1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48 
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51 
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54 
55 /*
56  * Generic information about the driver.
57  */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
60 
61 /*
62  * Module Parameters.
63  * ==================
64  */
65 
66 /*
67  * Default ethtool "message level" for adapters.
68  */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72 
73 /*
74  * The driver uses the best interrupt scheme available on a platform in the
75  * order MSI-X then MSI.  This parameter determines which of these schemes the
76  * driver may consider as follows:
77  *
78  *     msi = 2: choose from among MSI-X and MSI
79  *     msi = 1: only consider MSI interrupts
80  *
81  * Note that unlike the Physical Function driver, this Virtual Function driver
82  * does _not_ support legacy INTx interrupts (this limitation is mandated by
83  * the PCI-E SR-IOV standard).
84  */
85 #define MSI_MSIX	2
86 #define MSI_MSI		1
87 #define MSI_DEFAULT	MSI_MSIX
88 
89 static int msi = MSI_DEFAULT;
90 
91 module_param(msi, int, 0644);
92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
93 
94 /*
95  * Fundamental constants.
96  * ======================
97  */
98 
99 enum {
100 	MAX_TXQ_ENTRIES		= 16384,
101 	MAX_RSPQ_ENTRIES	= 16384,
102 	MAX_RX_BUFFERS		= 16384,
103 
104 	MIN_TXQ_ENTRIES		= 32,
105 	MIN_RSPQ_ENTRIES	= 128,
106 	MIN_FL_ENTRIES		= 16,
107 
108 	/*
109 	 * For purposes of manipulating the Free List size we need to
110 	 * recognize that Free Lists are actually Egress Queues (the host
111 	 * produces free buffers which the hardware consumes), Egress Queues
112 	 * indices are all in units of Egress Context Units bytes, and free
113 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
114 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 	 * always have at least one Egress Unit's worth of Free List entries
116 	 * unused.  See sge.c for more details ...
117 	 */
118 	EQ_UNIT = SGE_EQ_IDXSIZE,
119 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
120 	MIN_FL_RESID = FL_PER_EQ_UNIT,
121 };
122 
123 /*
124  * Global driver state.
125  * ====================
126  */
127 
128 static struct dentry *cxgb4vf_debugfs_root;
129 
130 /*
131  * OS "Callback" functions.
132  * ========================
133  */
134 
135 /*
136  * The link status has changed on the indicated "port" (Virtual Interface).
137  */
138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
139 {
140 	struct net_device *dev = adapter->port[pidx];
141 
142 	/*
143 	 * If the port is disabled or the current recorded "link up"
144 	 * status matches the new status, just return.
145 	 */
146 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
147 		return;
148 
149 	/*
150 	 * Tell the OS that the link status has changed and print a short
151 	 * informative message on the console about the event.
152 	 */
153 	if (link_ok) {
154 		const char *s;
155 		const char *fc;
156 		const struct port_info *pi = netdev_priv(dev);
157 
158 		netif_carrier_on(dev);
159 
160 		switch (pi->link_cfg.speed) {
161 		case 100:
162 			s = "100Mbps";
163 			break;
164 		case 1000:
165 			s = "1Gbps";
166 			break;
167 		case 10000:
168 			s = "10Gbps";
169 			break;
170 		case 25000:
171 			s = "25Gbps";
172 			break;
173 		case 40000:
174 			s = "40Gbps";
175 			break;
176 		case 100000:
177 			s = "100Gbps";
178 			break;
179 
180 		default:
181 			s = "unknown";
182 			break;
183 		}
184 
185 		switch ((int)pi->link_cfg.fc) {
186 		case PAUSE_RX:
187 			fc = "RX";
188 			break;
189 
190 		case PAUSE_TX:
191 			fc = "TX";
192 			break;
193 
194 		case PAUSE_RX | PAUSE_TX:
195 			fc = "RX/TX";
196 			break;
197 
198 		default:
199 			fc = "no";
200 			break;
201 		}
202 
203 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
204 	} else {
205 		netif_carrier_off(dev);
206 		netdev_info(dev, "link down\n");
207 	}
208 }
209 
210 /*
211  * THe port module type has changed on the indicated "port" (Virtual
212  * Interface).
213  */
214 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
215 {
216 	static const char * const mod_str[] = {
217 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
218 	};
219 	const struct net_device *dev = adapter->port[pidx];
220 	const struct port_info *pi = netdev_priv(dev);
221 
222 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
223 		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
224 			 dev->name);
225 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
226 		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
227 			 dev->name, mod_str[pi->mod_type]);
228 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
229 		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
230 			 "module inserted\n", dev->name);
231 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
232 		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
233 			 "forcing TWINAX\n", dev->name);
234 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
235 		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
236 			 dev->name);
237 	else
238 		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
239 			 "inserted\n", dev->name, pi->mod_type);
240 }
241 
242 static int cxgb4vf_set_addr_hash(struct port_info *pi)
243 {
244 	struct adapter *adapter = pi->adapter;
245 	u64 vec = 0;
246 	bool ucast = false;
247 	struct hash_mac_addr *entry;
248 
249 	/* Calculate the hash vector for the updated list and program it */
250 	list_for_each_entry(entry, &adapter->mac_hlist, list) {
251 		ucast |= is_unicast_ether_addr(entry->addr);
252 		vec |= (1ULL << hash_mac_addr(entry->addr));
253 	}
254 	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
255 }
256 
257 /**
258  *	cxgb4vf_change_mac - Update match filter for a MAC address.
259  *	@pi: the port_info
260  *	@viid: the VI id
261  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
262  *		   or -1
263  *	@addr: the new MAC address value
264  *	@persist: whether a new MAC allocation should be persistent
265  *	@add_smt: if true also add the address to the HW SMT
266  *
267  *	Modifies an MPS filter and sets it to the new MAC address if
268  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
269  *	@tcam_idx < 0. In the latter case the address is added persistently
270  *	if @persist is %true.
271  *	Addresses are programmed to hash region, if tcam runs out of entries.
272  *
273  */
274 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
275 			      int *tcam_idx, const u8 *addr, bool persistent)
276 {
277 	struct hash_mac_addr *new_entry, *entry;
278 	struct adapter *adapter = pi->adapter;
279 	int ret;
280 
281 	ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
282 	/* We ran out of TCAM entries. try programming hash region. */
283 	if (ret == -ENOMEM) {
284 		/* If the MAC address to be updated is in the hash addr
285 		 * list, update it from the list
286 		 */
287 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
288 			if (entry->iface_mac) {
289 				ether_addr_copy(entry->addr, addr);
290 				goto set_hash;
291 			}
292 		}
293 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
294 		if (!new_entry)
295 			return -ENOMEM;
296 		ether_addr_copy(new_entry->addr, addr);
297 		new_entry->iface_mac = true;
298 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
299 set_hash:
300 		ret = cxgb4vf_set_addr_hash(pi);
301 	} else if (ret >= 0) {
302 		*tcam_idx = ret;
303 		ret = 0;
304 	}
305 
306 	return ret;
307 }
308 
309 /*
310  * Net device operations.
311  * ======================
312  */
313 
314 
315 
316 
317 /*
318  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
319  * Interface).
320  */
321 static int link_start(struct net_device *dev)
322 {
323 	int ret;
324 	struct port_info *pi = netdev_priv(dev);
325 
326 	/*
327 	 * We do not set address filters and promiscuity here, the stack does
328 	 * that step explicitly. Enable vlan accel.
329 	 */
330 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
331 			      true);
332 	if (ret == 0)
333 		ret = cxgb4vf_change_mac(pi, pi->viid,
334 					 &pi->xact_addr_filt,
335 					 dev->dev_addr, true);
336 
337 	/*
338 	 * We don't need to actually "start the link" itself since the
339 	 * firmware will do that for us when the first Virtual Interface
340 	 * is enabled on a port.
341 	 */
342 	if (ret == 0)
343 		ret = t4vf_enable_pi(pi->adapter, pi, true, true);
344 
345 	return ret;
346 }
347 
348 /*
349  * Name the MSI-X interrupts.
350  */
351 static void name_msix_vecs(struct adapter *adapter)
352 {
353 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
354 	int pidx;
355 
356 	/*
357 	 * Firmware events.
358 	 */
359 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
360 		 "%s-FWeventq", adapter->name);
361 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
362 
363 	/*
364 	 * Ethernet queues.
365 	 */
366 	for_each_port(adapter, pidx) {
367 		struct net_device *dev = adapter->port[pidx];
368 		const struct port_info *pi = netdev_priv(dev);
369 		int qs, msi;
370 
371 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
372 			snprintf(adapter->msix_info[msi].desc, namelen,
373 				 "%s-%d", dev->name, qs);
374 			adapter->msix_info[msi].desc[namelen] = 0;
375 		}
376 	}
377 }
378 
379 /*
380  * Request all of our MSI-X resources.
381  */
382 static int request_msix_queue_irqs(struct adapter *adapter)
383 {
384 	struct sge *s = &adapter->sge;
385 	int rxq, msi, err;
386 
387 	/*
388 	 * Firmware events.
389 	 */
390 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
391 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
392 	if (err)
393 		return err;
394 
395 	/*
396 	 * Ethernet queues.
397 	 */
398 	msi = MSIX_IQFLINT;
399 	for_each_ethrxq(s, rxq) {
400 		err = request_irq(adapter->msix_info[msi].vec,
401 				  t4vf_sge_intr_msix, 0,
402 				  adapter->msix_info[msi].desc,
403 				  &s->ethrxq[rxq].rspq);
404 		if (err)
405 			goto err_free_irqs;
406 		msi++;
407 	}
408 	return 0;
409 
410 err_free_irqs:
411 	while (--rxq >= 0)
412 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
413 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
414 	return err;
415 }
416 
417 /*
418  * Free our MSI-X resources.
419  */
420 static void free_msix_queue_irqs(struct adapter *adapter)
421 {
422 	struct sge *s = &adapter->sge;
423 	int rxq, msi;
424 
425 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
426 	msi = MSIX_IQFLINT;
427 	for_each_ethrxq(s, rxq)
428 		free_irq(adapter->msix_info[msi++].vec,
429 			 &s->ethrxq[rxq].rspq);
430 }
431 
432 /*
433  * Turn on NAPI and start up interrupts on a response queue.
434  */
435 static void qenable(struct sge_rspq *rspq)
436 {
437 	napi_enable(&rspq->napi);
438 
439 	/*
440 	 * 0-increment the Going To Sleep register to start the timer and
441 	 * enable interrupts.
442 	 */
443 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
444 		     CIDXINC_V(0) |
445 		     SEINTARM_V(rspq->intr_params) |
446 		     INGRESSQID_V(rspq->cntxt_id));
447 }
448 
449 /*
450  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
451  */
452 static void enable_rx(struct adapter *adapter)
453 {
454 	int rxq;
455 	struct sge *s = &adapter->sge;
456 
457 	for_each_ethrxq(s, rxq)
458 		qenable(&s->ethrxq[rxq].rspq);
459 	qenable(&s->fw_evtq);
460 
461 	/*
462 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
463 	 * its Going To Sleep register here to get it started.
464 	 */
465 	if (adapter->flags & CXGB4VF_USING_MSI)
466 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
467 			     CIDXINC_V(0) |
468 			     SEINTARM_V(s->intrq.intr_params) |
469 			     INGRESSQID_V(s->intrq.cntxt_id));
470 
471 }
472 
473 /*
474  * Wait until all NAPI handlers are descheduled.
475  */
476 static void quiesce_rx(struct adapter *adapter)
477 {
478 	struct sge *s = &adapter->sge;
479 	int rxq;
480 
481 	for_each_ethrxq(s, rxq)
482 		napi_disable(&s->ethrxq[rxq].rspq.napi);
483 	napi_disable(&s->fw_evtq.napi);
484 }
485 
486 /*
487  * Response queue handler for the firmware event queue.
488  */
489 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
490 			  const struct pkt_gl *gl)
491 {
492 	/*
493 	 * Extract response opcode and get pointer to CPL message body.
494 	 */
495 	struct adapter *adapter = rspq->adapter;
496 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
497 	void *cpl = (void *)(rsp + 1);
498 
499 	switch (opcode) {
500 	case CPL_FW6_MSG: {
501 		/*
502 		 * We've received an asynchronous message from the firmware.
503 		 */
504 		const struct cpl_fw6_msg *fw_msg = cpl;
505 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
506 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
507 		break;
508 	}
509 
510 	case CPL_FW4_MSG: {
511 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
512 		 */
513 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
514 		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
515 		if (opcode != CPL_SGE_EGR_UPDATE) {
516 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
517 				, opcode);
518 			break;
519 		}
520 		cpl = (void *)p;
521 	}
522 		/* Fall through */
523 
524 	case CPL_SGE_EGR_UPDATE: {
525 		/*
526 		 * We've received an Egress Queue Status Update message.  We
527 		 * get these, if the SGE is configured to send these when the
528 		 * firmware passes certain points in processing our TX
529 		 * Ethernet Queue or if we make an explicit request for one.
530 		 * We use these updates to determine when we may need to
531 		 * restart a TX Ethernet Queue which was stopped for lack of
532 		 * free TX Queue Descriptors ...
533 		 */
534 		const struct cpl_sge_egr_update *p = cpl;
535 		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
536 		struct sge *s = &adapter->sge;
537 		struct sge_txq *tq;
538 		struct sge_eth_txq *txq;
539 		unsigned int eq_idx;
540 
541 		/*
542 		 * Perform sanity checking on the Queue ID to make sure it
543 		 * really refers to one of our TX Ethernet Egress Queues which
544 		 * is active and matches the queue's ID.  None of these error
545 		 * conditions should ever happen so we may want to either make
546 		 * them fatal and/or conditionalized under DEBUG.
547 		 */
548 		eq_idx = EQ_IDX(s, qid);
549 		if (unlikely(eq_idx >= MAX_EGRQ)) {
550 			dev_err(adapter->pdev_dev,
551 				"Egress Update QID %d out of range\n", qid);
552 			break;
553 		}
554 		tq = s->egr_map[eq_idx];
555 		if (unlikely(tq == NULL)) {
556 			dev_err(adapter->pdev_dev,
557 				"Egress Update QID %d TXQ=NULL\n", qid);
558 			break;
559 		}
560 		txq = container_of(tq, struct sge_eth_txq, q);
561 		if (unlikely(tq->abs_id != qid)) {
562 			dev_err(adapter->pdev_dev,
563 				"Egress Update QID %d refers to TXQ %d\n",
564 				qid, tq->abs_id);
565 			break;
566 		}
567 
568 		/*
569 		 * Restart a stopped TX Queue which has less than half of its
570 		 * TX ring in use ...
571 		 */
572 		txq->q.restarts++;
573 		netif_tx_wake_queue(txq->txq);
574 		break;
575 	}
576 
577 	default:
578 		dev_err(adapter->pdev_dev,
579 			"unexpected CPL %#x on FW event queue\n", opcode);
580 	}
581 
582 	return 0;
583 }
584 
585 /*
586  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
587  * to use and initializes them.  We support multiple "Queue Sets" per port if
588  * we have MSI-X, otherwise just one queue set per port.
589  */
590 static int setup_sge_queues(struct adapter *adapter)
591 {
592 	struct sge *s = &adapter->sge;
593 	int err, pidx, msix;
594 
595 	/*
596 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
597 	 * state.
598 	 */
599 	bitmap_zero(s->starving_fl, MAX_EGRQ);
600 
601 	/*
602 	 * If we're using MSI interrupt mode we need to set up a "forwarded
603 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
604 	 * of the ingress queues will be set up to forward their interrupts to
605 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
606 	 * the intrq's queue ID as the interrupt forwarding queue for the
607 	 * subsequent calls ...
608 	 */
609 	if (adapter->flags & CXGB4VF_USING_MSI) {
610 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
611 					 adapter->port[0], 0, NULL, NULL);
612 		if (err)
613 			goto err_free_queues;
614 	}
615 
616 	/*
617 	 * Allocate our ingress queue for asynchronous firmware messages.
618 	 */
619 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
620 				 MSIX_FW, NULL, fwevtq_handler);
621 	if (err)
622 		goto err_free_queues;
623 
624 	/*
625 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
626 	 * later on ... up to the point where any interface on the adapter is
627 	 * brought up at which point lots of things get nailed down
628 	 * permanently ...
629 	 */
630 	msix = MSIX_IQFLINT;
631 	for_each_port(adapter, pidx) {
632 		struct net_device *dev = adapter->port[pidx];
633 		struct port_info *pi = netdev_priv(dev);
634 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
635 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
636 		int qs;
637 
638 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
639 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
640 						 dev, msix++,
641 						 &rxq->fl, t4vf_ethrx_handler);
642 			if (err)
643 				goto err_free_queues;
644 
645 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
646 					     netdev_get_tx_queue(dev, qs),
647 					     s->fw_evtq.cntxt_id);
648 			if (err)
649 				goto err_free_queues;
650 
651 			rxq->rspq.idx = qs;
652 			memset(&rxq->stats, 0, sizeof(rxq->stats));
653 		}
654 	}
655 
656 	/*
657 	 * Create the reverse mappings for the queues.
658 	 */
659 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
660 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
661 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
662 	for_each_port(adapter, pidx) {
663 		struct net_device *dev = adapter->port[pidx];
664 		struct port_info *pi = netdev_priv(dev);
665 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
666 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
667 		int qs;
668 
669 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
670 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
671 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
672 
673 			/*
674 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
675 			 * for Free Lists but since all of the Egress Queues
676 			 * (including Free Lists) have Relative Queue IDs
677 			 * which are computed as Absolute - Base Queue ID, we
678 			 * can synthesize the Absolute Queue IDs for the Free
679 			 * Lists.  This is useful for debugging purposes when
680 			 * we want to dump Queue Contexts via the PF Driver.
681 			 */
682 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
683 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
684 		}
685 	}
686 	return 0;
687 
688 err_free_queues:
689 	t4vf_free_sge_resources(adapter);
690 	return err;
691 }
692 
693 /*
694  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
695  * queues.  We configure the RSS CPU lookup table to distribute to the number
696  * of HW receive queues, and the response queue lookup table to narrow that
697  * down to the response queues actually configured for each "port" (Virtual
698  * Interface).  We always configure the RSS mapping for all ports since the
699  * mapping table has plenty of entries.
700  */
701 static int setup_rss(struct adapter *adapter)
702 {
703 	int pidx;
704 
705 	for_each_port(adapter, pidx) {
706 		struct port_info *pi = adap2pinfo(adapter, pidx);
707 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
708 		u16 rss[MAX_PORT_QSETS];
709 		int qs, err;
710 
711 		for (qs = 0; qs < pi->nqsets; qs++)
712 			rss[qs] = rxq[qs].rspq.abs_id;
713 
714 		err = t4vf_config_rss_range(adapter, pi->viid,
715 					    0, pi->rss_size, rss, pi->nqsets);
716 		if (err)
717 			return err;
718 
719 		/*
720 		 * Perform Global RSS Mode-specific initialization.
721 		 */
722 		switch (adapter->params.rss.mode) {
723 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
724 			/*
725 			 * If Tunnel All Lookup isn't specified in the global
726 			 * RSS Configuration, then we need to specify a
727 			 * default Ingress Queue for any ingress packets which
728 			 * aren't hashed.  We'll use our first ingress queue
729 			 * ...
730 			 */
731 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
732 				union rss_vi_config config;
733 				err = t4vf_read_rss_vi_config(adapter,
734 							      pi->viid,
735 							      &config);
736 				if (err)
737 					return err;
738 				config.basicvirtual.defaultq =
739 					rxq[0].rspq.abs_id;
740 				err = t4vf_write_rss_vi_config(adapter,
741 							       pi->viid,
742 							       &config);
743 				if (err)
744 					return err;
745 			}
746 			break;
747 		}
748 	}
749 
750 	return 0;
751 }
752 
753 /*
754  * Bring the adapter up.  Called whenever we go from no "ports" open to having
755  * one open.  This function performs the actions necessary to make an adapter
756  * operational, such as completing the initialization of HW modules, and
757  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
758  * this is called "cxgb_up" in the PF Driver.)
759  */
760 static int adapter_up(struct adapter *adapter)
761 {
762 	int err;
763 
764 	/*
765 	 * If this is the first time we've been called, perform basic
766 	 * adapter setup.  Once we've done this, many of our adapter
767 	 * parameters can no longer be changed ...
768 	 */
769 	if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
770 		err = setup_sge_queues(adapter);
771 		if (err)
772 			return err;
773 		err = setup_rss(adapter);
774 		if (err) {
775 			t4vf_free_sge_resources(adapter);
776 			return err;
777 		}
778 
779 		if (adapter->flags & CXGB4VF_USING_MSIX)
780 			name_msix_vecs(adapter);
781 
782 		adapter->flags |= CXGB4VF_FULL_INIT_DONE;
783 	}
784 
785 	/*
786 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
787 	 */
788 	BUG_ON((adapter->flags &
789 	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
790 	if (adapter->flags & CXGB4VF_USING_MSIX)
791 		err = request_msix_queue_irqs(adapter);
792 	else
793 		err = request_irq(adapter->pdev->irq,
794 				  t4vf_intr_handler(adapter), 0,
795 				  adapter->name, adapter);
796 	if (err) {
797 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
798 			err);
799 		return err;
800 	}
801 
802 	/*
803 	 * Enable NAPI ingress processing and return success.
804 	 */
805 	enable_rx(adapter);
806 	t4vf_sge_start(adapter);
807 
808 	return 0;
809 }
810 
811 /*
812  * Bring the adapter down.  Called whenever the last "port" (Virtual
813  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
814  * Driver.)
815  */
816 static void adapter_down(struct adapter *adapter)
817 {
818 	/*
819 	 * Free interrupt resources.
820 	 */
821 	if (adapter->flags & CXGB4VF_USING_MSIX)
822 		free_msix_queue_irqs(adapter);
823 	else
824 		free_irq(adapter->pdev->irq, adapter);
825 
826 	/*
827 	 * Wait for NAPI handlers to finish.
828 	 */
829 	quiesce_rx(adapter);
830 }
831 
832 /*
833  * Start up a net device.
834  */
835 static int cxgb4vf_open(struct net_device *dev)
836 {
837 	int err;
838 	struct port_info *pi = netdev_priv(dev);
839 	struct adapter *adapter = pi->adapter;
840 
841 	/*
842 	 * If we don't have a connection to the firmware there's nothing we
843 	 * can do.
844 	 */
845 	if (!(adapter->flags & CXGB4VF_FW_OK))
846 		return -ENXIO;
847 
848 	/*
849 	 * If this is the first interface that we're opening on the "adapter",
850 	 * bring the "adapter" up now.
851 	 */
852 	if (adapter->open_device_map == 0) {
853 		err = adapter_up(adapter);
854 		if (err)
855 			return err;
856 	}
857 
858 	/* It's possible that the basic port information could have
859 	 * changed since we first read it.
860 	 */
861 	err = t4vf_update_port_info(pi);
862 	if (err < 0)
863 		return err;
864 
865 	/*
866 	 * Note that this interface is up and start everything up ...
867 	 */
868 	err = link_start(dev);
869 	if (err)
870 		goto err_unwind;
871 
872 	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
873 
874 	netif_tx_start_all_queues(dev);
875 	set_bit(pi->port_id, &adapter->open_device_map);
876 	return 0;
877 
878 err_unwind:
879 	if (adapter->open_device_map == 0)
880 		adapter_down(adapter);
881 	return err;
882 }
883 
884 /*
885  * Shut down a net device.  This routine is called "cxgb_close" in the PF
886  * Driver ...
887  */
888 static int cxgb4vf_stop(struct net_device *dev)
889 {
890 	struct port_info *pi = netdev_priv(dev);
891 	struct adapter *adapter = pi->adapter;
892 
893 	netif_tx_stop_all_queues(dev);
894 	netif_carrier_off(dev);
895 	t4vf_enable_pi(adapter, pi, false, false);
896 
897 	clear_bit(pi->port_id, &adapter->open_device_map);
898 	if (adapter->open_device_map == 0)
899 		adapter_down(adapter);
900 	return 0;
901 }
902 
903 /*
904  * Translate our basic statistics into the standard "ifconfig" statistics.
905  */
906 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
907 {
908 	struct t4vf_port_stats stats;
909 	struct port_info *pi = netdev2pinfo(dev);
910 	struct adapter *adapter = pi->adapter;
911 	struct net_device_stats *ns = &dev->stats;
912 	int err;
913 
914 	spin_lock(&adapter->stats_lock);
915 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
916 	spin_unlock(&adapter->stats_lock);
917 
918 	memset(ns, 0, sizeof(*ns));
919 	if (err)
920 		return ns;
921 
922 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
923 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
924 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
925 			  stats.tx_ucast_frames + stats.tx_offload_frames);
926 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
927 			stats.rx_ucast_bytes);
928 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
929 			  stats.rx_ucast_frames);
930 	ns->multicast = stats.rx_mcast_frames;
931 	ns->tx_errors = stats.tx_drop_frames;
932 	ns->rx_errors = stats.rx_err_frames;
933 
934 	return ns;
935 }
936 
937 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
938 {
939 	struct port_info *pi = netdev_priv(netdev);
940 	struct adapter *adapter = pi->adapter;
941 	int ret;
942 	u64 mhash = 0;
943 	u64 uhash = 0;
944 	bool free = false;
945 	bool ucast = is_unicast_ether_addr(mac_addr);
946 	const u8 *maclist[1] = {mac_addr};
947 	struct hash_mac_addr *new_entry;
948 
949 	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
950 				  NULL, ucast ? &uhash : &mhash, false);
951 	if (ret < 0)
952 		goto out;
953 	/* if hash != 0, then add the addr to hash addr list
954 	 * so on the end we will calculate the hash for the
955 	 * list and program it
956 	 */
957 	if (uhash || mhash) {
958 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
959 		if (!new_entry)
960 			return -ENOMEM;
961 		ether_addr_copy(new_entry->addr, mac_addr);
962 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
963 		ret = cxgb4vf_set_addr_hash(pi);
964 	}
965 out:
966 	return ret < 0 ? ret : 0;
967 }
968 
969 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
970 {
971 	struct port_info *pi = netdev_priv(netdev);
972 	struct adapter *adapter = pi->adapter;
973 	int ret;
974 	const u8 *maclist[1] = {mac_addr};
975 	struct hash_mac_addr *entry, *tmp;
976 
977 	/* If the MAC address to be removed is in the hash addr
978 	 * list, delete it from the list and update hash vector
979 	 */
980 	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
981 		if (ether_addr_equal(entry->addr, mac_addr)) {
982 			list_del(&entry->list);
983 			kfree(entry);
984 			return cxgb4vf_set_addr_hash(pi);
985 		}
986 	}
987 
988 	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
989 	return ret < 0 ? -EINVAL : 0;
990 }
991 
992 /*
993  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
994  * If @mtu is -1 it is left unchanged.
995  */
996 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
997 {
998 	struct port_info *pi = netdev_priv(dev);
999 
1000 	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1001 	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1002 	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1003 			       (dev->flags & IFF_PROMISC) != 0,
1004 			       (dev->flags & IFF_ALLMULTI) != 0,
1005 			       1, -1, sleep_ok);
1006 }
1007 
1008 /*
1009  * Set the current receive modes on the device.
1010  */
1011 static void cxgb4vf_set_rxmode(struct net_device *dev)
1012 {
1013 	/* unfortunately we can't return errors to the stack */
1014 	set_rxmode(dev, -1, false);
1015 }
1016 
1017 /*
1018  * Find the entry in the interrupt holdoff timer value array which comes
1019  * closest to the specified interrupt holdoff value.
1020  */
1021 static int closest_timer(const struct sge *s, int us)
1022 {
1023 	int i, timer_idx = 0, min_delta = INT_MAX;
1024 
1025 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1026 		int delta = us - s->timer_val[i];
1027 		if (delta < 0)
1028 			delta = -delta;
1029 		if (delta < min_delta) {
1030 			min_delta = delta;
1031 			timer_idx = i;
1032 		}
1033 	}
1034 	return timer_idx;
1035 }
1036 
1037 static int closest_thres(const struct sge *s, int thres)
1038 {
1039 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1040 
1041 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1042 		delta = thres - s->counter_val[i];
1043 		if (delta < 0)
1044 			delta = -delta;
1045 		if (delta < min_delta) {
1046 			min_delta = delta;
1047 			pktcnt_idx = i;
1048 		}
1049 	}
1050 	return pktcnt_idx;
1051 }
1052 
1053 /*
1054  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1055  */
1056 static unsigned int qtimer_val(const struct adapter *adapter,
1057 			       const struct sge_rspq *rspq)
1058 {
1059 	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1060 
1061 	return timer_idx < SGE_NTIMERS
1062 		? adapter->sge.timer_val[timer_idx]
1063 		: 0;
1064 }
1065 
1066 /**
1067  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1068  *	@adapter: the adapter
1069  *	@rspq: the RX response queue
1070  *	@us: the hold-off time in us, or 0 to disable timer
1071  *	@cnt: the hold-off packet count, or 0 to disable counter
1072  *
1073  *	Sets an RX response queue's interrupt hold-off time and packet count.
1074  *	At least one of the two needs to be enabled for the queue to generate
1075  *	interrupts.
1076  */
1077 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1078 			       unsigned int us, unsigned int cnt)
1079 {
1080 	unsigned int timer_idx;
1081 
1082 	/*
1083 	 * If both the interrupt holdoff timer and count are specified as
1084 	 * zero, default to a holdoff count of 1 ...
1085 	 */
1086 	if ((us | cnt) == 0)
1087 		cnt = 1;
1088 
1089 	/*
1090 	 * If an interrupt holdoff count has been specified, then find the
1091 	 * closest configured holdoff count and use that.  If the response
1092 	 * queue has already been created, then update its queue context
1093 	 * parameters ...
1094 	 */
1095 	if (cnt) {
1096 		int err;
1097 		u32 v, pktcnt_idx;
1098 
1099 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1100 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1101 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1102 			    FW_PARAMS_PARAM_X_V(
1103 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1104 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1105 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1106 			if (err)
1107 				return err;
1108 		}
1109 		rspq->pktcnt_idx = pktcnt_idx;
1110 	}
1111 
1112 	/*
1113 	 * Compute the closest holdoff timer index from the supplied holdoff
1114 	 * timer value.
1115 	 */
1116 	timer_idx = (us == 0
1117 		     ? SGE_TIMER_RSTRT_CNTR
1118 		     : closest_timer(&adapter->sge, us));
1119 
1120 	/*
1121 	 * Update the response queue's interrupt coalescing parameters and
1122 	 * return success.
1123 	 */
1124 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1125 			     QINTR_CNT_EN_V(cnt > 0));
1126 	return 0;
1127 }
1128 
1129 /*
1130  * Return a version number to identify the type of adapter.  The scheme is:
1131  * - bits 0..9: chip version
1132  * - bits 10..15: chip revision
1133  */
1134 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1135 {
1136 	/*
1137 	 * Chip version 4, revision 0x3f (cxgb4vf).
1138 	 */
1139 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1140 }
1141 
1142 /*
1143  * Execute the specified ioctl command.
1144  */
1145 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1146 {
1147 	int ret = 0;
1148 
1149 	switch (cmd) {
1150 	    /*
1151 	     * The VF Driver doesn't have access to any of the other
1152 	     * common Ethernet device ioctl()'s (like reading/writing
1153 	     * PHY registers, etc.
1154 	     */
1155 
1156 	default:
1157 		ret = -EOPNOTSUPP;
1158 		break;
1159 	}
1160 	return ret;
1161 }
1162 
1163 /*
1164  * Change the device's MTU.
1165  */
1166 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1167 {
1168 	int ret;
1169 	struct port_info *pi = netdev_priv(dev);
1170 
1171 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1172 			      -1, -1, -1, -1, true);
1173 	if (!ret)
1174 		dev->mtu = new_mtu;
1175 	return ret;
1176 }
1177 
1178 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1179 	netdev_features_t features)
1180 {
1181 	/*
1182 	 * Since there is no support for separate rx/tx vlan accel
1183 	 * enable/disable make sure tx flag is always in same state as rx.
1184 	 */
1185 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1186 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1187 	else
1188 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1189 
1190 	return features;
1191 }
1192 
1193 static int cxgb4vf_set_features(struct net_device *dev,
1194 	netdev_features_t features)
1195 {
1196 	struct port_info *pi = netdev_priv(dev);
1197 	netdev_features_t changed = dev->features ^ features;
1198 
1199 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1200 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1201 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Change the devices MAC address.
1208  */
1209 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1210 {
1211 	int ret;
1212 	struct sockaddr *addr = _addr;
1213 	struct port_info *pi = netdev_priv(dev);
1214 
1215 	if (!is_valid_ether_addr(addr->sa_data))
1216 		return -EADDRNOTAVAIL;
1217 
1218 	ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1219 				 addr->sa_data, true);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1224 	return 0;
1225 }
1226 
1227 #ifdef CONFIG_NET_POLL_CONTROLLER
1228 /*
1229  * Poll all of our receive queues.  This is called outside of normal interrupt
1230  * context.
1231  */
1232 static void cxgb4vf_poll_controller(struct net_device *dev)
1233 {
1234 	struct port_info *pi = netdev_priv(dev);
1235 	struct adapter *adapter = pi->adapter;
1236 
1237 	if (adapter->flags & CXGB4VF_USING_MSIX) {
1238 		struct sge_eth_rxq *rxq;
1239 		int nqsets;
1240 
1241 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1242 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1243 			t4vf_sge_intr_msix(0, &rxq->rspq);
1244 			rxq++;
1245 		}
1246 	} else
1247 		t4vf_intr_handler(adapter)(0, adapter);
1248 }
1249 #endif
1250 
1251 /*
1252  * Ethtool operations.
1253  * ===================
1254  *
1255  * Note that we don't support any ethtool operations which change the physical
1256  * state of the port to which we're linked.
1257  */
1258 
1259 /**
1260  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1261  *	@port_type: Firmware Port Type
1262  *	@mod_type: Firmware Module Type
1263  *
1264  *	Translate Firmware Port/Module type to Ethtool Port Type.
1265  */
1266 static int from_fw_port_mod_type(enum fw_port_type port_type,
1267 				 enum fw_port_module_type mod_type)
1268 {
1269 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1270 	    port_type == FW_PORT_TYPE_BT_XFI ||
1271 	    port_type == FW_PORT_TYPE_BT_XAUI) {
1272 		return PORT_TP;
1273 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1274 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1275 		return PORT_FIBRE;
1276 	} else if (port_type == FW_PORT_TYPE_SFP ||
1277 		   port_type == FW_PORT_TYPE_QSFP_10G ||
1278 		   port_type == FW_PORT_TYPE_QSA ||
1279 		   port_type == FW_PORT_TYPE_QSFP ||
1280 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1281 		   port_type == FW_PORT_TYPE_CR_QSFP ||
1282 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1283 		   port_type == FW_PORT_TYPE_SFP28) {
1284 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1285 		    mod_type == FW_PORT_MOD_TYPE_SR ||
1286 		    mod_type == FW_PORT_MOD_TYPE_ER ||
1287 		    mod_type == FW_PORT_MOD_TYPE_LRM)
1288 			return PORT_FIBRE;
1289 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1290 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1291 			return PORT_DA;
1292 		else
1293 			return PORT_OTHER;
1294 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1295 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1296 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1297 		return PORT_NONE;
1298 	}
1299 
1300 	return PORT_OTHER;
1301 }
1302 
1303 /**
1304  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1305  *	@port_type: Firmware Port Type
1306  *	@fw_caps: Firmware Port Capabilities
1307  *	@link_mode_mask: ethtool Link Mode Mask
1308  *
1309  *	Translate a Firmware Port Capabilities specification to an ethtool
1310  *	Link Mode Mask.
1311  */
1312 static void fw_caps_to_lmm(enum fw_port_type port_type,
1313 			   unsigned int fw_caps,
1314 			   unsigned long *link_mode_mask)
1315 {
1316 	#define SET_LMM(__lmm_name) \
1317 		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1318 			  link_mode_mask)
1319 
1320 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1321 		do { \
1322 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1323 				SET_LMM(__lmm_name); \
1324 		} while (0)
1325 
1326 	switch (port_type) {
1327 	case FW_PORT_TYPE_BT_SGMII:
1328 	case FW_PORT_TYPE_BT_XFI:
1329 	case FW_PORT_TYPE_BT_XAUI:
1330 		SET_LMM(TP);
1331 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1332 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1333 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1334 		break;
1335 
1336 	case FW_PORT_TYPE_KX4:
1337 	case FW_PORT_TYPE_KX:
1338 		SET_LMM(Backplane);
1339 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1340 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1341 		break;
1342 
1343 	case FW_PORT_TYPE_KR:
1344 		SET_LMM(Backplane);
1345 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1346 		break;
1347 
1348 	case FW_PORT_TYPE_BP_AP:
1349 		SET_LMM(Backplane);
1350 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1351 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1352 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1353 		break;
1354 
1355 	case FW_PORT_TYPE_BP4_AP:
1356 		SET_LMM(Backplane);
1357 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1358 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1359 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1360 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1361 		break;
1362 
1363 	case FW_PORT_TYPE_FIBER_XFI:
1364 	case FW_PORT_TYPE_FIBER_XAUI:
1365 	case FW_PORT_TYPE_SFP:
1366 	case FW_PORT_TYPE_QSFP_10G:
1367 	case FW_PORT_TYPE_QSA:
1368 		SET_LMM(FIBRE);
1369 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1370 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1371 		break;
1372 
1373 	case FW_PORT_TYPE_BP40_BA:
1374 	case FW_PORT_TYPE_QSFP:
1375 		SET_LMM(FIBRE);
1376 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1377 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1378 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1379 		break;
1380 
1381 	case FW_PORT_TYPE_CR_QSFP:
1382 	case FW_PORT_TYPE_SFP28:
1383 		SET_LMM(FIBRE);
1384 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1385 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1386 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1387 		break;
1388 
1389 	case FW_PORT_TYPE_KR_SFP28:
1390 		SET_LMM(Backplane);
1391 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1392 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1393 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1394 		break;
1395 
1396 	case FW_PORT_TYPE_KR_XLAUI:
1397 		SET_LMM(Backplane);
1398 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1399 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1400 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1401 		break;
1402 
1403 	case FW_PORT_TYPE_CR2_QSFP:
1404 		SET_LMM(FIBRE);
1405 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1406 		break;
1407 
1408 	case FW_PORT_TYPE_KR4_100G:
1409 	case FW_PORT_TYPE_CR4_QSFP:
1410 		SET_LMM(FIBRE);
1411 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1412 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1413 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1414 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1415 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1416 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1417 		break;
1418 
1419 	default:
1420 		break;
1421 	}
1422 
1423 	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1424 		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1425 		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1426 	} else {
1427 		SET_LMM(FEC_NONE);
1428 	}
1429 
1430 	FW_CAPS_TO_LMM(ANEG, Autoneg);
1431 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1432 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1433 
1434 	#undef FW_CAPS_TO_LMM
1435 	#undef SET_LMM
1436 }
1437 
1438 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1439 				  struct ethtool_link_ksettings *link_ksettings)
1440 {
1441 	struct port_info *pi = netdev_priv(dev);
1442 	struct ethtool_link_settings *base = &link_ksettings->base;
1443 
1444 	/* For the nonce, the Firmware doesn't send up Port State changes
1445 	 * when the Virtual Interface attached to the Port is down.  So
1446 	 * if it's down, let's grab any changes.
1447 	 */
1448 	if (!netif_running(dev))
1449 		(void)t4vf_update_port_info(pi);
1450 
1451 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1452 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1453 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1454 
1455 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1456 
1457 	if (pi->mdio_addr >= 0) {
1458 		base->phy_address = pi->mdio_addr;
1459 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1460 				      ? ETH_MDIO_SUPPORTS_C22
1461 				      : ETH_MDIO_SUPPORTS_C45);
1462 	} else {
1463 		base->phy_address = 255;
1464 		base->mdio_support = 0;
1465 	}
1466 
1467 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1468 		       link_ksettings->link_modes.supported);
1469 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1470 		       link_ksettings->link_modes.advertising);
1471 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1472 		       link_ksettings->link_modes.lp_advertising);
1473 
1474 	if (netif_carrier_ok(dev)) {
1475 		base->speed = pi->link_cfg.speed;
1476 		base->duplex = DUPLEX_FULL;
1477 	} else {
1478 		base->speed = SPEED_UNKNOWN;
1479 		base->duplex = DUPLEX_UNKNOWN;
1480 	}
1481 
1482 	base->autoneg = pi->link_cfg.autoneg;
1483 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1484 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1485 						     supported, Autoneg);
1486 	if (pi->link_cfg.autoneg)
1487 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1488 						     advertising, Autoneg);
1489 
1490 	return 0;
1491 }
1492 
1493 /* Translate the Firmware FEC value into the ethtool value. */
1494 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1495 {
1496 	unsigned int eth_fec = 0;
1497 
1498 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1499 		eth_fec |= ETHTOOL_FEC_RS;
1500 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1501 		eth_fec |= ETHTOOL_FEC_BASER;
1502 
1503 	/* if nothing is set, then FEC is off */
1504 	if (!eth_fec)
1505 		eth_fec = ETHTOOL_FEC_OFF;
1506 
1507 	return eth_fec;
1508 }
1509 
1510 /* Translate Common Code FEC value into ethtool value. */
1511 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1512 {
1513 	unsigned int eth_fec = 0;
1514 
1515 	if (cc_fec & FEC_AUTO)
1516 		eth_fec |= ETHTOOL_FEC_AUTO;
1517 	if (cc_fec & FEC_RS)
1518 		eth_fec |= ETHTOOL_FEC_RS;
1519 	if (cc_fec & FEC_BASER_RS)
1520 		eth_fec |= ETHTOOL_FEC_BASER;
1521 
1522 	/* if nothing is set, then FEC is off */
1523 	if (!eth_fec)
1524 		eth_fec = ETHTOOL_FEC_OFF;
1525 
1526 	return eth_fec;
1527 }
1528 
1529 static int cxgb4vf_get_fecparam(struct net_device *dev,
1530 				struct ethtool_fecparam *fec)
1531 {
1532 	const struct port_info *pi = netdev_priv(dev);
1533 	const struct link_config *lc = &pi->link_cfg;
1534 
1535 	/* Translate the Firmware FEC Support into the ethtool value.  We
1536 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1537 	 * any FEC is supported.
1538 	 */
1539 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1540 	if (fec->fec != ETHTOOL_FEC_OFF)
1541 		fec->fec |= ETHTOOL_FEC_AUTO;
1542 
1543 	/* Translate the current internal FEC parameters into the
1544 	 * ethtool values.
1545 	 */
1546 	fec->active_fec = cc_to_eth_fec(lc->fec);
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Return our driver information.
1552  */
1553 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1554 				struct ethtool_drvinfo *drvinfo)
1555 {
1556 	struct adapter *adapter = netdev2adap(dev);
1557 
1558 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1559 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1560 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1561 		sizeof(drvinfo->bus_info));
1562 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1563 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1564 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1565 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1566 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1567 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1568 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1569 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1570 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1571 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1572 }
1573 
1574 /*
1575  * Return current adapter message level.
1576  */
1577 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1578 {
1579 	return netdev2adap(dev)->msg_enable;
1580 }
1581 
1582 /*
1583  * Set current adapter message level.
1584  */
1585 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1586 {
1587 	netdev2adap(dev)->msg_enable = msglevel;
1588 }
1589 
1590 /*
1591  * Return the device's current Queue Set ring size parameters along with the
1592  * allowed maximum values.  Since ethtool doesn't understand the concept of
1593  * multi-queue devices, we just return the current values associated with the
1594  * first Queue Set.
1595  */
1596 static void cxgb4vf_get_ringparam(struct net_device *dev,
1597 				  struct ethtool_ringparam *rp)
1598 {
1599 	const struct port_info *pi = netdev_priv(dev);
1600 	const struct sge *s = &pi->adapter->sge;
1601 
1602 	rp->rx_max_pending = MAX_RX_BUFFERS;
1603 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1604 	rp->rx_jumbo_max_pending = 0;
1605 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1606 
1607 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1608 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1609 	rp->rx_jumbo_pending = 0;
1610 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1611 }
1612 
1613 /*
1614  * Set the Queue Set ring size parameters for the device.  Again, since
1615  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1616  * apply these new values across all of the Queue Sets associated with the
1617  * device -- after vetting them of course!
1618  */
1619 static int cxgb4vf_set_ringparam(struct net_device *dev,
1620 				 struct ethtool_ringparam *rp)
1621 {
1622 	const struct port_info *pi = netdev_priv(dev);
1623 	struct adapter *adapter = pi->adapter;
1624 	struct sge *s = &adapter->sge;
1625 	int qs;
1626 
1627 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1628 	    rp->rx_jumbo_pending ||
1629 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1630 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1631 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1632 	    rp->rx_pending < MIN_FL_ENTRIES ||
1633 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1634 		return -EINVAL;
1635 
1636 	if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1637 		return -EBUSY;
1638 
1639 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1640 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1641 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1642 		s->ethtxq[qs].q.size = rp->tx_pending;
1643 	}
1644 	return 0;
1645 }
1646 
1647 /*
1648  * Return the interrupt holdoff timer and count for the first Queue Set on the
1649  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1650  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1651  */
1652 static int cxgb4vf_get_coalesce(struct net_device *dev,
1653 				struct ethtool_coalesce *coalesce)
1654 {
1655 	const struct port_info *pi = netdev_priv(dev);
1656 	const struct adapter *adapter = pi->adapter;
1657 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1658 
1659 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1660 	coalesce->rx_max_coalesced_frames =
1661 		((rspq->intr_params & QINTR_CNT_EN_F)
1662 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1663 		 : 0);
1664 	return 0;
1665 }
1666 
1667 /*
1668  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1669  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1670  * the interrupt holdoff timer on any of the device's Queue Sets.
1671  */
1672 static int cxgb4vf_set_coalesce(struct net_device *dev,
1673 				struct ethtool_coalesce *coalesce)
1674 {
1675 	const struct port_info *pi = netdev_priv(dev);
1676 	struct adapter *adapter = pi->adapter;
1677 
1678 	return set_rxq_intr_params(adapter,
1679 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1680 				   coalesce->rx_coalesce_usecs,
1681 				   coalesce->rx_max_coalesced_frames);
1682 }
1683 
1684 /*
1685  * Report current port link pause parameter settings.
1686  */
1687 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1688 				   struct ethtool_pauseparam *pauseparam)
1689 {
1690 	struct port_info *pi = netdev_priv(dev);
1691 
1692 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1693 	pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1694 	pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1695 }
1696 
1697 /*
1698  * Identify the port by blinking the port's LED.
1699  */
1700 static int cxgb4vf_phys_id(struct net_device *dev,
1701 			   enum ethtool_phys_id_state state)
1702 {
1703 	unsigned int val;
1704 	struct port_info *pi = netdev_priv(dev);
1705 
1706 	if (state == ETHTOOL_ID_ACTIVE)
1707 		val = 0xffff;
1708 	else if (state == ETHTOOL_ID_INACTIVE)
1709 		val = 0;
1710 	else
1711 		return -EINVAL;
1712 
1713 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1714 }
1715 
1716 /*
1717  * Port stats maintained per queue of the port.
1718  */
1719 struct queue_port_stats {
1720 	u64 tso;
1721 	u64 tx_csum;
1722 	u64 rx_csum;
1723 	u64 vlan_ex;
1724 	u64 vlan_ins;
1725 	u64 lro_pkts;
1726 	u64 lro_merged;
1727 };
1728 
1729 /*
1730  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1731  * these need to match the order of statistics returned by
1732  * t4vf_get_port_stats().
1733  */
1734 static const char stats_strings[][ETH_GSTRING_LEN] = {
1735 	/*
1736 	 * These must match the layout of the t4vf_port_stats structure.
1737 	 */
1738 	"TxBroadcastBytes  ",
1739 	"TxBroadcastFrames ",
1740 	"TxMulticastBytes  ",
1741 	"TxMulticastFrames ",
1742 	"TxUnicastBytes    ",
1743 	"TxUnicastFrames   ",
1744 	"TxDroppedFrames   ",
1745 	"TxOffloadBytes    ",
1746 	"TxOffloadFrames   ",
1747 	"RxBroadcastBytes  ",
1748 	"RxBroadcastFrames ",
1749 	"RxMulticastBytes  ",
1750 	"RxMulticastFrames ",
1751 	"RxUnicastBytes    ",
1752 	"RxUnicastFrames   ",
1753 	"RxErrorFrames     ",
1754 
1755 	/*
1756 	 * These are accumulated per-queue statistics and must match the
1757 	 * order of the fields in the queue_port_stats structure.
1758 	 */
1759 	"TSO               ",
1760 	"TxCsumOffload     ",
1761 	"RxCsumGood        ",
1762 	"VLANextractions   ",
1763 	"VLANinsertions    ",
1764 	"GROPackets        ",
1765 	"GROMerged         ",
1766 };
1767 
1768 /*
1769  * Return the number of statistics in the specified statistics set.
1770  */
1771 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1772 {
1773 	switch (sset) {
1774 	case ETH_SS_STATS:
1775 		return ARRAY_SIZE(stats_strings);
1776 	default:
1777 		return -EOPNOTSUPP;
1778 	}
1779 	/*NOTREACHED*/
1780 }
1781 
1782 /*
1783  * Return the strings for the specified statistics set.
1784  */
1785 static void cxgb4vf_get_strings(struct net_device *dev,
1786 				u32 sset,
1787 				u8 *data)
1788 {
1789 	switch (sset) {
1790 	case ETH_SS_STATS:
1791 		memcpy(data, stats_strings, sizeof(stats_strings));
1792 		break;
1793 	}
1794 }
1795 
1796 /*
1797  * Small utility routine to accumulate queue statistics across the queues of
1798  * a "port".
1799  */
1800 static void collect_sge_port_stats(const struct adapter *adapter,
1801 				   const struct port_info *pi,
1802 				   struct queue_port_stats *stats)
1803 {
1804 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1805 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1806 	int qs;
1807 
1808 	memset(stats, 0, sizeof(*stats));
1809 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1810 		stats->tso += txq->tso;
1811 		stats->tx_csum += txq->tx_cso;
1812 		stats->rx_csum += rxq->stats.rx_cso;
1813 		stats->vlan_ex += rxq->stats.vlan_ex;
1814 		stats->vlan_ins += txq->vlan_ins;
1815 		stats->lro_pkts += rxq->stats.lro_pkts;
1816 		stats->lro_merged += rxq->stats.lro_merged;
1817 	}
1818 }
1819 
1820 /*
1821  * Return the ETH_SS_STATS statistics set.
1822  */
1823 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1824 				      struct ethtool_stats *stats,
1825 				      u64 *data)
1826 {
1827 	struct port_info *pi = netdev2pinfo(dev);
1828 	struct adapter *adapter = pi->adapter;
1829 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1830 				      (struct t4vf_port_stats *)data);
1831 	if (err)
1832 		memset(data, 0, sizeof(struct t4vf_port_stats));
1833 
1834 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1835 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1836 }
1837 
1838 /*
1839  * Return the size of our register map.
1840  */
1841 static int cxgb4vf_get_regs_len(struct net_device *dev)
1842 {
1843 	return T4VF_REGMAP_SIZE;
1844 }
1845 
1846 /*
1847  * Dump a block of registers, start to end inclusive, into a buffer.
1848  */
1849 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1850 			   unsigned int start, unsigned int end)
1851 {
1852 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1853 
1854 	for ( ; start <= end; start += sizeof(u32)) {
1855 		/*
1856 		 * Avoid reading the Mailbox Control register since that
1857 		 * can trigger a Mailbox Ownership Arbitration cycle and
1858 		 * interfere with communication with the firmware.
1859 		 */
1860 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1861 			*bp++ = 0xffff;
1862 		else
1863 			*bp++ = t4_read_reg(adapter, start);
1864 	}
1865 }
1866 
1867 /*
1868  * Copy our entire register map into the provided buffer.
1869  */
1870 static void cxgb4vf_get_regs(struct net_device *dev,
1871 			     struct ethtool_regs *regs,
1872 			     void *regbuf)
1873 {
1874 	struct adapter *adapter = netdev2adap(dev);
1875 
1876 	regs->version = mk_adap_vers(adapter);
1877 
1878 	/*
1879 	 * Fill in register buffer with our register map.
1880 	 */
1881 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1882 
1883 	reg_block_dump(adapter, regbuf,
1884 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1885 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1886 	reg_block_dump(adapter, regbuf,
1887 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1888 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1889 
1890 	/* T5 adds new registers in the PL Register map.
1891 	 */
1892 	reg_block_dump(adapter, regbuf,
1893 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1894 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1895 		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1896 	reg_block_dump(adapter, regbuf,
1897 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1898 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1899 
1900 	reg_block_dump(adapter, regbuf,
1901 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1902 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1903 }
1904 
1905 /*
1906  * Report current Wake On LAN settings.
1907  */
1908 static void cxgb4vf_get_wol(struct net_device *dev,
1909 			    struct ethtool_wolinfo *wol)
1910 {
1911 	wol->supported = 0;
1912 	wol->wolopts = 0;
1913 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1914 }
1915 
1916 /*
1917  * TCP Segmentation Offload flags which we support.
1918  */
1919 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1920 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1921 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1922 
1923 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1924 	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1925 	.get_fecparam		= cxgb4vf_get_fecparam,
1926 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1927 	.get_msglevel		= cxgb4vf_get_msglevel,
1928 	.set_msglevel		= cxgb4vf_set_msglevel,
1929 	.get_ringparam		= cxgb4vf_get_ringparam,
1930 	.set_ringparam		= cxgb4vf_set_ringparam,
1931 	.get_coalesce		= cxgb4vf_get_coalesce,
1932 	.set_coalesce		= cxgb4vf_set_coalesce,
1933 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1934 	.get_link		= ethtool_op_get_link,
1935 	.get_strings		= cxgb4vf_get_strings,
1936 	.set_phys_id		= cxgb4vf_phys_id,
1937 	.get_sset_count		= cxgb4vf_get_sset_count,
1938 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1939 	.get_regs_len		= cxgb4vf_get_regs_len,
1940 	.get_regs		= cxgb4vf_get_regs,
1941 	.get_wol		= cxgb4vf_get_wol,
1942 };
1943 
1944 /*
1945  * /sys/kernel/debug/cxgb4vf support code and data.
1946  * ================================================
1947  */
1948 
1949 /*
1950  * Show Firmware Mailbox Command/Reply Log
1951  *
1952  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1953  * it's possible that we can catch things during a log update and therefore
1954  * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1955  * If we ever decide that we want to make sure that we're dumping a coherent
1956  * log, we'd need to perform locking in the mailbox logging and in
1957  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1958  * like we do for the Firmware Device Log.  But as stated above, meh ...
1959  */
1960 static int mboxlog_show(struct seq_file *seq, void *v)
1961 {
1962 	struct adapter *adapter = seq->private;
1963 	struct mbox_cmd_log *log = adapter->mbox_log;
1964 	struct mbox_cmd *entry;
1965 	int entry_idx, i;
1966 
1967 	if (v == SEQ_START_TOKEN) {
1968 		seq_printf(seq,
1969 			   "%10s  %15s  %5s  %5s  %s\n",
1970 			   "Seq#", "Tstamp", "Atime", "Etime",
1971 			   "Command/Reply");
1972 		return 0;
1973 	}
1974 
1975 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1976 	if (entry_idx >= log->size)
1977 		entry_idx -= log->size;
1978 	entry = mbox_cmd_log_entry(log, entry_idx);
1979 
1980 	/* skip over unused entries */
1981 	if (entry->timestamp == 0)
1982 		return 0;
1983 
1984 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1985 		   entry->seqno, entry->timestamp,
1986 		   entry->access, entry->execute);
1987 	for (i = 0; i < MBOX_LEN / 8; i++) {
1988 		u64 flit = entry->cmd[i];
1989 		u32 hi = (u32)(flit >> 32);
1990 		u32 lo = (u32)flit;
1991 
1992 		seq_printf(seq, "  %08x %08x", hi, lo);
1993 	}
1994 	seq_puts(seq, "\n");
1995 	return 0;
1996 }
1997 
1998 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1999 {
2000 	struct adapter *adapter = seq->private;
2001 	struct mbox_cmd_log *log = adapter->mbox_log;
2002 
2003 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2004 }
2005 
2006 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2007 {
2008 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2009 }
2010 
2011 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2012 {
2013 	++*pos;
2014 	return mboxlog_get_idx(seq, *pos);
2015 }
2016 
2017 static void mboxlog_stop(struct seq_file *seq, void *v)
2018 {
2019 }
2020 
2021 static const struct seq_operations mboxlog_seq_ops = {
2022 	.start = mboxlog_start,
2023 	.next  = mboxlog_next,
2024 	.stop  = mboxlog_stop,
2025 	.show  = mboxlog_show
2026 };
2027 
2028 static int mboxlog_open(struct inode *inode, struct file *file)
2029 {
2030 	int res = seq_open(file, &mboxlog_seq_ops);
2031 
2032 	if (!res) {
2033 		struct seq_file *seq = file->private_data;
2034 
2035 		seq->private = inode->i_private;
2036 	}
2037 	return res;
2038 }
2039 
2040 static const struct file_operations mboxlog_fops = {
2041 	.owner   = THIS_MODULE,
2042 	.open    = mboxlog_open,
2043 	.read    = seq_read,
2044 	.llseek  = seq_lseek,
2045 	.release = seq_release,
2046 };
2047 
2048 /*
2049  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2050  */
2051 #define QPL	4
2052 
2053 static int sge_qinfo_show(struct seq_file *seq, void *v)
2054 {
2055 	struct adapter *adapter = seq->private;
2056 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2057 	int qs, r = (uintptr_t)v - 1;
2058 
2059 	if (r)
2060 		seq_putc(seq, '\n');
2061 
2062 	#define S3(fmt_spec, s, v) \
2063 		do {\
2064 			seq_printf(seq, "%-12s", s); \
2065 			for (qs = 0; qs < n; ++qs) \
2066 				seq_printf(seq, " %16" fmt_spec, v); \
2067 			seq_putc(seq, '\n'); \
2068 		} while (0)
2069 	#define S(s, v)		S3("s", s, v)
2070 	#define T(s, v)		S3("u", s, txq[qs].v)
2071 	#define R(s, v)		S3("u", s, rxq[qs].v)
2072 
2073 	if (r < eth_entries) {
2074 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2075 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2076 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2077 
2078 		S("QType:", "Ethernet");
2079 		S("Interface:",
2080 		  (rxq[qs].rspq.netdev
2081 		   ? rxq[qs].rspq.netdev->name
2082 		   : "N/A"));
2083 		S3("d", "Port:",
2084 		   (rxq[qs].rspq.netdev
2085 		    ? ((struct port_info *)
2086 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2087 		    : -1));
2088 		T("TxQ ID:", q.abs_id);
2089 		T("TxQ size:", q.size);
2090 		T("TxQ inuse:", q.in_use);
2091 		T("TxQ PIdx:", q.pidx);
2092 		T("TxQ CIdx:", q.cidx);
2093 		R("RspQ ID:", rspq.abs_id);
2094 		R("RspQ size:", rspq.size);
2095 		R("RspQE size:", rspq.iqe_len);
2096 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2097 		S3("u", "Intr pktcnt:",
2098 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2099 		R("RspQ CIdx:", rspq.cidx);
2100 		R("RspQ Gen:", rspq.gen);
2101 		R("FL ID:", fl.abs_id);
2102 		R("FL size:", fl.size - MIN_FL_RESID);
2103 		R("FL avail:", fl.avail);
2104 		R("FL PIdx:", fl.pidx);
2105 		R("FL CIdx:", fl.cidx);
2106 		return 0;
2107 	}
2108 
2109 	r -= eth_entries;
2110 	if (r == 0) {
2111 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2112 
2113 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2114 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2115 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2116 			   qtimer_val(adapter, evtq));
2117 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2118 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2119 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2120 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2121 	} else if (r == 1) {
2122 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2123 
2124 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2125 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2126 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2127 			   qtimer_val(adapter, intrq));
2128 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2129 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2130 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2131 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2132 	}
2133 
2134 	#undef R
2135 	#undef T
2136 	#undef S
2137 	#undef S3
2138 
2139 	return 0;
2140 }
2141 
2142 /*
2143  * Return the number of "entries" in our "file".  We group the multi-Queue
2144  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2145  *
2146  *     Ethernet RX/TX Queue Sets
2147  *     Firmware Event Queue
2148  *     Forwarded Interrupt Queue (if in MSI mode)
2149  */
2150 static int sge_queue_entries(const struct adapter *adapter)
2151 {
2152 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2153 		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2154 }
2155 
2156 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2157 {
2158 	int entries = sge_queue_entries(seq->private);
2159 
2160 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2161 }
2162 
2163 static void sge_queue_stop(struct seq_file *seq, void *v)
2164 {
2165 }
2166 
2167 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2168 {
2169 	int entries = sge_queue_entries(seq->private);
2170 
2171 	++*pos;
2172 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2173 }
2174 
2175 static const struct seq_operations sge_qinfo_seq_ops = {
2176 	.start = sge_queue_start,
2177 	.next  = sge_queue_next,
2178 	.stop  = sge_queue_stop,
2179 	.show  = sge_qinfo_show
2180 };
2181 
2182 static int sge_qinfo_open(struct inode *inode, struct file *file)
2183 {
2184 	int res = seq_open(file, &sge_qinfo_seq_ops);
2185 
2186 	if (!res) {
2187 		struct seq_file *seq = file->private_data;
2188 		seq->private = inode->i_private;
2189 	}
2190 	return res;
2191 }
2192 
2193 static const struct file_operations sge_qinfo_debugfs_fops = {
2194 	.owner   = THIS_MODULE,
2195 	.open    = sge_qinfo_open,
2196 	.read    = seq_read,
2197 	.llseek  = seq_lseek,
2198 	.release = seq_release,
2199 };
2200 
2201 /*
2202  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2203  */
2204 #define QPL	4
2205 
2206 static int sge_qstats_show(struct seq_file *seq, void *v)
2207 {
2208 	struct adapter *adapter = seq->private;
2209 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2210 	int qs, r = (uintptr_t)v - 1;
2211 
2212 	if (r)
2213 		seq_putc(seq, '\n');
2214 
2215 	#define S3(fmt, s, v) \
2216 		do { \
2217 			seq_printf(seq, "%-16s", s); \
2218 			for (qs = 0; qs < n; ++qs) \
2219 				seq_printf(seq, " %8" fmt, v); \
2220 			seq_putc(seq, '\n'); \
2221 		} while (0)
2222 	#define S(s, v)		S3("s", s, v)
2223 
2224 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2225 	#define T(s, v)		T3("lu", s, v)
2226 
2227 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2228 	#define R(s, v)		R3("lu", s, v)
2229 
2230 	if (r < eth_entries) {
2231 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2232 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2233 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2234 
2235 		S("QType:", "Ethernet");
2236 		S("Interface:",
2237 		  (rxq[qs].rspq.netdev
2238 		   ? rxq[qs].rspq.netdev->name
2239 		   : "N/A"));
2240 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2241 		R("RxPackets:", stats.pkts);
2242 		R("RxCSO:", stats.rx_cso);
2243 		R("VLANxtract:", stats.vlan_ex);
2244 		R("LROmerged:", stats.lro_merged);
2245 		R("LROpackets:", stats.lro_pkts);
2246 		R("RxDrops:", stats.rx_drops);
2247 		T("TSO:", tso);
2248 		T("TxCSO:", tx_cso);
2249 		T("VLANins:", vlan_ins);
2250 		T("TxQFull:", q.stops);
2251 		T("TxQRestarts:", q.restarts);
2252 		T("TxMapErr:", mapping_err);
2253 		R("FLAllocErr:", fl.alloc_failed);
2254 		R("FLLrgAlcErr:", fl.large_alloc_failed);
2255 		R("FLStarving:", fl.starving);
2256 		return 0;
2257 	}
2258 
2259 	r -= eth_entries;
2260 	if (r == 0) {
2261 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2262 
2263 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2264 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2265 			   evtq->unhandled_irqs);
2266 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2267 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2268 	} else if (r == 1) {
2269 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2270 
2271 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2272 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2273 			   intrq->unhandled_irqs);
2274 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2275 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2276 	}
2277 
2278 	#undef R
2279 	#undef T
2280 	#undef S
2281 	#undef R3
2282 	#undef T3
2283 	#undef S3
2284 
2285 	return 0;
2286 }
2287 
2288 /*
2289  * Return the number of "entries" in our "file".  We group the multi-Queue
2290  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2291  *
2292  *     Ethernet RX/TX Queue Sets
2293  *     Firmware Event Queue
2294  *     Forwarded Interrupt Queue (if in MSI mode)
2295  */
2296 static int sge_qstats_entries(const struct adapter *adapter)
2297 {
2298 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2299 		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2300 }
2301 
2302 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2303 {
2304 	int entries = sge_qstats_entries(seq->private);
2305 
2306 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2307 }
2308 
2309 static void sge_qstats_stop(struct seq_file *seq, void *v)
2310 {
2311 }
2312 
2313 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2314 {
2315 	int entries = sge_qstats_entries(seq->private);
2316 
2317 	(*pos)++;
2318 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2319 }
2320 
2321 static const struct seq_operations sge_qstats_seq_ops = {
2322 	.start = sge_qstats_start,
2323 	.next  = sge_qstats_next,
2324 	.stop  = sge_qstats_stop,
2325 	.show  = sge_qstats_show
2326 };
2327 
2328 static int sge_qstats_open(struct inode *inode, struct file *file)
2329 {
2330 	int res = seq_open(file, &sge_qstats_seq_ops);
2331 
2332 	if (res == 0) {
2333 		struct seq_file *seq = file->private_data;
2334 		seq->private = inode->i_private;
2335 	}
2336 	return res;
2337 }
2338 
2339 static const struct file_operations sge_qstats_proc_fops = {
2340 	.owner   = THIS_MODULE,
2341 	.open    = sge_qstats_open,
2342 	.read    = seq_read,
2343 	.llseek  = seq_lseek,
2344 	.release = seq_release,
2345 };
2346 
2347 /*
2348  * Show PCI-E SR-IOV Virtual Function Resource Limits.
2349  */
2350 static int resources_show(struct seq_file *seq, void *v)
2351 {
2352 	struct adapter *adapter = seq->private;
2353 	struct vf_resources *vfres = &adapter->params.vfres;
2354 
2355 	#define S(desc, fmt, var) \
2356 		seq_printf(seq, "%-60s " fmt "\n", \
2357 			   desc " (" #var "):", vfres->var)
2358 
2359 	S("Virtual Interfaces", "%d", nvi);
2360 	S("Egress Queues", "%d", neq);
2361 	S("Ethernet Control", "%d", nethctrl);
2362 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2363 	S("Ingress Queues", "%d", niq);
2364 	S("Traffic Class", "%d", tc);
2365 	S("Port Access Rights Mask", "%#x", pmask);
2366 	S("MAC Address Filters", "%d", nexactf);
2367 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2368 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2369 
2370 	#undef S
2371 
2372 	return 0;
2373 }
2374 DEFINE_SHOW_ATTRIBUTE(resources);
2375 
2376 /*
2377  * Show Virtual Interfaces.
2378  */
2379 static int interfaces_show(struct seq_file *seq, void *v)
2380 {
2381 	if (v == SEQ_START_TOKEN) {
2382 		seq_puts(seq, "Interface  Port   VIID\n");
2383 	} else {
2384 		struct adapter *adapter = seq->private;
2385 		int pidx = (uintptr_t)v - 2;
2386 		struct net_device *dev = adapter->port[pidx];
2387 		struct port_info *pi = netdev_priv(dev);
2388 
2389 		seq_printf(seq, "%9s  %4d  %#5x\n",
2390 			   dev->name, pi->port_id, pi->viid);
2391 	}
2392 	return 0;
2393 }
2394 
2395 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2396 {
2397 	return pos <= adapter->params.nports
2398 		? (void *)(uintptr_t)(pos + 1)
2399 		: NULL;
2400 }
2401 
2402 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2403 {
2404 	return *pos
2405 		? interfaces_get_idx(seq->private, *pos)
2406 		: SEQ_START_TOKEN;
2407 }
2408 
2409 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2410 {
2411 	(*pos)++;
2412 	return interfaces_get_idx(seq->private, *pos);
2413 }
2414 
2415 static void interfaces_stop(struct seq_file *seq, void *v)
2416 {
2417 }
2418 
2419 static const struct seq_operations interfaces_seq_ops = {
2420 	.start = interfaces_start,
2421 	.next  = interfaces_next,
2422 	.stop  = interfaces_stop,
2423 	.show  = interfaces_show
2424 };
2425 
2426 static int interfaces_open(struct inode *inode, struct file *file)
2427 {
2428 	int res = seq_open(file, &interfaces_seq_ops);
2429 
2430 	if (res == 0) {
2431 		struct seq_file *seq = file->private_data;
2432 		seq->private = inode->i_private;
2433 	}
2434 	return res;
2435 }
2436 
2437 static const struct file_operations interfaces_proc_fops = {
2438 	.owner   = THIS_MODULE,
2439 	.open    = interfaces_open,
2440 	.read    = seq_read,
2441 	.llseek  = seq_lseek,
2442 	.release = seq_release,
2443 };
2444 
2445 /*
2446  * /sys/kernel/debugfs/cxgb4vf/ files list.
2447  */
2448 struct cxgb4vf_debugfs_entry {
2449 	const char *name;		/* name of debugfs node */
2450 	umode_t mode;			/* file system mode */
2451 	const struct file_operations *fops;
2452 };
2453 
2454 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2455 	{ "mboxlog",    0444, &mboxlog_fops },
2456 	{ "sge_qinfo",  0444, &sge_qinfo_debugfs_fops },
2457 	{ "sge_qstats", 0444, &sge_qstats_proc_fops },
2458 	{ "resources",  0444, &resources_fops },
2459 	{ "interfaces", 0444, &interfaces_proc_fops },
2460 };
2461 
2462 /*
2463  * Module and device initialization and cleanup code.
2464  * ==================================================
2465  */
2466 
2467 /*
2468  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2469  * directory (debugfs_root) has already been set up.
2470  */
2471 static int setup_debugfs(struct adapter *adapter)
2472 {
2473 	int i;
2474 
2475 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2476 
2477 	/*
2478 	 * Debugfs support is best effort.
2479 	 */
2480 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2481 		debugfs_create_file(debugfs_files[i].name,
2482 				    debugfs_files[i].mode,
2483 				    adapter->debugfs_root, (void *)adapter,
2484 				    debugfs_files[i].fops);
2485 
2486 	return 0;
2487 }
2488 
2489 /*
2490  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2491  * it to our caller to tear down the directory (debugfs_root).
2492  */
2493 static void cleanup_debugfs(struct adapter *adapter)
2494 {
2495 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2496 
2497 	/*
2498 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2499 	 * individual entries because a call will be made to
2500 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2501 	 * persistent state.
2502 	 */
2503 	/* nothing to do */
2504 }
2505 
2506 /* Figure out how many Ports and Queue Sets we can support.  This depends on
2507  * knowing our Virtual Function Resources and may be called a second time if
2508  * we fall back from MSI-X to MSI Interrupt Mode.
2509  */
2510 static void size_nports_qsets(struct adapter *adapter)
2511 {
2512 	struct vf_resources *vfres = &adapter->params.vfres;
2513 	unsigned int ethqsets, pmask_nports;
2514 
2515 	/* The number of "ports" which we support is equal to the number of
2516 	 * Virtual Interfaces with which we've been provisioned.
2517 	 */
2518 	adapter->params.nports = vfres->nvi;
2519 	if (adapter->params.nports > MAX_NPORTS) {
2520 		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2521 			 " allowed virtual interfaces\n", MAX_NPORTS,
2522 			 adapter->params.nports);
2523 		adapter->params.nports = MAX_NPORTS;
2524 	}
2525 
2526 	/* We may have been provisioned with more VIs than the number of
2527 	 * ports we're allowed to access (our Port Access Rights Mask).
2528 	 * This is obviously a configuration conflict but we don't want to
2529 	 * crash the kernel or anything silly just because of that.
2530 	 */
2531 	pmask_nports = hweight32(adapter->params.vfres.pmask);
2532 	if (pmask_nports < adapter->params.nports) {
2533 		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2534 			 " virtual interfaces; limited by Port Access Rights"
2535 			 " mask %#x\n", pmask_nports, adapter->params.nports,
2536 			 adapter->params.vfres.pmask);
2537 		adapter->params.nports = pmask_nports;
2538 	}
2539 
2540 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2541 	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2542 	 * reserve an Ingress Queue for a Forwarded Interrupts.
2543 	 *
2544 	 * The rest of the FL/Intr-capable ingress queues will be matched up
2545 	 * one-for-one with Ethernet/Control egress queues in order to form
2546 	 * "Queue Sets" which will be aportioned between the "ports".  For
2547 	 * each Queue Set, we'll need the ability to allocate two Egress
2548 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2549 	 * Ethernet Queue.
2550 	 *
2551 	 * Note that even if we're currently configured to use MSI-X
2552 	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2553 	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2554 	 * happens we'll need to adjust things later.
2555 	 */
2556 	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2557 	if (vfres->nethctrl != ethqsets)
2558 		ethqsets = min(vfres->nethctrl, ethqsets);
2559 	if (vfres->neq < ethqsets*2)
2560 		ethqsets = vfres->neq/2;
2561 	if (ethqsets > MAX_ETH_QSETS)
2562 		ethqsets = MAX_ETH_QSETS;
2563 	adapter->sge.max_ethqsets = ethqsets;
2564 
2565 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2566 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2567 			 " virtual interfaces (too few Queue Sets)\n",
2568 			 adapter->sge.max_ethqsets, adapter->params.nports);
2569 		adapter->params.nports = adapter->sge.max_ethqsets;
2570 	}
2571 }
2572 
2573 /*
2574  * Perform early "adapter" initialization.  This is where we discover what
2575  * adapter parameters we're going to be using and initialize basic adapter
2576  * hardware support.
2577  */
2578 static int adap_init0(struct adapter *adapter)
2579 {
2580 	struct sge_params *sge_params = &adapter->params.sge;
2581 	struct sge *s = &adapter->sge;
2582 	int err;
2583 	u32 param, val = 0;
2584 
2585 	/*
2586 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2587 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2588 	 * issue an FLR because of a self- deadlock on the device semaphore.
2589 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2590 	 * cases where they're needed -- for instance, some versions of KVM
2591 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2592 	 * use the firmware based reset in order to reset any per function
2593 	 * state.
2594 	 */
2595 	err = t4vf_fw_reset(adapter);
2596 	if (err < 0) {
2597 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2598 		return err;
2599 	}
2600 
2601 	/*
2602 	 * Grab basic operational parameters.  These will predominantly have
2603 	 * been set up by the Physical Function Driver or will be hard coded
2604 	 * into the adapter.  We just have to live with them ...  Note that
2605 	 * we _must_ get our VPD parameters before our SGE parameters because
2606 	 * we need to know the adapter's core clock from the VPD in order to
2607 	 * properly decode the SGE Timer Values.
2608 	 */
2609 	err = t4vf_get_dev_params(adapter);
2610 	if (err) {
2611 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2612 			" device parameters: err=%d\n", err);
2613 		return err;
2614 	}
2615 	err = t4vf_get_vpd_params(adapter);
2616 	if (err) {
2617 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2618 			" VPD parameters: err=%d\n", err);
2619 		return err;
2620 	}
2621 	err = t4vf_get_sge_params(adapter);
2622 	if (err) {
2623 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2624 			" SGE parameters: err=%d\n", err);
2625 		return err;
2626 	}
2627 	err = t4vf_get_rss_glb_config(adapter);
2628 	if (err) {
2629 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2630 			" RSS parameters: err=%d\n", err);
2631 		return err;
2632 	}
2633 	if (adapter->params.rss.mode !=
2634 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2635 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2636 			" mode %d\n", adapter->params.rss.mode);
2637 		return -EINVAL;
2638 	}
2639 	err = t4vf_sge_init(adapter);
2640 	if (err) {
2641 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2642 			" err=%d\n", err);
2643 		return err;
2644 	}
2645 
2646 	/* If we're running on newer firmware, let it know that we're
2647 	 * prepared to deal with encapsulated CPL messages.  Older
2648 	 * firmware won't understand this and we'll just get
2649 	 * unencapsulated messages ...
2650 	 */
2651 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2652 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2653 	val = 1;
2654 	(void) t4vf_set_params(adapter, 1, &param, &val);
2655 
2656 	/*
2657 	 * Retrieve our RX interrupt holdoff timer values and counter
2658 	 * threshold values from the SGE parameters.
2659 	 */
2660 	s->timer_val[0] = core_ticks_to_us(adapter,
2661 		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2662 	s->timer_val[1] = core_ticks_to_us(adapter,
2663 		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2664 	s->timer_val[2] = core_ticks_to_us(adapter,
2665 		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2666 	s->timer_val[3] = core_ticks_to_us(adapter,
2667 		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2668 	s->timer_val[4] = core_ticks_to_us(adapter,
2669 		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2670 	s->timer_val[5] = core_ticks_to_us(adapter,
2671 		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2672 
2673 	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2674 	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2675 	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2676 	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2677 
2678 	/*
2679 	 * Grab our Virtual Interface resource allocation, extract the
2680 	 * features that we're interested in and do a bit of sanity testing on
2681 	 * what we discover.
2682 	 */
2683 	err = t4vf_get_vfres(adapter);
2684 	if (err) {
2685 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2686 			" resources: err=%d\n", err);
2687 		return err;
2688 	}
2689 
2690 	/* Check for various parameter sanity issues */
2691 	if (adapter->params.vfres.pmask == 0) {
2692 		dev_err(adapter->pdev_dev, "no port access configured\n"
2693 			"usable!\n");
2694 		return -EINVAL;
2695 	}
2696 	if (adapter->params.vfres.nvi == 0) {
2697 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2698 			"usable!\n");
2699 		return -EINVAL;
2700 	}
2701 
2702 	/* Initialize nports and max_ethqsets now that we have our Virtual
2703 	 * Function Resources.
2704 	 */
2705 	size_nports_qsets(adapter);
2706 
2707 	adapter->flags |= CXGB4VF_FW_OK;
2708 	return 0;
2709 }
2710 
2711 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2712 			     u8 pkt_cnt_idx, unsigned int size,
2713 			     unsigned int iqe_size)
2714 {
2715 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2716 			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2717 			      QINTR_CNT_EN_F : 0));
2718 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2719 			    ? pkt_cnt_idx
2720 			    : 0);
2721 	rspq->iqe_len = iqe_size;
2722 	rspq->size = size;
2723 }
2724 
2725 /*
2726  * Perform default configuration of DMA queues depending on the number and
2727  * type of ports we found and the number of available CPUs.  Most settings can
2728  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2729  * being brought up for the first time.
2730  */
2731 static void cfg_queues(struct adapter *adapter)
2732 {
2733 	struct sge *s = &adapter->sge;
2734 	int q10g, n10g, qidx, pidx, qs;
2735 	size_t iqe_size;
2736 
2737 	/*
2738 	 * We should not be called till we know how many Queue Sets we can
2739 	 * support.  In particular, this means that we need to know what kind
2740 	 * of interrupts we'll be using ...
2741 	 */
2742 	BUG_ON((adapter->flags &
2743 	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2744 
2745 	/*
2746 	 * Count the number of 10GbE Virtual Interfaces that we have.
2747 	 */
2748 	n10g = 0;
2749 	for_each_port(adapter, pidx)
2750 		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2751 
2752 	/*
2753 	 * We default to 1 queue per non-10G port and up to # of cores queues
2754 	 * per 10G port.
2755 	 */
2756 	if (n10g == 0)
2757 		q10g = 0;
2758 	else {
2759 		int n1g = (adapter->params.nports - n10g);
2760 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2761 		if (q10g > num_online_cpus())
2762 			q10g = num_online_cpus();
2763 	}
2764 
2765 	/*
2766 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2767 	 * The layout will be established in setup_sge_queues() when the
2768 	 * adapter is brough up for the first time.
2769 	 */
2770 	qidx = 0;
2771 	for_each_port(adapter, pidx) {
2772 		struct port_info *pi = adap2pinfo(adapter, pidx);
2773 
2774 		pi->first_qset = qidx;
2775 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2776 		qidx += pi->nqsets;
2777 	}
2778 	s->ethqsets = qidx;
2779 
2780 	/*
2781 	 * The Ingress Queue Entry Size for our various Response Queues needs
2782 	 * to be big enough to accommodate the largest message we can receive
2783 	 * from the chip/firmware; which is 64 bytes ...
2784 	 */
2785 	iqe_size = 64;
2786 
2787 	/*
2788 	 * Set up default Queue Set parameters ...  Start off with the
2789 	 * shortest interrupt holdoff timer.
2790 	 */
2791 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2792 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2793 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2794 
2795 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2796 		rxq->fl.size = 72;
2797 		txq->q.size = 1024;
2798 	}
2799 
2800 	/*
2801 	 * The firmware event queue is used for link state changes and
2802 	 * notifications of TX DMA completions.
2803 	 */
2804 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2805 
2806 	/*
2807 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2808 	 * mode.  In this mode all interrupts associated with RX queues will
2809 	 * be forwarded to a single queue which we'll associate with our MSI
2810 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2811 	 * queue will indicate which ingress queue needs servicing ...  This
2812 	 * queue needs to be large enough to accommodate all of the ingress
2813 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2814 	 * from equalling the CIDX if every ingress queue has an outstanding
2815 	 * interrupt).  The queue doesn't need to be any larger because no
2816 	 * ingress queue will ever have more than one outstanding interrupt at
2817 	 * any time ...
2818 	 */
2819 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2820 		  iqe_size);
2821 }
2822 
2823 /*
2824  * Reduce the number of Ethernet queues across all ports to at most n.
2825  * n provides at least one queue per port.
2826  */
2827 static void reduce_ethqs(struct adapter *adapter, int n)
2828 {
2829 	int i;
2830 	struct port_info *pi;
2831 
2832 	/*
2833 	 * While we have too many active Ether Queue Sets, interate across the
2834 	 * "ports" and reduce their individual Queue Set allocations.
2835 	 */
2836 	BUG_ON(n < adapter->params.nports);
2837 	while (n < adapter->sge.ethqsets)
2838 		for_each_port(adapter, i) {
2839 			pi = adap2pinfo(adapter, i);
2840 			if (pi->nqsets > 1) {
2841 				pi->nqsets--;
2842 				adapter->sge.ethqsets--;
2843 				if (adapter->sge.ethqsets <= n)
2844 					break;
2845 			}
2846 		}
2847 
2848 	/*
2849 	 * Reassign the starting Queue Sets for each of the "ports" ...
2850 	 */
2851 	n = 0;
2852 	for_each_port(adapter, i) {
2853 		pi = adap2pinfo(adapter, i);
2854 		pi->first_qset = n;
2855 		n += pi->nqsets;
2856 	}
2857 }
2858 
2859 /*
2860  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2861  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2862  * need.  Minimally we need one for every Virtual Interface plus those needed
2863  * for our "extras".  Note that this process may lower the maximum number of
2864  * allowed Queue Sets ...
2865  */
2866 static int enable_msix(struct adapter *adapter)
2867 {
2868 	int i, want, need, nqsets;
2869 	struct msix_entry entries[MSIX_ENTRIES];
2870 	struct sge *s = &adapter->sge;
2871 
2872 	for (i = 0; i < MSIX_ENTRIES; ++i)
2873 		entries[i].entry = i;
2874 
2875 	/*
2876 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2877 	 * plus those needed for our "extras" (for example, the firmware
2878 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2879 	 * Interface plus those needed for our "extras".  So now we get to see
2880 	 * if the song is right ...
2881 	 */
2882 	want = s->max_ethqsets + MSIX_EXTRAS;
2883 	need = adapter->params.nports + MSIX_EXTRAS;
2884 
2885 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2886 	if (want < 0)
2887 		return want;
2888 
2889 	nqsets = want - MSIX_EXTRAS;
2890 	if (nqsets < s->max_ethqsets) {
2891 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2892 			 " for %d Queue Sets\n", nqsets);
2893 		s->max_ethqsets = nqsets;
2894 		if (nqsets < s->ethqsets)
2895 			reduce_ethqs(adapter, nqsets);
2896 	}
2897 	for (i = 0; i < want; ++i)
2898 		adapter->msix_info[i].vec = entries[i].vector;
2899 
2900 	return 0;
2901 }
2902 
2903 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2904 	.ndo_open		= cxgb4vf_open,
2905 	.ndo_stop		= cxgb4vf_stop,
2906 	.ndo_start_xmit		= t4vf_eth_xmit,
2907 	.ndo_get_stats		= cxgb4vf_get_stats,
2908 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2909 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2910 	.ndo_validate_addr	= eth_validate_addr,
2911 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2912 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2913 	.ndo_fix_features	= cxgb4vf_fix_features,
2914 	.ndo_set_features	= cxgb4vf_set_features,
2915 #ifdef CONFIG_NET_POLL_CONTROLLER
2916 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2917 #endif
2918 };
2919 
2920 /*
2921  * "Probe" a device: initialize a device and construct all kernel and driver
2922  * state needed to manage the device.  This routine is called "init_one" in
2923  * the PF Driver ...
2924  */
2925 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2926 			     const struct pci_device_id *ent)
2927 {
2928 	int pci_using_dac;
2929 	int err, pidx;
2930 	unsigned int pmask;
2931 	struct adapter *adapter;
2932 	struct port_info *pi;
2933 	struct net_device *netdev;
2934 	unsigned int pf;
2935 
2936 	/*
2937 	 * Print our driver banner the first time we're called to initialize a
2938 	 * device.
2939 	 */
2940 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2941 
2942 	/*
2943 	 * Initialize generic PCI device state.
2944 	 */
2945 	err = pci_enable_device(pdev);
2946 	if (err) {
2947 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2948 		return err;
2949 	}
2950 
2951 	/*
2952 	 * Reserve PCI resources for the device.  If we can't get them some
2953 	 * other driver may have already claimed the device ...
2954 	 */
2955 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2956 	if (err) {
2957 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2958 		goto err_disable_device;
2959 	}
2960 
2961 	/*
2962 	 * Set up our DMA mask: try for 64-bit address masking first and
2963 	 * fall back to 32-bit if we can't get 64 bits ...
2964 	 */
2965 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2966 	if (err == 0) {
2967 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2968 		if (err) {
2969 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2970 				" coherent allocations\n");
2971 			goto err_release_regions;
2972 		}
2973 		pci_using_dac = 1;
2974 	} else {
2975 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2976 		if (err != 0) {
2977 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2978 			goto err_release_regions;
2979 		}
2980 		pci_using_dac = 0;
2981 	}
2982 
2983 	/*
2984 	 * Enable bus mastering for the device ...
2985 	 */
2986 	pci_set_master(pdev);
2987 
2988 	/*
2989 	 * Allocate our adapter data structure and attach it to the device.
2990 	 */
2991 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2992 	if (!adapter) {
2993 		err = -ENOMEM;
2994 		goto err_release_regions;
2995 	}
2996 	pci_set_drvdata(pdev, adapter);
2997 	adapter->pdev = pdev;
2998 	adapter->pdev_dev = &pdev->dev;
2999 
3000 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
3001 				    (sizeof(struct mbox_cmd) *
3002 				     T4VF_OS_LOG_MBOX_CMDS),
3003 				    GFP_KERNEL);
3004 	if (!adapter->mbox_log) {
3005 		err = -ENOMEM;
3006 		goto err_free_adapter;
3007 	}
3008 	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
3009 
3010 	/*
3011 	 * Initialize SMP data synchronization resources.
3012 	 */
3013 	spin_lock_init(&adapter->stats_lock);
3014 	spin_lock_init(&adapter->mbox_lock);
3015 	INIT_LIST_HEAD(&adapter->mlist.list);
3016 
3017 	/*
3018 	 * Map our I/O registers in BAR0.
3019 	 */
3020 	adapter->regs = pci_ioremap_bar(pdev, 0);
3021 	if (!adapter->regs) {
3022 		dev_err(&pdev->dev, "cannot map device registers\n");
3023 		err = -ENOMEM;
3024 		goto err_free_adapter;
3025 	}
3026 
3027 	/* Wait for the device to become ready before proceeding ...
3028 	 */
3029 	err = t4vf_prep_adapter(adapter);
3030 	if (err) {
3031 		dev_err(adapter->pdev_dev, "device didn't become ready:"
3032 			" err=%d\n", err);
3033 		goto err_unmap_bar0;
3034 	}
3035 
3036 	/* For T5 and later we want to use the new BAR-based User Doorbells,
3037 	 * so we need to map BAR2 here ...
3038 	 */
3039 	if (!is_t4(adapter->params.chip)) {
3040 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
3041 					   pci_resource_len(pdev, 2));
3042 		if (!adapter->bar2) {
3043 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
3044 			err = -ENOMEM;
3045 			goto err_unmap_bar0;
3046 		}
3047 	}
3048 	/*
3049 	 * Initialize adapter level features.
3050 	 */
3051 	adapter->name = pci_name(pdev);
3052 	adapter->msg_enable = DFLT_MSG_ENABLE;
3053 
3054 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3055 	 * Ingress Packet Data to Free List Buffers in order to allow for
3056 	 * chipset performance optimizations between the Root Complex and
3057 	 * Memory Controllers.  (Messages to the associated Ingress Queue
3058 	 * notifying new Packet Placement in the Free Lists Buffers will be
3059 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3060 	 * all preceding PCIe Transaction Layer Packets will be processed
3061 	 * first.)  But some Root Complexes have various issues with Upstream
3062 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3063 	 * The PCIe devices which under the Root Complexes will be cleared the
3064 	 * Relaxed Ordering bit in the configuration space, So we check our
3065 	 * PCIe configuration space to see if it's flagged with advice against
3066 	 * using Relaxed Ordering.
3067 	 */
3068 	if (!pcie_relaxed_ordering_enabled(pdev))
3069 		adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3070 
3071 	err = adap_init0(adapter);
3072 	if (err)
3073 		dev_err(&pdev->dev,
3074 			"Adapter initialization failed, error %d. Continuing in debug mode\n",
3075 			err);
3076 
3077 	/* Initialize hash mac addr list */
3078 	INIT_LIST_HEAD(&adapter->mac_hlist);
3079 
3080 	/*
3081 	 * Allocate our "adapter ports" and stitch everything together.
3082 	 */
3083 	pmask = adapter->params.vfres.pmask;
3084 	pf = t4vf_get_pf_from_vf(adapter);
3085 	for_each_port(adapter, pidx) {
3086 		int port_id, viid;
3087 		u8 mac[ETH_ALEN];
3088 		unsigned int naddr = 1;
3089 
3090 		/*
3091 		 * We simplistically allocate our virtual interfaces
3092 		 * sequentially across the port numbers to which we have
3093 		 * access rights.  This should be configurable in some manner
3094 		 * ...
3095 		 */
3096 		if (pmask == 0)
3097 			break;
3098 		port_id = ffs(pmask) - 1;
3099 		pmask &= ~(1 << port_id);
3100 
3101 		/*
3102 		 * Allocate our network device and stitch things together.
3103 		 */
3104 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3105 					   MAX_PORT_QSETS);
3106 		if (netdev == NULL) {
3107 			err = -ENOMEM;
3108 			goto err_free_dev;
3109 		}
3110 		adapter->port[pidx] = netdev;
3111 		SET_NETDEV_DEV(netdev, &pdev->dev);
3112 		pi = netdev_priv(netdev);
3113 		pi->adapter = adapter;
3114 		pi->pidx = pidx;
3115 		pi->port_id = port_id;
3116 
3117 		/*
3118 		 * Initialize the starting state of our "port" and register
3119 		 * it.
3120 		 */
3121 		pi->xact_addr_filt = -1;
3122 		netdev->irq = pdev->irq;
3123 
3124 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3125 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3126 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3127 		netdev->features = netdev->hw_features;
3128 		if (pci_using_dac)
3129 			netdev->features |= NETIF_F_HIGHDMA;
3130 		netdev->vlan_features = netdev->features & VLAN_FEAT;
3131 
3132 		netdev->priv_flags |= IFF_UNICAST_FLT;
3133 		netdev->min_mtu = 81;
3134 		netdev->max_mtu = ETH_MAX_MTU;
3135 
3136 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3137 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3138 		netdev->dev_port = pi->port_id;
3139 
3140 		/*
3141 		 * If we haven't been able to contact the firmware, there's
3142 		 * nothing else we can do for this "port" ...
3143 		 */
3144 		if (!(adapter->flags & CXGB4VF_FW_OK))
3145 			continue;
3146 
3147 		viid = t4vf_alloc_vi(adapter, port_id);
3148 		if (viid < 0) {
3149 			dev_err(&pdev->dev,
3150 				"cannot allocate VI for port %d: err=%d\n",
3151 				port_id, viid);
3152 			err = viid;
3153 			goto err_free_dev;
3154 		}
3155 		pi->viid = viid;
3156 
3157 		/*
3158 		 * Initialize the hardware/software state for the port.
3159 		 */
3160 		err = t4vf_port_init(adapter, pidx);
3161 		if (err) {
3162 			dev_err(&pdev->dev, "cannot initialize port %d\n",
3163 				pidx);
3164 			goto err_free_dev;
3165 		}
3166 
3167 		err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3168 		if (err) {
3169 			dev_err(&pdev->dev,
3170 				"unable to determine MAC ACL address, "
3171 				"continuing anyway.. (status %d)\n", err);
3172 		} else if (naddr && adapter->params.vfres.nvi == 1) {
3173 			struct sockaddr addr;
3174 
3175 			ether_addr_copy(addr.sa_data, mac);
3176 			err = cxgb4vf_set_mac_addr(netdev, &addr);
3177 			if (err) {
3178 				dev_err(&pdev->dev,
3179 					"unable to set MAC address %pM\n",
3180 					mac);
3181 				goto err_free_dev;
3182 			}
3183 			dev_info(&pdev->dev,
3184 				 "Using assigned MAC ACL: %pM\n", mac);
3185 		}
3186 	}
3187 
3188 	/* See what interrupts we'll be using.  If we've been configured to
3189 	 * use MSI-X interrupts, try to enable them but fall back to using
3190 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3191 	 * get MSI interrupts we bail with the error.
3192 	 */
3193 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3194 		adapter->flags |= CXGB4VF_USING_MSIX;
3195 	else {
3196 		if (msi == MSI_MSIX) {
3197 			dev_info(adapter->pdev_dev,
3198 				 "Unable to use MSI-X Interrupts; falling "
3199 				 "back to MSI Interrupts\n");
3200 
3201 			/* We're going to need a Forwarded Interrupt Queue so
3202 			 * that may cut into how many Queue Sets we can
3203 			 * support.
3204 			 */
3205 			msi = MSI_MSI;
3206 			size_nports_qsets(adapter);
3207 		}
3208 		err = pci_enable_msi(pdev);
3209 		if (err) {
3210 			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3211 				" err=%d\n", err);
3212 			goto err_free_dev;
3213 		}
3214 		adapter->flags |= CXGB4VF_USING_MSI;
3215 	}
3216 
3217 	/* Now that we know how many "ports" we have and what interrupt
3218 	 * mechanism we're going to use, we can configure our queue resources.
3219 	 */
3220 	cfg_queues(adapter);
3221 
3222 	/*
3223 	 * The "card" is now ready to go.  If any errors occur during device
3224 	 * registration we do not fail the whole "card" but rather proceed
3225 	 * only with the ports we manage to register successfully.  However we
3226 	 * must register at least one net device.
3227 	 */
3228 	for_each_port(adapter, pidx) {
3229 		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3230 		netdev = adapter->port[pidx];
3231 		if (netdev == NULL)
3232 			continue;
3233 
3234 		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3235 		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3236 
3237 		err = register_netdev(netdev);
3238 		if (err) {
3239 			dev_warn(&pdev->dev, "cannot register net device %s,"
3240 				 " skipping\n", netdev->name);
3241 			continue;
3242 		}
3243 
3244 		netif_carrier_off(netdev);
3245 		set_bit(pidx, &adapter->registered_device_map);
3246 	}
3247 	if (adapter->registered_device_map == 0) {
3248 		dev_err(&pdev->dev, "could not register any net devices\n");
3249 		goto err_disable_interrupts;
3250 	}
3251 
3252 	/*
3253 	 * Set up our debugfs entries.
3254 	 */
3255 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3256 		adapter->debugfs_root =
3257 			debugfs_create_dir(pci_name(pdev),
3258 					   cxgb4vf_debugfs_root);
3259 		setup_debugfs(adapter);
3260 	}
3261 
3262 	/*
3263 	 * Print a short notice on the existence and configuration of the new
3264 	 * VF network device ...
3265 	 */
3266 	for_each_port(adapter, pidx) {
3267 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3268 			 adapter->port[pidx]->name,
3269 			 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3270 			 (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3271 	}
3272 
3273 	/*
3274 	 * Return success!
3275 	 */
3276 	return 0;
3277 
3278 	/*
3279 	 * Error recovery and exit code.  Unwind state that's been created
3280 	 * so far and return the error.
3281 	 */
3282 err_disable_interrupts:
3283 	if (adapter->flags & CXGB4VF_USING_MSIX) {
3284 		pci_disable_msix(adapter->pdev);
3285 		adapter->flags &= ~CXGB4VF_USING_MSIX;
3286 	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3287 		pci_disable_msi(adapter->pdev);
3288 		adapter->flags &= ~CXGB4VF_USING_MSI;
3289 	}
3290 
3291 err_free_dev:
3292 	for_each_port(adapter, pidx) {
3293 		netdev = adapter->port[pidx];
3294 		if (netdev == NULL)
3295 			continue;
3296 		pi = netdev_priv(netdev);
3297 		if (pi->viid)
3298 			t4vf_free_vi(adapter, pi->viid);
3299 		if (test_bit(pidx, &adapter->registered_device_map))
3300 			unregister_netdev(netdev);
3301 		free_netdev(netdev);
3302 	}
3303 
3304 	if (!is_t4(adapter->params.chip))
3305 		iounmap(adapter->bar2);
3306 
3307 err_unmap_bar0:
3308 	iounmap(adapter->regs);
3309 
3310 err_free_adapter:
3311 	kfree(adapter->mbox_log);
3312 	kfree(adapter);
3313 
3314 err_release_regions:
3315 	pci_release_regions(pdev);
3316 	pci_clear_master(pdev);
3317 
3318 err_disable_device:
3319 	pci_disable_device(pdev);
3320 
3321 	return err;
3322 }
3323 
3324 /*
3325  * "Remove" a device: tear down all kernel and driver state created in the
3326  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3327  * that this is called "remove_one" in the PF Driver.)
3328  */
3329 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3330 {
3331 	struct adapter *adapter = pci_get_drvdata(pdev);
3332 	struct hash_mac_addr *entry, *tmp;
3333 
3334 	/*
3335 	 * Tear down driver state associated with device.
3336 	 */
3337 	if (adapter) {
3338 		int pidx;
3339 
3340 		/*
3341 		 * Stop all of our activity.  Unregister network port,
3342 		 * disable interrupts, etc.
3343 		 */
3344 		for_each_port(adapter, pidx)
3345 			if (test_bit(pidx, &adapter->registered_device_map))
3346 				unregister_netdev(adapter->port[pidx]);
3347 		t4vf_sge_stop(adapter);
3348 		if (adapter->flags & CXGB4VF_USING_MSIX) {
3349 			pci_disable_msix(adapter->pdev);
3350 			adapter->flags &= ~CXGB4VF_USING_MSIX;
3351 		} else if (adapter->flags & CXGB4VF_USING_MSI) {
3352 			pci_disable_msi(adapter->pdev);
3353 			adapter->flags &= ~CXGB4VF_USING_MSI;
3354 		}
3355 
3356 		/*
3357 		 * Tear down our debugfs entries.
3358 		 */
3359 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3360 			cleanup_debugfs(adapter);
3361 			debugfs_remove_recursive(adapter->debugfs_root);
3362 		}
3363 
3364 		/*
3365 		 * Free all of the various resources which we've acquired ...
3366 		 */
3367 		t4vf_free_sge_resources(adapter);
3368 		for_each_port(adapter, pidx) {
3369 			struct net_device *netdev = adapter->port[pidx];
3370 			struct port_info *pi;
3371 
3372 			if (netdev == NULL)
3373 				continue;
3374 
3375 			pi = netdev_priv(netdev);
3376 			if (pi->viid)
3377 				t4vf_free_vi(adapter, pi->viid);
3378 			free_netdev(netdev);
3379 		}
3380 		iounmap(adapter->regs);
3381 		if (!is_t4(adapter->params.chip))
3382 			iounmap(adapter->bar2);
3383 		kfree(adapter->mbox_log);
3384 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3385 					 list) {
3386 			list_del(&entry->list);
3387 			kfree(entry);
3388 		}
3389 		kfree(adapter);
3390 	}
3391 
3392 	/*
3393 	 * Disable the device and release its PCI resources.
3394 	 */
3395 	pci_disable_device(pdev);
3396 	pci_clear_master(pdev);
3397 	pci_release_regions(pdev);
3398 }
3399 
3400 /*
3401  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3402  * delivery.
3403  */
3404 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3405 {
3406 	struct adapter *adapter;
3407 	int pidx;
3408 
3409 	adapter = pci_get_drvdata(pdev);
3410 	if (!adapter)
3411 		return;
3412 
3413 	/* Disable all Virtual Interfaces.  This will shut down the
3414 	 * delivery of all ingress packets into the chip for these
3415 	 * Virtual Interfaces.
3416 	 */
3417 	for_each_port(adapter, pidx)
3418 		if (test_bit(pidx, &adapter->registered_device_map))
3419 			unregister_netdev(adapter->port[pidx]);
3420 
3421 	/* Free up all Queues which will prevent further DMA and
3422 	 * Interrupts allowing various internal pathways to drain.
3423 	 */
3424 	t4vf_sge_stop(adapter);
3425 	if (adapter->flags & CXGB4VF_USING_MSIX) {
3426 		pci_disable_msix(adapter->pdev);
3427 		adapter->flags &= ~CXGB4VF_USING_MSIX;
3428 	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3429 		pci_disable_msi(adapter->pdev);
3430 		adapter->flags &= ~CXGB4VF_USING_MSI;
3431 	}
3432 
3433 	/*
3434 	 * Free up all Queues which will prevent further DMA and
3435 	 * Interrupts allowing various internal pathways to drain.
3436 	 */
3437 	t4vf_free_sge_resources(adapter);
3438 	pci_set_drvdata(pdev, NULL);
3439 }
3440 
3441 /* Macros needed to support the PCI Device ID Table ...
3442  */
3443 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3444 	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3445 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
3446 
3447 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3448 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3449 
3450 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3451 
3452 #include "../cxgb4/t4_pci_id_tbl.h"
3453 
3454 MODULE_DESCRIPTION(DRV_DESC);
3455 MODULE_AUTHOR("Chelsio Communications");
3456 MODULE_LICENSE("Dual BSD/GPL");
3457 MODULE_VERSION(DRV_VERSION);
3458 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3459 
3460 static struct pci_driver cxgb4vf_driver = {
3461 	.name		= KBUILD_MODNAME,
3462 	.id_table	= cxgb4vf_pci_tbl,
3463 	.probe		= cxgb4vf_pci_probe,
3464 	.remove		= cxgb4vf_pci_remove,
3465 	.shutdown	= cxgb4vf_pci_shutdown,
3466 };
3467 
3468 /*
3469  * Initialize global driver state.
3470  */
3471 static int __init cxgb4vf_module_init(void)
3472 {
3473 	int ret;
3474 
3475 	/*
3476 	 * Vet our module parameters.
3477 	 */
3478 	if (msi != MSI_MSIX && msi != MSI_MSI) {
3479 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3480 			msi, MSI_MSIX, MSI_MSI);
3481 		return -EINVAL;
3482 	}
3483 
3484 	/* Debugfs support is optional, debugfs will warn if this fails */
3485 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3486 
3487 	ret = pci_register_driver(&cxgb4vf_driver);
3488 	if (ret < 0)
3489 		debugfs_remove(cxgb4vf_debugfs_root);
3490 	return ret;
3491 }
3492 
3493 /*
3494  * Tear down global driver state.
3495  */
3496 static void __exit cxgb4vf_module_exit(void)
3497 {
3498 	pci_unregister_driver(&cxgb4vf_driver);
3499 	debugfs_remove(cxgb4vf_debugfs_root);
3500 }
3501 
3502 module_init(cxgb4vf_module_init);
3503 module_exit(cxgb4vf_module_exit);
3504