1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
4  * Provides Bus interface for MIIM regs
5  *
6  * Author: Andy Fleming <afleming@freescale.com>
7  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8  *
9  * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10  *
11  * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/module.h>
21 #include <linux/mii.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_mdio.h>
25 #include <linux/property.h>
26 
27 #include <asm/io.h>
28 #if IS_ENABLED(CONFIG_UCC_GETH)
29 #include <soc/fsl/qe/ucc.h>
30 #endif
31 
32 #include "gianfar.h"
33 
34 #define MIIMIND_BUSY		0x00000001
35 #define MIIMIND_NOTVALID	0x00000004
36 #define MIIMCFG_INIT_VALUE	0x00000007
37 #define MIIMCFG_RESET		0x80000000
38 
39 #define MII_READ_COMMAND	0x00000001
40 
41 struct fsl_pq_mii {
42 	u32 miimcfg;	/* MII management configuration reg */
43 	u32 miimcom;	/* MII management command reg */
44 	u32 miimadd;	/* MII management address reg */
45 	u32 miimcon;	/* MII management control reg */
46 	u32 miimstat;	/* MII management status reg */
47 	u32 miimind;	/* MII management indication reg */
48 };
49 
50 struct fsl_pq_mdio {
51 	u8 res1[16];
52 	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
53 	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
54 	u8 res2[4];
55 	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
56 	u8 res3[1280];
57 	struct fsl_pq_mii mii;
58 	u8 res4[28];
59 	u32 utbipar;	/* TBI phy address reg (only on UCC) */
60 	u8 res5[2728];
61 } __packed;
62 
63 /* Number of microseconds to wait for an MII register to respond */
64 #define MII_TIMEOUT	1000
65 
66 struct fsl_pq_mdio_priv {
67 	void __iomem *map;
68 	struct fsl_pq_mii __iomem *regs;
69 };
70 
71 /*
72  * Per-device-type data.  Each type of device tree node that we support gets
73  * one of these.
74  *
75  * @mii_offset: the offset of the MII registers within the memory map of the
76  * node.  Some nodes define only the MII registers, and some define the whole
77  * MAC (which includes the MII registers).
78  *
79  * @get_tbipa: determines the address of the TBIPA register
80  *
81  * @ucc_configure: a special function for extra QE configuration
82  */
83 struct fsl_pq_mdio_data {
84 	unsigned int mii_offset;	/* offset of the MII registers */
85 	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
86 	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
87 };
88 
89 /*
90  * Write value to the PHY at mii_id at register regnum, on the bus attached
91  * to the local interface, which may be different from the generic mdio bus
92  * (tied to a single interface), waiting until the write is done before
93  * returning. This is helpful in programming interfaces like the TBI which
94  * control interfaces like onchip SERDES and are always tied to the local
95  * mdio pins, which may not be the same as system mdio bus, used for
96  * controlling the external PHYs, for example.
97  */
98 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
99 		u16 value)
100 {
101 	struct fsl_pq_mdio_priv *priv = bus->priv;
102 	struct fsl_pq_mii __iomem *regs = priv->regs;
103 	unsigned int timeout;
104 
105 	/* Set the PHY address and the register address we want to write */
106 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
107 
108 	/* Write out the value we want */
109 	iowrite32be(value, &regs->miimcon);
110 
111 	/* Wait for the transaction to finish */
112 	timeout = MII_TIMEOUT;
113 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
114 		cpu_relax();
115 		timeout--;
116 	}
117 
118 	return timeout ? 0 : -ETIMEDOUT;
119 }
120 
121 /*
122  * Read the bus for PHY at addr mii_id, register regnum, and return the value.
123  * Clears miimcom first.
124  *
125  * All PHY operation done on the bus attached to the local interface, which
126  * may be different from the generic mdio bus.  This is helpful in programming
127  * interfaces like the TBI which, in turn, control interfaces like on-chip
128  * SERDES and are always tied to the local mdio pins, which may not be the
129  * same as system mdio bus, used for controlling the external PHYs, for eg.
130  */
131 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
132 {
133 	struct fsl_pq_mdio_priv *priv = bus->priv;
134 	struct fsl_pq_mii __iomem *regs = priv->regs;
135 	unsigned int timeout;
136 	u16 value;
137 
138 	/* Set the PHY address and the register address we want to read */
139 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
140 
141 	/* Clear miimcom, and then initiate a read */
142 	iowrite32be(0, &regs->miimcom);
143 	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
144 
145 	/* Wait for the transaction to finish, normally less than 100us */
146 	timeout = MII_TIMEOUT;
147 	while ((ioread32be(&regs->miimind) &
148 	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
149 		cpu_relax();
150 		timeout--;
151 	}
152 
153 	if (!timeout)
154 		return -ETIMEDOUT;
155 
156 	/* Grab the value of the register from miimstat */
157 	value = ioread32be(&regs->miimstat);
158 
159 	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
160 	return value;
161 }
162 
163 /* Reset the MIIM registers, and wait for the bus to free */
164 static int fsl_pq_mdio_reset(struct mii_bus *bus)
165 {
166 	struct fsl_pq_mdio_priv *priv = bus->priv;
167 	struct fsl_pq_mii __iomem *regs = priv->regs;
168 	unsigned int timeout;
169 
170 	mutex_lock(&bus->mdio_lock);
171 
172 	/* Reset the management interface */
173 	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
174 
175 	/* Setup the MII Mgmt clock speed */
176 	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
177 
178 	/* Wait until the bus is free */
179 	timeout = MII_TIMEOUT;
180 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
181 		cpu_relax();
182 		timeout--;
183 	}
184 
185 	mutex_unlock(&bus->mdio_lock);
186 
187 	if (!timeout) {
188 		dev_err(&bus->dev, "timeout waiting for MII bus\n");
189 		return -EBUSY;
190 	}
191 
192 	return 0;
193 }
194 
195 #if IS_ENABLED(CONFIG_GIANFAR)
196 /*
197  * Return the TBIPA address, starting from the address
198  * of the mapped GFAR MDIO registers (struct gfar)
199  * This is mildly evil, but so is our hardware for doing this.
200  * Also, we have to cast back to struct gfar because of
201  * definition weirdness done in gianfar.h.
202  */
203 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
204 {
205 	struct gfar __iomem *enet_regs = p;
206 
207 	return &enet_regs->tbipa;
208 }
209 
210 /*
211  * Return the TBIPA address, starting from the address
212  * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
213  */
214 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
215 {
216 	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
217 }
218 
219 /*
220  * Return the TBIPAR address for an eTSEC2 node
221  */
222 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
223 {
224 	return p;
225 }
226 #endif
227 
228 #if IS_ENABLED(CONFIG_UCC_GETH)
229 /*
230  * Return the TBIPAR address for a QE MDIO node, starting from the address
231  * of the mapped MII registers (struct fsl_pq_mii)
232  */
233 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
234 {
235 	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
236 
237 	return &mdio->utbipar;
238 }
239 
240 /*
241  * Find the UCC node that controls the given MDIO node
242  *
243  * For some reason, the QE MDIO nodes are not children of the UCC devices
244  * that control them.  Therefore, we need to scan all UCC nodes looking for
245  * the one that encompases the given MDIO node.  We do this by comparing
246  * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
247  * passed, and the correct UCC node will cover the entire address range.
248  *
249  * This assumes that there is only one QE MDIO node in the entire device tree.
250  */
251 static void ucc_configure(phys_addr_t start, phys_addr_t end)
252 {
253 	static bool found_mii_master;
254 	struct device_node *np = NULL;
255 
256 	if (found_mii_master)
257 		return;
258 
259 	for_each_compatible_node(np, NULL, "ucc_geth") {
260 		struct resource res;
261 		const uint32_t *iprop;
262 		uint32_t id;
263 		int ret;
264 
265 		ret = of_address_to_resource(np, 0, &res);
266 		if (ret < 0) {
267 			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
268 				 np);
269 			continue;
270 		}
271 
272 		/* if our mdio regs fall within this UCC regs range */
273 		if ((start < res.start) || (end > res.end))
274 			continue;
275 
276 		iprop = of_get_property(np, "cell-index", NULL);
277 		if (!iprop) {
278 			iprop = of_get_property(np, "device-id", NULL);
279 			if (!iprop) {
280 				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
281 					 np);
282 				continue;
283 			}
284 		}
285 
286 		id = be32_to_cpup(iprop);
287 
288 		/*
289 		 * cell-index and device-id for QE nodes are
290 		 * numbered from 1, not 0.
291 		 */
292 		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
293 			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
294 				 np);
295 			continue;
296 		}
297 
298 		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
299 		found_mii_master = true;
300 	}
301 }
302 
303 #endif
304 
305 static const struct of_device_id fsl_pq_mdio_match[] = {
306 #if IS_ENABLED(CONFIG_GIANFAR)
307 	{
308 		.compatible = "fsl,gianfar-tbi",
309 		.data = &(struct fsl_pq_mdio_data) {
310 			.mii_offset = 0,
311 			.get_tbipa = get_gfar_tbipa_from_mii,
312 		},
313 	},
314 	{
315 		.compatible = "fsl,gianfar-mdio",
316 		.data = &(struct fsl_pq_mdio_data) {
317 			.mii_offset = 0,
318 			.get_tbipa = get_gfar_tbipa_from_mii,
319 		},
320 	},
321 	{
322 		.type = "mdio",
323 		.compatible = "gianfar",
324 		.data = &(struct fsl_pq_mdio_data) {
325 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
326 			.get_tbipa = get_gfar_tbipa_from_mdio,
327 		},
328 	},
329 	{
330 		.compatible = "fsl,etsec2-tbi",
331 		.data = &(struct fsl_pq_mdio_data) {
332 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
333 			.get_tbipa = get_etsec_tbipa,
334 		},
335 	},
336 	{
337 		.compatible = "fsl,etsec2-mdio",
338 		.data = &(struct fsl_pq_mdio_data) {
339 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
340 			.get_tbipa = get_etsec_tbipa,
341 		},
342 	},
343 #endif
344 #if IS_ENABLED(CONFIG_UCC_GETH)
345 	{
346 		.compatible = "fsl,ucc-mdio",
347 		.data = &(struct fsl_pq_mdio_data) {
348 			.mii_offset = 0,
349 			.get_tbipa = get_ucc_tbipa,
350 			.ucc_configure = ucc_configure,
351 		},
352 	},
353 	{
354 		/* Legacy UCC MDIO node */
355 		.type = "mdio",
356 		.compatible = "ucc_geth_phy",
357 		.data = &(struct fsl_pq_mdio_data) {
358 			.mii_offset = 0,
359 			.get_tbipa = get_ucc_tbipa,
360 			.ucc_configure = ucc_configure,
361 		},
362 	},
363 #endif
364 	/* No Kconfig option for Fman support yet */
365 	{
366 		.compatible = "fsl,fman-mdio",
367 		.data = &(struct fsl_pq_mdio_data) {
368 			.mii_offset = 0,
369 			/* Fman TBI operations are handled elsewhere */
370 		},
371 	},
372 
373 	{},
374 };
375 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
376 
377 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
378 		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
379 		      void __iomem *reg_map, struct resource *reg_res)
380 {
381 	struct device_node *np = pdev->dev.of_node;
382 	uint32_t __iomem *tbipa;
383 	bool tbipa_mapped;
384 
385 	tbipa = of_iomap(np, 1);
386 	if (tbipa) {
387 		tbipa_mapped = true;
388 	} else {
389 		tbipa_mapped = false;
390 		tbipa = (*get_tbipa)(reg_map);
391 
392 		/*
393 		 * Add consistency check to make sure TBI is contained within
394 		 * the mapped range (not because we would get a segfault,
395 		 * rather to catch bugs in computing TBI address). Print error
396 		 * message but continue anyway.
397 		 */
398 		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
399 			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
400 				((void *)tbipa - reg_map) + 4);
401 	}
402 
403 	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
404 
405 	if (tbipa_mapped)
406 		iounmap(tbipa);
407 }
408 
409 static int fsl_pq_mdio_probe(struct platform_device *pdev)
410 {
411 	const struct fsl_pq_mdio_data *data;
412 	struct device_node *np = pdev->dev.of_node;
413 	struct resource res;
414 	struct device_node *tbi;
415 	struct fsl_pq_mdio_priv *priv;
416 	struct mii_bus *new_bus;
417 	int err;
418 
419 	data = device_get_match_data(&pdev->dev);
420 	if (!data) {
421 		dev_err(&pdev->dev, "Failed to match device\n");
422 		return -ENODEV;
423 	}
424 
425 	new_bus = mdiobus_alloc_size(sizeof(*priv));
426 	if (!new_bus)
427 		return -ENOMEM;
428 
429 	priv = new_bus->priv;
430 	new_bus->name = "Freescale PowerQUICC MII Bus";
431 	new_bus->read = &fsl_pq_mdio_read;
432 	new_bus->write = &fsl_pq_mdio_write;
433 	new_bus->reset = &fsl_pq_mdio_reset;
434 
435 	err = of_address_to_resource(np, 0, &res);
436 	if (err < 0) {
437 		dev_err(&pdev->dev, "could not obtain address information\n");
438 		goto error;
439 	}
440 
441 	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
442 		 (unsigned long long)res.start);
443 
444 	priv->map = of_iomap(np, 0);
445 	if (!priv->map) {
446 		err = -ENOMEM;
447 		goto error;
448 	}
449 
450 	/*
451 	 * Some device tree nodes represent only the MII registers, and
452 	 * others represent the MAC and MII registers.  The 'mii_offset' field
453 	 * contains the offset of the MII registers inside the mapped register
454 	 * space.
455 	 */
456 	if (data->mii_offset > resource_size(&res)) {
457 		dev_err(&pdev->dev, "invalid register map\n");
458 		err = -EINVAL;
459 		goto error;
460 	}
461 	priv->regs = priv->map + data->mii_offset;
462 
463 	new_bus->parent = &pdev->dev;
464 	platform_set_drvdata(pdev, new_bus);
465 
466 	if (data->get_tbipa) {
467 		for_each_child_of_node(np, tbi) {
468 			if (of_node_is_type(tbi, "tbi-phy")) {
469 				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
470 					tbi);
471 				break;
472 			}
473 		}
474 
475 		if (tbi) {
476 			const u32 *prop = of_get_property(tbi, "reg", NULL);
477 			if (!prop) {
478 				dev_err(&pdev->dev,
479 					"missing 'reg' property in node %pOF\n",
480 					tbi);
481 				err = -EBUSY;
482 				goto error;
483 			}
484 			set_tbipa(*prop, pdev,
485 				  data->get_tbipa, priv->map, &res);
486 		}
487 	}
488 
489 	if (data->ucc_configure)
490 		data->ucc_configure(res.start, res.end);
491 
492 	err = of_mdiobus_register(new_bus, np);
493 	if (err) {
494 		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
495 			new_bus->name);
496 		goto error;
497 	}
498 
499 	return 0;
500 
501 error:
502 	if (priv->map)
503 		iounmap(priv->map);
504 
505 	kfree(new_bus);
506 
507 	return err;
508 }
509 
510 
511 static void fsl_pq_mdio_remove(struct platform_device *pdev)
512 {
513 	struct device *device = &pdev->dev;
514 	struct mii_bus *bus = dev_get_drvdata(device);
515 	struct fsl_pq_mdio_priv *priv = bus->priv;
516 
517 	mdiobus_unregister(bus);
518 
519 	iounmap(priv->map);
520 	mdiobus_free(bus);
521 }
522 
523 static struct platform_driver fsl_pq_mdio_driver = {
524 	.driver = {
525 		.name = "fsl-pq_mdio",
526 		.of_match_table = fsl_pq_mdio_match,
527 	},
528 	.probe = fsl_pq_mdio_probe,
529 	.remove_new = fsl_pq_mdio_remove,
530 };
531 
532 module_platform_driver(fsl_pq_mdio_driver);
533 
534 MODULE_DESCRIPTION("Freescale PQ MDIO helpers");
535 MODULE_LICENSE("GPL");
536