xref: /linux/drivers/net/ethernet/faraday/ftgmac100.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Faraday FTGMAC100 Gigabit Ethernet
4  *
5  * (C) Copyright 2009-2011 Faraday Technology
6  * Po-Yu Chuang <ratbert@faraday-tech.com>
7  */
8 
9 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
10 
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/of_mdio.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/property.h>
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 #include <linux/of_net.h>
27 #include <net/ip.h>
28 #include <net/ncsi.h>
29 
30 #include "ftgmac100.h"
31 
32 #define DRV_NAME	"ftgmac100"
33 #define DRV_VERSION	"0.7"
34 
35 /* Arbitrary values, I am not sure the HW has limits */
36 #define MAX_RX_QUEUE_ENTRIES	1024
37 #define MAX_TX_QUEUE_ENTRIES	1024
38 #define MIN_RX_QUEUE_ENTRIES	32
39 #define MIN_TX_QUEUE_ENTRIES	32
40 
41 /* Defaults */
42 #define DEF_RX_QUEUE_ENTRIES	128
43 #define DEF_TX_QUEUE_ENTRIES	128
44 
45 #define MAX_PKT_SIZE		1536
46 #define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
47 
48 /* Min number of tx ring entries before stopping queue */
49 #define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
50 
51 #define FTGMAC_100MHZ		100000000
52 #define FTGMAC_25MHZ		25000000
53 
54 struct ftgmac100 {
55 	/* Registers */
56 	struct resource *res;
57 	void __iomem *base;
58 
59 	/* Rx ring */
60 	unsigned int rx_q_entries;
61 	struct ftgmac100_rxdes *rxdes;
62 	dma_addr_t rxdes_dma;
63 	struct sk_buff **rx_skbs;
64 	unsigned int rx_pointer;
65 	u32 rxdes0_edorr_mask;
66 
67 	/* Tx ring */
68 	unsigned int tx_q_entries;
69 	struct ftgmac100_txdes *txdes;
70 	dma_addr_t txdes_dma;
71 	struct sk_buff **tx_skbs;
72 	unsigned int tx_clean_pointer;
73 	unsigned int tx_pointer;
74 	u32 txdes0_edotr_mask;
75 
76 	/* Used to signal the reset task of ring change request */
77 	unsigned int new_rx_q_entries;
78 	unsigned int new_tx_q_entries;
79 
80 	/* Scratch page to use when rx skb alloc fails */
81 	void *rx_scratch;
82 	dma_addr_t rx_scratch_dma;
83 
84 	/* Component structures */
85 	struct net_device *netdev;
86 	struct device *dev;
87 	struct ncsi_dev *ndev;
88 	struct napi_struct napi;
89 	struct work_struct reset_task;
90 	struct mii_bus *mii_bus;
91 	struct clk *clk;
92 
93 	/* AST2500/AST2600 RMII ref clock gate */
94 	struct clk *rclk;
95 
96 	/* Link management */
97 	int cur_speed;
98 	int cur_duplex;
99 	bool use_ncsi;
100 
101 	/* Multicast filter settings */
102 	u32 maht0;
103 	u32 maht1;
104 
105 	/* Flow control settings */
106 	bool tx_pause;
107 	bool rx_pause;
108 	bool aneg_pause;
109 
110 	/* Misc */
111 	bool need_mac_restart;
112 	bool is_aspeed;
113 };
114 
115 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
116 {
117 	struct net_device *netdev = priv->netdev;
118 	int i;
119 
120 	/* NOTE: reset clears all registers */
121 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
122 	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
123 		  priv->base + FTGMAC100_OFFSET_MACCR);
124 	for (i = 0; i < 200; i++) {
125 		unsigned int maccr;
126 
127 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
128 		if (!(maccr & FTGMAC100_MACCR_SW_RST))
129 			return 0;
130 
131 		udelay(1);
132 	}
133 
134 	netdev_err(netdev, "Hardware reset failed\n");
135 	return -EIO;
136 }
137 
138 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
139 {
140 	u32 maccr = 0;
141 
142 	switch (priv->cur_speed) {
143 	case SPEED_10:
144 	case 0: /* no link */
145 		break;
146 
147 	case SPEED_100:
148 		maccr |= FTGMAC100_MACCR_FAST_MODE;
149 		break;
150 
151 	case SPEED_1000:
152 		maccr |= FTGMAC100_MACCR_GIGA_MODE;
153 		break;
154 	default:
155 		netdev_err(priv->netdev, "Unknown speed %d !\n",
156 			   priv->cur_speed);
157 		break;
158 	}
159 
160 	/* (Re)initialize the queue pointers */
161 	priv->rx_pointer = 0;
162 	priv->tx_clean_pointer = 0;
163 	priv->tx_pointer = 0;
164 
165 	/* The doc says reset twice with 10us interval */
166 	if (ftgmac100_reset_mac(priv, maccr))
167 		return -EIO;
168 	usleep_range(10, 1000);
169 	return ftgmac100_reset_mac(priv, maccr);
170 }
171 
172 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
173 {
174 	unsigned int maddr = mac[0] << 8 | mac[1];
175 	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
176 
177 	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
178 	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
179 }
180 
181 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
182 {
183 	u8 mac[ETH_ALEN];
184 	unsigned int m;
185 	unsigned int l;
186 	void *addr;
187 
188 	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
189 	if (addr) {
190 		ether_addr_copy(priv->netdev->dev_addr, mac);
191 		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
192 			 mac);
193 		return;
194 	}
195 
196 	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
197 	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
198 
199 	mac[0] = (m >> 8) & 0xff;
200 	mac[1] = m & 0xff;
201 	mac[2] = (l >> 24) & 0xff;
202 	mac[3] = (l >> 16) & 0xff;
203 	mac[4] = (l >> 8) & 0xff;
204 	mac[5] = l & 0xff;
205 
206 	if (is_valid_ether_addr(mac)) {
207 		ether_addr_copy(priv->netdev->dev_addr, mac);
208 		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
209 	} else {
210 		eth_hw_addr_random(priv->netdev);
211 		dev_info(priv->dev, "Generated random MAC address %pM\n",
212 			 priv->netdev->dev_addr);
213 	}
214 }
215 
216 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
217 {
218 	int ret;
219 
220 	ret = eth_prepare_mac_addr_change(dev, p);
221 	if (ret < 0)
222 		return ret;
223 
224 	eth_commit_mac_addr_change(dev, p);
225 	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
226 
227 	return 0;
228 }
229 
230 static void ftgmac100_config_pause(struct ftgmac100 *priv)
231 {
232 	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
233 
234 	/* Throttle tx queue when receiving pause frames */
235 	if (priv->rx_pause)
236 		fcr |= FTGMAC100_FCR_FC_EN;
237 
238 	/* Enables sending pause frames when the RX queue is past a
239 	 * certain threshold.
240 	 */
241 	if (priv->tx_pause)
242 		fcr |= FTGMAC100_FCR_FCTHR_EN;
243 
244 	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
245 }
246 
247 static void ftgmac100_init_hw(struct ftgmac100 *priv)
248 {
249 	u32 reg, rfifo_sz, tfifo_sz;
250 
251 	/* Clear stale interrupts */
252 	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
253 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
254 
255 	/* Setup RX ring buffer base */
256 	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
257 
258 	/* Setup TX ring buffer base */
259 	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
260 
261 	/* Configure RX buffer size */
262 	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
263 		  priv->base + FTGMAC100_OFFSET_RBSR);
264 
265 	/* Set RX descriptor autopoll */
266 	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
267 		  priv->base + FTGMAC100_OFFSET_APTC);
268 
269 	/* Write MAC address */
270 	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
271 
272 	/* Write multicast filter */
273 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
274 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
275 
276 	/* Configure descriptor sizes and increase burst sizes according
277 	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
278 	 * the thresholds set based on the recommended values in the
279 	 * AST2400 specification.
280 	 */
281 	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
282 		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
283 		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
284 		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
285 		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
286 		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
287 		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
288 		  priv->base + FTGMAC100_OFFSET_DBLAC);
289 
290 	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
291 	 * mitigation doesn't seem to provide any benefit with NAPI so leave
292 	 * it at that.
293 	 */
294 	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
295 		  FTGMAC100_ITC_TXINT_THR(1),
296 		  priv->base + FTGMAC100_OFFSET_ITC);
297 
298 	/* Configure FIFO sizes in the TPAFCR register */
299 	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
300 	rfifo_sz = reg & 0x00000007;
301 	tfifo_sz = (reg >> 3) & 0x00000007;
302 	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
303 	reg &= ~0x3f000000;
304 	reg |= (tfifo_sz << 27);
305 	reg |= (rfifo_sz << 24);
306 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
307 }
308 
309 static void ftgmac100_start_hw(struct ftgmac100 *priv)
310 {
311 	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
312 
313 	/* Keep the original GMAC and FAST bits */
314 	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
315 
316 	/* Add all the main enable bits */
317 	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
318 		 FTGMAC100_MACCR_RXDMA_EN	|
319 		 FTGMAC100_MACCR_TXMAC_EN	|
320 		 FTGMAC100_MACCR_RXMAC_EN	|
321 		 FTGMAC100_MACCR_CRC_APD	|
322 		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
323 		 FTGMAC100_MACCR_RX_RUNT	|
324 		 FTGMAC100_MACCR_RX_BROADPKT;
325 
326 	/* Add other bits as needed */
327 	if (priv->cur_duplex == DUPLEX_FULL)
328 		maccr |= FTGMAC100_MACCR_FULLDUP;
329 	if (priv->netdev->flags & IFF_PROMISC)
330 		maccr |= FTGMAC100_MACCR_RX_ALL;
331 	if (priv->netdev->flags & IFF_ALLMULTI)
332 		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
333 	else if (netdev_mc_count(priv->netdev))
334 		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
335 
336 	/* Vlan filtering enabled */
337 	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
338 		maccr |= FTGMAC100_MACCR_RM_VLAN;
339 
340 	/* Hit the HW */
341 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
342 }
343 
344 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
345 {
346 	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
347 }
348 
349 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
350 {
351 	struct netdev_hw_addr *ha;
352 
353 	priv->maht1 = 0;
354 	priv->maht0 = 0;
355 	netdev_for_each_mc_addr(ha, priv->netdev) {
356 		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
357 
358 		crc_val = (~(crc_val >> 2)) & 0x3f;
359 		if (crc_val >= 32)
360 			priv->maht1 |= 1ul << (crc_val - 32);
361 		else
362 			priv->maht0 |= 1ul << (crc_val);
363 	}
364 }
365 
366 static void ftgmac100_set_rx_mode(struct net_device *netdev)
367 {
368 	struct ftgmac100 *priv = netdev_priv(netdev);
369 
370 	/* Setup the hash filter */
371 	ftgmac100_calc_mc_hash(priv);
372 
373 	/* Interface down ? that's all there is to do */
374 	if (!netif_running(netdev))
375 		return;
376 
377 	/* Update the HW */
378 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
379 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
380 
381 	/* Reconfigure MACCR */
382 	ftgmac100_start_hw(priv);
383 }
384 
385 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
386 				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
387 {
388 	struct net_device *netdev = priv->netdev;
389 	struct sk_buff *skb;
390 	dma_addr_t map;
391 	int err = 0;
392 
393 	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
394 	if (unlikely(!skb)) {
395 		if (net_ratelimit())
396 			netdev_warn(netdev, "failed to allocate rx skb\n");
397 		err = -ENOMEM;
398 		map = priv->rx_scratch_dma;
399 	} else {
400 		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
401 				     DMA_FROM_DEVICE);
402 		if (unlikely(dma_mapping_error(priv->dev, map))) {
403 			if (net_ratelimit())
404 				netdev_err(netdev, "failed to map rx page\n");
405 			dev_kfree_skb_any(skb);
406 			map = priv->rx_scratch_dma;
407 			skb = NULL;
408 			err = -ENOMEM;
409 		}
410 	}
411 
412 	/* Store skb */
413 	priv->rx_skbs[entry] = skb;
414 
415 	/* Store DMA address into RX desc */
416 	rxdes->rxdes3 = cpu_to_le32(map);
417 
418 	/* Ensure the above is ordered vs clearing the OWN bit */
419 	dma_wmb();
420 
421 	/* Clean status (which resets own bit) */
422 	if (entry == (priv->rx_q_entries - 1))
423 		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
424 	else
425 		rxdes->rxdes0 = 0;
426 
427 	return err;
428 }
429 
430 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
431 					      unsigned int pointer)
432 {
433 	return (pointer + 1) & (priv->rx_q_entries - 1);
434 }
435 
436 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
437 {
438 	struct net_device *netdev = priv->netdev;
439 
440 	if (status & FTGMAC100_RXDES0_RX_ERR)
441 		netdev->stats.rx_errors++;
442 
443 	if (status & FTGMAC100_RXDES0_CRC_ERR)
444 		netdev->stats.rx_crc_errors++;
445 
446 	if (status & (FTGMAC100_RXDES0_FTL |
447 		      FTGMAC100_RXDES0_RUNT |
448 		      FTGMAC100_RXDES0_RX_ODD_NB))
449 		netdev->stats.rx_length_errors++;
450 }
451 
452 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
453 {
454 	struct net_device *netdev = priv->netdev;
455 	struct ftgmac100_rxdes *rxdes;
456 	struct sk_buff *skb;
457 	unsigned int pointer, size;
458 	u32 status, csum_vlan;
459 	dma_addr_t map;
460 
461 	/* Grab next RX descriptor */
462 	pointer = priv->rx_pointer;
463 	rxdes = &priv->rxdes[pointer];
464 
465 	/* Grab descriptor status */
466 	status = le32_to_cpu(rxdes->rxdes0);
467 
468 	/* Do we have a packet ? */
469 	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
470 		return false;
471 
472 	/* Order subsequent reads with the test for the ready bit */
473 	dma_rmb();
474 
475 	/* We don't cope with fragmented RX packets */
476 	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
477 		     !(status & FTGMAC100_RXDES0_LRS)))
478 		goto drop;
479 
480 	/* Grab received size and csum vlan field in the descriptor */
481 	size = status & FTGMAC100_RXDES0_VDBC;
482 	csum_vlan = le32_to_cpu(rxdes->rxdes1);
483 
484 	/* Any error (other than csum offload) flagged ? */
485 	if (unlikely(status & RXDES0_ANY_ERROR)) {
486 		/* Correct for incorrect flagging of runt packets
487 		 * with vlan tags... Just accept a runt packet that
488 		 * has been flagged as vlan and whose size is at
489 		 * least 60 bytes.
490 		 */
491 		if ((status & FTGMAC100_RXDES0_RUNT) &&
492 		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
493 		    (size >= 60))
494 			status &= ~FTGMAC100_RXDES0_RUNT;
495 
496 		/* Any error still in there ? */
497 		if (status & RXDES0_ANY_ERROR) {
498 			ftgmac100_rx_packet_error(priv, status);
499 			goto drop;
500 		}
501 	}
502 
503 	/* If the packet had no skb (failed to allocate earlier)
504 	 * then try to allocate one and skip
505 	 */
506 	skb = priv->rx_skbs[pointer];
507 	if (!unlikely(skb)) {
508 		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
509 		goto drop;
510 	}
511 
512 	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
513 		netdev->stats.multicast++;
514 
515 	/* If the HW found checksum errors, bounce it to software.
516 	 *
517 	 * If we didn't, we need to see if the packet was recognized
518 	 * by HW as one of the supported checksummed protocols before
519 	 * we accept the HW test results.
520 	 */
521 	if (netdev->features & NETIF_F_RXCSUM) {
522 		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
523 			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
524 			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
525 		if ((csum_vlan & err_bits) ||
526 		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
527 			skb->ip_summed = CHECKSUM_NONE;
528 		else
529 			skb->ip_summed = CHECKSUM_UNNECESSARY;
530 	}
531 
532 	/* Transfer received size to skb */
533 	skb_put(skb, size);
534 
535 	/* Extract vlan tag */
536 	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
537 	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
538 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
539 				       csum_vlan & 0xffff);
540 
541 	/* Tear down DMA mapping, do necessary cache management */
542 	map = le32_to_cpu(rxdes->rxdes3);
543 
544 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
545 	/* When we don't have an iommu, we can save cycles by not
546 	 * invalidating the cache for the part of the packet that
547 	 * wasn't received.
548 	 */
549 	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
550 #else
551 	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
552 #endif
553 
554 
555 	/* Resplenish rx ring */
556 	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
557 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
558 
559 	skb->protocol = eth_type_trans(skb, netdev);
560 
561 	netdev->stats.rx_packets++;
562 	netdev->stats.rx_bytes += size;
563 
564 	/* push packet to protocol stack */
565 	if (skb->ip_summed == CHECKSUM_NONE)
566 		netif_receive_skb(skb);
567 	else
568 		napi_gro_receive(&priv->napi, skb);
569 
570 	(*processed)++;
571 	return true;
572 
573  drop:
574 	/* Clean rxdes0 (which resets own bit) */
575 	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
576 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
577 	netdev->stats.rx_dropped++;
578 	return true;
579 }
580 
581 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
582 				     unsigned int index)
583 {
584 	if (index == (priv->tx_q_entries - 1))
585 		return priv->txdes0_edotr_mask;
586 	else
587 		return 0;
588 }
589 
590 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
591 					      unsigned int pointer)
592 {
593 	return (pointer + 1) & (priv->tx_q_entries - 1);
594 }
595 
596 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
597 {
598 	/* Returns the number of available slots in the TX queue
599 	 *
600 	 * This always leaves one free slot so we don't have to
601 	 * worry about empty vs. full, and this simplifies the
602 	 * test for ftgmac100_tx_buf_cleanable() below
603 	 */
604 	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
605 		(priv->tx_q_entries - 1);
606 }
607 
608 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
609 {
610 	return priv->tx_pointer != priv->tx_clean_pointer;
611 }
612 
613 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
614 				     unsigned int pointer,
615 				     struct sk_buff *skb,
616 				     struct ftgmac100_txdes *txdes,
617 				     u32 ctl_stat)
618 {
619 	dma_addr_t map = le32_to_cpu(txdes->txdes3);
620 	size_t len;
621 
622 	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
623 		len = skb_headlen(skb);
624 		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
625 	} else {
626 		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
627 		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
628 	}
629 
630 	/* Free SKB on last segment */
631 	if (ctl_stat & FTGMAC100_TXDES0_LTS)
632 		dev_kfree_skb(skb);
633 	priv->tx_skbs[pointer] = NULL;
634 }
635 
636 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
637 {
638 	struct net_device *netdev = priv->netdev;
639 	struct ftgmac100_txdes *txdes;
640 	struct sk_buff *skb;
641 	unsigned int pointer;
642 	u32 ctl_stat;
643 
644 	pointer = priv->tx_clean_pointer;
645 	txdes = &priv->txdes[pointer];
646 
647 	ctl_stat = le32_to_cpu(txdes->txdes0);
648 	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
649 		return false;
650 
651 	skb = priv->tx_skbs[pointer];
652 	netdev->stats.tx_packets++;
653 	netdev->stats.tx_bytes += skb->len;
654 	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
655 	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
656 
657 	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
658 
659 	return true;
660 }
661 
662 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
663 {
664 	struct net_device *netdev = priv->netdev;
665 
666 	/* Process all completed packets */
667 	while (ftgmac100_tx_buf_cleanable(priv) &&
668 	       ftgmac100_tx_complete_packet(priv))
669 		;
670 
671 	/* Restart queue if needed */
672 	smp_mb();
673 	if (unlikely(netif_queue_stopped(netdev) &&
674 		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
675 		struct netdev_queue *txq;
676 
677 		txq = netdev_get_tx_queue(netdev, 0);
678 		__netif_tx_lock(txq, smp_processor_id());
679 		if (netif_queue_stopped(netdev) &&
680 		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
681 			netif_wake_queue(netdev);
682 		__netif_tx_unlock(txq);
683 	}
684 }
685 
686 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
687 {
688 	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
689 		u8 ip_proto = ip_hdr(skb)->protocol;
690 
691 		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
692 		switch(ip_proto) {
693 		case IPPROTO_TCP:
694 			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
695 			return true;
696 		case IPPROTO_UDP:
697 			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
698 			return true;
699 		case IPPROTO_IP:
700 			return true;
701 		}
702 	}
703 	return skb_checksum_help(skb) == 0;
704 }
705 
706 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
707 					     struct net_device *netdev)
708 {
709 	struct ftgmac100 *priv = netdev_priv(netdev);
710 	struct ftgmac100_txdes *txdes, *first;
711 	unsigned int pointer, nfrags, len, i, j;
712 	u32 f_ctl_stat, ctl_stat, csum_vlan;
713 	dma_addr_t map;
714 
715 	/* The HW doesn't pad small frames */
716 	if (eth_skb_pad(skb)) {
717 		netdev->stats.tx_dropped++;
718 		return NETDEV_TX_OK;
719 	}
720 
721 	/* Reject oversize packets */
722 	if (unlikely(skb->len > MAX_PKT_SIZE)) {
723 		if (net_ratelimit())
724 			netdev_dbg(netdev, "tx packet too big\n");
725 		goto drop;
726 	}
727 
728 	/* Do we have a limit on #fragments ? I yet have to get a reply
729 	 * from Aspeed. If there's one I haven't hit it.
730 	 */
731 	nfrags = skb_shinfo(skb)->nr_frags;
732 
733 	/* Setup HW checksumming */
734 	csum_vlan = 0;
735 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
736 	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
737 		goto drop;
738 
739 	/* Add VLAN tag */
740 	if (skb_vlan_tag_present(skb)) {
741 		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
742 		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
743 	}
744 
745 	/* Get header len */
746 	len = skb_headlen(skb);
747 
748 	/* Map the packet head */
749 	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
750 	if (dma_mapping_error(priv->dev, map)) {
751 		if (net_ratelimit())
752 			netdev_err(netdev, "map tx packet head failed\n");
753 		goto drop;
754 	}
755 
756 	/* Grab the next free tx descriptor */
757 	pointer = priv->tx_pointer;
758 	txdes = first = &priv->txdes[pointer];
759 
760 	/* Setup it up with the packet head. Don't write the head to the
761 	 * ring just yet
762 	 */
763 	priv->tx_skbs[pointer] = skb;
764 	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
765 	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
766 	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
767 	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
768 	if (nfrags == 0)
769 		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
770 	txdes->txdes3 = cpu_to_le32(map);
771 	txdes->txdes1 = cpu_to_le32(csum_vlan);
772 
773 	/* Next descriptor */
774 	pointer = ftgmac100_next_tx_pointer(priv, pointer);
775 
776 	/* Add the fragments */
777 	for (i = 0; i < nfrags; i++) {
778 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779 
780 		len = skb_frag_size(frag);
781 
782 		/* Map it */
783 		map = skb_frag_dma_map(priv->dev, frag, 0, len,
784 				       DMA_TO_DEVICE);
785 		if (dma_mapping_error(priv->dev, map))
786 			goto dma_err;
787 
788 		/* Setup descriptor */
789 		priv->tx_skbs[pointer] = skb;
790 		txdes = &priv->txdes[pointer];
791 		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
792 		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
793 		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
794 		if (i == (nfrags - 1))
795 			ctl_stat |= FTGMAC100_TXDES0_LTS;
796 		txdes->txdes0 = cpu_to_le32(ctl_stat);
797 		txdes->txdes1 = 0;
798 		txdes->txdes3 = cpu_to_le32(map);
799 
800 		/* Next one */
801 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
802 	}
803 
804 	/* Order the previous packet and descriptor udpates
805 	 * before setting the OWN bit on the first descriptor.
806 	 */
807 	dma_wmb();
808 	first->txdes0 = cpu_to_le32(f_ctl_stat);
809 
810 	/* Update next TX pointer */
811 	priv->tx_pointer = pointer;
812 
813 	/* If there isn't enough room for all the fragments of a new packet
814 	 * in the TX ring, stop the queue. The sequence below is race free
815 	 * vs. a concurrent restart in ftgmac100_poll()
816 	 */
817 	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
818 		netif_stop_queue(netdev);
819 		/* Order the queue stop with the test below */
820 		smp_mb();
821 		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
822 			netif_wake_queue(netdev);
823 	}
824 
825 	/* Poke transmitter to read the updated TX descriptors */
826 	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
827 
828 	return NETDEV_TX_OK;
829 
830  dma_err:
831 	if (net_ratelimit())
832 		netdev_err(netdev, "map tx fragment failed\n");
833 
834 	/* Free head */
835 	pointer = priv->tx_pointer;
836 	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
837 	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
838 
839 	/* Then all fragments */
840 	for (j = 0; j < i; j++) {
841 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
842 		txdes = &priv->txdes[pointer];
843 		ctl_stat = le32_to_cpu(txdes->txdes0);
844 		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
845 		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
846 	}
847 
848 	/* This cannot be reached if we successfully mapped the
849 	 * last fragment, so we know ftgmac100_free_tx_packet()
850 	 * hasn't freed the skb yet.
851 	 */
852  drop:
853 	/* Drop the packet */
854 	dev_kfree_skb_any(skb);
855 	netdev->stats.tx_dropped++;
856 
857 	return NETDEV_TX_OK;
858 }
859 
860 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
861 {
862 	int i;
863 
864 	/* Free all RX buffers */
865 	for (i = 0; i < priv->rx_q_entries; i++) {
866 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
867 		struct sk_buff *skb = priv->rx_skbs[i];
868 		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
869 
870 		if (!skb)
871 			continue;
872 
873 		priv->rx_skbs[i] = NULL;
874 		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
875 		dev_kfree_skb_any(skb);
876 	}
877 
878 	/* Free all TX buffers */
879 	for (i = 0; i < priv->tx_q_entries; i++) {
880 		struct ftgmac100_txdes *txdes = &priv->txdes[i];
881 		struct sk_buff *skb = priv->tx_skbs[i];
882 
883 		if (!skb)
884 			continue;
885 		ftgmac100_free_tx_packet(priv, i, skb, txdes,
886 					 le32_to_cpu(txdes->txdes0));
887 	}
888 }
889 
890 static void ftgmac100_free_rings(struct ftgmac100 *priv)
891 {
892 	/* Free skb arrays */
893 	kfree(priv->rx_skbs);
894 	kfree(priv->tx_skbs);
895 
896 	/* Free descriptors */
897 	if (priv->rxdes)
898 		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
899 				  sizeof(struct ftgmac100_rxdes),
900 				  priv->rxdes, priv->rxdes_dma);
901 	priv->rxdes = NULL;
902 
903 	if (priv->txdes)
904 		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
905 				  sizeof(struct ftgmac100_txdes),
906 				  priv->txdes, priv->txdes_dma);
907 	priv->txdes = NULL;
908 
909 	/* Free scratch packet buffer */
910 	if (priv->rx_scratch)
911 		dma_free_coherent(priv->dev, RX_BUF_SIZE,
912 				  priv->rx_scratch, priv->rx_scratch_dma);
913 }
914 
915 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
916 {
917 	/* Allocate skb arrays */
918 	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
919 				GFP_KERNEL);
920 	if (!priv->rx_skbs)
921 		return -ENOMEM;
922 	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
923 				GFP_KERNEL);
924 	if (!priv->tx_skbs)
925 		return -ENOMEM;
926 
927 	/* Allocate descriptors */
928 	priv->rxdes = dma_alloc_coherent(priv->dev,
929 					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
930 					 &priv->rxdes_dma, GFP_KERNEL);
931 	if (!priv->rxdes)
932 		return -ENOMEM;
933 	priv->txdes = dma_alloc_coherent(priv->dev,
934 					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
935 					 &priv->txdes_dma, GFP_KERNEL);
936 	if (!priv->txdes)
937 		return -ENOMEM;
938 
939 	/* Allocate scratch packet buffer */
940 	priv->rx_scratch = dma_alloc_coherent(priv->dev,
941 					      RX_BUF_SIZE,
942 					      &priv->rx_scratch_dma,
943 					      GFP_KERNEL);
944 	if (!priv->rx_scratch)
945 		return -ENOMEM;
946 
947 	return 0;
948 }
949 
950 static void ftgmac100_init_rings(struct ftgmac100 *priv)
951 {
952 	struct ftgmac100_rxdes *rxdes = NULL;
953 	struct ftgmac100_txdes *txdes = NULL;
954 	int i;
955 
956 	/* Update entries counts */
957 	priv->rx_q_entries = priv->new_rx_q_entries;
958 	priv->tx_q_entries = priv->new_tx_q_entries;
959 
960 	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
961 		return;
962 
963 	/* Initialize RX ring */
964 	for (i = 0; i < priv->rx_q_entries; i++) {
965 		rxdes = &priv->rxdes[i];
966 		rxdes->rxdes0 = 0;
967 		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
968 	}
969 	/* Mark the end of the ring */
970 	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
971 
972 	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
973 		return;
974 
975 	/* Initialize TX ring */
976 	for (i = 0; i < priv->tx_q_entries; i++) {
977 		txdes = &priv->txdes[i];
978 		txdes->txdes0 = 0;
979 	}
980 	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
981 }
982 
983 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
984 {
985 	int i;
986 
987 	for (i = 0; i < priv->rx_q_entries; i++) {
988 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
989 
990 		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
991 			return -ENOMEM;
992 	}
993 	return 0;
994 }
995 
996 static void ftgmac100_adjust_link(struct net_device *netdev)
997 {
998 	struct ftgmac100 *priv = netdev_priv(netdev);
999 	struct phy_device *phydev = netdev->phydev;
1000 	bool tx_pause, rx_pause;
1001 	int new_speed;
1002 
1003 	/* We store "no link" as speed 0 */
1004 	if (!phydev->link)
1005 		new_speed = 0;
1006 	else
1007 		new_speed = phydev->speed;
1008 
1009 	/* Grab pause settings from PHY if configured to do so */
1010 	if (priv->aneg_pause) {
1011 		rx_pause = tx_pause = phydev->pause;
1012 		if (phydev->asym_pause)
1013 			tx_pause = !rx_pause;
1014 	} else {
1015 		rx_pause = priv->rx_pause;
1016 		tx_pause = priv->tx_pause;
1017 	}
1018 
1019 	/* Link hasn't changed, do nothing */
1020 	if (phydev->speed == priv->cur_speed &&
1021 	    phydev->duplex == priv->cur_duplex &&
1022 	    rx_pause == priv->rx_pause &&
1023 	    tx_pause == priv->tx_pause)
1024 		return;
1025 
1026 	/* Print status if we have a link or we had one and just lost it,
1027 	 * don't print otherwise.
1028 	 */
1029 	if (new_speed || priv->cur_speed)
1030 		phy_print_status(phydev);
1031 
1032 	priv->cur_speed = new_speed;
1033 	priv->cur_duplex = phydev->duplex;
1034 	priv->rx_pause = rx_pause;
1035 	priv->tx_pause = tx_pause;
1036 
1037 	/* Link is down, do nothing else */
1038 	if (!new_speed)
1039 		return;
1040 
1041 	/* Disable all interrupts */
1042 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1043 
1044 	/* Reset the adapter asynchronously */
1045 	schedule_work(&priv->reset_task);
1046 }
1047 
1048 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1049 {
1050 	struct net_device *netdev = priv->netdev;
1051 	struct phy_device *phydev;
1052 
1053 	phydev = phy_find_first(priv->mii_bus);
1054 	if (!phydev) {
1055 		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1056 		return -ENODEV;
1057 	}
1058 
1059 	phydev = phy_connect(netdev, phydev_name(phydev),
1060 			     &ftgmac100_adjust_link, intf);
1061 
1062 	if (IS_ERR(phydev)) {
1063 		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1064 		return PTR_ERR(phydev);
1065 	}
1066 
1067 	/* Indicate that we support PAUSE frames (see comment in
1068 	 * Documentation/networking/phy.rst)
1069 	 */
1070 	phy_support_asym_pause(phydev);
1071 
1072 	/* Display what we found */
1073 	phy_attached_info(phydev);
1074 
1075 	return 0;
1076 }
1077 
1078 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1079 {
1080 	struct net_device *netdev = bus->priv;
1081 	struct ftgmac100 *priv = netdev_priv(netdev);
1082 	unsigned int phycr;
1083 	int i;
1084 
1085 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1086 
1087 	/* preserve MDC cycle threshold */
1088 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1089 
1090 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1091 		 FTGMAC100_PHYCR_REGAD(regnum) |
1092 		 FTGMAC100_PHYCR_MIIRD;
1093 
1094 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1095 
1096 	for (i = 0; i < 10; i++) {
1097 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1098 
1099 		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1100 			int data;
1101 
1102 			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1103 			return FTGMAC100_PHYDATA_MIIRDATA(data);
1104 		}
1105 
1106 		udelay(100);
1107 	}
1108 
1109 	netdev_err(netdev, "mdio read timed out\n");
1110 	return -EIO;
1111 }
1112 
1113 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1114 				   int regnum, u16 value)
1115 {
1116 	struct net_device *netdev = bus->priv;
1117 	struct ftgmac100 *priv = netdev_priv(netdev);
1118 	unsigned int phycr;
1119 	int data;
1120 	int i;
1121 
1122 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1123 
1124 	/* preserve MDC cycle threshold */
1125 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1126 
1127 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1128 		 FTGMAC100_PHYCR_REGAD(regnum) |
1129 		 FTGMAC100_PHYCR_MIIWR;
1130 
1131 	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1132 
1133 	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1134 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1135 
1136 	for (i = 0; i < 10; i++) {
1137 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1138 
1139 		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1140 			return 0;
1141 
1142 		udelay(100);
1143 	}
1144 
1145 	netdev_err(netdev, "mdio write timed out\n");
1146 	return -EIO;
1147 }
1148 
1149 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1150 				  struct ethtool_drvinfo *info)
1151 {
1152 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1153 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1154 	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1155 }
1156 
1157 static void ftgmac100_get_ringparam(struct net_device *netdev,
1158 				    struct ethtool_ringparam *ering)
1159 {
1160 	struct ftgmac100 *priv = netdev_priv(netdev);
1161 
1162 	memset(ering, 0, sizeof(*ering));
1163 	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1164 	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1165 	ering->rx_pending = priv->rx_q_entries;
1166 	ering->tx_pending = priv->tx_q_entries;
1167 }
1168 
1169 static int ftgmac100_set_ringparam(struct net_device *netdev,
1170 				   struct ethtool_ringparam *ering)
1171 {
1172 	struct ftgmac100 *priv = netdev_priv(netdev);
1173 
1174 	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1175 	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1176 	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1177 	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1178 	    !is_power_of_2(ering->rx_pending) ||
1179 	    !is_power_of_2(ering->tx_pending))
1180 		return -EINVAL;
1181 
1182 	priv->new_rx_q_entries = ering->rx_pending;
1183 	priv->new_tx_q_entries = ering->tx_pending;
1184 	if (netif_running(netdev))
1185 		schedule_work(&priv->reset_task);
1186 
1187 	return 0;
1188 }
1189 
1190 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1191 				     struct ethtool_pauseparam *pause)
1192 {
1193 	struct ftgmac100 *priv = netdev_priv(netdev);
1194 
1195 	pause->autoneg = priv->aneg_pause;
1196 	pause->tx_pause = priv->tx_pause;
1197 	pause->rx_pause = priv->rx_pause;
1198 }
1199 
1200 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1201 				    struct ethtool_pauseparam *pause)
1202 {
1203 	struct ftgmac100 *priv = netdev_priv(netdev);
1204 	struct phy_device *phydev = netdev->phydev;
1205 
1206 	priv->aneg_pause = pause->autoneg;
1207 	priv->tx_pause = pause->tx_pause;
1208 	priv->rx_pause = pause->rx_pause;
1209 
1210 	if (phydev)
1211 		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1212 
1213 	if (netif_running(netdev)) {
1214 		if (!(phydev && priv->aneg_pause))
1215 			ftgmac100_config_pause(priv);
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1222 	.get_drvinfo		= ftgmac100_get_drvinfo,
1223 	.get_link		= ethtool_op_get_link,
1224 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1225 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1226 	.nway_reset		= phy_ethtool_nway_reset,
1227 	.get_ringparam		= ftgmac100_get_ringparam,
1228 	.set_ringparam		= ftgmac100_set_ringparam,
1229 	.get_pauseparam		= ftgmac100_get_pauseparam,
1230 	.set_pauseparam		= ftgmac100_set_pauseparam,
1231 };
1232 
1233 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1234 {
1235 	struct net_device *netdev = dev_id;
1236 	struct ftgmac100 *priv = netdev_priv(netdev);
1237 	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1238 
1239 	/* Fetch and clear interrupt bits, process abnormal ones */
1240 	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1241 	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1242 	if (unlikely(status & FTGMAC100_INT_BAD)) {
1243 
1244 		/* RX buffer unavailable */
1245 		if (status & FTGMAC100_INT_NO_RXBUF)
1246 			netdev->stats.rx_over_errors++;
1247 
1248 		/* received packet lost due to RX FIFO full */
1249 		if (status & FTGMAC100_INT_RPKT_LOST)
1250 			netdev->stats.rx_fifo_errors++;
1251 
1252 		/* sent packet lost due to excessive TX collision */
1253 		if (status & FTGMAC100_INT_XPKT_LOST)
1254 			netdev->stats.tx_fifo_errors++;
1255 
1256 		/* AHB error -> Reset the chip */
1257 		if (status & FTGMAC100_INT_AHB_ERR) {
1258 			if (net_ratelimit())
1259 				netdev_warn(netdev,
1260 					   "AHB bus error ! Resetting chip.\n");
1261 			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1262 			schedule_work(&priv->reset_task);
1263 			return IRQ_HANDLED;
1264 		}
1265 
1266 		/* We may need to restart the MAC after such errors, delay
1267 		 * this until after we have freed some Rx buffers though
1268 		 */
1269 		priv->need_mac_restart = true;
1270 
1271 		/* Disable those errors until we restart */
1272 		new_mask &= ~status;
1273 	}
1274 
1275 	/* Only enable "bad" interrupts while NAPI is on */
1276 	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1277 
1278 	/* Schedule NAPI bh */
1279 	napi_schedule_irqoff(&priv->napi);
1280 
1281 	return IRQ_HANDLED;
1282 }
1283 
1284 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1285 {
1286 	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1287 
1288 	/* Do we have a packet ? */
1289 	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1290 }
1291 
1292 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1293 {
1294 	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1295 	int work_done = 0;
1296 	bool more;
1297 
1298 	/* Handle TX completions */
1299 	if (ftgmac100_tx_buf_cleanable(priv))
1300 		ftgmac100_tx_complete(priv);
1301 
1302 	/* Handle RX packets */
1303 	do {
1304 		more = ftgmac100_rx_packet(priv, &work_done);
1305 	} while (more && work_done < budget);
1306 
1307 
1308 	/* The interrupt is telling us to kick the MAC back to life
1309 	 * after an RX overflow
1310 	 */
1311 	if (unlikely(priv->need_mac_restart)) {
1312 		ftgmac100_start_hw(priv);
1313 
1314 		/* Re-enable "bad" interrupts */
1315 		iowrite32(FTGMAC100_INT_BAD,
1316 			  priv->base + FTGMAC100_OFFSET_IER);
1317 	}
1318 
1319 	/* As long as we are waiting for transmit packets to be
1320 	 * completed we keep NAPI going
1321 	 */
1322 	if (ftgmac100_tx_buf_cleanable(priv))
1323 		work_done = budget;
1324 
1325 	if (work_done < budget) {
1326 		/* We are about to re-enable all interrupts. However
1327 		 * the HW has been latching RX/TX packet interrupts while
1328 		 * they were masked. So we clear them first, then we need
1329 		 * to re-check if there's something to process
1330 		 */
1331 		iowrite32(FTGMAC100_INT_RXTX,
1332 			  priv->base + FTGMAC100_OFFSET_ISR);
1333 
1334 		/* Push the above (and provides a barrier vs. subsequent
1335 		 * reads of the descriptor).
1336 		 */
1337 		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1338 
1339 		/* Check RX and TX descriptors for more work to do */
1340 		if (ftgmac100_check_rx(priv) ||
1341 		    ftgmac100_tx_buf_cleanable(priv))
1342 			return budget;
1343 
1344 		/* deschedule NAPI */
1345 		napi_complete(napi);
1346 
1347 		/* enable all interrupts */
1348 		iowrite32(FTGMAC100_INT_ALL,
1349 			  priv->base + FTGMAC100_OFFSET_IER);
1350 	}
1351 
1352 	return work_done;
1353 }
1354 
1355 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1356 {
1357 	int err = 0;
1358 
1359 	/* Re-init descriptors (adjust queue sizes) */
1360 	ftgmac100_init_rings(priv);
1361 
1362 	/* Realloc rx descriptors */
1363 	err = ftgmac100_alloc_rx_buffers(priv);
1364 	if (err && !ignore_alloc_err)
1365 		return err;
1366 
1367 	/* Reinit and restart HW */
1368 	ftgmac100_init_hw(priv);
1369 	ftgmac100_config_pause(priv);
1370 	ftgmac100_start_hw(priv);
1371 
1372 	/* Re-enable the device */
1373 	napi_enable(&priv->napi);
1374 	netif_start_queue(priv->netdev);
1375 
1376 	/* Enable all interrupts */
1377 	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1378 
1379 	return err;
1380 }
1381 
1382 static void ftgmac100_reset_task(struct work_struct *work)
1383 {
1384 	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1385 					      reset_task);
1386 	struct net_device *netdev = priv->netdev;
1387 	int err;
1388 
1389 	netdev_dbg(netdev, "Resetting NIC...\n");
1390 
1391 	/* Lock the world */
1392 	rtnl_lock();
1393 	if (netdev->phydev)
1394 		mutex_lock(&netdev->phydev->lock);
1395 	if (priv->mii_bus)
1396 		mutex_lock(&priv->mii_bus->mdio_lock);
1397 
1398 
1399 	/* Check if the interface is still up */
1400 	if (!netif_running(netdev))
1401 		goto bail;
1402 
1403 	/* Stop the network stack */
1404 	netif_trans_update(netdev);
1405 	napi_disable(&priv->napi);
1406 	netif_tx_disable(netdev);
1407 
1408 	/* Stop and reset the MAC */
1409 	ftgmac100_stop_hw(priv);
1410 	err = ftgmac100_reset_and_config_mac(priv);
1411 	if (err) {
1412 		/* Not much we can do ... it might come back... */
1413 		netdev_err(netdev, "attempting to continue...\n");
1414 	}
1415 
1416 	/* Free all rx and tx buffers */
1417 	ftgmac100_free_buffers(priv);
1418 
1419 	/* Setup everything again and restart chip */
1420 	ftgmac100_init_all(priv, true);
1421 
1422 	netdev_dbg(netdev, "Reset done !\n");
1423  bail:
1424 	if (priv->mii_bus)
1425 		mutex_unlock(&priv->mii_bus->mdio_lock);
1426 	if (netdev->phydev)
1427 		mutex_unlock(&netdev->phydev->lock);
1428 	rtnl_unlock();
1429 }
1430 
1431 static int ftgmac100_open(struct net_device *netdev)
1432 {
1433 	struct ftgmac100 *priv = netdev_priv(netdev);
1434 	int err;
1435 
1436 	/* Allocate ring buffers  */
1437 	err = ftgmac100_alloc_rings(priv);
1438 	if (err) {
1439 		netdev_err(netdev, "Failed to allocate descriptors\n");
1440 		return err;
1441 	}
1442 
1443 	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1444 	 *
1445 	 * Otherwise we leave it set to 0 (no link), the link
1446 	 * message from the PHY layer will handle setting it up to
1447 	 * something else if needed.
1448 	 */
1449 	if (priv->use_ncsi) {
1450 		priv->cur_duplex = DUPLEX_FULL;
1451 		priv->cur_speed = SPEED_100;
1452 	} else {
1453 		priv->cur_duplex = 0;
1454 		priv->cur_speed = 0;
1455 	}
1456 
1457 	/* Reset the hardware */
1458 	err = ftgmac100_reset_and_config_mac(priv);
1459 	if (err)
1460 		goto err_hw;
1461 
1462 	/* Initialize NAPI */
1463 	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1464 
1465 	/* Grab our interrupt */
1466 	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1467 	if (err) {
1468 		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1469 		goto err_irq;
1470 	}
1471 
1472 	/* Start things up */
1473 	err = ftgmac100_init_all(priv, false);
1474 	if (err) {
1475 		netdev_err(netdev, "Failed to allocate packet buffers\n");
1476 		goto err_alloc;
1477 	}
1478 
1479 	if (netdev->phydev) {
1480 		/* If we have a PHY, start polling */
1481 		phy_start(netdev->phydev);
1482 	} else if (priv->use_ncsi) {
1483 		/* If using NC-SI, set our carrier on and start the stack */
1484 		netif_carrier_on(netdev);
1485 
1486 		/* Start the NCSI device */
1487 		err = ncsi_start_dev(priv->ndev);
1488 		if (err)
1489 			goto err_ncsi;
1490 	}
1491 
1492 	return 0;
1493 
1494  err_ncsi:
1495 	napi_disable(&priv->napi);
1496 	netif_stop_queue(netdev);
1497  err_alloc:
1498 	ftgmac100_free_buffers(priv);
1499 	free_irq(netdev->irq, netdev);
1500  err_irq:
1501 	netif_napi_del(&priv->napi);
1502  err_hw:
1503 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1504 	ftgmac100_free_rings(priv);
1505 	return err;
1506 }
1507 
1508 static int ftgmac100_stop(struct net_device *netdev)
1509 {
1510 	struct ftgmac100 *priv = netdev_priv(netdev);
1511 
1512 	/* Note about the reset task: We are called with the rtnl lock
1513 	 * held, so we are synchronized against the core of the reset
1514 	 * task. We must not try to synchronously cancel it otherwise
1515 	 * we can deadlock. But since it will test for netif_running()
1516 	 * which has already been cleared by the net core, we don't
1517 	 * anything special to do.
1518 	 */
1519 
1520 	/* disable all interrupts */
1521 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1522 
1523 	netif_stop_queue(netdev);
1524 	napi_disable(&priv->napi);
1525 	netif_napi_del(&priv->napi);
1526 	if (netdev->phydev)
1527 		phy_stop(netdev->phydev);
1528 	else if (priv->use_ncsi)
1529 		ncsi_stop_dev(priv->ndev);
1530 
1531 	ftgmac100_stop_hw(priv);
1532 	free_irq(netdev->irq, netdev);
1533 	ftgmac100_free_buffers(priv);
1534 	ftgmac100_free_rings(priv);
1535 
1536 	return 0;
1537 }
1538 
1539 static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1540 {
1541 	struct ftgmac100 *priv = netdev_priv(netdev);
1542 
1543 	/* Disable all interrupts */
1544 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1545 
1546 	/* Do the reset outside of interrupt context */
1547 	schedule_work(&priv->reset_task);
1548 }
1549 
1550 static int ftgmac100_set_features(struct net_device *netdev,
1551 				  netdev_features_t features)
1552 {
1553 	struct ftgmac100 *priv = netdev_priv(netdev);
1554 	netdev_features_t changed = netdev->features ^ features;
1555 
1556 	if (!netif_running(netdev))
1557 		return 0;
1558 
1559 	/* Update the vlan filtering bit */
1560 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1561 		u32 maccr;
1562 
1563 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1564 		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1565 			maccr |= FTGMAC100_MACCR_RM_VLAN;
1566 		else
1567 			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1568 		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 #ifdef CONFIG_NET_POLL_CONTROLLER
1575 static void ftgmac100_poll_controller(struct net_device *netdev)
1576 {
1577 	unsigned long flags;
1578 
1579 	local_irq_save(flags);
1580 	ftgmac100_interrupt(netdev->irq, netdev);
1581 	local_irq_restore(flags);
1582 }
1583 #endif
1584 
1585 static const struct net_device_ops ftgmac100_netdev_ops = {
1586 	.ndo_open		= ftgmac100_open,
1587 	.ndo_stop		= ftgmac100_stop,
1588 	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1589 	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1590 	.ndo_validate_addr	= eth_validate_addr,
1591 	.ndo_do_ioctl		= phy_do_ioctl,
1592 	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1593 	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1594 	.ndo_set_features	= ftgmac100_set_features,
1595 #ifdef CONFIG_NET_POLL_CONTROLLER
1596 	.ndo_poll_controller	= ftgmac100_poll_controller,
1597 #endif
1598 	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1599 	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1600 };
1601 
1602 static int ftgmac100_setup_mdio(struct net_device *netdev)
1603 {
1604 	struct ftgmac100 *priv = netdev_priv(netdev);
1605 	struct platform_device *pdev = to_platform_device(priv->dev);
1606 	phy_interface_t phy_intf = PHY_INTERFACE_MODE_RGMII;
1607 	struct device_node *np = pdev->dev.of_node;
1608 	int i, err = 0;
1609 	u32 reg;
1610 
1611 	/* initialize mdio bus */
1612 	priv->mii_bus = mdiobus_alloc();
1613 	if (!priv->mii_bus)
1614 		return -EIO;
1615 
1616 	if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1617 	    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1618 		/* The AST2600 has a separate MDIO controller */
1619 
1620 		/* For the AST2400 and AST2500 this driver only supports the
1621 		 * old MDIO interface
1622 		 */
1623 		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1624 		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1625 		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1626 	}
1627 
1628 	/* Get PHY mode from device-tree */
1629 	if (np) {
1630 		/* Default to RGMII. It's a gigabit part after all */
1631 		err = of_get_phy_mode(np, &phy_intf);
1632 		if (err)
1633 			phy_intf = PHY_INTERFACE_MODE_RGMII;
1634 
1635 		/* Aspeed only supports these. I don't know about other IP
1636 		 * block vendors so I'm going to just let them through for
1637 		 * now. Note that this is only a warning if for some obscure
1638 		 * reason the DT really means to lie about it or it's a newer
1639 		 * part we don't know about.
1640 		 *
1641 		 * On the Aspeed SoC there are additionally straps and SCU
1642 		 * control bits that could tell us what the interface is
1643 		 * (or allow us to configure it while the IP block is held
1644 		 * in reset). For now I chose to keep this driver away from
1645 		 * those SoC specific bits and assume the device-tree is
1646 		 * right and the SCU has been configured properly by pinmux
1647 		 * or the firmware.
1648 		 */
1649 		if (priv->is_aspeed &&
1650 		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1651 		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1652 		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1653 		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1654 		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1655 			netdev_warn(netdev,
1656 				   "Unsupported PHY mode %s !\n",
1657 				   phy_modes(phy_intf));
1658 		}
1659 	}
1660 
1661 	priv->mii_bus->name = "ftgmac100_mdio";
1662 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1663 		 pdev->name, pdev->id);
1664 	priv->mii_bus->parent = priv->dev;
1665 	priv->mii_bus->priv = priv->netdev;
1666 	priv->mii_bus->read = ftgmac100_mdiobus_read;
1667 	priv->mii_bus->write = ftgmac100_mdiobus_write;
1668 
1669 	for (i = 0; i < PHY_MAX_ADDR; i++)
1670 		priv->mii_bus->irq[i] = PHY_POLL;
1671 
1672 	err = mdiobus_register(priv->mii_bus);
1673 	if (err) {
1674 		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1675 		goto err_register_mdiobus;
1676 	}
1677 
1678 	err = ftgmac100_mii_probe(priv, phy_intf);
1679 	if (err) {
1680 		dev_err(priv->dev, "MII Probe failed!\n");
1681 		goto err_mii_probe;
1682 	}
1683 
1684 	return 0;
1685 
1686 err_mii_probe:
1687 	mdiobus_unregister(priv->mii_bus);
1688 err_register_mdiobus:
1689 	mdiobus_free(priv->mii_bus);
1690 	return err;
1691 }
1692 
1693 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1694 {
1695 	struct ftgmac100 *priv = netdev_priv(netdev);
1696 
1697 	if (!netdev->phydev)
1698 		return;
1699 
1700 	phy_disconnect(netdev->phydev);
1701 	mdiobus_unregister(priv->mii_bus);
1702 	mdiobus_free(priv->mii_bus);
1703 }
1704 
1705 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1706 {
1707 	if (unlikely(nd->state != ncsi_dev_state_functional))
1708 		return;
1709 
1710 	netdev_dbg(nd->dev, "NCSI interface %s\n",
1711 		   nd->link_up ? "up" : "down");
1712 }
1713 
1714 static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1715 {
1716 	struct clk *clk;
1717 	int rc;
1718 
1719 	clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1720 	if (IS_ERR(clk))
1721 		return PTR_ERR(clk);
1722 	priv->clk = clk;
1723 	rc = clk_prepare_enable(priv->clk);
1724 	if (rc)
1725 		return rc;
1726 
1727 	/* Aspeed specifies a 100MHz clock is required for up to
1728 	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1729 	 * is sufficient
1730 	 */
1731 	rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1732 			  FTGMAC_100MHZ);
1733 	if (rc)
1734 		goto cleanup_clk;
1735 
1736 	/* RCLK is for RMII, typically used for NCSI. Optional because its not
1737 	 * necessary if it's the AST2400 MAC, or the MAC is configured for
1738 	 * RGMII, or the controller is not an ASPEED-based controller.
1739 	 */
1740 	priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1741 	rc = clk_prepare_enable(priv->rclk);
1742 	if (!rc)
1743 		return 0;
1744 
1745 cleanup_clk:
1746 	clk_disable_unprepare(priv->clk);
1747 
1748 	return rc;
1749 }
1750 
1751 static int ftgmac100_probe(struct platform_device *pdev)
1752 {
1753 	struct resource *res;
1754 	int irq;
1755 	struct net_device *netdev;
1756 	struct ftgmac100 *priv;
1757 	struct device_node *np;
1758 	int err = 0;
1759 
1760 	if (!pdev)
1761 		return -ENODEV;
1762 
1763 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1764 	if (!res)
1765 		return -ENXIO;
1766 
1767 	irq = platform_get_irq(pdev, 0);
1768 	if (irq < 0)
1769 		return irq;
1770 
1771 	/* setup net_device */
1772 	netdev = alloc_etherdev(sizeof(*priv));
1773 	if (!netdev) {
1774 		err = -ENOMEM;
1775 		goto err_alloc_etherdev;
1776 	}
1777 
1778 	SET_NETDEV_DEV(netdev, &pdev->dev);
1779 
1780 	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1781 	netdev->netdev_ops = &ftgmac100_netdev_ops;
1782 	netdev->watchdog_timeo = 5 * HZ;
1783 
1784 	platform_set_drvdata(pdev, netdev);
1785 
1786 	/* setup private data */
1787 	priv = netdev_priv(netdev);
1788 	priv->netdev = netdev;
1789 	priv->dev = &pdev->dev;
1790 	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1791 
1792 	/* map io memory */
1793 	priv->res = request_mem_region(res->start, resource_size(res),
1794 				       dev_name(&pdev->dev));
1795 	if (!priv->res) {
1796 		dev_err(&pdev->dev, "Could not reserve memory region\n");
1797 		err = -ENOMEM;
1798 		goto err_req_mem;
1799 	}
1800 
1801 	priv->base = ioremap(res->start, resource_size(res));
1802 	if (!priv->base) {
1803 		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1804 		err = -EIO;
1805 		goto err_ioremap;
1806 	}
1807 
1808 	netdev->irq = irq;
1809 
1810 	/* Enable pause */
1811 	priv->tx_pause = true;
1812 	priv->rx_pause = true;
1813 	priv->aneg_pause = true;
1814 
1815 	/* MAC address from chip or random one */
1816 	ftgmac100_initial_mac(priv);
1817 
1818 	np = pdev->dev.of_node;
1819 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1820 		   of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1821 		   of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1822 		priv->rxdes0_edorr_mask = BIT(30);
1823 		priv->txdes0_edotr_mask = BIT(30);
1824 		priv->is_aspeed = true;
1825 	} else {
1826 		priv->rxdes0_edorr_mask = BIT(15);
1827 		priv->txdes0_edotr_mask = BIT(15);
1828 	}
1829 
1830 	if (np && of_get_property(np, "use-ncsi", NULL)) {
1831 		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1832 			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1833 			goto err_ncsi_dev;
1834 		}
1835 
1836 		dev_info(&pdev->dev, "Using NCSI interface\n");
1837 		priv->use_ncsi = true;
1838 		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1839 		if (!priv->ndev)
1840 			goto err_ncsi_dev;
1841 	} else if (np && of_get_property(np, "phy-handle", NULL)) {
1842 		struct phy_device *phy;
1843 
1844 		phy = of_phy_get_and_connect(priv->netdev, np,
1845 					     &ftgmac100_adjust_link);
1846 		if (!phy) {
1847 			dev_err(&pdev->dev, "Failed to connect to phy\n");
1848 			goto err_setup_mdio;
1849 		}
1850 
1851 		/* Indicate that we support PAUSE frames (see comment in
1852 		 * Documentation/networking/phy.rst)
1853 		 */
1854 		phy_support_asym_pause(phy);
1855 
1856 		/* Display what we found */
1857 		phy_attached_info(phy);
1858 	} else if (np && !of_get_child_by_name(np, "mdio")) {
1859 		/* Support legacy ASPEED devicetree descriptions that decribe a
1860 		 * MAC with an embedded MDIO controller but have no "mdio"
1861 		 * child node. Automatically scan the MDIO bus for available
1862 		 * PHYs.
1863 		 */
1864 		priv->use_ncsi = false;
1865 		err = ftgmac100_setup_mdio(netdev);
1866 		if (err)
1867 			goto err_setup_mdio;
1868 	}
1869 
1870 	if (priv->is_aspeed) {
1871 		err = ftgmac100_setup_clk(priv);
1872 		if (err)
1873 			goto err_ncsi_dev;
1874 	}
1875 
1876 	/* Default ring sizes */
1877 	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1878 	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1879 
1880 	/* Base feature set */
1881 	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1882 		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1883 		NETIF_F_HW_VLAN_CTAG_TX;
1884 
1885 	if (priv->use_ncsi)
1886 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1887 
1888 	/* AST2400  doesn't have working HW checksum generation */
1889 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1890 		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1891 	if (np && of_get_property(np, "no-hw-checksum", NULL))
1892 		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1893 	netdev->features |= netdev->hw_features;
1894 
1895 	/* register network device */
1896 	err = register_netdev(netdev);
1897 	if (err) {
1898 		dev_err(&pdev->dev, "Failed to register netdev\n");
1899 		goto err_register_netdev;
1900 	}
1901 
1902 	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1903 
1904 	return 0;
1905 
1906 err_register_netdev:
1907 	clk_disable_unprepare(priv->rclk);
1908 	clk_disable_unprepare(priv->clk);
1909 err_ncsi_dev:
1910 	ftgmac100_destroy_mdio(netdev);
1911 err_setup_mdio:
1912 	iounmap(priv->base);
1913 err_ioremap:
1914 	release_resource(priv->res);
1915 err_req_mem:
1916 	free_netdev(netdev);
1917 err_alloc_etherdev:
1918 	return err;
1919 }
1920 
1921 static int ftgmac100_remove(struct platform_device *pdev)
1922 {
1923 	struct net_device *netdev;
1924 	struct ftgmac100 *priv;
1925 
1926 	netdev = platform_get_drvdata(pdev);
1927 	priv = netdev_priv(netdev);
1928 
1929 	unregister_netdev(netdev);
1930 
1931 	clk_disable_unprepare(priv->rclk);
1932 	clk_disable_unprepare(priv->clk);
1933 
1934 	/* There's a small chance the reset task will have been re-queued,
1935 	 * during stop, make sure it's gone before we free the structure.
1936 	 */
1937 	cancel_work_sync(&priv->reset_task);
1938 
1939 	ftgmac100_destroy_mdio(netdev);
1940 
1941 	iounmap(priv->base);
1942 	release_resource(priv->res);
1943 
1944 	netif_napi_del(&priv->napi);
1945 	free_netdev(netdev);
1946 	return 0;
1947 }
1948 
1949 static const struct of_device_id ftgmac100_of_match[] = {
1950 	{ .compatible = "faraday,ftgmac100" },
1951 	{ }
1952 };
1953 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1954 
1955 static struct platform_driver ftgmac100_driver = {
1956 	.probe	= ftgmac100_probe,
1957 	.remove	= ftgmac100_remove,
1958 	.driver	= {
1959 		.name		= DRV_NAME,
1960 		.of_match_table	= ftgmac100_of_match,
1961 	},
1962 };
1963 module_platform_driver(ftgmac100_driver);
1964 
1965 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1966 MODULE_DESCRIPTION("FTGMAC100 driver");
1967 MODULE_LICENSE("GPL");
1968