xref: /linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision 44f57d78)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 
59 /*
60  * Rx buffer size.  We use largish buffers if possible but settle for single
61  * pages under memory shortage.
62  */
63 #if PAGE_SHIFT >= 16
64 # define FL_PG_ORDER 0
65 #else
66 # define FL_PG_ORDER (16 - PAGE_SHIFT)
67 #endif
68 
69 /* RX_PULL_LEN should be <= RX_COPY_THRES */
70 #define RX_COPY_THRES    256
71 #define RX_PULL_LEN      128
72 
73 /*
74  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
75  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
76  */
77 #define RX_PKT_SKB_LEN   512
78 
79 /*
80  * Max number of Tx descriptors we clean up at a time.  Should be modest as
81  * freeing skbs isn't cheap and it happens while holding locks.  We just need
82  * to free packets faster than they arrive, we eventually catch up and keep
83  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
84  * also match the CIDX Flush Threshold.
85  */
86 #define MAX_TX_RECLAIM 32
87 
88 /*
89  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
90  * allocating buffers isn't cheap either.
91  */
92 #define MAX_RX_REFILL 16U
93 
94 /*
95  * Period of the Rx queue check timer.  This timer is infrequent as it has
96  * something to do only when the system experiences severe memory shortage.
97  */
98 #define RX_QCHECK_PERIOD (HZ / 2)
99 
100 /*
101  * Period of the Tx queue check timer.
102  */
103 #define TX_QCHECK_PERIOD (HZ / 2)
104 
105 /*
106  * Max number of Tx descriptors to be reclaimed by the Tx timer.
107  */
108 #define MAX_TIMER_TX_RECLAIM 100
109 
110 /*
111  * Timer index used when backing off due to memory shortage.
112  */
113 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
114 
115 /*
116  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
117  * for a full sized WR.
118  */
119 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
120 
121 /*
122  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
123  * into a WR.
124  */
125 #define MAX_IMM_TX_PKT_LEN 256
126 
127 /*
128  * Max size of a WR sent through a control Tx queue.
129  */
130 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
131 
132 struct rx_sw_desc {                /* SW state per Rx descriptor */
133 	struct page *page;
134 	dma_addr_t dma_addr;
135 };
136 
137 /*
138  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
139  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
140  * We could easily support more but there doesn't seem to be much need for
141  * that ...
142  */
143 #define FL_MTU_SMALL 1500
144 #define FL_MTU_LARGE 9000
145 
146 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
147 					  unsigned int mtu)
148 {
149 	struct sge *s = &adapter->sge;
150 
151 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
152 }
153 
154 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
155 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
156 
157 /*
158  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
159  * these to specify the buffer size as an index into the SGE Free List Buffer
160  * Size register array.  We also use bit 4, when the buffer has been unmapped
161  * for DMA, but this is of course never sent to the hardware and is only used
162  * to prevent double unmappings.  All of the above requires that the Free List
163  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
164  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
165  * Free List Buffer alignment is 32 bytes, this works out for us ...
166  */
167 enum {
168 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
169 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
170 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
171 
172 	/*
173 	 * XXX We shouldn't depend on being able to use these indices.
174 	 * XXX Especially when some other Master PF has initialized the
175 	 * XXX adapter or we use the Firmware Configuration File.  We
176 	 * XXX should really search through the Host Buffer Size register
177 	 * XXX array for the appropriately sized buffer indices.
178 	 */
179 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
180 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
181 
182 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
183 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
184 };
185 
186 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
187 #define MIN_NAPI_WORK  1
188 
189 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
190 {
191 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
192 }
193 
194 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
195 {
196 	return !(d->dma_addr & RX_UNMAPPED_BUF);
197 }
198 
199 /**
200  *	txq_avail - return the number of available slots in a Tx queue
201  *	@q: the Tx queue
202  *
203  *	Returns the number of descriptors in a Tx queue available to write new
204  *	packets.
205  */
206 static inline unsigned int txq_avail(const struct sge_txq *q)
207 {
208 	return q->size - 1 - q->in_use;
209 }
210 
211 /**
212  *	fl_cap - return the capacity of a free-buffer list
213  *	@fl: the FL
214  *
215  *	Returns the capacity of a free-buffer list.  The capacity is less than
216  *	the size because one descriptor needs to be left unpopulated, otherwise
217  *	HW will think the FL is empty.
218  */
219 static inline unsigned int fl_cap(const struct sge_fl *fl)
220 {
221 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
222 }
223 
224 /**
225  *	fl_starving - return whether a Free List is starving.
226  *	@adapter: pointer to the adapter
227  *	@fl: the Free List
228  *
229  *	Tests specified Free List to see whether the number of buffers
230  *	available to the hardware has falled below our "starvation"
231  *	threshold.
232  */
233 static inline bool fl_starving(const struct adapter *adapter,
234 			       const struct sge_fl *fl)
235 {
236 	const struct sge *s = &adapter->sge;
237 
238 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
239 }
240 
241 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
242 		  dma_addr_t *addr)
243 {
244 	const skb_frag_t *fp, *end;
245 	const struct skb_shared_info *si;
246 
247 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
248 	if (dma_mapping_error(dev, *addr))
249 		goto out_err;
250 
251 	si = skb_shinfo(skb);
252 	end = &si->frags[si->nr_frags];
253 
254 	for (fp = si->frags; fp < end; fp++) {
255 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
256 					   DMA_TO_DEVICE);
257 		if (dma_mapping_error(dev, *addr))
258 			goto unwind;
259 	}
260 	return 0;
261 
262 unwind:
263 	while (fp-- > si->frags)
264 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
265 
266 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
267 out_err:
268 	return -ENOMEM;
269 }
270 EXPORT_SYMBOL(cxgb4_map_skb);
271 
272 #ifdef CONFIG_NEED_DMA_MAP_STATE
273 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
274 		      const dma_addr_t *addr)
275 {
276 	const skb_frag_t *fp, *end;
277 	const struct skb_shared_info *si;
278 
279 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
280 
281 	si = skb_shinfo(skb);
282 	end = &si->frags[si->nr_frags];
283 	for (fp = si->frags; fp < end; fp++)
284 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
285 }
286 
287 /**
288  *	deferred_unmap_destructor - unmap a packet when it is freed
289  *	@skb: the packet
290  *
291  *	This is the packet destructor used for Tx packets that need to remain
292  *	mapped until they are freed rather than until their Tx descriptors are
293  *	freed.
294  */
295 static void deferred_unmap_destructor(struct sk_buff *skb)
296 {
297 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
298 }
299 #endif
300 
301 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
302 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
303 {
304 	const struct ulptx_sge_pair *p;
305 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
306 
307 	if (likely(skb_headlen(skb)))
308 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
309 				 DMA_TO_DEVICE);
310 	else {
311 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
312 			       DMA_TO_DEVICE);
313 		nfrags--;
314 	}
315 
316 	/*
317 	 * the complexity below is because of the possibility of a wrap-around
318 	 * in the middle of an SGL
319 	 */
320 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
321 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
322 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
323 				       ntohl(p->len[0]), DMA_TO_DEVICE);
324 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
325 				       ntohl(p->len[1]), DMA_TO_DEVICE);
326 			p++;
327 		} else if ((u8 *)p == (u8 *)q->stat) {
328 			p = (const struct ulptx_sge_pair *)q->desc;
329 			goto unmap;
330 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
331 			const __be64 *addr = (const __be64 *)q->desc;
332 
333 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
334 				       ntohl(p->len[0]), DMA_TO_DEVICE);
335 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
336 				       ntohl(p->len[1]), DMA_TO_DEVICE);
337 			p = (const struct ulptx_sge_pair *)&addr[2];
338 		} else {
339 			const __be64 *addr = (const __be64 *)q->desc;
340 
341 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
342 				       ntohl(p->len[0]), DMA_TO_DEVICE);
343 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
344 				       ntohl(p->len[1]), DMA_TO_DEVICE);
345 			p = (const struct ulptx_sge_pair *)&addr[1];
346 		}
347 	}
348 	if (nfrags) {
349 		__be64 addr;
350 
351 		if ((u8 *)p == (u8 *)q->stat)
352 			p = (const struct ulptx_sge_pair *)q->desc;
353 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
354 						       *(const __be64 *)q->desc;
355 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
356 			       DMA_TO_DEVICE);
357 	}
358 }
359 
360 /**
361  *	free_tx_desc - reclaims Tx descriptors and their buffers
362  *	@adapter: the adapter
363  *	@q: the Tx queue to reclaim descriptors from
364  *	@n: the number of descriptors to reclaim
365  *	@unmap: whether the buffers should be unmapped for DMA
366  *
367  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
368  *	Tx buffers.  Called with the Tx queue lock held.
369  */
370 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
371 		  unsigned int n, bool unmap)
372 {
373 	struct tx_sw_desc *d;
374 	unsigned int cidx = q->cidx;
375 	struct device *dev = adap->pdev_dev;
376 
377 	d = &q->sdesc[cidx];
378 	while (n--) {
379 		if (d->skb) {                       /* an SGL is present */
380 			if (unmap)
381 				unmap_sgl(dev, d->skb, d->sgl, q);
382 			dev_consume_skb_any(d->skb);
383 			d->skb = NULL;
384 		}
385 		++d;
386 		if (++cidx == q->size) {
387 			cidx = 0;
388 			d = q->sdesc;
389 		}
390 	}
391 	q->cidx = cidx;
392 }
393 
394 /*
395  * Return the number of reclaimable descriptors in a Tx queue.
396  */
397 static inline int reclaimable(const struct sge_txq *q)
398 {
399 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
400 	hw_cidx -= q->cidx;
401 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
402 }
403 
404 /**
405  *	reclaim_completed_tx - reclaims completed TX Descriptors
406  *	@adap: the adapter
407  *	@q: the Tx queue to reclaim completed descriptors from
408  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
409  *	@unmap: whether the buffers should be unmapped for DMA
410  *
411  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
412  *	and frees the associated buffers if possible.  If @max == -1, then
413  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
414  */
415 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
416 				       int maxreclaim, bool unmap)
417 {
418 	int reclaim = reclaimable(q);
419 
420 	if (reclaim) {
421 		/*
422 		 * Limit the amount of clean up work we do at a time to keep
423 		 * the Tx lock hold time O(1).
424 		 */
425 		if (maxreclaim < 0)
426 			maxreclaim = MAX_TX_RECLAIM;
427 		if (reclaim > maxreclaim)
428 			reclaim = maxreclaim;
429 
430 		free_tx_desc(adap, q, reclaim, unmap);
431 		q->in_use -= reclaim;
432 	}
433 
434 	return reclaim;
435 }
436 
437 /**
438  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
439  *	@adap: the adapter
440  *	@q: the Tx queue to reclaim completed descriptors from
441  *	@unmap: whether the buffers should be unmapped for DMA
442  *
443  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
444  *	and frees the associated buffers if possible.  Called with the Tx
445  *	queue locked.
446  */
447 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
448 				bool unmap)
449 {
450 	(void)reclaim_completed_tx(adap, q, -1, unmap);
451 }
452 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
453 
454 static inline int get_buf_size(struct adapter *adapter,
455 			       const struct rx_sw_desc *d)
456 {
457 	struct sge *s = &adapter->sge;
458 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
459 	int buf_size;
460 
461 	switch (rx_buf_size_idx) {
462 	case RX_SMALL_PG_BUF:
463 		buf_size = PAGE_SIZE;
464 		break;
465 
466 	case RX_LARGE_PG_BUF:
467 		buf_size = PAGE_SIZE << s->fl_pg_order;
468 		break;
469 
470 	case RX_SMALL_MTU_BUF:
471 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
472 		break;
473 
474 	case RX_LARGE_MTU_BUF:
475 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
476 		break;
477 
478 	default:
479 		BUG();
480 	}
481 
482 	return buf_size;
483 }
484 
485 /**
486  *	free_rx_bufs - free the Rx buffers on an SGE free list
487  *	@adap: the adapter
488  *	@q: the SGE free list to free buffers from
489  *	@n: how many buffers to free
490  *
491  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
492  *	buffers must be made inaccessible to HW before calling this function.
493  */
494 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
495 {
496 	while (n--) {
497 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
498 
499 		if (is_buf_mapped(d))
500 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
501 				       get_buf_size(adap, d),
502 				       PCI_DMA_FROMDEVICE);
503 		put_page(d->page);
504 		d->page = NULL;
505 		if (++q->cidx == q->size)
506 			q->cidx = 0;
507 		q->avail--;
508 	}
509 }
510 
511 /**
512  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
513  *	@adap: the adapter
514  *	@q: the SGE free list
515  *
516  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
517  *	buffer must be made inaccessible to HW before calling this function.
518  *
519  *	This is similar to @free_rx_bufs above but does not free the buffer.
520  *	Do note that the FL still loses any further access to the buffer.
521  */
522 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
523 {
524 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
525 
526 	if (is_buf_mapped(d))
527 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
528 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
529 	d->page = NULL;
530 	if (++q->cidx == q->size)
531 		q->cidx = 0;
532 	q->avail--;
533 }
534 
535 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
536 {
537 	if (q->pend_cred >= 8) {
538 		u32 val = adap->params.arch.sge_fl_db;
539 
540 		if (is_t4(adap->params.chip))
541 			val |= PIDX_V(q->pend_cred / 8);
542 		else
543 			val |= PIDX_T5_V(q->pend_cred / 8);
544 
545 		/* Make sure all memory writes to the Free List queue are
546 		 * committed before we tell the hardware about them.
547 		 */
548 		wmb();
549 
550 		/* If we don't have access to the new User Doorbell (T5+), use
551 		 * the old doorbell mechanism; otherwise use the new BAR2
552 		 * mechanism.
553 		 */
554 		if (unlikely(q->bar2_addr == NULL)) {
555 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
556 				     val | QID_V(q->cntxt_id));
557 		} else {
558 			writel(val | QID_V(q->bar2_qid),
559 			       q->bar2_addr + SGE_UDB_KDOORBELL);
560 
561 			/* This Write memory Barrier will force the write to
562 			 * the User Doorbell area to be flushed.
563 			 */
564 			wmb();
565 		}
566 		q->pend_cred &= 7;
567 	}
568 }
569 
570 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
571 				  dma_addr_t mapping)
572 {
573 	sd->page = pg;
574 	sd->dma_addr = mapping;      /* includes size low bits */
575 }
576 
577 /**
578  *	refill_fl - refill an SGE Rx buffer ring
579  *	@adap: the adapter
580  *	@q: the ring to refill
581  *	@n: the number of new buffers to allocate
582  *	@gfp: the gfp flags for the allocations
583  *
584  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
585  *	allocated with the supplied gfp flags.  The caller must assure that
586  *	@n does not exceed the queue's capacity.  If afterwards the queue is
587  *	found critically low mark it as starving in the bitmap of starving FLs.
588  *
589  *	Returns the number of buffers allocated.
590  */
591 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
592 			      gfp_t gfp)
593 {
594 	struct sge *s = &adap->sge;
595 	struct page *pg;
596 	dma_addr_t mapping;
597 	unsigned int cred = q->avail;
598 	__be64 *d = &q->desc[q->pidx];
599 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
600 	int node;
601 
602 #ifdef CONFIG_DEBUG_FS
603 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
604 		goto out;
605 #endif
606 
607 	gfp |= __GFP_NOWARN;
608 	node = dev_to_node(adap->pdev_dev);
609 
610 	if (s->fl_pg_order == 0)
611 		goto alloc_small_pages;
612 
613 	/*
614 	 * Prefer large buffers
615 	 */
616 	while (n) {
617 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
618 		if (unlikely(!pg)) {
619 			q->large_alloc_failed++;
620 			break;       /* fall back to single pages */
621 		}
622 
623 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
624 				       PAGE_SIZE << s->fl_pg_order,
625 				       PCI_DMA_FROMDEVICE);
626 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
627 			__free_pages(pg, s->fl_pg_order);
628 			q->mapping_err++;
629 			goto out;   /* do not try small pages for this error */
630 		}
631 		mapping |= RX_LARGE_PG_BUF;
632 		*d++ = cpu_to_be64(mapping);
633 
634 		set_rx_sw_desc(sd, pg, mapping);
635 		sd++;
636 
637 		q->avail++;
638 		if (++q->pidx == q->size) {
639 			q->pidx = 0;
640 			sd = q->sdesc;
641 			d = q->desc;
642 		}
643 		n--;
644 	}
645 
646 alloc_small_pages:
647 	while (n--) {
648 		pg = alloc_pages_node(node, gfp, 0);
649 		if (unlikely(!pg)) {
650 			q->alloc_failed++;
651 			break;
652 		}
653 
654 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
655 				       PCI_DMA_FROMDEVICE);
656 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
657 			put_page(pg);
658 			q->mapping_err++;
659 			goto out;
660 		}
661 		*d++ = cpu_to_be64(mapping);
662 
663 		set_rx_sw_desc(sd, pg, mapping);
664 		sd++;
665 
666 		q->avail++;
667 		if (++q->pidx == q->size) {
668 			q->pidx = 0;
669 			sd = q->sdesc;
670 			d = q->desc;
671 		}
672 	}
673 
674 out:	cred = q->avail - cred;
675 	q->pend_cred += cred;
676 	ring_fl_db(adap, q);
677 
678 	if (unlikely(fl_starving(adap, q))) {
679 		smp_wmb();
680 		q->low++;
681 		set_bit(q->cntxt_id - adap->sge.egr_start,
682 			adap->sge.starving_fl);
683 	}
684 
685 	return cred;
686 }
687 
688 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
689 {
690 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
691 		  GFP_ATOMIC);
692 }
693 
694 /**
695  *	alloc_ring - allocate resources for an SGE descriptor ring
696  *	@dev: the PCI device's core device
697  *	@nelem: the number of descriptors
698  *	@elem_size: the size of each descriptor
699  *	@sw_size: the size of the SW state associated with each ring element
700  *	@phys: the physical address of the allocated ring
701  *	@metadata: address of the array holding the SW state for the ring
702  *	@stat_size: extra space in HW ring for status information
703  *	@node: preferred node for memory allocations
704  *
705  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
706  *	free buffer lists, or response queues.  Each SGE ring requires
707  *	space for its HW descriptors plus, optionally, space for the SW state
708  *	associated with each HW entry (the metadata).  The function returns
709  *	three values: the virtual address for the HW ring (the return value
710  *	of the function), the bus address of the HW ring, and the address
711  *	of the SW ring.
712  */
713 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
714 			size_t sw_size, dma_addr_t *phys, void *metadata,
715 			size_t stat_size, int node)
716 {
717 	size_t len = nelem * elem_size + stat_size;
718 	void *s = NULL;
719 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
720 
721 	if (!p)
722 		return NULL;
723 	if (sw_size) {
724 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
725 
726 		if (!s) {
727 			dma_free_coherent(dev, len, p, *phys);
728 			return NULL;
729 		}
730 	}
731 	if (metadata)
732 		*(void **)metadata = s;
733 	return p;
734 }
735 
736 /**
737  *	sgl_len - calculates the size of an SGL of the given capacity
738  *	@n: the number of SGL entries
739  *
740  *	Calculates the number of flits needed for a scatter/gather list that
741  *	can hold the given number of entries.
742  */
743 static inline unsigned int sgl_len(unsigned int n)
744 {
745 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
746 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
747 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
748 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
749 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
750 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
751 	 * Address[N+1] is omitted.
752 	 *
753 	 * The following calculation incorporates all of the above.  It's
754 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
755 	 * first two flits which include the DSGL header, Length0 and
756 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
757 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
758 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
759 	 * (n-1) is odd ...
760 	 */
761 	n--;
762 	return (3 * n) / 2 + (n & 1) + 2;
763 }
764 
765 /**
766  *	flits_to_desc - returns the num of Tx descriptors for the given flits
767  *	@n: the number of flits
768  *
769  *	Returns the number of Tx descriptors needed for the supplied number
770  *	of flits.
771  */
772 static inline unsigned int flits_to_desc(unsigned int n)
773 {
774 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
775 	return DIV_ROUND_UP(n, 8);
776 }
777 
778 /**
779  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
780  *	@skb: the packet
781  *
782  *	Returns whether an Ethernet packet is small enough to fit as
783  *	immediate data. Return value corresponds to headroom required.
784  */
785 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
786 {
787 	int hdrlen = 0;
788 
789 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
790 	    chip_ver > CHELSIO_T5) {
791 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
792 		hdrlen += sizeof(struct cpl_tx_pkt_core);
793 	} else {
794 		hdrlen = skb_shinfo(skb)->gso_size ?
795 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
796 		hdrlen += sizeof(struct cpl_tx_pkt);
797 	}
798 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
799 		return hdrlen;
800 	return 0;
801 }
802 
803 /**
804  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
805  *	@skb: the packet
806  *
807  *	Returns the number of flits needed for a Tx WR for the given Ethernet
808  *	packet, including the needed WR and CPL headers.
809  */
810 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
811 					 unsigned int chip_ver)
812 {
813 	unsigned int flits;
814 	int hdrlen = is_eth_imm(skb, chip_ver);
815 
816 	/* If the skb is small enough, we can pump it out as a work request
817 	 * with only immediate data.  In that case we just have to have the
818 	 * TX Packet header plus the skb data in the Work Request.
819 	 */
820 
821 	if (hdrlen)
822 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
823 
824 	/* Otherwise, we're going to have to construct a Scatter gather list
825 	 * of the skb body and fragments.  We also include the flits necessary
826 	 * for the TX Packet Work Request and CPL.  We always have a firmware
827 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
828 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
829 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
830 	 * with an embedded TX Packet Write CPL message.
831 	 */
832 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
833 	if (skb_shinfo(skb)->gso_size) {
834 		if (skb->encapsulation && chip_ver > CHELSIO_T5)
835 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
836 				 sizeof(struct cpl_tx_tnl_lso);
837 		else
838 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
839 				 sizeof(struct cpl_tx_pkt_lso_core);
840 
841 		hdrlen += sizeof(struct cpl_tx_pkt_core);
842 		flits += (hdrlen / sizeof(__be64));
843 	} else {
844 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
845 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
846 	}
847 	return flits;
848 }
849 
850 /**
851  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
852  *	@skb: the packet
853  *
854  *	Returns the number of Tx descriptors needed for the given Ethernet
855  *	packet, including the needed WR and CPL headers.
856  */
857 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
858 					 unsigned int chip_ver)
859 {
860 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
861 }
862 
863 /**
864  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
865  *	@skb: the packet
866  *	@q: the Tx queue we are writing into
867  *	@sgl: starting location for writing the SGL
868  *	@end: points right after the end of the SGL
869  *	@start: start offset into skb main-body data to include in the SGL
870  *	@addr: the list of bus addresses for the SGL elements
871  *
872  *	Generates a gather list for the buffers that make up a packet.
873  *	The caller must provide adequate space for the SGL that will be written.
874  *	The SGL includes all of the packet's page fragments and the data in its
875  *	main body except for the first @start bytes.  @sgl must be 16-byte
876  *	aligned and within a Tx descriptor with available space.  @end points
877  *	right after the end of the SGL but does not account for any potential
878  *	wrap around, i.e., @end > @sgl.
879  */
880 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
881 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
882 		     const dma_addr_t *addr)
883 {
884 	unsigned int i, len;
885 	struct ulptx_sge_pair *to;
886 	const struct skb_shared_info *si = skb_shinfo(skb);
887 	unsigned int nfrags = si->nr_frags;
888 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
889 
890 	len = skb_headlen(skb) - start;
891 	if (likely(len)) {
892 		sgl->len0 = htonl(len);
893 		sgl->addr0 = cpu_to_be64(addr[0] + start);
894 		nfrags++;
895 	} else {
896 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
897 		sgl->addr0 = cpu_to_be64(addr[1]);
898 	}
899 
900 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
901 			      ULPTX_NSGE_V(nfrags));
902 	if (likely(--nfrags == 0))
903 		return;
904 	/*
905 	 * Most of the complexity below deals with the possibility we hit the
906 	 * end of the queue in the middle of writing the SGL.  For this case
907 	 * only we create the SGL in a temporary buffer and then copy it.
908 	 */
909 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
910 
911 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
912 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
913 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
914 		to->addr[0] = cpu_to_be64(addr[i]);
915 		to->addr[1] = cpu_to_be64(addr[++i]);
916 	}
917 	if (nfrags) {
918 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
919 		to->len[1] = cpu_to_be32(0);
920 		to->addr[0] = cpu_to_be64(addr[i + 1]);
921 	}
922 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
923 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
924 
925 		if (likely(part0))
926 			memcpy(sgl->sge, buf, part0);
927 		part1 = (u8 *)end - (u8 *)q->stat;
928 		memcpy(q->desc, (u8 *)buf + part0, part1);
929 		end = (void *)q->desc + part1;
930 	}
931 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
932 		*end = 0;
933 }
934 EXPORT_SYMBOL(cxgb4_write_sgl);
935 
936 /* This function copies 64 byte coalesced work request to
937  * memory mapped BAR2 space. For coalesced WR SGE fetches
938  * data from the FIFO instead of from Host.
939  */
940 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
941 {
942 	int count = 8;
943 
944 	while (count) {
945 		writeq(*src, dst);
946 		src++;
947 		dst++;
948 		count--;
949 	}
950 }
951 
952 /**
953  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
954  *	@adap: the adapter
955  *	@q: the Tx queue
956  *	@n: number of new descriptors to give to HW
957  *
958  *	Ring the doorbel for a Tx queue.
959  */
960 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
961 {
962 	/* Make sure that all writes to the TX Descriptors are committed
963 	 * before we tell the hardware about them.
964 	 */
965 	wmb();
966 
967 	/* If we don't have access to the new User Doorbell (T5+), use the old
968 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
969 	 */
970 	if (unlikely(q->bar2_addr == NULL)) {
971 		u32 val = PIDX_V(n);
972 		unsigned long flags;
973 
974 		/* For T4 we need to participate in the Doorbell Recovery
975 		 * mechanism.
976 		 */
977 		spin_lock_irqsave(&q->db_lock, flags);
978 		if (!q->db_disabled)
979 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
980 				     QID_V(q->cntxt_id) | val);
981 		else
982 			q->db_pidx_inc += n;
983 		q->db_pidx = q->pidx;
984 		spin_unlock_irqrestore(&q->db_lock, flags);
985 	} else {
986 		u32 val = PIDX_T5_V(n);
987 
988 		/* T4 and later chips share the same PIDX field offset within
989 		 * the doorbell, but T5 and later shrank the field in order to
990 		 * gain a bit for Doorbell Priority.  The field was absurdly
991 		 * large in the first place (14 bits) so we just use the T5
992 		 * and later limits and warn if a Queue ID is too large.
993 		 */
994 		WARN_ON(val & DBPRIO_F);
995 
996 		/* If we're only writing a single TX Descriptor and we can use
997 		 * Inferred QID registers, we can use the Write Combining
998 		 * Gather Buffer; otherwise we use the simple doorbell.
999 		 */
1000 		if (n == 1 && q->bar2_qid == 0) {
1001 			int index = (q->pidx
1002 				     ? (q->pidx - 1)
1003 				     : (q->size - 1));
1004 			u64 *wr = (u64 *)&q->desc[index];
1005 
1006 			cxgb_pio_copy((u64 __iomem *)
1007 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1008 				      wr);
1009 		} else {
1010 			writel(val | QID_V(q->bar2_qid),
1011 			       q->bar2_addr + SGE_UDB_KDOORBELL);
1012 		}
1013 
1014 		/* This Write Memory Barrier will force the write to the User
1015 		 * Doorbell area to be flushed.  This is needed to prevent
1016 		 * writes on different CPUs for the same queue from hitting
1017 		 * the adapter out of order.  This is required when some Work
1018 		 * Requests take the Write Combine Gather Buffer path (user
1019 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1020 		 * take the traditional path where we simply increment the
1021 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1022 		 * hardware DMA read the actual Work Request.
1023 		 */
1024 		wmb();
1025 	}
1026 }
1027 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1028 
1029 /**
1030  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1031  *	@skb: the packet
1032  *	@q: the Tx queue where the packet will be inlined
1033  *	@pos: starting position in the Tx queue where to inline the packet
1034  *
1035  *	Inline a packet's contents directly into Tx descriptors, starting at
1036  *	the given position within the Tx DMA ring.
1037  *	Most of the complexity of this operation is dealing with wrap arounds
1038  *	in the middle of the packet we want to inline.
1039  */
1040 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1041 			 const struct sge_txq *q, void *pos)
1042 {
1043 	int left = (void *)q->stat - pos;
1044 	u64 *p;
1045 
1046 	if (likely(skb->len <= left)) {
1047 		if (likely(!skb->data_len))
1048 			skb_copy_from_linear_data(skb, pos, skb->len);
1049 		else
1050 			skb_copy_bits(skb, 0, pos, skb->len);
1051 		pos += skb->len;
1052 	} else {
1053 		skb_copy_bits(skb, 0, pos, left);
1054 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1055 		pos = (void *)q->desc + (skb->len - left);
1056 	}
1057 
1058 	/* 0-pad to multiple of 16 */
1059 	p = PTR_ALIGN(pos, 8);
1060 	if ((uintptr_t)p & 8)
1061 		*p = 0;
1062 }
1063 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1064 
1065 static void *inline_tx_skb_header(const struct sk_buff *skb,
1066 				  const struct sge_txq *q,  void *pos,
1067 				  int length)
1068 {
1069 	u64 *p;
1070 	int left = (void *)q->stat - pos;
1071 
1072 	if (likely(length <= left)) {
1073 		memcpy(pos, skb->data, length);
1074 		pos += length;
1075 	} else {
1076 		memcpy(pos, skb->data, left);
1077 		memcpy(q->desc, skb->data + left, length - left);
1078 		pos = (void *)q->desc + (length - left);
1079 	}
1080 	/* 0-pad to multiple of 16 */
1081 	p = PTR_ALIGN(pos, 8);
1082 	if ((uintptr_t)p & 8) {
1083 		*p = 0;
1084 		return p + 1;
1085 	}
1086 	return p;
1087 }
1088 
1089 /*
1090  * Figure out what HW csum a packet wants and return the appropriate control
1091  * bits.
1092  */
1093 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1094 {
1095 	int csum_type;
1096 	bool inner_hdr_csum = false;
1097 	u16 proto, ver;
1098 
1099 	if (skb->encapsulation &&
1100 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1101 		inner_hdr_csum = true;
1102 
1103 	if (inner_hdr_csum) {
1104 		ver = inner_ip_hdr(skb)->version;
1105 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1106 			inner_ipv6_hdr(skb)->nexthdr;
1107 	} else {
1108 		ver = ip_hdr(skb)->version;
1109 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1110 			ipv6_hdr(skb)->nexthdr;
1111 	}
1112 
1113 	if (ver == 4) {
1114 		if (proto == IPPROTO_TCP)
1115 			csum_type = TX_CSUM_TCPIP;
1116 		else if (proto == IPPROTO_UDP)
1117 			csum_type = TX_CSUM_UDPIP;
1118 		else {
1119 nocsum:			/*
1120 			 * unknown protocol, disable HW csum
1121 			 * and hope a bad packet is detected
1122 			 */
1123 			return TXPKT_L4CSUM_DIS_F;
1124 		}
1125 	} else {
1126 		/*
1127 		 * this doesn't work with extension headers
1128 		 */
1129 		if (proto == IPPROTO_TCP)
1130 			csum_type = TX_CSUM_TCPIP6;
1131 		else if (proto == IPPROTO_UDP)
1132 			csum_type = TX_CSUM_UDPIP6;
1133 		else
1134 			goto nocsum;
1135 	}
1136 
1137 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1138 		int eth_hdr_len, l4_len;
1139 		u64 hdr_len;
1140 
1141 		if (inner_hdr_csum) {
1142 			/* This allows checksum offload for all encapsulated
1143 			 * packets like GRE etc..
1144 			 */
1145 			l4_len = skb_inner_network_header_len(skb);
1146 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1147 		} else {
1148 			l4_len = skb_network_header_len(skb);
1149 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1150 		}
1151 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1152 
1153 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1154 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1155 		else
1156 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1157 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1158 	} else {
1159 		int start = skb_transport_offset(skb);
1160 
1161 		return TXPKT_CSUM_TYPE_V(csum_type) |
1162 			TXPKT_CSUM_START_V(start) |
1163 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1164 	}
1165 }
1166 
1167 static void eth_txq_stop(struct sge_eth_txq *q)
1168 {
1169 	netif_tx_stop_queue(q->txq);
1170 	q->q.stops++;
1171 }
1172 
1173 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1174 {
1175 	q->in_use += n;
1176 	q->pidx += n;
1177 	if (q->pidx >= q->size)
1178 		q->pidx -= q->size;
1179 }
1180 
1181 #ifdef CONFIG_CHELSIO_T4_FCOE
1182 static inline int
1183 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1184 		  const struct port_info *pi, u64 *cntrl)
1185 {
1186 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1187 
1188 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1189 		return 0;
1190 
1191 	if (skb->protocol != htons(ETH_P_FCOE))
1192 		return 0;
1193 
1194 	skb_reset_mac_header(skb);
1195 	skb->mac_len = sizeof(struct ethhdr);
1196 
1197 	skb_set_network_header(skb, skb->mac_len);
1198 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1199 
1200 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1201 		return -ENOTSUPP;
1202 
1203 	/* FC CRC offload */
1204 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1205 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1206 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1207 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1208 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1209 	return 0;
1210 }
1211 #endif /* CONFIG_CHELSIO_T4_FCOE */
1212 
1213 /* Returns tunnel type if hardware supports offloading of the same.
1214  * It is called only for T5 and onwards.
1215  */
1216 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1217 {
1218 	u8 l4_hdr = 0;
1219 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1220 	struct port_info *pi = netdev_priv(skb->dev);
1221 	struct adapter *adapter = pi->adapter;
1222 
1223 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1224 	    skb->inner_protocol != htons(ETH_P_TEB))
1225 		return tnl_type;
1226 
1227 	switch (vlan_get_protocol(skb)) {
1228 	case htons(ETH_P_IP):
1229 		l4_hdr = ip_hdr(skb)->protocol;
1230 		break;
1231 	case htons(ETH_P_IPV6):
1232 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1233 		break;
1234 	default:
1235 		return tnl_type;
1236 	}
1237 
1238 	switch (l4_hdr) {
1239 	case IPPROTO_UDP:
1240 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1241 			tnl_type = TX_TNL_TYPE_VXLAN;
1242 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1243 			tnl_type = TX_TNL_TYPE_GENEVE;
1244 		break;
1245 	default:
1246 		return tnl_type;
1247 	}
1248 
1249 	return tnl_type;
1250 }
1251 
1252 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1253 				   struct cpl_tx_tnl_lso *tnl_lso,
1254 				   enum cpl_tx_tnl_lso_type tnl_type)
1255 {
1256 	u32 val;
1257 	int in_eth_xtra_len;
1258 	int l3hdr_len = skb_network_header_len(skb);
1259 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1260 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1261 	bool v6 = (ip_hdr(skb)->version == 6);
1262 
1263 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1264 	      CPL_TX_TNL_LSO_FIRST_F |
1265 	      CPL_TX_TNL_LSO_LAST_F |
1266 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1267 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1268 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1269 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1270 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1271 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1272 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1273 
1274 	tnl_lso->IpIdOffsetOut = 0;
1275 
1276 	/* Get the tunnel header length */
1277 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1278 	in_eth_xtra_len = skb_inner_network_header(skb) -
1279 			  skb_inner_mac_header(skb) - ETH_HLEN;
1280 
1281 	switch (tnl_type) {
1282 	case TX_TNL_TYPE_VXLAN:
1283 	case TX_TNL_TYPE_GENEVE:
1284 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1285 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1286 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1287 		break;
1288 	default:
1289 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1290 		break;
1291 	}
1292 
1293 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1294 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1295 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1296 
1297 	tnl_lso->r1 = 0;
1298 
1299 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1300 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1301 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1302 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1303 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1304 
1305 	tnl_lso->IpIdOffset = htons(0);
1306 
1307 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1308 	tnl_lso->TCPSeqOffset = htonl(0);
1309 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1310 }
1311 
1312 /**
1313  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1314  *	@adap: the adapter
1315  *	@eq: the Ethernet TX Queue
1316  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1317  *
1318  *	We're typically called here to update the state of an Ethernet TX
1319  *	Queue with respect to the hardware's progress in consuming the TX
1320  *	Work Requests that we've put on that Egress Queue.  This happens
1321  *	when we get Egress Queue Update messages and also prophylactically
1322  *	in regular timer-based Ethernet TX Queue maintenance.
1323  */
1324 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1325 				 int maxreclaim)
1326 {
1327 	struct sge_txq *q = &eq->q;
1328 	unsigned int reclaimed;
1329 
1330 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1331 		return 0;
1332 
1333 	/* Reclaim pending completed TX Descriptors. */
1334 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1335 
1336 	/* If the TX Queue is currently stopped and there's now more than half
1337 	 * the queue available, restart it.  Otherwise bail out since the rest
1338 	 * of what we want do here is with the possibility of shipping any
1339 	 * currently buffered Coalesced TX Work Request.
1340 	 */
1341 	if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) {
1342 		netif_tx_wake_queue(eq->txq);
1343 		eq->q.restarts++;
1344 	}
1345 
1346 	__netif_tx_unlock(eq->txq);
1347 	return reclaimed;
1348 }
1349 
1350 /**
1351  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1352  *	@skb: the packet
1353  *	@dev: the egress net device
1354  *
1355  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1356  */
1357 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1358 {
1359 	u32 wr_mid, ctrl0, op;
1360 	u64 cntrl, *end, *sgl;
1361 	int qidx, credits;
1362 	unsigned int flits, ndesc;
1363 	struct adapter *adap;
1364 	struct sge_eth_txq *q;
1365 	const struct port_info *pi;
1366 	struct fw_eth_tx_pkt_wr *wr;
1367 	struct cpl_tx_pkt_core *cpl;
1368 	const struct skb_shared_info *ssi;
1369 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1370 	bool immediate = false;
1371 	int len, max_pkt_len;
1372 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1373 	unsigned int chip_ver;
1374 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1375 
1376 #ifdef CONFIG_CHELSIO_T4_FCOE
1377 	int err;
1378 #endif /* CONFIG_CHELSIO_T4_FCOE */
1379 
1380 	/*
1381 	 * The chip min packet length is 10 octets but play safe and reject
1382 	 * anything shorter than an Ethernet header.
1383 	 */
1384 	if (unlikely(skb->len < ETH_HLEN)) {
1385 out_free:	dev_kfree_skb_any(skb);
1386 		return NETDEV_TX_OK;
1387 	}
1388 
1389 	/* Discard the packet if the length is greater than mtu */
1390 	max_pkt_len = ETH_HLEN + dev->mtu;
1391 	if (skb_vlan_tagged(skb))
1392 		max_pkt_len += VLAN_HLEN;
1393 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1394 		goto out_free;
1395 
1396 	pi = netdev_priv(dev);
1397 	adap = pi->adapter;
1398 	ssi = skb_shinfo(skb);
1399 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1400 	if (xfrm_offload(skb) && !ssi->gso_size)
1401 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1402 #endif /* CHELSIO_IPSEC_INLINE */
1403 
1404 	qidx = skb_get_queue_mapping(skb);
1405 	if (ptp_enabled) {
1406 		spin_lock(&adap->ptp_lock);
1407 		if (!(adap->ptp_tx_skb)) {
1408 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1409 			adap->ptp_tx_skb = skb_get(skb);
1410 		} else {
1411 			spin_unlock(&adap->ptp_lock);
1412 			goto out_free;
1413 		}
1414 		q = &adap->sge.ptptxq;
1415 	} else {
1416 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1417 	}
1418 	skb_tx_timestamp(skb);
1419 
1420 	reclaim_completed_tx(adap, &q->q, -1, true);
1421 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1422 
1423 #ifdef CONFIG_CHELSIO_T4_FCOE
1424 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1425 	if (unlikely(err == -ENOTSUPP)) {
1426 		if (ptp_enabled)
1427 			spin_unlock(&adap->ptp_lock);
1428 		goto out_free;
1429 	}
1430 #endif /* CONFIG_CHELSIO_T4_FCOE */
1431 
1432 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1433 	flits = calc_tx_flits(skb, chip_ver);
1434 	ndesc = flits_to_desc(flits);
1435 	credits = txq_avail(&q->q) - ndesc;
1436 
1437 	if (unlikely(credits < 0)) {
1438 		eth_txq_stop(q);
1439 		dev_err(adap->pdev_dev,
1440 			"%s: Tx ring %u full while queue awake!\n",
1441 			dev->name, qidx);
1442 		if (ptp_enabled)
1443 			spin_unlock(&adap->ptp_lock);
1444 		return NETDEV_TX_BUSY;
1445 	}
1446 
1447 	if (is_eth_imm(skb, chip_ver))
1448 		immediate = true;
1449 
1450 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1451 		tnl_type = cxgb_encap_offload_supported(skb);
1452 
1453 	if (!immediate &&
1454 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1455 		q->mapping_err++;
1456 		if (ptp_enabled)
1457 			spin_unlock(&adap->ptp_lock);
1458 		goto out_free;
1459 	}
1460 
1461 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1462 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1463 		/* After we're done injecting the Work Request for this
1464 		 * packet, we'll be below our "stop threshold" so stop the TX
1465 		 * Queue now and schedule a request for an SGE Egress Queue
1466 		 * Update message. The queue will get started later on when
1467 		 * the firmware processes this Work Request and sends us an
1468 		 * Egress Queue Status Update message indicating that space
1469 		 * has opened up.
1470 		 */
1471 		eth_txq_stop(q);
1472 
1473 		/* If we're using the SGE Doorbell Queue Timer facility, we
1474 		 * don't need to ask the Firmware to send us Egress Queue CIDX
1475 		 * Updates: the Hardware will do this automatically.  And
1476 		 * since we send the Ingress Queue CIDX Updates to the
1477 		 * corresponding Ethernet Response Queue, we'll get them very
1478 		 * quickly.
1479 		 */
1480 		if (!q->dbqt)
1481 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1482 	}
1483 
1484 	wr = (void *)&q->q.desc[q->q.pidx];
1485 	wr->equiq_to_len16 = htonl(wr_mid);
1486 	wr->r3 = cpu_to_be64(0);
1487 	end = (u64 *)wr + flits;
1488 
1489 	len = immediate ? skb->len : 0;
1490 	len += sizeof(*cpl);
1491 	if (ssi->gso_size) {
1492 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1493 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1494 		int l3hdr_len = skb_network_header_len(skb);
1495 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1496 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1497 
1498 		if (tnl_type)
1499 			len += sizeof(*tnl_lso);
1500 		else
1501 			len += sizeof(*lso);
1502 
1503 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1504 				       FW_WR_IMMDLEN_V(len));
1505 		if (tnl_type) {
1506 			struct iphdr *iph = ip_hdr(skb);
1507 
1508 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1509 			cpl = (void *)(tnl_lso + 1);
1510 			/* Driver is expected to compute partial checksum that
1511 			 * does not include the IP Total Length.
1512 			 */
1513 			if (iph->version == 4) {
1514 				iph->check = 0;
1515 				iph->tot_len = 0;
1516 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1517 								 iph->ihl));
1518 			}
1519 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1520 				cntrl = hwcsum(adap->params.chip, skb);
1521 		} else {
1522 			lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1523 					LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1524 					LSO_IPV6_V(v6) |
1525 					LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1526 					LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1527 					LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1528 			lso->ipid_ofst = htons(0);
1529 			lso->mss = htons(ssi->gso_size);
1530 			lso->seqno_offset = htonl(0);
1531 			if (is_t4(adap->params.chip))
1532 				lso->len = htonl(skb->len);
1533 			else
1534 				lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1535 			cpl = (void *)(lso + 1);
1536 
1537 			if (CHELSIO_CHIP_VERSION(adap->params.chip)
1538 			    <= CHELSIO_T5)
1539 				cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1540 			else
1541 				cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1542 
1543 			cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1544 				 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1545 				 TXPKT_IPHDR_LEN_V(l3hdr_len);
1546 		}
1547 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1548 		if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1549 			/* If current position is already at the end of the
1550 			 * txq, reset the current to point to start of the queue
1551 			 * and update the end ptr as well.
1552 			 */
1553 			if (sgl == (u64 *)q->q.stat) {
1554 				int left = (u8 *)end - (u8 *)q->q.stat;
1555 
1556 				end = (void *)q->q.desc + left;
1557 				sgl = (void *)q->q.desc;
1558 			}
1559 		}
1560 		q->tso++;
1561 		q->tx_cso += ssi->gso_segs;
1562 	} else {
1563 		if (ptp_enabled)
1564 			op = FW_PTP_TX_PKT_WR;
1565 		else
1566 			op = FW_ETH_TX_PKT_WR;
1567 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1568 				       FW_WR_IMMDLEN_V(len));
1569 		cpl = (void *)(wr + 1);
1570 		sgl = (u64 *)(cpl + 1);
1571 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1572 			cntrl = hwcsum(adap->params.chip, skb) |
1573 				TXPKT_IPCSUM_DIS_F;
1574 			q->tx_cso++;
1575 		}
1576 	}
1577 
1578 	if (skb_vlan_tag_present(skb)) {
1579 		q->vlan_ins++;
1580 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1581 #ifdef CONFIG_CHELSIO_T4_FCOE
1582 		if (skb->protocol == htons(ETH_P_FCOE))
1583 			cntrl |= TXPKT_VLAN_V(
1584 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1585 #endif /* CONFIG_CHELSIO_T4_FCOE */
1586 	}
1587 
1588 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1589 		TXPKT_PF_V(adap->pf);
1590 	if (ptp_enabled)
1591 		ctrl0 |= TXPKT_TSTAMP_F;
1592 #ifdef CONFIG_CHELSIO_T4_DCB
1593 	if (is_t4(adap->params.chip))
1594 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1595 	else
1596 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1597 #endif
1598 	cpl->ctrl0 = htonl(ctrl0);
1599 	cpl->pack = htons(0);
1600 	cpl->len = htons(skb->len);
1601 	cpl->ctrl1 = cpu_to_be64(cntrl);
1602 
1603 	if (immediate) {
1604 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1605 		dev_consume_skb_any(skb);
1606 	} else {
1607 		int last_desc;
1608 
1609 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr);
1610 		skb_orphan(skb);
1611 
1612 		last_desc = q->q.pidx + ndesc - 1;
1613 		if (last_desc >= q->q.size)
1614 			last_desc -= q->q.size;
1615 		q->q.sdesc[last_desc].skb = skb;
1616 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl;
1617 	}
1618 
1619 	txq_advance(&q->q, ndesc);
1620 
1621 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1622 	if (ptp_enabled)
1623 		spin_unlock(&adap->ptp_lock);
1624 	return NETDEV_TX_OK;
1625 }
1626 
1627 /* Constants ... */
1628 enum {
1629 	/* Egress Queue sizes, producer and consumer indices are all in units
1630 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1631 	 * concerned, the free list is an Egress Queue (the host produces free
1632 	 * buffers which the hardware consumes) and free list entries are
1633 	 * 64-bit PCI DMA addresses.
1634 	 */
1635 	EQ_UNIT = SGE_EQ_IDXSIZE,
1636 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1637 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1638 
1639 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1640 			       sizeof(struct cpl_tx_pkt_lso_core) +
1641 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1642 };
1643 
1644 /**
1645  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1646  *	@skb: the packet
1647  *
1648  *	Returns whether an Ethernet packet is small enough to fit completely as
1649  *	immediate data.
1650  */
1651 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1652 {
1653 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1654 	 * which does not accommodate immediate data.  We could dike out all
1655 	 * of the support code for immediate data but that would tie our hands
1656 	 * too much if we ever want to enhace the firmware.  It would also
1657 	 * create more differences between the PF and VF Drivers.
1658 	 */
1659 	return false;
1660 }
1661 
1662 /**
1663  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1664  *	@skb: the packet
1665  *
1666  *	Returns the number of flits needed for a TX Work Request for the
1667  *	given Ethernet packet, including the needed WR and CPL headers.
1668  */
1669 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1670 {
1671 	unsigned int flits;
1672 
1673 	/* If the skb is small enough, we can pump it out as a work request
1674 	 * with only immediate data.  In that case we just have to have the
1675 	 * TX Packet header plus the skb data in the Work Request.
1676 	 */
1677 	if (t4vf_is_eth_imm(skb))
1678 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1679 				    sizeof(__be64));
1680 
1681 	/* Otherwise, we're going to have to construct a Scatter gather list
1682 	 * of the skb body and fragments.  We also include the flits necessary
1683 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1684 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1685 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1686 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1687 	 * with an embedded TX Packet Write CPL message.
1688 	 */
1689 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1690 	if (skb_shinfo(skb)->gso_size)
1691 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1692 			  sizeof(struct cpl_tx_pkt_lso_core) +
1693 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1694 	else
1695 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1696 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1697 	return flits;
1698 }
1699 
1700 /**
1701  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1702  *	@skb: the packet
1703  *	@dev: the egress net device
1704  *
1705  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1706  */
1707 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1708 				     struct net_device *dev)
1709 {
1710 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1711 	const struct skb_shared_info *ssi;
1712 	struct fw_eth_tx_pkt_vm_wr *wr;
1713 	int qidx, credits, max_pkt_len;
1714 	struct cpl_tx_pkt_core *cpl;
1715 	const struct port_info *pi;
1716 	unsigned int flits, ndesc;
1717 	struct sge_eth_txq *txq;
1718 	struct adapter *adapter;
1719 	u64 cntrl, *end;
1720 	u32 wr_mid;
1721 	const size_t fw_hdr_copy_len = sizeof(wr->ethmacdst) +
1722 				       sizeof(wr->ethmacsrc) +
1723 				       sizeof(wr->ethtype) +
1724 				       sizeof(wr->vlantci);
1725 
1726 	/* The chip minimum packet length is 10 octets but the firmware
1727 	 * command that we are using requires that we copy the Ethernet header
1728 	 * (including the VLAN tag) into the header so we reject anything
1729 	 * smaller than that ...
1730 	 */
1731 	if (unlikely(skb->len < fw_hdr_copy_len))
1732 		goto out_free;
1733 
1734 	/* Discard the packet if the length is greater than mtu */
1735 	max_pkt_len = ETH_HLEN + dev->mtu;
1736 	if (skb_vlan_tag_present(skb))
1737 		max_pkt_len += VLAN_HLEN;
1738 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1739 		goto out_free;
1740 
1741 	/* Figure out which TX Queue we're going to use. */
1742 	pi = netdev_priv(dev);
1743 	adapter = pi->adapter;
1744 	qidx = skb_get_queue_mapping(skb);
1745 	WARN_ON(qidx >= pi->nqsets);
1746 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1747 
1748 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1749 	 * transfers have completed.
1750 	 */
1751 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1752 
1753 	/* Calculate the number of flits and TX Descriptors we're going to
1754 	 * need along with how many TX Descriptors will be left over after
1755 	 * we inject our Work Request.
1756 	 */
1757 	flits = t4vf_calc_tx_flits(skb);
1758 	ndesc = flits_to_desc(flits);
1759 	credits = txq_avail(&txq->q) - ndesc;
1760 
1761 	if (unlikely(credits < 0)) {
1762 		/* Not enough room for this packet's Work Request.  Stop the
1763 		 * TX Queue and return a "busy" condition.  The queue will get
1764 		 * started later on when the firmware informs us that space
1765 		 * has opened up.
1766 		 */
1767 		eth_txq_stop(txq);
1768 		dev_err(adapter->pdev_dev,
1769 			"%s: TX ring %u full while queue awake!\n",
1770 			dev->name, qidx);
1771 		return NETDEV_TX_BUSY;
1772 	}
1773 
1774 	if (!t4vf_is_eth_imm(skb) &&
1775 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1776 		/* We need to map the skb into PCI DMA space (because it can't
1777 		 * be in-lined directly into the Work Request) and the mapping
1778 		 * operation failed.  Record the error and drop the packet.
1779 		 */
1780 		txq->mapping_err++;
1781 		goto out_free;
1782 	}
1783 
1784 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1785 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1786 		/* After we're done injecting the Work Request for this
1787 		 * packet, we'll be below our "stop threshold" so stop the TX
1788 		 * Queue now and schedule a request for an SGE Egress Queue
1789 		 * Update message.  The queue will get started later on when
1790 		 * the firmware processes this Work Request and sends us an
1791 		 * Egress Queue Status Update message indicating that space
1792 		 * has opened up.
1793 		 */
1794 		eth_txq_stop(txq);
1795 
1796 		/* If we're using the SGE Doorbell Queue Timer facility, we
1797 		 * don't need to ask the Firmware to send us Egress Queue CIDX
1798 		 * Updates: the Hardware will do this automatically.  And
1799 		 * since we send the Ingress Queue CIDX Updates to the
1800 		 * corresponding Ethernet Response Queue, we'll get them very
1801 		 * quickly.
1802 		 */
1803 		if (!txq->dbqt)
1804 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1805 	}
1806 
1807 	/* Start filling in our Work Request.  Note that we do _not_ handle
1808 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1809 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1810 	 * do something else here.
1811 	 */
1812 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1813 	wr = (void *)&txq->q.desc[txq->q.pidx];
1814 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1815 	wr->r3[0] = cpu_to_be32(0);
1816 	wr->r3[1] = cpu_to_be32(0);
1817 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1818 	end = (u64 *)wr + flits;
1819 
1820 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1821 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1822 	 * just use a TX Packet CPL message.
1823 	 */
1824 	ssi = skb_shinfo(skb);
1825 	if (ssi->gso_size) {
1826 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1827 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1828 		int l3hdr_len = skb_network_header_len(skb);
1829 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1830 
1831 		wr->op_immdlen =
1832 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1833 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1834 						    sizeof(*cpl)));
1835 		 /* Fill in the LSO CPL message. */
1836 		lso->lso_ctrl =
1837 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1838 				    LSO_FIRST_SLICE_F |
1839 				    LSO_LAST_SLICE_F |
1840 				    LSO_IPV6_V(v6) |
1841 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1842 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1843 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1844 		lso->ipid_ofst = cpu_to_be16(0);
1845 		lso->mss = cpu_to_be16(ssi->gso_size);
1846 		lso->seqno_offset = cpu_to_be32(0);
1847 		if (is_t4(adapter->params.chip))
1848 			lso->len = cpu_to_be32(skb->len);
1849 		else
1850 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1851 
1852 		/* Set up TX Packet CPL pointer, control word and perform
1853 		 * accounting.
1854 		 */
1855 		cpl = (void *)(lso + 1);
1856 
1857 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1858 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1859 		else
1860 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1861 
1862 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1863 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1864 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1865 		txq->tso++;
1866 		txq->tx_cso += ssi->gso_segs;
1867 	} else {
1868 		int len;
1869 
1870 		len = (t4vf_is_eth_imm(skb)
1871 		       ? skb->len + sizeof(*cpl)
1872 		       : sizeof(*cpl));
1873 		wr->op_immdlen =
1874 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1875 				    FW_WR_IMMDLEN_V(len));
1876 
1877 		/* Set up TX Packet CPL pointer, control word and perform
1878 		 * accounting.
1879 		 */
1880 		cpl = (void *)(wr + 1);
1881 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1882 			cntrl = hwcsum(adapter->params.chip, skb) |
1883 				TXPKT_IPCSUM_DIS_F;
1884 			txq->tx_cso++;
1885 		} else {
1886 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1887 		}
1888 	}
1889 
1890 	/* If there's a VLAN tag present, add that to the list of things to
1891 	 * do in this Work Request.
1892 	 */
1893 	if (skb_vlan_tag_present(skb)) {
1894 		txq->vlan_ins++;
1895 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1896 	}
1897 
1898 	 /* Fill in the TX Packet CPL message header. */
1899 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1900 				 TXPKT_INTF_V(pi->port_id) |
1901 				 TXPKT_PF_V(0));
1902 	cpl->pack = cpu_to_be16(0);
1903 	cpl->len = cpu_to_be16(skb->len);
1904 	cpl->ctrl1 = cpu_to_be64(cntrl);
1905 
1906 	/* Fill in the body of the TX Packet CPL message with either in-lined
1907 	 * data or a Scatter/Gather List.
1908 	 */
1909 	if (t4vf_is_eth_imm(skb)) {
1910 		/* In-line the packet's data and free the skb since we don't
1911 		 * need it any longer.
1912 		 */
1913 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1914 		dev_consume_skb_any(skb);
1915 	} else {
1916 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
1917 		 * message and retain a pointer to the skb so we can free it
1918 		 * later when its DMA completes.  (We store the skb pointer
1919 		 * in the Software Descriptor corresponding to the last TX
1920 		 * Descriptor used by the Work Request.)
1921 		 *
1922 		 * The retained skb will be freed when the corresponding TX
1923 		 * Descriptors are reclaimed after their DMAs complete.
1924 		 * However, this could take quite a while since, in general,
1925 		 * the hardware is set up to be lazy about sending DMA
1926 		 * completion notifications to us and we mostly perform TX
1927 		 * reclaims in the transmit routine.
1928 		 *
1929 		 * This is good for performamce but means that we rely on new
1930 		 * TX packets arriving to run the destructors of completed
1931 		 * packets, which open up space in their sockets' send queues.
1932 		 * Sometimes we do not get such new packets causing TX to
1933 		 * stall.  A single UDP transmitter is a good example of this
1934 		 * situation.  We have a clean up timer that periodically
1935 		 * reclaims completed packets but it doesn't run often enough
1936 		 * (nor do we want it to) to prevent lengthy stalls.  A
1937 		 * solution to this problem is to run the destructor early,
1938 		 * after the packet is queued but before it's DMAd.  A con is
1939 		 * that we lie to socket memory accounting, but the amount of
1940 		 * extra memory is reasonable (limited by the number of TX
1941 		 * descriptors), the packets do actually get freed quickly by
1942 		 * new packets almost always, and for protocols like TCP that
1943 		 * wait for acks to really free up the data the extra memory
1944 		 * is even less.  On the positive side we run the destructors
1945 		 * on the sending CPU rather than on a potentially different
1946 		 * completing CPU, usually a good thing.
1947 		 *
1948 		 * Run the destructor before telling the DMA engine about the
1949 		 * packet to make sure it doesn't complete and get freed
1950 		 * prematurely.
1951 		 */
1952 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1953 		struct sge_txq *tq = &txq->q;
1954 		int last_desc;
1955 
1956 		/* If the Work Request header was an exact multiple of our TX
1957 		 * Descriptor length, then it's possible that the starting SGL
1958 		 * pointer lines up exactly with the end of our TX Descriptor
1959 		 * ring.  If that's the case, wrap around to the beginning
1960 		 * here ...
1961 		 */
1962 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1963 			sgl = (void *)tq->desc;
1964 			end = (void *)((void *)tq->desc +
1965 				       ((void *)end - (void *)tq->stat));
1966 		}
1967 
1968 		cxgb4_write_sgl(skb, tq, sgl, end, 0, addr);
1969 		skb_orphan(skb);
1970 
1971 		last_desc = tq->pidx + ndesc - 1;
1972 		if (last_desc >= tq->size)
1973 			last_desc -= tq->size;
1974 		tq->sdesc[last_desc].skb = skb;
1975 		tq->sdesc[last_desc].sgl = sgl;
1976 	}
1977 
1978 	/* Advance our internal TX Queue state, tell the hardware about
1979 	 * the new TX descriptors and return success.
1980 	 */
1981 	txq_advance(&txq->q, ndesc);
1982 
1983 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1984 	return NETDEV_TX_OK;
1985 
1986 out_free:
1987 	/* An error of some sort happened.  Free the TX skb and tell the
1988 	 * OS that we've "dealt" with the packet ...
1989 	 */
1990 	dev_kfree_skb_any(skb);
1991 	return NETDEV_TX_OK;
1992 }
1993 
1994 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1995 {
1996 	struct port_info *pi = netdev_priv(dev);
1997 
1998 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
1999 		return cxgb4_vf_eth_xmit(skb, dev);
2000 
2001 	return cxgb4_eth_xmit(skb, dev);
2002 }
2003 
2004 /**
2005  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2006  *	@q: the SGE control Tx queue
2007  *
2008  *	This is a variant of cxgb4_reclaim_completed_tx() that is used
2009  *	for Tx queues that send only immediate data (presently just
2010  *	the control queues) and	thus do not have any sk_buffs to release.
2011  */
2012 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2013 {
2014 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2015 	int reclaim = hw_cidx - q->cidx;
2016 
2017 	if (reclaim < 0)
2018 		reclaim += q->size;
2019 
2020 	q->in_use -= reclaim;
2021 	q->cidx = hw_cidx;
2022 }
2023 
2024 /**
2025  *	is_imm - check whether a packet can be sent as immediate data
2026  *	@skb: the packet
2027  *
2028  *	Returns true if a packet can be sent as a WR with immediate data.
2029  */
2030 static inline int is_imm(const struct sk_buff *skb)
2031 {
2032 	return skb->len <= MAX_CTRL_WR_LEN;
2033 }
2034 
2035 /**
2036  *	ctrlq_check_stop - check if a control queue is full and should stop
2037  *	@q: the queue
2038  *	@wr: most recent WR written to the queue
2039  *
2040  *	Check if a control queue has become full and should be stopped.
2041  *	We clean up control queue descriptors very lazily, only when we are out.
2042  *	If the queue is still full after reclaiming any completed descriptors
2043  *	we suspend it and have the last WR wake it up.
2044  */
2045 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2046 {
2047 	reclaim_completed_tx_imm(&q->q);
2048 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2049 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2050 		q->q.stops++;
2051 		q->full = 1;
2052 	}
2053 }
2054 
2055 /**
2056  *	ctrl_xmit - send a packet through an SGE control Tx queue
2057  *	@q: the control queue
2058  *	@skb: the packet
2059  *
2060  *	Send a packet through an SGE control Tx queue.  Packets sent through
2061  *	a control queue must fit entirely as immediate data.
2062  */
2063 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2064 {
2065 	unsigned int ndesc;
2066 	struct fw_wr_hdr *wr;
2067 
2068 	if (unlikely(!is_imm(skb))) {
2069 		WARN_ON(1);
2070 		dev_kfree_skb(skb);
2071 		return NET_XMIT_DROP;
2072 	}
2073 
2074 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2075 	spin_lock(&q->sendq.lock);
2076 
2077 	if (unlikely(q->full)) {
2078 		skb->priority = ndesc;                  /* save for restart */
2079 		__skb_queue_tail(&q->sendq, skb);
2080 		spin_unlock(&q->sendq.lock);
2081 		return NET_XMIT_CN;
2082 	}
2083 
2084 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2085 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2086 
2087 	txq_advance(&q->q, ndesc);
2088 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2089 		ctrlq_check_stop(q, wr);
2090 
2091 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2092 	spin_unlock(&q->sendq.lock);
2093 
2094 	kfree_skb(skb);
2095 	return NET_XMIT_SUCCESS;
2096 }
2097 
2098 /**
2099  *	restart_ctrlq - restart a suspended control queue
2100  *	@data: the control queue to restart
2101  *
2102  *	Resumes transmission on a suspended Tx control queue.
2103  */
2104 static void restart_ctrlq(unsigned long data)
2105 {
2106 	struct sk_buff *skb;
2107 	unsigned int written = 0;
2108 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2109 
2110 	spin_lock(&q->sendq.lock);
2111 	reclaim_completed_tx_imm(&q->q);
2112 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2113 
2114 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2115 		struct fw_wr_hdr *wr;
2116 		unsigned int ndesc = skb->priority;     /* previously saved */
2117 
2118 		written += ndesc;
2119 		/* Write descriptors and free skbs outside the lock to limit
2120 		 * wait times.  q->full is still set so new skbs will be queued.
2121 		 */
2122 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2123 		txq_advance(&q->q, ndesc);
2124 		spin_unlock(&q->sendq.lock);
2125 
2126 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2127 		kfree_skb(skb);
2128 
2129 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2130 			unsigned long old = q->q.stops;
2131 
2132 			ctrlq_check_stop(q, wr);
2133 			if (q->q.stops != old) {          /* suspended anew */
2134 				spin_lock(&q->sendq.lock);
2135 				goto ringdb;
2136 			}
2137 		}
2138 		if (written > 16) {
2139 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2140 			written = 0;
2141 		}
2142 		spin_lock(&q->sendq.lock);
2143 	}
2144 	q->full = 0;
2145 ringdb:
2146 	if (written)
2147 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2148 	spin_unlock(&q->sendq.lock);
2149 }
2150 
2151 /**
2152  *	t4_mgmt_tx - send a management message
2153  *	@adap: the adapter
2154  *	@skb: the packet containing the management message
2155  *
2156  *	Send a management message through control queue 0.
2157  */
2158 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2159 {
2160 	int ret;
2161 
2162 	local_bh_disable();
2163 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2164 	local_bh_enable();
2165 	return ret;
2166 }
2167 
2168 /**
2169  *	is_ofld_imm - check whether a packet can be sent as immediate data
2170  *	@skb: the packet
2171  *
2172  *	Returns true if a packet can be sent as an offload WR with immediate
2173  *	data.  We currently use the same limit as for Ethernet packets.
2174  */
2175 static inline int is_ofld_imm(const struct sk_buff *skb)
2176 {
2177 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2178 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2179 
2180 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2181 		return skb->len <= SGE_MAX_WR_LEN;
2182 	else
2183 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2184 }
2185 
2186 /**
2187  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2188  *	@skb: the packet
2189  *
2190  *	Returns the number of flits needed for the given offload packet.
2191  *	These packets are already fully constructed and no additional headers
2192  *	will be added.
2193  */
2194 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2195 {
2196 	unsigned int flits, cnt;
2197 
2198 	if (is_ofld_imm(skb))
2199 		return DIV_ROUND_UP(skb->len, 8);
2200 
2201 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2202 	cnt = skb_shinfo(skb)->nr_frags;
2203 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2204 		cnt++;
2205 	return flits + sgl_len(cnt);
2206 }
2207 
2208 /**
2209  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2210  *	@adap: the adapter
2211  *	@q: the queue to stop
2212  *
2213  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2214  *	inability to map packets.  A periodic timer attempts to restart
2215  *	queues so marked.
2216  */
2217 static void txq_stop_maperr(struct sge_uld_txq *q)
2218 {
2219 	q->mapping_err++;
2220 	q->q.stops++;
2221 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2222 		q->adap->sge.txq_maperr);
2223 }
2224 
2225 /**
2226  *	ofldtxq_stop - stop an offload Tx queue that has become full
2227  *	@q: the queue to stop
2228  *	@wr: the Work Request causing the queue to become full
2229  *
2230  *	Stops an offload Tx queue that has become full and modifies the packet
2231  *	being written to request a wakeup.
2232  */
2233 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2234 {
2235 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2236 	q->q.stops++;
2237 	q->full = 1;
2238 }
2239 
2240 /**
2241  *	service_ofldq - service/restart a suspended offload queue
2242  *	@q: the offload queue
2243  *
2244  *	Services an offload Tx queue by moving packets from its Pending Send
2245  *	Queue to the Hardware TX ring.  The function starts and ends with the
2246  *	Send Queue locked, but drops the lock while putting the skb at the
2247  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2248  *	allows more skbs to be added to the Send Queue by other threads.
2249  *	The packet being processed at the head of the Pending Send Queue is
2250  *	left on the queue in case we experience DMA Mapping errors, etc.
2251  *	and need to give up and restart later.
2252  *
2253  *	service_ofldq() can be thought of as a task which opportunistically
2254  *	uses other threads execution contexts.  We use the Offload Queue
2255  *	boolean "service_ofldq_running" to make sure that only one instance
2256  *	is ever running at a time ...
2257  */
2258 static void service_ofldq(struct sge_uld_txq *q)
2259 {
2260 	u64 *pos, *before, *end;
2261 	int credits;
2262 	struct sk_buff *skb;
2263 	struct sge_txq *txq;
2264 	unsigned int left;
2265 	unsigned int written = 0;
2266 	unsigned int flits, ndesc;
2267 
2268 	/* If another thread is currently in service_ofldq() processing the
2269 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2270 	 * that we're doing the work and continue.  Examining/modifying
2271 	 * the Offload Queue boolean "service_ofldq_running" must be done
2272 	 * while holding the Pending Send Queue Lock.
2273 	 */
2274 	if (q->service_ofldq_running)
2275 		return;
2276 	q->service_ofldq_running = true;
2277 
2278 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2279 		/* We drop the lock while we're working with the skb at the
2280 		 * head of the Pending Send Queue.  This allows more skbs to
2281 		 * be added to the Pending Send Queue while we're working on
2282 		 * this one.  We don't need to lock to guard the TX Ring
2283 		 * updates because only one thread of execution is ever
2284 		 * allowed into service_ofldq() at a time.
2285 		 */
2286 		spin_unlock(&q->sendq.lock);
2287 
2288 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2289 
2290 		flits = skb->priority;                /* previously saved */
2291 		ndesc = flits_to_desc(flits);
2292 		credits = txq_avail(&q->q) - ndesc;
2293 		BUG_ON(credits < 0);
2294 		if (unlikely(credits < TXQ_STOP_THRES))
2295 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2296 
2297 		pos = (u64 *)&q->q.desc[q->q.pidx];
2298 		if (is_ofld_imm(skb))
2299 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2300 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2301 				       (dma_addr_t *)skb->head)) {
2302 			txq_stop_maperr(q);
2303 			spin_lock(&q->sendq.lock);
2304 			break;
2305 		} else {
2306 			int last_desc, hdr_len = skb_transport_offset(skb);
2307 
2308 			/* The WR headers  may not fit within one descriptor.
2309 			 * So we need to deal with wrap-around here.
2310 			 */
2311 			before = (u64 *)pos;
2312 			end = (u64 *)pos + flits;
2313 			txq = &q->q;
2314 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2315 							   (void *)pos,
2316 							   hdr_len);
2317 			if (before > (u64 *)pos) {
2318 				left = (u8 *)end - (u8 *)txq->stat;
2319 				end = (void *)txq->desc + left;
2320 			}
2321 
2322 			/* If current position is already at the end of the
2323 			 * ofld queue, reset the current to point to
2324 			 * start of the queue and update the end ptr as well.
2325 			 */
2326 			if (pos == (u64 *)txq->stat) {
2327 				left = (u8 *)end - (u8 *)txq->stat;
2328 				end = (void *)txq->desc + left;
2329 				pos = (void *)txq->desc;
2330 			}
2331 
2332 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
2333 					end, hdr_len,
2334 					(dma_addr_t *)skb->head);
2335 #ifdef CONFIG_NEED_DMA_MAP_STATE
2336 			skb->dev = q->adap->port[0];
2337 			skb->destructor = deferred_unmap_destructor;
2338 #endif
2339 			last_desc = q->q.pidx + ndesc - 1;
2340 			if (last_desc >= q->q.size)
2341 				last_desc -= q->q.size;
2342 			q->q.sdesc[last_desc].skb = skb;
2343 		}
2344 
2345 		txq_advance(&q->q, ndesc);
2346 		written += ndesc;
2347 		if (unlikely(written > 32)) {
2348 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2349 			written = 0;
2350 		}
2351 
2352 		/* Reacquire the Pending Send Queue Lock so we can unlink the
2353 		 * skb we've just successfully transferred to the TX Ring and
2354 		 * loop for the next skb which may be at the head of the
2355 		 * Pending Send Queue.
2356 		 */
2357 		spin_lock(&q->sendq.lock);
2358 		__skb_unlink(skb, &q->sendq);
2359 		if (is_ofld_imm(skb))
2360 			kfree_skb(skb);
2361 	}
2362 	if (likely(written))
2363 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2364 
2365 	/*Indicate that no thread is processing the Pending Send Queue
2366 	 * currently.
2367 	 */
2368 	q->service_ofldq_running = false;
2369 }
2370 
2371 /**
2372  *	ofld_xmit - send a packet through an offload queue
2373  *	@q: the Tx offload queue
2374  *	@skb: the packet
2375  *
2376  *	Send an offload packet through an SGE offload queue.
2377  */
2378 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2379 {
2380 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
2381 	spin_lock(&q->sendq.lock);
2382 
2383 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
2384 	 * that results in this new skb being the only one on the queue, start
2385 	 * servicing it.  If there are other skbs already on the list, then
2386 	 * either the queue is currently being processed or it's been stopped
2387 	 * for some reason and it'll be restarted at a later time.  Restart
2388 	 * paths are triggered by events like experiencing a DMA Mapping Error
2389 	 * or filling the Hardware TX Ring.
2390 	 */
2391 	__skb_queue_tail(&q->sendq, skb);
2392 	if (q->sendq.qlen == 1)
2393 		service_ofldq(q);
2394 
2395 	spin_unlock(&q->sendq.lock);
2396 	return NET_XMIT_SUCCESS;
2397 }
2398 
2399 /**
2400  *	restart_ofldq - restart a suspended offload queue
2401  *	@data: the offload queue to restart
2402  *
2403  *	Resumes transmission on a suspended Tx offload queue.
2404  */
2405 static void restart_ofldq(unsigned long data)
2406 {
2407 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2408 
2409 	spin_lock(&q->sendq.lock);
2410 	q->full = 0;            /* the queue actually is completely empty now */
2411 	service_ofldq(q);
2412 	spin_unlock(&q->sendq.lock);
2413 }
2414 
2415 /**
2416  *	skb_txq - return the Tx queue an offload packet should use
2417  *	@skb: the packet
2418  *
2419  *	Returns the Tx queue an offload packet should use as indicated by bits
2420  *	1-15 in the packet's queue_mapping.
2421  */
2422 static inline unsigned int skb_txq(const struct sk_buff *skb)
2423 {
2424 	return skb->queue_mapping >> 1;
2425 }
2426 
2427 /**
2428  *	is_ctrl_pkt - return whether an offload packet is a control packet
2429  *	@skb: the packet
2430  *
2431  *	Returns whether an offload packet should use an OFLD or a CTRL
2432  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
2433  */
2434 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2435 {
2436 	return skb->queue_mapping & 1;
2437 }
2438 
2439 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2440 			   unsigned int tx_uld_type)
2441 {
2442 	struct sge_uld_txq_info *txq_info;
2443 	struct sge_uld_txq *txq;
2444 	unsigned int idx = skb_txq(skb);
2445 
2446 	if (unlikely(is_ctrl_pkt(skb))) {
2447 		/* Single ctrl queue is a requirement for LE workaround path */
2448 		if (adap->tids.nsftids)
2449 			idx = 0;
2450 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2451 	}
2452 
2453 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2454 	if (unlikely(!txq_info)) {
2455 		WARN_ON(true);
2456 		return NET_XMIT_DROP;
2457 	}
2458 
2459 	txq = &txq_info->uldtxq[idx];
2460 	return ofld_xmit(txq, skb);
2461 }
2462 
2463 /**
2464  *	t4_ofld_send - send an offload packet
2465  *	@adap: the adapter
2466  *	@skb: the packet
2467  *
2468  *	Sends an offload packet.  We use the packet queue_mapping to select the
2469  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2470  *	should be sent as regular or control, bits 1-15 select the queue.
2471  */
2472 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2473 {
2474 	int ret;
2475 
2476 	local_bh_disable();
2477 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2478 	local_bh_enable();
2479 	return ret;
2480 }
2481 
2482 /**
2483  *	cxgb4_ofld_send - send an offload packet
2484  *	@dev: the net device
2485  *	@skb: the packet
2486  *
2487  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2488  *	intended for ULDs.
2489  */
2490 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2491 {
2492 	return t4_ofld_send(netdev2adap(dev), skb);
2493 }
2494 EXPORT_SYMBOL(cxgb4_ofld_send);
2495 
2496 static void *inline_tx_header(const void *src,
2497 			      const struct sge_txq *q,
2498 			      void *pos, int length)
2499 {
2500 	int left = (void *)q->stat - pos;
2501 	u64 *p;
2502 
2503 	if (likely(length <= left)) {
2504 		memcpy(pos, src, length);
2505 		pos += length;
2506 	} else {
2507 		memcpy(pos, src, left);
2508 		memcpy(q->desc, src + left, length - left);
2509 		pos = (void *)q->desc + (length - left);
2510 	}
2511 	/* 0-pad to multiple of 16 */
2512 	p = PTR_ALIGN(pos, 8);
2513 	if ((uintptr_t)p & 8) {
2514 		*p = 0;
2515 		return p + 1;
2516 	}
2517 	return p;
2518 }
2519 
2520 /**
2521  *      ofld_xmit_direct - copy a WR into offload queue
2522  *      @q: the Tx offload queue
2523  *      @src: location of WR
2524  *      @len: WR length
2525  *
2526  *      Copy an immediate WR into an uncontended SGE offload queue.
2527  */
2528 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2529 			    unsigned int len)
2530 {
2531 	unsigned int ndesc;
2532 	int credits;
2533 	u64 *pos;
2534 
2535 	/* Use the lower limit as the cut-off */
2536 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2537 		WARN_ON(1);
2538 		return NET_XMIT_DROP;
2539 	}
2540 
2541 	/* Don't return NET_XMIT_CN here as the current
2542 	 * implementation doesn't queue the request
2543 	 * using an skb when the following conditions not met
2544 	 */
2545 	if (!spin_trylock(&q->sendq.lock))
2546 		return NET_XMIT_DROP;
2547 
2548 	if (q->full || !skb_queue_empty(&q->sendq) ||
2549 	    q->service_ofldq_running) {
2550 		spin_unlock(&q->sendq.lock);
2551 		return NET_XMIT_DROP;
2552 	}
2553 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2554 	credits = txq_avail(&q->q) - ndesc;
2555 	pos = (u64 *)&q->q.desc[q->q.pidx];
2556 
2557 	/* ofldtxq_stop modifies WR header in-situ */
2558 	inline_tx_header(src, &q->q, pos, len);
2559 	if (unlikely(credits < TXQ_STOP_THRES))
2560 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
2561 	txq_advance(&q->q, ndesc);
2562 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2563 
2564 	spin_unlock(&q->sendq.lock);
2565 	return NET_XMIT_SUCCESS;
2566 }
2567 
2568 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
2569 		       const void *src, unsigned int len)
2570 {
2571 	struct sge_uld_txq_info *txq_info;
2572 	struct sge_uld_txq *txq;
2573 	struct adapter *adap;
2574 	int ret;
2575 
2576 	adap = netdev2adap(dev);
2577 
2578 	local_bh_disable();
2579 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2580 	if (unlikely(!txq_info)) {
2581 		WARN_ON(true);
2582 		local_bh_enable();
2583 		return NET_XMIT_DROP;
2584 	}
2585 	txq = &txq_info->uldtxq[idx];
2586 
2587 	ret = ofld_xmit_direct(txq, src, len);
2588 	local_bh_enable();
2589 	return net_xmit_eval(ret);
2590 }
2591 EXPORT_SYMBOL(cxgb4_immdata_send);
2592 
2593 /**
2594  *	t4_crypto_send - send crypto packet
2595  *	@adap: the adapter
2596  *	@skb: the packet
2597  *
2598  *	Sends crypto packet.  We use the packet queue_mapping to select the
2599  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2600  *	should be sent as regular or control, bits 1-15 select the queue.
2601  */
2602 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
2603 {
2604 	int ret;
2605 
2606 	local_bh_disable();
2607 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
2608 	local_bh_enable();
2609 	return ret;
2610 }
2611 
2612 /**
2613  *	cxgb4_crypto_send - send crypto packet
2614  *	@dev: the net device
2615  *	@skb: the packet
2616  *
2617  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
2618  *	intended for ULDs.
2619  */
2620 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
2621 {
2622 	return t4_crypto_send(netdev2adap(dev), skb);
2623 }
2624 EXPORT_SYMBOL(cxgb4_crypto_send);
2625 
2626 static inline void copy_frags(struct sk_buff *skb,
2627 			      const struct pkt_gl *gl, unsigned int offset)
2628 {
2629 	int i;
2630 
2631 	/* usually there's just one frag */
2632 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
2633 			     gl->frags[0].offset + offset,
2634 			     gl->frags[0].size - offset);
2635 	skb_shinfo(skb)->nr_frags = gl->nfrags;
2636 	for (i = 1; i < gl->nfrags; i++)
2637 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
2638 				     gl->frags[i].offset,
2639 				     gl->frags[i].size);
2640 
2641 	/* get a reference to the last page, we don't own it */
2642 	get_page(gl->frags[gl->nfrags - 1].page);
2643 }
2644 
2645 /**
2646  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
2647  *	@gl: the gather list
2648  *	@skb_len: size of sk_buff main body if it carries fragments
2649  *	@pull_len: amount of data to move to the sk_buff's main body
2650  *
2651  *	Builds an sk_buff from the given packet gather list.  Returns the
2652  *	sk_buff or %NULL if sk_buff allocation failed.
2653  */
2654 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
2655 				   unsigned int skb_len, unsigned int pull_len)
2656 {
2657 	struct sk_buff *skb;
2658 
2659 	/*
2660 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
2661 	 * size, which is expected since buffers are at least PAGE_SIZEd.
2662 	 * In this case packets up to RX_COPY_THRES have only one fragment.
2663 	 */
2664 	if (gl->tot_len <= RX_COPY_THRES) {
2665 		skb = dev_alloc_skb(gl->tot_len);
2666 		if (unlikely(!skb))
2667 			goto out;
2668 		__skb_put(skb, gl->tot_len);
2669 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
2670 	} else {
2671 		skb = dev_alloc_skb(skb_len);
2672 		if (unlikely(!skb))
2673 			goto out;
2674 		__skb_put(skb, pull_len);
2675 		skb_copy_to_linear_data(skb, gl->va, pull_len);
2676 
2677 		copy_frags(skb, gl, pull_len);
2678 		skb->len = gl->tot_len;
2679 		skb->data_len = skb->len - pull_len;
2680 		skb->truesize += skb->data_len;
2681 	}
2682 out:	return skb;
2683 }
2684 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
2685 
2686 /**
2687  *	t4_pktgl_free - free a packet gather list
2688  *	@gl: the gather list
2689  *
2690  *	Releases the pages of a packet gather list.  We do not own the last
2691  *	page on the list and do not free it.
2692  */
2693 static void t4_pktgl_free(const struct pkt_gl *gl)
2694 {
2695 	int n;
2696 	const struct page_frag *p;
2697 
2698 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
2699 		put_page(p->page);
2700 }
2701 
2702 /*
2703  * Process an MPS trace packet.  Give it an unused protocol number so it won't
2704  * be delivered to anyone and send it to the stack for capture.
2705  */
2706 static noinline int handle_trace_pkt(struct adapter *adap,
2707 				     const struct pkt_gl *gl)
2708 {
2709 	struct sk_buff *skb;
2710 
2711 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
2712 	if (unlikely(!skb)) {
2713 		t4_pktgl_free(gl);
2714 		return 0;
2715 	}
2716 
2717 	if (is_t4(adap->params.chip))
2718 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
2719 	else
2720 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
2721 
2722 	skb_reset_mac_header(skb);
2723 	skb->protocol = htons(0xffff);
2724 	skb->dev = adap->port[0];
2725 	netif_receive_skb(skb);
2726 	return 0;
2727 }
2728 
2729 /**
2730  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
2731  * @adap: the adapter
2732  * @hwtstamps: time stamp structure to update
2733  * @sgetstamp: 60bit iqe timestamp
2734  *
2735  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
2736  * which is in Core Clock ticks into ktime_t and assign it
2737  **/
2738 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2739 				     struct skb_shared_hwtstamps *hwtstamps,
2740 				     u64 sgetstamp)
2741 {
2742 	u64 ns;
2743 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2744 
2745 	ns = div_u64(tmp, adap->params.vpd.cclk);
2746 
2747 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2748 	hwtstamps->hwtstamp = ns_to_ktime(ns);
2749 }
2750 
2751 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2752 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
2753 {
2754 	struct adapter *adapter = rxq->rspq.adap;
2755 	struct sge *s = &adapter->sge;
2756 	struct port_info *pi;
2757 	int ret;
2758 	struct sk_buff *skb;
2759 
2760 	skb = napi_get_frags(&rxq->rspq.napi);
2761 	if (unlikely(!skb)) {
2762 		t4_pktgl_free(gl);
2763 		rxq->stats.rx_drops++;
2764 		return;
2765 	}
2766 
2767 	copy_frags(skb, gl, s->pktshift);
2768 	if (tnl_hdr_len)
2769 		skb->csum_level = 1;
2770 	skb->len = gl->tot_len - s->pktshift;
2771 	skb->data_len = skb->len;
2772 	skb->truesize += skb->data_len;
2773 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2774 	skb_record_rx_queue(skb, rxq->rspq.idx);
2775 	pi = netdev_priv(skb->dev);
2776 	if (pi->rxtstamp)
2777 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2778 					 gl->sgetstamp);
2779 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2780 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2781 			     PKT_HASH_TYPE_L3);
2782 
2783 	if (unlikely(pkt->vlan_ex)) {
2784 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2785 		rxq->stats.vlan_ex++;
2786 	}
2787 	ret = napi_gro_frags(&rxq->rspq.napi);
2788 	if (ret == GRO_HELD)
2789 		rxq->stats.lro_pkts++;
2790 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2791 		rxq->stats.lro_merged++;
2792 	rxq->stats.pkts++;
2793 	rxq->stats.rx_cso++;
2794 }
2795 
2796 enum {
2797 	RX_NON_PTP_PKT = 0,
2798 	RX_PTP_PKT_SUC = 1,
2799 	RX_PTP_PKT_ERR = 2
2800 };
2801 
2802 /**
2803  *     t4_systim_to_hwstamp - read hardware time stamp
2804  *     @adap: the adapter
2805  *     @skb: the packet
2806  *
2807  *     Read Time Stamp from MPS packet and insert in skb which
2808  *     is forwarded to PTP application
2809  */
2810 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2811 					 struct sk_buff *skb)
2812 {
2813 	struct skb_shared_hwtstamps *hwtstamps;
2814 	struct cpl_rx_mps_pkt *cpl = NULL;
2815 	unsigned char *data;
2816 	int offset;
2817 
2818 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
2819 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2820 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
2821 		return RX_PTP_PKT_ERR;
2822 
2823 	data = skb->data + sizeof(*cpl);
2824 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2825 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2826 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2827 		return RX_PTP_PKT_ERR;
2828 
2829 	hwtstamps = skb_hwtstamps(skb);
2830 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2831 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
2832 
2833 	return RX_PTP_PKT_SUC;
2834 }
2835 
2836 /**
2837  *     t4_rx_hststamp - Recv PTP Event Message
2838  *     @adap: the adapter
2839  *     @rsp: the response queue descriptor holding the RX_PKT message
2840  *     @skb: the packet
2841  *
2842  *     PTP enabled and MPS packet, read HW timestamp
2843  */
2844 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2845 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
2846 {
2847 	int ret;
2848 
2849 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2850 		     !is_t4(adapter->params.chip))) {
2851 		ret = t4_systim_to_hwstamp(adapter, skb);
2852 		if (ret == RX_PTP_PKT_ERR) {
2853 			kfree_skb(skb);
2854 			rxq->stats.rx_drops++;
2855 		}
2856 		return ret;
2857 	}
2858 	return RX_NON_PTP_PKT;
2859 }
2860 
2861 /**
2862  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
2863  *      @adap: the adapter
2864  *      @skb: the packet
2865  *      @dev: the ingress net device
2866  *
2867  *      Read hardware timestamp for the loopback PTP Tx event message
2868  */
2869 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2870 			  struct net_device *dev)
2871 {
2872 	struct port_info *pi = netdev_priv(dev);
2873 
2874 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2875 		cxgb4_ptp_read_hwstamp(adapter, pi);
2876 		kfree_skb(skb);
2877 		return 0;
2878 	}
2879 	return 1;
2880 }
2881 
2882 /**
2883  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
2884  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
2885  *	@rsp: Response Entry pointer into Response Queue
2886  *	@gl: Gather List pointer
2887  *
2888  *	For adapters which support the SGE Doorbell Queue Timer facility,
2889  *	we configure the Ethernet TX Queues to send CIDX Updates to the
2890  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
2891  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
2892  *	potentially, higher CPU Interrupt load, but allows us to respond
2893  *	much more quickly to the CIDX Updates.  This is important for
2894  *	Upper Layer Software which isn't willing to have a large amount
2895  *	of TX Data outstanding before receiving DMA Completions.
2896  */
2897 static void t4_tx_completion_handler(struct sge_rspq *rspq,
2898 				     const __be64 *rsp,
2899 				     const struct pkt_gl *gl)
2900 {
2901 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
2902 	struct port_info *pi = netdev_priv(rspq->netdev);
2903 	struct adapter *adapter = rspq->adap;
2904 	struct sge *s = &adapter->sge;
2905 	struct sge_eth_txq *txq;
2906 
2907 	/* skip RSS header */
2908 	rsp++;
2909 
2910 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
2911 	 */
2912 	if (unlikely(opcode == CPL_FW4_MSG &&
2913 		     ((const struct cpl_fw4_msg *)rsp)->type ==
2914 							FW_TYPE_RSSCPL)) {
2915 		rsp++;
2916 		opcode = ((const struct rss_header *)rsp)->opcode;
2917 		rsp++;
2918 	}
2919 
2920 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
2921 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
2922 			__func__, opcode);
2923 		return;
2924 	}
2925 
2926 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
2927 
2928 	/* We've got the Hardware Consumer Index Update in the Egress Update
2929 	 * message.  If we're using the SGE Doorbell Queue Timer mechanism,
2930 	 * these Egress Update messages will be our sole CIDX Updates we get
2931 	 * since we don't want to chew up PCIe bandwidth for both Ingress
2932 	 * Messages and Status Page writes.  However, The code which manages
2933 	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
2934 	 * stored in the Status Page at the end of the TX Queue.  It's easiest
2935 	 * to simply copy the CIDX Update value from the Egress Update message
2936 	 * to the Status Page.  Also note that no Endian issues need to be
2937 	 * considered here since both are Big Endian and we're just copying
2938 	 * bytes consistently ...
2939 	 */
2940 	if (txq->dbqt) {
2941 		struct cpl_sge_egr_update *egr;
2942 
2943 		egr = (struct cpl_sge_egr_update *)rsp;
2944 		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
2945 	}
2946 
2947 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
2948 }
2949 
2950 /**
2951  *	t4_ethrx_handler - process an ingress ethernet packet
2952  *	@q: the response queue that received the packet
2953  *	@rsp: the response queue descriptor holding the RX_PKT message
2954  *	@si: the gather list of packet fragments
2955  *
2956  *	Process an ingress ethernet packet and deliver it to the stack.
2957  */
2958 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2959 		     const struct pkt_gl *si)
2960 {
2961 	bool csum_ok;
2962 	struct sk_buff *skb;
2963 	const struct cpl_rx_pkt *pkt;
2964 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2965 	struct adapter *adapter = q->adap;
2966 	struct sge *s = &q->adap->sge;
2967 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2968 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2969 	u16 err_vec, tnl_hdr_len = 0;
2970 	struct port_info *pi;
2971 	int ret = 0;
2972 
2973 	/* If we're looking at TX Queue CIDX Update, handle that separately
2974 	 * and return.
2975 	 */
2976 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
2977 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
2978 		t4_tx_completion_handler(q, rsp, si);
2979 		return 0;
2980 	}
2981 
2982 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2983 		return handle_trace_pkt(q->adap, si);
2984 
2985 	pkt = (const struct cpl_rx_pkt *)rsp;
2986 	/* Compressed error vector is enabled for T6 only */
2987 	if (q->adap->params.tp.rx_pkt_encap) {
2988 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2989 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
2990 	} else {
2991 		err_vec = be16_to_cpu(pkt->err_vec);
2992 	}
2993 
2994 	csum_ok = pkt->csum_calc && !err_vec &&
2995 		  (q->netdev->features & NETIF_F_RXCSUM);
2996 
2997 	if (err_vec)
2998 		rxq->stats.bad_rx_pkts++;
2999 
3000 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3001 	     tnl_hdr_len) &&
3002 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3003 		do_gro(rxq, si, pkt, tnl_hdr_len);
3004 		return 0;
3005 	}
3006 
3007 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3008 	if (unlikely(!skb)) {
3009 		t4_pktgl_free(si);
3010 		rxq->stats.rx_drops++;
3011 		return 0;
3012 	}
3013 	pi = netdev_priv(q->netdev);
3014 
3015 	/* Handle PTP Event Rx packet */
3016 	if (unlikely(pi->ptp_enable)) {
3017 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3018 		if (ret == RX_PTP_PKT_ERR)
3019 			return 0;
3020 	}
3021 	if (likely(!ret))
3022 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3023 
3024 	/* Handle the PTP Event Tx Loopback packet */
3025 	if (unlikely(pi->ptp_enable && !ret &&
3026 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3027 		     cxgb4_ptp_is_ptp_rx(skb))) {
3028 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3029 			return 0;
3030 	}
3031 
3032 	skb->protocol = eth_type_trans(skb, q->netdev);
3033 	skb_record_rx_queue(skb, q->idx);
3034 	if (skb->dev->features & NETIF_F_RXHASH)
3035 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3036 			     PKT_HASH_TYPE_L3);
3037 
3038 	rxq->stats.pkts++;
3039 
3040 	if (pi->rxtstamp)
3041 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3042 					 si->sgetstamp);
3043 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3044 		if (!pkt->ip_frag) {
3045 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3046 			rxq->stats.rx_cso++;
3047 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3048 			__sum16 c = (__force __sum16)pkt->csum;
3049 			skb->csum = csum_unfold(c);
3050 
3051 			if (tnl_hdr_len) {
3052 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3053 				skb->csum_level = 1;
3054 			} else {
3055 				skb->ip_summed = CHECKSUM_COMPLETE;
3056 			}
3057 			rxq->stats.rx_cso++;
3058 		}
3059 	} else {
3060 		skb_checksum_none_assert(skb);
3061 #ifdef CONFIG_CHELSIO_T4_FCOE
3062 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3063 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3064 
3065 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3066 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3067 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3068 				if (q->adap->params.tp.rx_pkt_encap)
3069 					csum_ok = err_vec &
3070 						  T6_COMPR_RXERR_SUM_F;
3071 				else
3072 					csum_ok = err_vec & RXERR_CSUM_F;
3073 				if (!csum_ok)
3074 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3075 			}
3076 		}
3077 
3078 #undef CPL_RX_PKT_FLAGS
3079 #endif /* CONFIG_CHELSIO_T4_FCOE */
3080 	}
3081 
3082 	if (unlikely(pkt->vlan_ex)) {
3083 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3084 		rxq->stats.vlan_ex++;
3085 	}
3086 	skb_mark_napi_id(skb, &q->napi);
3087 	netif_receive_skb(skb);
3088 	return 0;
3089 }
3090 
3091 /**
3092  *	restore_rx_bufs - put back a packet's Rx buffers
3093  *	@si: the packet gather list
3094  *	@q: the SGE free list
3095  *	@frags: number of FL buffers to restore
3096  *
3097  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3098  *	have already been unmapped and are left unmapped, we mark them so to
3099  *	prevent further unmapping attempts.
3100  *
3101  *	This function undoes a series of @unmap_rx_buf calls when we find out
3102  *	that the current packet can't be processed right away afterall and we
3103  *	need to come back to it later.  This is a very rare event and there's
3104  *	no effort to make this particularly efficient.
3105  */
3106 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3107 			    int frags)
3108 {
3109 	struct rx_sw_desc *d;
3110 
3111 	while (frags--) {
3112 		if (q->cidx == 0)
3113 			q->cidx = q->size - 1;
3114 		else
3115 			q->cidx--;
3116 		d = &q->sdesc[q->cidx];
3117 		d->page = si->frags[frags].page;
3118 		d->dma_addr |= RX_UNMAPPED_BUF;
3119 		q->avail++;
3120 	}
3121 }
3122 
3123 /**
3124  *	is_new_response - check if a response is newly written
3125  *	@r: the response descriptor
3126  *	@q: the response queue
3127  *
3128  *	Returns true if a response descriptor contains a yet unprocessed
3129  *	response.
3130  */
3131 static inline bool is_new_response(const struct rsp_ctrl *r,
3132 				   const struct sge_rspq *q)
3133 {
3134 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3135 }
3136 
3137 /**
3138  *	rspq_next - advance to the next entry in a response queue
3139  *	@q: the queue
3140  *
3141  *	Updates the state of a response queue to advance it to the next entry.
3142  */
3143 static inline void rspq_next(struct sge_rspq *q)
3144 {
3145 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3146 	if (unlikely(++q->cidx == q->size)) {
3147 		q->cidx = 0;
3148 		q->gen ^= 1;
3149 		q->cur_desc = q->desc;
3150 	}
3151 }
3152 
3153 /**
3154  *	process_responses - process responses from an SGE response queue
3155  *	@q: the ingress queue to process
3156  *	@budget: how many responses can be processed in this round
3157  *
3158  *	Process responses from an SGE response queue up to the supplied budget.
3159  *	Responses include received packets as well as control messages from FW
3160  *	or HW.
3161  *
3162  *	Additionally choose the interrupt holdoff time for the next interrupt
3163  *	on this queue.  If the system is under memory shortage use a fairly
3164  *	long delay to help recovery.
3165  */
3166 static int process_responses(struct sge_rspq *q, int budget)
3167 {
3168 	int ret, rsp_type;
3169 	int budget_left = budget;
3170 	const struct rsp_ctrl *rc;
3171 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3172 	struct adapter *adapter = q->adap;
3173 	struct sge *s = &adapter->sge;
3174 
3175 	while (likely(budget_left)) {
3176 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3177 		if (!is_new_response(rc, q)) {
3178 			if (q->flush_handler)
3179 				q->flush_handler(q);
3180 			break;
3181 		}
3182 
3183 		dma_rmb();
3184 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3185 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3186 			struct page_frag *fp;
3187 			struct pkt_gl si;
3188 			const struct rx_sw_desc *rsd;
3189 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3190 
3191 			if (len & RSPD_NEWBUF_F) {
3192 				if (likely(q->offset > 0)) {
3193 					free_rx_bufs(q->adap, &rxq->fl, 1);
3194 					q->offset = 0;
3195 				}
3196 				len = RSPD_LEN_G(len);
3197 			}
3198 			si.tot_len = len;
3199 
3200 			/* gather packet fragments */
3201 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3202 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3203 				bufsz = get_buf_size(adapter, rsd);
3204 				fp->page = rsd->page;
3205 				fp->offset = q->offset;
3206 				fp->size = min(bufsz, len);
3207 				len -= fp->size;
3208 				if (!len)
3209 					break;
3210 				unmap_rx_buf(q->adap, &rxq->fl);
3211 			}
3212 
3213 			si.sgetstamp = SGE_TIMESTAMP_G(
3214 					be64_to_cpu(rc->last_flit));
3215 			/*
3216 			 * Last buffer remains mapped so explicitly make it
3217 			 * coherent for CPU access.
3218 			 */
3219 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3220 						get_buf_addr(rsd),
3221 						fp->size, DMA_FROM_DEVICE);
3222 
3223 			si.va = page_address(si.frags[0].page) +
3224 				si.frags[0].offset;
3225 			prefetch(si.va);
3226 
3227 			si.nfrags = frags + 1;
3228 			ret = q->handler(q, q->cur_desc, &si);
3229 			if (likely(ret == 0))
3230 				q->offset += ALIGN(fp->size, s->fl_align);
3231 			else
3232 				restore_rx_bufs(&si, &rxq->fl, frags);
3233 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3234 			ret = q->handler(q, q->cur_desc, NULL);
3235 		} else {
3236 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3237 		}
3238 
3239 		if (unlikely(ret)) {
3240 			/* couldn't process descriptor, back off for recovery */
3241 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3242 			break;
3243 		}
3244 
3245 		rspq_next(q);
3246 		budget_left--;
3247 	}
3248 
3249 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3250 		__refill_fl(q->adap, &rxq->fl);
3251 	return budget - budget_left;
3252 }
3253 
3254 /**
3255  *	napi_rx_handler - the NAPI handler for Rx processing
3256  *	@napi: the napi instance
3257  *	@budget: how many packets we can process in this round
3258  *
3259  *	Handler for new data events when using NAPI.  This does not need any
3260  *	locking or protection from interrupts as data interrupts are off at
3261  *	this point and other adapter interrupts do not interfere (the latter
3262  *	in not a concern at all with MSI-X as non-data interrupts then have
3263  *	a separate handler).
3264  */
3265 static int napi_rx_handler(struct napi_struct *napi, int budget)
3266 {
3267 	unsigned int params;
3268 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3269 	int work_done;
3270 	u32 val;
3271 
3272 	work_done = process_responses(q, budget);
3273 	if (likely(work_done < budget)) {
3274 		int timer_index;
3275 
3276 		napi_complete_done(napi, work_done);
3277 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3278 
3279 		if (q->adaptive_rx) {
3280 			if (work_done > max(timer_pkt_quota[timer_index],
3281 					    MIN_NAPI_WORK))
3282 				timer_index = (timer_index + 1);
3283 			else
3284 				timer_index = timer_index - 1;
3285 
3286 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3287 			q->next_intr_params =
3288 					QINTR_TIMER_IDX_V(timer_index) |
3289 					QINTR_CNT_EN_V(0);
3290 			params = q->next_intr_params;
3291 		} else {
3292 			params = q->next_intr_params;
3293 			q->next_intr_params = q->intr_params;
3294 		}
3295 	} else
3296 		params = QINTR_TIMER_IDX_V(7);
3297 
3298 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3299 
3300 	/* If we don't have access to the new User GTS (T5+), use the old
3301 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3302 	 */
3303 	if (unlikely(q->bar2_addr == NULL)) {
3304 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3305 			     val | INGRESSQID_V((u32)q->cntxt_id));
3306 	} else {
3307 		writel(val | INGRESSQID_V(q->bar2_qid),
3308 		       q->bar2_addr + SGE_UDB_GTS);
3309 		wmb();
3310 	}
3311 	return work_done;
3312 }
3313 
3314 /*
3315  * The MSI-X interrupt handler for an SGE response queue.
3316  */
3317 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3318 {
3319 	struct sge_rspq *q = cookie;
3320 
3321 	napi_schedule(&q->napi);
3322 	return IRQ_HANDLED;
3323 }
3324 
3325 /*
3326  * Process the indirect interrupt entries in the interrupt queue and kick off
3327  * NAPI for each queue that has generated an entry.
3328  */
3329 static unsigned int process_intrq(struct adapter *adap)
3330 {
3331 	unsigned int credits;
3332 	const struct rsp_ctrl *rc;
3333 	struct sge_rspq *q = &adap->sge.intrq;
3334 	u32 val;
3335 
3336 	spin_lock(&adap->sge.intrq_lock);
3337 	for (credits = 0; ; credits++) {
3338 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3339 		if (!is_new_response(rc, q))
3340 			break;
3341 
3342 		dma_rmb();
3343 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3344 			unsigned int qid = ntohl(rc->pldbuflen_qid);
3345 
3346 			qid -= adap->sge.ingr_start;
3347 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
3348 		}
3349 
3350 		rspq_next(q);
3351 	}
3352 
3353 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3354 
3355 	/* If we don't have access to the new User GTS (T5+), use the old
3356 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3357 	 */
3358 	if (unlikely(q->bar2_addr == NULL)) {
3359 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3360 			     val | INGRESSQID_V(q->cntxt_id));
3361 	} else {
3362 		writel(val | INGRESSQID_V(q->bar2_qid),
3363 		       q->bar2_addr + SGE_UDB_GTS);
3364 		wmb();
3365 	}
3366 	spin_unlock(&adap->sge.intrq_lock);
3367 	return credits;
3368 }
3369 
3370 /*
3371  * The MSI interrupt handler, which handles data events from SGE response queues
3372  * as well as error and other async events as they all use the same MSI vector.
3373  */
3374 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3375 {
3376 	struct adapter *adap = cookie;
3377 
3378 	if (adap->flags & CXGB4_MASTER_PF)
3379 		t4_slow_intr_handler(adap);
3380 	process_intrq(adap);
3381 	return IRQ_HANDLED;
3382 }
3383 
3384 /*
3385  * Interrupt handler for legacy INTx interrupts.
3386  * Handles data events from SGE response queues as well as error and other
3387  * async events as they all use the same interrupt line.
3388  */
3389 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3390 {
3391 	struct adapter *adap = cookie;
3392 
3393 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3394 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3395 	    process_intrq(adap))
3396 		return IRQ_HANDLED;
3397 	return IRQ_NONE;             /* probably shared interrupt */
3398 }
3399 
3400 /**
3401  *	t4_intr_handler - select the top-level interrupt handler
3402  *	@adap: the adapter
3403  *
3404  *	Selects the top-level interrupt handler based on the type of interrupts
3405  *	(MSI-X, MSI, or INTx).
3406  */
3407 irq_handler_t t4_intr_handler(struct adapter *adap)
3408 {
3409 	if (adap->flags & CXGB4_USING_MSIX)
3410 		return t4_sge_intr_msix;
3411 	if (adap->flags & CXGB4_USING_MSI)
3412 		return t4_intr_msi;
3413 	return t4_intr_intx;
3414 }
3415 
3416 static void sge_rx_timer_cb(struct timer_list *t)
3417 {
3418 	unsigned long m;
3419 	unsigned int i;
3420 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3421 	struct sge *s = &adap->sge;
3422 
3423 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3424 		for (m = s->starving_fl[i]; m; m &= m - 1) {
3425 			struct sge_eth_rxq *rxq;
3426 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3427 			struct sge_fl *fl = s->egr_map[id];
3428 
3429 			clear_bit(id, s->starving_fl);
3430 			smp_mb__after_atomic();
3431 
3432 			if (fl_starving(adap, fl)) {
3433 				rxq = container_of(fl, struct sge_eth_rxq, fl);
3434 				if (napi_reschedule(&rxq->rspq.napi))
3435 					fl->starving++;
3436 				else
3437 					set_bit(id, s->starving_fl);
3438 			}
3439 		}
3440 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
3441 	 * global Master PF activities like checking for chip ingress stalls,
3442 	 * etc.
3443 	 */
3444 	if (!(adap->flags & CXGB4_MASTER_PF))
3445 		goto done;
3446 
3447 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
3448 
3449 done:
3450 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
3451 }
3452 
3453 static void sge_tx_timer_cb(struct timer_list *t)
3454 {
3455 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
3456 	struct sge *s = &adap->sge;
3457 	unsigned long m, period;
3458 	unsigned int i, budget;
3459 
3460 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3461 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
3462 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
3463 			struct sge_uld_txq *txq = s->egr_map[id];
3464 
3465 			clear_bit(id, s->txq_maperr);
3466 			tasklet_schedule(&txq->qresume_tsk);
3467 		}
3468 
3469 	if (!is_t4(adap->params.chip)) {
3470 		struct sge_eth_txq *q = &s->ptptxq;
3471 		int avail;
3472 
3473 		spin_lock(&adap->ptp_lock);
3474 		avail = reclaimable(&q->q);
3475 
3476 		if (avail) {
3477 			free_tx_desc(adap, &q->q, avail, false);
3478 			q->q.in_use -= avail;
3479 		}
3480 		spin_unlock(&adap->ptp_lock);
3481 	}
3482 
3483 	budget = MAX_TIMER_TX_RECLAIM;
3484 	i = s->ethtxq_rover;
3485 	do {
3486 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
3487 						       budget);
3488 		if (!budget)
3489 			break;
3490 
3491 		if (++i >= s->ethqsets)
3492 			i = 0;
3493 	} while (i != s->ethtxq_rover);
3494 	s->ethtxq_rover = i;
3495 
3496 	if (budget == 0) {
3497 		/* If we found too many reclaimable packets schedule a timer
3498 		 * in the near future to continue where we left off.
3499 		 */
3500 		period = 2;
3501 	} else {
3502 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
3503 		 * at the normal period.
3504 		 */
3505 		period = TX_QCHECK_PERIOD;
3506 	}
3507 
3508 	mod_timer(&s->tx_timer, jiffies + period);
3509 }
3510 
3511 /**
3512  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
3513  *	@adapter: the adapter
3514  *	@qid: the SGE Queue ID
3515  *	@qtype: the SGE Queue Type (Egress or Ingress)
3516  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
3517  *
3518  *	Returns the BAR2 address for the SGE Queue Registers associated with
3519  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
3520  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
3521  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
3522  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
3523  */
3524 static void __iomem *bar2_address(struct adapter *adapter,
3525 				  unsigned int qid,
3526 				  enum t4_bar2_qtype qtype,
3527 				  unsigned int *pbar2_qid)
3528 {
3529 	u64 bar2_qoffset;
3530 	int ret;
3531 
3532 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
3533 				&bar2_qoffset, pbar2_qid);
3534 	if (ret)
3535 		return NULL;
3536 
3537 	return adapter->bar2 + bar2_qoffset;
3538 }
3539 
3540 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
3541  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
3542  */
3543 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
3544 		     struct net_device *dev, int intr_idx,
3545 		     struct sge_fl *fl, rspq_handler_t hnd,
3546 		     rspq_flush_handler_t flush_hnd, int cong)
3547 {
3548 	int ret, flsz = 0;
3549 	struct fw_iq_cmd c;
3550 	struct sge *s = &adap->sge;
3551 	struct port_info *pi = netdev_priv(dev);
3552 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
3553 
3554 	/* Size needs to be multiple of 16, including status entry. */
3555 	iq->size = roundup(iq->size, 16);
3556 
3557 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
3558 			      &iq->phys_addr, NULL, 0,
3559 			      dev_to_node(adap->pdev_dev));
3560 	if (!iq->desc)
3561 		return -ENOMEM;
3562 
3563 	memset(&c, 0, sizeof(c));
3564 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
3565 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3566 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
3567 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
3568 				 FW_LEN16(c));
3569 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
3570 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
3571 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
3572 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
3573 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
3574 							-intr_idx - 1));
3575 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
3576 		FW_IQ_CMD_IQGTSMODE_F |
3577 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
3578 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
3579 	c.iqsize = htons(iq->size);
3580 	c.iqaddr = cpu_to_be64(iq->phys_addr);
3581 	if (cong >= 0)
3582 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
3583 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
3584 							:  FW_IQ_IQTYPE_OFLD));
3585 
3586 	if (fl) {
3587 		unsigned int chip_ver =
3588 			CHELSIO_CHIP_VERSION(adap->params.chip);
3589 
3590 		/* Allocate the ring for the hardware free list (with space
3591 		 * for its status page) along with the associated software
3592 		 * descriptor ring.  The free list size needs to be a multiple
3593 		 * of the Egress Queue Unit and at least 2 Egress Units larger
3594 		 * than the SGE's Egress Congrestion Threshold
3595 		 * (fl_starve_thres - 1).
3596 		 */
3597 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
3598 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
3599 		fl->size = roundup(fl->size, 8);
3600 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
3601 				      sizeof(struct rx_sw_desc), &fl->addr,
3602 				      &fl->sdesc, s->stat_len,
3603 				      dev_to_node(adap->pdev_dev));
3604 		if (!fl->desc)
3605 			goto fl_nomem;
3606 
3607 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
3608 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
3609 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
3610 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
3611 					     FW_IQ_CMD_FL0PADEN_F);
3612 		if (cong >= 0)
3613 			c.iqns_to_fl0congen |=
3614 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
3615 				      FW_IQ_CMD_FL0CONGCIF_F |
3616 				      FW_IQ_CMD_FL0CONGEN_F);
3617 		/* In T6, for egress queue type FL there is internal overhead
3618 		 * of 16B for header going into FLM module.  Hence the maximum
3619 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
3620 		 * doesn't coalesce fetch requests if more than 64 bytes of
3621 		 * Free List pointers are provided, so we use a 128-byte Fetch
3622 		 * Burst Minimum there (T6 implements coalescing so we can use
3623 		 * the smaller 64-byte value there).
3624 		 */
3625 		c.fl0dcaen_to_fl0cidxfthresh =
3626 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
3627 						   FETCHBURSTMIN_128B_X :
3628 						   FETCHBURSTMIN_64B_T6_X) |
3629 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
3630 						   FETCHBURSTMAX_512B_X :
3631 						   FETCHBURSTMAX_256B_X));
3632 		c.fl0size = htons(flsz);
3633 		c.fl0addr = cpu_to_be64(fl->addr);
3634 	}
3635 
3636 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3637 	if (ret)
3638 		goto err;
3639 
3640 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
3641 	iq->cur_desc = iq->desc;
3642 	iq->cidx = 0;
3643 	iq->gen = 1;
3644 	iq->next_intr_params = iq->intr_params;
3645 	iq->cntxt_id = ntohs(c.iqid);
3646 	iq->abs_id = ntohs(c.physiqid);
3647 	iq->bar2_addr = bar2_address(adap,
3648 				     iq->cntxt_id,
3649 				     T4_BAR2_QTYPE_INGRESS,
3650 				     &iq->bar2_qid);
3651 	iq->size--;                           /* subtract status entry */
3652 	iq->netdev = dev;
3653 	iq->handler = hnd;
3654 	iq->flush_handler = flush_hnd;
3655 
3656 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
3657 	skb_queue_head_init(&iq->lro_mgr.lroq);
3658 
3659 	/* set offset to -1 to distinguish ingress queues without FL */
3660 	iq->offset = fl ? 0 : -1;
3661 
3662 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
3663 
3664 	if (fl) {
3665 		fl->cntxt_id = ntohs(c.fl0id);
3666 		fl->avail = fl->pend_cred = 0;
3667 		fl->pidx = fl->cidx = 0;
3668 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
3669 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
3670 
3671 		/* Note, we must initialize the BAR2 Free List User Doorbell
3672 		 * information before refilling the Free List!
3673 		 */
3674 		fl->bar2_addr = bar2_address(adap,
3675 					     fl->cntxt_id,
3676 					     T4_BAR2_QTYPE_EGRESS,
3677 					     &fl->bar2_qid);
3678 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
3679 	}
3680 
3681 	/* For T5 and later we attempt to set up the Congestion Manager values
3682 	 * of the new RX Ethernet Queue.  This should really be handled by
3683 	 * firmware because it's more complex than any host driver wants to
3684 	 * get involved with and it's different per chip and this is almost
3685 	 * certainly wrong.  Firmware would be wrong as well, but it would be
3686 	 * a lot easier to fix in one place ...  For now we do something very
3687 	 * simple (and hopefully less wrong).
3688 	 */
3689 	if (!is_t4(adap->params.chip) && cong >= 0) {
3690 		u32 param, val, ch_map = 0;
3691 		int i;
3692 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
3693 
3694 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3695 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3696 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
3697 		if (cong == 0) {
3698 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
3699 		} else {
3700 			val =
3701 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
3702 			for (i = 0; i < 4; i++) {
3703 				if (cong & (1 << i))
3704 					ch_map |= 1 << (i << cng_ch_bits_log);
3705 			}
3706 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
3707 		}
3708 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
3709 				    &param, &val);
3710 		if (ret)
3711 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
3712 				 " Manager Context for Ingress Queue %d: %d\n",
3713 				 iq->cntxt_id, -ret);
3714 	}
3715 
3716 	return 0;
3717 
3718 fl_nomem:
3719 	ret = -ENOMEM;
3720 err:
3721 	if (iq->desc) {
3722 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
3723 				  iq->desc, iq->phys_addr);
3724 		iq->desc = NULL;
3725 	}
3726 	if (fl && fl->desc) {
3727 		kfree(fl->sdesc);
3728 		fl->sdesc = NULL;
3729 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
3730 				  fl->desc, fl->addr);
3731 		fl->desc = NULL;
3732 	}
3733 	return ret;
3734 }
3735 
3736 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
3737 {
3738 	q->cntxt_id = id;
3739 	q->bar2_addr = bar2_address(adap,
3740 				    q->cntxt_id,
3741 				    T4_BAR2_QTYPE_EGRESS,
3742 				    &q->bar2_qid);
3743 	q->in_use = 0;
3744 	q->cidx = q->pidx = 0;
3745 	q->stops = q->restarts = 0;
3746 	q->stat = (void *)&q->desc[q->size];
3747 	spin_lock_init(&q->db_lock);
3748 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
3749 }
3750 
3751 /**
3752  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
3753  *	@adap: the adapter
3754  *	@txq: the SGE Ethernet TX Queue to initialize
3755  *	@dev: the Linux Network Device
3756  *	@netdevq: the corresponding Linux TX Queue
3757  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
3758  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
3759  */
3760 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
3761 			 struct net_device *dev, struct netdev_queue *netdevq,
3762 			 unsigned int iqid, u8 dbqt)
3763 {
3764 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
3765 	struct port_info *pi = netdev_priv(dev);
3766 	struct sge *s = &adap->sge;
3767 	struct fw_eq_eth_cmd c;
3768 	int ret, nentries;
3769 
3770 	/* Add status entries */
3771 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3772 
3773 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3774 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3775 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3776 			netdev_queue_numa_node_read(netdevq));
3777 	if (!txq->q.desc)
3778 		return -ENOMEM;
3779 
3780 	memset(&c, 0, sizeof(c));
3781 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
3782 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3783 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
3784 			    FW_EQ_ETH_CMD_VFN_V(0));
3785 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
3786 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
3787 
3788 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
3789 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
3790 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
3791 	 * write the CIDX Updates into the Status Page at the end of the
3792 	 * TX Queue.
3793 	 */
3794 	c.autoequiqe_to_viid = htonl((dbqt
3795 				      ? FW_EQ_ETH_CMD_AUTOEQUIQE_F
3796 				      : FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
3797 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
3798 
3799 	c.fetchszm_to_iqid =
3800 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(dbqt
3801 						 ? HOSTFCMODE_INGRESS_QUEUE_X
3802 						 : HOSTFCMODE_STATUS_PAGE_X) |
3803 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
3804 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
3805 
3806 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
3807 	c.dcaen_to_eqsize =
3808 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
3809 					    ? FETCHBURSTMIN_64B_X
3810 					    : FETCHBURSTMIN_64B_T6_X) |
3811 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3812 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3813 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
3814 
3815 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3816 
3817 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
3818 	 * currently configured Timer Index.  THis can be changed later via an
3819 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
3820 	 * Doorbell Queue mode is currently automatically enabled in the
3821 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
3822 	 */
3823 	if (dbqt)
3824 		c.timeren_timerix =
3825 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
3826 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
3827 
3828 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3829 	if (ret) {
3830 		kfree(txq->q.sdesc);
3831 		txq->q.sdesc = NULL;
3832 		dma_free_coherent(adap->pdev_dev,
3833 				  nentries * sizeof(struct tx_desc),
3834 				  txq->q.desc, txq->q.phys_addr);
3835 		txq->q.desc = NULL;
3836 		return ret;
3837 	}
3838 
3839 	txq->q.q_type = CXGB4_TXQ_ETH;
3840 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
3841 	txq->txq = netdevq;
3842 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
3843 	txq->mapping_err = 0;
3844 	txq->dbqt = dbqt;
3845 
3846 	return 0;
3847 }
3848 
3849 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
3850 			  struct net_device *dev, unsigned int iqid,
3851 			  unsigned int cmplqid)
3852 {
3853 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
3854 	struct port_info *pi = netdev_priv(dev);
3855 	struct sge *s = &adap->sge;
3856 	struct fw_eq_ctrl_cmd c;
3857 	int ret, nentries;
3858 
3859 	/* Add status entries */
3860 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3861 
3862 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
3863 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
3864 				 NULL, 0, dev_to_node(adap->pdev_dev));
3865 	if (!txq->q.desc)
3866 		return -ENOMEM;
3867 
3868 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
3869 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3870 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
3871 			    FW_EQ_CTRL_CMD_VFN_V(0));
3872 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
3873 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
3874 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3875 	c.physeqid_pkd = htonl(0);
3876 	c.fetchszm_to_iqid =
3877 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3878 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3879 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3880 	c.dcaen_to_eqsize =
3881 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
3882 					     ? FETCHBURSTMIN_64B_X
3883 					     : FETCHBURSTMIN_64B_T6_X) |
3884 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3885 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3886 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3887 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3888 
3889 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3890 	if (ret) {
3891 		dma_free_coherent(adap->pdev_dev,
3892 				  nentries * sizeof(struct tx_desc),
3893 				  txq->q.desc, txq->q.phys_addr);
3894 		txq->q.desc = NULL;
3895 		return ret;
3896 	}
3897 
3898 	txq->q.q_type = CXGB4_TXQ_CTRL;
3899 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3900 	txq->adap = adap;
3901 	skb_queue_head_init(&txq->sendq);
3902 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3903 	txq->full = 0;
3904 	return 0;
3905 }
3906 
3907 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3908 			unsigned int cmplqid)
3909 {
3910 	u32 param, val;
3911 
3912 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3913 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3914 		 FW_PARAMS_PARAM_YZ_V(eqid));
3915 	val = cmplqid;
3916 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
3917 }
3918 
3919 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3920 			 struct net_device *dev, unsigned int iqid,
3921 			 unsigned int uld_type)
3922 {
3923 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
3924 	int ret, nentries;
3925 	struct fw_eq_ofld_cmd c;
3926 	struct sge *s = &adap->sge;
3927 	struct port_info *pi = netdev_priv(dev);
3928 	int cmd = FW_EQ_OFLD_CMD;
3929 
3930 	/* Add status entries */
3931 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3932 
3933 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3934 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3935 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3936 			NUMA_NO_NODE);
3937 	if (!txq->q.desc)
3938 		return -ENOMEM;
3939 
3940 	memset(&c, 0, sizeof(c));
3941 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3942 		cmd = FW_EQ_CTRL_CMD;
3943 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3944 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3945 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3946 			    FW_EQ_OFLD_CMD_VFN_V(0));
3947 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3948 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3949 	c.fetchszm_to_iqid =
3950 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3951 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3952 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3953 	c.dcaen_to_eqsize =
3954 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
3955 					     ? FETCHBURSTMIN_64B_X
3956 					     : FETCHBURSTMIN_64B_T6_X) |
3957 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3958 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3959 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3960 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3961 
3962 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3963 	if (ret) {
3964 		kfree(txq->q.sdesc);
3965 		txq->q.sdesc = NULL;
3966 		dma_free_coherent(adap->pdev_dev,
3967 				  nentries * sizeof(struct tx_desc),
3968 				  txq->q.desc, txq->q.phys_addr);
3969 		txq->q.desc = NULL;
3970 		return ret;
3971 	}
3972 
3973 	txq->q.q_type = CXGB4_TXQ_ULD;
3974 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3975 	txq->adap = adap;
3976 	skb_queue_head_init(&txq->sendq);
3977 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3978 	txq->full = 0;
3979 	txq->mapping_err = 0;
3980 	return 0;
3981 }
3982 
3983 void free_txq(struct adapter *adap, struct sge_txq *q)
3984 {
3985 	struct sge *s = &adap->sge;
3986 
3987 	dma_free_coherent(adap->pdev_dev,
3988 			  q->size * sizeof(struct tx_desc) + s->stat_len,
3989 			  q->desc, q->phys_addr);
3990 	q->cntxt_id = 0;
3991 	q->sdesc = NULL;
3992 	q->desc = NULL;
3993 }
3994 
3995 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3996 		  struct sge_fl *fl)
3997 {
3998 	struct sge *s = &adap->sge;
3999 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4000 
4001 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4002 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4003 		   rq->cntxt_id, fl_id, 0xffff);
4004 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4005 			  rq->desc, rq->phys_addr);
4006 	netif_napi_del(&rq->napi);
4007 	rq->netdev = NULL;
4008 	rq->cntxt_id = rq->abs_id = 0;
4009 	rq->desc = NULL;
4010 
4011 	if (fl) {
4012 		free_rx_bufs(adap, fl, fl->avail);
4013 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4014 				  fl->desc, fl->addr);
4015 		kfree(fl->sdesc);
4016 		fl->sdesc = NULL;
4017 		fl->cntxt_id = 0;
4018 		fl->desc = NULL;
4019 	}
4020 }
4021 
4022 /**
4023  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4024  *      @adap: the adapter
4025  *      @n: number of queues
4026  *      @q: pointer to first queue
4027  *
4028  *      Release the resources of a consecutive block of offload Rx queues.
4029  */
4030 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4031 {
4032 	for ( ; n; n--, q++)
4033 		if (q->rspq.desc)
4034 			free_rspq_fl(adap, &q->rspq,
4035 				     q->fl.size ? &q->fl : NULL);
4036 }
4037 
4038 /**
4039  *	t4_free_sge_resources - free SGE resources
4040  *	@adap: the adapter
4041  *
4042  *	Frees resources used by the SGE queue sets.
4043  */
4044 void t4_free_sge_resources(struct adapter *adap)
4045 {
4046 	int i;
4047 	struct sge_eth_rxq *eq;
4048 	struct sge_eth_txq *etq;
4049 
4050 	/* stop all Rx queues in order to start them draining */
4051 	for (i = 0; i < adap->sge.ethqsets; i++) {
4052 		eq = &adap->sge.ethrxq[i];
4053 		if (eq->rspq.desc)
4054 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4055 				   FW_IQ_TYPE_FL_INT_CAP,
4056 				   eq->rspq.cntxt_id,
4057 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4058 				   0xffff);
4059 	}
4060 
4061 	/* clean up Ethernet Tx/Rx queues */
4062 	for (i = 0; i < adap->sge.ethqsets; i++) {
4063 		eq = &adap->sge.ethrxq[i];
4064 		if (eq->rspq.desc)
4065 			free_rspq_fl(adap, &eq->rspq,
4066 				     eq->fl.size ? &eq->fl : NULL);
4067 
4068 		etq = &adap->sge.ethtxq[i];
4069 		if (etq->q.desc) {
4070 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4071 				       etq->q.cntxt_id);
4072 			__netif_tx_lock_bh(etq->txq);
4073 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4074 			__netif_tx_unlock_bh(etq->txq);
4075 			kfree(etq->q.sdesc);
4076 			free_txq(adap, &etq->q);
4077 		}
4078 	}
4079 
4080 	/* clean up control Tx queues */
4081 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4082 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4083 
4084 		if (cq->q.desc) {
4085 			tasklet_kill(&cq->qresume_tsk);
4086 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4087 					cq->q.cntxt_id);
4088 			__skb_queue_purge(&cq->sendq);
4089 			free_txq(adap, &cq->q);
4090 		}
4091 	}
4092 
4093 	if (adap->sge.fw_evtq.desc)
4094 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4095 
4096 	if (adap->sge.intrq.desc)
4097 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4098 
4099 	if (!is_t4(adap->params.chip)) {
4100 		etq = &adap->sge.ptptxq;
4101 		if (etq->q.desc) {
4102 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4103 				       etq->q.cntxt_id);
4104 			spin_lock_bh(&adap->ptp_lock);
4105 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4106 			spin_unlock_bh(&adap->ptp_lock);
4107 			kfree(etq->q.sdesc);
4108 			free_txq(adap, &etq->q);
4109 		}
4110 	}
4111 
4112 	/* clear the reverse egress queue map */
4113 	memset(adap->sge.egr_map, 0,
4114 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4115 }
4116 
4117 void t4_sge_start(struct adapter *adap)
4118 {
4119 	adap->sge.ethtxq_rover = 0;
4120 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4121 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4122 }
4123 
4124 /**
4125  *	t4_sge_stop - disable SGE operation
4126  *	@adap: the adapter
4127  *
4128  *	Stop tasklets and timers associated with the DMA engine.  Note that
4129  *	this is effective only if measures have been taken to disable any HW
4130  *	events that may restart them.
4131  */
4132 void t4_sge_stop(struct adapter *adap)
4133 {
4134 	int i;
4135 	struct sge *s = &adap->sge;
4136 
4137 	if (in_interrupt())  /* actions below require waiting */
4138 		return;
4139 
4140 	if (s->rx_timer.function)
4141 		del_timer_sync(&s->rx_timer);
4142 	if (s->tx_timer.function)
4143 		del_timer_sync(&s->tx_timer);
4144 
4145 	if (is_offload(adap)) {
4146 		struct sge_uld_txq_info *txq_info;
4147 
4148 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4149 		if (txq_info) {
4150 			struct sge_uld_txq *txq = txq_info->uldtxq;
4151 
4152 			for_each_ofldtxq(&adap->sge, i) {
4153 				if (txq->q.desc)
4154 					tasklet_kill(&txq->qresume_tsk);
4155 			}
4156 		}
4157 	}
4158 
4159 	if (is_pci_uld(adap)) {
4160 		struct sge_uld_txq_info *txq_info;
4161 
4162 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4163 		if (txq_info) {
4164 			struct sge_uld_txq *txq = txq_info->uldtxq;
4165 
4166 			for_each_ofldtxq(&adap->sge, i) {
4167 				if (txq->q.desc)
4168 					tasklet_kill(&txq->qresume_tsk);
4169 			}
4170 		}
4171 	}
4172 
4173 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4174 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
4175 
4176 		if (cq->q.desc)
4177 			tasklet_kill(&cq->qresume_tsk);
4178 	}
4179 }
4180 
4181 /**
4182  *	t4_sge_init_soft - grab core SGE values needed by SGE code
4183  *	@adap: the adapter
4184  *
4185  *	We need to grab the SGE operating parameters that we need to have
4186  *	in order to do our job and make sure we can live with them.
4187  */
4188 
4189 static int t4_sge_init_soft(struct adapter *adap)
4190 {
4191 	struct sge *s = &adap->sge;
4192 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4193 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4194 	u32 ingress_rx_threshold;
4195 
4196 	/*
4197 	 * Verify that CPL messages are going to the Ingress Queue for
4198 	 * process_responses() and that only packet data is going to the
4199 	 * Free Lists.
4200 	 */
4201 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4202 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4203 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4204 		return -EINVAL;
4205 	}
4206 
4207 	/*
4208 	 * Validate the Host Buffer Register Array indices that we want to
4209 	 * use ...
4210 	 *
4211 	 * XXX Note that we should really read through the Host Buffer Size
4212 	 * XXX register array and find the indices of the Buffer Sizes which
4213 	 * XXX meet our needs!
4214 	 */
4215 	#define READ_FL_BUF(x) \
4216 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4217 
4218 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4219 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4220 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4221 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4222 
4223 	/* We only bother using the Large Page logic if the Large Page Buffer
4224 	 * is larger than our Page Size Buffer.
4225 	 */
4226 	if (fl_large_pg <= fl_small_pg)
4227 		fl_large_pg = 0;
4228 
4229 	#undef READ_FL_BUF
4230 
4231 	/* The Page Size Buffer must be exactly equal to our Page Size and the
4232 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4233 	 */
4234 	if (fl_small_pg != PAGE_SIZE ||
4235 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
4236 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4237 			fl_small_pg, fl_large_pg);
4238 		return -EINVAL;
4239 	}
4240 	if (fl_large_pg)
4241 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4242 
4243 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4244 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4245 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4246 			fl_small_mtu, fl_large_mtu);
4247 		return -EINVAL;
4248 	}
4249 
4250 	/*
4251 	 * Retrieve our RX interrupt holdoff timer values and counter
4252 	 * threshold values from the SGE parameters.
4253 	 */
4254 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4255 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4256 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4257 	s->timer_val[0] = core_ticks_to_us(adap,
4258 		TIMERVALUE0_G(timer_value_0_and_1));
4259 	s->timer_val[1] = core_ticks_to_us(adap,
4260 		TIMERVALUE1_G(timer_value_0_and_1));
4261 	s->timer_val[2] = core_ticks_to_us(adap,
4262 		TIMERVALUE2_G(timer_value_2_and_3));
4263 	s->timer_val[3] = core_ticks_to_us(adap,
4264 		TIMERVALUE3_G(timer_value_2_and_3));
4265 	s->timer_val[4] = core_ticks_to_us(adap,
4266 		TIMERVALUE4_G(timer_value_4_and_5));
4267 	s->timer_val[5] = core_ticks_to_us(adap,
4268 		TIMERVALUE5_G(timer_value_4_and_5));
4269 
4270 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4271 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4272 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4273 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4274 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4275 
4276 	return 0;
4277 }
4278 
4279 /**
4280  *     t4_sge_init - initialize SGE
4281  *     @adap: the adapter
4282  *
4283  *     Perform low-level SGE code initialization needed every time after a
4284  *     chip reset.
4285  */
4286 int t4_sge_init(struct adapter *adap)
4287 {
4288 	struct sge *s = &adap->sge;
4289 	u32 sge_control, sge_conm_ctrl;
4290 	int ret, egress_threshold;
4291 
4292 	/*
4293 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
4294 	 * t4_fixup_host_params().
4295 	 */
4296 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4297 	s->pktshift = PKTSHIFT_G(sge_control);
4298 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4299 
4300 	s->fl_align = t4_fl_pkt_align(adap);
4301 	ret = t4_sge_init_soft(adap);
4302 	if (ret < 0)
4303 		return ret;
4304 
4305 	/*
4306 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
4307 	 * timer will attempt to refill it.  This needs to be larger than the
4308 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
4309 	 * stuck waiting for new packets while the SGE is waiting for us to
4310 	 * give it more Free List entries.  (Note that the SGE's Egress
4311 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4312 	 * there was only a single field to control this.  For T5 there's the
4313 	 * original field which now only applies to Unpacked Mode Free List
4314 	 * buffers and a new field which only applies to Packed Mode Free List
4315 	 * buffers.
4316 	 */
4317 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4318 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4319 	case CHELSIO_T4:
4320 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4321 		break;
4322 	case CHELSIO_T5:
4323 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4324 		break;
4325 	case CHELSIO_T6:
4326 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4327 		break;
4328 	default:
4329 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4330 			CHELSIO_CHIP_VERSION(adap->params.chip));
4331 		return -EINVAL;
4332 	}
4333 	s->fl_starve_thres = 2*egress_threshold + 1;
4334 
4335 	t4_idma_monitor_init(adap, &s->idma_monitor);
4336 
4337 	/* Set up timers used for recuring callbacks to process RX and TX
4338 	 * administrative tasks.
4339 	 */
4340 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4341 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4342 
4343 	spin_lock_init(&s->intrq_lock);
4344 
4345 	return 0;
4346 }
4347