1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 /* mapping type */
55 #define TSNEP_TX_TYPE_MAP		BIT(0)
56 #define TSNEP_TX_TYPE_MAP_PAGE		BIT(1)
57 #define TSNEP_TX_TYPE_INLINE		BIT(2)
58 /* buffer type */
59 #define TSNEP_TX_TYPE_SKB		BIT(8)
60 #define TSNEP_TX_TYPE_SKB_MAP		(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_MAP)
61 #define TSNEP_TX_TYPE_SKB_INLINE	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_INLINE)
62 #define TSNEP_TX_TYPE_SKB_FRAG		BIT(9)
63 #define TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_MAP_PAGE)
64 #define TSNEP_TX_TYPE_SKB_FRAG_INLINE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_INLINE)
65 #define TSNEP_TX_TYPE_XDP_TX		BIT(10)
66 #define TSNEP_TX_TYPE_XDP_NDO		BIT(11)
67 #define TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE	(TSNEP_TX_TYPE_XDP_NDO | TSNEP_TX_TYPE_MAP_PAGE)
68 #define TSNEP_TX_TYPE_XDP		(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
69 #define TSNEP_TX_TYPE_XSK		BIT(12)
70 
71 #define TSNEP_XDP_TX		BIT(0)
72 #define TSNEP_XDP_REDIRECT	BIT(1)
73 
74 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
75 {
76 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
77 }
78 
79 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
80 {
81 	mask |= ECM_INT_DISABLE;
82 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
83 }
84 
85 static irqreturn_t tsnep_irq(int irq, void *arg)
86 {
87 	struct tsnep_adapter *adapter = arg;
88 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
89 
90 	/* acknowledge interrupt */
91 	if (active != 0)
92 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
93 
94 	/* handle link interrupt */
95 	if ((active & ECM_INT_LINK) != 0)
96 		phy_mac_interrupt(adapter->netdev->phydev);
97 
98 	/* handle TX/RX queue 0 interrupt */
99 	if ((active & adapter->queue[0].irq_mask) != 0) {
100 		if (napi_schedule_prep(&adapter->queue[0].napi)) {
101 			tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
102 			/* schedule after masking to avoid races */
103 			__napi_schedule(&adapter->queue[0].napi);
104 		}
105 	}
106 
107 	return IRQ_HANDLED;
108 }
109 
110 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
111 {
112 	struct tsnep_queue *queue = arg;
113 
114 	/* handle TX/RX queue interrupt */
115 	if (napi_schedule_prep(&queue->napi)) {
116 		tsnep_disable_irq(queue->adapter, queue->irq_mask);
117 		/* schedule after masking to avoid races */
118 		__napi_schedule(&queue->napi);
119 	}
120 
121 	return IRQ_HANDLED;
122 }
123 
124 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
125 {
126 	if (usecs > TSNEP_COALESCE_USECS_MAX)
127 		return -ERANGE;
128 
129 	usecs /= ECM_INT_DELAY_BASE_US;
130 	usecs <<= ECM_INT_DELAY_SHIFT;
131 	usecs &= ECM_INT_DELAY_MASK;
132 
133 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
134 	queue->irq_delay |= usecs;
135 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
136 
137 	return 0;
138 }
139 
140 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
141 {
142 	u32 usecs;
143 
144 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
145 	usecs >>= ECM_INT_DELAY_SHIFT;
146 	usecs *= ECM_INT_DELAY_BASE_US;
147 
148 	return usecs;
149 }
150 
151 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
152 {
153 	struct tsnep_adapter *adapter = bus->priv;
154 	u32 md;
155 	int retval;
156 
157 	md = ECM_MD_READ;
158 	if (!adapter->suppress_preamble)
159 		md |= ECM_MD_PREAMBLE;
160 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
161 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
162 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
163 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
164 					   !(md & ECM_MD_BUSY), 16, 1000);
165 	if (retval != 0)
166 		return retval;
167 
168 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
169 }
170 
171 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
172 			       u16 val)
173 {
174 	struct tsnep_adapter *adapter = bus->priv;
175 	u32 md;
176 	int retval;
177 
178 	md = ECM_MD_WRITE;
179 	if (!adapter->suppress_preamble)
180 		md |= ECM_MD_PREAMBLE;
181 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
182 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
183 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
184 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
185 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
186 					   !(md & ECM_MD_BUSY), 16, 1000);
187 	if (retval != 0)
188 		return retval;
189 
190 	return 0;
191 }
192 
193 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
194 {
195 	u32 mode;
196 
197 	switch (adapter->phydev->speed) {
198 	case SPEED_100:
199 		mode = ECM_LINK_MODE_100;
200 		break;
201 	case SPEED_1000:
202 		mode = ECM_LINK_MODE_1000;
203 		break;
204 	default:
205 		mode = ECM_LINK_MODE_OFF;
206 		break;
207 	}
208 	iowrite32(mode, adapter->addr + ECM_STATUS);
209 }
210 
211 static void tsnep_phy_link_status_change(struct net_device *netdev)
212 {
213 	struct tsnep_adapter *adapter = netdev_priv(netdev);
214 	struct phy_device *phydev = netdev->phydev;
215 
216 	if (phydev->link)
217 		tsnep_set_link_mode(adapter);
218 
219 	phy_print_status(netdev->phydev);
220 }
221 
222 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
223 {
224 	int retval;
225 
226 	retval = phy_loopback(adapter->phydev, enable);
227 
228 	/* PHY link state change is not signaled if loopback is enabled, it
229 	 * would delay a working loopback anyway, let's ensure that loopback
230 	 * is working immediately by setting link mode directly
231 	 */
232 	if (!retval && enable)
233 		tsnep_set_link_mode(adapter);
234 
235 	return retval;
236 }
237 
238 static int tsnep_phy_open(struct tsnep_adapter *adapter)
239 {
240 	struct phy_device *phydev;
241 	struct ethtool_eee ethtool_eee;
242 	int retval;
243 
244 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
245 				    tsnep_phy_link_status_change,
246 				    adapter->phy_mode);
247 	if (retval)
248 		return retval;
249 	phydev = adapter->netdev->phydev;
250 
251 	/* MAC supports only 100Mbps|1000Mbps full duplex
252 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
253 	 */
254 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
255 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
256 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
257 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
258 
259 	/* disable EEE autoneg, EEE not supported by TSNEP */
260 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
261 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
262 
263 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
264 	phy_start(adapter->phydev);
265 
266 	return 0;
267 }
268 
269 static void tsnep_phy_close(struct tsnep_adapter *adapter)
270 {
271 	phy_stop(adapter->netdev->phydev);
272 	phy_disconnect(adapter->netdev->phydev);
273 }
274 
275 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
276 {
277 	struct device *dmadev = tx->adapter->dmadev;
278 	int i;
279 
280 	memset(tx->entry, 0, sizeof(tx->entry));
281 
282 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
283 		if (tx->page[i]) {
284 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
285 					  tx->page_dma[i]);
286 			tx->page[i] = NULL;
287 			tx->page_dma[i] = 0;
288 		}
289 	}
290 }
291 
292 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
293 {
294 	struct device *dmadev = tx->adapter->dmadev;
295 	struct tsnep_tx_entry *entry;
296 	struct tsnep_tx_entry *next_entry;
297 	int i, j;
298 	int retval;
299 
300 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
301 		tx->page[i] =
302 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
303 					   GFP_KERNEL);
304 		if (!tx->page[i]) {
305 			retval = -ENOMEM;
306 			goto alloc_failed;
307 		}
308 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
309 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
310 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
311 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
312 			entry->desc = (struct tsnep_tx_desc *)
313 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
314 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
315 			entry->owner_user_flag = false;
316 		}
317 	}
318 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
319 		entry = &tx->entry[i];
320 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
321 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
322 	}
323 
324 	return 0;
325 
326 alloc_failed:
327 	tsnep_tx_ring_cleanup(tx);
328 	return retval;
329 }
330 
331 static void tsnep_tx_init(struct tsnep_tx *tx)
332 {
333 	dma_addr_t dma;
334 
335 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
336 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
337 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
338 	tx->write = 0;
339 	tx->read = 0;
340 	tx->owner_counter = 1;
341 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
342 }
343 
344 static void tsnep_tx_enable(struct tsnep_tx *tx)
345 {
346 	struct netdev_queue *nq;
347 
348 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
349 
350 	__netif_tx_lock_bh(nq);
351 	netif_tx_wake_queue(nq);
352 	__netif_tx_unlock_bh(nq);
353 }
354 
355 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
356 {
357 	struct netdev_queue *nq;
358 	u32 val;
359 
360 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
361 
362 	__netif_tx_lock_bh(nq);
363 	netif_tx_stop_queue(nq);
364 	__netif_tx_unlock_bh(nq);
365 
366 	/* wait until TX is done in hardware */
367 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
368 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
369 			   1000000);
370 
371 	/* wait until TX is also done in software */
372 	while (READ_ONCE(tx->read) != tx->write) {
373 		napi_schedule(napi);
374 		napi_synchronize(napi);
375 	}
376 }
377 
378 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
379 			      bool last)
380 {
381 	struct tsnep_tx_entry *entry = &tx->entry[index];
382 
383 	entry->properties = 0;
384 	/* xdpf and zc are union with skb */
385 	if (entry->skb) {
386 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
387 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
388 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
389 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
390 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
391 
392 		/* toggle user flag to prevent false acknowledge
393 		 *
394 		 * Only the first fragment is acknowledged. For all other
395 		 * fragments no acknowledge is done and the last written owner
396 		 * counter stays in the writeback descriptor. Therefore, it is
397 		 * possible that the last written owner counter is identical to
398 		 * the new incremented owner counter and a false acknowledge is
399 		 * detected before the real acknowledge has been done by
400 		 * hardware.
401 		 *
402 		 * The user flag is used to prevent this situation. The user
403 		 * flag is copied to the writeback descriptor by the hardware
404 		 * and is used as additional acknowledge data. By toggeling the
405 		 * user flag only for the first fragment (which is
406 		 * acknowledged), it is guaranteed that the last acknowledge
407 		 * done for this descriptor has used a different user flag and
408 		 * cannot be detected as false acknowledge.
409 		 */
410 		entry->owner_user_flag = !entry->owner_user_flag;
411 	}
412 	if (last)
413 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
414 	if (index == tx->increment_owner_counter) {
415 		tx->owner_counter++;
416 		if (tx->owner_counter == 4)
417 			tx->owner_counter = 1;
418 		tx->increment_owner_counter--;
419 		if (tx->increment_owner_counter < 0)
420 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
421 	}
422 	entry->properties |=
423 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
424 		TSNEP_DESC_OWNER_COUNTER_MASK;
425 	if (entry->owner_user_flag)
426 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
427 	entry->desc->more_properties =
428 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
429 	if (entry->type & TSNEP_TX_TYPE_INLINE)
430 		entry->properties |= TSNEP_TX_DESC_DATA_AFTER_DESC_FLAG;
431 
432 	/* descriptor properties shall be written last, because valid data is
433 	 * signaled there
434 	 */
435 	dma_wmb();
436 
437 	entry->desc->properties = __cpu_to_le32(entry->properties);
438 }
439 
440 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
441 {
442 	if (tx->read <= tx->write)
443 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
444 	else
445 		return tx->read - tx->write - 1;
446 }
447 
448 static int tsnep_tx_map_frag(skb_frag_t *frag, struct tsnep_tx_entry *entry,
449 			     struct device *dmadev, dma_addr_t *dma)
450 {
451 	unsigned int len;
452 	int mapped;
453 
454 	len = skb_frag_size(frag);
455 	if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
456 		*dma = skb_frag_dma_map(dmadev, frag, 0, len, DMA_TO_DEVICE);
457 		if (dma_mapping_error(dmadev, *dma))
458 			return -ENOMEM;
459 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE;
460 		mapped = 1;
461 	} else {
462 		void *fragdata = skb_frag_address_safe(frag);
463 
464 		if (likely(fragdata)) {
465 			memcpy(&entry->desc->tx, fragdata, len);
466 		} else {
467 			struct page *page = skb_frag_page(frag);
468 
469 			fragdata = kmap_local_page(page);
470 			memcpy(&entry->desc->tx, fragdata + skb_frag_off(frag),
471 			       len);
472 			kunmap_local(fragdata);
473 		}
474 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_INLINE;
475 		mapped = 0;
476 	}
477 
478 	return mapped;
479 }
480 
481 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
482 {
483 	struct device *dmadev = tx->adapter->dmadev;
484 	struct tsnep_tx_entry *entry;
485 	unsigned int len;
486 	int map_len = 0;
487 	dma_addr_t dma;
488 	int i, mapped;
489 
490 	for (i = 0; i < count; i++) {
491 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
492 
493 		if (!i) {
494 			len = skb_headlen(skb);
495 			if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
496 				dma = dma_map_single(dmadev, skb->data, len,
497 						     DMA_TO_DEVICE);
498 				if (dma_mapping_error(dmadev, dma))
499 					return -ENOMEM;
500 				entry->type = TSNEP_TX_TYPE_SKB_MAP;
501 				mapped = 1;
502 			} else {
503 				memcpy(&entry->desc->tx, skb->data, len);
504 				entry->type = TSNEP_TX_TYPE_SKB_INLINE;
505 				mapped = 0;
506 			}
507 		} else {
508 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
509 
510 			len = skb_frag_size(frag);
511 			mapped = tsnep_tx_map_frag(frag, entry, dmadev, &dma);
512 			if (mapped < 0)
513 				return mapped;
514 		}
515 
516 		entry->len = len;
517 		if (likely(mapped)) {
518 			dma_unmap_addr_set(entry, dma, dma);
519 			entry->desc->tx = __cpu_to_le64(dma);
520 		}
521 
522 		map_len += len;
523 	}
524 
525 	return map_len;
526 }
527 
528 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
529 {
530 	struct device *dmadev = tx->adapter->dmadev;
531 	struct tsnep_tx_entry *entry;
532 	int map_len = 0;
533 	int i;
534 
535 	for (i = 0; i < count; i++) {
536 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
537 
538 		if (entry->len) {
539 			if (entry->type & TSNEP_TX_TYPE_MAP)
540 				dma_unmap_single(dmadev,
541 						 dma_unmap_addr(entry, dma),
542 						 dma_unmap_len(entry, len),
543 						 DMA_TO_DEVICE);
544 			else if (entry->type & TSNEP_TX_TYPE_MAP_PAGE)
545 				dma_unmap_page(dmadev,
546 					       dma_unmap_addr(entry, dma),
547 					       dma_unmap_len(entry, len),
548 					       DMA_TO_DEVICE);
549 			map_len += entry->len;
550 			entry->len = 0;
551 		}
552 	}
553 
554 	return map_len;
555 }
556 
557 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
558 					 struct tsnep_tx *tx)
559 {
560 	int count = 1;
561 	struct tsnep_tx_entry *entry;
562 	int length;
563 	int i;
564 	int retval;
565 
566 	if (skb_shinfo(skb)->nr_frags > 0)
567 		count += skb_shinfo(skb)->nr_frags;
568 
569 	if (tsnep_tx_desc_available(tx) < count) {
570 		/* ring full, shall not happen because queue is stopped if full
571 		 * below
572 		 */
573 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
574 
575 		return NETDEV_TX_BUSY;
576 	}
577 
578 	entry = &tx->entry[tx->write];
579 	entry->skb = skb;
580 
581 	retval = tsnep_tx_map(skb, tx, count);
582 	if (retval < 0) {
583 		tsnep_tx_unmap(tx, tx->write, count);
584 		dev_kfree_skb_any(entry->skb);
585 		entry->skb = NULL;
586 
587 		tx->dropped++;
588 
589 		return NETDEV_TX_OK;
590 	}
591 	length = retval;
592 
593 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
594 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
595 
596 	for (i = 0; i < count; i++)
597 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
598 				  i == count - 1);
599 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
600 
601 	skb_tx_timestamp(skb);
602 
603 	/* descriptor properties shall be valid before hardware is notified */
604 	dma_wmb();
605 
606 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
607 
608 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
609 		/* ring can get full with next frame */
610 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
611 	}
612 
613 	return NETDEV_TX_OK;
614 }
615 
616 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
617 			    struct skb_shared_info *shinfo, int count, u32 type)
618 {
619 	struct device *dmadev = tx->adapter->dmadev;
620 	struct tsnep_tx_entry *entry;
621 	struct page *page;
622 	skb_frag_t *frag;
623 	unsigned int len;
624 	int map_len = 0;
625 	dma_addr_t dma;
626 	void *data;
627 	int i;
628 
629 	frag = NULL;
630 	len = xdpf->len;
631 	for (i = 0; i < count; i++) {
632 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
633 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
634 			data = unlikely(frag) ? skb_frag_address(frag) :
635 						xdpf->data;
636 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
637 			if (dma_mapping_error(dmadev, dma))
638 				return -ENOMEM;
639 
640 			entry->type = TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE;
641 		} else {
642 			page = unlikely(frag) ? skb_frag_page(frag) :
643 						virt_to_page(xdpf->data);
644 			dma = page_pool_get_dma_addr(page);
645 			if (unlikely(frag))
646 				dma += skb_frag_off(frag);
647 			else
648 				dma += sizeof(*xdpf) + xdpf->headroom;
649 			dma_sync_single_for_device(dmadev, dma, len,
650 						   DMA_BIDIRECTIONAL);
651 
652 			entry->type = TSNEP_TX_TYPE_XDP_TX;
653 		}
654 
655 		entry->len = len;
656 		dma_unmap_addr_set(entry, dma, dma);
657 
658 		entry->desc->tx = __cpu_to_le64(dma);
659 
660 		map_len += len;
661 
662 		if (i + 1 < count) {
663 			frag = &shinfo->frags[i];
664 			len = skb_frag_size(frag);
665 		}
666 	}
667 
668 	return map_len;
669 }
670 
671 /* This function requires __netif_tx_lock is held by the caller. */
672 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
673 				      struct tsnep_tx *tx, u32 type)
674 {
675 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
676 	struct tsnep_tx_entry *entry;
677 	int count, length, retval, i;
678 
679 	count = 1;
680 	if (unlikely(xdp_frame_has_frags(xdpf)))
681 		count += shinfo->nr_frags;
682 
683 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
684 	 * will be available for normal TX path and queue is stopped there if
685 	 * necessary
686 	 */
687 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
688 		return false;
689 
690 	entry = &tx->entry[tx->write];
691 	entry->xdpf = xdpf;
692 
693 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
694 	if (retval < 0) {
695 		tsnep_tx_unmap(tx, tx->write, count);
696 		entry->xdpf = NULL;
697 
698 		tx->dropped++;
699 
700 		return false;
701 	}
702 	length = retval;
703 
704 	for (i = 0; i < count; i++)
705 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
706 				  i == count - 1);
707 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
708 
709 	/* descriptor properties shall be valid before hardware is notified */
710 	dma_wmb();
711 
712 	return true;
713 }
714 
715 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
716 {
717 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
718 }
719 
720 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
721 				struct xdp_buff *xdp,
722 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
723 {
724 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
725 	bool xmit;
726 
727 	if (unlikely(!xdpf))
728 		return false;
729 
730 	__netif_tx_lock(tx_nq, smp_processor_id());
731 
732 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
733 
734 	/* Avoid transmit queue timeout since we share it with the slow path */
735 	if (xmit)
736 		txq_trans_cond_update(tx_nq);
737 
738 	__netif_tx_unlock(tx_nq);
739 
740 	return xmit;
741 }
742 
743 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
744 {
745 	struct tsnep_tx_entry *entry;
746 	dma_addr_t dma;
747 
748 	entry = &tx->entry[tx->write];
749 	entry->zc = true;
750 
751 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
752 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
753 
754 	entry->type = TSNEP_TX_TYPE_XSK;
755 	entry->len = xdpd->len;
756 
757 	entry->desc->tx = __cpu_to_le64(dma);
758 
759 	return xdpd->len;
760 }
761 
762 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
763 					 struct tsnep_tx *tx)
764 {
765 	int length;
766 
767 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
768 
769 	tsnep_tx_activate(tx, tx->write, length, true);
770 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
771 }
772 
773 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
774 {
775 	int desc_available = tsnep_tx_desc_available(tx);
776 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
777 	int batch, i;
778 
779 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
780 	 * will be available for normal TX path and queue is stopped there if
781 	 * necessary
782 	 */
783 	if (desc_available <= (MAX_SKB_FRAGS + 1))
784 		return;
785 	desc_available -= MAX_SKB_FRAGS + 1;
786 
787 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
788 	for (i = 0; i < batch; i++)
789 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
790 
791 	if (batch) {
792 		/* descriptor properties shall be valid before hardware is
793 		 * notified
794 		 */
795 		dma_wmb();
796 
797 		tsnep_xdp_xmit_flush(tx);
798 	}
799 }
800 
801 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
802 {
803 	struct tsnep_tx_entry *entry;
804 	struct netdev_queue *nq;
805 	int xsk_frames = 0;
806 	int budget = 128;
807 	int length;
808 	int count;
809 
810 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
811 	__netif_tx_lock(nq, smp_processor_id());
812 
813 	do {
814 		if (tx->read == tx->write)
815 			break;
816 
817 		entry = &tx->entry[tx->read];
818 		if ((__le32_to_cpu(entry->desc_wb->properties) &
819 		     TSNEP_TX_DESC_OWNER_MASK) !=
820 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
821 			break;
822 
823 		/* descriptor properties shall be read first, because valid data
824 		 * is signaled there
825 		 */
826 		dma_rmb();
827 
828 		count = 1;
829 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
830 		    skb_shinfo(entry->skb)->nr_frags > 0)
831 			count += skb_shinfo(entry->skb)->nr_frags;
832 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
833 			 xdp_frame_has_frags(entry->xdpf))
834 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
835 
836 		length = tsnep_tx_unmap(tx, tx->read, count);
837 
838 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
839 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
840 		    (__le32_to_cpu(entry->desc_wb->properties) &
841 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
842 			struct skb_shared_hwtstamps hwtstamps;
843 			u64 timestamp;
844 
845 			if (skb_shinfo(entry->skb)->tx_flags &
846 			    SKBTX_HW_TSTAMP_USE_CYCLES)
847 				timestamp =
848 					__le64_to_cpu(entry->desc_wb->counter);
849 			else
850 				timestamp =
851 					__le64_to_cpu(entry->desc_wb->timestamp);
852 
853 			memset(&hwtstamps, 0, sizeof(hwtstamps));
854 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
855 
856 			skb_tstamp_tx(entry->skb, &hwtstamps);
857 		}
858 
859 		if (entry->type & TSNEP_TX_TYPE_SKB)
860 			napi_consume_skb(entry->skb, napi_budget);
861 		else if (entry->type & TSNEP_TX_TYPE_XDP)
862 			xdp_return_frame_rx_napi(entry->xdpf);
863 		else
864 			xsk_frames++;
865 		/* xdpf and zc are union with skb */
866 		entry->skb = NULL;
867 
868 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
869 
870 		tx->packets++;
871 		tx->bytes += length + ETH_FCS_LEN;
872 
873 		budget--;
874 	} while (likely(budget));
875 
876 	if (tx->xsk_pool) {
877 		if (xsk_frames)
878 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
879 		if (xsk_uses_need_wakeup(tx->xsk_pool))
880 			xsk_set_tx_need_wakeup(tx->xsk_pool);
881 		tsnep_xdp_xmit_zc(tx);
882 	}
883 
884 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
885 	    netif_tx_queue_stopped(nq)) {
886 		netif_tx_wake_queue(nq);
887 	}
888 
889 	__netif_tx_unlock(nq);
890 
891 	return budget != 0;
892 }
893 
894 static bool tsnep_tx_pending(struct tsnep_tx *tx)
895 {
896 	struct tsnep_tx_entry *entry;
897 	struct netdev_queue *nq;
898 	bool pending = false;
899 
900 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
901 	__netif_tx_lock(nq, smp_processor_id());
902 
903 	if (tx->read != tx->write) {
904 		entry = &tx->entry[tx->read];
905 		if ((__le32_to_cpu(entry->desc_wb->properties) &
906 		     TSNEP_TX_DESC_OWNER_MASK) ==
907 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
908 			pending = true;
909 	}
910 
911 	__netif_tx_unlock(nq);
912 
913 	return pending;
914 }
915 
916 static int tsnep_tx_open(struct tsnep_tx *tx)
917 {
918 	int retval;
919 
920 	retval = tsnep_tx_ring_create(tx);
921 	if (retval)
922 		return retval;
923 
924 	tsnep_tx_init(tx);
925 
926 	return 0;
927 }
928 
929 static void tsnep_tx_close(struct tsnep_tx *tx)
930 {
931 	tsnep_tx_ring_cleanup(tx);
932 }
933 
934 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
935 {
936 	struct device *dmadev = rx->adapter->dmadev;
937 	struct tsnep_rx_entry *entry;
938 	int i;
939 
940 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
941 		entry = &rx->entry[i];
942 		if (!rx->xsk_pool && entry->page)
943 			page_pool_put_full_page(rx->page_pool, entry->page,
944 						false);
945 		if (rx->xsk_pool && entry->xdp)
946 			xsk_buff_free(entry->xdp);
947 		/* xdp is union with page */
948 		entry->page = NULL;
949 	}
950 
951 	if (rx->page_pool)
952 		page_pool_destroy(rx->page_pool);
953 
954 	memset(rx->entry, 0, sizeof(rx->entry));
955 
956 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
957 		if (rx->page[i]) {
958 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
959 					  rx->page_dma[i]);
960 			rx->page[i] = NULL;
961 			rx->page_dma[i] = 0;
962 		}
963 	}
964 }
965 
966 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
967 {
968 	struct device *dmadev = rx->adapter->dmadev;
969 	struct tsnep_rx_entry *entry;
970 	struct page_pool_params pp_params = { 0 };
971 	struct tsnep_rx_entry *next_entry;
972 	int i, j;
973 	int retval;
974 
975 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
976 		rx->page[i] =
977 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
978 					   GFP_KERNEL);
979 		if (!rx->page[i]) {
980 			retval = -ENOMEM;
981 			goto failed;
982 		}
983 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
984 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
985 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
986 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
987 			entry->desc = (struct tsnep_rx_desc *)
988 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
989 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
990 		}
991 	}
992 
993 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
994 	pp_params.order = 0;
995 	pp_params.pool_size = TSNEP_RING_SIZE;
996 	pp_params.nid = dev_to_node(dmadev);
997 	pp_params.dev = dmadev;
998 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
999 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
1000 	pp_params.offset = TSNEP_RX_OFFSET;
1001 	rx->page_pool = page_pool_create(&pp_params);
1002 	if (IS_ERR(rx->page_pool)) {
1003 		retval = PTR_ERR(rx->page_pool);
1004 		rx->page_pool = NULL;
1005 		goto failed;
1006 	}
1007 
1008 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1009 		entry = &rx->entry[i];
1010 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
1011 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
1012 	}
1013 
1014 	return 0;
1015 
1016 failed:
1017 	tsnep_rx_ring_cleanup(rx);
1018 	return retval;
1019 }
1020 
1021 static void tsnep_rx_init(struct tsnep_rx *rx)
1022 {
1023 	dma_addr_t dma;
1024 
1025 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1026 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1027 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1028 	rx->write = 0;
1029 	rx->read = 0;
1030 	rx->owner_counter = 1;
1031 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1032 }
1033 
1034 static void tsnep_rx_enable(struct tsnep_rx *rx)
1035 {
1036 	/* descriptor properties shall be valid before hardware is notified */
1037 	dma_wmb();
1038 
1039 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
1040 }
1041 
1042 static void tsnep_rx_disable(struct tsnep_rx *rx)
1043 {
1044 	u32 val;
1045 
1046 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1047 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1048 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1049 			   1000000);
1050 }
1051 
1052 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1053 {
1054 	if (rx->read <= rx->write)
1055 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1056 	else
1057 		return rx->read - rx->write - 1;
1058 }
1059 
1060 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1061 {
1062 	struct page **page;
1063 
1064 	/* last entry of page_buffer is always zero, because ring cannot be
1065 	 * filled completely
1066 	 */
1067 	page = rx->page_buffer;
1068 	while (*page) {
1069 		page_pool_put_full_page(rx->page_pool, *page, false);
1070 		*page = NULL;
1071 		page++;
1072 	}
1073 }
1074 
1075 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1076 {
1077 	int i;
1078 
1079 	/* alloc for all ring entries except the last one, because ring cannot
1080 	 * be filled completely
1081 	 */
1082 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1083 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1084 		if (!rx->page_buffer[i]) {
1085 			tsnep_rx_free_page_buffer(rx);
1086 
1087 			return -ENOMEM;
1088 		}
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1095 			      struct page *page)
1096 {
1097 	entry->page = page;
1098 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1099 	entry->dma = page_pool_get_dma_addr(entry->page);
1100 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1101 }
1102 
1103 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1104 {
1105 	struct tsnep_rx_entry *entry = &rx->entry[index];
1106 	struct page *page;
1107 
1108 	page = page_pool_dev_alloc_pages(rx->page_pool);
1109 	if (unlikely(!page))
1110 		return -ENOMEM;
1111 	tsnep_rx_set_page(rx, entry, page);
1112 
1113 	return 0;
1114 }
1115 
1116 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1117 {
1118 	struct tsnep_rx_entry *entry = &rx->entry[index];
1119 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1120 
1121 	tsnep_rx_set_page(rx, entry, read->page);
1122 	read->page = NULL;
1123 }
1124 
1125 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1126 {
1127 	struct tsnep_rx_entry *entry = &rx->entry[index];
1128 
1129 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1130 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1131 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1132 	if (index == rx->increment_owner_counter) {
1133 		rx->owner_counter++;
1134 		if (rx->owner_counter == 4)
1135 			rx->owner_counter = 1;
1136 		rx->increment_owner_counter--;
1137 		if (rx->increment_owner_counter < 0)
1138 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1139 	}
1140 	entry->properties |=
1141 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1142 		TSNEP_DESC_OWNER_COUNTER_MASK;
1143 
1144 	/* descriptor properties shall be written last, because valid data is
1145 	 * signaled there
1146 	 */
1147 	dma_wmb();
1148 
1149 	entry->desc->properties = __cpu_to_le32(entry->properties);
1150 }
1151 
1152 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1153 {
1154 	bool alloc_failed = false;
1155 	int i, index;
1156 
1157 	for (i = 0; i < count && !alloc_failed; i++) {
1158 		index = (rx->write + i) & TSNEP_RING_MASK;
1159 
1160 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1161 			rx->alloc_failed++;
1162 			alloc_failed = true;
1163 
1164 			/* reuse only if no other allocation was successful */
1165 			if (i == 0 && reuse)
1166 				tsnep_rx_reuse_buffer(rx, index);
1167 			else
1168 				break;
1169 		}
1170 
1171 		tsnep_rx_activate(rx, index);
1172 	}
1173 
1174 	if (i)
1175 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1176 
1177 	return i;
1178 }
1179 
1180 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1181 {
1182 	int desc_refilled;
1183 
1184 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1185 	if (desc_refilled)
1186 		tsnep_rx_enable(rx);
1187 
1188 	return desc_refilled;
1189 }
1190 
1191 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1192 			     struct xdp_buff *xdp)
1193 {
1194 	entry->xdp = xdp;
1195 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1196 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1197 	entry->desc->rx = __cpu_to_le64(entry->dma);
1198 }
1199 
1200 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1201 {
1202 	struct tsnep_rx_entry *entry = &rx->entry[index];
1203 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1204 
1205 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1206 	read->xdp = NULL;
1207 }
1208 
1209 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1210 {
1211 	u32 allocated;
1212 	int i;
1213 
1214 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1215 	for (i = 0; i < allocated; i++) {
1216 		int index = (rx->write + i) & TSNEP_RING_MASK;
1217 		struct tsnep_rx_entry *entry = &rx->entry[index];
1218 
1219 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1220 		tsnep_rx_activate(rx, index);
1221 	}
1222 	if (i == 0) {
1223 		rx->alloc_failed++;
1224 
1225 		if (reuse) {
1226 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1227 			tsnep_rx_activate(rx, rx->write);
1228 		}
1229 	}
1230 
1231 	if (i)
1232 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1233 
1234 	return i;
1235 }
1236 
1237 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1238 {
1239 	int i;
1240 
1241 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1242 		struct tsnep_rx_entry *entry = &rx->entry[i];
1243 
1244 		if (entry->xdp)
1245 			xsk_buff_free(entry->xdp);
1246 		entry->xdp = NULL;
1247 	}
1248 }
1249 
1250 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1251 {
1252 	int desc_refilled;
1253 
1254 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1255 	if (desc_refilled)
1256 		tsnep_rx_enable(rx);
1257 
1258 	return desc_refilled;
1259 }
1260 
1261 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1262 			       struct xdp_buff *xdp, int *status,
1263 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1264 {
1265 	unsigned int length;
1266 	unsigned int sync;
1267 	u32 act;
1268 
1269 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1270 
1271 	act = bpf_prog_run_xdp(prog, xdp);
1272 	switch (act) {
1273 	case XDP_PASS:
1274 		return false;
1275 	case XDP_TX:
1276 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1277 			goto out_failure;
1278 		*status |= TSNEP_XDP_TX;
1279 		return true;
1280 	case XDP_REDIRECT:
1281 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1282 			goto out_failure;
1283 		*status |= TSNEP_XDP_REDIRECT;
1284 		return true;
1285 	default:
1286 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1287 		fallthrough;
1288 	case XDP_ABORTED:
1289 out_failure:
1290 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1291 		fallthrough;
1292 	case XDP_DROP:
1293 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1294 		 * touch
1295 		 */
1296 		sync = xdp->data_end - xdp->data_hard_start -
1297 		       XDP_PACKET_HEADROOM;
1298 		sync = max(sync, length);
1299 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1300 				   sync, true);
1301 		return true;
1302 	}
1303 }
1304 
1305 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1306 				  struct xdp_buff *xdp, int *status,
1307 				  struct netdev_queue *tx_nq,
1308 				  struct tsnep_tx *tx)
1309 {
1310 	u32 act;
1311 
1312 	act = bpf_prog_run_xdp(prog, xdp);
1313 
1314 	/* XDP_REDIRECT is the main action for zero-copy */
1315 	if (likely(act == XDP_REDIRECT)) {
1316 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1317 			goto out_failure;
1318 		*status |= TSNEP_XDP_REDIRECT;
1319 		return true;
1320 	}
1321 
1322 	switch (act) {
1323 	case XDP_PASS:
1324 		return false;
1325 	case XDP_TX:
1326 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1327 			goto out_failure;
1328 		*status |= TSNEP_XDP_TX;
1329 		return true;
1330 	default:
1331 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1332 		fallthrough;
1333 	case XDP_ABORTED:
1334 out_failure:
1335 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1336 		fallthrough;
1337 	case XDP_DROP:
1338 		xsk_buff_free(xdp);
1339 		return true;
1340 	}
1341 }
1342 
1343 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1344 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1345 {
1346 	if (status & TSNEP_XDP_TX) {
1347 		__netif_tx_lock(tx_nq, smp_processor_id());
1348 		tsnep_xdp_xmit_flush(tx);
1349 		__netif_tx_unlock(tx_nq);
1350 	}
1351 
1352 	if (status & TSNEP_XDP_REDIRECT)
1353 		xdp_do_flush();
1354 }
1355 
1356 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1357 				       int length)
1358 {
1359 	struct sk_buff *skb;
1360 
1361 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1362 	if (unlikely(!skb))
1363 		return NULL;
1364 
1365 	/* update pointers within the skb to store the data */
1366 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1367 	__skb_put(skb, length - ETH_FCS_LEN);
1368 
1369 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1370 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1371 		struct tsnep_rx_inline *rx_inline =
1372 			(struct tsnep_rx_inline *)(page_address(page) +
1373 						   TSNEP_RX_OFFSET);
1374 
1375 		skb_shinfo(skb)->tx_flags |=
1376 			SKBTX_HW_TSTAMP_NETDEV;
1377 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1378 		hwtstamps->netdev_data = rx_inline;
1379 	}
1380 
1381 	skb_record_rx_queue(skb, rx->queue_index);
1382 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1383 
1384 	return skb;
1385 }
1386 
1387 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1388 			  struct page *page, int length)
1389 {
1390 	struct sk_buff *skb;
1391 
1392 	skb = tsnep_build_skb(rx, page, length);
1393 	if (skb) {
1394 		skb_mark_for_recycle(skb);
1395 
1396 		rx->packets++;
1397 		rx->bytes += length;
1398 		if (skb->pkt_type == PACKET_MULTICAST)
1399 			rx->multicast++;
1400 
1401 		napi_gro_receive(napi, skb);
1402 	} else {
1403 		page_pool_recycle_direct(rx->page_pool, page);
1404 
1405 		rx->dropped++;
1406 	}
1407 }
1408 
1409 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1410 			 int budget)
1411 {
1412 	struct device *dmadev = rx->adapter->dmadev;
1413 	enum dma_data_direction dma_dir;
1414 	struct tsnep_rx_entry *entry;
1415 	struct netdev_queue *tx_nq;
1416 	struct bpf_prog *prog;
1417 	struct xdp_buff xdp;
1418 	struct tsnep_tx *tx;
1419 	int desc_available;
1420 	int xdp_status = 0;
1421 	int done = 0;
1422 	int length;
1423 
1424 	desc_available = tsnep_rx_desc_available(rx);
1425 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1426 	prog = READ_ONCE(rx->adapter->xdp_prog);
1427 	if (prog) {
1428 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1429 					    rx->tx_queue_index);
1430 		tx = &rx->adapter->tx[rx->tx_queue_index];
1431 
1432 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1433 	}
1434 
1435 	while (likely(done < budget) && (rx->read != rx->write)) {
1436 		entry = &rx->entry[rx->read];
1437 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1438 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1439 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1440 			break;
1441 		done++;
1442 
1443 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1444 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1445 
1446 			desc_available -= tsnep_rx_refill(rx, desc_available,
1447 							  reuse);
1448 			if (!entry->page) {
1449 				/* buffer has been reused for refill to prevent
1450 				 * empty RX ring, thus buffer cannot be used for
1451 				 * RX processing
1452 				 */
1453 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1454 				desc_available++;
1455 
1456 				rx->dropped++;
1457 
1458 				continue;
1459 			}
1460 		}
1461 
1462 		/* descriptor properties shall be read first, because valid data
1463 		 * is signaled there
1464 		 */
1465 		dma_rmb();
1466 
1467 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1468 		length = __le32_to_cpu(entry->desc_wb->properties) &
1469 			 TSNEP_DESC_LENGTH_MASK;
1470 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1471 					      TSNEP_RX_OFFSET, length, dma_dir);
1472 
1473 		/* RX metadata with timestamps is in front of actual data,
1474 		 * subtract metadata size to get length of actual data and
1475 		 * consider metadata size as offset of actual data during RX
1476 		 * processing
1477 		 */
1478 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1479 
1480 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1481 		desc_available++;
1482 
1483 		if (prog) {
1484 			bool consume;
1485 
1486 			xdp_prepare_buff(&xdp, page_address(entry->page),
1487 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1488 					 length - ETH_FCS_LEN, false);
1489 
1490 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1491 						     &xdp_status, tx_nq, tx);
1492 			if (consume) {
1493 				rx->packets++;
1494 				rx->bytes += length;
1495 
1496 				entry->page = NULL;
1497 
1498 				continue;
1499 			}
1500 		}
1501 
1502 		tsnep_rx_page(rx, napi, entry->page, length);
1503 		entry->page = NULL;
1504 	}
1505 
1506 	if (xdp_status)
1507 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1508 
1509 	if (desc_available)
1510 		tsnep_rx_refill(rx, desc_available, false);
1511 
1512 	return done;
1513 }
1514 
1515 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1516 			    int budget)
1517 {
1518 	struct tsnep_rx_entry *entry;
1519 	struct netdev_queue *tx_nq;
1520 	struct bpf_prog *prog;
1521 	struct tsnep_tx *tx;
1522 	int desc_available;
1523 	int xdp_status = 0;
1524 	struct page *page;
1525 	int done = 0;
1526 	int length;
1527 
1528 	desc_available = tsnep_rx_desc_available(rx);
1529 	prog = READ_ONCE(rx->adapter->xdp_prog);
1530 	if (prog) {
1531 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1532 					    rx->tx_queue_index);
1533 		tx = &rx->adapter->tx[rx->tx_queue_index];
1534 	}
1535 
1536 	while (likely(done < budget) && (rx->read != rx->write)) {
1537 		entry = &rx->entry[rx->read];
1538 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1539 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1540 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1541 			break;
1542 		done++;
1543 
1544 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1545 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1546 
1547 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1548 							     reuse);
1549 			if (!entry->xdp) {
1550 				/* buffer has been reused for refill to prevent
1551 				 * empty RX ring, thus buffer cannot be used for
1552 				 * RX processing
1553 				 */
1554 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1555 				desc_available++;
1556 
1557 				rx->dropped++;
1558 
1559 				continue;
1560 			}
1561 		}
1562 
1563 		/* descriptor properties shall be read first, because valid data
1564 		 * is signaled there
1565 		 */
1566 		dma_rmb();
1567 
1568 		prefetch(entry->xdp->data);
1569 		length = __le32_to_cpu(entry->desc_wb->properties) &
1570 			 TSNEP_DESC_LENGTH_MASK;
1571 		xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
1572 		xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1573 
1574 		/* RX metadata with timestamps is in front of actual data,
1575 		 * subtract metadata size to get length of actual data and
1576 		 * consider metadata size as offset of actual data during RX
1577 		 * processing
1578 		 */
1579 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1580 
1581 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1582 		desc_available++;
1583 
1584 		if (prog) {
1585 			bool consume;
1586 
1587 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1588 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1589 
1590 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1591 							&xdp_status, tx_nq, tx);
1592 			if (consume) {
1593 				rx->packets++;
1594 				rx->bytes += length;
1595 
1596 				entry->xdp = NULL;
1597 
1598 				continue;
1599 			}
1600 		}
1601 
1602 		page = page_pool_dev_alloc_pages(rx->page_pool);
1603 		if (page) {
1604 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1605 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1606 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1607 			tsnep_rx_page(rx, napi, page, length);
1608 		} else {
1609 			rx->dropped++;
1610 		}
1611 		xsk_buff_free(entry->xdp);
1612 		entry->xdp = NULL;
1613 	}
1614 
1615 	if (xdp_status)
1616 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1617 
1618 	if (desc_available)
1619 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1620 
1621 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1622 		if (desc_available)
1623 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1624 		else
1625 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1626 
1627 		return done;
1628 	}
1629 
1630 	return desc_available ? budget : done;
1631 }
1632 
1633 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1634 {
1635 	struct tsnep_rx_entry *entry;
1636 
1637 	if (rx->read != rx->write) {
1638 		entry = &rx->entry[rx->read];
1639 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1640 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1641 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1642 			return true;
1643 	}
1644 
1645 	return false;
1646 }
1647 
1648 static int tsnep_rx_open(struct tsnep_rx *rx)
1649 {
1650 	int desc_available;
1651 	int retval;
1652 
1653 	retval = tsnep_rx_ring_create(rx);
1654 	if (retval)
1655 		return retval;
1656 
1657 	tsnep_rx_init(rx);
1658 
1659 	desc_available = tsnep_rx_desc_available(rx);
1660 	if (rx->xsk_pool)
1661 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1662 	else
1663 		retval = tsnep_rx_alloc(rx, desc_available, false);
1664 	if (retval != desc_available) {
1665 		retval = -ENOMEM;
1666 
1667 		goto alloc_failed;
1668 	}
1669 
1670 	/* prealloc pages to prevent allocation failures when XSK pool is
1671 	 * disabled at runtime
1672 	 */
1673 	if (rx->xsk_pool) {
1674 		retval = tsnep_rx_alloc_page_buffer(rx);
1675 		if (retval)
1676 			goto alloc_failed;
1677 	}
1678 
1679 	return 0;
1680 
1681 alloc_failed:
1682 	tsnep_rx_ring_cleanup(rx);
1683 	return retval;
1684 }
1685 
1686 static void tsnep_rx_close(struct tsnep_rx *rx)
1687 {
1688 	if (rx->xsk_pool)
1689 		tsnep_rx_free_page_buffer(rx);
1690 
1691 	tsnep_rx_ring_cleanup(rx);
1692 }
1693 
1694 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1695 {
1696 	struct page **page = rx->page_buffer;
1697 	int i;
1698 
1699 	tsnep_rx_init(rx);
1700 
1701 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1702 		struct tsnep_rx_entry *entry = &rx->entry[i];
1703 
1704 		/* defined initial values for properties are required for
1705 		 * correct owner counter checking
1706 		 */
1707 		entry->desc->properties = 0;
1708 		entry->desc_wb->properties = 0;
1709 
1710 		/* prevent allocation failures by reusing kept pages */
1711 		if (*page) {
1712 			tsnep_rx_set_page(rx, entry, *page);
1713 			tsnep_rx_activate(rx, rx->write);
1714 			rx->write++;
1715 
1716 			*page = NULL;
1717 			page++;
1718 		}
1719 	}
1720 }
1721 
1722 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1723 {
1724 	struct page **page = rx->page_buffer;
1725 	u32 allocated;
1726 	int i;
1727 
1728 	tsnep_rx_init(rx);
1729 
1730 	/* alloc all ring entries except the last one, because ring cannot be
1731 	 * filled completely, as many buffers as possible is enough as wakeup is
1732 	 * done if new buffers are available
1733 	 */
1734 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1735 					 TSNEP_RING_SIZE - 1);
1736 
1737 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1738 		struct tsnep_rx_entry *entry = &rx->entry[i];
1739 
1740 		/* keep pages to prevent allocation failures when xsk is
1741 		 * disabled
1742 		 */
1743 		if (entry->page) {
1744 			*page = entry->page;
1745 			entry->page = NULL;
1746 
1747 			page++;
1748 		}
1749 
1750 		/* defined initial values for properties are required for
1751 		 * correct owner counter checking
1752 		 */
1753 		entry->desc->properties = 0;
1754 		entry->desc_wb->properties = 0;
1755 
1756 		if (allocated) {
1757 			tsnep_rx_set_xdp(rx, entry,
1758 					 rx->xdp_batch[allocated - 1]);
1759 			tsnep_rx_activate(rx, rx->write);
1760 			rx->write++;
1761 
1762 			allocated--;
1763 		}
1764 	}
1765 
1766 	/* set need wakeup flag immediately if ring is not filled completely,
1767 	 * first polling would be too late as need wakeup signalisation would
1768 	 * be delayed for an indefinite time
1769 	 */
1770 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1771 		int desc_available = tsnep_rx_desc_available(rx);
1772 
1773 		if (desc_available)
1774 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1775 		else
1776 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1777 	}
1778 }
1779 
1780 static bool tsnep_pending(struct tsnep_queue *queue)
1781 {
1782 	if (queue->tx && tsnep_tx_pending(queue->tx))
1783 		return true;
1784 
1785 	if (queue->rx && tsnep_rx_pending(queue->rx))
1786 		return true;
1787 
1788 	return false;
1789 }
1790 
1791 static int tsnep_poll(struct napi_struct *napi, int budget)
1792 {
1793 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1794 						 napi);
1795 	bool complete = true;
1796 	int done = 0;
1797 
1798 	if (queue->tx)
1799 		complete = tsnep_tx_poll(queue->tx, budget);
1800 
1801 	/* handle case where we are called by netpoll with a budget of 0 */
1802 	if (unlikely(budget <= 0))
1803 		return budget;
1804 
1805 	if (queue->rx) {
1806 		done = queue->rx->xsk_pool ?
1807 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1808 		       tsnep_rx_poll(queue->rx, napi, budget);
1809 		if (done >= budget)
1810 			complete = false;
1811 	}
1812 
1813 	/* if all work not completed, return budget and keep polling */
1814 	if (!complete)
1815 		return budget;
1816 
1817 	if (likely(napi_complete_done(napi, done))) {
1818 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1819 
1820 		/* reschedule if work is already pending, prevent rotten packets
1821 		 * which are transmitted or received after polling but before
1822 		 * interrupt enable
1823 		 */
1824 		if (tsnep_pending(queue)) {
1825 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1826 			napi_schedule(napi);
1827 		}
1828 	}
1829 
1830 	return min(done, budget - 1);
1831 }
1832 
1833 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1834 {
1835 	const char *name = netdev_name(queue->adapter->netdev);
1836 	irq_handler_t handler;
1837 	void *dev;
1838 	int retval;
1839 
1840 	if (first) {
1841 		sprintf(queue->name, "%s-mac", name);
1842 		handler = tsnep_irq;
1843 		dev = queue->adapter;
1844 	} else {
1845 		if (queue->tx && queue->rx)
1846 			snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1847 				 name, queue->rx->queue_index);
1848 		else if (queue->tx)
1849 			snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1850 				 name, queue->tx->queue_index);
1851 		else
1852 			snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1853 				 name, queue->rx->queue_index);
1854 		handler = tsnep_irq_txrx;
1855 		dev = queue;
1856 	}
1857 
1858 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1859 	if (retval) {
1860 		/* if name is empty, then interrupt won't be freed */
1861 		memset(queue->name, 0, sizeof(queue->name));
1862 	}
1863 
1864 	return retval;
1865 }
1866 
1867 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1868 {
1869 	void *dev;
1870 
1871 	if (!strlen(queue->name))
1872 		return;
1873 
1874 	if (first)
1875 		dev = queue->adapter;
1876 	else
1877 		dev = queue;
1878 
1879 	free_irq(queue->irq, dev);
1880 	memset(queue->name, 0, sizeof(queue->name));
1881 }
1882 
1883 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1884 {
1885 	struct tsnep_rx *rx = queue->rx;
1886 
1887 	tsnep_free_irq(queue, first);
1888 
1889 	if (rx) {
1890 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1891 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1892 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1893 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1894 	}
1895 
1896 	netif_napi_del(&queue->napi);
1897 }
1898 
1899 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1900 			    struct tsnep_queue *queue, bool first)
1901 {
1902 	struct tsnep_rx *rx = queue->rx;
1903 	struct tsnep_tx *tx = queue->tx;
1904 	int retval;
1905 
1906 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1907 
1908 	if (rx) {
1909 		/* choose TX queue for XDP_TX */
1910 		if (tx)
1911 			rx->tx_queue_index = tx->queue_index;
1912 		else if (rx->queue_index < adapter->num_tx_queues)
1913 			rx->tx_queue_index = rx->queue_index;
1914 		else
1915 			rx->tx_queue_index = 0;
1916 
1917 		/* prepare both memory models to eliminate possible registration
1918 		 * errors when memory model is switched between page pool and
1919 		 * XSK pool during runtime
1920 		 */
1921 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1922 					  rx->queue_index, queue->napi.napi_id);
1923 		if (retval)
1924 			goto failed;
1925 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1926 						    MEM_TYPE_PAGE_POOL,
1927 						    rx->page_pool);
1928 		if (retval)
1929 			goto failed;
1930 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1931 					  rx->queue_index, queue->napi.napi_id);
1932 		if (retval)
1933 			goto failed;
1934 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1935 						    MEM_TYPE_XSK_BUFF_POOL,
1936 						    NULL);
1937 		if (retval)
1938 			goto failed;
1939 		if (rx->xsk_pool)
1940 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1941 	}
1942 
1943 	retval = tsnep_request_irq(queue, first);
1944 	if (retval) {
1945 		netif_err(adapter, drv, adapter->netdev,
1946 			  "can't get assigned irq %d.\n", queue->irq);
1947 		goto failed;
1948 	}
1949 
1950 	return 0;
1951 
1952 failed:
1953 	tsnep_queue_close(queue, first);
1954 
1955 	return retval;
1956 }
1957 
1958 static void tsnep_queue_enable(struct tsnep_queue *queue)
1959 {
1960 	napi_enable(&queue->napi);
1961 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1962 
1963 	if (queue->tx)
1964 		tsnep_tx_enable(queue->tx);
1965 
1966 	if (queue->rx)
1967 		tsnep_rx_enable(queue->rx);
1968 }
1969 
1970 static void tsnep_queue_disable(struct tsnep_queue *queue)
1971 {
1972 	if (queue->tx)
1973 		tsnep_tx_disable(queue->tx, &queue->napi);
1974 
1975 	napi_disable(&queue->napi);
1976 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1977 
1978 	/* disable RX after NAPI polling has been disabled, because RX can be
1979 	 * enabled during NAPI polling
1980 	 */
1981 	if (queue->rx)
1982 		tsnep_rx_disable(queue->rx);
1983 }
1984 
1985 static int tsnep_netdev_open(struct net_device *netdev)
1986 {
1987 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1988 	int i, retval;
1989 
1990 	for (i = 0; i < adapter->num_queues; i++) {
1991 		if (adapter->queue[i].tx) {
1992 			retval = tsnep_tx_open(adapter->queue[i].tx);
1993 			if (retval)
1994 				goto failed;
1995 		}
1996 		if (adapter->queue[i].rx) {
1997 			retval = tsnep_rx_open(adapter->queue[i].rx);
1998 			if (retval)
1999 				goto failed;
2000 		}
2001 
2002 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
2003 		if (retval)
2004 			goto failed;
2005 	}
2006 
2007 	retval = netif_set_real_num_tx_queues(adapter->netdev,
2008 					      adapter->num_tx_queues);
2009 	if (retval)
2010 		goto failed;
2011 	retval = netif_set_real_num_rx_queues(adapter->netdev,
2012 					      adapter->num_rx_queues);
2013 	if (retval)
2014 		goto failed;
2015 
2016 	tsnep_enable_irq(adapter, ECM_INT_LINK);
2017 	retval = tsnep_phy_open(adapter);
2018 	if (retval)
2019 		goto phy_failed;
2020 
2021 	for (i = 0; i < adapter->num_queues; i++)
2022 		tsnep_queue_enable(&adapter->queue[i]);
2023 
2024 	return 0;
2025 
2026 phy_failed:
2027 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2028 failed:
2029 	for (i = 0; i < adapter->num_queues; i++) {
2030 		tsnep_queue_close(&adapter->queue[i], i == 0);
2031 
2032 		if (adapter->queue[i].rx)
2033 			tsnep_rx_close(adapter->queue[i].rx);
2034 		if (adapter->queue[i].tx)
2035 			tsnep_tx_close(adapter->queue[i].tx);
2036 	}
2037 	return retval;
2038 }
2039 
2040 static int tsnep_netdev_close(struct net_device *netdev)
2041 {
2042 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2043 	int i;
2044 
2045 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2046 	tsnep_phy_close(adapter);
2047 
2048 	for (i = 0; i < adapter->num_queues; i++) {
2049 		tsnep_queue_disable(&adapter->queue[i]);
2050 
2051 		tsnep_queue_close(&adapter->queue[i], i == 0);
2052 
2053 		if (adapter->queue[i].rx)
2054 			tsnep_rx_close(adapter->queue[i].rx);
2055 		if (adapter->queue[i].tx)
2056 			tsnep_tx_close(adapter->queue[i].tx);
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
2063 {
2064 	bool running = netif_running(queue->adapter->netdev);
2065 	u32 frame_size;
2066 
2067 	frame_size = xsk_pool_get_rx_frame_size(pool);
2068 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2069 		return -EOPNOTSUPP;
2070 
2071 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2072 					 sizeof(*queue->rx->page_buffer),
2073 					 GFP_KERNEL);
2074 	if (!queue->rx->page_buffer)
2075 		return -ENOMEM;
2076 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2077 				       sizeof(*queue->rx->xdp_batch),
2078 				       GFP_KERNEL);
2079 	if (!queue->rx->xdp_batch) {
2080 		kfree(queue->rx->page_buffer);
2081 		queue->rx->page_buffer = NULL;
2082 
2083 		return -ENOMEM;
2084 	}
2085 
2086 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2087 
2088 	if (running)
2089 		tsnep_queue_disable(queue);
2090 
2091 	queue->tx->xsk_pool = pool;
2092 	queue->rx->xsk_pool = pool;
2093 
2094 	if (running) {
2095 		tsnep_rx_reopen_xsk(queue->rx);
2096 		tsnep_queue_enable(queue);
2097 	}
2098 
2099 	return 0;
2100 }
2101 
2102 void tsnep_disable_xsk(struct tsnep_queue *queue)
2103 {
2104 	bool running = netif_running(queue->adapter->netdev);
2105 
2106 	if (running)
2107 		tsnep_queue_disable(queue);
2108 
2109 	tsnep_rx_free_zc(queue->rx);
2110 
2111 	queue->rx->xsk_pool = NULL;
2112 	queue->tx->xsk_pool = NULL;
2113 
2114 	if (running) {
2115 		tsnep_rx_reopen(queue->rx);
2116 		tsnep_queue_enable(queue);
2117 	}
2118 
2119 	kfree(queue->rx->xdp_batch);
2120 	queue->rx->xdp_batch = NULL;
2121 	kfree(queue->rx->page_buffer);
2122 	queue->rx->page_buffer = NULL;
2123 }
2124 
2125 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2126 					   struct net_device *netdev)
2127 {
2128 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2129 	u16 queue_mapping = skb_get_queue_mapping(skb);
2130 
2131 	if (queue_mapping >= adapter->num_tx_queues)
2132 		queue_mapping = 0;
2133 
2134 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2135 }
2136 
2137 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2138 			      int cmd)
2139 {
2140 	if (!netif_running(netdev))
2141 		return -EINVAL;
2142 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2143 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2144 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2145 }
2146 
2147 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2148 {
2149 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2150 
2151 	u16 rx_filter = 0;
2152 
2153 	/* configured MAC address and broadcasts are never filtered */
2154 	if (netdev->flags & IFF_PROMISC) {
2155 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2156 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2157 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2158 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2159 	}
2160 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2161 }
2162 
2163 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2164 				     struct rtnl_link_stats64 *stats)
2165 {
2166 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2167 	u32 reg;
2168 	u32 val;
2169 	int i;
2170 
2171 	for (i = 0; i < adapter->num_tx_queues; i++) {
2172 		stats->tx_packets += adapter->tx[i].packets;
2173 		stats->tx_bytes += adapter->tx[i].bytes;
2174 		stats->tx_dropped += adapter->tx[i].dropped;
2175 	}
2176 	for (i = 0; i < adapter->num_rx_queues; i++) {
2177 		stats->rx_packets += adapter->rx[i].packets;
2178 		stats->rx_bytes += adapter->rx[i].bytes;
2179 		stats->rx_dropped += adapter->rx[i].dropped;
2180 		stats->multicast += adapter->rx[i].multicast;
2181 
2182 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2183 			       TSNEP_RX_STATISTIC);
2184 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2185 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2186 		stats->rx_dropped += val;
2187 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2188 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2189 		stats->rx_dropped += val;
2190 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2191 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2192 		stats->rx_errors += val;
2193 		stats->rx_fifo_errors += val;
2194 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2195 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2196 		stats->rx_errors += val;
2197 		stats->rx_frame_errors += val;
2198 	}
2199 
2200 	reg = ioread32(adapter->addr + ECM_STAT);
2201 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2202 	stats->rx_errors += val;
2203 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2204 	stats->rx_errors += val;
2205 	stats->rx_crc_errors += val;
2206 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2207 	stats->rx_errors += val;
2208 }
2209 
2210 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2211 {
2212 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2213 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2214 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2215 
2216 	ether_addr_copy(adapter->mac_address, addr);
2217 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2218 		   addr);
2219 }
2220 
2221 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2222 {
2223 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2224 	struct sockaddr *sock_addr = addr;
2225 	int retval;
2226 
2227 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2228 	if (retval)
2229 		return retval;
2230 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2231 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2232 
2233 	return 0;
2234 }
2235 
2236 static int tsnep_netdev_set_features(struct net_device *netdev,
2237 				     netdev_features_t features)
2238 {
2239 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2240 	netdev_features_t changed = netdev->features ^ features;
2241 	bool enable;
2242 	int retval = 0;
2243 
2244 	if (changed & NETIF_F_LOOPBACK) {
2245 		enable = !!(features & NETIF_F_LOOPBACK);
2246 		retval = tsnep_phy_loopback(adapter, enable);
2247 	}
2248 
2249 	return retval;
2250 }
2251 
2252 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2253 				       const struct skb_shared_hwtstamps *hwtstamps,
2254 				       bool cycles)
2255 {
2256 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2257 	u64 timestamp;
2258 
2259 	if (cycles)
2260 		timestamp = __le64_to_cpu(rx_inline->counter);
2261 	else
2262 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2263 
2264 	return ns_to_ktime(timestamp);
2265 }
2266 
2267 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2268 {
2269 	struct tsnep_adapter *adapter = netdev_priv(dev);
2270 
2271 	switch (bpf->command) {
2272 	case XDP_SETUP_PROG:
2273 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2274 	case XDP_SETUP_XSK_POOL:
2275 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2276 					    bpf->xsk.queue_id);
2277 	default:
2278 		return -EOPNOTSUPP;
2279 	}
2280 }
2281 
2282 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2283 {
2284 	if (cpu >= TSNEP_MAX_QUEUES)
2285 		cpu &= TSNEP_MAX_QUEUES - 1;
2286 
2287 	while (cpu >= adapter->num_tx_queues)
2288 		cpu -= adapter->num_tx_queues;
2289 
2290 	return &adapter->tx[cpu];
2291 }
2292 
2293 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2294 				 struct xdp_frame **xdp, u32 flags)
2295 {
2296 	struct tsnep_adapter *adapter = netdev_priv(dev);
2297 	u32 cpu = smp_processor_id();
2298 	struct netdev_queue *nq;
2299 	struct tsnep_tx *tx;
2300 	int nxmit;
2301 	bool xmit;
2302 
2303 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2304 		return -EINVAL;
2305 
2306 	tx = tsnep_xdp_get_tx(adapter, cpu);
2307 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2308 
2309 	__netif_tx_lock(nq, cpu);
2310 
2311 	for (nxmit = 0; nxmit < n; nxmit++) {
2312 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2313 						 TSNEP_TX_TYPE_XDP_NDO);
2314 		if (!xmit)
2315 			break;
2316 
2317 		/* avoid transmit queue timeout since we share it with the slow
2318 		 * path
2319 		 */
2320 		txq_trans_cond_update(nq);
2321 	}
2322 
2323 	if (flags & XDP_XMIT_FLUSH)
2324 		tsnep_xdp_xmit_flush(tx);
2325 
2326 	__netif_tx_unlock(nq);
2327 
2328 	return nxmit;
2329 }
2330 
2331 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2332 				   u32 flags)
2333 {
2334 	struct tsnep_adapter *adapter = netdev_priv(dev);
2335 	struct tsnep_queue *queue;
2336 
2337 	if (queue_id >= adapter->num_rx_queues ||
2338 	    queue_id >= adapter->num_tx_queues)
2339 		return -EINVAL;
2340 
2341 	queue = &adapter->queue[queue_id];
2342 
2343 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2344 		napi_schedule(&queue->napi);
2345 
2346 	return 0;
2347 }
2348 
2349 static const struct net_device_ops tsnep_netdev_ops = {
2350 	.ndo_open = tsnep_netdev_open,
2351 	.ndo_stop = tsnep_netdev_close,
2352 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2353 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2354 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2355 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2356 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2357 	.ndo_set_features = tsnep_netdev_set_features,
2358 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2359 	.ndo_setup_tc = tsnep_tc_setup,
2360 	.ndo_bpf = tsnep_netdev_bpf,
2361 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2362 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2363 };
2364 
2365 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2366 {
2367 	int retval;
2368 
2369 	/* initialize RX filtering, at least configured MAC address and
2370 	 * broadcast are not filtered
2371 	 */
2372 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2373 
2374 	/* try to get MAC address in the following order:
2375 	 * - device tree
2376 	 * - valid MAC address already set
2377 	 * - MAC address register if valid
2378 	 * - random MAC address
2379 	 */
2380 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2381 				    adapter->mac_address);
2382 	if (retval == -EPROBE_DEFER)
2383 		return retval;
2384 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2385 		*(u32 *)adapter->mac_address =
2386 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2387 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2388 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2389 		if (!is_valid_ether_addr(adapter->mac_address))
2390 			eth_random_addr(adapter->mac_address);
2391 	}
2392 
2393 	tsnep_mac_set_address(adapter, adapter->mac_address);
2394 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2395 
2396 	return 0;
2397 }
2398 
2399 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2400 {
2401 	struct device_node *np = adapter->pdev->dev.of_node;
2402 	int retval;
2403 
2404 	if (np) {
2405 		np = of_get_child_by_name(np, "mdio");
2406 		if (!np)
2407 			return 0;
2408 
2409 		adapter->suppress_preamble =
2410 			of_property_read_bool(np, "suppress-preamble");
2411 	}
2412 
2413 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2414 	if (!adapter->mdiobus) {
2415 		retval = -ENOMEM;
2416 
2417 		goto out;
2418 	}
2419 
2420 	adapter->mdiobus->priv = (void *)adapter;
2421 	adapter->mdiobus->parent = &adapter->pdev->dev;
2422 	adapter->mdiobus->read = tsnep_mdiobus_read;
2423 	adapter->mdiobus->write = tsnep_mdiobus_write;
2424 	adapter->mdiobus->name = TSNEP "-mdiobus";
2425 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2426 		 adapter->pdev->name);
2427 
2428 	/* do not scan broadcast address */
2429 	adapter->mdiobus->phy_mask = 0x0000001;
2430 
2431 	retval = of_mdiobus_register(adapter->mdiobus, np);
2432 
2433 out:
2434 	of_node_put(np);
2435 
2436 	return retval;
2437 }
2438 
2439 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2440 {
2441 	struct device_node *phy_node;
2442 	int retval;
2443 
2444 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2445 				 &adapter->phy_mode);
2446 	if (retval)
2447 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2448 
2449 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2450 				    0);
2451 	adapter->phydev = of_phy_find_device(phy_node);
2452 	of_node_put(phy_node);
2453 	if (!adapter->phydev && adapter->mdiobus)
2454 		adapter->phydev = phy_find_first(adapter->mdiobus);
2455 	if (!adapter->phydev)
2456 		return -EIO;
2457 
2458 	return 0;
2459 }
2460 
2461 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2462 {
2463 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2464 	char name[8];
2465 	int i;
2466 	int retval;
2467 
2468 	/* one TX/RX queue pair for netdev is mandatory */
2469 	if (platform_irq_count(adapter->pdev) == 1)
2470 		retval = platform_get_irq(adapter->pdev, 0);
2471 	else
2472 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2473 	if (retval < 0)
2474 		return retval;
2475 	adapter->num_tx_queues = 1;
2476 	adapter->num_rx_queues = 1;
2477 	adapter->num_queues = 1;
2478 	adapter->queue[0].adapter = adapter;
2479 	adapter->queue[0].irq = retval;
2480 	adapter->queue[0].tx = &adapter->tx[0];
2481 	adapter->queue[0].tx->adapter = adapter;
2482 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2483 	adapter->queue[0].tx->queue_index = 0;
2484 	adapter->queue[0].rx = &adapter->rx[0];
2485 	adapter->queue[0].rx->adapter = adapter;
2486 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2487 	adapter->queue[0].rx->queue_index = 0;
2488 	adapter->queue[0].irq_mask = irq_mask;
2489 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2490 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2491 					TSNEP_COALESCE_USECS_DEFAULT);
2492 	if (retval < 0)
2493 		return retval;
2494 
2495 	adapter->netdev->irq = adapter->queue[0].irq;
2496 
2497 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2498 	 * available
2499 	 */
2500 	for (i = 1; i < queue_count; i++) {
2501 		sprintf(name, "txrx-%d", i);
2502 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2503 		if (retval < 0)
2504 			break;
2505 
2506 		adapter->num_tx_queues++;
2507 		adapter->num_rx_queues++;
2508 		adapter->num_queues++;
2509 		adapter->queue[i].adapter = adapter;
2510 		adapter->queue[i].irq = retval;
2511 		adapter->queue[i].tx = &adapter->tx[i];
2512 		adapter->queue[i].tx->adapter = adapter;
2513 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2514 		adapter->queue[i].tx->queue_index = i;
2515 		adapter->queue[i].rx = &adapter->rx[i];
2516 		adapter->queue[i].rx->adapter = adapter;
2517 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2518 		adapter->queue[i].rx->queue_index = i;
2519 		adapter->queue[i].irq_mask =
2520 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2521 		adapter->queue[i].irq_delay_addr =
2522 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2523 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2524 						TSNEP_COALESCE_USECS_DEFAULT);
2525 		if (retval < 0)
2526 			return retval;
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 static int tsnep_probe(struct platform_device *pdev)
2533 {
2534 	struct tsnep_adapter *adapter;
2535 	struct net_device *netdev;
2536 	struct resource *io;
2537 	u32 type;
2538 	int revision;
2539 	int version;
2540 	int queue_count;
2541 	int retval;
2542 
2543 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2544 					 sizeof(struct tsnep_adapter),
2545 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2546 	if (!netdev)
2547 		return -ENODEV;
2548 	SET_NETDEV_DEV(netdev, &pdev->dev);
2549 	adapter = netdev_priv(netdev);
2550 	platform_set_drvdata(pdev, adapter);
2551 	adapter->pdev = pdev;
2552 	adapter->dmadev = &pdev->dev;
2553 	adapter->netdev = netdev;
2554 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2555 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2556 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2557 
2558 	netdev->min_mtu = ETH_MIN_MTU;
2559 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2560 
2561 	mutex_init(&adapter->gate_control_lock);
2562 	mutex_init(&adapter->rxnfc_lock);
2563 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2564 
2565 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2566 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
2567 	if (IS_ERR(adapter->addr))
2568 		return PTR_ERR(adapter->addr);
2569 	netdev->mem_start = io->start;
2570 	netdev->mem_end = io->end;
2571 
2572 	type = ioread32(adapter->addr + ECM_TYPE);
2573 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2574 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2575 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2576 	adapter->gate_control = type & ECM_GATE_CONTROL;
2577 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2578 
2579 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2580 
2581 	retval = tsnep_queue_init(adapter, queue_count);
2582 	if (retval)
2583 		return retval;
2584 
2585 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2586 					   DMA_BIT_MASK(64));
2587 	if (retval) {
2588 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2589 		return retval;
2590 	}
2591 
2592 	retval = tsnep_mac_init(adapter);
2593 	if (retval)
2594 		return retval;
2595 
2596 	retval = tsnep_mdio_init(adapter);
2597 	if (retval)
2598 		goto mdio_init_failed;
2599 
2600 	retval = tsnep_phy_init(adapter);
2601 	if (retval)
2602 		goto phy_init_failed;
2603 
2604 	retval = tsnep_ptp_init(adapter);
2605 	if (retval)
2606 		goto ptp_init_failed;
2607 
2608 	retval = tsnep_tc_init(adapter);
2609 	if (retval)
2610 		goto tc_init_failed;
2611 
2612 	retval = tsnep_rxnfc_init(adapter);
2613 	if (retval)
2614 		goto rxnfc_init_failed;
2615 
2616 	netdev->netdev_ops = &tsnep_netdev_ops;
2617 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2618 	netdev->features = NETIF_F_SG;
2619 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2620 
2621 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2622 			       NETDEV_XDP_ACT_NDO_XMIT |
2623 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2624 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2625 
2626 	/* carrier off reporting is important to ethtool even BEFORE open */
2627 	netif_carrier_off(netdev);
2628 
2629 	retval = register_netdev(netdev);
2630 	if (retval)
2631 		goto register_failed;
2632 
2633 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2634 		 revision);
2635 	if (adapter->gate_control)
2636 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2637 
2638 	return 0;
2639 
2640 register_failed:
2641 	tsnep_rxnfc_cleanup(adapter);
2642 rxnfc_init_failed:
2643 	tsnep_tc_cleanup(adapter);
2644 tc_init_failed:
2645 	tsnep_ptp_cleanup(adapter);
2646 ptp_init_failed:
2647 phy_init_failed:
2648 	if (adapter->mdiobus)
2649 		mdiobus_unregister(adapter->mdiobus);
2650 mdio_init_failed:
2651 	return retval;
2652 }
2653 
2654 static void tsnep_remove(struct platform_device *pdev)
2655 {
2656 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2657 
2658 	unregister_netdev(adapter->netdev);
2659 
2660 	tsnep_rxnfc_cleanup(adapter);
2661 
2662 	tsnep_tc_cleanup(adapter);
2663 
2664 	tsnep_ptp_cleanup(adapter);
2665 
2666 	if (adapter->mdiobus)
2667 		mdiobus_unregister(adapter->mdiobus);
2668 
2669 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2670 }
2671 
2672 static const struct of_device_id tsnep_of_match[] = {
2673 	{ .compatible = "engleder,tsnep", },
2674 { },
2675 };
2676 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2677 
2678 static struct platform_driver tsnep_driver = {
2679 	.driver = {
2680 		.name = TSNEP,
2681 		.of_match_table = tsnep_of_match,
2682 	},
2683 	.probe = tsnep_probe,
2684 	.remove_new = tsnep_remove,
2685 };
2686 module_platform_driver(tsnep_driver);
2687 
2688 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2689 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2690 MODULE_LICENSE("GPL");
2691