) {
6506 			rx_rings = rx >> 1;
6507 		} else {
6508 			if (netif_running(bp->dev))
6509 				return -ENOMEM;
6510 
6511 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6512 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6513 			bp->dev->hw_features &= ~NETIF_F_LRO;
6514 			bp->dev->features &= ~NETIF_F_LRO;
6515 			bnxt_set_ring_params(bp);
6516 		}
6517 	}
6518 	rx_rings = min_t(int, rx_rings, grp);
6519 	cp = min_t(int, cp, bp->cp_nr_rings);
6520 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6521 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6522 	cp = min_t(int, cp, stat);
6523 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6524 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6525 		rx = rx_rings << 1;
6526 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6527 	bp->tx_nr_rings = tx;
6528 
6529 	/* If we cannot reserve all the RX rings, reset the RSS map only
6530 	 * if absolutely necessary
6531 	 */
6532 	if (rx_rings != bp->rx_nr_rings) {
6533 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6534 			    rx_rings, bp->rx_nr_rings);
6535 		if (netif_is_rxfh_configured(bp->dev) &&
6536 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6537 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6538 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6539 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6540 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6541 		}
6542 	}
6543 	bp->rx_nr_rings = rx_rings;
6544 	bp->cp_nr_rings = cp;
6545 
6546 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6547 		return -ENOMEM;
6548 
6549 	if (!netif_is_rxfh_configured(bp->dev))
6550 		bnxt_set_dflt_rss_indir_tbl(bp);
6551 
6552 	return rc;
6553 }
6554 
6555 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6556 				    int ring_grps, int cp_rings, int stats,
6557 				    int vnics)
6558 {
6559 	struct hwrm_func_vf_cfg_input *req;
6560 	u32 flags;
6561 
6562 	if (!BNXT_NEW_RM(bp))
6563 		return 0;
6564 
6565 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6566 					   cp_rings, stats, vnics);
6567 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6568 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6569 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6570 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6571 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6572 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6573 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6574 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6575 
6576 	req->flags = cpu_to_le32(flags);
6577 	return hwrm_req_send_silent(bp, req);
6578 }
6579 
6580 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6581 				    int ring_grps, int cp_rings, int stats,
6582 				    int vnics)
6583 {
6584 	struct hwrm_func_cfg_input *req;
6585 	u32 flags;
6586 
6587 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6588 					   cp_rings, stats, vnics);
6589 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6590 	if (BNXT_NEW_RM(bp)) {
6591 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6592 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6593 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6594 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6595 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6596 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6597 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6598 		else
6599 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6600 	}
6601 
6602 	req->flags = cpu_to_le32(flags);
6603 	return hwrm_req_send_silent(bp, req);
6604 }
6605 
6606 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6607 				 int ring_grps, int cp_rings, int stats,
6608 				 int vnics)
6609 {
6610 	if (bp->hwrm_spec_code < 0x10801)
6611 		return 0;
6612 
6613 	if (BNXT_PF(bp))
6614 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6615 						ring_grps, cp_rings, stats,
6616 						vnics);
6617 
6618 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6619 					cp_rings, stats, vnics);
6620 }
6621 
6622 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6623 {
6624 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6625 	struct hwrm_ring_aggint_qcaps_output *resp;
6626 	struct hwrm_ring_aggint_qcaps_input *req;
6627 	int rc;
6628 
6629 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6630 	coal_cap->num_cmpl_dma_aggr_max = 63;
6631 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6632 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6633 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6634 	coal_cap->int_lat_tmr_min_max = 65535;
6635 	coal_cap->int_lat_tmr_max_max = 65535;
6636 	coal_cap->num_cmpl_aggr_int_max = 65535;
6637 	coal_cap->timer_units = 80;
6638 
6639 	if (bp->hwrm_spec_code < 0x10902)
6640 		return;
6641 
6642 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6643 		return;
6644 
6645 	resp = hwrm_req_hold(bp, req);
6646 	rc = hwrm_req_send_silent(bp, req);
6647 	if (!rc) {
6648 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6649 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6650 		coal_cap->num_cmpl_dma_aggr_max =
6651 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6652 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6653 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6654 		coal_cap->cmpl_aggr_dma_tmr_max =
6655 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6656 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6657 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6658 		coal_cap->int_lat_tmr_min_max =
6659 			le16_to_cpu(resp->int_lat_tmr_min_max);
6660 		coal_cap->int_lat_tmr_max_max =
6661 			le16_to_cpu(resp->int_lat_tmr_max_max);
6662 		coal_cap->num_cmpl_aggr_int_max =
6663 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6664 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6665 	}
6666 	hwrm_req_drop(bp, req);
6667 }
6668 
6669 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6670 {
6671 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6672 
6673 	return usec * 1000 / coal_cap->timer_units;
6674 }
6675 
6676 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6677 	struct bnxt_coal *hw_coal,
6678 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6679 {
6680 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6681 	u16 val, tmr, max, flags = hw_coal->flags;
6682 	u32 cmpl_params = coal_cap->cmpl_params;
6683 
6684 	max = hw_coal->bufs_per_record * 128;
6685 	if (hw_coal->budget)
6686 		max = hw_coal->bufs_per_record * hw_coal->budget;
6687 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6688 
6689 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6690 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6691 
6692 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6693 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6694 
6695 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6696 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6697 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6698 
6699 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6700 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6701 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6702 
6703 	/* min timer set to 1/2 of interrupt timer */
6704 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6705 		val = tmr / 2;
6706 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6707 		req->int_lat_tmr_min = cpu_to_le16(val);
6708 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6709 	}
6710 
6711 	/* buf timer set to 1/4 of interrupt timer */
6712 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6713 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6714 
6715 	if (cmpl_params &
6716 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6717 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6718 		val = clamp_t(u16, tmr, 1,
6719 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6720 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6721 		req->enables |=
6722 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6723 	}
6724 
6725 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6726 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6727 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6728 	req->flags = cpu_to_le16(flags);
6729 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6730 }
6731 
6732 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6733 				   struct bnxt_coal *hw_coal)
6734 {
6735 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6736 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6737 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6738 	u32 nq_params = coal_cap->nq_params;
6739 	u16 tmr;
6740 	int rc;
6741 
6742 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6743 		return 0;
6744 
6745 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6746 	if (rc)
6747 		return rc;
6748 
6749 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6750 	req->flags =
6751 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6752 
6753 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6754 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6755 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6756 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6757 	return hwrm_req_send(bp, req);
6758 }
6759 
6760 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6761 {
6762 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6763 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6764 	struct bnxt_coal coal;
6765 	int rc;
6766 
6767 	/* Tick values in micro seconds.
6768 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6769 	 */
6770 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6771 
6772 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6773 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6774 
6775 	if (!bnapi->rx_ring)
6776 		return -ENODEV;
6777 
6778 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6779 	if (rc)
6780 		return rc;
6781 
6782 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6783 
6784 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6785 
6786 	return hwrm_req_send(bp, req_rx);
6787 }
6788 
6789 int bnxt_hwrm_set_coal(struct bnxt *bp)
6790 {
6791 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6792 							   *req;
6793 	int i, rc;
6794 
6795 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6796 	if (rc)
6797 		return rc;
6798 
6799 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6800 	if (rc) {
6801 		hwrm_req_drop(bp, req_rx);
6802 		return rc;
6803 	}
6804 
6805 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6806 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6807 
6808 	hwrm_req_hold(bp, req_rx);
6809 	hwrm_req_hold(bp, req_tx);
6810 	for (i = 0; i < bp->cp_nr_rings; i++) {
6811 		struct bnxt_napi *bnapi = bp->bnapi[i];
6812 		struct bnxt_coal *hw_coal;
6813 		u16 ring_id;
6814 
6815 		req = req_rx;
6816 		if (!bnapi->rx_ring) {
6817 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6818 			req = req_tx;
6819 		} else {
6820 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6821 		}
6822 		req->ring_id = cpu_to_le16(ring_id);
6823 
6824 		rc = hwrm_req_send(bp, req);
6825 		if (rc)
6826 			break;
6827 
6828 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6829 			continue;
6830 
6831 		if (bnapi->rx_ring && bnapi->tx_ring) {
6832 			req = req_tx;
6833 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6834 			req->ring_id = cpu_to_le16(ring_id);
6835 			rc = hwrm_req_send(bp, req);
6836 			if (rc)
6837 				break;
6838 		}
6839 		if (bnapi->rx_ring)
6840 			hw_coal = &bp->rx_coal;
6841 		else
6842 			hw_coal = &bp->tx_coal;
6843 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6844 	}
6845 	hwrm_req_drop(bp, req_rx);
6846 	hwrm_req_drop(bp, req_tx);
6847 	return rc;
6848 }
6849 
6850 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6851 {
6852 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6853 	struct hwrm_stat_ctx_free_input *req;
6854 	int i;
6855 
6856 	if (!bp->bnapi)
6857 		return;
6858 
6859 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6860 		return;
6861 
6862 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6863 		return;
6864 	if (BNXT_FW_MAJ(bp) <= 20) {
6865 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6866 			hwrm_req_drop(bp, req);
6867 			return;
6868 		}
6869 		hwrm_req_hold(bp, req0);
6870 	}
6871 	hwrm_req_hold(bp, req);
6872 	for (i = 0; i < bp->cp_nr_rings; i++) {
6873 		struct bnxt_napi *bnapi = bp->bnapi[i];
6874 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6875 
6876 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6877 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6878 			if (req0) {
6879 				req0->stat_ctx_id = req->stat_ctx_id;
6880 				hwrm_req_send(bp, req0);
6881 			}
6882 			hwrm_req_send(bp, req);
6883 
6884 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6885 		}
6886 	}
6887 	hwrm_req_drop(bp, req);
6888 	if (req0)
6889 		hwrm_req_drop(bp, req0);
6890 }
6891 
6892 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6893 {
6894 	struct hwrm_stat_ctx_alloc_output *resp;
6895 	struct hwrm_stat_ctx_alloc_input *req;
6896 	int rc, i;
6897 
6898 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6899 		return 0;
6900 
6901 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6902 	if (rc)
6903 		return rc;
6904 
6905 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6906 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6907 
6908 	resp = hwrm_req_hold(bp, req);
6909 	for (i = 0; i < bp->cp_nr_rings; i++) {
6910 		struct bnxt_napi *bnapi = bp->bnapi[i];
6911 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6912 
6913 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6914 
6915 		rc = hwrm_req_send(bp, req);
6916 		if (rc)
6917 			break;
6918 
6919 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6920 
6921 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6922 	}
6923 	hwrm_req_drop(bp, req);
6924 	return rc;
6925 }
6926 
6927 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6928 {
6929 	struct hwrm_func_qcfg_output *resp;
6930 	struct hwrm_func_qcfg_input *req;
6931 	u32 min_db_offset = 0;
6932 	u16 flags;
6933 	int rc;
6934 
6935 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6936 	if (rc)
6937 		return rc;
6938 
6939 	req->fid = cpu_to_le16(0xffff);
6940 	resp = hwrm_req_hold(bp, req);
6941 	rc = hwrm_req_send(bp, req);
6942 	if (rc)
6943 		goto func_qcfg_exit;
6944 
6945 #ifdef CONFIG_BNXT_SRIOV
6946 	if (BNXT_VF(bp)) {
6947 		struct bnxt_vf_info *vf = &bp->vf;
6948 
6949 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6950 	} else {
6951 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6952 	}
6953 #endif
6954 	flags = le16_to_cpu(resp->flags);
6955 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6956 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6957 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6958 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6959 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6960 	}
6961 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6962 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6963 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6964 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6965 
6966 	switch (resp->port_partition_type) {
6967 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6968 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6969 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6970 		bp->port_partition_type = resp->port_partition_type;
6971 		break;
6972 	}
6973 	if (bp->hwrm_spec_code < 0x10707 ||
6974 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6975 		bp->br_mode = BRIDGE_MODE_VEB;
6976 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6977 		bp->br_mode = BRIDGE_MODE_VEPA;
6978 	else
6979 		bp->br_mode = BRIDGE_MODE_UNDEF;
6980 
6981 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6982 	if (!bp->max_mtu)
6983 		bp->max_mtu = BNXT_MAX_MTU;
6984 
6985 	if (bp->db_size)
6986 		goto func_qcfg_exit;
6987 
6988 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6989 		if (BNXT_PF(bp))
6990 			min_db_offset = DB_PF_OFFSET_P5;
6991 		else
6992 			min_db_offset = DB_VF_OFFSET_P5;
6993 	}
6994 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6995 				 1024);
6996 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6997 	    bp->db_size <= min_db_offset)
6998 		bp->db_size = pci_resource_len(bp->pdev, 2);
6999 
7000 func_qcfg_exit:
7001 	hwrm_req_drop(bp, req);
7002 	return rc;
7003 }
7004 
7005 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7006 			struct hwrm_func_backing_store_qcaps_output *resp)
7007 {
7008 	struct bnxt_mem_init *mem_init;
7009 	u16 init_mask;
7010 	u8 init_val;
7011 	u8 *offset;
7012 	int i;
7013 
7014 	init_val = resp->ctx_kind_initializer;
7015 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7016 	offset = &resp->qp_init_offset;
7017 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7018 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7019 		mem_init->init_val = init_val;
7020 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7021 		if (!init_mask)
7022 			continue;
7023 		if (i == BNXT_CTX_MEM_INIT_STAT)
7024 			offset = &resp->stat_init_offset;
7025 		if (init_mask & (1 << i))
7026 			mem_init->offset = *offset * 4;
7027 		else
7028 			mem_init->init_val = 0;
7029 	}
7030 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7031 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7032 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7033 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7034 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7035 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7036 }
7037 
7038 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7039 {
7040 	struct hwrm_func_backing_store_qcaps_output *resp;
7041 	struct hwrm_func_backing_store_qcaps_input *req;
7042 	int rc;
7043 
7044 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7045 		return 0;
7046 
7047 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7048 	if (rc)
7049 		return rc;
7050 
7051 	resp = hwrm_req_hold(bp, req);
7052 	rc = hwrm_req_send_silent(bp, req);
7053 	if (!rc) {
7054 		struct bnxt_ctx_pg_info *ctx_pg;
7055 		struct bnxt_ctx_mem_info *ctx;
7056 		int i, tqm_rings;
7057 
7058 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7059 		if (!ctx) {
7060 			rc = -ENOMEM;
7061 			goto ctx_err;
7062 		}
7063 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7064 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7065 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7066 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7067 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7068 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7069 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7070 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7071 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7072 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7073 		ctx->vnic_max_vnic_entries =
7074 			le16_to_cpu(resp->vnic_max_vnic_entries);
7075 		ctx->vnic_max_ring_table_entries =
7076 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7077 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7078 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7079 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7080 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7081 		ctx->tqm_min_entries_per_ring =
7082 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7083 		ctx->tqm_max_entries_per_ring =
7084 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7085 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7086 		if (!ctx->tqm_entries_multiple)
7087 			ctx->tqm_entries_multiple = 1;
7088 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7089 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7090 		ctx->mrav_num_entries_units =
7091 			le16_to_cpu(resp->mrav_num_entries_units);
7092 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7093 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7094 
7095 		bnxt_init_ctx_initializer(ctx, resp);
7096 
7097 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7098 		if (!ctx->tqm_fp_rings_count)
7099 			ctx->tqm_fp_rings_count = bp->max_q;
7100 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7101 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7102 
7103 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7104 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7105 		if (!ctx_pg) {
7106 			kfree(ctx);
7107 			rc = -ENOMEM;
7108 			goto ctx_err;
7109 		}
7110 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7111 			ctx->tqm_mem[i] = ctx_pg;
7112 		bp->ctx = ctx;
7113 	} else {
7114 		rc = 0;
7115 	}
7116 ctx_err:
7117 	hwrm_req_drop(bp, req);
7118 	return rc;
7119 }
7120 
7121 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7122 				  __le64 *pg_dir)
7123 {
7124 	if (!rmem->nr_pages)
7125 		return;
7126 
7127 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7128 	if (rmem->depth >= 1) {
7129 		if (rmem->depth == 2)
7130 			*pg_attr |= 2;
7131 		else
7132 			*pg_attr |= 1;
7133 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7134 	} else {
7135 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7136 	}
7137 }
7138 
7139 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7140 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7141 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7142 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7143 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7144 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7145 
7146 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7147 {
7148 	struct hwrm_func_backing_store_cfg_input *req;
7149 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7150 	struct bnxt_ctx_pg_info *ctx_pg;
7151 	void **__req = (void **)&req;
7152 	u32 req_len = sizeof(*req);
7153 	__le32 *num_entries;
7154 	__le64 *pg_dir;
7155 	u32 flags = 0;
7156 	u8 *pg_attr;
7157 	u32 ena;
7158 	int rc;
7159 	int i;
7160 
7161 	if (!ctx)
7162 		return 0;
7163 
7164 	if (req_len > bp->hwrm_max_ext_req_len)
7165 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7166 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7167 	if (rc)
7168 		return rc;
7169 
7170 	req->enables = cpu_to_le32(enables);
7171 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7172 		ctx_pg = &ctx->qp_mem;
7173 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7174 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7175 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7176 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7177 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7178 				      &req->qpc_pg_size_qpc_lvl,
7179 				      &req->qpc_page_dir);
7180 	}
7181 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7182 		ctx_pg = &ctx->srq_mem;
7183 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7184 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7185 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7186 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7187 				      &req->srq_pg_size_srq_lvl,
7188 				      &req->srq_page_dir);
7189 	}
7190 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7191 		ctx_pg = &ctx->cq_mem;
7192 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7193 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7194 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7195 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7196 				      &req->cq_pg_size_cq_lvl,
7197 				      &req->cq_page_dir);
7198 	}
7199 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7200 		ctx_pg = &ctx->vnic_mem;
7201 		req->vnic_num_vnic_entries =
7202 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7203 		req->vnic_num_ring_table_entries =
7204 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7205 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7206 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7207 				      &req->vnic_pg_size_vnic_lvl,
7208 				      &req->vnic_page_dir);
7209 	}
7210 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7211 		ctx_pg = &ctx->stat_mem;
7212 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7213 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7214 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7215 				      &req->stat_pg_size_stat_lvl,
7216 				      &req->stat_page_dir);
7217 	}
7218 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7219 		ctx_pg = &ctx->mrav_mem;
7220 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7221 		if (ctx->mrav_num_entries_units)
7222 			flags |=
7223 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7224 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7225 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7226 				      &req->mrav_pg_size_mrav_lvl,
7227 				      &req->mrav_page_dir);
7228 	}
7229 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7230 		ctx_pg = &ctx->tim_mem;
7231 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7232 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7233 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7234 				      &req->tim_pg_size_tim_lvl,
7235 				      &req->tim_page_dir);
7236 	}
7237 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7238 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7239 	     pg_dir = &req->tqm_sp_page_dir,
7240 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7241 	     i < BNXT_MAX_TQM_RINGS;
7242 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7243 		if (!(enables & ena))
7244 			continue;
7245 
7246 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7247 		ctx_pg = ctx->tqm_mem[i];
7248 		*num_entries = cpu_to_le32(ctx_pg->entries);
7249 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7250 	}
7251 	req->flags = cpu_to_le32(flags);
7252 	return hwrm_req_send(bp, req);
7253 }
7254 
7255 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7256 				  struct bnxt_ctx_pg_info *ctx_pg)
7257 {
7258 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7259 
7260 	rmem->page_size = BNXT_PAGE_SIZE;
7261 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7262 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7263 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7264 	if (rmem->depth >= 1)
7265 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7266 	return bnxt_alloc_ring(bp, rmem);
7267 }
7268 
7269 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7270 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7271 				  u8 depth, struct bnxt_mem_init *mem_init)
7272 {
7273 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7274 	int rc;
7275 
7276 	if (!mem_size)
7277 		return -EINVAL;
7278 
7279 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7280 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7281 		ctx_pg->nr_pages = 0;
7282 		return -EINVAL;
7283 	}
7284 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7285 		int nr_tbls, i;
7286 
7287 		rmem->depth = 2;
7288 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7289 					     GFP_KERNEL);
7290 		if (!ctx_pg->ctx_pg_tbl)
7291 			return -ENOMEM;
7292 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7293 		rmem->nr_pages = nr_tbls;
7294 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7295 		if (rc)
7296 			return rc;
7297 		for (i = 0; i < nr_tbls; i++) {
7298 			struct bnxt_ctx_pg_info *pg_tbl;
7299 
7300 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7301 			if (!pg_tbl)
7302 				return -ENOMEM;
7303 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7304 			rmem = &pg_tbl->ring_mem;
7305 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7306 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7307 			rmem->depth = 1;
7308 			rmem->nr_pages = MAX_CTX_PAGES;
7309 			rmem->mem_init = mem_init;
7310 			if (i == (nr_tbls - 1)) {
7311 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7312 
7313 				if (rem)
7314 					rmem->nr_pages = rem;
7315 			}
7316 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7317 			if (rc)
7318 				break;
7319 		}
7320 	} else {
7321 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7322 		if (rmem->nr_pages > 1 || depth)
7323 			rmem->depth = 1;
7324 		rmem->mem_init = mem_init;
7325 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7326 	}
7327 	return rc;
7328 }
7329 
7330 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7331 				  struct bnxt_ctx_pg_info *ctx_pg)
7332 {
7333 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7334 
7335 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7336 	    ctx_pg->ctx_pg_tbl) {
7337 		int i, nr_tbls = rmem->nr_pages;
7338 
7339 		for (i = 0; i < nr_tbls; i++) {
7340 			struct bnxt_ctx_pg_info *pg_tbl;
7341 			struct bnxt_ring_mem_info *rmem2;
7342 
7343 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7344 			if (!pg_tbl)
7345 				continue;
7346 			rmem2 = &pg_tbl->ring_mem;
7347 			bnxt_free_ring(bp, rmem2);
7348 			ctx_pg->ctx_pg_arr[i] = NULL;
7349 			kfree(pg_tbl);
7350 			ctx_pg->ctx_pg_tbl[i] = NULL;
7351 		}
7352 		kfree(ctx_pg->ctx_pg_tbl);
7353 		ctx_pg->ctx_pg_tbl = NULL;
7354 	}
7355 	bnxt_free_ring(bp, rmem);
7356 	ctx_pg->nr_pages = 0;
7357 }
7358 
7359 void bnxt_free_ctx_mem(struct bnxt *bp)
7360 {
7361 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7362 	int i;
7363 
7364 	if (!ctx)
7365 		return;
7366 
7367 	if (ctx->tqm_mem[0]) {
7368 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7369 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7370 		kfree(ctx->tqm_mem[0]);
7371 		ctx->tqm_mem[0] = NULL;
7372 	}
7373 
7374 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7375 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7376 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7377 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7378 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7379 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7380 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7381 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7382 }
7383 
7384 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7385 {
7386 	struct bnxt_ctx_pg_info *ctx_pg;
7387 	struct bnxt_ctx_mem_info *ctx;
7388 	struct bnxt_mem_init *init;
7389 	u32 mem_size, ena, entries;
7390 	u32 entries_sp, min;
7391 	u32 num_mr, num_ah;
7392 	u32 extra_srqs = 0;
7393 	u32 extra_qps = 0;
7394 	u8 pg_lvl = 1;
7395 	int i, rc;
7396 
7397 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7398 	if (rc) {
7399 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7400 			   rc);
7401 		return rc;
7402 	}
7403 	ctx = bp->ctx;
7404 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7405 		return 0;
7406 
7407 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7408 		pg_lvl = 2;
7409 		extra_qps = 65536;
7410 		extra_srqs = 8192;
7411 	}
7412 
7413 	ctx_pg = &ctx->qp_mem;
7414 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7415 			  extra_qps;
7416 	if (ctx->qp_entry_size) {
7417 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7418 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7419 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7420 		if (rc)
7421 			return rc;
7422 	}
7423 
7424 	ctx_pg = &ctx->srq_mem;
7425 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7426 	if (ctx->srq_entry_size) {
7427 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7428 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7429 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7430 		if (rc)
7431 			return rc;
7432 	}
7433 
7434 	ctx_pg = &ctx->cq_mem;
7435 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7436 	if (ctx->cq_entry_size) {
7437 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7438 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7439 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7440 		if (rc)
7441 			return rc;
7442 	}
7443 
7444 	ctx_pg = &ctx->vnic_mem;
7445 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7446 			  ctx->vnic_max_ring_table_entries;
7447 	if (ctx->vnic_entry_size) {
7448 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7449 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7450 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7451 		if (rc)
7452 			return rc;
7453 	}
7454 
7455 	ctx_pg = &ctx->stat_mem;
7456 	ctx_pg->entries = ctx->stat_max_entries;
7457 	if (ctx->stat_entry_size) {
7458 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7459 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7460 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7461 		if (rc)
7462 			return rc;
7463 	}
7464 
7465 	ena = 0;
7466 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7467 		goto skip_rdma;
7468 
7469 	ctx_pg = &ctx->mrav_mem;
7470 	/* 128K extra is needed to accommodate static AH context
7471 	 * allocation by f/w.
7472 	 */
7473 	num_mr = 1024 * 256;
7474 	num_ah = 1024 * 128;
7475 	ctx_pg->entries = num_mr + num_ah;
7476 	if (ctx->mrav_entry_size) {
7477 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7478 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7479 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7480 		if (rc)
7481 			return rc;
7482 	}
7483 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7484 	if (ctx->mrav_num_entries_units)
7485 		ctx_pg->entries =
7486 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7487 			 (num_ah / ctx->mrav_num_entries_units);
7488 
7489 	ctx_pg = &ctx->tim_mem;
7490 	ctx_pg->entries = ctx->qp_mem.entries;
7491 	if (ctx->tim_entry_size) {
7492 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7493 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7494 		if (rc)
7495 			return rc;
7496 	}
7497 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7498 
7499 skip_rdma:
7500 	min = ctx->tqm_min_entries_per_ring;
7501 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7502 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7503 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7504 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7505 	entries = roundup(entries, ctx->tqm_entries_multiple);
7506 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7507 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7508 		ctx_pg = ctx->tqm_mem[i];
7509 		ctx_pg->entries = i ? entries : entries_sp;
7510 		if (ctx->tqm_entry_size) {
7511 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7512 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7513 						    NULL);
7514 			if (rc)
7515 				return rc;
7516 		}
7517 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7518 	}
7519 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7520 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7521 	if (rc) {
7522 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7523 			   rc);
7524 		return rc;
7525 	}
7526 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7527 	return 0;
7528 }
7529 
7530 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7531 {
7532 	struct hwrm_func_resource_qcaps_output *resp;
7533 	struct hwrm_func_resource_qcaps_input *req;
7534 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7535 	int rc;
7536 
7537 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7538 	if (rc)
7539 		return rc;
7540 
7541 	req->fid = cpu_to_le16(0xffff);
7542 	resp = hwrm_req_hold(bp, req);
7543 	rc = hwrm_req_send_silent(bp, req);
7544 	if (rc)
7545 		goto hwrm_func_resc_qcaps_exit;
7546 
7547 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7548 	if (!all)
7549 		goto hwrm_func_resc_qcaps_exit;
7550 
7551 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7552 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7553 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7554 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7555 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7556 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7557 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7558 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7559 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7560 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7561 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7562 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7563 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7564 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7565 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7566 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7567 
7568 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7569 		u16 max_msix = le16_to_cpu(resp->max_msix);
7570 
7571 		hw_resc->max_nqs = max_msix;
7572 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7573 	}
7574 
7575 	if (BNXT_PF(bp)) {
7576 		struct bnxt_pf_info *pf = &bp->pf;
7577 
7578 		pf->vf_resv_strategy =
7579 			le16_to_cpu(resp->vf_reservation_strategy);
7580 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7581 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7582 	}
7583 hwrm_func_resc_qcaps_exit:
7584 	hwrm_req_drop(bp, req);
7585 	return rc;
7586 }
7587 
7588 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7589 {
7590 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7591 	struct hwrm_port_mac_ptp_qcfg_input *req;
7592 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7593 	bool phc_cfg;
7594 	u8 flags;
7595 	int rc;
7596 
7597 	if (bp->hwrm_spec_code < 0x10801) {
7598 		rc = -ENODEV;
7599 		goto no_ptp;
7600 	}
7601 
7602 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7603 	if (rc)
7604 		goto no_ptp;
7605 
7606 	req->port_id = cpu_to_le16(bp->pf.port_id);
7607 	resp = hwrm_req_hold(bp, req);
7608 	rc = hwrm_req_send(bp, req);
7609 	if (rc)
7610 		goto exit;
7611 
7612 	flags = resp->flags;
7613 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7614 		rc = -ENODEV;
7615 		goto exit;
7616 	}
7617 	if (!ptp) {
7618 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7619 		if (!ptp) {
7620 			rc = -ENOMEM;
7621 			goto exit;
7622 		}
7623 		ptp->bp = bp;
7624 		bp->ptp_cfg = ptp;
7625 	}
7626 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7627 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7628 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7629 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7630 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7631 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7632 	} else {
7633 		rc = -ENODEV;
7634 		goto exit;
7635 	}
7636 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7637 	rc = bnxt_ptp_init(bp, phc_cfg);
7638 	if (rc)
7639 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7640 exit:
7641 	hwrm_req_drop(bp, req);
7642 	if (!rc)
7643 		return 0;
7644 
7645 no_ptp:
7646 	bnxt_ptp_clear(bp);
7647 	kfree(ptp);
7648 	bp->ptp_cfg = NULL;
7649 	return rc;
7650 }
7651 
7652 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7653 {
7654 	struct hwrm_func_qcaps_output *resp;
7655 	struct hwrm_func_qcaps_input *req;
7656 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7657 	u32 flags, flags_ext, flags_ext2;
7658 	int rc;
7659 
7660 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7661 	if (rc)
7662 		return rc;
7663 
7664 	req->fid = cpu_to_le16(0xffff);
7665 	resp = hwrm_req_hold(bp, req);
7666 	rc = hwrm_req_send(bp, req);
7667 	if (rc)
7668 		goto hwrm_func_qcaps_exit;
7669 
7670 	flags = le32_to_cpu(resp->flags);
7671 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7672 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7673 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7674 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7675 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7676 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7677 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7678 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7679 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7680 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7681 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7682 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7683 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7684 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7685 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7686 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7687 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7688 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7689 
7690 	flags_ext = le32_to_cpu(resp->flags_ext);
7691 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7692 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7693 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7694 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7695 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7696 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7697 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7698 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7699 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7700 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7701 
7702 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7703 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7704 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7705 
7706 	bp->tx_push_thresh = 0;
7707 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7708 	    BNXT_FW_MAJ(bp) > 217)
7709 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7710 
7711 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7712 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7713 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7714 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7715 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7716 	if (!hw_resc->max_hw_ring_grps)
7717 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7718 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7719 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7720 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7721 
7722 	if (BNXT_PF(bp)) {
7723 		struct bnxt_pf_info *pf = &bp->pf;
7724 
7725 		pf->fw_fid = le16_to_cpu(resp->fid);
7726 		pf->port_id = le16_to_cpu(resp->port_id);
7727 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7728 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7729 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7730 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7731 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7732 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7733 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7734 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7735 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7736 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7737 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7738 			bp->flags |= BNXT_FLAG_WOL_CAP;
7739 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7740 			__bnxt_hwrm_ptp_qcfg(bp);
7741 		} else {
7742 			bnxt_ptp_clear(bp);
7743 			kfree(bp->ptp_cfg);
7744 			bp->ptp_cfg = NULL;
7745 		}
7746 	} else {
7747 #ifdef CONFIG_BNXT_SRIOV
7748 		struct bnxt_vf_info *vf = &bp->vf;
7749 
7750 		vf->fw_fid = le16_to_cpu(resp->fid);
7751 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7752 #endif
7753 	}
7754 
7755 hwrm_func_qcaps_exit:
7756 	hwrm_req_drop(bp, req);
7757 	return rc;
7758 }
7759 
7760 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7761 {
7762 	struct hwrm_dbg_qcaps_output *resp;
7763 	struct hwrm_dbg_qcaps_input *req;
7764 	int rc;
7765 
7766 	bp->fw_dbg_cap = 0;
7767 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7768 		return;
7769 
7770 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7771 	if (rc)
7772 		return;
7773 
7774 	req->fid = cpu_to_le16(0xffff);
7775 	resp = hwrm_req_hold(bp, req);
7776 	rc = hwrm_req_send(bp, req);
7777 	if (rc)
7778 		goto hwrm_dbg_qcaps_exit;
7779 
7780 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7781 
7782 hwrm_dbg_qcaps_exit:
7783 	hwrm_req_drop(bp, req);
7784 }
7785 
7786 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7787 
7788 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7789 {
7790 	int rc;
7791 
7792 	rc = __bnxt_hwrm_func_qcaps(bp);
7793 	if (rc)
7794 		return rc;
7795 
7796 	bnxt_hwrm_dbg_qcaps(bp);
7797 
7798 	rc = bnxt_hwrm_queue_qportcfg(bp);
7799 	if (rc) {
7800 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7801 		return rc;
7802 	}
7803 	if (bp->hwrm_spec_code >= 0x10803) {
7804 		rc = bnxt_alloc_ctx_mem(bp);
7805 		if (rc)
7806 			return rc;
7807 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7808 		if (!rc)
7809 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7810 	}
7811 	return 0;
7812 }
7813 
7814 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7815 {
7816 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7817 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7818 	u32 flags;
7819 	int rc;
7820 
7821 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7822 		return 0;
7823 
7824 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7825 	if (rc)
7826 		return rc;
7827 
7828 	resp = hwrm_req_hold(bp, req);
7829 	rc = hwrm_req_send(bp, req);
7830 	if (rc)
7831 		goto hwrm_cfa_adv_qcaps_exit;
7832 
7833 	flags = le32_to_cpu(resp->flags);
7834 	if (flags &
7835 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7836 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7837 
7838 hwrm_cfa_adv_qcaps_exit:
7839 	hwrm_req_drop(bp, req);
7840 	return rc;
7841 }
7842 
7843 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7844 {
7845 	if (bp->fw_health)
7846 		return 0;
7847 
7848 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7849 	if (!bp->fw_health)
7850 		return -ENOMEM;
7851 
7852 	mutex_init(&bp->fw_health->lock);
7853 	return 0;
7854 }
7855 
7856 static int bnxt_alloc_fw_health(struct bnxt *bp)
7857 {
7858 	int rc;
7859 
7860 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7861 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7862 		return 0;
7863 
7864 	rc = __bnxt_alloc_fw_health(bp);
7865 	if (rc) {
7866 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7867 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7868 		return rc;
7869 	}
7870 
7871 	return 0;
7872 }
7873 
7874 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7875 {
7876 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7877 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7878 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7879 }
7880 
7881 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7882 {
7883 	struct bnxt_fw_health *fw_health = bp->fw_health;
7884 	u32 reg_type;
7885 
7886 	if (!fw_health)
7887 		return;
7888 
7889 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7890 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7891 		fw_health->status_reliable = false;
7892 
7893 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7894 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7895 		fw_health->resets_reliable = false;
7896 }
7897 
7898 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7899 {
7900 	void __iomem *hs;
7901 	u32 status_loc;
7902 	u32 reg_type;
7903 	u32 sig;
7904 
7905 	if (bp->fw_health)
7906 		bp->fw_health->status_reliable = false;
7907 
7908 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7909 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7910 
7911 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7912 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7913 		if (!bp->chip_num) {
7914 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7915 			bp->chip_num = readl(bp->bar0 +
7916 					     BNXT_FW_HEALTH_WIN_BASE +
7917 					     BNXT_GRC_REG_CHIP_NUM);
7918 		}
7919 		if (!BNXT_CHIP_P5(bp))
7920 			return;
7921 
7922 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7923 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7924 	} else {
7925 		status_loc = readl(hs + offsetof(struct hcomm_status,
7926 						 fw_status_loc));
7927 	}
7928 
7929 	if (__bnxt_alloc_fw_health(bp)) {
7930 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7931 		return;
7932 	}
7933 
7934 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7935 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7936 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7937 		__bnxt_map_fw_health_reg(bp, status_loc);
7938 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7939 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7940 	}
7941 
7942 	bp->fw_health->status_reliable = true;
7943 }
7944 
7945 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7946 {
7947 	struct bnxt_fw_health *fw_health = bp->fw_health;
7948 	u32 reg_base = 0xffffffff;
7949 	int i;
7950 
7951 	bp->fw_health->status_reliable = false;
7952 	bp->fw_health->resets_reliable = false;
7953 	/* Only pre-map the monitoring GRC registers using window 3 */
7954 	for (i = 0; i < 4; i++) {
7955 		u32 reg = fw_health->regs[i];
7956 
7957 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7958 			continue;
7959 		if (reg_base == 0xffffffff)
7960 			reg_base = reg & BNXT_GRC_BASE_MASK;
7961 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7962 			return -ERANGE;
7963 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7964 	}
7965 	bp->fw_health->status_reliable = true;
7966 	bp->fw_health->resets_reliable = true;
7967 	if (reg_base == 0xffffffff)
7968 		return 0;
7969 
7970 	__bnxt_map_fw_health_reg(bp, reg_base);
7971 	return 0;
7972 }
7973 
7974 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7975 {
7976 	if (!bp->fw_health)
7977 		return;
7978 
7979 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7980 		bp->fw_health->status_reliable = true;
7981 		bp->fw_health->resets_reliable = true;
7982 	} else {
7983 		bnxt_try_map_fw_health_reg(bp);
7984 	}
7985 }
7986 
7987 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7988 {
7989 	struct bnxt_fw_health *fw_health = bp->fw_health;
7990 	struct hwrm_error_recovery_qcfg_output *resp;
7991 	struct hwrm_error_recovery_qcfg_input *req;
7992 	int rc, i;
7993 
7994 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7995 		return 0;
7996 
7997 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7998 	if (rc)
7999 		return rc;
8000 
8001 	resp = hwrm_req_hold(bp, req);
8002 	rc = hwrm_req_send(bp, req);
8003 	if (rc)
8004 		goto err_recovery_out;
8005 	fw_health->flags = le32_to_cpu(resp->flags);
8006 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8007 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8008 		rc = -EINVAL;
8009 		goto err_recovery_out;
8010 	}
8011 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8012 	fw_health->master_func_wait_dsecs =
8013 		le32_to_cpu(resp->master_func_wait_period);
8014 	fw_health->normal_func_wait_dsecs =
8015 		le32_to_cpu(resp->normal_func_wait_period);
8016 	fw_health->post_reset_wait_dsecs =
8017 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8018 	fw_health->post_reset_max_wait_dsecs =
8019 		le32_to_cpu(resp->max_bailout_time_after_reset);
8020 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8021 		le32_to_cpu(resp->fw_health_status_reg);
8022 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8023 		le32_to_cpu(resp->fw_heartbeat_reg);
8024 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8025 		le32_to_cpu(resp->fw_reset_cnt_reg);
8026 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8027 		le32_to_cpu(resp->reset_inprogress_reg);
8028 	fw_health->fw_reset_inprog_reg_mask =
8029 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8030 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8031 	if (fw_health->fw_reset_seq_cnt >= 16) {
8032 		rc = -EINVAL;
8033 		goto err_recovery_out;
8034 	}
8035 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8036 		fw_health->fw_reset_seq_regs[i] =
8037 			le32_to_cpu(resp->reset_reg[i]);
8038 		fw_health->fw_reset_seq_vals[i] =
8039 			le32_to_cpu(resp->reset_reg_val[i]);
8040 		fw_health->fw_reset_seq_delay_msec[i] =
8041 			resp->delay_after_reset[i];
8042 	}
8043 err_recovery_out:
8044 	hwrm_req_drop(bp, req);
8045 	if (!rc)
8046 		rc = bnxt_map_fw_health_regs(bp);
8047 	if (rc)
8048 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8049 	return rc;
8050 }
8051 
8052 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8053 {
8054 	struct hwrm_func_reset_input *req;
8055 	int rc;
8056 
8057 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8058 	if (rc)
8059 		return rc;
8060 
8061 	req->enables = 0;
8062 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8063 	return hwrm_req_send(bp, req);
8064 }
8065 
8066 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8067 {
8068 	struct hwrm_nvm_get_dev_info_output nvm_info;
8069 
8070 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8071 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8072 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8073 			 nvm_info.nvm_cfg_ver_upd);
8074 }
8075 
8076 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8077 {
8078 	struct hwrm_queue_qportcfg_output *resp;
8079 	struct hwrm_queue_qportcfg_input *req;
8080 	u8 i, j, *qptr;
8081 	bool no_rdma;
8082 	int rc = 0;
8083 
8084 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8085 	if (rc)
8086 		return rc;
8087 
8088 	resp = hwrm_req_hold(bp, req);
8089 	rc = hwrm_req_send(bp, req);
8090 	if (rc)
8091 		goto qportcfg_exit;
8092 
8093 	if (!resp->max_configurable_queues) {
8094 		rc = -EINVAL;
8095 		goto qportcfg_exit;
8096 	}
8097 	bp->max_tc = resp->max_configurable_queues;
8098 	bp->max_lltc = resp->max_configurable_lossless_queues;
8099 	if (bp->max_tc > BNXT_MAX_QUEUE)
8100 		bp->max_tc = BNXT_MAX_QUEUE;
8101 
8102 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8103 	qptr = &resp->queue_id0;
8104 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8105 		bp->q_info[j].queue_id = *qptr;
8106 		bp->q_ids[i] = *qptr++;
8107 		bp->q_info[j].queue_profile = *qptr++;
8108 		bp->tc_to_qidx[j] = j;
8109 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8110 		    (no_rdma && BNXT_PF(bp)))
8111 			j++;
8112 	}
8113 	bp->max_q = bp->max_tc;
8114 	bp->max_tc = max_t(u8, j, 1);
8115 
8116 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8117 		bp->max_tc = 1;
8118 
8119 	if (bp->max_lltc > bp->max_tc)
8120 		bp->max_lltc = bp->max_tc;
8121 
8122 qportcfg_exit:
8123 	hwrm_req_drop(bp, req);
8124 	return rc;
8125 }
8126 
8127 static int bnxt_hwrm_poll(struct bnxt *bp)
8128 {
8129 	struct hwrm_ver_get_input *req;
8130 	int rc;
8131 
8132 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8133 	if (rc)
8134 		return rc;
8135 
8136 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8137 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8138 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8139 
8140 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8141 	rc = hwrm_req_send(bp, req);
8142 	return rc;
8143 }
8144 
8145 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8146 {
8147 	struct hwrm_ver_get_output *resp;
8148 	struct hwrm_ver_get_input *req;
8149 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8150 	u32 dev_caps_cfg, hwrm_ver;
8151 	int rc, len;
8152 
8153 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8154 	if (rc)
8155 		return rc;
8156 
8157 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8158 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8159 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8160 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8161 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8162 
8163 	resp = hwrm_req_hold(bp, req);
8164 	rc = hwrm_req_send(bp, req);
8165 	if (rc)
8166 		goto hwrm_ver_get_exit;
8167 
8168 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8169 
8170 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8171 			     resp->hwrm_intf_min_8b << 8 |
8172 			     resp->hwrm_intf_upd_8b;
8173 	if (resp->hwrm_intf_maj_8b < 1) {
8174 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8175 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8176 			    resp->hwrm_intf_upd_8b);
8177 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8178 	}
8179 
8180 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8181 			HWRM_VERSION_UPDATE;
8182 
8183 	if (bp->hwrm_spec_code > hwrm_ver)
8184 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8185 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8186 			 HWRM_VERSION_UPDATE);
8187 	else
8188 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8189 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8190 			 resp->hwrm_intf_upd_8b);
8191 
8192 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8193 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8194 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8195 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8196 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8197 		len = FW_VER_STR_LEN;
8198 	} else {
8199 		fw_maj = resp->hwrm_fw_maj_8b;
8200 		fw_min = resp->hwrm_fw_min_8b;
8201 		fw_bld = resp->hwrm_fw_bld_8b;
8202 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8203 		len = BC_HWRM_STR_LEN;
8204 	}
8205 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8206 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8207 		 fw_rsv);
8208 
8209 	if (strlen(resp->active_pkg_name)) {
8210 		int fw_ver_len = strlen(bp->fw_ver_str);
8211 
8212 		snprintf(bp->fw_ver_str + fw_ver_len,
8213 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8214 			 resp->active_pkg_name);
8215 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8216 	}
8217 
8218 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8219 	if (!bp->hwrm_cmd_timeout)
8220 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8221 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8222 	if (!bp->hwrm_cmd_max_timeout)
8223 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8224 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8225 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8226 			    bp->hwrm_cmd_max_timeout / 1000);
8227 
8228 	if (resp->hwrm_intf_maj_8b >= 1) {
8229 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8230 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8231 	}
8232 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8233 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8234 
8235 	bp->chip_num = le16_to_cpu(resp->chip_num);
8236 	bp->chip_rev = resp->chip_rev;
8237 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8238 	    !resp->chip_metal)
8239 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8240 
8241 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8242 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8243 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8244 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8245 
8246 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8247 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8248 
8249 	if (dev_caps_cfg &
8250 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8251 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8252 
8253 	if (dev_caps_cfg &
8254 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8255 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8256 
8257 	if (dev_caps_cfg &
8258 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8259 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8260 
8261 hwrm_ver_get_exit:
8262 	hwrm_req_drop(bp, req);
8263 	return rc;
8264 }
8265 
8266 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8267 {
8268 	struct hwrm_fw_set_time_input *req;
8269 	struct tm tm;
8270 	time64_t now = ktime_get_real_seconds();
8271 	int rc;
8272 
8273 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8274 	    bp->hwrm_spec_code < 0x10400)
8275 		return -EOPNOTSUPP;
8276 
8277 	time64_to_tm(now, 0, &tm);
8278 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8279 	if (rc)
8280 		return rc;
8281 
8282 	req->year = cpu_to_le16(1900 + tm.tm_year);
8283 	req->month = 1 + tm.tm_mon;
8284 	req->day = tm.tm_mday;
8285 	req->hour = tm.tm_hour;
8286 	req->minute = tm.tm_min;
8287 	req->second = tm.tm_sec;
8288 	return hwrm_req_send(bp, req);
8289 }
8290 
8291 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8292 {
8293 	u64 sw_tmp;
8294 
8295 	hw &= mask;
8296 	sw_tmp = (*sw & ~mask) | hw;
8297 	if (hw < (*sw & mask))
8298 		sw_tmp += mask + 1;
8299 	WRITE_ONCE(*sw, sw_tmp);
8300 }
8301 
8302 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8303 				    int count, bool ignore_zero)
8304 {
8305 	int i;
8306 
8307 	for (i = 0; i < count; i++) {
8308 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8309 
8310 		if (ignore_zero && !hw)
8311 			continue;
8312 
8313 		if (masks[i] == -1ULL)
8314 			sw_stats[i] = hw;
8315 		else
8316 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8317 	}
8318 }
8319 
8320 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8321 {
8322 	if (!stats->hw_stats)
8323 		return;
8324 
8325 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8326 				stats->hw_masks, stats->len / 8, false);
8327 }
8328 
8329 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8330 {
8331 	struct bnxt_stats_mem *ring0_stats;
8332 	bool ignore_zero = false;
8333 	int i;
8334 
8335 	/* Chip bug.  Counter intermittently becomes 0. */
8336 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8337 		ignore_zero = true;
8338 
8339 	for (i = 0; i < bp->cp_nr_rings; i++) {
8340 		struct bnxt_napi *bnapi = bp->bnapi[i];
8341 		struct bnxt_cp_ring_info *cpr;
8342 		struct bnxt_stats_mem *stats;
8343 
8344 		cpr = &bnapi->cp_ring;
8345 		stats = &cpr->stats;
8346 		if (!i)
8347 			ring0_stats = stats;
8348 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8349 					ring0_stats->hw_masks,
8350 					ring0_stats->len / 8, ignore_zero);
8351 	}
8352 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8353 		struct bnxt_stats_mem *stats = &bp->port_stats;
8354 		__le64 *hw_stats = stats->hw_stats;
8355 		u64 *sw_stats = stats->sw_stats;
8356 		u64 *masks = stats->hw_masks;
8357 		int cnt;
8358 
8359 		cnt = sizeof(struct rx_port_stats) / 8;
8360 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8361 
8362 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8363 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8364 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8365 		cnt = sizeof(struct tx_port_stats) / 8;
8366 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8367 	}
8368 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8369 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8370 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8371 	}
8372 }
8373 
8374 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8375 {
8376 	struct hwrm_port_qstats_input *req;
8377 	struct bnxt_pf_info *pf = &bp->pf;
8378 	int rc;
8379 
8380 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8381 		return 0;
8382 
8383 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8384 		return -EOPNOTSUPP;
8385 
8386 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8387 	if (rc)
8388 		return rc;
8389 
8390 	req->flags = flags;
8391 	req->port_id = cpu_to_le16(pf->port_id);
8392 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8393 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8394 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8395 	return hwrm_req_send(bp, req);
8396 }
8397 
8398 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8399 {
8400 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8401 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8402 	struct hwrm_port_qstats_ext_output *resp_qs;
8403 	struct hwrm_port_qstats_ext_input *req_qs;
8404 	struct bnxt_pf_info *pf = &bp->pf;
8405 	u32 tx_stat_size;
8406 	int rc;
8407 
8408 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8409 		return 0;
8410 
8411 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8412 		return -EOPNOTSUPP;
8413 
8414 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8415 	if (rc)
8416 		return rc;
8417 
8418 	req_qs->flags = flags;
8419 	req_qs->port_id = cpu_to_le16(pf->port_id);
8420 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8421 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8422 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8423 		       sizeof(struct tx_port_stats_ext) : 0;
8424 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8425 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8426 	resp_qs = hwrm_req_hold(bp, req_qs);
8427 	rc = hwrm_req_send(bp, req_qs);
8428 	if (!rc) {
8429 		bp->fw_rx_stats_ext_size =
8430 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8431 		if (BNXT_FW_MAJ(bp) < 220 &&
8432 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8433 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8434 
8435 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8436 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8437 	} else {
8438 		bp->fw_rx_stats_ext_size = 0;
8439 		bp->fw_tx_stats_ext_size = 0;
8440 	}
8441 	hwrm_req_drop(bp, req_qs);
8442 
8443 	if (flags)
8444 		return rc;
8445 
8446 	if (bp->fw_tx_stats_ext_size <=
8447 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8448 		bp->pri2cos_valid = 0;
8449 		return rc;
8450 	}
8451 
8452 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8453 	if (rc)
8454 		return rc;
8455 
8456 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8457 
8458 	resp_qc = hwrm_req_hold(bp, req_qc);
8459 	rc = hwrm_req_send(bp, req_qc);
8460 	if (!rc) {
8461 		u8 *pri2cos;
8462 		int i, j;
8463 
8464 		pri2cos = &resp_qc->pri0_cos_queue_id;
8465 		for (i = 0; i < 8; i++) {
8466 			u8 queue_id = pri2cos[i];
8467 			u8 queue_idx;
8468 
8469 			/* Per port queue IDs start from 0, 10, 20, etc */
8470 			queue_idx = queue_id % 10;
8471 			if (queue_idx > BNXT_MAX_QUEUE) {
8472 				bp->pri2cos_valid = false;
8473 				hwrm_req_drop(bp, req_qc);
8474 				return rc;
8475 			}
8476 			for (j = 0; j < bp->max_q; j++) {
8477 				if (bp->q_ids[j] == queue_id)
8478 					bp->pri2cos_idx[i] = queue_idx;
8479 			}
8480 		}
8481 		bp->pri2cos_valid = true;
8482 	}
8483 	hwrm_req_drop(bp, req_qc);
8484 
8485 	return rc;
8486 }
8487 
8488 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8489 {
8490 	bnxt_hwrm_tunnel_dst_port_free(bp,
8491 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8492 	bnxt_hwrm_tunnel_dst_port_free(bp,
8493 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8494 }
8495 
8496 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8497 {
8498 	int rc, i;
8499 	u32 tpa_flags = 0;
8500 
8501 	if (set_tpa)
8502 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8503 	else if (BNXT_NO_FW_ACCESS(bp))
8504 		return 0;
8505 	for (i = 0; i < bp->nr_vnics; i++) {
8506 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8507 		if (rc) {
8508 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8509 				   i, rc);
8510 			return rc;
8511 		}
8512 	}
8513 	return 0;
8514 }
8515 
8516 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8517 {
8518 	int i;
8519 
8520 	for (i = 0; i < bp->nr_vnics; i++)
8521 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8522 }
8523 
8524 static void bnxt_clear_vnic(struct bnxt *bp)
8525 {
8526 	if (!bp->vnic_info)
8527 		return;
8528 
8529 	bnxt_hwrm_clear_vnic_filter(bp);
8530 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8531 		/* clear all RSS setting before free vnic ctx */
8532 		bnxt_hwrm_clear_vnic_rss(bp);
8533 		bnxt_hwrm_vnic_ctx_free(bp);
8534 	}
8535 	/* before free the vnic, undo the vnic tpa settings */
8536 	if (bp->flags & BNXT_FLAG_TPA)
8537 		bnxt_set_tpa(bp, false);
8538 	bnxt_hwrm_vnic_free(bp);
8539 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8540 		bnxt_hwrm_vnic_ctx_free(bp);
8541 }
8542 
8543 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8544 				    bool irq_re_init)
8545 {
8546 	bnxt_clear_vnic(bp);
8547 	bnxt_hwrm_ring_free(bp, close_path);
8548 	bnxt_hwrm_ring_grp_free(bp);
8549 	if (irq_re_init) {
8550 		bnxt_hwrm_stat_ctx_free(bp);
8551 		bnxt_hwrm_free_tunnel_ports(bp);
8552 	}
8553 }
8554 
8555 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8556 {
8557 	struct hwrm_func_cfg_input *req;
8558 	u8 evb_mode;
8559 	int rc;
8560 
8561 	if (br_mode == BRIDGE_MODE_VEB)
8562 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8563 	else if (br_mode == BRIDGE_MODE_VEPA)
8564 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8565 	else
8566 		return -EINVAL;
8567 
8568 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8569 	if (rc)
8570 		return rc;
8571 
8572 	req->fid = cpu_to_le16(0xffff);
8573 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8574 	req->evb_mode = evb_mode;
8575 	return hwrm_req_send(bp, req);
8576 }
8577 
8578 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8579 {
8580 	struct hwrm_func_cfg_input *req;
8581 	int rc;
8582 
8583 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8584 		return 0;
8585 
8586 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8587 	if (rc)
8588 		return rc;
8589 
8590 	req->fid = cpu_to_le16(0xffff);
8591 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8592 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8593 	if (size == 128)
8594 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8595 
8596 	return hwrm_req_send(bp, req);
8597 }
8598 
8599 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8600 {
8601 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8602 	int rc;
8603 
8604 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8605 		goto skip_rss_ctx;
8606 
8607 	/* allocate context for vnic */
8608 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8609 	if (rc) {
8610 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8611 			   vnic_id, rc);
8612 		goto vnic_setup_err;
8613 	}
8614 	bp->rsscos_nr_ctxs++;
8615 
8616 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8617 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8618 		if (rc) {
8619 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8620 				   vnic_id, rc);
8621 			goto vnic_setup_err;
8622 		}
8623 		bp->rsscos_nr_ctxs++;
8624 	}
8625 
8626 skip_rss_ctx:
8627 	/* configure default vnic, ring grp */
8628 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8629 	if (rc) {
8630 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8631 			   vnic_id, rc);
8632 		goto vnic_setup_err;
8633 	}
8634 
8635 	/* Enable RSS hashing on vnic */
8636 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8637 	if (rc) {
8638 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8639 			   vnic_id, rc);
8640 		goto vnic_setup_err;
8641 	}
8642 
8643 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8644 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8645 		if (rc) {
8646 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8647 				   vnic_id, rc);
8648 		}
8649 	}
8650 
8651 vnic_setup_err:
8652 	return rc;
8653 }
8654 
8655 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8656 {
8657 	int rc, i, nr_ctxs;
8658 
8659 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8660 	for (i = 0; i < nr_ctxs; i++) {
8661 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8662 		if (rc) {
8663 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8664 				   vnic_id, i, rc);
8665 			break;
8666 		}
8667 		bp->rsscos_nr_ctxs++;
8668 	}
8669 	if (i < nr_ctxs)
8670 		return -ENOMEM;
8671 
8672 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8673 	if (rc) {
8674 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8675 			   vnic_id, rc);
8676 		return rc;
8677 	}
8678 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8679 	if (rc) {
8680 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8681 			   vnic_id, rc);
8682 		return rc;
8683 	}
8684 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8685 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8686 		if (rc) {
8687 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8688 				   vnic_id, rc);
8689 		}
8690 	}
8691 	return rc;
8692 }
8693 
8694 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8695 {
8696 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8697 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8698 	else
8699 		return __bnxt_setup_vnic(bp, vnic_id);
8700 }
8701 
8702 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8703 {
8704 #ifdef CONFIG_RFS_ACCEL
8705 	int i, rc = 0;
8706 
8707 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8708 		return 0;
8709 
8710 	for (i = 0; i < bp->rx_nr_rings; i++) {
8711 		struct bnxt_vnic_info *vnic;
8712 		u16 vnic_id = i + 1;
8713 		u16 ring_id = i;
8714 
8715 		if (vnic_id >= bp->nr_vnics)
8716 			break;
8717 
8718 		vnic = &bp->vnic_info[vnic_id];
8719 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8720 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8721 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8722 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8723 		if (rc) {
8724 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8725 				   vnic_id, rc);
8726 			break;
8727 		}
8728 		rc = bnxt_setup_vnic(bp, vnic_id);
8729 		if (rc)
8730 			break;
8731 	}
8732 	return rc;
8733 #else
8734 	return 0;
8735 #endif
8736 }
8737 
8738 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8739 static bool bnxt_promisc_ok(struct bnxt *bp)
8740 {
8741 #ifdef CONFIG_BNXT_SRIOV
8742 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8743 		return false;
8744 #endif
8745 	return true;
8746 }
8747 
8748 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8749 {
8750 	unsigned int rc = 0;
8751 
8752 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8753 	if (rc) {
8754 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8755 			   rc);
8756 		return rc;
8757 	}
8758 
8759 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8760 	if (rc) {
8761 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8762 			   rc);
8763 		return rc;
8764 	}
8765 	return rc;
8766 }
8767 
8768 static int bnxt_cfg_rx_mode(struct bnxt *);
8769 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8770 
8771 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8772 {
8773 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8774 	int rc = 0;
8775 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8776 
8777 	if (irq_re_init) {
8778 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8779 		if (rc) {
8780 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8781 				   rc);
8782 			goto err_out;
8783 		}
8784 	}
8785 
8786 	rc = bnxt_hwrm_ring_alloc(bp);
8787 	if (rc) {
8788 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8789 		goto err_out;
8790 	}
8791 
8792 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8793 	if (rc) {
8794 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8795 		goto err_out;
8796 	}
8797 
8798 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8799 		rx_nr_rings--;
8800 
8801 	/* default vnic 0 */
8802 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8803 	if (rc) {
8804 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8805 		goto err_out;
8806 	}
8807 
8808 	rc = bnxt_setup_vnic(bp, 0);
8809 	if (rc)
8810 		goto err_out;
8811 
8812 	if (bp->flags & BNXT_FLAG_RFS) {
8813 		rc = bnxt_alloc_rfs_vnics(bp);
8814 		if (rc)
8815 			goto err_out;
8816 	}
8817 
8818 	if (bp->flags & BNXT_FLAG_TPA) {
8819 		rc = bnxt_set_tpa(bp, true);
8820 		if (rc)
8821 			goto err_out;
8822 	}
8823 
8824 	if (BNXT_VF(bp))
8825 		bnxt_update_vf_mac(bp);
8826 
8827 	/* Filter for default vnic 0 */
8828 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8829 	if (rc) {
8830 		if (BNXT_VF(bp) && rc == -ENODEV)
8831 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8832 		else
8833 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8834 		goto err_out;
8835 	}
8836 	vnic->uc_filter_count = 1;
8837 
8838 	vnic->rx_mask = 0;
8839 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8840 		goto skip_rx_mask;
8841 
8842 	if (bp->dev->flags & IFF_BROADCAST)
8843 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8844 
8845 	if (bp->dev->flags & IFF_PROMISC)
8846 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8847 
8848 	if (bp->dev->flags & IFF_ALLMULTI) {
8849 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8850 		vnic->mc_list_count = 0;
8851 	} else if (bp->dev->flags & IFF_MULTICAST) {
8852 		u32 mask = 0;
8853 
8854 		bnxt_mc_list_updated(bp, &mask);
8855 		vnic->rx_mask |= mask;
8856 	}
8857 
8858 	rc = bnxt_cfg_rx_mode(bp);
8859 	if (rc)
8860 		goto err_out;
8861 
8862 skip_rx_mask:
8863 	rc = bnxt_hwrm_set_coal(bp);
8864 	if (rc)
8865 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8866 				rc);
8867 
8868 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8869 		rc = bnxt_setup_nitroa0_vnic(bp);
8870 		if (rc)
8871 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8872 				   rc);
8873 	}
8874 
8875 	if (BNXT_VF(bp)) {
8876 		bnxt_hwrm_func_qcfg(bp);
8877 		netdev_update_features(bp->dev);
8878 	}
8879 
8880 	return 0;
8881 
8882 err_out:
8883 	bnxt_hwrm_resource_free(bp, 0, true);
8884 
8885 	return rc;
8886 }
8887 
8888 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8889 {
8890 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8891 	return 0;
8892 }
8893 
8894 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8895 {
8896 	bnxt_init_cp_rings(bp);
8897 	bnxt_init_rx_rings(bp);
8898 	bnxt_init_tx_rings(bp);
8899 	bnxt_init_ring_grps(bp, irq_re_init);
8900 	bnxt_init_vnics(bp);
8901 
8902 	return bnxt_init_chip(bp, irq_re_init);
8903 }
8904 
8905 static int bnxt_set_real_num_queues(struct bnxt *bp)
8906 {
8907 	int rc;
8908 	struct net_device *dev = bp->dev;
8909 
8910 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8911 					  bp->tx_nr_rings_xdp);
8912 	if (rc)
8913 		return rc;
8914 
8915 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8916 	if (rc)
8917 		return rc;
8918 
8919 #ifdef CONFIG_RFS_ACCEL
8920 	if (bp->flags & BNXT_FLAG_RFS)
8921 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8922 #endif
8923 
8924 	return rc;
8925 }
8926 
8927 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8928 			   bool shared)
8929 {
8930 	int _rx = *rx, _tx = *tx;
8931 
8932 	if (shared) {
8933 		*rx = min_t(int, _rx, max);
8934 		*tx = min_t(int, _tx, max);
8935 	} else {
8936 		if (max < 2)
8937 			return -ENOMEM;
8938 
8939 		while (_rx + _tx > max) {
8940 			if (_rx > _tx && _rx > 1)
8941 				_rx--;
8942 			else if (_tx > 1)
8943 				_tx--;
8944 		}
8945 		*rx = _rx;
8946 		*tx = _tx;
8947 	}
8948 	return 0;
8949 }
8950 
8951 static void bnxt_setup_msix(struct bnxt *bp)
8952 {
8953 	const int len = sizeof(bp->irq_tbl[0].name);
8954 	struct net_device *dev = bp->dev;
8955 	int tcs, i;
8956 
8957 	tcs = netdev_get_num_tc(dev);
8958 	if (tcs) {
8959 		int i, off, count;
8960 
8961 		for (i = 0; i < tcs; i++) {
8962 			count = bp->tx_nr_rings_per_tc;
8963 			off = i * count;
8964 			netdev_set_tc_queue(dev, i, count, off);
8965 		}
8966 	}
8967 
8968 	for (i = 0; i < bp->cp_nr_rings; i++) {
8969 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8970 		char *attr;
8971 
8972 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8973 			attr = "TxRx";
8974 		else if (i < bp->rx_nr_rings)
8975 			attr = "rx";
8976 		else
8977 			attr = "tx";
8978 
8979 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8980 			 attr, i);
8981 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8982 	}
8983 }
8984 
8985 static void bnxt_setup_inta(struct bnxt *bp)
8986 {
8987 	const int len = sizeof(bp->irq_tbl[0].name);
8988 
8989 	if (netdev_get_num_tc(bp->dev))
8990 		netdev_reset_tc(bp->dev);
8991 
8992 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8993 		 0);
8994 	bp->irq_tbl[0].handler = bnxt_inta;
8995 }
8996 
8997 static int bnxt_init_int_mode(struct bnxt *bp);
8998 
8999 static int bnxt_setup_int_mode(struct bnxt *bp)
9000 {
9001 	int rc;
9002 
9003 	if (!bp->irq_tbl) {
9004 		rc = bnxt_init_int_mode(bp);
9005 		if (rc || !bp->irq_tbl)
9006 			return rc ?: -ENODEV;
9007 	}
9008 
9009 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9010 		bnxt_setup_msix(bp);
9011 	else
9012 		bnxt_setup_inta(bp);
9013 
9014 	rc = bnxt_set_real_num_queues(bp);
9015 	return rc;
9016 }
9017 
9018 #ifdef CONFIG_RFS_ACCEL
9019 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9020 {
9021 	return bp->hw_resc.max_rsscos_ctxs;
9022 }
9023 
9024 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9025 {
9026 	return bp->hw_resc.max_vnics;
9027 }
9028 #endif
9029 
9030 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9031 {
9032 	return bp->hw_resc.max_stat_ctxs;
9033 }
9034 
9035 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9036 {
9037 	return bp->hw_resc.max_cp_rings;
9038 }
9039 
9040 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9041 {
9042 	unsigned int cp = bp->hw_resc.max_cp_rings;
9043 
9044 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9045 		cp -= bnxt_get_ulp_msix_num(bp);
9046 
9047 	return cp;
9048 }
9049 
9050 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9051 {
9052 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9053 
9054 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9055 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9056 
9057 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9058 }
9059 
9060 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9061 {
9062 	bp->hw_resc.max_irqs = max_irqs;
9063 }
9064 
9065 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9066 {
9067 	unsigned int cp;
9068 
9069 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9070 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9071 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9072 	else
9073 		return cp - bp->cp_nr_rings;
9074 }
9075 
9076 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9077 {
9078 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9079 }
9080 
9081 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9082 {
9083 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9084 	int max_irq = bnxt_get_max_func_irqs(bp);
9085 	int total_req = bp->cp_nr_rings + num;
9086 	int max_idx, avail_msix;
9087 
9088 	max_idx = bp->total_irqs;
9089 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9090 		max_idx = min_t(int, bp->total_irqs, max_cp);
9091 	avail_msix = max_idx - bp->cp_nr_rings;
9092 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9093 		return avail_msix;
9094 
9095 	if (max_irq < total_req) {
9096 		num = max_irq - bp->cp_nr_rings;
9097 		if (num <= 0)
9098 			return 0;
9099 	}
9100 	return num;
9101 }
9102 
9103 static int bnxt_get_num_msix(struct bnxt *bp)
9104 {
9105 	if (!BNXT_NEW_RM(bp))
9106 		return bnxt_get_max_func_irqs(bp);
9107 
9108 	return bnxt_nq_rings_in_use(bp);
9109 }
9110 
9111 static int bnxt_init_msix(struct bnxt *bp)
9112 {
9113 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9114 	struct msix_entry *msix_ent;
9115 
9116 	total_vecs = bnxt_get_num_msix(bp);
9117 	max = bnxt_get_max_func_irqs(bp);
9118 	if (total_vecs > max)
9119 		total_vecs = max;
9120 
9121 	if (!total_vecs)
9122 		return 0;
9123 
9124 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9125 	if (!msix_ent)
9126 		return -ENOMEM;
9127 
9128 	for (i = 0; i < total_vecs; i++) {
9129 		msix_ent[i].entry = i;
9130 		msix_ent[i].vector = 0;
9131 	}
9132 
9133 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9134 		min = 2;
9135 
9136 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9137 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9138 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9139 		rc = -ENODEV;
9140 		goto msix_setup_exit;
9141 	}
9142 
9143 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9144 	if (bp->irq_tbl) {
9145 		for (i = 0; i < total_vecs; i++)
9146 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9147 
9148 		bp->total_irqs = total_vecs;
9149 		/* Trim rings based upon num of vectors allocated */
9150 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9151 				     total_vecs - ulp_msix, min == 1);
9152 		if (rc)
9153 			goto msix_setup_exit;
9154 
9155 		bp->cp_nr_rings = (min == 1) ?
9156 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9157 				  bp->tx_nr_rings + bp->rx_nr_rings;
9158 
9159 	} else {
9160 		rc = -ENOMEM;
9161 		goto msix_setup_exit;
9162 	}
9163 	bp->flags |= BNXT_FLAG_USING_MSIX;
9164 	kfree(msix_ent);
9165 	return 0;
9166 
9167 msix_setup_exit:
9168 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9169 	kfree(bp->irq_tbl);
9170 	bp->irq_tbl = NULL;
9171 	pci_disable_msix(bp->pdev);
9172 	kfree(msix_ent);
9173 	return rc;
9174 }
9175 
9176 static int bnxt_init_inta(struct bnxt *bp)
9177 {
9178 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9179 	if (!bp->irq_tbl)
9180 		return -ENOMEM;
9181 
9182 	bp->total_irqs = 1;
9183 	bp->rx_nr_rings = 1;
9184 	bp->tx_nr_rings = 1;
9185 	bp->cp_nr_rings = 1;
9186 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9187 	bp->irq_tbl[0].vector = bp->pdev->irq;
9188 	return 0;
9189 }
9190 
9191 static int bnxt_init_int_mode(struct bnxt *bp)
9192 {
9193 	int rc = -ENODEV;
9194 
9195 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9196 		rc = bnxt_init_msix(bp);
9197 
9198 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9199 		/* fallback to INTA */
9200 		rc = bnxt_init_inta(bp);
9201 	}
9202 	return rc;
9203 }
9204 
9205 static void bnxt_clear_int_mode(struct bnxt *bp)
9206 {
9207 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9208 		pci_disable_msix(bp->pdev);
9209 
9210 	kfree(bp->irq_tbl);
9211 	bp->irq_tbl = NULL;
9212 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9213 }
9214 
9215 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9216 {
9217 	int tcs = netdev_get_num_tc(bp->dev);
9218 	bool irq_cleared = false;
9219 	int rc;
9220 
9221 	if (!bnxt_need_reserve_rings(bp))
9222 		return 0;
9223 
9224 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9225 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9226 		bnxt_ulp_irq_stop(bp);
9227 		bnxt_clear_int_mode(bp);
9228 		irq_cleared = true;
9229 	}
9230 	rc = __bnxt_reserve_rings(bp);
9231 	if (irq_cleared) {
9232 		if (!rc)
9233 			rc = bnxt_init_int_mode(bp);
9234 		bnxt_ulp_irq_restart(bp, rc);
9235 	}
9236 	if (rc) {
9237 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9238 		return rc;
9239 	}
9240 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9241 		netdev_err(bp->dev, "tx ring reservation failure\n");
9242 		netdev_reset_tc(bp->dev);
9243 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9244 		return -ENOMEM;
9245 	}
9246 	return 0;
9247 }
9248 
9249 static void bnxt_free_irq(struct bnxt *bp)
9250 {
9251 	struct bnxt_irq *irq;
9252 	int i;
9253 
9254 #ifdef CONFIG_RFS_ACCEL
9255 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9256 	bp->dev->rx_cpu_rmap = NULL;
9257 #endif
9258 	if (!bp->irq_tbl || !bp->bnapi)
9259 		return;
9260 
9261 	for (i = 0; i < bp->cp_nr_rings; i++) {
9262 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9263 
9264 		irq = &bp->irq_tbl[map_idx];
9265 		if (irq->requested) {
9266 			if (irq->have_cpumask) {
9267 				irq_set_affinity_hint(irq->vector, NULL);
9268 				free_cpumask_var(irq->cpu_mask);
9269 				irq->have_cpumask = 0;
9270 			}
9271 			free_irq(irq->vector, bp->bnapi[i]);
9272 		}
9273 
9274 		irq->requested = 0;
9275 	}
9276 }
9277 
9278 static int bnxt_request_irq(struct bnxt *bp)
9279 {
9280 	int i, j, rc = 0;
9281 	unsigned long flags = 0;
9282 #ifdef CONFIG_RFS_ACCEL
9283 	struct cpu_rmap *rmap;
9284 #endif
9285 
9286 	rc = bnxt_setup_int_mode(bp);
9287 	if (rc) {
9288 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9289 			   rc);
9290 		return rc;
9291 	}
9292 #ifdef CONFIG_RFS_ACCEL
9293 	rmap = bp->dev->rx_cpu_rmap;
9294 #endif
9295 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9296 		flags = IRQF_SHARED;
9297 
9298 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9299 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9300 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9301 
9302 #ifdef CONFIG_RFS_ACCEL
9303 		if (rmap && bp->bnapi[i]->rx_ring) {
9304 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9305 			if (rc)
9306 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9307 					    j);
9308 			j++;
9309 		}
9310 #endif
9311 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9312 				 bp->bnapi[i]);
9313 		if (rc)
9314 			break;
9315 
9316 		irq->requested = 1;
9317 
9318 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9319 			int numa_node = dev_to_node(&bp->pdev->dev);
9320 
9321 			irq->have_cpumask = 1;
9322 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9323 					irq->cpu_mask);
9324 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9325 			if (rc) {
9326 				netdev_warn(bp->dev,
9327 					    "Set affinity failed, IRQ = %d\n",
9328 					    irq->vector);
9329 				break;
9330 			}
9331 		}
9332 	}
9333 	return rc;
9334 }
9335 
9336 static void bnxt_del_napi(struct bnxt *bp)
9337 {
9338 	int i;
9339 
9340 	if (!bp->bnapi)
9341 		return;
9342 
9343 	for (i = 0; i < bp->cp_nr_rings; i++) {
9344 		struct bnxt_napi *bnapi = bp->bnapi[i];
9345 
9346 		__netif_napi_del(&bnapi->napi);
9347 	}
9348 	/* We called __netif_napi_del(), we need
9349 	 * to respect an RCU grace period before freeing napi structures.
9350 	 */
9351 	synchronize_net();
9352 }
9353 
9354 static void bnxt_init_napi(struct bnxt *bp)
9355 {
9356 	int i;
9357 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9358 	struct bnxt_napi *bnapi;
9359 
9360 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9361 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9362 
9363 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9364 			poll_fn = bnxt_poll_p5;
9365 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9366 			cp_nr_rings--;
9367 		for (i = 0; i < cp_nr_rings; i++) {
9368 			bnapi = bp->bnapi[i];
9369 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9370 		}
9371 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9372 			bnapi = bp->bnapi[cp_nr_rings];
9373 			netif_napi_add(bp->dev, &bnapi->napi,
9374 				       bnxt_poll_nitroa0);
9375 		}
9376 	} else {
9377 		bnapi = bp->bnapi[0];
9378 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9379 	}
9380 }
9381 
9382 static void bnxt_disable_napi(struct bnxt *bp)
9383 {
9384 	int i;
9385 
9386 	if (!bp->bnapi ||
9387 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9388 		return;
9389 
9390 	for (i = 0; i < bp->cp_nr_rings; i++) {
9391 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9392 
9393 		napi_disable(&bp->bnapi[i]->napi);
9394 		if (bp->bnapi[i]->rx_ring)
9395 			cancel_work_sync(&cpr->dim.work);
9396 	}
9397 }
9398 
9399 static void bnxt_enable_napi(struct bnxt *bp)
9400 {
9401 	int i;
9402 
9403 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9404 	for (i = 0; i < bp->cp_nr_rings; i++) {
9405 		struct bnxt_napi *bnapi = bp->bnapi[i];
9406 		struct bnxt_cp_ring_info *cpr;
9407 
9408 		cpr = &bnapi->cp_ring;
9409 		if (bnapi->in_reset)
9410 			cpr->sw_stats.rx.rx_resets++;
9411 		bnapi->in_reset = false;
9412 
9413 		if (bnapi->rx_ring) {
9414 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9415 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9416 		}
9417 		napi_enable(&bnapi->napi);
9418 	}
9419 }
9420 
9421 void bnxt_tx_disable(struct bnxt *bp)
9422 {
9423 	int i;
9424 	struct bnxt_tx_ring_info *txr;
9425 
9426 	if (bp->tx_ring) {
9427 		for (i = 0; i < bp->tx_nr_rings; i++) {
9428 			txr = &bp->tx_ring[i];
9429 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9430 		}
9431 	}
9432 	/* Make sure napi polls see @dev_state change */
9433 	synchronize_net();
9434 	/* Drop carrier first to prevent TX timeout */
9435 	netif_carrier_off(bp->dev);
9436 	/* Stop all TX queues */
9437 	netif_tx_disable(bp->dev);
9438 }
9439 
9440 void bnxt_tx_enable(struct bnxt *bp)
9441 {
9442 	int i;
9443 	struct bnxt_tx_ring_info *txr;
9444 
9445 	for (i = 0; i < bp->tx_nr_rings; i++) {
9446 		txr = &bp->tx_ring[i];
9447 		WRITE_ONCE(txr->dev_state, 0);
9448 	}
9449 	/* Make sure napi polls see @dev_state change */
9450 	synchronize_net();
9451 	netif_tx_wake_all_queues(bp->dev);
9452 	if (BNXT_LINK_IS_UP(bp))
9453 		netif_carrier_on(bp->dev);
9454 }
9455 
9456 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9457 {
9458 	u8 active_fec = link_info->active_fec_sig_mode &
9459 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9460 
9461 	switch (active_fec) {
9462 	default:
9463 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9464 		return "None";
9465 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9466 		return "Clause 74 BaseR";
9467 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9468 		return "Clause 91 RS(528,514)";
9469 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9470 		return "Clause 91 RS544_1XN";
9471 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9472 		return "Clause 91 RS(544,514)";
9473 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9474 		return "Clause 91 RS272_1XN";
9475 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9476 		return "Clause 91 RS(272,257)";
9477 	}
9478 }
9479 
9480 void bnxt_report_link(struct bnxt *bp)
9481 {
9482 	if (BNXT_LINK_IS_UP(bp)) {
9483 		const char *signal = "";
9484 		const char *flow_ctrl;
9485 		const char *duplex;
9486 		u32 speed;
9487 		u16 fec;
9488 
9489 		netif_carrier_on(bp->dev);
9490 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9491 		if (speed == SPEED_UNKNOWN) {
9492 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9493 			return;
9494 		}
9495 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9496 			duplex = "full";
9497 		else
9498 			duplex = "half";
9499 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9500 			flow_ctrl = "ON - receive & transmit";
9501 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9502 			flow_ctrl = "ON - transmit";
9503 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9504 			flow_ctrl = "ON - receive";
9505 		else
9506 			flow_ctrl = "none";
9507 		if (bp->link_info.phy_qcfg_resp.option_flags &
9508 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9509 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9510 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9511 			switch (sig_mode) {
9512 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9513 				signal = "(NRZ) ";
9514 				break;
9515 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9516 				signal = "(PAM4) ";
9517 				break;
9518 			default:
9519 				break;
9520 			}
9521 		}
9522 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9523 			    speed, signal, duplex, flow_ctrl);
9524 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9525 			netdev_info(bp->dev, "EEE is %s\n",
9526 				    bp->eee.eee_active ? "active" :
9527 							 "not active");
9528 		fec = bp->link_info.fec_cfg;
9529 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9530 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9531 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9532 				    bnxt_report_fec(&bp->link_info));
9533 	} else {
9534 		netif_carrier_off(bp->dev);
9535 		netdev_err(bp->dev, "NIC Link is Down\n");
9536 	}
9537 }
9538 
9539 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9540 {
9541 	if (!resp->supported_speeds_auto_mode &&
9542 	    !resp->supported_speeds_force_mode &&
9543 	    !resp->supported_pam4_speeds_auto_mode &&
9544 	    !resp->supported_pam4_speeds_force_mode)
9545 		return true;
9546 	return false;
9547 }
9548 
9549 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9550 {
9551 	struct bnxt_link_info *link_info = &bp->link_info;
9552 	struct hwrm_port_phy_qcaps_output *resp;
9553 	struct hwrm_port_phy_qcaps_input *req;
9554 	int rc = 0;
9555 
9556 	if (bp->hwrm_spec_code < 0x10201)
9557 		return 0;
9558 
9559 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9560 	if (rc)
9561 		return rc;
9562 
9563 	resp = hwrm_req_hold(bp, req);
9564 	rc = hwrm_req_send(bp, req);
9565 	if (rc)
9566 		goto hwrm_phy_qcaps_exit;
9567 
9568 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9569 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9570 		struct ethtool_eee *eee = &bp->eee;
9571 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9572 
9573 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9574 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9575 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9576 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9577 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9578 	}
9579 
9580 	if (bp->hwrm_spec_code >= 0x10a01) {
9581 		if (bnxt_phy_qcaps_no_speed(resp)) {
9582 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9583 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9584 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9585 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9586 			netdev_info(bp->dev, "Ethernet link enabled\n");
9587 			/* Phy re-enabled, reprobe the speeds */
9588 			link_info->support_auto_speeds = 0;
9589 			link_info->support_pam4_auto_speeds = 0;
9590 		}
9591 	}
9592 	if (resp->supported_speeds_auto_mode)
9593 		link_info->support_auto_speeds =
9594 			le16_to_cpu(resp->supported_speeds_auto_mode);
9595 	if (resp->supported_pam4_speeds_auto_mode)
9596 		link_info->support_pam4_auto_speeds =
9597 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9598 
9599 	bp->port_count = resp->port_cnt;
9600 
9601 hwrm_phy_qcaps_exit:
9602 	hwrm_req_drop(bp, req);
9603 	return rc;
9604 }
9605 
9606 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9607 {
9608 	u16 diff = advertising ^ supported;
9609 
9610 	return ((supported | diff) != supported);
9611 }
9612 
9613 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9614 {
9615 	struct bnxt_link_info *link_info = &bp->link_info;
9616 	struct hwrm_port_phy_qcfg_output *resp;
9617 	struct hwrm_port_phy_qcfg_input *req;
9618 	u8 link_state = link_info->link_state;
9619 	bool support_changed = false;
9620 	int rc;
9621 
9622 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9623 	if (rc)
9624 		return rc;
9625 
9626 	resp = hwrm_req_hold(bp, req);
9627 	rc = hwrm_req_send(bp, req);
9628 	if (rc) {
9629 		hwrm_req_drop(bp, req);
9630 		if (BNXT_VF(bp) && rc == -ENODEV) {
9631 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9632 			rc = 0;
9633 		}
9634 		return rc;
9635 	}
9636 
9637 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9638 	link_info->phy_link_status = resp->link;
9639 	link_info->duplex = resp->duplex_cfg;
9640 	if (bp->hwrm_spec_code >= 0x10800)
9641 		link_info->duplex = resp->duplex_state;
9642 	link_info->pause = resp->pause;
9643 	link_info->auto_mode = resp->auto_mode;
9644 	link_info->auto_pause_setting = resp->auto_pause;
9645 	link_info->lp_pause = resp->link_partner_adv_pause;
9646 	link_info->force_pause_setting = resp->force_pause;
9647 	link_info->duplex_setting = resp->duplex_cfg;
9648 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9649 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9650 	else
9651 		link_info->link_speed = 0;
9652 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9653 	link_info->force_pam4_link_speed =
9654 		le16_to_cpu(resp->force_pam4_link_speed);
9655 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9656 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9657 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9658 	link_info->auto_pam4_link_speeds =
9659 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9660 	link_info->lp_auto_link_speeds =
9661 		le16_to_cpu(resp->link_partner_adv_speeds);
9662 	link_info->lp_auto_pam4_link_speeds =
9663 		resp->link_partner_pam4_adv_speeds;
9664 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9665 	link_info->phy_ver[0] = resp->phy_maj;
9666 	link_info->phy_ver[1] = resp->phy_min;
9667 	link_info->phy_ver[2] = resp->phy_bld;
9668 	link_info->media_type = resp->media_type;
9669 	link_info->phy_type = resp->phy_type;
9670 	link_info->transceiver = resp->xcvr_pkg_type;
9671 	link_info->phy_addr = resp->eee_config_phy_addr &
9672 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9673 	link_info->module_status = resp->module_status;
9674 
9675 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9676 		struct ethtool_eee *eee = &bp->eee;
9677 		u16 fw_speeds;
9678 
9679 		eee->eee_active = 0;
9680 		if (resp->eee_config_phy_addr &
9681 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9682 			eee->eee_active = 1;
9683 			fw_speeds = le16_to_cpu(
9684 				resp->link_partner_adv_eee_link_speed_mask);
9685 			eee->lp_advertised =
9686 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9687 		}
9688 
9689 		/* Pull initial EEE config */
9690 		if (!chng_link_state) {
9691 			if (resp->eee_config_phy_addr &
9692 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9693 				eee->eee_enabled = 1;
9694 
9695 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9696 			eee->advertised =
9697 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9698 
9699 			if (resp->eee_config_phy_addr &
9700 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9701 				__le32 tmr;
9702 
9703 				eee->tx_lpi_enabled = 1;
9704 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9705 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9706 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9707 			}
9708 		}
9709 	}
9710 
9711 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9712 	if (bp->hwrm_spec_code >= 0x10504) {
9713 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9714 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9715 	}
9716 	/* TODO: need to add more logic to report VF link */
9717 	if (chng_link_state) {
9718 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9719 			link_info->link_state = BNXT_LINK_STATE_UP;
9720 		else
9721 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9722 		if (link_state != link_info->link_state)
9723 			bnxt_report_link(bp);
9724 	} else {
9725 		/* always link down if not require to update link state */
9726 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9727 	}
9728 	hwrm_req_drop(bp, req);
9729 
9730 	if (!BNXT_PHY_CFG_ABLE(bp))
9731 		return 0;
9732 
9733 	/* Check if any advertised speeds are no longer supported. The caller
9734 	 * holds the link_lock mutex, so we can modify link_info settings.
9735 	 */
9736 	if (bnxt_support_dropped(link_info->advertising,
9737 				 link_info->support_auto_speeds)) {
9738 		link_info->advertising = link_info->support_auto_speeds;
9739 		support_changed = true;
9740 	}
9741 	if (bnxt_support_dropped(link_info->advertising_pam4,
9742 				 link_info->support_pam4_auto_speeds)) {
9743 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9744 		support_changed = true;
9745 	}
9746 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9747 		bnxt_hwrm_set_link_setting(bp, true, false);
9748 	return 0;
9749 }
9750 
9751 static void bnxt_get_port_module_status(struct bnxt *bp)
9752 {
9753 	struct bnxt_link_info *link_info = &bp->link_info;
9754 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9755 	u8 module_status;
9756 
9757 	if (bnxt_update_link(bp, true))
9758 		return;
9759 
9760 	module_status = link_info->module_status;
9761 	switch (module_status) {
9762 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9763 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9764 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9765 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9766 			    bp->pf.port_id);
9767 		if (bp->hwrm_spec_code >= 0x10201) {
9768 			netdev_warn(bp->dev, "Module part number %s\n",
9769 				    resp->phy_vendor_partnumber);
9770 		}
9771 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9772 			netdev_warn(bp->dev, "TX is disabled\n");
9773 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9774 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9775 	}
9776 }
9777 
9778 static void
9779 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9780 {
9781 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9782 		if (bp->hwrm_spec_code >= 0x10201)
9783 			req->auto_pause =
9784 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9785 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9786 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9787 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9788 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9789 		req->enables |=
9790 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9791 	} else {
9792 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9793 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9794 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9795 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9796 		req->enables |=
9797 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9798 		if (bp->hwrm_spec_code >= 0x10201) {
9799 			req->auto_pause = req->force_pause;
9800 			req->enables |= cpu_to_le32(
9801 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9802 		}
9803 	}
9804 }
9805 
9806 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9807 {
9808 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9809 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9810 		if (bp->link_info.advertising) {
9811 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9812 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9813 		}
9814 		if (bp->link_info.advertising_pam4) {
9815 			req->enables |=
9816 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9817 			req->auto_link_pam4_speed_mask =
9818 				cpu_to_le16(bp->link_info.advertising_pam4);
9819 		}
9820 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9821 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9822 	} else {
9823 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9824 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9825 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9826 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9827 		} else {
9828 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9829 		}
9830 	}
9831 
9832 	/* tell chimp that the setting takes effect immediately */
9833 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9834 }
9835 
9836 int bnxt_hwrm_set_pause(struct bnxt *bp)
9837 {
9838 	struct hwrm_port_phy_cfg_input *req;
9839 	int rc;
9840 
9841 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9842 	if (rc)
9843 		return rc;
9844 
9845 	bnxt_hwrm_set_pause_common(bp, req);
9846 
9847 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9848 	    bp->link_info.force_link_chng)
9849 		bnxt_hwrm_set_link_common(bp, req);
9850 
9851 	rc = hwrm_req_send(bp, req);
9852 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9853 		/* since changing of pause setting doesn't trigger any link
9854 		 * change event, the driver needs to update the current pause
9855 		 * result upon successfully return of the phy_cfg command
9856 		 */
9857 		bp->link_info.pause =
9858 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9859 		bp->link_info.auto_pause_setting = 0;
9860 		if (!bp->link_info.force_link_chng)
9861 			bnxt_report_link(bp);
9862 	}
9863 	bp->link_info.force_link_chng = false;
9864 	return rc;
9865 }
9866 
9867 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9868 			      struct hwrm_port_phy_cfg_input *req)
9869 {
9870 	struct ethtool_eee *eee = &bp->eee;
9871 
9872 	if (eee->eee_enabled) {
9873 		u16 eee_speeds;
9874 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9875 
9876 		if (eee->tx_lpi_enabled)
9877 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9878 		else
9879 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9880 
9881 		req->flags |= cpu_to_le32(flags);
9882 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9883 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9884 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9885 	} else {
9886 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9887 	}
9888 }
9889 
9890 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9891 {
9892 	struct hwrm_port_phy_cfg_input *req;
9893 	int rc;
9894 
9895 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9896 	if (rc)
9897 		return rc;
9898 
9899 	if (set_pause)
9900 		bnxt_hwrm_set_pause_common(bp, req);
9901 
9902 	bnxt_hwrm_set_link_common(bp, req);
9903 
9904 	if (set_eee)
9905 		bnxt_hwrm_set_eee(bp, req);
9906 	return hwrm_req_send(bp, req);
9907 }
9908 
9909 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9910 {
9911 	struct hwrm_port_phy_cfg_input *req;
9912 	int rc;
9913 
9914 	if (!BNXT_SINGLE_PF(bp))
9915 		return 0;
9916 
9917 	if (pci_num_vf(bp->pdev) &&
9918 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9919 		return 0;
9920 
9921 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9922 	if (rc)
9923 		return rc;
9924 
9925 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9926 	rc = hwrm_req_send(bp, req);
9927 	if (!rc) {
9928 		mutex_lock(&bp->link_lock);
9929 		/* Device is not obliged link down in certain scenarios, even
9930 		 * when forced. Setting the state unknown is consistent with
9931 		 * driver startup and will force link state to be reported
9932 		 * during subsequent open based on PORT_PHY_QCFG.
9933 		 */
9934 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9935 		mutex_unlock(&bp->link_lock);
9936 	}
9937 	return rc;
9938 }
9939 
9940 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9941 {
9942 #ifdef CONFIG_TEE_BNXT_FW
9943 	int rc = tee_bnxt_fw_load();
9944 
9945 	if (rc)
9946 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9947 
9948 	return rc;
9949 #else
9950 	netdev_err(bp->dev, "OP-TEE not supported\n");
9951 	return -ENODEV;
9952 #endif
9953 }
9954 
9955 static int bnxt_try_recover_fw(struct bnxt *bp)
9956 {
9957 	if (bp->fw_health && bp->fw_health->status_reliable) {
9958 		int retry = 0, rc;
9959 		u32 sts;
9960 
9961 		do {
9962 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9963 			rc = bnxt_hwrm_poll(bp);
9964 			if (!BNXT_FW_IS_BOOTING(sts) &&
9965 			    !BNXT_FW_IS_RECOVERING(sts))
9966 				break;
9967 			retry++;
9968 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9969 
9970 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9971 			netdev_err(bp->dev,
9972 				   "Firmware not responding, status: 0x%x\n",
9973 				   sts);
9974 			rc = -ENODEV;
9975 		}
9976 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9977 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9978 			return bnxt_fw_reset_via_optee(bp);
9979 		}
9980 		return rc;
9981 	}
9982 
9983 	return -ENODEV;
9984 }
9985 
9986 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9987 {
9988 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9989 	int rc;
9990 
9991 	if (!BNXT_NEW_RM(bp))
9992 		return 0; /* no resource reservations required */
9993 
9994 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9995 	if (rc)
9996 		netdev_err(bp->dev, "resc_qcaps failed\n");
9997 
9998 	hw_resc->resv_cp_rings = 0;
9999 	hw_resc->resv_stat_ctxs = 0;
10000 	hw_resc->resv_irqs = 0;
10001 	hw_resc->resv_tx_rings = 0;
10002 	hw_resc->resv_rx_rings = 0;
10003 	hw_resc->resv_hw_ring_grps = 0;
10004 	hw_resc->resv_vnics = 0;
10005 	if (!fw_reset) {
10006 		bp->tx_nr_rings = 0;
10007 		bp->rx_nr_rings = 0;
10008 	}
10009 
10010 	return rc;
10011 }
10012 
10013 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10014 {
10015 	struct hwrm_func_drv_if_change_output *resp;
10016 	struct hwrm_func_drv_if_change_input *req;
10017 	bool fw_reset = !bp->irq_tbl;
10018 	bool resc_reinit = false;
10019 	int rc, retry = 0;
10020 	u32 flags = 0;
10021 
10022 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10023 		return 0;
10024 
10025 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10026 	if (rc)
10027 		return rc;
10028 
10029 	if (up)
10030 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10031 	resp = hwrm_req_hold(bp, req);
10032 
10033 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10034 	while (retry < BNXT_FW_IF_RETRY) {
10035 		rc = hwrm_req_send(bp, req);
10036 		if (rc != -EAGAIN)
10037 			break;
10038 
10039 		msleep(50);
10040 		retry++;
10041 	}
10042 
10043 	if (rc == -EAGAIN) {
10044 		hwrm_req_drop(bp, req);
10045 		return rc;
10046 	} else if (!rc) {
10047 		flags = le32_to_cpu(resp->flags);
10048 	} else if (up) {
10049 		rc = bnxt_try_recover_fw(bp);
10050 		fw_reset = true;
10051 	}
10052 	hwrm_req_drop(bp, req);
10053 	if (rc)
10054 		return rc;
10055 
10056 	if (!up) {
10057 		bnxt_inv_fw_health_reg(bp);
10058 		return 0;
10059 	}
10060 
10061 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10062 		resc_reinit = true;
10063 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10064 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10065 		fw_reset = true;
10066 	else
10067 		bnxt_remap_fw_health_regs(bp);
10068 
10069 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10070 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10071 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10072 		return -ENODEV;
10073 	}
10074 	if (resc_reinit || fw_reset) {
10075 		if (fw_reset) {
10076 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10077 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10078 				bnxt_ulp_stop(bp);
10079 			bnxt_free_ctx_mem(bp);
10080 			kfree(bp->ctx);
10081 			bp->ctx = NULL;
10082 			bnxt_dcb_free(bp);
10083 			rc = bnxt_fw_init_one(bp);
10084 			if (rc) {
10085 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10086 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10087 				return rc;
10088 			}
10089 			bnxt_clear_int_mode(bp);
10090 			rc = bnxt_init_int_mode(bp);
10091 			if (rc) {
10092 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10093 				netdev_err(bp->dev, "init int mode failed\n");
10094 				return rc;
10095 			}
10096 		}
10097 		rc = bnxt_cancel_reservations(bp, fw_reset);
10098 	}
10099 	return rc;
10100 }
10101 
10102 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10103 {
10104 	struct hwrm_port_led_qcaps_output *resp;
10105 	struct hwrm_port_led_qcaps_input *req;
10106 	struct bnxt_pf_info *pf = &bp->pf;
10107 	int rc;
10108 
10109 	bp->num_leds = 0;
10110 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10111 		return 0;
10112 
10113 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10114 	if (rc)
10115 		return rc;
10116 
10117 	req->port_id = cpu_to_le16(pf->port_id);
10118 	resp = hwrm_req_hold(bp, req);
10119 	rc = hwrm_req_send(bp, req);
10120 	if (rc) {
10121 		hwrm_req_drop(bp, req);
10122 		return rc;
10123 	}
10124 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10125 		int i;
10126 
10127 		bp->num_leds = resp->num_leds;
10128 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10129 						 bp->num_leds);
10130 		for (i = 0; i < bp->num_leds; i++) {
10131 			struct bnxt_led_info *led = &bp->leds[i];
10132 			__le16 caps = led->led_state_caps;
10133 
10134 			if (!led->led_group_id ||
10135 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10136 				bp->num_leds = 0;
10137 				break;
10138 			}
10139 		}
10140 	}
10141 	hwrm_req_drop(bp, req);
10142 	return 0;
10143 }
10144 
10145 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10146 {
10147 	struct hwrm_wol_filter_alloc_output *resp;
10148 	struct hwrm_wol_filter_alloc_input *req;
10149 	int rc;
10150 
10151 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10152 	if (rc)
10153 		return rc;
10154 
10155 	req->port_id = cpu_to_le16(bp->pf.port_id);
10156 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10157 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10158 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10159 
10160 	resp = hwrm_req_hold(bp, req);
10161 	rc = hwrm_req_send(bp, req);
10162 	if (!rc)
10163 		bp->wol_filter_id = resp->wol_filter_id;
10164 	hwrm_req_drop(bp, req);
10165 	return rc;
10166 }
10167 
10168 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10169 {
10170 	struct hwrm_wol_filter_free_input *req;
10171 	int rc;
10172 
10173 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10174 	if (rc)
10175 		return rc;
10176 
10177 	req->port_id = cpu_to_le16(bp->pf.port_id);
10178 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10179 	req->wol_filter_id = bp->wol_filter_id;
10180 
10181 	return hwrm_req_send(bp, req);
10182 }
10183 
10184 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10185 {
10186 	struct hwrm_wol_filter_qcfg_output *resp;
10187 	struct hwrm_wol_filter_qcfg_input *req;
10188 	u16 next_handle = 0;
10189 	int rc;
10190 
10191 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10192 	if (rc)
10193 		return rc;
10194 
10195 	req->port_id = cpu_to_le16(bp->pf.port_id);
10196 	req->handle = cpu_to_le16(handle);
10197 	resp = hwrm_req_hold(bp, req);
10198 	rc = hwrm_req_send(bp, req);
10199 	if (!rc) {
10200 		next_handle = le16_to_cpu(resp->next_handle);
10201 		if (next_handle != 0) {
10202 			if (resp->wol_type ==
10203 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10204 				bp->wol = 1;
10205 				bp->wol_filter_id = resp->wol_filter_id;
10206 			}
10207 		}
10208 	}
10209 	hwrm_req_drop(bp, req);
10210 	return next_handle;
10211 }
10212 
10213 static void bnxt_get_wol_settings(struct bnxt *bp)
10214 {
10215 	u16 handle = 0;
10216 
10217 	bp->wol = 0;
10218 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10219 		return;
10220 
10221 	do {
10222 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10223 	} while (handle && handle != 0xffff);
10224 }
10225 
10226 #ifdef CONFIG_BNXT_HWMON
10227 static ssize_t bnxt_show_temp(struct device *dev,
10228 			      struct device_attribute *devattr, char *buf)
10229 {
10230 	struct hwrm_temp_monitor_query_output *resp;
10231 	struct hwrm_temp_monitor_query_input *req;
10232 	struct bnxt *bp = dev_get_drvdata(dev);
10233 	u32 len = 0;
10234 	int rc;
10235 
10236 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10237 	if (rc)
10238 		return rc;
10239 	resp = hwrm_req_hold(bp, req);
10240 	rc = hwrm_req_send(bp, req);
10241 	if (!rc)
10242 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10243 	hwrm_req_drop(bp, req);
10244 	if (rc)
10245 		return rc;
10246 	return len;
10247 }
10248 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10249 
10250 static struct attribute *bnxt_attrs[] = {
10251 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10252 	NULL
10253 };
10254 ATTRIBUTE_GROUPS(bnxt);
10255 
10256 static void bnxt_hwmon_close(struct bnxt *bp)
10257 {
10258 	if (bp->hwmon_dev) {
10259 		hwmon_device_unregister(bp->hwmon_dev);
10260 		bp->hwmon_dev = NULL;
10261 	}
10262 }
10263 
10264 static void bnxt_hwmon_open(struct bnxt *bp)
10265 {
10266 	struct hwrm_temp_monitor_query_input *req;
10267 	struct pci_dev *pdev = bp->pdev;
10268 	int rc;
10269 
10270 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10271 	if (!rc)
10272 		rc = hwrm_req_send_silent(bp, req);
10273 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10274 		bnxt_hwmon_close(bp);
10275 		return;
10276 	}
10277 
10278 	if (bp->hwmon_dev)
10279 		return;
10280 
10281 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10282 							  DRV_MODULE_NAME, bp,
10283 							  bnxt_groups);
10284 	if (IS_ERR(bp->hwmon_dev)) {
10285 		bp->hwmon_dev = NULL;
10286 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10287 	}
10288 }
10289 #else
10290 static void bnxt_hwmon_close(struct bnxt *bp)
10291 {
10292 }
10293 
10294 static void bnxt_hwmon_open(struct bnxt *bp)
10295 {
10296 }
10297 #endif
10298 
10299 static bool bnxt_eee_config_ok(struct bnxt *bp)
10300 {
10301 	struct ethtool_eee *eee = &bp->eee;
10302 	struct bnxt_link_info *link_info = &bp->link_info;
10303 
10304 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10305 		return true;
10306 
10307 	if (eee->eee_enabled) {
10308 		u32 advertising =
10309 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10310 
10311 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10312 			eee->eee_enabled = 0;
10313 			return false;
10314 		}
10315 		if (eee->advertised & ~advertising) {
10316 			eee->advertised = advertising & eee->supported;
10317 			return false;
10318 		}
10319 	}
10320 	return true;
10321 }
10322 
10323 static int bnxt_update_phy_setting(struct bnxt *bp)
10324 {
10325 	int rc;
10326 	bool update_link = false;
10327 	bool update_pause = false;
10328 	bool update_eee = false;
10329 	struct bnxt_link_info *link_info = &bp->link_info;
10330 
10331 	rc = bnxt_update_link(bp, true);
10332 	if (rc) {
10333 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10334 			   rc);
10335 		return rc;
10336 	}
10337 	if (!BNXT_SINGLE_PF(bp))
10338 		return 0;
10339 
10340 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10341 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10342 	    link_info->req_flow_ctrl)
10343 		update_pause = true;
10344 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10345 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10346 		update_pause = true;
10347 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10348 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10349 			update_link = true;
10350 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10351 		    link_info->req_link_speed != link_info->force_link_speed)
10352 			update_link = true;
10353 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10354 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10355 			update_link = true;
10356 		if (link_info->req_duplex != link_info->duplex_setting)
10357 			update_link = true;
10358 	} else {
10359 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10360 			update_link = true;
10361 		if (link_info->advertising != link_info->auto_link_speeds ||
10362 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10363 			update_link = true;
10364 	}
10365 
10366 	/* The last close may have shutdown the link, so need to call
10367 	 * PHY_CFG to bring it back up.
10368 	 */
10369 	if (!BNXT_LINK_IS_UP(bp))
10370 		update_link = true;
10371 
10372 	if (!bnxt_eee_config_ok(bp))
10373 		update_eee = true;
10374 
10375 	if (update_link)
10376 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10377 	else if (update_pause)
10378 		rc = bnxt_hwrm_set_pause(bp);
10379 	if (rc) {
10380 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10381 			   rc);
10382 		return rc;
10383 	}
10384 
10385 	return rc;
10386 }
10387 
10388 /* Common routine to pre-map certain register block to different GRC window.
10389  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10390  * in PF and 3 windows in VF that can be customized to map in different
10391  * register blocks.
10392  */
10393 static void bnxt_preset_reg_win(struct bnxt *bp)
10394 {
10395 	if (BNXT_PF(bp)) {
10396 		/* CAG registers map to GRC window #4 */
10397 		writel(BNXT_CAG_REG_BASE,
10398 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10399 	}
10400 }
10401 
10402 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10403 
10404 static int bnxt_reinit_after_abort(struct bnxt *bp)
10405 {
10406 	int rc;
10407 
10408 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10409 		return -EBUSY;
10410 
10411 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10412 		return -ENODEV;
10413 
10414 	rc = bnxt_fw_init_one(bp);
10415 	if (!rc) {
10416 		bnxt_clear_int_mode(bp);
10417 		rc = bnxt_init_int_mode(bp);
10418 		if (!rc) {
10419 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10420 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10421 		}
10422 	}
10423 	return rc;
10424 }
10425 
10426 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10427 {
10428 	int rc = 0;
10429 
10430 	bnxt_preset_reg_win(bp);
10431 	netif_carrier_off(bp->dev);
10432 	if (irq_re_init) {
10433 		/* Reserve rings now if none were reserved at driver probe. */
10434 		rc = bnxt_init_dflt_ring_mode(bp);
10435 		if (rc) {
10436 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10437 			return rc;
10438 		}
10439 	}
10440 	rc = bnxt_reserve_rings(bp, irq_re_init);
10441 	if (rc)
10442 		return rc;
10443 	if ((bp->flags & BNXT_FLAG_RFS) &&
10444 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10445 		/* disable RFS if falling back to INTA */
10446 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10447 		bp->flags &= ~BNXT_FLAG_RFS;
10448 	}
10449 
10450 	rc = bnxt_alloc_mem(bp, irq_re_init);
10451 	if (rc) {
10452 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10453 		goto open_err_free_mem;
10454 	}
10455 
10456 	if (irq_re_init) {
10457 		bnxt_init_napi(bp);
10458 		rc = bnxt_request_irq(bp);
10459 		if (rc) {
10460 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10461 			goto open_err_irq;
10462 		}
10463 	}
10464 
10465 	rc = bnxt_init_nic(bp, irq_re_init);
10466 	if (rc) {
10467 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10468 		goto open_err_irq;
10469 	}
10470 
10471 	bnxt_enable_napi(bp);
10472 	bnxt_debug_dev_init(bp);
10473 
10474 	if (link_re_init) {
10475 		mutex_lock(&bp->link_lock);
10476 		rc = bnxt_update_phy_setting(bp);
10477 		mutex_unlock(&bp->link_lock);
10478 		if (rc) {
10479 			netdev_warn(bp->dev, "failed to update phy settings\n");
10480 			if (BNXT_SINGLE_PF(bp)) {
10481 				bp->link_info.phy_retry = true;
10482 				bp->link_info.phy_retry_expires =
10483 					jiffies + 5 * HZ;
10484 			}
10485 		}
10486 	}
10487 
10488 	if (irq_re_init)
10489 		udp_tunnel_nic_reset_ntf(bp->dev);
10490 
10491 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10492 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10493 			static_branch_enable(&bnxt_xdp_locking_key);
10494 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10495 		static_branch_disable(&bnxt_xdp_locking_key);
10496 	}
10497 	set_bit(BNXT_STATE_OPEN, &bp->state);
10498 	bnxt_enable_int(bp);
10499 	/* Enable TX queues */
10500 	bnxt_tx_enable(bp);
10501 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10502 	/* Poll link status and check for SFP+ module status */
10503 	mutex_lock(&bp->link_lock);
10504 	bnxt_get_port_module_status(bp);
10505 	mutex_unlock(&bp->link_lock);
10506 
10507 	/* VF-reps may need to be re-opened after the PF is re-opened */
10508 	if (BNXT_PF(bp))
10509 		bnxt_vf_reps_open(bp);
10510 	bnxt_ptp_init_rtc(bp, true);
10511 	bnxt_ptp_cfg_tstamp_filters(bp);
10512 	return 0;
10513 
10514 open_err_irq:
10515 	bnxt_del_napi(bp);
10516 
10517 open_err_free_mem:
10518 	bnxt_free_skbs(bp);
10519 	bnxt_free_irq(bp);
10520 	bnxt_free_mem(bp, true);
10521 	return rc;
10522 }
10523 
10524 /* rtnl_lock held */
10525 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10526 {
10527 	int rc = 0;
10528 
10529 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10530 		rc = -EIO;
10531 	if (!rc)
10532 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10533 	if (rc) {
10534 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10535 		dev_close(bp->dev);
10536 	}
10537 	return rc;
10538 }
10539 
10540 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10541  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10542  * self tests.
10543  */
10544 int bnxt_half_open_nic(struct bnxt *bp)
10545 {
10546 	int rc = 0;
10547 
10548 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10549 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10550 		rc = -ENODEV;
10551 		goto half_open_err;
10552 	}
10553 
10554 	rc = bnxt_alloc_mem(bp, true);
10555 	if (rc) {
10556 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10557 		goto half_open_err;
10558 	}
10559 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10560 	rc = bnxt_init_nic(bp, true);
10561 	if (rc) {
10562 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10563 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10564 		goto half_open_err;
10565 	}
10566 	return 0;
10567 
10568 half_open_err:
10569 	bnxt_free_skbs(bp);
10570 	bnxt_free_mem(bp, true);
10571 	dev_close(bp->dev);
10572 	return rc;
10573 }
10574 
10575 /* rtnl_lock held, this call can only be made after a previous successful
10576  * call to bnxt_half_open_nic().
10577  */
10578 void bnxt_half_close_nic(struct bnxt *bp)
10579 {
10580 	bnxt_hwrm_resource_free(bp, false, true);
10581 	bnxt_free_skbs(bp);
10582 	bnxt_free_mem(bp, true);
10583 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10584 }
10585 
10586 void bnxt_reenable_sriov(struct bnxt *bp)
10587 {
10588 	if (BNXT_PF(bp)) {
10589 		struct bnxt_pf_info *pf = &bp->pf;
10590 		int n = pf->active_vfs;
10591 
10592 		if (n)
10593 			bnxt_cfg_hw_sriov(bp, &n, true);
10594 	}
10595 }
10596 
10597 static int bnxt_open(struct net_device *dev)
10598 {
10599 	struct bnxt *bp = netdev_priv(dev);
10600 	int rc;
10601 
10602 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10603 		rc = bnxt_reinit_after_abort(bp);
10604 		if (rc) {
10605 			if (rc == -EBUSY)
10606 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10607 			else
10608 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10609 			return -ENODEV;
10610 		}
10611 	}
10612 
10613 	rc = bnxt_hwrm_if_change(bp, true);
10614 	if (rc)
10615 		return rc;
10616 
10617 	rc = __bnxt_open_nic(bp, true, true);
10618 	if (rc) {
10619 		bnxt_hwrm_if_change(bp, false);
10620 	} else {
10621 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10622 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10623 				bnxt_ulp_start(bp, 0);
10624 				bnxt_reenable_sriov(bp);
10625 			}
10626 		}
10627 		bnxt_hwmon_open(bp);
10628 	}
10629 
10630 	return rc;
10631 }
10632 
10633 static bool bnxt_drv_busy(struct bnxt *bp)
10634 {
10635 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10636 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10637 }
10638 
10639 static void bnxt_get_ring_stats(struct bnxt *bp,
10640 				struct rtnl_link_stats64 *stats);
10641 
10642 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10643 			     bool link_re_init)
10644 {
10645 	/* Close the VF-reps before closing PF */
10646 	if (BNXT_PF(bp))
10647 		bnxt_vf_reps_close(bp);
10648 
10649 	/* Change device state to avoid TX queue wake up's */
10650 	bnxt_tx_disable(bp);
10651 
10652 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10653 	smp_mb__after_atomic();
10654 	while (bnxt_drv_busy(bp))
10655 		msleep(20);
10656 
10657 	/* Flush rings and disable interrupts */
10658 	bnxt_shutdown_nic(bp, irq_re_init);
10659 
10660 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10661 
10662 	bnxt_debug_dev_exit(bp);
10663 	bnxt_disable_napi(bp);
10664 	del_timer_sync(&bp->timer);
10665 	bnxt_free_skbs(bp);
10666 
10667 	/* Save ring stats before shutdown */
10668 	if (bp->bnapi && irq_re_init)
10669 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10670 	if (irq_re_init) {
10671 		bnxt_free_irq(bp);
10672 		bnxt_del_napi(bp);
10673 	}
10674 	bnxt_free_mem(bp, irq_re_init);
10675 }
10676 
10677 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10678 {
10679 	int rc = 0;
10680 
10681 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10682 		/* If we get here, it means firmware reset is in progress
10683 		 * while we are trying to close.  We can safely proceed with
10684 		 * the close because we are holding rtnl_lock().  Some firmware
10685 		 * messages may fail as we proceed to close.  We set the
10686 		 * ABORT_ERR flag here so that the FW reset thread will later
10687 		 * abort when it gets the rtnl_lock() and sees the flag.
10688 		 */
10689 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10690 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10691 	}
10692 
10693 #ifdef CONFIG_BNXT_SRIOV
10694 	if (bp->sriov_cfg) {
10695 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10696 						      !bp->sriov_cfg,
10697 						      BNXT_SRIOV_CFG_WAIT_TMO);
10698 		if (rc)
10699 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10700 	}
10701 #endif
10702 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10703 	return rc;
10704 }
10705 
10706 static int bnxt_close(struct net_device *dev)
10707 {
10708 	struct bnxt *bp = netdev_priv(dev);
10709 
10710 	bnxt_hwmon_close(bp);
10711 	bnxt_close_nic(bp, true, true);
10712 	bnxt_hwrm_shutdown_link(bp);
10713 	bnxt_hwrm_if_change(bp, false);
10714 	return 0;
10715 }
10716 
10717 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10718 				   u16 *val)
10719 {
10720 	struct hwrm_port_phy_mdio_read_output *resp;
10721 	struct hwrm_port_phy_mdio_read_input *req;
10722 	int rc;
10723 
10724 	if (bp->hwrm_spec_code < 0x10a00)
10725 		return -EOPNOTSUPP;
10726 
10727 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10728 	if (rc)
10729 		return rc;
10730 
10731 	req->port_id = cpu_to_le16(bp->pf.port_id);
10732 	req->phy_addr = phy_addr;
10733 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10734 	if (mdio_phy_id_is_c45(phy_addr)) {
10735 		req->cl45_mdio = 1;
10736 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10737 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10738 		req->reg_addr = cpu_to_le16(reg);
10739 	}
10740 
10741 	resp = hwrm_req_hold(bp, req);
10742 	rc = hwrm_req_send(bp, req);
10743 	if (!rc)
10744 		*val = le16_to_cpu(resp->reg_data);
10745 	hwrm_req_drop(bp, req);
10746 	return rc;
10747 }
10748 
10749 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10750 				    u16 val)
10751 {
10752 	struct hwrm_port_phy_mdio_write_input *req;
10753 	int rc;
10754 
10755 	if (bp->hwrm_spec_code < 0x10a00)
10756 		return -EOPNOTSUPP;
10757 
10758 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10759 	if (rc)
10760 		return rc;
10761 
10762 	req->port_id = cpu_to_le16(bp->pf.port_id);
10763 	req->phy_addr = phy_addr;
10764 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10765 	if (mdio_phy_id_is_c45(phy_addr)) {
10766 		req->cl45_mdio = 1;
10767 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10768 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10769 		req->reg_addr = cpu_to_le16(reg);
10770 	}
10771 	req->reg_data = cpu_to_le16(val);
10772 
10773 	return hwrm_req_send(bp, req);
10774 }
10775 
10776 /* rtnl_lock held */
10777 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10778 {
10779 	struct mii_ioctl_data *mdio = if_mii(ifr);
10780 	struct bnxt *bp = netdev_priv(dev);
10781 	int rc;
10782 
10783 	switch (cmd) {
10784 	case SIOCGMIIPHY:
10785 		mdio->phy_id = bp->link_info.phy_addr;
10786 
10787 		fallthrough;
10788 	case SIOCGMIIREG: {
10789 		u16 mii_regval = 0;
10790 
10791 		if (!netif_running(dev))
10792 			return -EAGAIN;
10793 
10794 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10795 					     &mii_regval);
10796 		mdio->val_out = mii_regval;
10797 		return rc;
10798 	}
10799 
10800 	case SIOCSMIIREG:
10801 		if (!netif_running(dev))
10802 			return -EAGAIN;
10803 
10804 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10805 						mdio->val_in);
10806 
10807 	case SIOCSHWTSTAMP:
10808 		return bnxt_hwtstamp_set(dev, ifr);
10809 
10810 	case SIOCGHWTSTAMP:
10811 		return bnxt_hwtstamp_get(dev, ifr);
10812 
10813 	default:
10814 		/* do nothing */
10815 		break;
10816 	}
10817 	return -EOPNOTSUPP;
10818 }
10819 
10820 static void bnxt_get_ring_stats(struct bnxt *bp,
10821 				struct rtnl_link_stats64 *stats)
10822 {
10823 	int i;
10824 
10825 	for (i = 0; i < bp->cp_nr_rings; i++) {
10826 		struct bnxt_napi *bnapi = bp->bnapi[i];
10827 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10828 		u64 *sw = cpr->stats.sw_stats;
10829 
10830 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10831 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10832 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10833 
10834 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10835 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10836 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10837 
10838 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10839 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10840 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10841 
10842 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10843 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10844 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10845 
10846 		stats->rx_missed_errors +=
10847 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10848 
10849 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10850 
10851 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10852 
10853 		stats->rx_dropped +=
10854 			cpr->sw_stats.rx.rx_netpoll_discards +
10855 			cpr->sw_stats.rx.rx_oom_discards;
10856 	}
10857 }
10858 
10859 static void bnxt_add_prev_stats(struct bnxt *bp,
10860 				struct rtnl_link_stats64 *stats)
10861 {
10862 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10863 
10864 	stats->rx_packets += prev_stats->rx_packets;
10865 	stats->tx_packets += prev_stats->tx_packets;
10866 	stats->rx_bytes += prev_stats->rx_bytes;
10867 	stats->tx_bytes += prev_stats->tx_bytes;
10868 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10869 	stats->multicast += prev_stats->multicast;
10870 	stats->rx_dropped += prev_stats->rx_dropped;
10871 	stats->tx_dropped += prev_stats->tx_dropped;
10872 }
10873 
10874 static void
10875 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10876 {
10877 	struct bnxt *bp = netdev_priv(dev);
10878 
10879 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10880 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10881 	 * we check the BNXT_STATE_OPEN flag.
10882 	 */
10883 	smp_mb__after_atomic();
10884 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10885 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10886 		*stats = bp->net_stats_prev;
10887 		return;
10888 	}
10889 
10890 	bnxt_get_ring_stats(bp, stats);
10891 	bnxt_add_prev_stats(bp, stats);
10892 
10893 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10894 		u64 *rx = bp->port_stats.sw_stats;
10895 		u64 *tx = bp->port_stats.sw_stats +
10896 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10897 
10898 		stats->rx_crc_errors =
10899 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10900 		stats->rx_frame_errors =
10901 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10902 		stats->rx_length_errors =
10903 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10904 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10905 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10906 		stats->rx_errors =
10907 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10908 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10909 		stats->collisions =
10910 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10911 		stats->tx_fifo_errors =
10912 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10913 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10914 	}
10915 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10916 }
10917 
10918 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10919 {
10920 	struct net_device *dev = bp->dev;
10921 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10922 	struct netdev_hw_addr *ha;
10923 	u8 *haddr;
10924 	int mc_count = 0;
10925 	bool update = false;
10926 	int off = 0;
10927 
10928 	netdev_for_each_mc_addr(ha, dev) {
10929 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10930 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10931 			vnic->mc_list_count = 0;
10932 			return false;
10933 		}
10934 		haddr = ha->addr;
10935 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10936 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10937 			update = true;
10938 		}
10939 		off += ETH_ALEN;
10940 		mc_count++;
10941 	}
10942 	if (mc_count)
10943 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10944 
10945 	if (mc_count != vnic->mc_list_count) {
10946 		vnic->mc_list_count = mc_count;
10947 		update = true;
10948 	}
10949 	return update;
10950 }
10951 
10952 static bool bnxt_uc_list_updated(struct bnxt *bp)
10953 {
10954 	struct net_device *dev = bp->dev;
10955 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10956 	struct netdev_hw_addr *ha;
10957 	int off = 0;
10958 
10959 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10960 		return true;
10961 
10962 	netdev_for_each_uc_addr(ha, dev) {
10963 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10964 			return true;
10965 
10966 		off += ETH_ALEN;
10967 	}
10968 	return false;
10969 }
10970 
10971 static void bnxt_set_rx_mode(struct net_device *dev)
10972 {
10973 	struct bnxt *bp = netdev_priv(dev);
10974 	struct bnxt_vnic_info *vnic;
10975 	bool mc_update = false;
10976 	bool uc_update;
10977 	u32 mask;
10978 
10979 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10980 		return;
10981 
10982 	vnic = &bp->vnic_info[0];
10983 	mask = vnic->rx_mask;
10984 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10985 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10986 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10987 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10988 
10989 	if (dev->flags & IFF_PROMISC)
10990 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10991 
10992 	uc_update = bnxt_uc_list_updated(bp);
10993 
10994 	if (dev->flags & IFF_BROADCAST)
10995 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10996 	if (dev->flags & IFF_ALLMULTI) {
10997 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10998 		vnic->mc_list_count = 0;
10999 	} else if (dev->flags & IFF_MULTICAST) {
11000 		mc_update = bnxt_mc_list_updated(bp, &mask);
11001 	}
11002 
11003 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11004 		vnic->rx_mask = mask;
11005 
11006 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11007 		bnxt_queue_sp_work(bp);
11008 	}
11009 }
11010 
11011 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11012 {
11013 	struct net_device *dev = bp->dev;
11014 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11015 	struct hwrm_cfa_l2_filter_free_input *req;
11016 	struct netdev_hw_addr *ha;
11017 	int i, off = 0, rc;
11018 	bool uc_update;
11019 
11020 	netif_addr_lock_bh(dev);
11021 	uc_update = bnxt_uc_list_updated(bp);
11022 	netif_addr_unlock_bh(dev);
11023 
11024 	if (!uc_update)
11025 		goto skip_uc;
11026 
11027 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11028 	if (rc)
11029 		return rc;
11030 	hwrm_req_hold(bp, req);
11031 	for (i = 1; i < vnic->uc_filter_count; i++) {
11032 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11033 
11034 		rc = hwrm_req_send(bp, req);
11035 	}
11036 	hwrm_req_drop(bp, req);
11037 
11038 	vnic->uc_filter_count = 1;
11039 
11040 	netif_addr_lock_bh(dev);
11041 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11042 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11043 	} else {
11044 		netdev_for_each_uc_addr(ha, dev) {
11045 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11046 			off += ETH_ALEN;
11047 			vnic->uc_filter_count++;
11048 		}
11049 	}
11050 	netif_addr_unlock_bh(dev);
11051 
11052 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11053 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11054 		if (rc) {
11055 			if (BNXT_VF(bp) && rc == -ENODEV) {
11056 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11057 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11058 				else
11059 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11060 				rc = 0;
11061 			} else {
11062 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11063 			}
11064 			vnic->uc_filter_count = i;
11065 			return rc;
11066 		}
11067 	}
11068 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11069 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11070 
11071 skip_uc:
11072 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11073 	    !bnxt_promisc_ok(bp))
11074 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11075 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11076 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11077 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11078 			    rc);
11079 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11080 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11081 		vnic->mc_list_count = 0;
11082 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11083 	}
11084 	if (rc)
11085 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11086 			   rc);
11087 
11088 	return rc;
11089 }
11090 
11091 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11092 {
11093 #ifdef CONFIG_BNXT_SRIOV
11094 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11095 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11096 
11097 		/* No minimum rings were provisioned by the PF.  Don't
11098 		 * reserve rings by default when device is down.
11099 		 */
11100 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11101 			return true;
11102 
11103 		if (!netif_running(bp->dev))
11104 			return false;
11105 	}
11106 #endif
11107 	return true;
11108 }
11109 
11110 /* If the chip and firmware supports RFS */
11111 static bool bnxt_rfs_supported(struct bnxt *bp)
11112 {
11113 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11114 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11115 			return true;
11116 		return false;
11117 	}
11118 	/* 212 firmware is broken for aRFS */
11119 	if (BNXT_FW_MAJ(bp) == 212)
11120 		return false;
11121 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11122 		return true;
11123 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11124 		return true;
11125 	return false;
11126 }
11127 
11128 /* If runtime conditions support RFS */
11129 static bool bnxt_rfs_capable(struct bnxt *bp)
11130 {
11131 #ifdef CONFIG_RFS_ACCEL
11132 	int vnics, max_vnics, max_rss_ctxs;
11133 
11134 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11135 		return bnxt_rfs_supported(bp);
11136 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11137 		return false;
11138 
11139 	vnics = 1 + bp->rx_nr_rings;
11140 	max_vnics = bnxt_get_max_func_vnics(bp);
11141 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11142 
11143 	/* RSS contexts not a limiting factor */
11144 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11145 		max_rss_ctxs = max_vnics;
11146 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11147 		if (bp->rx_nr_rings > 1)
11148 			netdev_warn(bp->dev,
11149 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11150 				    min(max_rss_ctxs - 1, max_vnics - 1));
11151 		return false;
11152 	}
11153 
11154 	if (!BNXT_NEW_RM(bp))
11155 		return true;
11156 
11157 	if (vnics == bp->hw_resc.resv_vnics)
11158 		return true;
11159 
11160 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11161 	if (vnics <= bp->hw_resc.resv_vnics)
11162 		return true;
11163 
11164 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11165 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11166 	return false;
11167 #else
11168 	return false;
11169 #endif
11170 }
11171 
11172 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11173 					   netdev_features_t features)
11174 {
11175 	struct bnxt *bp = netdev_priv(dev);
11176 	netdev_features_t vlan_features;
11177 
11178 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11179 		features &= ~NETIF_F_NTUPLE;
11180 
11181 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11182 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11183 
11184 	if (!(features & NETIF_F_GRO))
11185 		features &= ~NETIF_F_GRO_HW;
11186 
11187 	if (features & NETIF_F_GRO_HW)
11188 		features &= ~NETIF_F_LRO;
11189 
11190 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11191 	 * turned on or off together.
11192 	 */
11193 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11194 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11195 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11196 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11197 		else if (vlan_features)
11198 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11199 	}
11200 #ifdef CONFIG_BNXT_SRIOV
11201 	if (BNXT_VF(bp) && bp->vf.vlan)
11202 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11203 #endif
11204 	return features;
11205 }
11206 
11207 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11208 {
11209 	struct bnxt *bp = netdev_priv(dev);
11210 	u32 flags = bp->flags;
11211 	u32 changes;
11212 	int rc = 0;
11213 	bool re_init = false;
11214 	bool update_tpa = false;
11215 
11216 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11217 	if (features & NETIF_F_GRO_HW)
11218 		flags |= BNXT_FLAG_GRO;
11219 	else if (features & NETIF_F_LRO)
11220 		flags |= BNXT_FLAG_LRO;
11221 
11222 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11223 		flags &= ~BNXT_FLAG_TPA;
11224 
11225 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11226 		flags |= BNXT_FLAG_STRIP_VLAN;
11227 
11228 	if (features & NETIF_F_NTUPLE)
11229 		flags |= BNXT_FLAG_RFS;
11230 
11231 	changes = flags ^ bp->flags;
11232 	if (changes & BNXT_FLAG_TPA) {
11233 		update_tpa = true;
11234 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11235 		    (flags & BNXT_FLAG_TPA) == 0 ||
11236 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11237 			re_init = true;
11238 	}
11239 
11240 	if (changes & ~BNXT_FLAG_TPA)
11241 		re_init = true;
11242 
11243 	if (flags != bp->flags) {
11244 		u32 old_flags = bp->flags;
11245 
11246 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11247 			bp->flags = flags;
11248 			if (update_tpa)
11249 				bnxt_set_ring_params(bp);
11250 			return rc;
11251 		}
11252 
11253 		if (re_init) {
11254 			bnxt_close_nic(bp, false, false);
11255 			bp->flags = flags;
11256 			if (update_tpa)
11257 				bnxt_set_ring_params(bp);
11258 
11259 			return bnxt_open_nic(bp, false, false);
11260 		}
11261 		if (update_tpa) {
11262 			bp->flags = flags;
11263 			rc = bnxt_set_tpa(bp,
11264 					  (flags & BNXT_FLAG_TPA) ?
11265 					  true : false);
11266 			if (rc)
11267 				bp->flags = old_flags;
11268 		}
11269 	}
11270 	return rc;
11271 }
11272 
11273 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11274 			      u8 **nextp)
11275 {
11276 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11277 	int hdr_count = 0;
11278 	u8 *nexthdr;
11279 	int start;
11280 
11281 	/* Check that there are at most 2 IPv6 extension headers, no
11282 	 * fragment header, and each is <= 64 bytes.
11283 	 */
11284 	start = nw_off + sizeof(*ip6h);
11285 	nexthdr = &ip6h->nexthdr;
11286 	while (ipv6_ext_hdr(*nexthdr)) {
11287 		struct ipv6_opt_hdr *hp;
11288 		int hdrlen;
11289 
11290 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11291 		    *nexthdr == NEXTHDR_FRAGMENT)
11292 			return false;
11293 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11294 					  skb_headlen(skb), NULL);
11295 		if (!hp)
11296 			return false;
11297 		if (*nexthdr == NEXTHDR_AUTH)
11298 			hdrlen = ipv6_authlen(hp);
11299 		else
11300 			hdrlen = ipv6_optlen(hp);
11301 
11302 		if (hdrlen > 64)
11303 			return false;
11304 		nexthdr = &hp->nexthdr;
11305 		start += hdrlen;
11306 		hdr_count++;
11307 	}
11308 	if (nextp) {
11309 		/* Caller will check inner protocol */
11310 		if (skb->encapsulation) {
11311 			*nextp = nexthdr;
11312 			return true;
11313 		}
11314 		*nextp = NULL;
11315 	}
11316 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11317 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11318 }
11319 
11320 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11321 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11322 {
11323 	struct udphdr *uh = udp_hdr(skb);
11324 	__be16 udp_port = uh->dest;
11325 
11326 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11327 		return false;
11328 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11329 		struct ethhdr *eh = inner_eth_hdr(skb);
11330 
11331 		switch (eh->h_proto) {
11332 		case htons(ETH_P_IP):
11333 			return true;
11334 		case htons(ETH_P_IPV6):
11335 			return bnxt_exthdr_check(bp, skb,
11336 						 skb_inner_network_offset(skb),
11337 						 NULL);
11338 		}
11339 	}
11340 	return false;
11341 }
11342 
11343 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11344 {
11345 	switch (l4_proto) {
11346 	case IPPROTO_UDP:
11347 		return bnxt_udp_tunl_check(bp, skb);
11348 	case IPPROTO_IPIP:
11349 		return true;
11350 	case IPPROTO_GRE: {
11351 		switch (skb->inner_protocol) {
11352 		default:
11353 			return false;
11354 		case htons(ETH_P_IP):
11355 			return true;
11356 		case htons(ETH_P_IPV6):
11357 			fallthrough;
11358 		}
11359 	}
11360 	case IPPROTO_IPV6:
11361 		/* Check ext headers of inner ipv6 */
11362 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11363 					 NULL);
11364 	}
11365 	return false;
11366 }
11367 
11368 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11369 					     struct net_device *dev,
11370 					     netdev_features_t features)
11371 {
11372 	struct bnxt *bp = netdev_priv(dev);
11373 	u8 *l4_proto;
11374 
11375 	features = vlan_features_check(skb, features);
11376 	switch (vlan_get_protocol(skb)) {
11377 	case htons(ETH_P_IP):
11378 		if (!skb->encapsulation)
11379 			return features;
11380 		l4_proto = &ip_hdr(skb)->protocol;
11381 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11382 			return features;
11383 		break;
11384 	case htons(ETH_P_IPV6):
11385 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11386 				       &l4_proto))
11387 			break;
11388 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11389 			return features;
11390 		break;
11391 	}
11392 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11393 }
11394 
11395 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11396 			 u32 *reg_buf)
11397 {
11398 	struct hwrm_dbg_read_direct_output *resp;
11399 	struct hwrm_dbg_read_direct_input *req;
11400 	__le32 *dbg_reg_buf;
11401 	dma_addr_t mapping;
11402 	int rc, i;
11403 
11404 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11405 	if (rc)
11406 		return rc;
11407 
11408 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11409 					 &mapping);
11410 	if (!dbg_reg_buf) {
11411 		rc = -ENOMEM;
11412 		goto dbg_rd_reg_exit;
11413 	}
11414 
11415 	req->host_dest_addr = cpu_to_le64(mapping);
11416 
11417 	resp = hwrm_req_hold(bp, req);
11418 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11419 	req->read_len32 = cpu_to_le32(num_words);
11420 
11421 	rc = hwrm_req_send(bp, req);
11422 	if (rc || resp->error_code) {
11423 		rc = -EIO;
11424 		goto dbg_rd_reg_exit;
11425 	}
11426 	for (i = 0; i < num_words; i++)
11427 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11428 
11429 dbg_rd_reg_exit:
11430 	hwrm_req_drop(bp, req);
11431 	return rc;
11432 }
11433 
11434 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11435 				       u32 ring_id, u32 *prod, u32 *cons)
11436 {
11437 	struct hwrm_dbg_ring_info_get_output *resp;
11438 	struct hwrm_dbg_ring_info_get_input *req;
11439 	int rc;
11440 
11441 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11442 	if (rc)
11443 		return rc;
11444 
11445 	req->ring_type = ring_type;
11446 	req->fw_ring_id = cpu_to_le32(ring_id);
11447 	resp = hwrm_req_hold(bp, req);
11448 	rc = hwrm_req_send(bp, req);
11449 	if (!rc) {
11450 		*prod = le32_to_cpu(resp->producer_index);
11451 		*cons = le32_to_cpu(resp->consumer_index);
11452 	}
11453 	hwrm_req_drop(bp, req);
11454 	return rc;
11455 }
11456 
11457 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11458 {
11459 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11460 	int i = bnapi->index;
11461 
11462 	if (!txr)
11463 		return;
11464 
11465 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11466 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11467 		    txr->tx_cons);
11468 }
11469 
11470 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11471 {
11472 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11473 	int i = bnapi->index;
11474 
11475 	if (!rxr)
11476 		return;
11477 
11478 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11479 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11480 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11481 		    rxr->rx_sw_agg_prod);
11482 }
11483 
11484 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11485 {
11486 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11487 	int i = bnapi->index;
11488 
11489 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11490 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11491 }
11492 
11493 static void bnxt_dbg_dump_states(struct bnxt *bp)
11494 {
11495 	int i;
11496 	struct bnxt_napi *bnapi;
11497 
11498 	for (i = 0; i < bp->cp_nr_rings; i++) {
11499 		bnapi = bp->bnapi[i];
11500 		if (netif_msg_drv(bp)) {
11501 			bnxt_dump_tx_sw_state(bnapi);
11502 			bnxt_dump_rx_sw_state(bnapi);
11503 			bnxt_dump_cp_sw_state(bnapi);
11504 		}
11505 	}
11506 }
11507 
11508 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11509 {
11510 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11511 	struct hwrm_ring_reset_input *req;
11512 	struct bnxt_napi *bnapi = rxr->bnapi;
11513 	struct bnxt_cp_ring_info *cpr;
11514 	u16 cp_ring_id;
11515 	int rc;
11516 
11517 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11518 	if (rc)
11519 		return rc;
11520 
11521 	cpr = &bnapi->cp_ring;
11522 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11523 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11524 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11525 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11526 	return hwrm_req_send_silent(bp, req);
11527 }
11528 
11529 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11530 {
11531 	if (!silent)
11532 		bnxt_dbg_dump_states(bp);
11533 	if (netif_running(bp->dev)) {
11534 		int rc;
11535 
11536 		if (silent) {
11537 			bnxt_close_nic(bp, false, false);
11538 			bnxt_open_nic(bp, false, false);
11539 		} else {
11540 			bnxt_ulp_stop(bp);
11541 			bnxt_close_nic(bp, true, false);
11542 			rc = bnxt_open_nic(bp, true, false);
11543 			bnxt_ulp_start(bp, rc);
11544 		}
11545 	}
11546 }
11547 
11548 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11549 {
11550 	struct bnxt *bp = netdev_priv(dev);
11551 
11552 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11553 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11554 	bnxt_queue_sp_work(bp);
11555 }
11556 
11557 static void bnxt_fw_health_check(struct bnxt *bp)
11558 {
11559 	struct bnxt_fw_health *fw_health = bp->fw_health;
11560 	u32 val;
11561 
11562 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11563 		return;
11564 
11565 	/* Make sure it is enabled before checking the tmr_counter. */
11566 	smp_rmb();
11567 	if (fw_health->tmr_counter) {
11568 		fw_health->tmr_counter--;
11569 		return;
11570 	}
11571 
11572 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11573 	if (val == fw_health->last_fw_heartbeat) {
11574 		fw_health->arrests++;
11575 		goto fw_reset;
11576 	}
11577 
11578 	fw_health->last_fw_heartbeat = val;
11579 
11580 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11581 	if (val != fw_health->last_fw_reset_cnt) {
11582 		fw_health->discoveries++;
11583 		goto fw_reset;
11584 	}
11585 
11586 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11587 	return;
11588 
11589 fw_reset:
11590 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11591 	bnxt_queue_sp_work(bp);
11592 }
11593 
11594 static void bnxt_timer(struct timer_list *t)
11595 {
11596 	struct bnxt *bp = from_timer(bp, t, timer);
11597 	struct net_device *dev = bp->dev;
11598 
11599 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11600 		return;
11601 
11602 	if (atomic_read(&bp->intr_sem) != 0)
11603 		goto bnxt_restart_timer;
11604 
11605 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11606 		bnxt_fw_health_check(bp);
11607 
11608 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11609 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11610 		bnxt_queue_sp_work(bp);
11611 	}
11612 
11613 	if (bnxt_tc_flower_enabled(bp)) {
11614 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11615 		bnxt_queue_sp_work(bp);
11616 	}
11617 
11618 #ifdef CONFIG_RFS_ACCEL
11619 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11620 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11621 		bnxt_queue_sp_work(bp);
11622 	}
11623 #endif /*CONFIG_RFS_ACCEL*/
11624 
11625 	if (bp->link_info.phy_retry) {
11626 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11627 			bp->link_info.phy_retry = false;
11628 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11629 		} else {
11630 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11631 			bnxt_queue_sp_work(bp);
11632 		}
11633 	}
11634 
11635 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11636 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11637 		bnxt_queue_sp_work(bp);
11638 	}
11639 
11640 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11641 	    netif_carrier_ok(dev)) {
11642 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11643 		bnxt_queue_sp_work(bp);
11644 	}
11645 bnxt_restart_timer:
11646 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11647 }
11648 
11649 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11650 {
11651 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11652 	 * set.  If the device is being closed, bnxt_close() may be holding
11653 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11654 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11655 	 */
11656 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11657 	rtnl_lock();
11658 }
11659 
11660 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11661 {
11662 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11663 	rtnl_unlock();
11664 }
11665 
11666 /* Only called from bnxt_sp_task() */
11667 static void bnxt_reset(struct bnxt *bp, bool silent)
11668 {
11669 	bnxt_rtnl_lock_sp(bp);
11670 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11671 		bnxt_reset_task(bp, silent);
11672 	bnxt_rtnl_unlock_sp(bp);
11673 }
11674 
11675 /* Only called from bnxt_sp_task() */
11676 static void bnxt_rx_ring_reset(struct bnxt *bp)
11677 {
11678 	int i;
11679 
11680 	bnxt_rtnl_lock_sp(bp);
11681 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11682 		bnxt_rtnl_unlock_sp(bp);
11683 		return;
11684 	}
11685 	/* Disable and flush TPA before resetting the RX ring */
11686 	if (bp->flags & BNXT_FLAG_TPA)
11687 		bnxt_set_tpa(bp, false);
11688 	for (i = 0; i < bp->rx_nr_rings; i++) {
11689 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11690 		struct bnxt_cp_ring_info *cpr;
11691 		int rc;
11692 
11693 		if (!rxr->bnapi->in_reset)
11694 			continue;
11695 
11696 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11697 		if (rc) {
11698 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11699 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11700 			else
11701 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11702 					    rc);
11703 			bnxt_reset_task(bp, true);
11704 			break;
11705 		}
11706 		bnxt_free_one_rx_ring_skbs(bp, i);
11707 		rxr->rx_prod = 0;
11708 		rxr->rx_agg_prod = 0;
11709 		rxr->rx_sw_agg_prod = 0;
11710 		rxr->rx_next_cons = 0;
11711 		rxr->bnapi->in_reset = false;
11712 		bnxt_alloc_one_rx_ring(bp, i);
11713 		cpr = &rxr->bnapi->cp_ring;
11714 		cpr->sw_stats.rx.rx_resets++;
11715 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11716 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11717 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11718 	}
11719 	if (bp->flags & BNXT_FLAG_TPA)
11720 		bnxt_set_tpa(bp, true);
11721 	bnxt_rtnl_unlock_sp(bp);
11722 }
11723 
11724 static void bnxt_fw_reset_close(struct bnxt *bp)
11725 {
11726 	bnxt_ulp_stop(bp);
11727 	/* When firmware is in fatal state, quiesce device and disable
11728 	 * bus master to prevent any potential bad DMAs before freeing
11729 	 * kernel memory.
11730 	 */
11731 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11732 		u16 val = 0;
11733 
11734 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11735 		if (val == 0xffff)
11736 			bp->fw_reset_min_dsecs = 0;
11737 		bnxt_tx_disable(bp);
11738 		bnxt_disable_napi(bp);
11739 		bnxt_disable_int_sync(bp);
11740 		bnxt_free_irq(bp);
11741 		bnxt_clear_int_mode(bp);
11742 		pci_disable_device(bp->pdev);
11743 	}
11744 	__bnxt_close_nic(bp, true, false);
11745 	bnxt_vf_reps_free(bp);
11746 	bnxt_clear_int_mode(bp);
11747 	bnxt_hwrm_func_drv_unrgtr(bp);
11748 	if (pci_is_enabled(bp->pdev))
11749 		pci_disable_device(bp->pdev);
11750 	bnxt_free_ctx_mem(bp);
11751 	kfree(bp->ctx);
11752 	bp->ctx = NULL;
11753 }
11754 
11755 static bool is_bnxt_fw_ok(struct bnxt *bp)
11756 {
11757 	struct bnxt_fw_health *fw_health = bp->fw_health;
11758 	bool no_heartbeat = false, has_reset = false;
11759 	u32 val;
11760 
11761 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11762 	if (val == fw_health->last_fw_heartbeat)
11763 		no_heartbeat = true;
11764 
11765 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11766 	if (val != fw_health->last_fw_reset_cnt)
11767 		has_reset = true;
11768 
11769 	if (!no_heartbeat && has_reset)
11770 		return true;
11771 
11772 	return false;
11773 }
11774 
11775 /* rtnl_lock is acquired before calling this function */
11776 static void bnxt_force_fw_reset(struct bnxt *bp)
11777 {
11778 	struct bnxt_fw_health *fw_health = bp->fw_health;
11779 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11780 	u32 wait_dsecs;
11781 
11782 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11783 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11784 		return;
11785 
11786 	if (ptp) {
11787 		spin_lock_bh(&ptp->ptp_lock);
11788 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11789 		spin_unlock_bh(&ptp->ptp_lock);
11790 	} else {
11791 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11792 	}
11793 	bnxt_fw_reset_close(bp);
11794 	wait_dsecs = fw_health->master_func_wait_dsecs;
11795 	if (fw_health->primary) {
11796 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11797 			wait_dsecs = 0;
11798 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11799 	} else {
11800 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11801 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11802 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11803 	}
11804 
11805 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11806 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11807 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11808 }
11809 
11810 void bnxt_fw_exception(struct bnxt *bp)
11811 {
11812 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11813 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11814 	bnxt_rtnl_lock_sp(bp);
11815 	bnxt_force_fw_reset(bp);
11816 	bnxt_rtnl_unlock_sp(bp);
11817 }
11818 
11819 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11820  * < 0 on error.
11821  */
11822 static int bnxt_get_registered_vfs(struct bnxt *bp)
11823 {
11824 #ifdef CONFIG_BNXT_SRIOV
11825 	int rc;
11826 
11827 	if (!BNXT_PF(bp))
11828 		return 0;
11829 
11830 	rc = bnxt_hwrm_func_qcfg(bp);
11831 	if (rc) {
11832 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11833 		return rc;
11834 	}
11835 	if (bp->pf.registered_vfs)
11836 		return bp->pf.registered_vfs;
11837 	if (bp->sriov_cfg)
11838 		return 1;
11839 #endif
11840 	return 0;
11841 }
11842 
11843 void bnxt_fw_reset(struct bnxt *bp)
11844 {
11845 	bnxt_rtnl_lock_sp(bp);
11846 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11847 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11848 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11849 		int n = 0, tmo;
11850 
11851 		if (ptp) {
11852 			spin_lock_bh(&ptp->ptp_lock);
11853 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11854 			spin_unlock_bh(&ptp->ptp_lock);
11855 		} else {
11856 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11857 		}
11858 		if (bp->pf.active_vfs &&
11859 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11860 			n = bnxt_get_registered_vfs(bp);
11861 		if (n < 0) {
11862 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11863 				   n);
11864 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11865 			dev_close(bp->dev);
11866 			goto fw_reset_exit;
11867 		} else if (n > 0) {
11868 			u16 vf_tmo_dsecs = n * 10;
11869 
11870 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11871 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11872 			bp->fw_reset_state =
11873 				BNXT_FW_RESET_STATE_POLL_VF;
11874 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11875 			goto fw_reset_exit;
11876 		}
11877 		bnxt_fw_reset_close(bp);
11878 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11879 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11880 			tmo = HZ / 10;
11881 		} else {
11882 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11883 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11884 		}
11885 		bnxt_queue_fw_reset_work(bp, tmo);
11886 	}
11887 fw_reset_exit:
11888 	bnxt_rtnl_unlock_sp(bp);
11889 }
11890 
11891 static void bnxt_chk_missed_irq(struct bnxt *bp)
11892 {
11893 	int i;
11894 
11895 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11896 		return;
11897 
11898 	for (i = 0; i < bp->cp_nr_rings; i++) {
11899 		struct bnxt_napi *bnapi = bp->bnapi[i];
11900 		struct bnxt_cp_ring_info *cpr;
11901 		u32 fw_ring_id;
11902 		int j;
11903 
11904 		if (!bnapi)
11905 			continue;
11906 
11907 		cpr = &bnapi->cp_ring;
11908 		for (j = 0; j < 2; j++) {
11909 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11910 			u32 val[2];
11911 
11912 			if (!cpr2 || cpr2->has_more_work ||
11913 			    !bnxt_has_work(bp, cpr2))
11914 				continue;
11915 
11916 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11917 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11918 				continue;
11919 			}
11920 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11921 			bnxt_dbg_hwrm_ring_info_get(bp,
11922 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11923 				fw_ring_id, &val[0], &val[1]);
11924 			cpr->sw_stats.cmn.missed_irqs++;
11925 		}
11926 	}
11927 }
11928 
11929 static void bnxt_cfg_ntp_filters(struct bnxt *);
11930 
11931 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11932 {
11933 	struct bnxt_link_info *link_info = &bp->link_info;
11934 
11935 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11936 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11937 		if (bp->hwrm_spec_code >= 0x10201) {
11938 			if (link_info->auto_pause_setting &
11939 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11940 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11941 		} else {
11942 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11943 		}
11944 		link_info->advertising = link_info->auto_link_speeds;
11945 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11946 	} else {
11947 		link_info->req_link_speed = link_info->force_link_speed;
11948 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11949 		if (link_info->force_pam4_link_speed) {
11950 			link_info->req_link_speed =
11951 				link_info->force_pam4_link_speed;
11952 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11953 		}
11954 		link_info->req_duplex = link_info->duplex_setting;
11955 	}
11956 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11957 		link_info->req_flow_ctrl =
11958 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11959 	else
11960 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11961 }
11962 
11963 static void bnxt_fw_echo_reply(struct bnxt *bp)
11964 {
11965 	struct bnxt_fw_health *fw_health = bp->fw_health;
11966 	struct hwrm_func_echo_response_input *req;
11967 	int rc;
11968 
11969 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11970 	if (rc)
11971 		return;
11972 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11973 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11974 	hwrm_req_send(bp, req);
11975 }
11976 
11977 static void bnxt_sp_task(struct work_struct *work)
11978 {
11979 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11980 
11981 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11982 	smp_mb__after_atomic();
11983 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11984 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11985 		return;
11986 	}
11987 
11988 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11989 		bnxt_cfg_rx_mode(bp);
11990 
11991 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11992 		bnxt_cfg_ntp_filters(bp);
11993 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11994 		bnxt_hwrm_exec_fwd_req(bp);
11995 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11996 		bnxt_hwrm_port_qstats(bp, 0);
11997 		bnxt_hwrm_port_qstats_ext(bp, 0);
11998 		bnxt_accumulate_all_stats(bp);
11999 	}
12000 
12001 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12002 		int rc;
12003 
12004 		mutex_lock(&bp->link_lock);
12005 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12006 				       &bp->sp_event))
12007 			bnxt_hwrm_phy_qcaps(bp);
12008 
12009 		rc = bnxt_update_link(bp, true);
12010 		if (rc)
12011 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12012 				   rc);
12013 
12014 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12015 				       &bp->sp_event))
12016 			bnxt_init_ethtool_link_settings(bp);
12017 		mutex_unlock(&bp->link_lock);
12018 	}
12019 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12020 		int rc;
12021 
12022 		mutex_lock(&bp->link_lock);
12023 		rc = bnxt_update_phy_setting(bp);
12024 		mutex_unlock(&bp->link_lock);
12025 		if (rc) {
12026 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12027 		} else {
12028 			bp->link_info.phy_retry = false;
12029 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12030 		}
12031 	}
12032 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12033 		mutex_lock(&bp->link_lock);
12034 		bnxt_get_port_module_status(bp);
12035 		mutex_unlock(&bp->link_lock);
12036 	}
12037 
12038 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12039 		bnxt_tc_flow_stats_work(bp);
12040 
12041 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12042 		bnxt_chk_missed_irq(bp);
12043 
12044 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12045 		bnxt_fw_echo_reply(bp);
12046 
12047 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12048 	 * must be the last functions to be called before exiting.
12049 	 */
12050 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12051 		bnxt_reset(bp, false);
12052 
12053 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12054 		bnxt_reset(bp, true);
12055 
12056 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12057 		bnxt_rx_ring_reset(bp);
12058 
12059 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12060 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12061 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12062 			bnxt_devlink_health_fw_report(bp);
12063 		else
12064 			bnxt_fw_reset(bp);
12065 	}
12066 
12067 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12068 		if (!is_bnxt_fw_ok(bp))
12069 			bnxt_devlink_health_fw_report(bp);
12070 	}
12071 
12072 	smp_mb__before_atomic();
12073 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12074 }
12075 
12076 /* Under rtnl_lock */
12077 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12078 		     int tx_xdp)
12079 {
12080 	int max_rx, max_tx, tx_sets = 1;
12081 	int tx_rings_needed, stats;
12082 	int rx_rings = rx;
12083 	int cp, vnics, rc;
12084 
12085 	if (tcs)
12086 		tx_sets = tcs;
12087 
12088 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12089 	if (rc)
12090 		return rc;
12091 
12092 	if (max_rx < rx)
12093 		return -ENOMEM;
12094 
12095 	tx_rings_needed = tx * tx_sets + tx_xdp;
12096 	if (max_tx < tx_rings_needed)
12097 		return -ENOMEM;
12098 
12099 	vnics = 1;
12100 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12101 		vnics += rx_rings;
12102 
12103 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12104 		rx_rings <<= 1;
12105 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12106 	stats = cp;
12107 	if (BNXT_NEW_RM(bp)) {
12108 		cp += bnxt_get_ulp_msix_num(bp);
12109 		stats += bnxt_get_ulp_stat_ctxs(bp);
12110 	}
12111 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12112 				     stats, vnics);
12113 }
12114 
12115 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12116 {
12117 	if (bp->bar2) {
12118 		pci_iounmap(pdev, bp->bar2);
12119 		bp->bar2 = NULL;
12120 	}
12121 
12122 	if (bp->bar1) {
12123 		pci_iounmap(pdev, bp->bar1);
12124 		bp->bar1 = NULL;
12125 	}
12126 
12127 	if (bp->bar0) {
12128 		pci_iounmap(pdev, bp->bar0);
12129 		bp->bar0 = NULL;
12130 	}
12131 }
12132 
12133 static void bnxt_cleanup_pci(struct bnxt *bp)
12134 {
12135 	bnxt_unmap_bars(bp, bp->pdev);
12136 	pci_release_regions(bp->pdev);
12137 	if (pci_is_enabled(bp->pdev))
12138 		pci_disable_device(bp->pdev);
12139 }
12140 
12141 static void bnxt_init_dflt_coal(struct bnxt *bp)
12142 {
12143 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12144 	struct bnxt_coal *coal;
12145 	u16 flags = 0;
12146 
12147 	if (coal_cap->cmpl_params &
12148 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12149 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12150 
12151 	/* Tick values in micro seconds.
12152 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12153 	 */
12154 	coal = &bp->rx_coal;
12155 	coal->coal_ticks = 10;
12156 	coal->coal_bufs = 30;
12157 	coal->coal_ticks_irq = 1;
12158 	coal->coal_bufs_irq = 2;
12159 	coal->idle_thresh = 50;
12160 	coal->bufs_per_record = 2;
12161 	coal->budget = 64;		/* NAPI budget */
12162 	coal->flags = flags;
12163 
12164 	coal = &bp->tx_coal;
12165 	coal->coal_ticks = 28;
12166 	coal->coal_bufs = 30;
12167 	coal->coal_ticks_irq = 2;
12168 	coal->coal_bufs_irq = 2;
12169 	coal->bufs_per_record = 1;
12170 	coal->flags = flags;
12171 
12172 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12173 }
12174 
12175 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12176 {
12177 	int rc;
12178 
12179 	bp->fw_cap = 0;
12180 	rc = bnxt_hwrm_ver_get(bp);
12181 	bnxt_try_map_fw_health_reg(bp);
12182 	if (rc) {
12183 		rc = bnxt_try_recover_fw(bp);
12184 		if (rc)
12185 			return rc;
12186 		rc = bnxt_hwrm_ver_get(bp);
12187 		if (rc)
12188 			return rc;
12189 	}
12190 
12191 	bnxt_nvm_cfg_ver_get(bp);
12192 
12193 	rc = bnxt_hwrm_func_reset(bp);
12194 	if (rc)
12195 		return -ENODEV;
12196 
12197 	bnxt_hwrm_fw_set_time(bp);
12198 	return 0;
12199 }
12200 
12201 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12202 {
12203 	int rc;
12204 
12205 	/* Get the MAX capabilities for this function */
12206 	rc = bnxt_hwrm_func_qcaps(bp);
12207 	if (rc) {
12208 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12209 			   rc);
12210 		return -ENODEV;
12211 	}
12212 
12213 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12214 	if (rc)
12215 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12216 			    rc);
12217 
12218 	if (bnxt_alloc_fw_health(bp)) {
12219 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12220 	} else {
12221 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12222 		if (rc)
12223 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12224 				    rc);
12225 	}
12226 
12227 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12228 	if (rc)
12229 		return -ENODEV;
12230 
12231 	bnxt_hwrm_func_qcfg(bp);
12232 	bnxt_hwrm_vnic_qcaps(bp);
12233 	bnxt_hwrm_port_led_qcaps(bp);
12234 	bnxt_ethtool_init(bp);
12235 	bnxt_dcb_init(bp);
12236 	return 0;
12237 }
12238 
12239 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12240 {
12241 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12242 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12243 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12244 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12245 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12246 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12247 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12248 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12249 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12250 	}
12251 }
12252 
12253 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12254 {
12255 	struct net_device *dev = bp->dev;
12256 
12257 	dev->hw_features &= ~NETIF_F_NTUPLE;
12258 	dev->features &= ~NETIF_F_NTUPLE;
12259 	bp->flags &= ~BNXT_FLAG_RFS;
12260 	if (bnxt_rfs_supported(bp)) {
12261 		dev->hw_features |= NETIF_F_NTUPLE;
12262 		if (bnxt_rfs_capable(bp)) {
12263 			bp->flags |= BNXT_FLAG_RFS;
12264 			dev->features |= NETIF_F_NTUPLE;
12265 		}
12266 	}
12267 }
12268 
12269 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12270 {
12271 	struct pci_dev *pdev = bp->pdev;
12272 
12273 	bnxt_set_dflt_rss_hash_type(bp);
12274 	bnxt_set_dflt_rfs(bp);
12275 
12276 	bnxt_get_wol_settings(bp);
12277 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12278 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12279 	else
12280 		device_set_wakeup_capable(&pdev->dev, false);
12281 
12282 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12283 	bnxt_hwrm_coal_params_qcaps(bp);
12284 }
12285 
12286 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12287 
12288 int bnxt_fw_init_one(struct bnxt *bp)
12289 {
12290 	int rc;
12291 
12292 	rc = bnxt_fw_init_one_p1(bp);
12293 	if (rc) {
12294 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12295 		return rc;
12296 	}
12297 	rc = bnxt_fw_init_one_p2(bp);
12298 	if (rc) {
12299 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12300 		return rc;
12301 	}
12302 	rc = bnxt_probe_phy(bp, false);
12303 	if (rc)
12304 		return rc;
12305 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12306 	if (rc)
12307 		return rc;
12308 
12309 	bnxt_fw_init_one_p3(bp);
12310 	return 0;
12311 }
12312 
12313 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12314 {
12315 	struct bnxt_fw_health *fw_health = bp->fw_health;
12316 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12317 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12318 	u32 reg_type, reg_off, delay_msecs;
12319 
12320 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12321 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12322 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12323 	switch (reg_type) {
12324 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12325 		pci_write_config_dword(bp->pdev, reg_off, val);
12326 		break;
12327 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12328 		writel(reg_off & BNXT_GRC_BASE_MASK,
12329 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12330 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12331 		fallthrough;
12332 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12333 		writel(val, bp->bar0 + reg_off);
12334 		break;
12335 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12336 		writel(val, bp->bar1 + reg_off);
12337 		break;
12338 	}
12339 	if (delay_msecs) {
12340 		pci_read_config_dword(bp->pdev, 0, &val);
12341 		msleep(delay_msecs);
12342 	}
12343 }
12344 
12345 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12346 {
12347 	struct hwrm_func_qcfg_output *resp;
12348 	struct hwrm_func_qcfg_input *req;
12349 	bool result = true; /* firmware will enforce if unknown */
12350 
12351 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12352 		return result;
12353 
12354 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12355 		return result;
12356 
12357 	req->fid = cpu_to_le16(0xffff);
12358 	resp = hwrm_req_hold(bp, req);
12359 	if (!hwrm_req_send(bp, req))
12360 		result = !!(le16_to_cpu(resp->flags) &
12361 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12362 	hwrm_req_drop(bp, req);
12363 	return result;
12364 }
12365 
12366 static void bnxt_reset_all(struct bnxt *bp)
12367 {
12368 	struct bnxt_fw_health *fw_health = bp->fw_health;
12369 	int i, rc;
12370 
12371 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12372 		bnxt_fw_reset_via_optee(bp);
12373 		bp->fw_reset_timestamp = jiffies;
12374 		return;
12375 	}
12376 
12377 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12378 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12379 			bnxt_fw_reset_writel(bp, i);
12380 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12381 		struct hwrm_fw_reset_input *req;
12382 
12383 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12384 		if (!rc) {
12385 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12386 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12387 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12388 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12389 			rc = hwrm_req_send(bp, req);
12390 		}
12391 		if (rc != -ENODEV)
12392 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12393 	}
12394 	bp->fw_reset_timestamp = jiffies;
12395 }
12396 
12397 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12398 {
12399 	return time_after(jiffies, bp->fw_reset_timestamp +
12400 			  (bp->fw_reset_max_dsecs * HZ / 10));
12401 }
12402 
12403 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12404 {
12405 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12406 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12407 		bnxt_ulp_start(bp, rc);
12408 		bnxt_dl_health_fw_status_update(bp, false);
12409 	}
12410 	bp->fw_reset_state = 0;
12411 	dev_close(bp->dev);
12412 }
12413 
12414 static void bnxt_fw_reset_task(struct work_struct *work)
12415 {
12416 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12417 	int rc = 0;
12418 
12419 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12420 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12421 		return;
12422 	}
12423 
12424 	switch (bp->fw_reset_state) {
12425 	case BNXT_FW_RESET_STATE_POLL_VF: {
12426 		int n = bnxt_get_registered_vfs(bp);
12427 		int tmo;
12428 
12429 		if (n < 0) {
12430 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12431 				   n, jiffies_to_msecs(jiffies -
12432 				   bp->fw_reset_timestamp));
12433 			goto fw_reset_abort;
12434 		} else if (n > 0) {
12435 			if (bnxt_fw_reset_timeout(bp)) {
12436 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12437 				bp->fw_reset_state = 0;
12438 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12439 					   n);
12440 				return;
12441 			}
12442 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12443 			return;
12444 		}
12445 		bp->fw_reset_timestamp = jiffies;
12446 		rtnl_lock();
12447 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12448 			bnxt_fw_reset_abort(bp, rc);
12449 			rtnl_unlock();
12450 			return;
12451 		}
12452 		bnxt_fw_reset_close(bp);
12453 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12454 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12455 			tmo = HZ / 10;
12456 		} else {
12457 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12458 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12459 		}
12460 		rtnl_unlock();
12461 		bnxt_queue_fw_reset_work(bp, tmo);
12462 		return;
12463 	}
12464 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12465 		u32 val;
12466 
12467 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12468 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12469 		    !bnxt_fw_reset_timeout(bp)) {
12470 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12471 			return;
12472 		}
12473 
12474 		if (!bp->fw_health->primary) {
12475 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12476 
12477 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12478 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12479 			return;
12480 		}
12481 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12482 	}
12483 		fallthrough;
12484 	case BNXT_FW_RESET_STATE_RESET_FW:
12485 		bnxt_reset_all(bp);
12486 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12487 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12488 		return;
12489 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12490 		bnxt_inv_fw_health_reg(bp);
12491 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12492 		    !bp->fw_reset_min_dsecs) {
12493 			u16 val;
12494 
12495 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12496 			if (val == 0xffff) {
12497 				if (bnxt_fw_reset_timeout(bp)) {
12498 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12499 					rc = -ETIMEDOUT;
12500 					goto fw_reset_abort;
12501 				}
12502 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12503 				return;
12504 			}
12505 		}
12506 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12507 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12508 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12509 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12510 			bnxt_dl_remote_reload(bp);
12511 		if (pci_enable_device(bp->pdev)) {
12512 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12513 			rc = -ENODEV;
12514 			goto fw_reset_abort;
12515 		}
12516 		pci_set_master(bp->pdev);
12517 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12518 		fallthrough;
12519 	case BNXT_FW_RESET_STATE_POLL_FW:
12520 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12521 		rc = bnxt_hwrm_poll(bp);
12522 		if (rc) {
12523 			if (bnxt_fw_reset_timeout(bp)) {
12524 				netdev_err(bp->dev, "Firmware reset aborted\n");
12525 				goto fw_reset_abort_status;
12526 			}
12527 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12528 			return;
12529 		}
12530 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12531 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12532 		fallthrough;
12533 	case BNXT_FW_RESET_STATE_OPENING:
12534 		while (!rtnl_trylock()) {
12535 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12536 			return;
12537 		}
12538 		rc = bnxt_open(bp->dev);
12539 		if (rc) {
12540 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12541 			bnxt_fw_reset_abort(bp, rc);
12542 			rtnl_unlock();
12543 			return;
12544 		}
12545 
12546 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12547 		    bp->fw_health->enabled) {
12548 			bp->fw_health->last_fw_reset_cnt =
12549 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12550 		}
12551 		bp->fw_reset_state = 0;
12552 		/* Make sure fw_reset_state is 0 before clearing the flag */
12553 		smp_mb__before_atomic();
12554 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12555 		bnxt_ulp_start(bp, 0);
12556 		bnxt_reenable_sriov(bp);
12557 		bnxt_vf_reps_alloc(bp);
12558 		bnxt_vf_reps_open(bp);
12559 		bnxt_ptp_reapply_pps(bp);
12560 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12561 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12562 			bnxt_dl_health_fw_recovery_done(bp);
12563 			bnxt_dl_health_fw_status_update(bp, true);
12564 		}
12565 		rtnl_unlock();
12566 		break;
12567 	}
12568 	return;
12569 
12570 fw_reset_abort_status:
12571 	if (bp->fw_health->status_reliable ||
12572 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12573 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12574 
12575 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12576 	}
12577 fw_reset_abort:
12578 	rtnl_lock();
12579 	bnxt_fw_reset_abort(bp, rc);
12580 	rtnl_unlock();
12581 }
12582 
12583 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12584 {
12585 	int rc;
12586 	struct bnxt *bp = netdev_priv(dev);
12587 
12588 	SET_NETDEV_DEV(dev, &pdev->dev);
12589 
12590 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12591 	rc = pci_enable_device(pdev);
12592 	if (rc) {
12593 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12594 		goto init_err;
12595 	}
12596 
12597 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12598 		dev_err(&pdev->dev,
12599 			"Cannot find PCI device base address, aborting\n");
12600 		rc = -ENODEV;
12601 		goto init_err_disable;
12602 	}
12603 
12604 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12605 	if (rc) {
12606 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12607 		goto init_err_disable;
12608 	}
12609 
12610 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12611 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12612 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12613 		rc = -EIO;
12614 		goto init_err_release;
12615 	}
12616 
12617 	pci_set_master(pdev);
12618 
12619 	bp->dev = dev;
12620 	bp->pdev = pdev;
12621 
12622 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12623 	 * determines the BAR size.
12624 	 */
12625 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12626 	if (!bp->bar0) {
12627 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12628 		rc = -ENOMEM;
12629 		goto init_err_release;
12630 	}
12631 
12632 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12633 	if (!bp->bar2) {
12634 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12635 		rc = -ENOMEM;
12636 		goto init_err_release;
12637 	}
12638 
12639 	pci_enable_pcie_error_reporting(pdev);
12640 
12641 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12642 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12643 
12644 	spin_lock_init(&bp->ntp_fltr_lock);
12645 #if BITS_PER_LONG == 32
12646 	spin_lock_init(&bp->db_lock);
12647 #endif
12648 
12649 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12650 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12651 
12652 	timer_setup(&bp->timer, bnxt_timer, 0);
12653 	bp->current_interval = BNXT_TIMER_INTERVAL;
12654 
12655 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12656 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12657 
12658 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12659 	return 0;
12660 
12661 init_err_release:
12662 	bnxt_unmap_bars(bp, pdev);
12663 	pci_release_regions(pdev);
12664 
12665 init_err_disable:
12666 	pci_disable_device(pdev);
12667 
12668 init_err:
12669 	return rc;
12670 }
12671 
12672 /* rtnl_lock held */
12673 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12674 {
12675 	struct sockaddr *addr = p;
12676 	struct bnxt *bp = netdev_priv(dev);
12677 	int rc = 0;
12678 
12679 	if (!is_valid_ether_addr(addr->sa_data))
12680 		return -EADDRNOTAVAIL;
12681 
12682 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12683 		return 0;
12684 
12685 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12686 	if (rc)
12687 		return rc;
12688 
12689 	eth_hw_addr_set(dev, addr->sa_data);
12690 	if (netif_running(dev)) {
12691 		bnxt_close_nic(bp, false, false);
12692 		rc = bnxt_open_nic(bp, false, false);
12693 	}
12694 
12695 	return rc;
12696 }
12697 
12698 /* rtnl_lock held */
12699 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12700 {
12701 	struct bnxt *bp = netdev_priv(dev);
12702 
12703 	if (netif_running(dev))
12704 		bnxt_close_nic(bp, true, false);
12705 
12706 	dev->mtu = new_mtu;
12707 	bnxt_set_ring_params(bp);
12708 
12709 	if (netif_running(dev))
12710 		return bnxt_open_nic(bp, true, false);
12711 
12712 	return 0;
12713 }
12714 
12715 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12716 {
12717 	struct bnxt *bp = netdev_priv(dev);
12718 	bool sh = false;
12719 	int rc;
12720 
12721 	if (tc > bp->max_tc) {
12722 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12723 			   tc, bp->max_tc);
12724 		return -EINVAL;
12725 	}
12726 
12727 	if (netdev_get_num_tc(dev) == tc)
12728 		return 0;
12729 
12730 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12731 		sh = true;
12732 
12733 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12734 			      sh, tc, bp->tx_nr_rings_xdp);
12735 	if (rc)
12736 		return rc;
12737 
12738 	/* Needs to close the device and do hw resource re-allocations */
12739 	if (netif_running(bp->dev))
12740 		bnxt_close_nic(bp, true, false);
12741 
12742 	if (tc) {
12743 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12744 		netdev_set_num_tc(dev, tc);
12745 	} else {
12746 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12747 		netdev_reset_tc(dev);
12748 	}
12749 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12750 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12751 			       bp->tx_nr_rings + bp->rx_nr_rings;
12752 
12753 	if (netif_running(bp->dev))
12754 		return bnxt_open_nic(bp, true, false);
12755 
12756 	return 0;
12757 }
12758 
12759 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12760 				  void *cb_priv)
12761 {
12762 	struct bnxt *bp = cb_priv;
12763 
12764 	if (!bnxt_tc_flower_enabled(bp) ||
12765 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12766 		return -EOPNOTSUPP;
12767 
12768 	switch (type) {
12769 	case TC_SETUP_CLSFLOWER:
12770 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12771 	default:
12772 		return -EOPNOTSUPP;
12773 	}
12774 }
12775 
12776 LIST_HEAD(bnxt_block_cb_list);
12777 
12778 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12779 			 void *type_data)
12780 {
12781 	struct bnxt *bp = netdev_priv(dev);
12782 
12783 	switch (type) {
12784 	case TC_SETUP_BLOCK:
12785 		return flow_block_cb_setup_simple(type_data,
12786 						  &bnxt_block_cb_list,
12787 						  bnxt_setup_tc_block_cb,
12788 						  bp, bp, true);
12789 	case TC_SETUP_QDISC_MQPRIO: {
12790 		struct tc_mqprio_qopt *mqprio = type_data;
12791 
12792 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12793 
12794 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12795 	}
12796 	default:
12797 		return -EOPNOTSUPP;
12798 	}
12799 }
12800 
12801 #ifdef CONFIG_RFS_ACCEL
12802 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12803 			    struct bnxt_ntuple_filter *f2)
12804 {
12805 	struct flow_keys *keys1 = &f1->fkeys;
12806 	struct flow_keys *keys2 = &f2->fkeys;
12807 
12808 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12809 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12810 		return false;
12811 
12812 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12813 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12814 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12815 			return false;
12816 	} else {
12817 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12818 			   sizeof(keys1->addrs.v6addrs.src)) ||
12819 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12820 			   sizeof(keys1->addrs.v6addrs.dst)))
12821 			return false;
12822 	}
12823 
12824 	if (keys1->ports.ports == keys2->ports.ports &&
12825 	    keys1->control.flags == keys2->control.flags &&
12826 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12827 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12828 		return true;
12829 
12830 	return false;
12831 }
12832 
12833 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12834 			      u16 rxq_index, u32 flow_id)
12835 {
12836 	struct bnxt *bp = netdev_priv(dev);
12837 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12838 	struct flow_keys *fkeys;
12839 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12840 	int rc = 0, idx, bit_id, l2_idx = 0;
12841 	struct hlist_head *head;
12842 	u32 flags;
12843 
12844 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12845 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12846 		int off = 0, j;
12847 
12848 		netif_addr_lock_bh(dev);
12849 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12850 			if (ether_addr_equal(eth->h_dest,
12851 					     vnic->uc_list + off)) {
12852 				l2_idx = j + 1;
12853 				break;
12854 			}
12855 		}
12856 		netif_addr_unlock_bh(dev);
12857 		if (!l2_idx)
12858 			return -EINVAL;
12859 	}
12860 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12861 	if (!new_fltr)
12862 		return -ENOMEM;
12863 
12864 	fkeys = &new_fltr->fkeys;
12865 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12866 		rc = -EPROTONOSUPPORT;
12867 		goto err_free;
12868 	}
12869 
12870 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12871 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12872 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12873 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12874 		rc = -EPROTONOSUPPORT;
12875 		goto err_free;
12876 	}
12877 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12878 	    bp->hwrm_spec_code < 0x10601) {
12879 		rc = -EPROTONOSUPPORT;
12880 		goto err_free;
12881 	}
12882 	flags = fkeys->control.flags;
12883 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12884 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12885 		rc = -EPROTONOSUPPORT;
12886 		goto err_free;
12887 	}
12888 
12889 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12890 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12891 
12892 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12893 	head = &bp->ntp_fltr_hash_tbl[idx];
12894 	rcu_read_lock();
12895 	hlist_for_each_entry_rcu(fltr, head, hash) {
12896 		if (bnxt_fltr_match(fltr, new_fltr)) {
12897 			rcu_read_unlock();
12898 			rc = 0;
12899 			goto err_free;
12900 		}
12901 	}
12902 	rcu_read_unlock();
12903 
12904 	spin_lock_bh(&bp->ntp_fltr_lock);
12905 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12906 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12907 	if (bit_id < 0) {
12908 		spin_unlock_bh(&bp->ntp_fltr_lock);
12909 		rc = -ENOMEM;
12910 		goto err_free;
12911 	}
12912 
12913 	new_fltr->sw_id = (u16)bit_id;
12914 	new_fltr->flow_id = flow_id;
12915 	new_fltr->l2_fltr_idx = l2_idx;
12916 	new_fltr->rxq = rxq_index;
12917 	hlist_add_head_rcu(&new_fltr->hash, head);
12918 	bp->ntp_fltr_count++;
12919 	spin_unlock_bh(&bp->ntp_fltr_lock);
12920 
12921 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12922 	bnxt_queue_sp_work(bp);
12923 
12924 	return new_fltr->sw_id;
12925 
12926 err_free:
12927 	kfree(new_fltr);
12928 	return rc;
12929 }
12930 
12931 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12932 {
12933 	int i;
12934 
12935 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12936 		struct hlist_head *head;
12937 		struct hlist_node *tmp;
12938 		struct bnxt_ntuple_filter *fltr;
12939 		int rc;
12940 
12941 		head = &bp->ntp_fltr_hash_tbl[i];
12942 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12943 			bool del = false;
12944 
12945 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12946 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12947 							fltr->flow_id,
12948 							fltr->sw_id)) {
12949 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12950 									 fltr);
12951 					del = true;
12952 				}
12953 			} else {
12954 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12955 								       fltr);
12956 				if (rc)
12957 					del = true;
12958 				else
12959 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12960 			}
12961 
12962 			if (del) {
12963 				spin_lock_bh(&bp->ntp_fltr_lock);
12964 				hlist_del_rcu(&fltr->hash);
12965 				bp->ntp_fltr_count--;
12966 				spin_unlock_bh(&bp->ntp_fltr_lock);
12967 				synchronize_rcu();
12968 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12969 				kfree(fltr);
12970 			}
12971 		}
12972 	}
12973 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12974 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12975 }
12976 
12977 #else
12978 
12979 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12980 {
12981 }
12982 
12983 #endif /* CONFIG_RFS_ACCEL */
12984 
12985 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12986 {
12987 	struct bnxt *bp = netdev_priv(netdev);
12988 	struct udp_tunnel_info ti;
12989 	unsigned int cmd;
12990 
12991 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12992 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12993 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12994 	else
12995 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12996 
12997 	if (ti.port)
12998 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12999 
13000 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13001 }
13002 
13003 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13004 	.sync_table	= bnxt_udp_tunnel_sync,
13005 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13006 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13007 	.tables		= {
13008 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13009 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13010 	},
13011 };
13012 
13013 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13014 			       struct net_device *dev, u32 filter_mask,
13015 			       int nlflags)
13016 {
13017 	struct bnxt *bp = netdev_priv(dev);
13018 
13019 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13020 				       nlflags, filter_mask, NULL);
13021 }
13022 
13023 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13024 			       u16 flags, struct netlink_ext_ack *extack)
13025 {
13026 	struct bnxt *bp = netdev_priv(dev);
13027 	struct nlattr *attr, *br_spec;
13028 	int rem, rc = 0;
13029 
13030 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13031 		return -EOPNOTSUPP;
13032 
13033 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13034 	if (!br_spec)
13035 		return -EINVAL;
13036 
13037 	nla_for_each_nested(attr, br_spec, rem) {
13038 		u16 mode;
13039 
13040 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13041 			continue;
13042 
13043 		if (nla_len(attr) < sizeof(mode))
13044 			return -EINVAL;
13045 
13046 		mode = nla_get_u16(attr);
13047 		if (mode == bp->br_mode)
13048 			break;
13049 
13050 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13051 		if (!rc)
13052 			bp->br_mode = mode;
13053 		break;
13054 	}
13055 	return rc;
13056 }
13057 
13058 int bnxt_get_port_parent_id(struct net_device *dev,
13059 			    struct netdev_phys_item_id *ppid)
13060 {
13061 	struct bnxt *bp = netdev_priv(dev);
13062 
13063 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13064 		return -EOPNOTSUPP;
13065 
13066 	/* The PF and it's VF-reps only support the switchdev framework */
13067 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13068 		return -EOPNOTSUPP;
13069 
13070 	ppid->id_len = sizeof(bp->dsn);
13071 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13072 
13073 	return 0;
13074 }
13075 
13076 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
13077 {
13078 	struct bnxt *bp = netdev_priv(dev);
13079 
13080 	return &bp->dl_port;
13081 }
13082 
13083 static const struct net_device_ops bnxt_netdev_ops = {
13084 	.ndo_open		= bnxt_open,
13085 	.ndo_start_xmit		= bnxt_start_xmit,
13086 	.ndo_stop		= bnxt_close,
13087 	.ndo_get_stats64	= bnxt_get_stats64,
13088 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13089 	.ndo_eth_ioctl		= bnxt_ioctl,
13090 	.ndo_validate_addr	= eth_validate_addr,
13091 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13092 	.ndo_change_mtu		= bnxt_change_mtu,
13093 	.ndo_fix_features	= bnxt_fix_features,
13094 	.ndo_set_features	= bnxt_set_features,
13095 	.ndo_features_check	= bnxt_features_check,
13096 	.ndo_tx_timeout		= bnxt_tx_timeout,
13097 #ifdef CONFIG_BNXT_SRIOV
13098 	.ndo_get_vf_config	= bnxt_get_vf_config,
13099 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13100 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13101 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13102 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13103 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13104 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13105 #endif
13106 	.ndo_setup_tc           = bnxt_setup_tc,
13107 #ifdef CONFIG_RFS_ACCEL
13108 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13109 #endif
13110 	.ndo_bpf		= bnxt_xdp,
13111 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13112 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13113 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13114 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
13115 };
13116 
13117 static void bnxt_remove_one(struct pci_dev *pdev)
13118 {
13119 	struct net_device *dev = pci_get_drvdata(pdev);
13120 	struct bnxt *bp = netdev_priv(dev);
13121 
13122 	if (BNXT_PF(bp))
13123 		bnxt_sriov_disable(bp);
13124 
13125 	if (BNXT_PF(bp))
13126 		devlink_port_type_clear(&bp->dl_port);
13127 
13128 	bnxt_ptp_clear(bp);
13129 	pci_disable_pcie_error_reporting(pdev);
13130 	unregister_netdev(dev);
13131 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13132 	/* Flush any pending tasks */
13133 	cancel_work_sync(&bp->sp_task);
13134 	cancel_delayed_work_sync(&bp->fw_reset_task);
13135 	bp->sp_event = 0;
13136 
13137 	bnxt_dl_fw_reporters_destroy(bp);
13138 	bnxt_dl_unregister(bp);
13139 	bnxt_shutdown_tc(bp);
13140 
13141 	bnxt_clear_int_mode(bp);
13142 	bnxt_hwrm_func_drv_unrgtr(bp);
13143 	bnxt_free_hwrm_resources(bp);
13144 	bnxt_ethtool_free(bp);
13145 	bnxt_dcb_free(bp);
13146 	kfree(bp->edev);
13147 	bp->edev = NULL;
13148 	kfree(bp->ptp_cfg);
13149 	bp->ptp_cfg = NULL;
13150 	kfree(bp->fw_health);
13151 	bp->fw_health = NULL;
13152 	bnxt_cleanup_pci(bp);
13153 	bnxt_free_ctx_mem(bp);
13154 	kfree(bp->ctx);
13155 	bp->ctx = NULL;
13156 	kfree(bp->rss_indir_tbl);
13157 	bp->rss_indir_tbl = NULL;
13158 	bnxt_free_port_stats(bp);
13159 	free_netdev(dev);
13160 }
13161 
13162 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13163 {
13164 	int rc = 0;
13165 	struct bnxt_link_info *link_info = &bp->link_info;
13166 
13167 	bp->phy_flags = 0;
13168 	rc = bnxt_hwrm_phy_qcaps(bp);
13169 	if (rc) {
13170 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13171 			   rc);
13172 		return rc;
13173 	}
13174 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13175 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13176 	else
13177 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13178 	if (!fw_dflt)
13179 		return 0;
13180 
13181 	mutex_lock(&bp->link_lock);
13182 	rc = bnxt_update_link(bp, false);
13183 	if (rc) {
13184 		mutex_unlock(&bp->link_lock);
13185 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13186 			   rc);
13187 		return rc;
13188 	}
13189 
13190 	/* Older firmware does not have supported_auto_speeds, so assume
13191 	 * that all supported speeds can be autonegotiated.
13192 	 */
13193 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13194 		link_info->support_auto_speeds = link_info->support_speeds;
13195 
13196 	bnxt_init_ethtool_link_settings(bp);
13197 	mutex_unlock(&bp->link_lock);
13198 	return 0;
13199 }
13200 
13201 static int bnxt_get_max_irq(struct pci_dev *pdev)
13202 {
13203 	u16 ctrl;
13204 
13205 	if (!pdev->msix_cap)
13206 		return 1;
13207 
13208 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13209 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13210 }
13211 
13212 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13213 				int *max_cp)
13214 {
13215 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13216 	int max_ring_grps = 0, max_irq;
13217 
13218 	*max_tx = hw_resc->max_tx_rings;
13219 	*max_rx = hw_resc->max_rx_rings;
13220 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13221 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13222 			bnxt_get_ulp_msix_num(bp),
13223 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13224 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13225 		*max_cp = min_t(int, *max_cp, max_irq);
13226 	max_ring_grps = hw_resc->max_hw_ring_grps;
13227 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13228 		*max_cp -= 1;
13229 		*max_rx -= 2;
13230 	}
13231 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13232 		*max_rx >>= 1;
13233 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13234 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13235 		/* On P5 chips, max_cp output param should be available NQs */
13236 		*max_cp = max_irq;
13237 	}
13238 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13239 }
13240 
13241 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13242 {
13243 	int rx, tx, cp;
13244 
13245 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13246 	*max_rx = rx;
13247 	*max_tx = tx;
13248 	if (!rx || !tx || !cp)
13249 		return -ENOMEM;
13250 
13251 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13252 }
13253 
13254 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13255 			       bool shared)
13256 {
13257 	int rc;
13258 
13259 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13260 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13261 		/* Not enough rings, try disabling agg rings. */
13262 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13263 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13264 		if (rc) {
13265 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13266 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13267 			return rc;
13268 		}
13269 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13270 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13271 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13272 		bnxt_set_ring_params(bp);
13273 	}
13274 
13275 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13276 		int max_cp, max_stat, max_irq;
13277 
13278 		/* Reserve minimum resources for RoCE */
13279 		max_cp = bnxt_get_max_func_cp_rings(bp);
13280 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13281 		max_irq = bnxt_get_max_func_irqs(bp);
13282 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13283 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13284 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13285 			return 0;
13286 
13287 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13288 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13289 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13290 		max_cp = min_t(int, max_cp, max_irq);
13291 		max_cp = min_t(int, max_cp, max_stat);
13292 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13293 		if (rc)
13294 			rc = 0;
13295 	}
13296 	return rc;
13297 }
13298 
13299 /* In initial default shared ring setting, each shared ring must have a
13300  * RX/TX ring pair.
13301  */
13302 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13303 {
13304 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13305 	bp->rx_nr_rings = bp->cp_nr_rings;
13306 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13307 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13308 }
13309 
13310 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13311 {
13312 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13313 
13314 	if (!bnxt_can_reserve_rings(bp))
13315 		return 0;
13316 
13317 	if (sh)
13318 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13319 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13320 	/* Reduce default rings on multi-port cards so that total default
13321 	 * rings do not exceed CPU count.
13322 	 */
13323 	if (bp->port_count > 1) {
13324 		int max_rings =
13325 			max_t(int, num_online_cpus() / bp->port_count, 1);
13326 
13327 		dflt_rings = min_t(int, dflt_rings, max_rings);
13328 	}
13329 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13330 	if (rc)
13331 		return rc;
13332 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13333 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13334 	if (sh)
13335 		bnxt_trim_dflt_sh_rings(bp);
13336 	else
13337 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13338 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13339 
13340 	rc = __bnxt_reserve_rings(bp);
13341 	if (rc && rc != -ENODEV)
13342 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13343 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13344 	if (sh)
13345 		bnxt_trim_dflt_sh_rings(bp);
13346 
13347 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13348 	if (bnxt_need_reserve_rings(bp)) {
13349 		rc = __bnxt_reserve_rings(bp);
13350 		if (rc && rc != -ENODEV)
13351 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13352 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13353 	}
13354 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13355 		bp->rx_nr_rings++;
13356 		bp->cp_nr_rings++;
13357 	}
13358 	if (rc) {
13359 		bp->tx_nr_rings = 0;
13360 		bp->rx_nr_rings = 0;
13361 	}
13362 	return rc;
13363 }
13364 
13365 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13366 {
13367 	int rc;
13368 
13369 	if (bp->tx_nr_rings)
13370 		return 0;
13371 
13372 	bnxt_ulp_irq_stop(bp);
13373 	bnxt_clear_int_mode(bp);
13374 	rc = bnxt_set_dflt_rings(bp, true);
13375 	if (rc) {
13376 		if (BNXT_VF(bp) && rc == -ENODEV)
13377 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13378 		else
13379 			netdev_err(bp->dev, "Not enough rings available.\n");
13380 		goto init_dflt_ring_err;
13381 	}
13382 	rc = bnxt_init_int_mode(bp);
13383 	if (rc)
13384 		goto init_dflt_ring_err;
13385 
13386 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13387 
13388 	bnxt_set_dflt_rfs(bp);
13389 
13390 init_dflt_ring_err:
13391 	bnxt_ulp_irq_restart(bp, rc);
13392 	return rc;
13393 }
13394 
13395 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13396 {
13397 	int rc;
13398 
13399 	ASSERT_RTNL();
13400 	bnxt_hwrm_func_qcaps(bp);
13401 
13402 	if (netif_running(bp->dev))
13403 		__bnxt_close_nic(bp, true, false);
13404 
13405 	bnxt_ulp_irq_stop(bp);
13406 	bnxt_clear_int_mode(bp);
13407 	rc = bnxt_init_int_mode(bp);
13408 	bnxt_ulp_irq_restart(bp, rc);
13409 
13410 	if (netif_running(bp->dev)) {
13411 		if (rc)
13412 			dev_close(bp->dev);
13413 		else
13414 			rc = bnxt_open_nic(bp, true, false);
13415 	}
13416 
13417 	return rc;
13418 }
13419 
13420 static int bnxt_init_mac_addr(struct bnxt *bp)
13421 {
13422 	int rc = 0;
13423 
13424 	if (BNXT_PF(bp)) {
13425 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13426 	} else {
13427 #ifdef CONFIG_BNXT_SRIOV
13428 		struct bnxt_vf_info *vf = &bp->vf;
13429 		bool strict_approval = true;
13430 
13431 		if (is_valid_ether_addr(vf->mac_addr)) {
13432 			/* overwrite netdev dev_addr with admin VF MAC */
13433 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13434 			/* Older PF driver or firmware may not approve this
13435 			 * correctly.
13436 			 */
13437 			strict_approval = false;
13438 		} else {
13439 			eth_hw_addr_random(bp->dev);
13440 		}
13441 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13442 #endif
13443 	}
13444 	return rc;
13445 }
13446 
13447 static void bnxt_vpd_read_info(struct bnxt *bp)
13448 {
13449 	struct pci_dev *pdev = bp->pdev;
13450 	unsigned int vpd_size, kw_len;
13451 	int pos, size;
13452 	u8 *vpd_data;
13453 
13454 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13455 	if (IS_ERR(vpd_data)) {
13456 		pci_warn(pdev, "Unable to read VPD\n");
13457 		return;
13458 	}
13459 
13460 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13461 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13462 	if (pos < 0)
13463 		goto read_sn;
13464 
13465 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13466 	memcpy(bp->board_partno, &vpd_data[pos], size);
13467 
13468 read_sn:
13469 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13470 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13471 					   &kw_len);
13472 	if (pos < 0)
13473 		goto exit;
13474 
13475 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13476 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13477 exit:
13478 	kfree(vpd_data);
13479 }
13480 
13481 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13482 {
13483 	struct pci_dev *pdev = bp->pdev;
13484 	u64 qword;
13485 
13486 	qword = pci_get_dsn(pdev);
13487 	if (!qword) {
13488 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13489 		return -EOPNOTSUPP;
13490 	}
13491 
13492 	put_unaligned_le64(qword, dsn);
13493 
13494 	bp->flags |= BNXT_FLAG_DSN_VALID;
13495 	return 0;
13496 }
13497 
13498 static int bnxt_map_db_bar(struct bnxt *bp)
13499 {
13500 	if (!bp->db_size)
13501 		return -ENODEV;
13502 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13503 	if (!bp->bar1)
13504 		return -ENOMEM;
13505 	return 0;
13506 }
13507 
13508 void bnxt_print_device_info(struct bnxt *bp)
13509 {
13510 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13511 		    board_info[bp->board_idx].name,
13512 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13513 
13514 	pcie_print_link_status(bp->pdev);
13515 }
13516 
13517 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13518 {
13519 	struct net_device *dev;
13520 	struct bnxt *bp;
13521 	int rc, max_irqs;
13522 
13523 	if (pci_is_bridge(pdev))
13524 		return -ENODEV;
13525 
13526 	/* Clear any pending DMA transactions from crash kernel
13527 	 * while loading driver in capture kernel.
13528 	 */
13529 	if (is_kdump_kernel()) {
13530 		pci_clear_master(pdev);
13531 		pcie_flr(pdev);
13532 	}
13533 
13534 	max_irqs = bnxt_get_max_irq(pdev);
13535 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13536 	if (!dev)
13537 		return -ENOMEM;
13538 
13539 	bp = netdev_priv(dev);
13540 	bp->board_idx = ent->driver_data;
13541 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13542 	bnxt_set_max_func_irqs(bp, max_irqs);
13543 
13544 	if (bnxt_vf_pciid(bp->board_idx))
13545 		bp->flags |= BNXT_FLAG_VF;
13546 
13547 	if (pdev->msix_cap)
13548 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13549 
13550 	rc = bnxt_init_board(pdev, dev);
13551 	if (rc < 0)
13552 		goto init_err_free;
13553 
13554 	dev->netdev_ops = &bnxt_netdev_ops;
13555 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13556 	dev->ethtool_ops = &bnxt_ethtool_ops;
13557 	pci_set_drvdata(pdev, dev);
13558 
13559 	rc = bnxt_alloc_hwrm_resources(bp);
13560 	if (rc)
13561 		goto init_err_pci_clean;
13562 
13563 	mutex_init(&bp->hwrm_cmd_lock);
13564 	mutex_init(&bp->link_lock);
13565 
13566 	rc = bnxt_fw_init_one_p1(bp);
13567 	if (rc)
13568 		goto init_err_pci_clean;
13569 
13570 	if (BNXT_PF(bp))
13571 		bnxt_vpd_read_info(bp);
13572 
13573 	if (BNXT_CHIP_P5(bp)) {
13574 		bp->flags |= BNXT_FLAG_CHIP_P5;
13575 		if (BNXT_CHIP_SR2(bp))
13576 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13577 	}
13578 
13579 	rc = bnxt_alloc_rss_indir_tbl(bp);
13580 	if (rc)
13581 		goto init_err_pci_clean;
13582 
13583 	rc = bnxt_fw_init_one_p2(bp);
13584 	if (rc)
13585 		goto init_err_pci_clean;
13586 
13587 	rc = bnxt_map_db_bar(bp);
13588 	if (rc) {
13589 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13590 			rc);
13591 		goto init_err_pci_clean;
13592 	}
13593 
13594 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13595 			   NETIF_F_TSO | NETIF_F_TSO6 |
13596 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13597 			   NETIF_F_GSO_IPXIP4 |
13598 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13599 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13600 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13601 
13602 	if (BNXT_SUPPORTS_TPA(bp))
13603 		dev->hw_features |= NETIF_F_LRO;
13604 
13605 	dev->hw_enc_features =
13606 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13607 			NETIF_F_TSO | NETIF_F_TSO6 |
13608 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13609 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13610 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13611 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13612 
13613 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13614 				    NETIF_F_GSO_GRE_CSUM;
13615 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13616 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13617 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13618 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13619 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13620 	if (BNXT_SUPPORTS_TPA(bp))
13621 		dev->hw_features |= NETIF_F_GRO_HW;
13622 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13623 	if (dev->features & NETIF_F_GRO_HW)
13624 		dev->features &= ~NETIF_F_LRO;
13625 	dev->priv_flags |= IFF_UNICAST_FLT;
13626 
13627 #ifdef CONFIG_BNXT_SRIOV
13628 	init_waitqueue_head(&bp->sriov_cfg_wait);
13629 #endif
13630 	if (BNXT_SUPPORTS_TPA(bp)) {
13631 		bp->gro_func = bnxt_gro_func_5730x;
13632 		if (BNXT_CHIP_P4(bp))
13633 			bp->gro_func = bnxt_gro_func_5731x;
13634 		else if (BNXT_CHIP_P5(bp))
13635 			bp->gro_func = bnxt_gro_func_5750x;
13636 	}
13637 	if (!BNXT_CHIP_P4_PLUS(bp))
13638 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13639 
13640 	rc = bnxt_init_mac_addr(bp);
13641 	if (rc) {
13642 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13643 		rc = -EADDRNOTAVAIL;
13644 		goto init_err_pci_clean;
13645 	}
13646 
13647 	if (BNXT_PF(bp)) {
13648 		/* Read the adapter's DSN to use as the eswitch switch_id */
13649 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13650 	}
13651 
13652 	/* MTU range: 60 - FW defined max */
13653 	dev->min_mtu = ETH_ZLEN;
13654 	dev->max_mtu = bp->max_mtu;
13655 
13656 	rc = bnxt_probe_phy(bp, true);
13657 	if (rc)
13658 		goto init_err_pci_clean;
13659 
13660 	bnxt_set_rx_skb_mode(bp, false);
13661 	bnxt_set_tpa_flags(bp);
13662 	bnxt_set_ring_params(bp);
13663 	rc = bnxt_set_dflt_rings(bp, true);
13664 	if (rc) {
13665 		if (BNXT_VF(bp) && rc == -ENODEV) {
13666 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13667 		} else {
13668 			netdev_err(bp->dev, "Not enough rings available.\n");
13669 			rc = -ENOMEM;
13670 		}
13671 		goto init_err_pci_clean;
13672 	}
13673 
13674 	bnxt_fw_init_one_p3(bp);
13675 
13676 	bnxt_init_dflt_coal(bp);
13677 
13678 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13679 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13680 
13681 	rc = bnxt_init_int_mode(bp);
13682 	if (rc)
13683 		goto init_err_pci_clean;
13684 
13685 	/* No TC has been set yet and rings may have been trimmed due to
13686 	 * limited MSIX, so we re-initialize the TX rings per TC.
13687 	 */
13688 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13689 
13690 	if (BNXT_PF(bp)) {
13691 		if (!bnxt_pf_wq) {
13692 			bnxt_pf_wq =
13693 				create_singlethread_workqueue("bnxt_pf_wq");
13694 			if (!bnxt_pf_wq) {
13695 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13696 				rc = -ENOMEM;
13697 				goto init_err_pci_clean;
13698 			}
13699 		}
13700 		rc = bnxt_init_tc(bp);
13701 		if (rc)
13702 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13703 				   rc);
13704 	}
13705 
13706 	bnxt_inv_fw_health_reg(bp);
13707 	rc = bnxt_dl_register(bp);
13708 	if (rc)
13709 		goto init_err_dl;
13710 
13711 	rc = register_netdev(dev);
13712 	if (rc)
13713 		goto init_err_cleanup;
13714 
13715 	if (BNXT_PF(bp))
13716 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13717 	bnxt_dl_fw_reporters_create(bp);
13718 
13719 	bnxt_print_device_info(bp);
13720 
13721 	pci_save_state(pdev);
13722 	return 0;
13723 
13724 init_err_cleanup:
13725 	bnxt_dl_unregister(bp);
13726 init_err_dl:
13727 	bnxt_shutdown_tc(bp);
13728 	bnxt_clear_int_mode(bp);
13729 
13730 init_err_pci_clean:
13731 	bnxt_hwrm_func_drv_unrgtr(bp);
13732 	bnxt_free_hwrm_resources(bp);
13733 	bnxt_ethtool_free(bp);
13734 	bnxt_ptp_clear(bp);
13735 	kfree(bp->ptp_cfg);
13736 	bp->ptp_cfg = NULL;
13737 	kfree(bp->fw_health);
13738 	bp->fw_health = NULL;
13739 	bnxt_cleanup_pci(bp);
13740 	bnxt_free_ctx_mem(bp);
13741 	kfree(bp->ctx);
13742 	bp->ctx = NULL;
13743 	kfree(bp->rss_indir_tbl);
13744 	bp->rss_indir_tbl = NULL;
13745 
13746 init_err_free:
13747 	free_netdev(dev);
13748 	return rc;
13749 }
13750 
13751 static void bnxt_shutdown(struct pci_dev *pdev)
13752 {
13753 	struct net_device *dev = pci_get_drvdata(pdev);
13754 	struct bnxt *bp;
13755 
13756 	if (!dev)
13757 		return;
13758 
13759 	rtnl_lock();
13760 	bp = netdev_priv(dev);
13761 	if (!bp)
13762 		goto shutdown_exit;
13763 
13764 	if (netif_running(dev))
13765 		dev_close(dev);
13766 
13767 	bnxt_ulp_shutdown(bp);
13768 	bnxt_clear_int_mode(bp);
13769 	pci_disable_device(pdev);
13770 
13771 	if (system_state == SYSTEM_POWER_OFF) {
13772 		pci_wake_from_d3(pdev, bp->wol);
13773 		pci_set_power_state(pdev, PCI_D3hot);
13774 	}
13775 
13776 shutdown_exit:
13777 	rtnl_unlock();
13778 }
13779 
13780 #ifdef CONFIG_PM_SLEEP
13781 static int bnxt_suspend(struct device *device)
13782 {
13783 	struct net_device *dev = dev_get_drvdata(device);
13784 	struct bnxt *bp = netdev_priv(dev);
13785 	int rc = 0;
13786 
13787 	rtnl_lock();
13788 	bnxt_ulp_stop(bp);
13789 	if (netif_running(dev)) {
13790 		netif_device_detach(dev);
13791 		rc = bnxt_close(dev);
13792 	}
13793 	bnxt_hwrm_func_drv_unrgtr(bp);
13794 	pci_disable_device(bp->pdev);
13795 	bnxt_free_ctx_mem(bp);
13796 	kfree(bp->ctx);
13797 	bp->ctx = NULL;
13798 	rtnl_unlock();
13799 	return rc;
13800 }
13801 
13802 static int bnxt_resume(struct device *device)
13803 {
13804 	struct net_device *dev = dev_get_drvdata(device);
13805 	struct bnxt *bp = netdev_priv(dev);
13806 	int rc = 0;
13807 
13808 	rtnl_lock();
13809 	rc = pci_enable_device(bp->pdev);
13810 	if (rc) {
13811 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13812 			   rc);
13813 		goto resume_exit;
13814 	}
13815 	pci_set_master(bp->pdev);
13816 	if (bnxt_hwrm_ver_get(bp)) {
13817 		rc = -ENODEV;
13818 		goto resume_exit;
13819 	}
13820 	rc = bnxt_hwrm_func_reset(bp);
13821 	if (rc) {
13822 		rc = -EBUSY;
13823 		goto resume_exit;
13824 	}
13825 
13826 	rc = bnxt_hwrm_func_qcaps(bp);
13827 	if (rc)
13828 		goto resume_exit;
13829 
13830 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13831 		rc = -ENODEV;
13832 		goto resume_exit;
13833 	}
13834 
13835 	bnxt_get_wol_settings(bp);
13836 	if (netif_running(dev)) {
13837 		rc = bnxt_open(dev);
13838 		if (!rc)
13839 			netif_device_attach(dev);
13840 	}
13841 
13842 resume_exit:
13843 	bnxt_ulp_start(bp, rc);
13844 	if (!rc)
13845 		bnxt_reenable_sriov(bp);
13846 	rtnl_unlock();
13847 	return rc;
13848 }
13849 
13850 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13851 #define BNXT_PM_OPS (&bnxt_pm_ops)
13852 
13853 #else
13854 
13855 #define BNXT_PM_OPS NULL
13856 
13857 #endif /* CONFIG_PM_SLEEP */
13858 
13859 /**
13860  * bnxt_io_error_detected - called when PCI error is detected
13861  * @pdev: Pointer to PCI device
13862  * @state: The current pci connection state
13863  *
13864  * This function is called after a PCI bus error affecting
13865  * this device has been detected.
13866  */
13867 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13868 					       pci_channel_state_t state)
13869 {
13870 	struct net_device *netdev = pci_get_drvdata(pdev);
13871 	struct bnxt *bp = netdev_priv(netdev);
13872 
13873 	netdev_info(netdev, "PCI I/O error detected\n");
13874 
13875 	rtnl_lock();
13876 	netif_device_detach(netdev);
13877 
13878 	bnxt_ulp_stop(bp);
13879 
13880 	if (state == pci_channel_io_perm_failure) {
13881 		rtnl_unlock();
13882 		return PCI_ERS_RESULT_DISCONNECT;
13883 	}
13884 
13885 	if (state == pci_channel_io_frozen)
13886 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13887 
13888 	if (netif_running(netdev))
13889 		bnxt_close(netdev);
13890 
13891 	if (pci_is_enabled(pdev))
13892 		pci_disable_device(pdev);
13893 	bnxt_free_ctx_mem(bp);
13894 	kfree(bp->ctx);
13895 	bp->ctx = NULL;
13896 	rtnl_unlock();
13897 
13898 	/* Request a slot slot reset. */
13899 	return PCI_ERS_RESULT_NEED_RESET;
13900 }
13901 
13902 /**
13903  * bnxt_io_slot_reset - called after the pci bus has been reset.
13904  * @pdev: Pointer to PCI device
13905  *
13906  * Restart the card from scratch, as if from a cold-boot.
13907  * At this point, the card has exprienced a hard reset,
13908  * followed by fixups by BIOS, and has its config space
13909  * set up identically to what it was at cold boot.
13910  */
13911 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13912 {
13913 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13914 	struct net_device *netdev = pci_get_drvdata(pdev);
13915 	struct bnxt *bp = netdev_priv(netdev);
13916 	int err = 0, off;
13917 
13918 	netdev_info(bp->dev, "PCI Slot Reset\n");
13919 
13920 	rtnl_lock();
13921 
13922 	if (pci_enable_device(pdev)) {
13923 		dev_err(&pdev->dev,
13924 			"Cannot re-enable PCI device after reset.\n");
13925 	} else {
13926 		pci_set_master(pdev);
13927 		/* Upon fatal error, our device internal logic that latches to
13928 		 * BAR value is getting reset and will restore only upon
13929 		 * rewritting the BARs.
13930 		 *
13931 		 * As pci_restore_state() does not re-write the BARs if the
13932 		 * value is same as saved value earlier, driver needs to
13933 		 * write the BARs to 0 to force restore, in case of fatal error.
13934 		 */
13935 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13936 				       &bp->state)) {
13937 			for (off = PCI_BASE_ADDRESS_0;
13938 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13939 				pci_write_config_dword(bp->pdev, off, 0);
13940 		}
13941 		pci_restore_state(pdev);
13942 		pci_save_state(pdev);
13943 
13944 		err = bnxt_hwrm_func_reset(bp);
13945 		if (!err)
13946 			result = PCI_ERS_RESULT_RECOVERED;
13947 	}
13948 
13949 	rtnl_unlock();
13950 
13951 	return result;
13952 }
13953 
13954 /**
13955  * bnxt_io_resume - called when traffic can start flowing again.
13956  * @pdev: Pointer to PCI device
13957  *
13958  * This callback is called when the error recovery driver tells
13959  * us that its OK to resume normal operation.
13960  */
13961 static void bnxt_io_resume(struct pci_dev *pdev)
13962 {
13963 	struct net_device *netdev = pci_get_drvdata(pdev);
13964 	struct bnxt *bp = netdev_priv(netdev);
13965 	int err;
13966 
13967 	netdev_info(bp->dev, "PCI Slot Resume\n");
13968 	rtnl_lock();
13969 
13970 	err = bnxt_hwrm_func_qcaps(bp);
13971 	if (!err && netif_running(netdev))
13972 		err = bnxt_open(netdev);
13973 
13974 	bnxt_ulp_start(bp, err);
13975 	if (!err) {
13976 		bnxt_reenable_sriov(bp);
13977 		netif_device_attach(netdev);
13978 	}
13979 
13980 	rtnl_unlock();
13981 }
13982 
13983 static const struct pci_error_handlers bnxt_err_handler = {
13984 	.error_detected	= bnxt_io_error_detected,
13985 	.slot_reset	= bnxt_io_slot_reset,
13986 	.resume		= bnxt_io_resume
13987 };
13988 
13989 static struct pci_driver bnxt_pci_driver = {
13990 	.name		= DRV_MODULE_NAME,
13991 	.id_table	= bnxt_pci_tbl,
13992 	.probe		= bnxt_init_one,
13993 	.remove		= bnxt_remove_one,
13994 	.shutdown	= bnxt_shutdown,
13995 	.driver.pm	= BNXT_PM_OPS,
13996 	.err_handler	= &bnxt_err_handler,
13997 #if defined(CONFIG_BNXT_SRIOV)
13998 	.sriov_configure = bnxt_sriov_configure,
13999 #endif
14000 };
14001 
14002 static int __init bnxt_init(void)
14003 {
14004 	bnxt_debug_init();
14005 	return pci_register_driver(&bnxt_pci_driver);
14006 }
14007 
14008 static void __exit bnxt_exit(void)
14009 {
14010 	pci_unregister_driver(&bnxt_pci_driver);
14011 	if (bnxt_pf_wq)
14012 		destroy_workqueue(bnxt_pf_wq);
14013 	bnxt_debug_exit();
14014 }
14015 
14016 module_init(bnxt_init);
14017 module_exit(bnxt_exit);
14018