xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/kernel.h>
63 #include <linux/string.h>
64 #include <linux/errno.h>
65 #include <linux/unistd.h>
66 #include <linux/slab.h>
67 #include <linux/interrupt.h>
68 #include <linux/delay.h>
69 #include <linux/netdevice.h>
70 #include <linux/etherdevice.h>
71 #include <linux/skbuff.h>
72 #include <linux/if_vlan.h>
73 #include <linux/spinlock.h>
74 #include <linux/mm.h>
75 #include <linux/of_address.h>
76 #include <linux/of_irq.h>
77 #include <linux/of_mdio.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84 
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100 
101 #include "gianfar.h"
102 
103 #define TX_TIMEOUT      (5*HZ)
104 
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108 
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 			    dma_addr_t buf)
111 {
112 	u32 lstatus;
113 
114 	bdp->bufPtr = cpu_to_be32(buf);
115 
116 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 		lstatus |= BD_LFLAG(RXBD_WRAP);
119 
120 	gfar_wmb();
121 
122 	bdp->lstatus = cpu_to_be32(lstatus);
123 }
124 
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 	u32 __iomem *baddr;
129 	int i;
130 
131 	baddr = &regs->tbase0;
132 	for (i = 0; i < priv->num_tx_queues; i++) {
133 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 		baddr += 2;
135 	}
136 
137 	baddr = &regs->rbase0;
138 	for (i = 0; i < priv->num_rx_queues; i++) {
139 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 		baddr += 2;
141 	}
142 }
143 
144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 	u32 __iomem *baddr;
148 	int i;
149 
150 	baddr = &regs->rqprm0;
151 	for (i = 0; i < priv->num_rx_queues; i++) {
152 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 		baddr++;
155 	}
156 }
157 
158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 	/* set this when rx hw offload (TOE) functions are being used */
161 	priv->uses_rxfcb = 0;
162 
163 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 		priv->uses_rxfcb = 1;
165 
166 	if (priv->hwts_rx_en || priv->rx_filer_enable)
167 		priv->uses_rxfcb = 1;
168 }
169 
170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	u32 rctrl = 0;
174 
175 	if (priv->rx_filer_enable) {
176 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 		/* Program the RIR0 reg with the required distribution */
178 		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
179 	}
180 
181 	/* Restore PROMISC mode */
182 	if (priv->ndev->flags & IFF_PROMISC)
183 		rctrl |= RCTRL_PROM;
184 
185 	if (priv->ndev->features & NETIF_F_RXCSUM)
186 		rctrl |= RCTRL_CHECKSUMMING;
187 
188 	if (priv->extended_hash)
189 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190 
191 	if (priv->padding) {
192 		rctrl &= ~RCTRL_PAL_MASK;
193 		rctrl |= RCTRL_PADDING(priv->padding);
194 	}
195 
196 	/* Enable HW time stamping if requested from user space */
197 	if (priv->hwts_rx_en)
198 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199 
200 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202 
203 	/* Clear the LFC bit */
204 	gfar_write(&regs->rctrl, rctrl);
205 	/* Init flow control threshold values */
206 	gfar_init_rqprm(priv);
207 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
208 	rctrl |= RCTRL_LFC;
209 
210 	/* Init rctrl based on our settings */
211 	gfar_write(&regs->rctrl, rctrl);
212 }
213 
214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 	u32 tctrl = 0;
218 
219 	if (priv->ndev->features & NETIF_F_IP_CSUM)
220 		tctrl |= TCTRL_INIT_CSUM;
221 
222 	if (priv->prio_sched_en)
223 		tctrl |= TCTRL_TXSCHED_PRIO;
224 	else {
225 		tctrl |= TCTRL_TXSCHED_WRRS;
226 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
227 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
228 	}
229 
230 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 		tctrl |= TCTRL_VLINS;
232 
233 	gfar_write(&regs->tctrl, tctrl);
234 }
235 
236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 			       unsigned long tx_mask, unsigned long rx_mask)
238 {
239 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 	u32 __iomem *baddr;
241 
242 	if (priv->mode == MQ_MG_MODE) {
243 		int i = 0;
244 
245 		baddr = &regs->txic0;
246 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 			gfar_write(baddr + i, 0);
248 			if (likely(priv->tx_queue[i]->txcoalescing))
249 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 		}
251 
252 		baddr = &regs->rxic0;
253 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 			gfar_write(baddr + i, 0);
255 			if (likely(priv->rx_queue[i]->rxcoalescing))
256 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 		}
258 	} else {
259 		/* Backward compatible case -- even if we enable
260 		 * multiple queues, there's only single reg to program
261 		 */
262 		gfar_write(&regs->txic, 0);
263 		if (likely(priv->tx_queue[0]->txcoalescing))
264 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
265 
266 		gfar_write(&regs->rxic, 0);
267 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
269 	}
270 }
271 
272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276 
277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278 {
279 	struct gfar_private *priv = netdev_priv(dev);
280 	int i;
281 
282 	for (i = 0; i < priv->num_rx_queues; i++) {
283 		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
285 		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 	}
287 
288 	for (i = 0; i < priv->num_tx_queues; i++) {
289 		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 	}
292 
293 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295 		unsigned long flags;
296 		u32 rdrp, car, car_before;
297 		u64 rdrp_offset;
298 
299 		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
301 		do {
302 			car_before = car;
303 			rdrp = gfar_read(&rmon->rdrp);
304 			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305 		} while (car != car_before);
306 		if (car) {
307 			priv->rmon_overflow.rdrp++;
308 			gfar_write(&rmon->car1, car);
309 		}
310 		rdrp_offset = priv->rmon_overflow.rdrp;
311 		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
312 
313 		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314 	}
315 }
316 
317 /* Set the appropriate hash bit for the given addr */
318 /* The algorithm works like so:
319  * 1) Take the Destination Address (ie the multicast address), and
320  * do a CRC on it (little endian), and reverse the bits of the
321  * result.
322  * 2) Use the 8 most significant bits as a hash into a 256-entry
323  * table.  The table is controlled through 8 32-bit registers:
324  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
325  * gaddr7.  This means that the 3 most significant bits in the
326  * hash index which gaddr register to use, and the 5 other bits
327  * indicate which bit (assuming an IBM numbering scheme, which
328  * for PowerPC (tm) is usually the case) in the register holds
329  * the entry.
330  */
331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332 {
333 	u32 tempval;
334 	struct gfar_private *priv = netdev_priv(dev);
335 	u32 result = ether_crc(ETH_ALEN, addr);
336 	int width = priv->hash_width;
337 	u8 whichbit = (result >> (32 - width)) & 0x1f;
338 	u8 whichreg = result >> (32 - width + 5);
339 	u32 value = (1 << (31-whichbit));
340 
341 	tempval = gfar_read(priv->hash_regs[whichreg]);
342 	tempval |= value;
343 	gfar_write(priv->hash_regs[whichreg], tempval);
344 }
345 
346 /* There are multiple MAC Address register pairs on some controllers
347  * This function sets the numth pair to a given address
348  */
349 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350 				  const u8 *addr)
351 {
352 	struct gfar_private *priv = netdev_priv(dev);
353 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
354 	u32 tempval;
355 	u32 __iomem *macptr = &regs->macstnaddr1;
356 
357 	macptr += num*2;
358 
359 	/* For a station address of 0x12345678ABCD in transmission
360 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 	 * MACnADDR2 is set to 0x34120000.
362 	 */
363 	tempval = (addr[5] << 24) | (addr[4] << 16) |
364 		  (addr[3] << 8)  |  addr[2];
365 
366 	gfar_write(macptr, tempval);
367 
368 	tempval = (addr[1] << 24) | (addr[0] << 16);
369 
370 	gfar_write(macptr+1, tempval);
371 }
372 
373 static int gfar_set_mac_addr(struct net_device *dev, void *p)
374 {
375 	int ret;
376 
377 	ret = eth_mac_addr(dev, p);
378 	if (ret)
379 		return ret;
380 
381 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
382 
383 	return 0;
384 }
385 
386 static void gfar_ints_disable(struct gfar_private *priv)
387 {
388 	int i;
389 	for (i = 0; i < priv->num_grps; i++) {
390 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
391 		/* Clear IEVENT */
392 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
393 
394 		/* Initialize IMASK */
395 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
396 	}
397 }
398 
399 static void gfar_ints_enable(struct gfar_private *priv)
400 {
401 	int i;
402 	for (i = 0; i < priv->num_grps; i++) {
403 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 		/* Unmask the interrupts we look for */
405 		gfar_write(&regs->imask,
406 			   IMASK_DEFAULT | priv->rmon_overflow.imask);
407 	}
408 }
409 
410 static int gfar_alloc_tx_queues(struct gfar_private *priv)
411 {
412 	int i;
413 
414 	for (i = 0; i < priv->num_tx_queues; i++) {
415 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
416 					    GFP_KERNEL);
417 		if (!priv->tx_queue[i])
418 			return -ENOMEM;
419 
420 		priv->tx_queue[i]->tx_skbuff = NULL;
421 		priv->tx_queue[i]->qindex = i;
422 		priv->tx_queue[i]->dev = priv->ndev;
423 		spin_lock_init(&(priv->tx_queue[i]->txlock));
424 	}
425 	return 0;
426 }
427 
428 static int gfar_alloc_rx_queues(struct gfar_private *priv)
429 {
430 	int i;
431 
432 	for (i = 0; i < priv->num_rx_queues; i++) {
433 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
434 					    GFP_KERNEL);
435 		if (!priv->rx_queue[i])
436 			return -ENOMEM;
437 
438 		priv->rx_queue[i]->qindex = i;
439 		priv->rx_queue[i]->ndev = priv->ndev;
440 	}
441 	return 0;
442 }
443 
444 static void gfar_free_tx_queues(struct gfar_private *priv)
445 {
446 	int i;
447 
448 	for (i = 0; i < priv->num_tx_queues; i++)
449 		kfree(priv->tx_queue[i]);
450 }
451 
452 static void gfar_free_rx_queues(struct gfar_private *priv)
453 {
454 	int i;
455 
456 	for (i = 0; i < priv->num_rx_queues; i++)
457 		kfree(priv->rx_queue[i]);
458 }
459 
460 static void unmap_group_regs(struct gfar_private *priv)
461 {
462 	int i;
463 
464 	for (i = 0; i < MAXGROUPS; i++)
465 		if (priv->gfargrp[i].regs)
466 			iounmap(priv->gfargrp[i].regs);
467 }
468 
469 static void free_gfar_dev(struct gfar_private *priv)
470 {
471 	int i, j;
472 
473 	for (i = 0; i < priv->num_grps; i++)
474 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 			kfree(priv->gfargrp[i].irqinfo[j]);
476 			priv->gfargrp[i].irqinfo[j] = NULL;
477 		}
478 
479 	free_netdev(priv->ndev);
480 }
481 
482 static void disable_napi(struct gfar_private *priv)
483 {
484 	int i;
485 
486 	for (i = 0; i < priv->num_grps; i++) {
487 		napi_disable(&priv->gfargrp[i].napi_rx);
488 		napi_disable(&priv->gfargrp[i].napi_tx);
489 	}
490 }
491 
492 static void enable_napi(struct gfar_private *priv)
493 {
494 	int i;
495 
496 	for (i = 0; i < priv->num_grps; i++) {
497 		napi_enable(&priv->gfargrp[i].napi_rx);
498 		napi_enable(&priv->gfargrp[i].napi_tx);
499 	}
500 }
501 
502 static int gfar_parse_group(struct device_node *np,
503 			    struct gfar_private *priv, const char *model)
504 {
505 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506 	int i;
507 
508 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
510 					  GFP_KERNEL);
511 		if (!grp->irqinfo[i])
512 			return -ENOMEM;
513 	}
514 
515 	grp->regs = of_iomap(np, 0);
516 	if (!grp->regs)
517 		return -ENOMEM;
518 
519 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
520 
521 	/* If we aren't the FEC we have multiple interrupts */
522 	if (model && strcasecmp(model, "FEC")) {
523 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525 		if (!gfar_irq(grp, TX)->irq ||
526 		    !gfar_irq(grp, RX)->irq ||
527 		    !gfar_irq(grp, ER)->irq)
528 			return -EINVAL;
529 	}
530 
531 	grp->priv = priv;
532 	spin_lock_init(&grp->grplock);
533 	if (priv->mode == MQ_MG_MODE) {
534 		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537 	} else {
538 		grp->rx_bit_map = 0xFF;
539 		grp->tx_bit_map = 0xFF;
540 	}
541 
542 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 	 * right to left, so we need to revert the 8 bits to get the q index
544 	 */
545 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547 
548 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 	 * also assign queues to groups
550 	 */
551 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552 		if (!grp->rx_queue)
553 			grp->rx_queue = priv->rx_queue[i];
554 		grp->num_rx_queues++;
555 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 		priv->rx_queue[i]->grp = grp;
558 	}
559 
560 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561 		if (!grp->tx_queue)
562 			grp->tx_queue = priv->tx_queue[i];
563 		grp->num_tx_queues++;
564 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 		priv->tqueue |= (TQUEUE_EN0 >> i);
566 		priv->tx_queue[i]->grp = grp;
567 	}
568 
569 	priv->num_grps++;
570 
571 	return 0;
572 }
573 
574 static int gfar_of_group_count(struct device_node *np)
575 {
576 	struct device_node *child;
577 	int num = 0;
578 
579 	for_each_available_child_of_node(np, child)
580 		if (of_node_name_eq(child, "queue-group"))
581 			num++;
582 
583 	return num;
584 }
585 
586 /* Reads the controller's registers to determine what interface
587  * connects it to the PHY.
588  */
589 static phy_interface_t gfar_get_interface(struct net_device *dev)
590 {
591 	struct gfar_private *priv = netdev_priv(dev);
592 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
593 	u32 ecntrl;
594 
595 	ecntrl = gfar_read(&regs->ecntrl);
596 
597 	if (ecntrl & ECNTRL_SGMII_MODE)
598 		return PHY_INTERFACE_MODE_SGMII;
599 
600 	if (ecntrl & ECNTRL_TBI_MODE) {
601 		if (ecntrl & ECNTRL_REDUCED_MODE)
602 			return PHY_INTERFACE_MODE_RTBI;
603 		else
604 			return PHY_INTERFACE_MODE_TBI;
605 	}
606 
607 	if (ecntrl & ECNTRL_REDUCED_MODE) {
608 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 			return PHY_INTERFACE_MODE_RMII;
610 		}
611 		else {
612 			phy_interface_t interface = priv->interface;
613 
614 			/* This isn't autodetected right now, so it must
615 			 * be set by the device tree or platform code.
616 			 */
617 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 				return PHY_INTERFACE_MODE_RGMII_ID;
619 
620 			return PHY_INTERFACE_MODE_RGMII;
621 		}
622 	}
623 
624 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 		return PHY_INTERFACE_MODE_GMII;
626 
627 	return PHY_INTERFACE_MODE_MII;
628 }
629 
630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631 {
632 	const char *model;
633 	int err = 0, i;
634 	phy_interface_t interface;
635 	struct net_device *dev = NULL;
636 	struct gfar_private *priv = NULL;
637 	struct device_node *np = ofdev->dev.of_node;
638 	struct device_node *child = NULL;
639 	u32 stash_len = 0;
640 	u32 stash_idx = 0;
641 	unsigned int num_tx_qs, num_rx_qs;
642 	unsigned short mode;
643 
644 	if (!np)
645 		return -ENODEV;
646 
647 	if (of_device_is_compatible(np, "fsl,etsec2"))
648 		mode = MQ_MG_MODE;
649 	else
650 		mode = SQ_SG_MODE;
651 
652 	if (mode == SQ_SG_MODE) {
653 		num_tx_qs = 1;
654 		num_rx_qs = 1;
655 	} else { /* MQ_MG_MODE */
656 		/* get the actual number of supported groups */
657 		unsigned int num_grps = gfar_of_group_count(np);
658 
659 		if (num_grps == 0 || num_grps > MAXGROUPS) {
660 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661 				num_grps);
662 			pr_err("Cannot do alloc_etherdev, aborting\n");
663 			return -EINVAL;
664 		}
665 
666 		num_tx_qs = num_grps; /* one txq per int group */
667 		num_rx_qs = num_grps; /* one rxq per int group */
668 	}
669 
670 	if (num_tx_qs > MAX_TX_QS) {
671 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 		       num_tx_qs, MAX_TX_QS);
673 		pr_err("Cannot do alloc_etherdev, aborting\n");
674 		return -EINVAL;
675 	}
676 
677 	if (num_rx_qs > MAX_RX_QS) {
678 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 		       num_rx_qs, MAX_RX_QS);
680 		pr_err("Cannot do alloc_etherdev, aborting\n");
681 		return -EINVAL;
682 	}
683 
684 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685 	dev = *pdev;
686 	if (NULL == dev)
687 		return -ENOMEM;
688 
689 	priv = netdev_priv(dev);
690 	priv->ndev = dev;
691 
692 	priv->mode = mode;
693 
694 	priv->num_tx_queues = num_tx_qs;
695 	netif_set_real_num_rx_queues(dev, num_rx_qs);
696 	priv->num_rx_queues = num_rx_qs;
697 
698 	err = gfar_alloc_tx_queues(priv);
699 	if (err)
700 		goto tx_alloc_failed;
701 
702 	err = gfar_alloc_rx_queues(priv);
703 	if (err)
704 		goto rx_alloc_failed;
705 
706 	err = of_property_read_string(np, "model", &model);
707 	if (err) {
708 		pr_err("Device model property missing, aborting\n");
709 		goto rx_alloc_failed;
710 	}
711 
712 	/* Init Rx queue filer rule set linked list */
713 	INIT_LIST_HEAD(&priv->rx_list.list);
714 	priv->rx_list.count = 0;
715 	mutex_init(&priv->rx_queue_access);
716 
717 	for (i = 0; i < MAXGROUPS; i++)
718 		priv->gfargrp[i].regs = NULL;
719 
720 	/* Parse and initialize group specific information */
721 	if (priv->mode == MQ_MG_MODE) {
722 		for_each_available_child_of_node(np, child) {
723 			if (!of_node_name_eq(child, "queue-group"))
724 				continue;
725 
726 			err = gfar_parse_group(child, priv, model);
727 			if (err) {
728 				of_node_put(child);
729 				goto err_grp_init;
730 			}
731 		}
732 	} else { /* SQ_SG_MODE */
733 		err = gfar_parse_group(np, priv, model);
734 		if (err)
735 			goto err_grp_init;
736 	}
737 
738 	if (of_property_read_bool(np, "bd-stash")) {
739 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 		priv->bd_stash_en = 1;
741 	}
742 
743 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
744 
745 	if (err == 0)
746 		priv->rx_stash_size = stash_len;
747 
748 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
749 
750 	if (err == 0)
751 		priv->rx_stash_index = stash_idx;
752 
753 	if (stash_len || stash_idx)
754 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755 
756 	err = of_get_ethdev_address(np, dev);
757 	if (err) {
758 		eth_hw_addr_random(dev);
759 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
760 	}
761 
762 	if (model && !strcasecmp(model, "TSEC"))
763 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
764 				     FSL_GIANFAR_DEV_HAS_COALESCE |
765 				     FSL_GIANFAR_DEV_HAS_RMON |
766 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
767 
768 	if (model && !strcasecmp(model, "eTSEC"))
769 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
770 				     FSL_GIANFAR_DEV_HAS_COALESCE |
771 				     FSL_GIANFAR_DEV_HAS_RMON |
772 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
773 				     FSL_GIANFAR_DEV_HAS_CSUM |
774 				     FSL_GIANFAR_DEV_HAS_VLAN |
775 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
776 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
777 				     FSL_GIANFAR_DEV_HAS_TIMER |
778 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
779 
780 	/* Use PHY connection type from the DT node if one is specified there.
781 	 * rgmii-id really needs to be specified. Other types can be
782 	 * detected by hardware
783 	 */
784 	err = of_get_phy_mode(np, &interface);
785 	if (!err)
786 		priv->interface = interface;
787 	else
788 		priv->interface = gfar_get_interface(dev);
789 
790 	if (of_find_property(np, "fsl,magic-packet", NULL))
791 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
792 
793 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
794 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
795 
796 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
797 
798 	/* In the case of a fixed PHY, the DT node associated
799 	 * to the PHY is the Ethernet MAC DT node.
800 	 */
801 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
802 		err = of_phy_register_fixed_link(np);
803 		if (err)
804 			goto err_grp_init;
805 
806 		priv->phy_node = of_node_get(np);
807 	}
808 
809 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
810 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
811 
812 	return 0;
813 
814 err_grp_init:
815 	unmap_group_regs(priv);
816 rx_alloc_failed:
817 	gfar_free_rx_queues(priv);
818 tx_alloc_failed:
819 	gfar_free_tx_queues(priv);
820 	free_gfar_dev(priv);
821 	return err;
822 }
823 
824 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
825 				   u32 class)
826 {
827 	u32 rqfpr = FPR_FILER_MASK;
828 	u32 rqfcr = 0x0;
829 
830 	rqfar--;
831 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
832 	priv->ftp_rqfpr[rqfar] = rqfpr;
833 	priv->ftp_rqfcr[rqfar] = rqfcr;
834 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
835 
836 	rqfar--;
837 	rqfcr = RQFCR_CMP_NOMATCH;
838 	priv->ftp_rqfpr[rqfar] = rqfpr;
839 	priv->ftp_rqfcr[rqfar] = rqfcr;
840 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
841 
842 	rqfar--;
843 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
844 	rqfpr = class;
845 	priv->ftp_rqfcr[rqfar] = rqfcr;
846 	priv->ftp_rqfpr[rqfar] = rqfpr;
847 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
848 
849 	rqfar--;
850 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
851 	rqfpr = class;
852 	priv->ftp_rqfcr[rqfar] = rqfcr;
853 	priv->ftp_rqfpr[rqfar] = rqfpr;
854 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
855 
856 	return rqfar;
857 }
858 
859 static void gfar_init_filer_table(struct gfar_private *priv)
860 {
861 	int i = 0x0;
862 	u32 rqfar = MAX_FILER_IDX;
863 	u32 rqfcr = 0x0;
864 	u32 rqfpr = FPR_FILER_MASK;
865 
866 	/* Default rule */
867 	rqfcr = RQFCR_CMP_MATCH;
868 	priv->ftp_rqfcr[rqfar] = rqfcr;
869 	priv->ftp_rqfpr[rqfar] = rqfpr;
870 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
871 
872 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
873 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
874 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
875 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
876 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
877 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
878 
879 	/* cur_filer_idx indicated the first non-masked rule */
880 	priv->cur_filer_idx = rqfar;
881 
882 	/* Rest are masked rules */
883 	rqfcr = RQFCR_CMP_NOMATCH;
884 	for (i = 0; i < rqfar; i++) {
885 		priv->ftp_rqfcr[i] = rqfcr;
886 		priv->ftp_rqfpr[i] = rqfpr;
887 		gfar_write_filer(priv, i, rqfcr, rqfpr);
888 	}
889 }
890 
891 #ifdef CONFIG_PPC
892 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
893 {
894 	unsigned int pvr = mfspr(SPRN_PVR);
895 	unsigned int svr = mfspr(SPRN_SVR);
896 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
897 	unsigned int rev = svr & 0xffff;
898 
899 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
900 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
901 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
902 		priv->errata |= GFAR_ERRATA_74;
903 
904 	/* MPC8313 and MPC837x all rev */
905 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
906 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
907 		priv->errata |= GFAR_ERRATA_76;
908 
909 	/* MPC8313 Rev < 2.0 */
910 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
911 		priv->errata |= GFAR_ERRATA_12;
912 }
913 
914 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
915 {
916 	unsigned int svr = mfspr(SPRN_SVR);
917 
918 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
919 		priv->errata |= GFAR_ERRATA_12;
920 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
921 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
922 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
923 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
924 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
925 }
926 #endif
927 
928 static void gfar_detect_errata(struct gfar_private *priv)
929 {
930 	struct device *dev = &priv->ofdev->dev;
931 
932 	/* no plans to fix */
933 	priv->errata |= GFAR_ERRATA_A002;
934 
935 #ifdef CONFIG_PPC
936 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
937 		__gfar_detect_errata_85xx(priv);
938 	else /* non-mpc85xx parts, i.e. e300 core based */
939 		__gfar_detect_errata_83xx(priv);
940 #endif
941 
942 	if (priv->errata)
943 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
944 			 priv->errata);
945 }
946 
947 static void gfar_init_addr_hash_table(struct gfar_private *priv)
948 {
949 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
950 
951 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
952 		priv->extended_hash = 1;
953 		priv->hash_width = 9;
954 
955 		priv->hash_regs[0] = &regs->igaddr0;
956 		priv->hash_regs[1] = &regs->igaddr1;
957 		priv->hash_regs[2] = &regs->igaddr2;
958 		priv->hash_regs[3] = &regs->igaddr3;
959 		priv->hash_regs[4] = &regs->igaddr4;
960 		priv->hash_regs[5] = &regs->igaddr5;
961 		priv->hash_regs[6] = &regs->igaddr6;
962 		priv->hash_regs[7] = &regs->igaddr7;
963 		priv->hash_regs[8] = &regs->gaddr0;
964 		priv->hash_regs[9] = &regs->gaddr1;
965 		priv->hash_regs[10] = &regs->gaddr2;
966 		priv->hash_regs[11] = &regs->gaddr3;
967 		priv->hash_regs[12] = &regs->gaddr4;
968 		priv->hash_regs[13] = &regs->gaddr5;
969 		priv->hash_regs[14] = &regs->gaddr6;
970 		priv->hash_regs[15] = &regs->gaddr7;
971 
972 	} else {
973 		priv->extended_hash = 0;
974 		priv->hash_width = 8;
975 
976 		priv->hash_regs[0] = &regs->gaddr0;
977 		priv->hash_regs[1] = &regs->gaddr1;
978 		priv->hash_regs[2] = &regs->gaddr2;
979 		priv->hash_regs[3] = &regs->gaddr3;
980 		priv->hash_regs[4] = &regs->gaddr4;
981 		priv->hash_regs[5] = &regs->gaddr5;
982 		priv->hash_regs[6] = &regs->gaddr6;
983 		priv->hash_regs[7] = &regs->gaddr7;
984 	}
985 }
986 
987 static int __gfar_is_rx_idle(struct gfar_private *priv)
988 {
989 	u32 res;
990 
991 	/* Normaly TSEC should not hang on GRS commands, so we should
992 	 * actually wait for IEVENT_GRSC flag.
993 	 */
994 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
995 		return 0;
996 
997 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
998 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
999 	 * and the Rx can be safely reset.
1000 	 */
1001 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002 	res &= 0x7f807f80;
1003 	if ((res & 0xffff) == (res >> 16))
1004 		return 1;
1005 
1006 	return 0;
1007 }
1008 
1009 /* Halt the receive and transmit queues */
1010 static void gfar_halt_nodisable(struct gfar_private *priv)
1011 {
1012 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013 	u32 tempval;
1014 	unsigned int timeout;
1015 	int stopped;
1016 
1017 	gfar_ints_disable(priv);
1018 
1019 	if (gfar_is_dma_stopped(priv))
1020 		return;
1021 
1022 	/* Stop the DMA, and wait for it to stop */
1023 	tempval = gfar_read(&regs->dmactrl);
1024 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025 	gfar_write(&regs->dmactrl, tempval);
1026 
1027 retry:
1028 	timeout = 1000;
1029 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030 		cpu_relax();
1031 		timeout--;
1032 	}
1033 
1034 	if (!timeout)
1035 		stopped = gfar_is_dma_stopped(priv);
1036 
1037 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038 	    !__gfar_is_rx_idle(priv))
1039 		goto retry;
1040 }
1041 
1042 /* Halt the receive and transmit queues */
1043 static void gfar_halt(struct gfar_private *priv)
1044 {
1045 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046 	u32 tempval;
1047 
1048 	/* Dissable the Rx/Tx hw queues */
1049 	gfar_write(&regs->rqueue, 0);
1050 	gfar_write(&regs->tqueue, 0);
1051 
1052 	mdelay(10);
1053 
1054 	gfar_halt_nodisable(priv);
1055 
1056 	/* Disable Rx/Tx DMA */
1057 	tempval = gfar_read(&regs->maccfg1);
1058 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059 	gfar_write(&regs->maccfg1, tempval);
1060 }
1061 
1062 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063 {
1064 	struct txbd8 *txbdp;
1065 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1066 	int i, j;
1067 
1068 	txbdp = tx_queue->tx_bd_base;
1069 
1070 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071 		if (!tx_queue->tx_skbuff[i])
1072 			continue;
1073 
1074 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076 		txbdp->lstatus = 0;
1077 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078 		     j++) {
1079 			txbdp++;
1080 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081 				       be16_to_cpu(txbdp->length),
1082 				       DMA_TO_DEVICE);
1083 		}
1084 		txbdp++;
1085 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1086 		tx_queue->tx_skbuff[i] = NULL;
1087 	}
1088 	kfree(tx_queue->tx_skbuff);
1089 	tx_queue->tx_skbuff = NULL;
1090 }
1091 
1092 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093 {
1094 	int i;
1095 
1096 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097 
1098 	dev_kfree_skb(rx_queue->skb);
1099 
1100 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102 
1103 		rxbdp->lstatus = 0;
1104 		rxbdp->bufPtr = 0;
1105 		rxbdp++;
1106 
1107 		if (!rxb->page)
1108 			continue;
1109 
1110 		dma_unmap_page(rx_queue->dev, rxb->dma,
1111 			       PAGE_SIZE, DMA_FROM_DEVICE);
1112 		__free_page(rxb->page);
1113 
1114 		rxb->page = NULL;
1115 	}
1116 
1117 	kfree(rx_queue->rx_buff);
1118 	rx_queue->rx_buff = NULL;
1119 }
1120 
1121 /* If there are any tx skbs or rx skbs still around, free them.
1122  * Then free tx_skbuff and rx_skbuff
1123  */
1124 static void free_skb_resources(struct gfar_private *priv)
1125 {
1126 	struct gfar_priv_tx_q *tx_queue = NULL;
1127 	struct gfar_priv_rx_q *rx_queue = NULL;
1128 	int i;
1129 
1130 	/* Go through all the buffer descriptors and free their data buffers */
1131 	for (i = 0; i < priv->num_tx_queues; i++) {
1132 		struct netdev_queue *txq;
1133 
1134 		tx_queue = priv->tx_queue[i];
1135 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1136 		if (tx_queue->tx_skbuff)
1137 			free_skb_tx_queue(tx_queue);
1138 		netdev_tx_reset_queue(txq);
1139 	}
1140 
1141 	for (i = 0; i < priv->num_rx_queues; i++) {
1142 		rx_queue = priv->rx_queue[i];
1143 		if (rx_queue->rx_buff)
1144 			free_skb_rx_queue(rx_queue);
1145 	}
1146 
1147 	dma_free_coherent(priv->dev,
1148 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1149 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150 			  priv->tx_queue[0]->tx_bd_base,
1151 			  priv->tx_queue[0]->tx_bd_dma_base);
1152 }
1153 
1154 void stop_gfar(struct net_device *dev)
1155 {
1156 	struct gfar_private *priv = netdev_priv(dev);
1157 
1158 	netif_tx_stop_all_queues(dev);
1159 
1160 	smp_mb__before_atomic();
1161 	set_bit(GFAR_DOWN, &priv->state);
1162 	smp_mb__after_atomic();
1163 
1164 	disable_napi(priv);
1165 
1166 	/* disable ints and gracefully shut down Rx/Tx DMA */
1167 	gfar_halt(priv);
1168 
1169 	phy_stop(dev->phydev);
1170 
1171 	free_skb_resources(priv);
1172 }
1173 
1174 static void gfar_start(struct gfar_private *priv)
1175 {
1176 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177 	u32 tempval;
1178 	int i = 0;
1179 
1180 	/* Enable Rx/Tx hw queues */
1181 	gfar_write(&regs->rqueue, priv->rqueue);
1182 	gfar_write(&regs->tqueue, priv->tqueue);
1183 
1184 	/* Initialize DMACTRL to have WWR and WOP */
1185 	tempval = gfar_read(&regs->dmactrl);
1186 	tempval |= DMACTRL_INIT_SETTINGS;
1187 	gfar_write(&regs->dmactrl, tempval);
1188 
1189 	/* Make sure we aren't stopped */
1190 	tempval = gfar_read(&regs->dmactrl);
1191 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192 	gfar_write(&regs->dmactrl, tempval);
1193 
1194 	for (i = 0; i < priv->num_grps; i++) {
1195 		regs = priv->gfargrp[i].regs;
1196 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1197 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1198 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1199 	}
1200 
1201 	/* Enable Rx/Tx DMA */
1202 	tempval = gfar_read(&regs->maccfg1);
1203 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204 	gfar_write(&regs->maccfg1, tempval);
1205 
1206 	gfar_ints_enable(priv);
1207 
1208 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1209 }
1210 
1211 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212 {
1213 	struct page *page;
1214 	dma_addr_t addr;
1215 
1216 	page = dev_alloc_page();
1217 	if (unlikely(!page))
1218 		return false;
1219 
1220 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222 		__free_page(page);
1223 
1224 		return false;
1225 	}
1226 
1227 	rxb->dma = addr;
1228 	rxb->page = page;
1229 	rxb->page_offset = 0;
1230 
1231 	return true;
1232 }
1233 
1234 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235 {
1236 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1237 	struct gfar_extra_stats *estats = &priv->extra_stats;
1238 
1239 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1240 	atomic64_inc(&estats->rx_alloc_err);
1241 }
1242 
1243 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244 				int alloc_cnt)
1245 {
1246 	struct rxbd8 *bdp;
1247 	struct gfar_rx_buff *rxb;
1248 	int i;
1249 
1250 	i = rx_queue->next_to_use;
1251 	bdp = &rx_queue->rx_bd_base[i];
1252 	rxb = &rx_queue->rx_buff[i];
1253 
1254 	while (alloc_cnt--) {
1255 		/* try reuse page */
1256 		if (unlikely(!rxb->page)) {
1257 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258 				gfar_rx_alloc_err(rx_queue);
1259 				break;
1260 			}
1261 		}
1262 
1263 		/* Setup the new RxBD */
1264 		gfar_init_rxbdp(rx_queue, bdp,
1265 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266 
1267 		/* Update to the next pointer */
1268 		bdp++;
1269 		rxb++;
1270 
1271 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1272 			i = 0;
1273 			bdp = rx_queue->rx_bd_base;
1274 			rxb = rx_queue->rx_buff;
1275 		}
1276 	}
1277 
1278 	rx_queue->next_to_use = i;
1279 	rx_queue->next_to_alloc = i;
1280 }
1281 
1282 static void gfar_init_bds(struct net_device *ndev)
1283 {
1284 	struct gfar_private *priv = netdev_priv(ndev);
1285 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286 	struct gfar_priv_tx_q *tx_queue = NULL;
1287 	struct gfar_priv_rx_q *rx_queue = NULL;
1288 	struct txbd8 *txbdp;
1289 	u32 __iomem *rfbptr;
1290 	int i, j;
1291 
1292 	for (i = 0; i < priv->num_tx_queues; i++) {
1293 		tx_queue = priv->tx_queue[i];
1294 		/* Initialize some variables in our dev structure */
1295 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1298 		tx_queue->skb_curtx = 0;
1299 		tx_queue->skb_dirtytx = 0;
1300 
1301 		/* Initialize Transmit Descriptor Ring */
1302 		txbdp = tx_queue->tx_bd_base;
1303 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304 			txbdp->lstatus = 0;
1305 			txbdp->bufPtr = 0;
1306 			txbdp++;
1307 		}
1308 
1309 		/* Set the last descriptor in the ring to indicate wrap */
1310 		txbdp--;
1311 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312 					    TXBD_WRAP);
1313 	}
1314 
1315 	rfbptr = &regs->rfbptr0;
1316 	for (i = 0; i < priv->num_rx_queues; i++) {
1317 		rx_queue = priv->rx_queue[i];
1318 
1319 		rx_queue->next_to_clean = 0;
1320 		rx_queue->next_to_use = 0;
1321 		rx_queue->next_to_alloc = 0;
1322 
1323 		/* make sure next_to_clean != next_to_use after this
1324 		 * by leaving at least 1 unused descriptor
1325 		 */
1326 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1327 
1328 		rx_queue->rfbptr = rfbptr;
1329 		rfbptr += 2;
1330 	}
1331 }
1332 
1333 static int gfar_alloc_skb_resources(struct net_device *ndev)
1334 {
1335 	void *vaddr;
1336 	dma_addr_t addr;
1337 	int i, j;
1338 	struct gfar_private *priv = netdev_priv(ndev);
1339 	struct device *dev = priv->dev;
1340 	struct gfar_priv_tx_q *tx_queue = NULL;
1341 	struct gfar_priv_rx_q *rx_queue = NULL;
1342 
1343 	priv->total_tx_ring_size = 0;
1344 	for (i = 0; i < priv->num_tx_queues; i++)
1345 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346 
1347 	priv->total_rx_ring_size = 0;
1348 	for (i = 0; i < priv->num_rx_queues; i++)
1349 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350 
1351 	/* Allocate memory for the buffer descriptors */
1352 	vaddr = dma_alloc_coherent(dev,
1353 				   (priv->total_tx_ring_size *
1354 				    sizeof(struct txbd8)) +
1355 				   (priv->total_rx_ring_size *
1356 				    sizeof(struct rxbd8)),
1357 				   &addr, GFP_KERNEL);
1358 	if (!vaddr)
1359 		return -ENOMEM;
1360 
1361 	for (i = 0; i < priv->num_tx_queues; i++) {
1362 		tx_queue = priv->tx_queue[i];
1363 		tx_queue->tx_bd_base = vaddr;
1364 		tx_queue->tx_bd_dma_base = addr;
1365 		tx_queue->dev = ndev;
1366 		/* enet DMA only understands physical addresses */
1367 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369 	}
1370 
1371 	/* Start the rx descriptor ring where the tx ring leaves off */
1372 	for (i = 0; i < priv->num_rx_queues; i++) {
1373 		rx_queue = priv->rx_queue[i];
1374 		rx_queue->rx_bd_base = vaddr;
1375 		rx_queue->rx_bd_dma_base = addr;
1376 		rx_queue->ndev = ndev;
1377 		rx_queue->dev = dev;
1378 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380 	}
1381 
1382 	/* Setup the skbuff rings */
1383 	for (i = 0; i < priv->num_tx_queues; i++) {
1384 		tx_queue = priv->tx_queue[i];
1385 		tx_queue->tx_skbuff =
1386 			kmalloc_array(tx_queue->tx_ring_size,
1387 				      sizeof(*tx_queue->tx_skbuff),
1388 				      GFP_KERNEL);
1389 		if (!tx_queue->tx_skbuff)
1390 			goto cleanup;
1391 
1392 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1393 			tx_queue->tx_skbuff[j] = NULL;
1394 	}
1395 
1396 	for (i = 0; i < priv->num_rx_queues; i++) {
1397 		rx_queue = priv->rx_queue[i];
1398 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1399 					    sizeof(*rx_queue->rx_buff),
1400 					    GFP_KERNEL);
1401 		if (!rx_queue->rx_buff)
1402 			goto cleanup;
1403 	}
1404 
1405 	gfar_init_bds(ndev);
1406 
1407 	return 0;
1408 
1409 cleanup:
1410 	free_skb_resources(priv);
1411 	return -ENOMEM;
1412 }
1413 
1414 /* Bring the controller up and running */
1415 int startup_gfar(struct net_device *ndev)
1416 {
1417 	struct gfar_private *priv = netdev_priv(ndev);
1418 	int err;
1419 
1420 	gfar_mac_reset(priv);
1421 
1422 	err = gfar_alloc_skb_resources(ndev);
1423 	if (err)
1424 		return err;
1425 
1426 	gfar_init_tx_rx_base(priv);
1427 
1428 	smp_mb__before_atomic();
1429 	clear_bit(GFAR_DOWN, &priv->state);
1430 	smp_mb__after_atomic();
1431 
1432 	/* Start Rx/Tx DMA and enable the interrupts */
1433 	gfar_start(priv);
1434 
1435 	/* force link state update after mac reset */
1436 	priv->oldlink = 0;
1437 	priv->oldspeed = 0;
1438 	priv->oldduplex = -1;
1439 
1440 	phy_start(ndev->phydev);
1441 
1442 	enable_napi(priv);
1443 
1444 	netif_tx_wake_all_queues(ndev);
1445 
1446 	return 0;
1447 }
1448 
1449 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450 {
1451 	struct net_device *ndev = priv->ndev;
1452 	struct phy_device *phydev = ndev->phydev;
1453 	u32 val = 0;
1454 
1455 	if (!phydev->duplex)
1456 		return val;
1457 
1458 	if (!priv->pause_aneg_en) {
1459 		if (priv->tx_pause_en)
1460 			val |= MACCFG1_TX_FLOW;
1461 		if (priv->rx_pause_en)
1462 			val |= MACCFG1_RX_FLOW;
1463 	} else {
1464 		u16 lcl_adv, rmt_adv;
1465 		u8 flowctrl;
1466 		/* get link partner capabilities */
1467 		rmt_adv = 0;
1468 		if (phydev->pause)
1469 			rmt_adv = LPA_PAUSE_CAP;
1470 		if (phydev->asym_pause)
1471 			rmt_adv |= LPA_PAUSE_ASYM;
1472 
1473 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1474 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1475 		if (flowctrl & FLOW_CTRL_TX)
1476 			val |= MACCFG1_TX_FLOW;
1477 		if (flowctrl & FLOW_CTRL_RX)
1478 			val |= MACCFG1_RX_FLOW;
1479 	}
1480 
1481 	return val;
1482 }
1483 
1484 static noinline void gfar_update_link_state(struct gfar_private *priv)
1485 {
1486 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487 	struct net_device *ndev = priv->ndev;
1488 	struct phy_device *phydev = ndev->phydev;
1489 	struct gfar_priv_rx_q *rx_queue = NULL;
1490 	int i;
1491 
1492 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493 		return;
1494 
1495 	if (phydev->link) {
1496 		u32 tempval1 = gfar_read(&regs->maccfg1);
1497 		u32 tempval = gfar_read(&regs->maccfg2);
1498 		u32 ecntrl = gfar_read(&regs->ecntrl);
1499 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500 
1501 		if (phydev->duplex != priv->oldduplex) {
1502 			if (!(phydev->duplex))
1503 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1504 			else
1505 				tempval |= MACCFG2_FULL_DUPLEX;
1506 
1507 			priv->oldduplex = phydev->duplex;
1508 		}
1509 
1510 		if (phydev->speed != priv->oldspeed) {
1511 			switch (phydev->speed) {
1512 			case 1000:
1513 				tempval =
1514 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515 
1516 				ecntrl &= ~(ECNTRL_R100);
1517 				break;
1518 			case 100:
1519 			case 10:
1520 				tempval =
1521 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522 
1523 				/* Reduced mode distinguishes
1524 				 * between 10 and 100
1525 				 */
1526 				if (phydev->speed == SPEED_100)
1527 					ecntrl |= ECNTRL_R100;
1528 				else
1529 					ecntrl &= ~(ECNTRL_R100);
1530 				break;
1531 			default:
1532 				netif_warn(priv, link, priv->ndev,
1533 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1534 					   phydev->speed);
1535 				break;
1536 			}
1537 
1538 			priv->oldspeed = phydev->speed;
1539 		}
1540 
1541 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1543 
1544 		/* Turn last free buffer recording on */
1545 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546 			for (i = 0; i < priv->num_rx_queues; i++) {
1547 				u32 bdp_dma;
1548 
1549 				rx_queue = priv->rx_queue[i];
1550 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1551 				gfar_write(rx_queue->rfbptr, bdp_dma);
1552 			}
1553 
1554 			priv->tx_actual_en = 1;
1555 		}
1556 
1557 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558 			priv->tx_actual_en = 0;
1559 
1560 		gfar_write(&regs->maccfg1, tempval1);
1561 		gfar_write(&regs->maccfg2, tempval);
1562 		gfar_write(&regs->ecntrl, ecntrl);
1563 
1564 		if (!priv->oldlink)
1565 			priv->oldlink = 1;
1566 
1567 	} else if (priv->oldlink) {
1568 		priv->oldlink = 0;
1569 		priv->oldspeed = 0;
1570 		priv->oldduplex = -1;
1571 	}
1572 
1573 	if (netif_msg_link(priv))
1574 		phy_print_status(phydev);
1575 }
1576 
1577 /* Called every time the controller might need to be made
1578  * aware of new link state.  The PHY code conveys this
1579  * information through variables in the phydev structure, and this
1580  * function converts those variables into the appropriate
1581  * register values, and can bring down the device if needed.
1582  */
1583 static void adjust_link(struct net_device *dev)
1584 {
1585 	struct gfar_private *priv = netdev_priv(dev);
1586 	struct phy_device *phydev = dev->phydev;
1587 
1588 	if (unlikely(phydev->link != priv->oldlink ||
1589 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1590 				       phydev->speed != priv->oldspeed))))
1591 		gfar_update_link_state(priv);
1592 }
1593 
1594 /* Initialize TBI PHY interface for communicating with the
1595  * SERDES lynx PHY on the chip.  We communicate with this PHY
1596  * through the MDIO bus on each controller, treating it as a
1597  * "normal" PHY at the address found in the TBIPA register.  We assume
1598  * that the TBIPA register is valid.  Either the MDIO bus code will set
1599  * it to a value that doesn't conflict with other PHYs on the bus, or the
1600  * value doesn't matter, as there are no other PHYs on the bus.
1601  */
1602 static void gfar_configure_serdes(struct net_device *dev)
1603 {
1604 	struct gfar_private *priv = netdev_priv(dev);
1605 	struct phy_device *tbiphy;
1606 
1607 	if (!priv->tbi_node) {
1608 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609 				    "device tree specify a tbi-handle\n");
1610 		return;
1611 	}
1612 
1613 	tbiphy = of_phy_find_device(priv->tbi_node);
1614 	if (!tbiphy) {
1615 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1616 		return;
1617 	}
1618 
1619 	/* If the link is already up, we must already be ok, and don't need to
1620 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1621 	 * everything for us?  Resetting it takes the link down and requires
1622 	 * several seconds for it to come back.
1623 	 */
1624 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625 		put_device(&tbiphy->mdio.dev);
1626 		return;
1627 	}
1628 
1629 	/* Single clk mode, mii mode off(for serdes communication) */
1630 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631 
1632 	phy_write(tbiphy, MII_ADVERTISE,
1633 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634 		  ADVERTISE_1000XPSE_ASYM);
1635 
1636 	phy_write(tbiphy, MII_BMCR,
1637 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638 		  BMCR_SPEED1000);
1639 
1640 	put_device(&tbiphy->mdio.dev);
1641 }
1642 
1643 /* Initializes driver's PHY state, and attaches to the PHY.
1644  * Returns 0 on success.
1645  */
1646 static int init_phy(struct net_device *dev)
1647 {
1648 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649 	struct gfar_private *priv = netdev_priv(dev);
1650 	phy_interface_t interface = priv->interface;
1651 	struct phy_device *phydev;
1652 	struct ethtool_eee edata;
1653 
1654 	linkmode_set_bit_array(phy_10_100_features_array,
1655 			       ARRAY_SIZE(phy_10_100_features_array),
1656 			       mask);
1657 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1658 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1659 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1661 
1662 	priv->oldlink = 0;
1663 	priv->oldspeed = 0;
1664 	priv->oldduplex = -1;
1665 
1666 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1667 				interface);
1668 	if (!phydev) {
1669 		dev_err(&dev->dev, "could not attach to PHY\n");
1670 		return -ENODEV;
1671 	}
1672 
1673 	if (interface == PHY_INTERFACE_MODE_SGMII)
1674 		gfar_configure_serdes(dev);
1675 
1676 	/* Remove any features not supported by the controller */
1677 	linkmode_and(phydev->supported, phydev->supported, mask);
1678 	linkmode_copy(phydev->advertising, phydev->supported);
1679 
1680 	/* Add support for flow control */
1681 	phy_support_asym_pause(phydev);
1682 
1683 	/* disable EEE autoneg, EEE not supported by eTSEC */
1684 	memset(&edata, 0, sizeof(struct ethtool_eee));
1685 	phy_ethtool_set_eee(phydev, &edata);
1686 
1687 	return 0;
1688 }
1689 
1690 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691 {
1692 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693 
1694 	memset(fcb, 0, GMAC_FCB_LEN);
1695 
1696 	return fcb;
1697 }
1698 
1699 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700 				    int fcb_length)
1701 {
1702 	/* If we're here, it's a IP packet with a TCP or UDP
1703 	 * payload.  We set it to checksum, using a pseudo-header
1704 	 * we provide
1705 	 */
1706 	u8 flags = TXFCB_DEFAULT;
1707 
1708 	/* Tell the controller what the protocol is
1709 	 * And provide the already calculated phcs
1710 	 */
1711 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712 		flags |= TXFCB_UDP;
1713 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714 	} else
1715 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716 
1717 	/* l3os is the distance between the start of the
1718 	 * frame (skb->data) and the start of the IP hdr.
1719 	 * l4os is the distance between the start of the
1720 	 * l3 hdr and the l4 hdr
1721 	 */
1722 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723 	fcb->l4os = skb_network_header_len(skb);
1724 
1725 	fcb->flags = flags;
1726 }
1727 
1728 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729 {
1730 	fcb->flags |= TXFCB_VLN;
1731 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732 }
1733 
1734 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735 				      struct txbd8 *base, int ring_size)
1736 {
1737 	struct txbd8 *new_bd = bdp + stride;
1738 
1739 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740 }
1741 
1742 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743 				      int ring_size)
1744 {
1745 	return skip_txbd(bdp, 1, base, ring_size);
1746 }
1747 
1748 /* eTSEC12: csum generation not supported for some fcb offsets */
1749 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750 				       unsigned long fcb_addr)
1751 {
1752 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1753 	       (fcb_addr % 0x20) > 0x18);
1754 }
1755 
1756 /* eTSEC76: csum generation for frames larger than 2500 may
1757  * cause excess delays before start of transmission
1758  */
1759 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760 				       unsigned int len)
1761 {
1762 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1763 	       (len > 2500));
1764 }
1765 
1766 /* This is called by the kernel when a frame is ready for transmission.
1767  * It is pointed to by the dev->hard_start_xmit function pointer
1768  */
1769 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770 {
1771 	struct gfar_private *priv = netdev_priv(dev);
1772 	struct gfar_priv_tx_q *tx_queue = NULL;
1773 	struct netdev_queue *txq;
1774 	struct gfar __iomem *regs = NULL;
1775 	struct txfcb *fcb = NULL;
1776 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777 	u32 lstatus;
1778 	skb_frag_t *frag;
1779 	int i, rq = 0;
1780 	int do_tstamp, do_csum, do_vlan;
1781 	u32 bufaddr;
1782 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783 
1784 	rq = skb->queue_mapping;
1785 	tx_queue = priv->tx_queue[rq];
1786 	txq = netdev_get_tx_queue(dev, rq);
1787 	base = tx_queue->tx_bd_base;
1788 	regs = tx_queue->grp->regs;
1789 
1790 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791 	do_vlan = skb_vlan_tag_present(skb);
1792 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793 		    priv->hwts_tx_en;
1794 
1795 	if (do_csum || do_vlan)
1796 		fcb_len = GMAC_FCB_LEN;
1797 
1798 	/* check if time stamp should be generated */
1799 	if (unlikely(do_tstamp))
1800 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801 
1802 	/* make space for additional header when fcb is needed */
1803 	if (fcb_len) {
1804 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1805 			dev->stats.tx_errors++;
1806 			dev_kfree_skb_any(skb);
1807 			return NETDEV_TX_OK;
1808 		}
1809 	}
1810 
1811 	/* total number of fragments in the SKB */
1812 	nr_frags = skb_shinfo(skb)->nr_frags;
1813 
1814 	/* calculate the required number of TxBDs for this skb */
1815 	if (unlikely(do_tstamp))
1816 		nr_txbds = nr_frags + 2;
1817 	else
1818 		nr_txbds = nr_frags + 1;
1819 
1820 	/* check if there is space to queue this packet */
1821 	if (nr_txbds > tx_queue->num_txbdfree) {
1822 		/* no space, stop the queue */
1823 		netif_tx_stop_queue(txq);
1824 		dev->stats.tx_fifo_errors++;
1825 		return NETDEV_TX_BUSY;
1826 	}
1827 
1828 	/* Update transmit stats */
1829 	bytes_sent = skb->len;
1830 	tx_queue->stats.tx_bytes += bytes_sent;
1831 	/* keep Tx bytes on wire for BQL accounting */
1832 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1833 	tx_queue->stats.tx_packets++;
1834 
1835 	txbdp = txbdp_start = tx_queue->cur_tx;
1836 	lstatus = be32_to_cpu(txbdp->lstatus);
1837 
1838 	/* Add TxPAL between FCB and frame if required */
1839 	if (unlikely(do_tstamp)) {
1840 		skb_push(skb, GMAC_TXPAL_LEN);
1841 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1842 	}
1843 
1844 	/* Add TxFCB if required */
1845 	if (fcb_len) {
1846 		fcb = gfar_add_fcb(skb);
1847 		lstatus |= BD_LFLAG(TXBD_TOE);
1848 	}
1849 
1850 	/* Set up checksumming */
1851 	if (do_csum) {
1852 		gfar_tx_checksum(skb, fcb, fcb_len);
1853 
1854 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856 			__skb_pull(skb, GMAC_FCB_LEN);
1857 			skb_checksum_help(skb);
1858 			if (do_vlan || do_tstamp) {
1859 				/* put back a new fcb for vlan/tstamp TOE */
1860 				fcb = gfar_add_fcb(skb);
1861 			} else {
1862 				/* Tx TOE not used */
1863 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864 				fcb = NULL;
1865 			}
1866 		}
1867 	}
1868 
1869 	if (do_vlan)
1870 		gfar_tx_vlan(skb, fcb);
1871 
1872 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873 				 DMA_TO_DEVICE);
1874 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875 		goto dma_map_err;
1876 
1877 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878 
1879 	/* Time stamp insertion requires one additional TxBD */
1880 	if (unlikely(do_tstamp))
1881 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1882 						 tx_queue->tx_ring_size);
1883 
1884 	if (likely(!nr_frags)) {
1885 		if (likely(!do_tstamp))
1886 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887 	} else {
1888 		u32 lstatus_start = lstatus;
1889 
1890 		/* Place the fragment addresses and lengths into the TxBDs */
1891 		frag = &skb_shinfo(skb)->frags[0];
1892 		for (i = 0; i < nr_frags; i++, frag++) {
1893 			unsigned int size;
1894 
1895 			/* Point at the next BD, wrapping as needed */
1896 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1897 
1898 			size = skb_frag_size(frag);
1899 
1900 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901 				  BD_LFLAG(TXBD_READY);
1902 
1903 			/* Handle the last BD specially */
1904 			if (i == nr_frags - 1)
1905 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906 
1907 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1908 						   size, DMA_TO_DEVICE);
1909 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910 				goto dma_map_err;
1911 
1912 			/* set the TxBD length and buffer pointer */
1913 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1914 			txbdp->lstatus = cpu_to_be32(lstatus);
1915 		}
1916 
1917 		lstatus = lstatus_start;
1918 	}
1919 
1920 	/* If time stamping is requested one additional TxBD must be set up. The
1921 	 * first TxBD points to the FCB and must have a data length of
1922 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923 	 * the full frame length.
1924 	 */
1925 	if (unlikely(do_tstamp)) {
1926 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927 
1928 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929 		bufaddr += fcb_len;
1930 
1931 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932 			      (skb_headlen(skb) - fcb_len);
1933 		if (!nr_frags)
1934 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935 
1936 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939 
1940 		/* Setup tx hardware time stamping */
1941 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942 		fcb->ptp = 1;
1943 	} else {
1944 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945 	}
1946 
1947 	skb_tx_timestamp(skb);
1948 	netdev_tx_sent_queue(txq, bytes_sent);
1949 
1950 	gfar_wmb();
1951 
1952 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1953 
1954 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1955 
1956 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1957 
1958 	/* Update the current skb pointer to the next entry we will use
1959 	 * (wrapping if necessary)
1960 	 */
1961 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1962 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1963 
1964 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1965 
1966 	/* We can work in parallel with gfar_clean_tx_ring(), except
1967 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1968 	 * when we were reading the num_txbdfree and checking for available
1969 	 * space, that's because outside of this function it can only grow.
1970 	 */
1971 	spin_lock_bh(&tx_queue->txlock);
1972 	/* reduce TxBD free count */
1973 	tx_queue->num_txbdfree -= (nr_txbds);
1974 	spin_unlock_bh(&tx_queue->txlock);
1975 
1976 	/* If the next BD still needs to be cleaned up, then the bds
1977 	 * are full.  We need to tell the kernel to stop sending us stuff.
1978 	 */
1979 	if (!tx_queue->num_txbdfree) {
1980 		netif_tx_stop_queue(txq);
1981 
1982 		dev->stats.tx_fifo_errors++;
1983 	}
1984 
1985 	/* Tell the DMA to go go go */
1986 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1987 
1988 	return NETDEV_TX_OK;
1989 
1990 dma_map_err:
1991 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1992 	if (do_tstamp)
1993 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1994 	for (i = 0; i < nr_frags; i++) {
1995 		lstatus = be32_to_cpu(txbdp->lstatus);
1996 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1997 			break;
1998 
1999 		lstatus &= ~BD_LFLAG(TXBD_READY);
2000 		txbdp->lstatus = cpu_to_be32(lstatus);
2001 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2002 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2003 			       DMA_TO_DEVICE);
2004 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2005 	}
2006 	gfar_wmb();
2007 	dev_kfree_skb_any(skb);
2008 	return NETDEV_TX_OK;
2009 }
2010 
2011 /* Changes the mac address if the controller is not running. */
2012 static int gfar_set_mac_address(struct net_device *dev)
2013 {
2014 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2015 
2016 	return 0;
2017 }
2018 
2019 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2020 {
2021 	struct gfar_private *priv = netdev_priv(dev);
2022 
2023 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2024 		cpu_relax();
2025 
2026 	if (dev->flags & IFF_UP)
2027 		stop_gfar(dev);
2028 
2029 	dev->mtu = new_mtu;
2030 
2031 	if (dev->flags & IFF_UP)
2032 		startup_gfar(dev);
2033 
2034 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2035 
2036 	return 0;
2037 }
2038 
2039 static void reset_gfar(struct net_device *ndev)
2040 {
2041 	struct gfar_private *priv = netdev_priv(ndev);
2042 
2043 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2044 		cpu_relax();
2045 
2046 	stop_gfar(ndev);
2047 	startup_gfar(ndev);
2048 
2049 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2050 }
2051 
2052 /* gfar_reset_task gets scheduled when a packet has not been
2053  * transmitted after a set amount of time.
2054  * For now, assume that clearing out all the structures, and
2055  * starting over will fix the problem.
2056  */
2057 static void gfar_reset_task(struct work_struct *work)
2058 {
2059 	struct gfar_private *priv = container_of(work, struct gfar_private,
2060 						 reset_task);
2061 	reset_gfar(priv->ndev);
2062 }
2063 
2064 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2065 {
2066 	struct gfar_private *priv = netdev_priv(dev);
2067 
2068 	dev->stats.tx_errors++;
2069 	schedule_work(&priv->reset_task);
2070 }
2071 
2072 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2073 {
2074 	struct hwtstamp_config config;
2075 	struct gfar_private *priv = netdev_priv(netdev);
2076 
2077 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2078 		return -EFAULT;
2079 
2080 	switch (config.tx_type) {
2081 	case HWTSTAMP_TX_OFF:
2082 		priv->hwts_tx_en = 0;
2083 		break;
2084 	case HWTSTAMP_TX_ON:
2085 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2086 			return -ERANGE;
2087 		priv->hwts_tx_en = 1;
2088 		break;
2089 	default:
2090 		return -ERANGE;
2091 	}
2092 
2093 	switch (config.rx_filter) {
2094 	case HWTSTAMP_FILTER_NONE:
2095 		if (priv->hwts_rx_en) {
2096 			priv->hwts_rx_en = 0;
2097 			reset_gfar(netdev);
2098 		}
2099 		break;
2100 	default:
2101 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2102 			return -ERANGE;
2103 		if (!priv->hwts_rx_en) {
2104 			priv->hwts_rx_en = 1;
2105 			reset_gfar(netdev);
2106 		}
2107 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2108 		break;
2109 	}
2110 
2111 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2112 		-EFAULT : 0;
2113 }
2114 
2115 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2116 {
2117 	struct hwtstamp_config config;
2118 	struct gfar_private *priv = netdev_priv(netdev);
2119 
2120 	config.flags = 0;
2121 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2122 	config.rx_filter = (priv->hwts_rx_en ?
2123 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2124 
2125 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2126 		-EFAULT : 0;
2127 }
2128 
2129 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2130 {
2131 	struct phy_device *phydev = dev->phydev;
2132 
2133 	if (!netif_running(dev))
2134 		return -EINVAL;
2135 
2136 	if (cmd == SIOCSHWTSTAMP)
2137 		return gfar_hwtstamp_set(dev, rq);
2138 	if (cmd == SIOCGHWTSTAMP)
2139 		return gfar_hwtstamp_get(dev, rq);
2140 
2141 	if (!phydev)
2142 		return -ENODEV;
2143 
2144 	return phy_mii_ioctl(phydev, rq, cmd);
2145 }
2146 
2147 /* Interrupt Handler for Transmit complete */
2148 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2149 {
2150 	struct net_device *dev = tx_queue->dev;
2151 	struct netdev_queue *txq;
2152 	struct gfar_private *priv = netdev_priv(dev);
2153 	struct txbd8 *bdp, *next = NULL;
2154 	struct txbd8 *lbdp = NULL;
2155 	struct txbd8 *base = tx_queue->tx_bd_base;
2156 	struct sk_buff *skb;
2157 	int skb_dirtytx;
2158 	int tx_ring_size = tx_queue->tx_ring_size;
2159 	int frags = 0, nr_txbds = 0;
2160 	int i;
2161 	int howmany = 0;
2162 	int tqi = tx_queue->qindex;
2163 	unsigned int bytes_sent = 0;
2164 	u32 lstatus;
2165 	size_t buflen;
2166 
2167 	txq = netdev_get_tx_queue(dev, tqi);
2168 	bdp = tx_queue->dirty_tx;
2169 	skb_dirtytx = tx_queue->skb_dirtytx;
2170 
2171 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2172 		bool do_tstamp;
2173 
2174 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2175 			    priv->hwts_tx_en;
2176 
2177 		frags = skb_shinfo(skb)->nr_frags;
2178 
2179 		/* When time stamping, one additional TxBD must be freed.
2180 		 * Also, we need to dma_unmap_single() the TxPAL.
2181 		 */
2182 		if (unlikely(do_tstamp))
2183 			nr_txbds = frags + 2;
2184 		else
2185 			nr_txbds = frags + 1;
2186 
2187 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2188 
2189 		lstatus = be32_to_cpu(lbdp->lstatus);
2190 
2191 		/* Only clean completed frames */
2192 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2193 		    (lstatus & BD_LENGTH_MASK))
2194 			break;
2195 
2196 		if (unlikely(do_tstamp)) {
2197 			next = next_txbd(bdp, base, tx_ring_size);
2198 			buflen = be16_to_cpu(next->length) +
2199 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2200 		} else
2201 			buflen = be16_to_cpu(bdp->length);
2202 
2203 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2204 				 buflen, DMA_TO_DEVICE);
2205 
2206 		if (unlikely(do_tstamp)) {
2207 			struct skb_shared_hwtstamps shhwtstamps;
2208 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2209 					  ~0x7UL);
2210 
2211 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2212 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2213 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2214 			skb_tstamp_tx(skb, &shhwtstamps);
2215 			gfar_clear_txbd_status(bdp);
2216 			bdp = next;
2217 		}
2218 
2219 		gfar_clear_txbd_status(bdp);
2220 		bdp = next_txbd(bdp, base, tx_ring_size);
2221 
2222 		for (i = 0; i < frags; i++) {
2223 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2224 				       be16_to_cpu(bdp->length),
2225 				       DMA_TO_DEVICE);
2226 			gfar_clear_txbd_status(bdp);
2227 			bdp = next_txbd(bdp, base, tx_ring_size);
2228 		}
2229 
2230 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2231 
2232 		dev_kfree_skb_any(skb);
2233 
2234 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2235 
2236 		skb_dirtytx = (skb_dirtytx + 1) &
2237 			      TX_RING_MOD_MASK(tx_ring_size);
2238 
2239 		howmany++;
2240 		spin_lock(&tx_queue->txlock);
2241 		tx_queue->num_txbdfree += nr_txbds;
2242 		spin_unlock(&tx_queue->txlock);
2243 	}
2244 
2245 	/* If we freed a buffer, we can restart transmission, if necessary */
2246 	if (tx_queue->num_txbdfree &&
2247 	    netif_tx_queue_stopped(txq) &&
2248 	    !(test_bit(GFAR_DOWN, &priv->state)))
2249 		netif_wake_subqueue(priv->ndev, tqi);
2250 
2251 	/* Update dirty indicators */
2252 	tx_queue->skb_dirtytx = skb_dirtytx;
2253 	tx_queue->dirty_tx = bdp;
2254 
2255 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2256 }
2257 
2258 static void count_errors(u32 lstatus, struct net_device *ndev)
2259 {
2260 	struct gfar_private *priv = netdev_priv(ndev);
2261 	struct net_device_stats *stats = &ndev->stats;
2262 	struct gfar_extra_stats *estats = &priv->extra_stats;
2263 
2264 	/* If the packet was truncated, none of the other errors matter */
2265 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2266 		stats->rx_length_errors++;
2267 
2268 		atomic64_inc(&estats->rx_trunc);
2269 
2270 		return;
2271 	}
2272 	/* Count the errors, if there were any */
2273 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2274 		stats->rx_length_errors++;
2275 
2276 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2277 			atomic64_inc(&estats->rx_large);
2278 		else
2279 			atomic64_inc(&estats->rx_short);
2280 	}
2281 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2282 		stats->rx_frame_errors++;
2283 		atomic64_inc(&estats->rx_nonoctet);
2284 	}
2285 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2286 		atomic64_inc(&estats->rx_crcerr);
2287 		stats->rx_crc_errors++;
2288 	}
2289 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2290 		atomic64_inc(&estats->rx_overrun);
2291 		stats->rx_over_errors++;
2292 	}
2293 }
2294 
2295 static irqreturn_t gfar_receive(int irq, void *grp_id)
2296 {
2297 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2298 	unsigned long flags;
2299 	u32 imask, ievent;
2300 
2301 	ievent = gfar_read(&grp->regs->ievent);
2302 
2303 	if (unlikely(ievent & IEVENT_FGPI)) {
2304 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2305 		return IRQ_HANDLED;
2306 	}
2307 
2308 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2309 		spin_lock_irqsave(&grp->grplock, flags);
2310 		imask = gfar_read(&grp->regs->imask);
2311 		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2312 		gfar_write(&grp->regs->imask, imask);
2313 		spin_unlock_irqrestore(&grp->grplock, flags);
2314 		__napi_schedule(&grp->napi_rx);
2315 	} else {
2316 		/* Clear IEVENT, so interrupts aren't called again
2317 		 * because of the packets that have already arrived.
2318 		 */
2319 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2320 	}
2321 
2322 	return IRQ_HANDLED;
2323 }
2324 
2325 /* Interrupt Handler for Transmit complete */
2326 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2327 {
2328 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329 	unsigned long flags;
2330 	u32 imask;
2331 
2332 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2333 		spin_lock_irqsave(&grp->grplock, flags);
2334 		imask = gfar_read(&grp->regs->imask);
2335 		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2336 		gfar_write(&grp->regs->imask, imask);
2337 		spin_unlock_irqrestore(&grp->grplock, flags);
2338 		__napi_schedule(&grp->napi_tx);
2339 	} else {
2340 		/* Clear IEVENT, so interrupts aren't called again
2341 		 * because of the packets that have already arrived.
2342 		 */
2343 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2344 	}
2345 
2346 	return IRQ_HANDLED;
2347 }
2348 
2349 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2350 			     struct sk_buff *skb, bool first)
2351 {
2352 	int size = lstatus & BD_LENGTH_MASK;
2353 	struct page *page = rxb->page;
2354 
2355 	if (likely(first)) {
2356 		skb_put(skb, size);
2357 	} else {
2358 		/* the last fragments' length contains the full frame length */
2359 		if (lstatus & BD_LFLAG(RXBD_LAST))
2360 			size -= skb->len;
2361 
2362 		WARN(size < 0, "gianfar: rx fragment size underflow");
2363 		if (size < 0)
2364 			return false;
2365 
2366 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2367 				rxb->page_offset + RXBUF_ALIGNMENT,
2368 				size, GFAR_RXB_TRUESIZE);
2369 	}
2370 
2371 	/* try reuse page */
2372 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2373 		return false;
2374 
2375 	/* change offset to the other half */
2376 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2377 
2378 	page_ref_inc(page);
2379 
2380 	return true;
2381 }
2382 
2383 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2384 			       struct gfar_rx_buff *old_rxb)
2385 {
2386 	struct gfar_rx_buff *new_rxb;
2387 	u16 nta = rxq->next_to_alloc;
2388 
2389 	new_rxb = &rxq->rx_buff[nta];
2390 
2391 	/* find next buf that can reuse a page */
2392 	nta++;
2393 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2394 
2395 	/* copy page reference */
2396 	*new_rxb = *old_rxb;
2397 
2398 	/* sync for use by the device */
2399 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2400 					 old_rxb->page_offset,
2401 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2402 }
2403 
2404 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2405 					    u32 lstatus, struct sk_buff *skb)
2406 {
2407 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2408 	struct page *page = rxb->page;
2409 	bool first = false;
2410 
2411 	if (likely(!skb)) {
2412 		void *buff_addr = page_address(page) + rxb->page_offset;
2413 
2414 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2415 		if (unlikely(!skb)) {
2416 			gfar_rx_alloc_err(rx_queue);
2417 			return NULL;
2418 		}
2419 		skb_reserve(skb, RXBUF_ALIGNMENT);
2420 		first = true;
2421 	}
2422 
2423 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2424 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2425 
2426 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2427 		/* reuse the free half of the page */
2428 		gfar_reuse_rx_page(rx_queue, rxb);
2429 	} else {
2430 		/* page cannot be reused, unmap it */
2431 		dma_unmap_page(rx_queue->dev, rxb->dma,
2432 			       PAGE_SIZE, DMA_FROM_DEVICE);
2433 	}
2434 
2435 	/* clear rxb content */
2436 	rxb->page = NULL;
2437 
2438 	return skb;
2439 }
2440 
2441 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2442 {
2443 	/* If valid headers were found, and valid sums
2444 	 * were verified, then we tell the kernel that no
2445 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2446 	 */
2447 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2448 	    (RXFCB_CIP | RXFCB_CTU))
2449 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2450 	else
2451 		skb_checksum_none_assert(skb);
2452 }
2453 
2454 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2455 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2456 {
2457 	struct gfar_private *priv = netdev_priv(ndev);
2458 	struct rxfcb *fcb = NULL;
2459 
2460 	/* fcb is at the beginning if exists */
2461 	fcb = (struct rxfcb *)skb->data;
2462 
2463 	/* Remove the FCB from the skb
2464 	 * Remove the padded bytes, if there are any
2465 	 */
2466 	if (priv->uses_rxfcb)
2467 		skb_pull(skb, GMAC_FCB_LEN);
2468 
2469 	/* Get receive timestamp from the skb */
2470 	if (priv->hwts_rx_en) {
2471 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2472 		u64 *ns = (u64 *) skb->data;
2473 
2474 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2475 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2476 	}
2477 
2478 	if (priv->padding)
2479 		skb_pull(skb, priv->padding);
2480 
2481 	/* Trim off the FCS */
2482 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2483 
2484 	if (ndev->features & NETIF_F_RXCSUM)
2485 		gfar_rx_checksum(skb, fcb);
2486 
2487 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2488 	 * Even if vlan rx accel is disabled, on some chips
2489 	 * RXFCB_VLN is pseudo randomly set.
2490 	 */
2491 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2492 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2493 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2494 				       be16_to_cpu(fcb->vlctl));
2495 }
2496 
2497 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2498  * until the budget/quota has been reached. Returns the number
2499  * of frames handled
2500  */
2501 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2502 			      int rx_work_limit)
2503 {
2504 	struct net_device *ndev = rx_queue->ndev;
2505 	struct gfar_private *priv = netdev_priv(ndev);
2506 	struct rxbd8 *bdp;
2507 	int i, howmany = 0;
2508 	struct sk_buff *skb = rx_queue->skb;
2509 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2510 	unsigned int total_bytes = 0, total_pkts = 0;
2511 
2512 	/* Get the first full descriptor */
2513 	i = rx_queue->next_to_clean;
2514 
2515 	while (rx_work_limit--) {
2516 		u32 lstatus;
2517 
2518 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2519 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2520 			cleaned_cnt = 0;
2521 		}
2522 
2523 		bdp = &rx_queue->rx_bd_base[i];
2524 		lstatus = be32_to_cpu(bdp->lstatus);
2525 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2526 			break;
2527 
2528 		/* lost RXBD_LAST descriptor due to overrun */
2529 		if (skb &&
2530 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2531 			/* discard faulty buffer */
2532 			dev_kfree_skb(skb);
2533 			skb = NULL;
2534 			rx_queue->stats.rx_dropped++;
2535 
2536 			/* can continue normally */
2537 		}
2538 
2539 		/* order rx buffer descriptor reads */
2540 		rmb();
2541 
2542 		/* fetch next to clean buffer from the ring */
2543 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2544 		if (unlikely(!skb))
2545 			break;
2546 
2547 		cleaned_cnt++;
2548 		howmany++;
2549 
2550 		if (unlikely(++i == rx_queue->rx_ring_size))
2551 			i = 0;
2552 
2553 		rx_queue->next_to_clean = i;
2554 
2555 		/* fetch next buffer if not the last in frame */
2556 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2557 			continue;
2558 
2559 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2560 			count_errors(lstatus, ndev);
2561 
2562 			/* discard faulty buffer */
2563 			dev_kfree_skb(skb);
2564 			skb = NULL;
2565 			rx_queue->stats.rx_dropped++;
2566 			continue;
2567 		}
2568 
2569 		gfar_process_frame(ndev, skb);
2570 
2571 		/* Increment the number of packets */
2572 		total_pkts++;
2573 		total_bytes += skb->len;
2574 
2575 		skb_record_rx_queue(skb, rx_queue->qindex);
2576 
2577 		skb->protocol = eth_type_trans(skb, ndev);
2578 
2579 		/* Send the packet up the stack */
2580 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2581 
2582 		skb = NULL;
2583 	}
2584 
2585 	/* Store incomplete frames for completion */
2586 	rx_queue->skb = skb;
2587 
2588 	rx_queue->stats.rx_packets += total_pkts;
2589 	rx_queue->stats.rx_bytes += total_bytes;
2590 
2591 	if (cleaned_cnt)
2592 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2593 
2594 	/* Update Last Free RxBD pointer for LFC */
2595 	if (unlikely(priv->tx_actual_en)) {
2596 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2597 
2598 		gfar_write(rx_queue->rfbptr, bdp_dma);
2599 	}
2600 
2601 	return howmany;
2602 }
2603 
2604 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2605 {
2606 	struct gfar_priv_grp *gfargrp =
2607 		container_of(napi, struct gfar_priv_grp, napi_rx);
2608 	struct gfar __iomem *regs = gfargrp->regs;
2609 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2610 	int work_done = 0;
2611 
2612 	/* Clear IEVENT, so interrupts aren't called again
2613 	 * because of the packets that have already arrived
2614 	 */
2615 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2616 
2617 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2618 
2619 	if (work_done < budget) {
2620 		u32 imask;
2621 		napi_complete_done(napi, work_done);
2622 		/* Clear the halt bit in RSTAT */
2623 		gfar_write(&regs->rstat, gfargrp->rstat);
2624 
2625 		spin_lock_irq(&gfargrp->grplock);
2626 		imask = gfar_read(&regs->imask);
2627 		imask |= IMASK_RX_DEFAULT;
2628 		gfar_write(&regs->imask, imask);
2629 		spin_unlock_irq(&gfargrp->grplock);
2630 	}
2631 
2632 	return work_done;
2633 }
2634 
2635 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2636 {
2637 	struct gfar_priv_grp *gfargrp =
2638 		container_of(napi, struct gfar_priv_grp, napi_tx);
2639 	struct gfar __iomem *regs = gfargrp->regs;
2640 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2641 	u32 imask;
2642 
2643 	/* Clear IEVENT, so interrupts aren't called again
2644 	 * because of the packets that have already arrived
2645 	 */
2646 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2647 
2648 	/* run Tx cleanup to completion */
2649 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2650 		gfar_clean_tx_ring(tx_queue);
2651 
2652 	napi_complete(napi);
2653 
2654 	spin_lock_irq(&gfargrp->grplock);
2655 	imask = gfar_read(&regs->imask);
2656 	imask |= IMASK_TX_DEFAULT;
2657 	gfar_write(&regs->imask, imask);
2658 	spin_unlock_irq(&gfargrp->grplock);
2659 
2660 	return 0;
2661 }
2662 
2663 /* GFAR error interrupt handler */
2664 static irqreturn_t gfar_error(int irq, void *grp_id)
2665 {
2666 	struct gfar_priv_grp *gfargrp = grp_id;
2667 	struct gfar __iomem *regs = gfargrp->regs;
2668 	struct gfar_private *priv= gfargrp->priv;
2669 	struct net_device *dev = priv->ndev;
2670 
2671 	/* Save ievent for future reference */
2672 	u32 events = gfar_read(&regs->ievent);
2673 
2674 	/* Clear IEVENT */
2675 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2676 
2677 	/* Magic Packet is not an error. */
2678 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2679 	    (events & IEVENT_MAG))
2680 		events &= ~IEVENT_MAG;
2681 
2682 	/* Hmm... */
2683 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2684 		netdev_dbg(dev,
2685 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2686 			   events, gfar_read(&regs->imask));
2687 
2688 	/* Update the error counters */
2689 	if (events & IEVENT_TXE) {
2690 		dev->stats.tx_errors++;
2691 
2692 		if (events & IEVENT_LC)
2693 			dev->stats.tx_window_errors++;
2694 		if (events & IEVENT_CRL)
2695 			dev->stats.tx_aborted_errors++;
2696 		if (events & IEVENT_XFUN) {
2697 			netif_dbg(priv, tx_err, dev,
2698 				  "TX FIFO underrun, packet dropped\n");
2699 			dev->stats.tx_dropped++;
2700 			atomic64_inc(&priv->extra_stats.tx_underrun);
2701 
2702 			schedule_work(&priv->reset_task);
2703 		}
2704 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2705 	}
2706 	if (events & IEVENT_MSRO) {
2707 		struct rmon_mib __iomem *rmon = &regs->rmon;
2708 		u32 car;
2709 
2710 		spin_lock(&priv->rmon_overflow.lock);
2711 		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2712 		if (car) {
2713 			priv->rmon_overflow.rdrp++;
2714 			gfar_write(&rmon->car1, car);
2715 		}
2716 		spin_unlock(&priv->rmon_overflow.lock);
2717 	}
2718 	if (events & IEVENT_BSY) {
2719 		dev->stats.rx_over_errors++;
2720 		atomic64_inc(&priv->extra_stats.rx_bsy);
2721 
2722 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2723 			  gfar_read(&regs->rstat));
2724 	}
2725 	if (events & IEVENT_BABR) {
2726 		dev->stats.rx_errors++;
2727 		atomic64_inc(&priv->extra_stats.rx_babr);
2728 
2729 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2730 	}
2731 	if (events & IEVENT_EBERR) {
2732 		atomic64_inc(&priv->extra_stats.eberr);
2733 		netif_dbg(priv, rx_err, dev, "bus error\n");
2734 	}
2735 	if (events & IEVENT_RXC)
2736 		netif_dbg(priv, rx_status, dev, "control frame\n");
2737 
2738 	if (events & IEVENT_BABT) {
2739 		atomic64_inc(&priv->extra_stats.tx_babt);
2740 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2741 	}
2742 	return IRQ_HANDLED;
2743 }
2744 
2745 /* The interrupt handler for devices with one interrupt */
2746 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2747 {
2748 	struct gfar_priv_grp *gfargrp = grp_id;
2749 
2750 	/* Save ievent for future reference */
2751 	u32 events = gfar_read(&gfargrp->regs->ievent);
2752 
2753 	/* Check for reception */
2754 	if (events & IEVENT_RX_MASK)
2755 		gfar_receive(irq, grp_id);
2756 
2757 	/* Check for transmit completion */
2758 	if (events & IEVENT_TX_MASK)
2759 		gfar_transmit(irq, grp_id);
2760 
2761 	/* Check for errors */
2762 	if (events & IEVENT_ERR_MASK)
2763 		gfar_error(irq, grp_id);
2764 
2765 	return IRQ_HANDLED;
2766 }
2767 
2768 #ifdef CONFIG_NET_POLL_CONTROLLER
2769 /* Polling 'interrupt' - used by things like netconsole to send skbs
2770  * without having to re-enable interrupts. It's not called while
2771  * the interrupt routine is executing.
2772  */
2773 static void gfar_netpoll(struct net_device *dev)
2774 {
2775 	struct gfar_private *priv = netdev_priv(dev);
2776 	int i;
2777 
2778 	/* If the device has multiple interrupts, run tx/rx */
2779 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2780 		for (i = 0; i < priv->num_grps; i++) {
2781 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2782 
2783 			disable_irq(gfar_irq(grp, TX)->irq);
2784 			disable_irq(gfar_irq(grp, RX)->irq);
2785 			disable_irq(gfar_irq(grp, ER)->irq);
2786 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2787 			enable_irq(gfar_irq(grp, ER)->irq);
2788 			enable_irq(gfar_irq(grp, RX)->irq);
2789 			enable_irq(gfar_irq(grp, TX)->irq);
2790 		}
2791 	} else {
2792 		for (i = 0; i < priv->num_grps; i++) {
2793 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2794 
2795 			disable_irq(gfar_irq(grp, TX)->irq);
2796 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2797 			enable_irq(gfar_irq(grp, TX)->irq);
2798 		}
2799 	}
2800 }
2801 #endif
2802 
2803 static void free_grp_irqs(struct gfar_priv_grp *grp)
2804 {
2805 	free_irq(gfar_irq(grp, TX)->irq, grp);
2806 	free_irq(gfar_irq(grp, RX)->irq, grp);
2807 	free_irq(gfar_irq(grp, ER)->irq, grp);
2808 }
2809 
2810 static int register_grp_irqs(struct gfar_priv_grp *grp)
2811 {
2812 	struct gfar_private *priv = grp->priv;
2813 	struct net_device *dev = priv->ndev;
2814 	int err;
2815 
2816 	/* If the device has multiple interrupts, register for
2817 	 * them.  Otherwise, only register for the one
2818 	 */
2819 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2820 		/* Install our interrupt handlers for Error,
2821 		 * Transmit, and Receive
2822 		 */
2823 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2824 				  gfar_irq(grp, ER)->name, grp);
2825 		if (err < 0) {
2826 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2827 				  gfar_irq(grp, ER)->irq);
2828 
2829 			goto err_irq_fail;
2830 		}
2831 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2832 
2833 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2834 				  gfar_irq(grp, TX)->name, grp);
2835 		if (err < 0) {
2836 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2837 				  gfar_irq(grp, TX)->irq);
2838 			goto tx_irq_fail;
2839 		}
2840 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2841 				  gfar_irq(grp, RX)->name, grp);
2842 		if (err < 0) {
2843 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2844 				  gfar_irq(grp, RX)->irq);
2845 			goto rx_irq_fail;
2846 		}
2847 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2848 
2849 	} else {
2850 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2851 				  gfar_irq(grp, TX)->name, grp);
2852 		if (err < 0) {
2853 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2854 				  gfar_irq(grp, TX)->irq);
2855 			goto err_irq_fail;
2856 		}
2857 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2858 	}
2859 
2860 	return 0;
2861 
2862 rx_irq_fail:
2863 	free_irq(gfar_irq(grp, TX)->irq, grp);
2864 tx_irq_fail:
2865 	free_irq(gfar_irq(grp, ER)->irq, grp);
2866 err_irq_fail:
2867 	return err;
2868 
2869 }
2870 
2871 static void gfar_free_irq(struct gfar_private *priv)
2872 {
2873 	int i;
2874 
2875 	/* Free the IRQs */
2876 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2877 		for (i = 0; i < priv->num_grps; i++)
2878 			free_grp_irqs(&priv->gfargrp[i]);
2879 	} else {
2880 		for (i = 0; i < priv->num_grps; i++)
2881 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2882 				 &priv->gfargrp[i]);
2883 	}
2884 }
2885 
2886 static int gfar_request_irq(struct gfar_private *priv)
2887 {
2888 	int err, i, j;
2889 
2890 	for (i = 0; i < priv->num_grps; i++) {
2891 		err = register_grp_irqs(&priv->gfargrp[i]);
2892 		if (err) {
2893 			for (j = 0; j < i; j++)
2894 				free_grp_irqs(&priv->gfargrp[j]);
2895 			return err;
2896 		}
2897 	}
2898 
2899 	return 0;
2900 }
2901 
2902 /* Called when something needs to use the ethernet device
2903  * Returns 0 for success.
2904  */
2905 static int gfar_enet_open(struct net_device *dev)
2906 {
2907 	struct gfar_private *priv = netdev_priv(dev);
2908 	int err;
2909 
2910 	err = init_phy(dev);
2911 	if (err)
2912 		return err;
2913 
2914 	err = gfar_request_irq(priv);
2915 	if (err)
2916 		return err;
2917 
2918 	err = startup_gfar(dev);
2919 	if (err)
2920 		return err;
2921 
2922 	return err;
2923 }
2924 
2925 /* Stops the kernel queue, and halts the controller */
2926 static int gfar_close(struct net_device *dev)
2927 {
2928 	struct gfar_private *priv = netdev_priv(dev);
2929 
2930 	cancel_work_sync(&priv->reset_task);
2931 	stop_gfar(dev);
2932 
2933 	/* Disconnect from the PHY */
2934 	phy_disconnect(dev->phydev);
2935 
2936 	gfar_free_irq(priv);
2937 
2938 	return 0;
2939 }
2940 
2941 /* Clears each of the exact match registers to zero, so they
2942  * don't interfere with normal reception
2943  */
2944 static void gfar_clear_exact_match(struct net_device *dev)
2945 {
2946 	int idx;
2947 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2948 
2949 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2950 		gfar_set_mac_for_addr(dev, idx, zero_arr);
2951 }
2952 
2953 /* Update the hash table based on the current list of multicast
2954  * addresses we subscribe to.  Also, change the promiscuity of
2955  * the device based on the flags (this function is called
2956  * whenever dev->flags is changed
2957  */
2958 static void gfar_set_multi(struct net_device *dev)
2959 {
2960 	struct netdev_hw_addr *ha;
2961 	struct gfar_private *priv = netdev_priv(dev);
2962 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2963 	u32 tempval;
2964 
2965 	if (dev->flags & IFF_PROMISC) {
2966 		/* Set RCTRL to PROM */
2967 		tempval = gfar_read(&regs->rctrl);
2968 		tempval |= RCTRL_PROM;
2969 		gfar_write(&regs->rctrl, tempval);
2970 	} else {
2971 		/* Set RCTRL to not PROM */
2972 		tempval = gfar_read(&regs->rctrl);
2973 		tempval &= ~(RCTRL_PROM);
2974 		gfar_write(&regs->rctrl, tempval);
2975 	}
2976 
2977 	if (dev->flags & IFF_ALLMULTI) {
2978 		/* Set the hash to rx all multicast frames */
2979 		gfar_write(&regs->igaddr0, 0xffffffff);
2980 		gfar_write(&regs->igaddr1, 0xffffffff);
2981 		gfar_write(&regs->igaddr2, 0xffffffff);
2982 		gfar_write(&regs->igaddr3, 0xffffffff);
2983 		gfar_write(&regs->igaddr4, 0xffffffff);
2984 		gfar_write(&regs->igaddr5, 0xffffffff);
2985 		gfar_write(&regs->igaddr6, 0xffffffff);
2986 		gfar_write(&regs->igaddr7, 0xffffffff);
2987 		gfar_write(&regs->gaddr0, 0xffffffff);
2988 		gfar_write(&regs->gaddr1, 0xffffffff);
2989 		gfar_write(&regs->gaddr2, 0xffffffff);
2990 		gfar_write(&regs->gaddr3, 0xffffffff);
2991 		gfar_write(&regs->gaddr4, 0xffffffff);
2992 		gfar_write(&regs->gaddr5, 0xffffffff);
2993 		gfar_write(&regs->gaddr6, 0xffffffff);
2994 		gfar_write(&regs->gaddr7, 0xffffffff);
2995 	} else {
2996 		int em_num;
2997 		int idx;
2998 
2999 		/* zero out the hash */
3000 		gfar_write(&regs->igaddr0, 0x0);
3001 		gfar_write(&regs->igaddr1, 0x0);
3002 		gfar_write(&regs->igaddr2, 0x0);
3003 		gfar_write(&regs->igaddr3, 0x0);
3004 		gfar_write(&regs->igaddr4, 0x0);
3005 		gfar_write(&regs->igaddr5, 0x0);
3006 		gfar_write(&regs->igaddr6, 0x0);
3007 		gfar_write(&regs->igaddr7, 0x0);
3008 		gfar_write(&regs->gaddr0, 0x0);
3009 		gfar_write(&regs->gaddr1, 0x0);
3010 		gfar_write(&regs->gaddr2, 0x0);
3011 		gfar_write(&regs->gaddr3, 0x0);
3012 		gfar_write(&regs->gaddr4, 0x0);
3013 		gfar_write(&regs->gaddr5, 0x0);
3014 		gfar_write(&regs->gaddr6, 0x0);
3015 		gfar_write(&regs->gaddr7, 0x0);
3016 
3017 		/* If we have extended hash tables, we need to
3018 		 * clear the exact match registers to prepare for
3019 		 * setting them
3020 		 */
3021 		if (priv->extended_hash) {
3022 			em_num = GFAR_EM_NUM + 1;
3023 			gfar_clear_exact_match(dev);
3024 			idx = 1;
3025 		} else {
3026 			idx = 0;
3027 			em_num = 0;
3028 		}
3029 
3030 		if (netdev_mc_empty(dev))
3031 			return;
3032 
3033 		/* Parse the list, and set the appropriate bits */
3034 		netdev_for_each_mc_addr(ha, dev) {
3035 			if (idx < em_num) {
3036 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3037 				idx++;
3038 			} else
3039 				gfar_set_hash_for_addr(dev, ha->addr);
3040 		}
3041 	}
3042 }
3043 
3044 void gfar_mac_reset(struct gfar_private *priv)
3045 {
3046 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3047 	u32 tempval;
3048 
3049 	/* Reset MAC layer */
3050 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3051 
3052 	/* We need to delay at least 3 TX clocks */
3053 	udelay(3);
3054 
3055 	/* the soft reset bit is not self-resetting, so we need to
3056 	 * clear it before resuming normal operation
3057 	 */
3058 	gfar_write(&regs->maccfg1, 0);
3059 
3060 	udelay(3);
3061 
3062 	gfar_rx_offload_en(priv);
3063 
3064 	/* Initialize the max receive frame/buffer lengths */
3065 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3066 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3067 
3068 	/* Initialize the Minimum Frame Length Register */
3069 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3070 
3071 	/* Initialize MACCFG2. */
3072 	tempval = MACCFG2_INIT_SETTINGS;
3073 
3074 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3075 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3076 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3077 	 */
3078 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3079 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3080 
3081 	gfar_write(&regs->maccfg2, tempval);
3082 
3083 	/* Clear mac addr hash registers */
3084 	gfar_write(&regs->igaddr0, 0);
3085 	gfar_write(&regs->igaddr1, 0);
3086 	gfar_write(&regs->igaddr2, 0);
3087 	gfar_write(&regs->igaddr3, 0);
3088 	gfar_write(&regs->igaddr4, 0);
3089 	gfar_write(&regs->igaddr5, 0);
3090 	gfar_write(&regs->igaddr6, 0);
3091 	gfar_write(&regs->igaddr7, 0);
3092 
3093 	gfar_write(&regs->gaddr0, 0);
3094 	gfar_write(&regs->gaddr1, 0);
3095 	gfar_write(&regs->gaddr2, 0);
3096 	gfar_write(&regs->gaddr3, 0);
3097 	gfar_write(&regs->gaddr4, 0);
3098 	gfar_write(&regs->gaddr5, 0);
3099 	gfar_write(&regs->gaddr6, 0);
3100 	gfar_write(&regs->gaddr7, 0);
3101 
3102 	if (priv->extended_hash)
3103 		gfar_clear_exact_match(priv->ndev);
3104 
3105 	gfar_mac_rx_config(priv);
3106 
3107 	gfar_mac_tx_config(priv);
3108 
3109 	gfar_set_mac_address(priv->ndev);
3110 
3111 	gfar_set_multi(priv->ndev);
3112 
3113 	/* clear ievent and imask before configuring coalescing */
3114 	gfar_ints_disable(priv);
3115 
3116 	/* Configure the coalescing support */
3117 	gfar_configure_coalescing_all(priv);
3118 }
3119 
3120 static void gfar_hw_init(struct gfar_private *priv)
3121 {
3122 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3123 	u32 attrs;
3124 
3125 	/* Stop the DMA engine now, in case it was running before
3126 	 * (The firmware could have used it, and left it running).
3127 	 */
3128 	gfar_halt(priv);
3129 
3130 	gfar_mac_reset(priv);
3131 
3132 	/* Zero out the rmon mib registers if it has them */
3133 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3134 		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3135 
3136 		/* Mask off the CAM interrupts */
3137 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3138 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3139 		/* Clear the CAR registers (w1c style) */
3140 		gfar_write(&regs->rmon.car1, 0xffffffff);
3141 		gfar_write(&regs->rmon.car2, 0xffffffff);
3142 	}
3143 
3144 	/* Initialize ECNTRL */
3145 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3146 
3147 	/* Set the extraction length and index */
3148 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3149 		ATTRELI_EI(priv->rx_stash_index);
3150 
3151 	gfar_write(&regs->attreli, attrs);
3152 
3153 	/* Start with defaults, and add stashing
3154 	 * depending on driver parameters
3155 	 */
3156 	attrs = ATTR_INIT_SETTINGS;
3157 
3158 	if (priv->bd_stash_en)
3159 		attrs |= ATTR_BDSTASH;
3160 
3161 	if (priv->rx_stash_size != 0)
3162 		attrs |= ATTR_BUFSTASH;
3163 
3164 	gfar_write(&regs->attr, attrs);
3165 
3166 	/* FIFO configs */
3167 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3168 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3169 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3170 
3171 	/* Program the interrupt steering regs, only for MG devices */
3172 	if (priv->num_grps > 1)
3173 		gfar_write_isrg(priv);
3174 }
3175 
3176 static const struct net_device_ops gfar_netdev_ops = {
3177 	.ndo_open = gfar_enet_open,
3178 	.ndo_start_xmit = gfar_start_xmit,
3179 	.ndo_stop = gfar_close,
3180 	.ndo_change_mtu = gfar_change_mtu,
3181 	.ndo_set_features = gfar_set_features,
3182 	.ndo_set_rx_mode = gfar_set_multi,
3183 	.ndo_tx_timeout = gfar_timeout,
3184 	.ndo_eth_ioctl = gfar_ioctl,
3185 	.ndo_get_stats64 = gfar_get_stats64,
3186 	.ndo_change_carrier = fixed_phy_change_carrier,
3187 	.ndo_set_mac_address = gfar_set_mac_addr,
3188 	.ndo_validate_addr = eth_validate_addr,
3189 #ifdef CONFIG_NET_POLL_CONTROLLER
3190 	.ndo_poll_controller = gfar_netpoll,
3191 #endif
3192 };
3193 
3194 /* Set up the ethernet device structure, private data,
3195  * and anything else we need before we start
3196  */
3197 static int gfar_probe(struct platform_device *ofdev)
3198 {
3199 	struct device_node *np = ofdev->dev.of_node;
3200 	struct net_device *dev = NULL;
3201 	struct gfar_private *priv = NULL;
3202 	int err = 0, i;
3203 
3204 	err = gfar_of_init(ofdev, &dev);
3205 
3206 	if (err)
3207 		return err;
3208 
3209 	priv = netdev_priv(dev);
3210 	priv->ndev = dev;
3211 	priv->ofdev = ofdev;
3212 	priv->dev = &ofdev->dev;
3213 	SET_NETDEV_DEV(dev, &ofdev->dev);
3214 
3215 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3216 
3217 	platform_set_drvdata(ofdev, priv);
3218 
3219 	gfar_detect_errata(priv);
3220 
3221 	/* Set the dev->base_addr to the gfar reg region */
3222 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3223 
3224 	/* Fill in the dev structure */
3225 	dev->watchdog_timeo = TX_TIMEOUT;
3226 	/* MTU range: 50 - 9586 */
3227 	dev->mtu = 1500;
3228 	dev->min_mtu = 50;
3229 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3230 	dev->netdev_ops = &gfar_netdev_ops;
3231 	dev->ethtool_ops = &gfar_ethtool_ops;
3232 
3233 	/* Register for napi ...We are registering NAPI for each grp */
3234 	for (i = 0; i < priv->num_grps; i++) {
3235 		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3236 			       gfar_poll_rx_sq);
3237 		netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3238 					 gfar_poll_tx_sq, 2);
3239 	}
3240 
3241 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3242 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3243 				   NETIF_F_RXCSUM;
3244 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3245 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3246 	}
3247 
3248 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3249 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3250 				    NETIF_F_HW_VLAN_CTAG_RX;
3251 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3252 	}
3253 
3254 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3255 
3256 	gfar_init_addr_hash_table(priv);
3257 
3258 	/* Insert receive time stamps into padding alignment bytes, and
3259 	 * plus 2 bytes padding to ensure the cpu alignment.
3260 	 */
3261 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3262 		priv->padding = 8 + DEFAULT_PADDING;
3263 
3264 	if (dev->features & NETIF_F_IP_CSUM ||
3265 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3266 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3267 
3268 	/* Initializing some of the rx/tx queue level parameters */
3269 	for (i = 0; i < priv->num_tx_queues; i++) {
3270 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3271 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3272 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3273 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3274 	}
3275 
3276 	for (i = 0; i < priv->num_rx_queues; i++) {
3277 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3278 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3279 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3280 	}
3281 
3282 	/* Always enable rx filer if available */
3283 	priv->rx_filer_enable =
3284 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3285 	/* Enable most messages by default */
3286 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3287 	/* use pritority h/w tx queue scheduling for single queue devices */
3288 	if (priv->num_tx_queues == 1)
3289 		priv->prio_sched_en = 1;
3290 
3291 	set_bit(GFAR_DOWN, &priv->state);
3292 
3293 	gfar_hw_init(priv);
3294 
3295 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3296 		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3297 
3298 		spin_lock_init(&priv->rmon_overflow.lock);
3299 		priv->rmon_overflow.imask = IMASK_MSRO;
3300 		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3301 	}
3302 
3303 	/* Carrier starts down, phylib will bring it up */
3304 	netif_carrier_off(dev);
3305 
3306 	err = register_netdev(dev);
3307 
3308 	if (err) {
3309 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3310 		goto register_fail;
3311 	}
3312 
3313 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3314 		priv->wol_supported |= GFAR_WOL_MAGIC;
3315 
3316 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3317 	    priv->rx_filer_enable)
3318 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3319 
3320 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3321 
3322 	/* fill out IRQ number and name fields */
3323 	for (i = 0; i < priv->num_grps; i++) {
3324 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3325 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3326 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3327 				dev->name, "_g", '0' + i, "_tx");
3328 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3329 				dev->name, "_g", '0' + i, "_rx");
3330 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3331 				dev->name, "_g", '0' + i, "_er");
3332 		} else
3333 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3334 	}
3335 
3336 	/* Initialize the filer table */
3337 	gfar_init_filer_table(priv);
3338 
3339 	/* Print out the device info */
3340 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3341 
3342 	/* Even more device info helps when determining which kernel
3343 	 * provided which set of benchmarks.
3344 	 */
3345 	netdev_info(dev, "Running with NAPI enabled\n");
3346 	for (i = 0; i < priv->num_rx_queues; i++)
3347 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3348 			    i, priv->rx_queue[i]->rx_ring_size);
3349 	for (i = 0; i < priv->num_tx_queues; i++)
3350 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3351 			    i, priv->tx_queue[i]->tx_ring_size);
3352 
3353 	return 0;
3354 
3355 register_fail:
3356 	if (of_phy_is_fixed_link(np))
3357 		of_phy_deregister_fixed_link(np);
3358 	unmap_group_regs(priv);
3359 	gfar_free_rx_queues(priv);
3360 	gfar_free_tx_queues(priv);
3361 	of_node_put(priv->phy_node);
3362 	of_node_put(priv->tbi_node);
3363 	free_gfar_dev(priv);
3364 	return err;
3365 }
3366 
3367 static int gfar_remove(struct platform_device *ofdev)
3368 {
3369 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3370 	struct device_node *np = ofdev->dev.of_node;
3371 
3372 	of_node_put(priv->phy_node);
3373 	of_node_put(priv->tbi_node);
3374 
3375 	unregister_netdev(priv->ndev);
3376 
3377 	if (of_phy_is_fixed_link(np))
3378 		of_phy_deregister_fixed_link(np);
3379 
3380 	unmap_group_regs(priv);
3381 	gfar_free_rx_queues(priv);
3382 	gfar_free_tx_queues(priv);
3383 	free_gfar_dev(priv);
3384 
3385 	return 0;
3386 }
3387 
3388 #ifdef CONFIG_PM
3389 
3390 static void __gfar_filer_disable(struct gfar_private *priv)
3391 {
3392 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3393 	u32 temp;
3394 
3395 	temp = gfar_read(&regs->rctrl);
3396 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3397 	gfar_write(&regs->rctrl, temp);
3398 }
3399 
3400 static void __gfar_filer_enable(struct gfar_private *priv)
3401 {
3402 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3403 	u32 temp;
3404 
3405 	temp = gfar_read(&regs->rctrl);
3406 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3407 	gfar_write(&regs->rctrl, temp);
3408 }
3409 
3410 /* Filer rules implementing wol capabilities */
3411 static void gfar_filer_config_wol(struct gfar_private *priv)
3412 {
3413 	unsigned int i;
3414 	u32 rqfcr;
3415 
3416 	__gfar_filer_disable(priv);
3417 
3418 	/* clear the filer table, reject any packet by default */
3419 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3420 	for (i = 0; i <= MAX_FILER_IDX; i++)
3421 		gfar_write_filer(priv, i, rqfcr, 0);
3422 
3423 	i = 0;
3424 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3425 		/* unicast packet, accept it */
3426 		struct net_device *ndev = priv->ndev;
3427 		/* get the default rx queue index */
3428 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3429 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3430 				    (ndev->dev_addr[1] << 8) |
3431 				     ndev->dev_addr[2];
3432 
3433 		rqfcr = (qindex << 10) | RQFCR_AND |
3434 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3435 
3436 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3437 
3438 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3439 				(ndev->dev_addr[4] << 8) |
3440 				 ndev->dev_addr[5];
3441 		rqfcr = (qindex << 10) | RQFCR_GPI |
3442 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3443 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3444 	}
3445 
3446 	__gfar_filer_enable(priv);
3447 }
3448 
3449 static void gfar_filer_restore_table(struct gfar_private *priv)
3450 {
3451 	u32 rqfcr, rqfpr;
3452 	unsigned int i;
3453 
3454 	__gfar_filer_disable(priv);
3455 
3456 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3457 		rqfcr = priv->ftp_rqfcr[i];
3458 		rqfpr = priv->ftp_rqfpr[i];
3459 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3460 	}
3461 
3462 	__gfar_filer_enable(priv);
3463 }
3464 
3465 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3466 static void gfar_start_wol_filer(struct gfar_private *priv)
3467 {
3468 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3469 	u32 tempval;
3470 	int i = 0;
3471 
3472 	/* Enable Rx hw queues */
3473 	gfar_write(&regs->rqueue, priv->rqueue);
3474 
3475 	/* Initialize DMACTRL to have WWR and WOP */
3476 	tempval = gfar_read(&regs->dmactrl);
3477 	tempval |= DMACTRL_INIT_SETTINGS;
3478 	gfar_write(&regs->dmactrl, tempval);
3479 
3480 	/* Make sure we aren't stopped */
3481 	tempval = gfar_read(&regs->dmactrl);
3482 	tempval &= ~DMACTRL_GRS;
3483 	gfar_write(&regs->dmactrl, tempval);
3484 
3485 	for (i = 0; i < priv->num_grps; i++) {
3486 		regs = priv->gfargrp[i].regs;
3487 		/* Clear RHLT, so that the DMA starts polling now */
3488 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3489 		/* enable the Filer General Purpose Interrupt */
3490 		gfar_write(&regs->imask, IMASK_FGPI);
3491 	}
3492 
3493 	/* Enable Rx DMA */
3494 	tempval = gfar_read(&regs->maccfg1);
3495 	tempval |= MACCFG1_RX_EN;
3496 	gfar_write(&regs->maccfg1, tempval);
3497 }
3498 
3499 static int gfar_suspend(struct device *dev)
3500 {
3501 	struct gfar_private *priv = dev_get_drvdata(dev);
3502 	struct net_device *ndev = priv->ndev;
3503 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3504 	u32 tempval;
3505 	u16 wol = priv->wol_opts;
3506 
3507 	if (!netif_running(ndev))
3508 		return 0;
3509 
3510 	disable_napi(priv);
3511 	netif_tx_lock(ndev);
3512 	netif_device_detach(ndev);
3513 	netif_tx_unlock(ndev);
3514 
3515 	gfar_halt(priv);
3516 
3517 	if (wol & GFAR_WOL_MAGIC) {
3518 		/* Enable interrupt on Magic Packet */
3519 		gfar_write(&regs->imask, IMASK_MAG);
3520 
3521 		/* Enable Magic Packet mode */
3522 		tempval = gfar_read(&regs->maccfg2);
3523 		tempval |= MACCFG2_MPEN;
3524 		gfar_write(&regs->maccfg2, tempval);
3525 
3526 		/* re-enable the Rx block */
3527 		tempval = gfar_read(&regs->maccfg1);
3528 		tempval |= MACCFG1_RX_EN;
3529 		gfar_write(&regs->maccfg1, tempval);
3530 
3531 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3532 		gfar_filer_config_wol(priv);
3533 		gfar_start_wol_filer(priv);
3534 
3535 	} else {
3536 		phy_stop(ndev->phydev);
3537 	}
3538 
3539 	return 0;
3540 }
3541 
3542 static int gfar_resume(struct device *dev)
3543 {
3544 	struct gfar_private *priv = dev_get_drvdata(dev);
3545 	struct net_device *ndev = priv->ndev;
3546 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3547 	u32 tempval;
3548 	u16 wol = priv->wol_opts;
3549 
3550 	if (!netif_running(ndev))
3551 		return 0;
3552 
3553 	if (wol & GFAR_WOL_MAGIC) {
3554 		/* Disable Magic Packet mode */
3555 		tempval = gfar_read(&regs->maccfg2);
3556 		tempval &= ~MACCFG2_MPEN;
3557 		gfar_write(&regs->maccfg2, tempval);
3558 
3559 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3560 		/* need to stop rx only, tx is already down */
3561 		gfar_halt(priv);
3562 		gfar_filer_restore_table(priv);
3563 
3564 	} else {
3565 		phy_start(ndev->phydev);
3566 	}
3567 
3568 	gfar_start(priv);
3569 
3570 	netif_device_attach(ndev);
3571 	enable_napi(priv);
3572 
3573 	return 0;
3574 }
3575 
3576 static int gfar_restore(struct device *dev)
3577 {
3578 	struct gfar_private *priv = dev_get_drvdata(dev);
3579 	struct net_device *ndev = priv->ndev;
3580 
3581 	if (!netif_running(ndev)) {
3582 		netif_device_attach(ndev);
3583 
3584 		return 0;
3585 	}
3586 
3587 	gfar_init_bds(ndev);
3588 
3589 	gfar_mac_reset(priv);
3590 
3591 	gfar_init_tx_rx_base(priv);
3592 
3593 	gfar_start(priv);
3594 
3595 	priv->oldlink = 0;
3596 	priv->oldspeed = 0;
3597 	priv->oldduplex = -1;
3598 
3599 	if (ndev->phydev)
3600 		phy_start(ndev->phydev);
3601 
3602 	netif_device_attach(ndev);
3603 	enable_napi(priv);
3604 
3605 	return 0;
3606 }
3607 
3608 static const struct dev_pm_ops gfar_pm_ops = {
3609 	.suspend = gfar_suspend,
3610 	.resume = gfar_resume,
3611 	.freeze = gfar_suspend,
3612 	.thaw = gfar_resume,
3613 	.restore = gfar_restore,
3614 };
3615 
3616 #define GFAR_PM_OPS (&gfar_pm_ops)
3617 
3618 #else
3619 
3620 #define GFAR_PM_OPS NULL
3621 
3622 #endif
3623 
3624 static const struct of_device_id gfar_match[] =
3625 {
3626 	{
3627 		.type = "network",
3628 		.compatible = "gianfar",
3629 	},
3630 	{
3631 		.compatible = "fsl,etsec2",
3632 	},
3633 	{},
3634 };
3635 MODULE_DEVICE_TABLE(of, gfar_match);
3636 
3637 /* Structure for a device driver */
3638 static struct platform_driver gfar_driver = {
3639 	.driver = {
3640 		.name = "fsl-gianfar",
3641 		.pm = GFAR_PM_OPS,
3642 		.of_match_table = gfar_match,
3643 	},
3644 	.probe = gfar_probe,
3645 	.remove = gfar_remove,
3646 };
3647 
3648 module_platform_driver(gfar_driver);
3649