1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 
3 #include <linux/bpf.h>
4 #include <linux/crash_dump.h>
5 #include <linux/etherdevice.h>
6 #include <linux/ethtool.h>
7 #include <linux/filter.h>
8 #include <linux/idr.h>
9 #include <linux/if_vlan.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/pci.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/inetdevice.h>
15 
16 #include "funeth.h"
17 #include "funeth_devlink.h"
18 #include "funeth_ktls.h"
19 #include "fun_port.h"
20 #include "fun_queue.h"
21 #include "funeth_txrx.h"
22 
23 #define ADMIN_SQ_DEPTH 32
24 #define ADMIN_CQ_DEPTH 64
25 #define ADMIN_RQ_DEPTH 16
26 
27 /* Default number of Tx/Rx queues. */
28 #define FUN_DFLT_QUEUES 16U
29 
30 enum {
31 	FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL,
32 	FUN_SERV_DEL_PORTS,
33 };
34 
35 static const struct pci_device_id funeth_id_table[] = {
36 	{ PCI_VDEVICE(FUNGIBLE, 0x0101) },
37 	{ PCI_VDEVICE(FUNGIBLE, 0x0181) },
38 	{ 0, }
39 };
40 
41 /* Issue a port write admin command with @n key/value pairs. */
42 static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n,
43 			       const int *keys, const u64 *data)
44 {
45 	unsigned int cmd_size, i;
46 	union {
47 		struct fun_admin_port_req req;
48 		struct fun_admin_port_rsp rsp;
49 		u8 v[ADMIN_SQE_SIZE];
50 	} cmd;
51 
52 	cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) +
53 		n * sizeof(struct fun_admin_write48_req);
54 	if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN)
55 		return -EINVAL;
56 
57 	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
58 						    cmd_size);
59 	cmd.req.u.write =
60 		FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0,
61 					      fp->netdev->dev_port);
62 	for (i = 0; i < n; i++)
63 		cmd.req.u.write.write48[i] =
64 			FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]);
65 
66 	return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
67 					 &cmd.rsp, cmd_size, 0);
68 }
69 
70 int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data)
71 {
72 	return fun_port_write_cmds(fp, 1, &key, &data);
73 }
74 
75 /* Issue a port read admin command with @n key/value pairs. */
76 static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n,
77 			      const int *keys, u64 *data)
78 {
79 	const struct fun_admin_read48_rsp *r48rsp;
80 	unsigned int cmd_size, i;
81 	int rc;
82 	union {
83 		struct fun_admin_port_req req;
84 		struct fun_admin_port_rsp rsp;
85 		u8 v[ADMIN_SQE_SIZE];
86 	} cmd;
87 
88 	cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) +
89 		n * sizeof(struct fun_admin_read48_req);
90 	if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN)
91 		return -EINVAL;
92 
93 	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
94 						    cmd_size);
95 	cmd.req.u.read =
96 		FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0,
97 					     fp->netdev->dev_port);
98 	for (i = 0; i < n; i++)
99 		cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]);
100 
101 	rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
102 				       &cmd.rsp, cmd_size, 0);
103 	if (rc)
104 		return rc;
105 
106 	for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) {
107 		data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data);
108 		dev_dbg(fp->fdev->dev,
109 			"port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld",
110 			fp->lport, r48rsp->key_to_data, keys[i], data[i],
111 			FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data));
112 	}
113 	return 0;
114 }
115 
116 int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data)
117 {
118 	return fun_port_read_cmds(fp, 1, &key, data);
119 }
120 
121 static void fun_report_link(struct net_device *netdev)
122 {
123 	if (netif_carrier_ok(netdev)) {
124 		const struct funeth_priv *fp = netdev_priv(netdev);
125 		const char *fec = "", *pause = "";
126 		int speed = fp->link_speed;
127 		char unit = 'M';
128 
129 		if (fp->link_speed >= SPEED_1000) {
130 			speed /= 1000;
131 			unit = 'G';
132 		}
133 
134 		if (fp->active_fec & FUN_PORT_FEC_RS)
135 			fec = ", RS-FEC";
136 		else if (fp->active_fec & FUN_PORT_FEC_FC)
137 			fec = ", BASER-FEC";
138 
139 		if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK)
140 			pause = ", Tx/Rx PAUSE";
141 		else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE)
142 			pause = ", Rx PAUSE";
143 		else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE)
144 			pause = ", Tx PAUSE";
145 
146 		netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n",
147 			    speed, unit, pause, fec);
148 	} else {
149 		netdev_info(netdev, "Link down\n");
150 	}
151 }
152 
153 static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr,
154 			 unsigned int adi_id, const struct fun_adi_param *param)
155 {
156 	struct fun_admin_adi_req req = {
157 		.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI,
158 						     sizeof(req)),
159 		.u.write.subop = FUN_ADMIN_SUBOP_WRITE,
160 		.u.write.attribute = attr,
161 		.u.write.id = cpu_to_be32(adi_id),
162 		.u.write.param = *param
163 	};
164 
165 	return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0);
166 }
167 
168 /* Configure RSS for the given port. @op determines whether a new RSS context
169  * is to be created or whether an existing one should be reconfigured. The
170  * remaining parameters specify the hashing algorithm, key, and indirection
171  * table.
172  *
173  * This initiates packet delivery to the Rx queues set in the indirection
174  * table.
175  */
176 int fun_config_rss(struct net_device *dev, int algo, const u8 *key,
177 		   const u32 *qtable, u8 op)
178 {
179 	struct funeth_priv *fp = netdev_priv(dev);
180 	unsigned int table_len = fp->indir_table_nentries;
181 	unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len;
182 	struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs);
183 	union {
184 		struct {
185 			struct fun_admin_rss_req req;
186 			struct fun_dataop_gl gl;
187 		};
188 		struct fun_admin_generic_create_rsp rsp;
189 	} cmd;
190 	__be32 *indir_tab;
191 	u16 flags;
192 	int rc;
193 
194 	if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID)
195 		return -EINVAL;
196 
197 	flags = op == FUN_ADMIN_SUBOP_CREATE ?
198 			FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0;
199 	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS,
200 						    sizeof(cmd));
201 	cmd.req.u.create =
202 		FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id,
203 					      dev->dev_port, algo,
204 					      FUN_ETH_RSS_MAX_KEY_SIZE,
205 					      table_len, 0,
206 					      FUN_ETH_RSS_MAX_KEY_SIZE);
207 	cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len);
208 	fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr);
209 
210 	/* write the key and indirection table into the RSS DMA area */
211 	memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE);
212 	indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE;
213 	for (rc = 0; rc < table_len; rc++)
214 		*indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid);
215 
216 	rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
217 				       &cmd.rsp, sizeof(cmd.rsp), 0);
218 	if (!rc && op == FUN_ADMIN_SUBOP_CREATE)
219 		fp->rss_hw_id = be32_to_cpu(cmd.rsp.id);
220 	return rc;
221 }
222 
223 /* Destroy the HW RSS conntext associated with the given port. This also stops
224  * all packet delivery to our Rx queues.
225  */
226 static void fun_destroy_rss(struct funeth_priv *fp)
227 {
228 	if (fp->rss_hw_id != FUN_HCI_ID_INVALID) {
229 		fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id);
230 		fp->rss_hw_id = FUN_HCI_ID_INVALID;
231 	}
232 }
233 
234 static void fun_irq_aff_notify(struct irq_affinity_notify *notify,
235 			       const cpumask_t *mask)
236 {
237 	struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify);
238 
239 	cpumask_copy(&p->affinity_mask, mask);
240 }
241 
242 static void fun_irq_aff_release(struct kref __always_unused *ref)
243 {
244 }
245 
246 /* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it,
247  * and add it to the IRQ XArray.
248  */
249 static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx,
250 				      int node, unsigned int xa_idx_offset)
251 {
252 	struct fun_irq *irq;
253 	int cpu, res;
254 
255 	cpu = cpumask_local_spread(idx, node);
256 	node = cpu_to_mem(cpu);
257 
258 	irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node);
259 	if (!irq)
260 		return ERR_PTR(-ENOMEM);
261 
262 	res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx);
263 	if (res != 1)
264 		goto free_irq;
265 
266 	res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL);
267 	if (res)
268 		goto release_irq;
269 
270 	irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx);
271 	cpumask_set_cpu(cpu, &irq->affinity_mask);
272 	irq->aff_notify.notify = fun_irq_aff_notify;
273 	irq->aff_notify.release = fun_irq_aff_release;
274 	irq->state = FUN_IRQ_INIT;
275 	return irq;
276 
277 release_irq:
278 	fun_release_irqs(fp->fdev, 1, &irq->irq_idx);
279 free_irq:
280 	kfree(irq);
281 	return ERR_PTR(res);
282 }
283 
284 static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq)
285 {
286 	netif_napi_del(&irq->napi);
287 	fun_release_irqs(fp->fdev, 1, &irq->irq_idx);
288 	kfree(irq);
289 }
290 
291 /* Release the IRQs reserved for Tx/Rx queues that aren't being used. */
292 static void fun_prune_queue_irqs(struct net_device *dev)
293 {
294 	struct funeth_priv *fp = netdev_priv(dev);
295 	unsigned int nreleased = 0;
296 	struct fun_irq *irq;
297 	unsigned long idx;
298 
299 	xa_for_each(&fp->irqs, idx, irq) {
300 		if (irq->txq || irq->rxq)  /* skip those in use */
301 			continue;
302 
303 		xa_erase(&fp->irqs, idx);
304 		fun_free_qirq(fp, irq);
305 		nreleased++;
306 		if (idx < fp->rx_irq_ofst)
307 			fp->num_tx_irqs--;
308 		else
309 			fp->num_rx_irqs--;
310 	}
311 	netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased);
312 }
313 
314 /* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx
315  * and @nrx. IRQs are added incrementally to those we already have.
316  * We hold on to allocated IRQs until garbage collection of unused IRQs is
317  * separately requested.
318  */
319 static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx,
320 				unsigned int nrx)
321 {
322 	struct funeth_priv *fp = netdev_priv(dev);
323 	int node = dev_to_node(&fp->pdev->dev);
324 	struct fun_irq *irq;
325 	unsigned int i;
326 
327 	for (i = fp->num_tx_irqs; i < ntx; i++) {
328 		irq = fun_alloc_qirq(fp, i, node, 0);
329 		if (IS_ERR(irq))
330 			return PTR_ERR(irq);
331 
332 		fp->num_tx_irqs++;
333 		netif_tx_napi_add(dev, &irq->napi, fun_txq_napi_poll,
334 				  NAPI_POLL_WEIGHT);
335 	}
336 
337 	for (i = fp->num_rx_irqs; i < nrx; i++) {
338 		irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst);
339 		if (IS_ERR(irq))
340 			return PTR_ERR(irq);
341 
342 		fp->num_rx_irqs++;
343 		netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll,
344 			       NAPI_POLL_WEIGHT);
345 	}
346 
347 	netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n",
348 		   ntx, nrx);
349 	return 0;
350 }
351 
352 static void free_txqs(struct funeth_txq **txqs, unsigned int nqs,
353 		      unsigned int start, int state)
354 {
355 	unsigned int i;
356 
357 	for (i = start; i < nqs && txqs[i]; i++)
358 		txqs[i] = funeth_txq_free(txqs[i], state);
359 }
360 
361 static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs,
362 		      unsigned int nqs, unsigned int depth, unsigned int start,
363 		      int state)
364 {
365 	struct funeth_priv *fp = netdev_priv(dev);
366 	unsigned int i;
367 	int err;
368 
369 	for (i = start; i < nqs; i++) {
370 		err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i),
371 					state, &txqs[i]);
372 		if (err) {
373 			free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED);
374 			return err;
375 		}
376 	}
377 	return 0;
378 }
379 
380 static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs,
381 		      unsigned int start, int state)
382 {
383 	unsigned int i;
384 
385 	for (i = start; i < nqs && rxqs[i]; i++)
386 		rxqs[i] = funeth_rxq_free(rxqs[i], state);
387 }
388 
389 static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs,
390 		      unsigned int nqs, unsigned int ncqe, unsigned int nrqe,
391 		      unsigned int start, int state)
392 {
393 	struct funeth_priv *fp = netdev_priv(dev);
394 	unsigned int i;
395 	int err;
396 
397 	for (i = start; i < nqs; i++) {
398 		err = funeth_rxq_create(dev, i, ncqe, nrqe,
399 					xa_load(&fp->irqs, i + fp->rx_irq_ofst),
400 					state, &rxqs[i]);
401 		if (err) {
402 			free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED);
403 			return err;
404 		}
405 	}
406 	return 0;
407 }
408 
409 static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs,
410 		       unsigned int start, int state)
411 {
412 	unsigned int i;
413 
414 	for (i = start; i < nqs && xdpqs[i]; i++)
415 		xdpqs[i] = funeth_txq_free(xdpqs[i], state);
416 
417 	if (state == FUN_QSTATE_DESTROYED)
418 		kfree(xdpqs);
419 }
420 
421 static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs,
422 				       unsigned int depth, unsigned int start,
423 				       int state)
424 {
425 	struct funeth_txq **xdpqs;
426 	unsigned int i;
427 	int err;
428 
429 	xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL);
430 	if (!xdpqs)
431 		return ERR_PTR(-ENOMEM);
432 
433 	for (i = start; i < nqs; i++) {
434 		err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]);
435 		if (err) {
436 			free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED);
437 			return ERR_PTR(err);
438 		}
439 	}
440 	return xdpqs;
441 }
442 
443 static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset)
444 {
445 	struct funeth_priv *fp = netdev_priv(netdev);
446 	struct funeth_txq **xdpqs = qset->xdpqs;
447 	struct funeth_rxq **rxqs = qset->rxqs;
448 
449 	/* qset may not specify any queues to operate on. In that case the
450 	 * currently installed queues are implied.
451 	 */
452 	if (!rxqs) {
453 		rxqs = rtnl_dereference(fp->rxqs);
454 		xdpqs = rtnl_dereference(fp->xdpqs);
455 		qset->txqs = fp->txqs;
456 		qset->nrxqs = netdev->real_num_rx_queues;
457 		qset->ntxqs = netdev->real_num_tx_queues;
458 		qset->nxdpqs = fp->num_xdpqs;
459 	}
460 	if (!rxqs)
461 		return;
462 
463 	if (rxqs == rtnl_dereference(fp->rxqs)) {
464 		rcu_assign_pointer(fp->rxqs, NULL);
465 		rcu_assign_pointer(fp->xdpqs, NULL);
466 		synchronize_net();
467 		fp->txqs = NULL;
468 	}
469 
470 	free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state);
471 	free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state);
472 	free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state);
473 	if (qset->state == FUN_QSTATE_DESTROYED)
474 		kfree(rxqs);
475 
476 	/* Tell the caller which queues were operated on. */
477 	qset->rxqs = rxqs;
478 	qset->xdpqs = xdpqs;
479 }
480 
481 static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset)
482 {
483 	struct funeth_txq **xdpqs = NULL, **txqs;
484 	struct funeth_rxq **rxqs;
485 	int err;
486 
487 	err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs);
488 	if (err)
489 		return err;
490 
491 	rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL);
492 	if (!rxqs)
493 		return -ENOMEM;
494 
495 	if (qset->nxdpqs) {
496 		xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth,
497 				    qset->xdpq_start, qset->state);
498 		if (IS_ERR(xdpqs)) {
499 			err = PTR_ERR(xdpqs);
500 			goto free_qvec;
501 		}
502 	}
503 
504 	txqs = (struct funeth_txq **)&rxqs[qset->nrxqs];
505 	err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth,
506 			 qset->txq_start, qset->state);
507 	if (err)
508 		goto free_xdpqs;
509 
510 	err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth,
511 			 qset->rq_depth, qset->rxq_start, qset->state);
512 	if (err)
513 		goto free_txqs;
514 
515 	qset->rxqs = rxqs;
516 	qset->txqs = txqs;
517 	qset->xdpqs = xdpqs;
518 	return 0;
519 
520 free_txqs:
521 	free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED);
522 free_xdpqs:
523 	free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED);
524 free_qvec:
525 	kfree(rxqs);
526 	return err;
527 }
528 
529 /* Take queues to the next level. Presently this means creating them on the
530  * device.
531  */
532 static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset)
533 {
534 	struct funeth_priv *fp = netdev_priv(dev);
535 	int i, err;
536 
537 	for (i = 0; i < qset->nrxqs; i++) {
538 		err = fun_rxq_create_dev(qset->rxqs[i],
539 					 xa_load(&fp->irqs,
540 						 i + fp->rx_irq_ofst));
541 		if (err)
542 			goto out;
543 	}
544 
545 	for (i = 0; i < qset->ntxqs; i++) {
546 		err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i));
547 		if (err)
548 			goto out;
549 	}
550 
551 	for (i = 0; i < qset->nxdpqs; i++) {
552 		err = fun_txq_create_dev(qset->xdpqs[i], NULL);
553 		if (err)
554 			goto out;
555 	}
556 
557 	return 0;
558 
559 out:
560 	fun_free_rings(dev, qset);
561 	return err;
562 }
563 
564 static int fun_port_create(struct net_device *netdev)
565 {
566 	struct funeth_priv *fp = netdev_priv(netdev);
567 	union {
568 		struct fun_admin_port_req req;
569 		struct fun_admin_port_rsp rsp;
570 	} cmd;
571 	int rc;
572 
573 	if (fp->lport != INVALID_LPORT)
574 		return 0;
575 
576 	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
577 						    sizeof(cmd.req));
578 	cmd.req.u.create =
579 		FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0,
580 					       netdev->dev_port);
581 
582 	rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp,
583 				       sizeof(cmd.rsp), 0);
584 
585 	if (!rc)
586 		fp->lport = be16_to_cpu(cmd.rsp.u.create.lport);
587 	return rc;
588 }
589 
590 static int fun_port_destroy(struct net_device *netdev)
591 {
592 	struct funeth_priv *fp = netdev_priv(netdev);
593 
594 	if (fp->lport == INVALID_LPORT)
595 		return 0;
596 
597 	fp->lport = INVALID_LPORT;
598 	return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0,
599 			       netdev->dev_port);
600 }
601 
602 static int fun_eth_create(struct funeth_priv *fp)
603 {
604 	union {
605 		struct fun_admin_eth_req req;
606 		struct fun_admin_generic_create_rsp rsp;
607 	} cmd;
608 	int rc;
609 
610 	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH,
611 						    sizeof(cmd.req));
612 	cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT(
613 				FUN_ADMIN_SUBOP_CREATE,
614 				FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR,
615 				0, fp->netdev->dev_port);
616 
617 	rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp,
618 				       sizeof(cmd.rsp), 0);
619 	return rc ? rc : be32_to_cpu(cmd.rsp.id);
620 }
621 
622 static int fun_vi_create(struct funeth_priv *fp)
623 {
624 	struct fun_admin_vi_req req = {
625 		.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI,
626 						     sizeof(req)),
627 		.u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE,
628 							 0,
629 							 fp->netdev->dev_port,
630 							 fp->netdev->dev_port)
631 	};
632 
633 	return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0);
634 }
635 
636 /* Helper to create an ETH flow and bind an SQ to it.
637  * Returns the ETH id (>= 0) on success or a negative error.
638  */
639 int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid)
640 {
641 	int rc, ethid;
642 
643 	ethid = fun_eth_create(fp);
644 	if (ethid >= 0) {
645 		rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid,
646 			      FUN_ADMIN_BIND_TYPE_ETH, ethid);
647 		if (rc) {
648 			fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid);
649 			ethid = rc;
650 		}
651 	}
652 	return ethid;
653 }
654 
655 static irqreturn_t fun_queue_irq_handler(int irq, void *data)
656 {
657 	struct fun_irq *p = data;
658 
659 	if (p->rxq) {
660 		prefetch(p->rxq->next_cqe_info);
661 		p->rxq->irq_cnt++;
662 	}
663 	napi_schedule_irqoff(&p->napi);
664 	return IRQ_HANDLED;
665 }
666 
667 static int fun_enable_irqs(struct net_device *dev)
668 {
669 	struct funeth_priv *fp = netdev_priv(dev);
670 	unsigned long idx, last;
671 	unsigned int qidx;
672 	struct fun_irq *p;
673 	const char *qtype;
674 	int err;
675 
676 	xa_for_each(&fp->irqs, idx, p) {
677 		if (p->txq) {
678 			qtype = "tx";
679 			qidx = p->txq->qidx;
680 		} else if (p->rxq) {
681 			qtype = "rx";
682 			qidx = p->rxq->qidx;
683 		} else {
684 			continue;
685 		}
686 
687 		if (p->state != FUN_IRQ_INIT)
688 			continue;
689 
690 		snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name,
691 			 qtype, qidx);
692 		err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p);
693 		if (err) {
694 			netdev_err(dev, "Failed to allocate IRQ %u, err %d\n",
695 				   p->irq, err);
696 			goto unroll;
697 		}
698 		p->state = FUN_IRQ_REQUESTED;
699 	}
700 
701 	xa_for_each(&fp->irqs, idx, p) {
702 		if (p->state != FUN_IRQ_REQUESTED)
703 			continue;
704 		irq_set_affinity_notifier(p->irq, &p->aff_notify);
705 		irq_set_affinity_and_hint(p->irq, &p->affinity_mask);
706 		napi_enable(&p->napi);
707 		p->state = FUN_IRQ_ENABLED;
708 	}
709 
710 	return 0;
711 
712 unroll:
713 	last = idx - 1;
714 	xa_for_each_range(&fp->irqs, idx, p, 0, last)
715 		if (p->state == FUN_IRQ_REQUESTED) {
716 			free_irq(p->irq, p);
717 			p->state = FUN_IRQ_INIT;
718 		}
719 
720 	return err;
721 }
722 
723 static void fun_disable_one_irq(struct fun_irq *irq)
724 {
725 	napi_disable(&irq->napi);
726 	irq_set_affinity_notifier(irq->irq, NULL);
727 	irq_update_affinity_hint(irq->irq, NULL);
728 	free_irq(irq->irq, irq);
729 	irq->state = FUN_IRQ_INIT;
730 }
731 
732 static void fun_disable_irqs(struct net_device *dev)
733 {
734 	struct funeth_priv *fp = netdev_priv(dev);
735 	struct fun_irq *p;
736 	unsigned long idx;
737 
738 	xa_for_each(&fp->irqs, idx, p)
739 		if (p->state == FUN_IRQ_ENABLED)
740 			fun_disable_one_irq(p);
741 }
742 
743 static void fun_down(struct net_device *dev, struct fun_qset *qset)
744 {
745 	struct funeth_priv *fp = netdev_priv(dev);
746 
747 	/* If we don't have queues the data path is already down.
748 	 * Note netif_running(dev) may be true.
749 	 */
750 	if (!rcu_access_pointer(fp->rxqs))
751 		return;
752 
753 	/* It is also down if the queues aren't on the device. */
754 	if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) {
755 		netif_info(fp, ifdown, dev,
756 			   "Tearing down data path on device\n");
757 		fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0);
758 
759 		netif_carrier_off(dev);
760 		netif_tx_disable(dev);
761 
762 		fun_destroy_rss(fp);
763 		fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port);
764 		fun_disable_irqs(dev);
765 	}
766 
767 	fun_free_rings(dev, qset);
768 }
769 
770 static int fun_up(struct net_device *dev, struct fun_qset *qset)
771 {
772 	static const int port_keys[] = {
773 		FUN_ADMIN_PORT_KEY_STATS_DMA_LOW,
774 		FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH,
775 		FUN_ADMIN_PORT_KEY_ENABLE
776 	};
777 
778 	struct funeth_priv *fp = netdev_priv(dev);
779 	u64 vals[] = {
780 		lower_32_bits(fp->stats_dma_addr),
781 		upper_32_bits(fp->stats_dma_addr),
782 		FUN_PORT_FLAG_ENABLE_NOTIFY
783 	};
784 	int err;
785 
786 	netif_info(fp, ifup, dev, "Setting up data path on device\n");
787 
788 	if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) {
789 		err = fun_advance_ring_state(dev, qset);
790 		if (err)
791 			return err;
792 	}
793 
794 	err = fun_vi_create(fp);
795 	if (err)
796 		goto free_queues;
797 
798 	fp->txqs = qset->txqs;
799 	rcu_assign_pointer(fp->rxqs, qset->rxqs);
800 	rcu_assign_pointer(fp->xdpqs, qset->xdpqs);
801 
802 	err = fun_enable_irqs(dev);
803 	if (err)
804 		goto destroy_vi;
805 
806 	if (fp->rss_cfg) {
807 		err = fun_config_rss(dev, fp->hash_algo, fp->rss_key,
808 				     fp->indir_table, FUN_ADMIN_SUBOP_CREATE);
809 	} else {
810 		/* The non-RSS case has only 1 queue. */
811 		err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port,
812 			       FUN_ADMIN_BIND_TYPE_EPCQ,
813 			       qset->rxqs[0]->hw_cqid);
814 	}
815 	if (err)
816 		goto disable_irqs;
817 
818 	err = fun_port_write_cmds(fp, 3, port_keys, vals);
819 	if (err)
820 		goto free_rss;
821 
822 	netif_tx_start_all_queues(dev);
823 	return 0;
824 
825 free_rss:
826 	fun_destroy_rss(fp);
827 disable_irqs:
828 	fun_disable_irqs(dev);
829 destroy_vi:
830 	fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port);
831 free_queues:
832 	fun_free_rings(dev, qset);
833 	return err;
834 }
835 
836 static int funeth_open(struct net_device *netdev)
837 {
838 	struct funeth_priv *fp = netdev_priv(netdev);
839 	struct fun_qset qset = {
840 		.nrxqs = netdev->real_num_rx_queues,
841 		.ntxqs = netdev->real_num_tx_queues,
842 		.nxdpqs = fp->num_xdpqs,
843 		.cq_depth = fp->cq_depth,
844 		.rq_depth = fp->rq_depth,
845 		.sq_depth = fp->sq_depth,
846 		.state = FUN_QSTATE_INIT_FULL,
847 	};
848 	int rc;
849 
850 	rc = fun_alloc_rings(netdev, &qset);
851 	if (rc)
852 		return rc;
853 
854 	rc = fun_up(netdev, &qset);
855 	if (rc) {
856 		qset.state = FUN_QSTATE_DESTROYED;
857 		fun_free_rings(netdev, &qset);
858 	}
859 
860 	return rc;
861 }
862 
863 static int funeth_close(struct net_device *netdev)
864 {
865 	struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED };
866 
867 	fun_down(netdev, &qset);
868 	return 0;
869 }
870 
871 static void fun_get_stats64(struct net_device *netdev,
872 			    struct rtnl_link_stats64 *stats)
873 {
874 	struct funeth_priv *fp = netdev_priv(netdev);
875 	struct funeth_txq **xdpqs;
876 	struct funeth_rxq **rxqs;
877 	unsigned int i, start;
878 
879 	stats->tx_packets = fp->tx_packets;
880 	stats->tx_bytes   = fp->tx_bytes;
881 	stats->tx_dropped = fp->tx_dropped;
882 
883 	stats->rx_packets = fp->rx_packets;
884 	stats->rx_bytes   = fp->rx_bytes;
885 	stats->rx_dropped = fp->rx_dropped;
886 
887 	rcu_read_lock();
888 	rxqs = rcu_dereference(fp->rxqs);
889 	if (!rxqs)
890 		goto unlock;
891 
892 	for (i = 0; i < netdev->real_num_tx_queues; i++) {
893 		struct funeth_txq_stats txs;
894 
895 		FUN_QSTAT_READ(fp->txqs[i], start, txs);
896 		stats->tx_packets += txs.tx_pkts;
897 		stats->tx_bytes   += txs.tx_bytes;
898 		stats->tx_dropped += txs.tx_map_err;
899 	}
900 
901 	for (i = 0; i < netdev->real_num_rx_queues; i++) {
902 		struct funeth_rxq_stats rxs;
903 
904 		FUN_QSTAT_READ(rxqs[i], start, rxs);
905 		stats->rx_packets += rxs.rx_pkts;
906 		stats->rx_bytes   += rxs.rx_bytes;
907 		stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops;
908 	}
909 
910 	xdpqs = rcu_dereference(fp->xdpqs);
911 	if (!xdpqs)
912 		goto unlock;
913 
914 	for (i = 0; i < fp->num_xdpqs; i++) {
915 		struct funeth_txq_stats txs;
916 
917 		FUN_QSTAT_READ(xdpqs[i], start, txs);
918 		stats->tx_packets += txs.tx_pkts;
919 		stats->tx_bytes   += txs.tx_bytes;
920 	}
921 unlock:
922 	rcu_read_unlock();
923 }
924 
925 static int fun_change_mtu(struct net_device *netdev, int new_mtu)
926 {
927 	struct funeth_priv *fp = netdev_priv(netdev);
928 	int rc;
929 
930 	rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu);
931 	if (!rc)
932 		netdev->mtu = new_mtu;
933 	return rc;
934 }
935 
936 static int fun_set_macaddr(struct net_device *netdev, void *addr)
937 {
938 	struct funeth_priv *fp = netdev_priv(netdev);
939 	struct sockaddr *saddr = addr;
940 	int rc;
941 
942 	if (!is_valid_ether_addr(saddr->sa_data))
943 		return -EADDRNOTAVAIL;
944 
945 	if (ether_addr_equal(netdev->dev_addr, saddr->sa_data))
946 		return 0;
947 
948 	rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR,
949 				ether_addr_to_u64(saddr->sa_data));
950 	if (!rc)
951 		eth_hw_addr_set(netdev, saddr->sa_data);
952 	return rc;
953 }
954 
955 static int fun_get_port_attributes(struct net_device *netdev)
956 {
957 	static const int keys[] = {
958 		FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES,
959 		FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU
960 	};
961 	static const int phys_keys[] = {
962 		FUN_ADMIN_PORT_KEY_LANE_ATTRS,
963 	};
964 
965 	struct funeth_priv *fp = netdev_priv(netdev);
966 	u64 data[ARRAY_SIZE(keys)];
967 	u8 mac[ETH_ALEN];
968 	int i, rc;
969 
970 	rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data);
971 	if (rc)
972 		return rc;
973 
974 	for (i = 0; i < ARRAY_SIZE(keys); i++) {
975 		switch (keys[i]) {
976 		case FUN_ADMIN_PORT_KEY_MACADDR:
977 			u64_to_ether_addr(data[i], mac);
978 			if (is_zero_ether_addr(mac)) {
979 				eth_hw_addr_random(netdev);
980 			} else if (is_valid_ether_addr(mac)) {
981 				eth_hw_addr_set(netdev, mac);
982 			} else {
983 				netdev_err(netdev,
984 					   "device provided a bad MAC address %pM\n",
985 					   mac);
986 				return -EINVAL;
987 			}
988 			break;
989 
990 		case FUN_ADMIN_PORT_KEY_CAPABILITIES:
991 			fp->port_caps = data[i];
992 			break;
993 
994 		case FUN_ADMIN_PORT_KEY_ADVERT:
995 			fp->advertising = data[i];
996 			break;
997 
998 		case FUN_ADMIN_PORT_KEY_MTU:
999 			netdev->mtu = data[i];
1000 			break;
1001 		}
1002 	}
1003 
1004 	if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) {
1005 		rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys,
1006 					data);
1007 		if (rc)
1008 			return rc;
1009 
1010 		fp->lane_attrs = data[0];
1011 	}
1012 
1013 	if (netdev->addr_assign_type == NET_ADDR_RANDOM)
1014 		return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR,
1015 					  ether_addr_to_u64(netdev->dev_addr));
1016 	return 0;
1017 }
1018 
1019 static int fun_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1020 {
1021 	const struct funeth_priv *fp = netdev_priv(dev);
1022 
1023 	return copy_to_user(ifr->ifr_data, &fp->hwtstamp_cfg,
1024 			    sizeof(fp->hwtstamp_cfg)) ? -EFAULT : 0;
1025 }
1026 
1027 static int fun_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1028 {
1029 	struct funeth_priv *fp = netdev_priv(dev);
1030 	struct hwtstamp_config cfg;
1031 
1032 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1033 		return -EFAULT;
1034 
1035 	/* no TX HW timestamps */
1036 	cfg.tx_type = HWTSTAMP_TX_OFF;
1037 
1038 	switch (cfg.rx_filter) {
1039 	case HWTSTAMP_FILTER_NONE:
1040 		break;
1041 	case HWTSTAMP_FILTER_ALL:
1042 	case HWTSTAMP_FILTER_SOME:
1043 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1044 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1045 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1046 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1047 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1048 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1049 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1050 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1051 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1052 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1053 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1054 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1055 	case HWTSTAMP_FILTER_NTP_ALL:
1056 		cfg.rx_filter = HWTSTAMP_FILTER_ALL;
1057 		break;
1058 	default:
1059 		return -ERANGE;
1060 	}
1061 
1062 	fp->hwtstamp_cfg = cfg;
1063 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1064 }
1065 
1066 static int fun_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1067 {
1068 	switch (cmd) {
1069 	case SIOCSHWTSTAMP:
1070 		return fun_hwtstamp_set(dev, ifr);
1071 	case SIOCGHWTSTAMP:
1072 		return fun_hwtstamp_get(dev, ifr);
1073 	default:
1074 		return -EOPNOTSUPP;
1075 	}
1076 }
1077 
1078 /* Prepare the queues for XDP. */
1079 static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog)
1080 {
1081 	struct funeth_priv *fp = netdev_priv(dev);
1082 	unsigned int i, nqs = num_online_cpus();
1083 	struct funeth_txq **xdpqs;
1084 	struct funeth_rxq **rxqs;
1085 	int err;
1086 
1087 	xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL);
1088 	if (IS_ERR(xdpqs))
1089 		return PTR_ERR(xdpqs);
1090 
1091 	rxqs = rtnl_dereference(fp->rxqs);
1092 	for (i = 0; i < dev->real_num_rx_queues; i++) {
1093 		err = fun_rxq_set_bpf(rxqs[i], prog);
1094 		if (err)
1095 			goto out;
1096 	}
1097 
1098 	fp->num_xdpqs = nqs;
1099 	rcu_assign_pointer(fp->xdpqs, xdpqs);
1100 	return 0;
1101 out:
1102 	while (i--)
1103 		fun_rxq_set_bpf(rxqs[i], NULL);
1104 
1105 	free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED);
1106 	return err;
1107 }
1108 
1109 /* Set the queues for non-XDP operation. */
1110 static void fun_end_xdp(struct net_device *dev)
1111 {
1112 	struct funeth_priv *fp = netdev_priv(dev);
1113 	struct funeth_txq **xdpqs;
1114 	struct funeth_rxq **rxqs;
1115 	unsigned int i;
1116 
1117 	xdpqs = rtnl_dereference(fp->xdpqs);
1118 	rcu_assign_pointer(fp->xdpqs, NULL);
1119 	synchronize_net();
1120 	/* at this point both Rx and Tx XDP processing has ended */
1121 
1122 	free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED);
1123 	fp->num_xdpqs = 0;
1124 
1125 	rxqs = rtnl_dereference(fp->rxqs);
1126 	for (i = 0; i < dev->real_num_rx_queues; i++)
1127 		fun_rxq_set_bpf(rxqs[i], NULL);
1128 }
1129 
1130 #define XDP_MAX_MTU \
1131 	(PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM)
1132 
1133 static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp)
1134 {
1135 	struct bpf_prog *old_prog, *prog = xdp->prog;
1136 	struct funeth_priv *fp = netdev_priv(dev);
1137 	int i, err;
1138 
1139 	/* XDP uses at most one buffer */
1140 	if (prog && dev->mtu > XDP_MAX_MTU) {
1141 		netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu);
1142 		NL_SET_ERR_MSG_MOD(xdp->extack,
1143 				   "Device MTU too large for XDP");
1144 		return -EINVAL;
1145 	}
1146 
1147 	if (!netif_running(dev)) {
1148 		fp->num_xdpqs = prog ? num_online_cpus() : 0;
1149 	} else if (prog && !fp->xdp_prog) {
1150 		err = fun_enter_xdp(dev, prog);
1151 		if (err) {
1152 			NL_SET_ERR_MSG_MOD(xdp->extack,
1153 					   "Failed to set queues for XDP.");
1154 			return err;
1155 		}
1156 	} else if (!prog && fp->xdp_prog) {
1157 		fun_end_xdp(dev);
1158 	} else {
1159 		struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs);
1160 
1161 		for (i = 0; i < dev->real_num_rx_queues; i++)
1162 			WRITE_ONCE(rxqs[i]->xdp_prog, prog);
1163 	}
1164 
1165 	dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU;
1166 	old_prog = xchg(&fp->xdp_prog, prog);
1167 	if (old_prog)
1168 		bpf_prog_put(old_prog);
1169 
1170 	return 0;
1171 }
1172 
1173 static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1174 {
1175 	switch (xdp->command) {
1176 	case XDP_SETUP_PROG:
1177 		return fun_xdp_setup(dev, xdp);
1178 	default:
1179 		return -EINVAL;
1180 	}
1181 }
1182 
1183 static struct devlink_port *fun_get_devlink_port(struct net_device *netdev)
1184 {
1185 	struct funeth_priv *fp = netdev_priv(netdev);
1186 
1187 	return &fp->dl_port;
1188 }
1189 
1190 static int fun_init_vports(struct fun_ethdev *ed, unsigned int n)
1191 {
1192 	if (ed->num_vports)
1193 		return -EINVAL;
1194 
1195 	ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL);
1196 	if (!ed->vport_info)
1197 		return -ENOMEM;
1198 	ed->num_vports = n;
1199 	return 0;
1200 }
1201 
1202 static void fun_free_vports(struct fun_ethdev *ed)
1203 {
1204 	kvfree(ed->vport_info);
1205 	ed->vport_info = NULL;
1206 	ed->num_vports = 0;
1207 }
1208 
1209 static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed,
1210 					    unsigned int vport)
1211 {
1212 	if (!ed->vport_info || vport >= ed->num_vports)
1213 		return NULL;
1214 
1215 	return ed->vport_info + vport;
1216 }
1217 
1218 static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
1219 {
1220 	struct funeth_priv *fp = netdev_priv(dev);
1221 	struct fun_adi_param mac_param = {};
1222 	struct fun_dev *fdev = fp->fdev;
1223 	struct fun_ethdev *ed = to_fun_ethdev(fdev);
1224 	struct fun_vport_info *vi;
1225 	int rc = -EINVAL;
1226 
1227 	if (is_multicast_ether_addr(mac))
1228 		return -EINVAL;
1229 
1230 	mutex_lock(&ed->state_mutex);
1231 	vi = fun_get_vport(ed, vf);
1232 	if (!vi)
1233 		goto unlock;
1234 
1235 	mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac));
1236 	rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1,
1237 			   &mac_param);
1238 	if (!rc)
1239 		ether_addr_copy(vi->mac, mac);
1240 unlock:
1241 	mutex_unlock(&ed->state_mutex);
1242 	return rc;
1243 }
1244 
1245 static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos,
1246 			   __be16 vlan_proto)
1247 {
1248 	struct funeth_priv *fp = netdev_priv(dev);
1249 	struct fun_adi_param vlan_param = {};
1250 	struct fun_dev *fdev = fp->fdev;
1251 	struct fun_ethdev *ed = to_fun_ethdev(fdev);
1252 	struct fun_vport_info *vi;
1253 	int rc = -EINVAL;
1254 
1255 	if (vlan > 4095 || qos > 7)
1256 		return -EINVAL;
1257 	if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) &&
1258 	    vlan_proto != htons(ETH_P_8021AD))
1259 		return -EINVAL;
1260 
1261 	mutex_lock(&ed->state_mutex);
1262 	vi = fun_get_vport(ed, vf);
1263 	if (!vi)
1264 		goto unlock;
1265 
1266 	vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto),
1267 					      ((u16)qos << VLAN_PRIO_SHIFT) | vlan);
1268 	rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param);
1269 	if (!rc) {
1270 		vi->vlan = vlan;
1271 		vi->qos = qos;
1272 		vi->vlan_proto = vlan_proto;
1273 	}
1274 unlock:
1275 	mutex_unlock(&ed->state_mutex);
1276 	return rc;
1277 }
1278 
1279 static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
1280 			   int max_tx_rate)
1281 {
1282 	struct funeth_priv *fp = netdev_priv(dev);
1283 	struct fun_adi_param rate_param = {};
1284 	struct fun_dev *fdev = fp->fdev;
1285 	struct fun_ethdev *ed = to_fun_ethdev(fdev);
1286 	struct fun_vport_info *vi;
1287 	int rc = -EINVAL;
1288 
1289 	if (min_tx_rate)
1290 		return -EINVAL;
1291 
1292 	mutex_lock(&ed->state_mutex);
1293 	vi = fun_get_vport(ed, vf);
1294 	if (!vi)
1295 		goto unlock;
1296 
1297 	rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate);
1298 	rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param);
1299 	if (!rc)
1300 		vi->max_rate = max_tx_rate;
1301 unlock:
1302 	mutex_unlock(&ed->state_mutex);
1303 	return rc;
1304 }
1305 
1306 static int fun_get_vf_config(struct net_device *dev, int vf,
1307 			     struct ifla_vf_info *ivi)
1308 {
1309 	struct funeth_priv *fp = netdev_priv(dev);
1310 	struct fun_ethdev *ed = to_fun_ethdev(fp->fdev);
1311 	const struct fun_vport_info *vi;
1312 
1313 	mutex_lock(&ed->state_mutex);
1314 	vi = fun_get_vport(ed, vf);
1315 	if (!vi)
1316 		goto unlock;
1317 
1318 	memset(ivi, 0, sizeof(*ivi));
1319 	ivi->vf = vf;
1320 	ether_addr_copy(ivi->mac, vi->mac);
1321 	ivi->vlan = vi->vlan;
1322 	ivi->qos = vi->qos;
1323 	ivi->vlan_proto = vi->vlan_proto;
1324 	ivi->max_tx_rate = vi->max_rate;
1325 	ivi->spoofchk = vi->spoofchk;
1326 unlock:
1327 	mutex_unlock(&ed->state_mutex);
1328 	return vi ? 0 : -EINVAL;
1329 }
1330 
1331 static void fun_uninit(struct net_device *dev)
1332 {
1333 	struct funeth_priv *fp = netdev_priv(dev);
1334 
1335 	fun_prune_queue_irqs(dev);
1336 	xa_destroy(&fp->irqs);
1337 }
1338 
1339 static const struct net_device_ops fun_netdev_ops = {
1340 	.ndo_open		= funeth_open,
1341 	.ndo_stop		= funeth_close,
1342 	.ndo_start_xmit		= fun_start_xmit,
1343 	.ndo_get_stats64	= fun_get_stats64,
1344 	.ndo_change_mtu		= fun_change_mtu,
1345 	.ndo_set_mac_address	= fun_set_macaddr,
1346 	.ndo_validate_addr	= eth_validate_addr,
1347 	.ndo_eth_ioctl		= fun_ioctl,
1348 	.ndo_uninit		= fun_uninit,
1349 	.ndo_bpf		= fun_xdp,
1350 	.ndo_xdp_xmit		= fun_xdp_xmit_frames,
1351 	.ndo_set_vf_mac		= fun_set_vf_mac,
1352 	.ndo_set_vf_vlan	= fun_set_vf_vlan,
1353 	.ndo_set_vf_rate	= fun_set_vf_rate,
1354 	.ndo_get_vf_config	= fun_get_vf_config,
1355 	.ndo_get_devlink_port	= fun_get_devlink_port,
1356 };
1357 
1358 #define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \
1359 			 NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \
1360 			 NETIF_F_GSO_UDP_TUNNEL_CSUM)
1361 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1362 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \
1363 		   GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA)
1364 
1365 static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx)
1366 {
1367 	unsigned int i;
1368 
1369 	for (i = 0; i < fp->indir_table_nentries; i++)
1370 		fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx);
1371 }
1372 
1373 /* Reset the RSS indirection table to equal distribution across the current
1374  * number of Rx queues. Called at init time and whenever the number of Rx
1375  * queues changes subsequently. Note that this may also resize the indirection
1376  * table.
1377  */
1378 static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx)
1379 {
1380 	struct funeth_priv *fp = netdev_priv(dev);
1381 
1382 	if (!fp->rss_cfg)
1383 		return;
1384 
1385 	/* Set the table size to the max possible that allows an equal number
1386 	 * of occurrences of each CQ.
1387 	 */
1388 	fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx);
1389 	fun_dflt_rss_indir(fp, nrx);
1390 }
1391 
1392 /* Update the RSS LUT to contain only queues in [0, nrx). Normally this will
1393  * update the LUT to an equal distribution among nrx queues, If @only_if_needed
1394  * is set the LUT is left unchanged if it already does not reference any queues
1395  * >= nrx.
1396  */
1397 static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx,
1398 			    bool only_if_needed)
1399 {
1400 	struct funeth_priv *fp = netdev_priv(dev);
1401 	u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT];
1402 	unsigned int i, oldsz;
1403 	int err;
1404 
1405 	if (!fp->rss_cfg)
1406 		return 0;
1407 
1408 	if (only_if_needed) {
1409 		for (i = 0; i < fp->indir_table_nentries; i++)
1410 			if (fp->indir_table[i] >= nrx)
1411 				break;
1412 
1413 		if (i >= fp->indir_table_nentries)
1414 			return 0;
1415 	}
1416 
1417 	memcpy(old_lut, fp->indir_table, sizeof(old_lut));
1418 	oldsz = fp->indir_table_nentries;
1419 	fun_reset_rss_indir(dev, nrx);
1420 
1421 	err = fun_config_rss(dev, fp->hash_algo, fp->rss_key,
1422 			     fp->indir_table, FUN_ADMIN_SUBOP_MODIFY);
1423 	if (!err)
1424 		return 0;
1425 
1426 	memcpy(fp->indir_table, old_lut, sizeof(old_lut));
1427 	fp->indir_table_nentries = oldsz;
1428 	return err;
1429 }
1430 
1431 /* Allocate the DMA area for the RSS configuration commands to the device, and
1432  * initialize the hash, hash key, indirection table size and its entries to
1433  * their defaults. The indirection table defaults to equal distribution across
1434  * the Rx queues.
1435  */
1436 static int fun_init_rss(struct net_device *dev)
1437 {
1438 	struct funeth_priv *fp = netdev_priv(dev);
1439 	size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table);
1440 
1441 	fp->rss_hw_id = FUN_HCI_ID_INVALID;
1442 	if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS))
1443 		return 0;
1444 
1445 	fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size,
1446 					 &fp->rss_dma_addr, GFP_KERNEL);
1447 	if (!fp->rss_cfg)
1448 		return -ENOMEM;
1449 
1450 	fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ;
1451 	netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key));
1452 	fun_reset_rss_indir(dev, dev->real_num_rx_queues);
1453 	return 0;
1454 }
1455 
1456 static void fun_free_rss(struct funeth_priv *fp)
1457 {
1458 	if (fp->rss_cfg) {
1459 		dma_free_coherent(&fp->pdev->dev,
1460 				  sizeof(fp->rss_key) + sizeof(fp->indir_table),
1461 				  fp->rss_cfg, fp->rss_dma_addr);
1462 		fp->rss_cfg = NULL;
1463 	}
1464 }
1465 
1466 void fun_set_ring_count(struct net_device *netdev, unsigned int ntx,
1467 			unsigned int nrx)
1468 {
1469 	netif_set_real_num_tx_queues(netdev, ntx);
1470 	if (nrx != netdev->real_num_rx_queues) {
1471 		netif_set_real_num_rx_queues(netdev, nrx);
1472 		fun_reset_rss_indir(netdev, nrx);
1473 	}
1474 }
1475 
1476 static int fun_init_stats_area(struct funeth_priv *fp)
1477 {
1478 	unsigned int nstats;
1479 
1480 	if (!(fp->port_caps & FUN_PORT_CAP_STATS))
1481 		return 0;
1482 
1483 	nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX +
1484 		 PORT_MAC_FEC_STATS_MAX;
1485 
1486 	fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64),
1487 				       &fp->stats_dma_addr, GFP_KERNEL);
1488 	if (!fp->stats)
1489 		return -ENOMEM;
1490 	return 0;
1491 }
1492 
1493 static void fun_free_stats_area(struct funeth_priv *fp)
1494 {
1495 	unsigned int nstats;
1496 
1497 	if (fp->stats) {
1498 		nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX;
1499 		dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64),
1500 				  fp->stats, fp->stats_dma_addr);
1501 		fp->stats = NULL;
1502 	}
1503 }
1504 
1505 static int fun_dl_port_register(struct net_device *netdev)
1506 {
1507 	struct funeth_priv *fp = netdev_priv(netdev);
1508 	struct devlink *dl = priv_to_devlink(fp->fdev);
1509 	struct devlink_port_attrs attrs = {};
1510 	unsigned int idx;
1511 
1512 	if (fp->port_caps & FUN_PORT_CAP_VPORT) {
1513 		attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL;
1514 		idx = fp->lport;
1515 	} else {
1516 		idx = netdev->dev_port;
1517 		attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1518 		attrs.lanes = fp->lane_attrs & 7;
1519 		if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) {
1520 			attrs.split = 1;
1521 			attrs.phys.port_number = fp->lport & ~3;
1522 			attrs.phys.split_subport_number = fp->lport & 3;
1523 		} else {
1524 			attrs.phys.port_number = fp->lport;
1525 		}
1526 	}
1527 
1528 	devlink_port_attrs_set(&fp->dl_port, &attrs);
1529 
1530 	return devlink_port_register(dl, &fp->dl_port, idx);
1531 }
1532 
1533 /* Determine the max Tx/Rx queues for a port. */
1534 static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx,
1535 		      unsigned int *nrx)
1536 {
1537 	int neth;
1538 
1539 	if (ed->num_ports > 1 || is_kdump_kernel()) {
1540 		*ntx = 1;
1541 		*nrx = 1;
1542 		return 0;
1543 	}
1544 
1545 	neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH);
1546 	if (neth < 0)
1547 		return neth;
1548 
1549 	/* We determine the max number of queues based on the CPU
1550 	 * cores, device interrupts and queues, RSS size, and device Tx flows.
1551 	 *
1552 	 * - At least 1 Rx and 1 Tx queues.
1553 	 * - At most 1 Rx/Tx queue per core.
1554 	 * - Each Rx/Tx queue needs 1 SQ.
1555 	 */
1556 	*ntx = min(ed->nsqs_per_port - 1, num_online_cpus());
1557 	*nrx = *ntx;
1558 	if (*ntx > neth)
1559 		*ntx = neth;
1560 	if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT)
1561 		*nrx = FUN_ETH_RSS_MAX_INDIR_ENT;
1562 	return 0;
1563 }
1564 
1565 static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs)
1566 {
1567 	unsigned int ntx, nrx;
1568 
1569 	ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES);
1570 	nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES);
1571 	if (ntx <= nrx) {
1572 		ntx = min(ntx, nsqs / 2);
1573 		nrx = min(nrx, nsqs - ntx);
1574 	} else {
1575 		nrx = min(nrx, nsqs / 2);
1576 		ntx = min(ntx, nsqs - nrx);
1577 	}
1578 
1579 	netif_set_real_num_tx_queues(dev, ntx);
1580 	netif_set_real_num_rx_queues(dev, nrx);
1581 }
1582 
1583 /* Replace the existing Rx/Tx/XDP queues with equal number of queues with
1584  * different settings, e.g. depth. This is a disruptive replacement that
1585  * temporarily shuts down the data path and should be limited to changes that
1586  * can't be applied to live queues. The old queues are always discarded.
1587  */
1588 int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs,
1589 		       struct netlink_ext_ack *extack)
1590 {
1591 	struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED };
1592 	struct funeth_priv *fp = netdev_priv(dev);
1593 	int err;
1594 
1595 	newqs->nrxqs = dev->real_num_rx_queues;
1596 	newqs->ntxqs = dev->real_num_tx_queues;
1597 	newqs->nxdpqs = fp->num_xdpqs;
1598 	newqs->state = FUN_QSTATE_INIT_SW;
1599 	err = fun_alloc_rings(dev, newqs);
1600 	if (err) {
1601 		NL_SET_ERR_MSG_MOD(extack,
1602 				   "Unable to allocate memory for new queues, keeping current settings");
1603 		return err;
1604 	}
1605 
1606 	fun_down(dev, &oldqs);
1607 
1608 	err = fun_up(dev, newqs);
1609 	if (!err)
1610 		return 0;
1611 
1612 	/* The new queues couldn't be installed. We do not retry the old queues
1613 	 * as they are the same to the device as the new queues and would
1614 	 * similarly fail.
1615 	 */
1616 	newqs->state = FUN_QSTATE_DESTROYED;
1617 	fun_free_rings(dev, newqs);
1618 	NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues.");
1619 	return err;
1620 }
1621 
1622 /* Change the number of Rx/Tx queues of a device while it is up. This is done
1623  * by incrementally adding/removing queues to meet the new requirements while
1624  * handling ongoing traffic.
1625  */
1626 int fun_change_num_queues(struct net_device *dev, unsigned int ntx,
1627 			  unsigned int nrx)
1628 {
1629 	unsigned int keep_tx = min(dev->real_num_tx_queues, ntx);
1630 	unsigned int keep_rx = min(dev->real_num_rx_queues, nrx);
1631 	struct funeth_priv *fp = netdev_priv(dev);
1632 	struct fun_qset oldqs = {
1633 		.rxqs = rtnl_dereference(fp->rxqs),
1634 		.txqs = fp->txqs,
1635 		.nrxqs = dev->real_num_rx_queues,
1636 		.ntxqs = dev->real_num_tx_queues,
1637 		.rxq_start = keep_rx,
1638 		.txq_start = keep_tx,
1639 		.state = FUN_QSTATE_DESTROYED
1640 	};
1641 	struct fun_qset newqs = {
1642 		.nrxqs = nrx,
1643 		.ntxqs = ntx,
1644 		.rxq_start = keep_rx,
1645 		.txq_start = keep_tx,
1646 		.cq_depth = fp->cq_depth,
1647 		.rq_depth = fp->rq_depth,
1648 		.sq_depth = fp->sq_depth,
1649 		.state = FUN_QSTATE_INIT_FULL
1650 	};
1651 	int i, err;
1652 
1653 	err = fun_alloc_rings(dev, &newqs);
1654 	if (err)
1655 		goto free_irqs;
1656 
1657 	err = fun_enable_irqs(dev); /* of any newly added queues */
1658 	if (err)
1659 		goto free_rings;
1660 
1661 	/* copy the queues we are keeping to the new set */
1662 	memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs));
1663 	memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs));
1664 
1665 	if (nrx < dev->real_num_rx_queues) {
1666 		err = fun_rss_set_qnum(dev, nrx, true);
1667 		if (err)
1668 			goto disable_tx_irqs;
1669 
1670 		for (i = nrx; i < dev->real_num_rx_queues; i++)
1671 			fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi,
1672 							 struct fun_irq, napi));
1673 
1674 		netif_set_real_num_rx_queues(dev, nrx);
1675 	}
1676 
1677 	if (ntx < dev->real_num_tx_queues)
1678 		netif_set_real_num_tx_queues(dev, ntx);
1679 
1680 	rcu_assign_pointer(fp->rxqs, newqs.rxqs);
1681 	fp->txqs = newqs.txqs;
1682 	synchronize_net();
1683 
1684 	if (ntx > dev->real_num_tx_queues)
1685 		netif_set_real_num_tx_queues(dev, ntx);
1686 
1687 	if (nrx > dev->real_num_rx_queues) {
1688 		netif_set_real_num_rx_queues(dev, nrx);
1689 		fun_rss_set_qnum(dev, nrx, false);
1690 	}
1691 
1692 	/* disable interrupts of any excess Tx queues */
1693 	for (i = keep_tx; i < oldqs.ntxqs; i++)
1694 		fun_disable_one_irq(oldqs.txqs[i]->irq);
1695 
1696 	fun_free_rings(dev, &oldqs);
1697 	fun_prune_queue_irqs(dev);
1698 	return 0;
1699 
1700 disable_tx_irqs:
1701 	for (i = oldqs.ntxqs; i < ntx; i++)
1702 		fun_disable_one_irq(newqs.txqs[i]->irq);
1703 free_rings:
1704 	newqs.state = FUN_QSTATE_DESTROYED;
1705 	fun_free_rings(dev, &newqs);
1706 free_irqs:
1707 	fun_prune_queue_irqs(dev);
1708 	return err;
1709 }
1710 
1711 static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid)
1712 {
1713 	struct fun_dev *fdev = &ed->fdev;
1714 	struct net_device *netdev;
1715 	struct funeth_priv *fp;
1716 	unsigned int ntx, nrx;
1717 	int rc;
1718 
1719 	rc = fun_max_qs(ed, &ntx, &nrx);
1720 	if (rc)
1721 		return rc;
1722 
1723 	netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx);
1724 	if (!netdev) {
1725 		rc = -ENOMEM;
1726 		goto done;
1727 	}
1728 
1729 	netdev->dev_port = portid;
1730 	fun_queue_defaults(netdev, ed->nsqs_per_port);
1731 
1732 	fp = netdev_priv(netdev);
1733 	fp->fdev = fdev;
1734 	fp->pdev = to_pci_dev(fdev->dev);
1735 	fp->netdev = netdev;
1736 	xa_init(&fp->irqs);
1737 	fp->rx_irq_ofst = ntx;
1738 	seqcount_init(&fp->link_seq);
1739 
1740 	fp->lport = INVALID_LPORT;
1741 	rc = fun_port_create(netdev);
1742 	if (rc)
1743 		goto free_netdev;
1744 
1745 	/* bind port to admin CQ for async events */
1746 	rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid,
1747 		      FUN_ADMIN_BIND_TYPE_EPCQ, 0);
1748 	if (rc)
1749 		goto destroy_port;
1750 
1751 	rc = fun_get_port_attributes(netdev);
1752 	if (rc)
1753 		goto destroy_port;
1754 
1755 	rc = fun_init_rss(netdev);
1756 	if (rc)
1757 		goto destroy_port;
1758 
1759 	rc = fun_init_stats_area(fp);
1760 	if (rc)
1761 		goto free_rss;
1762 
1763 	SET_NETDEV_DEV(netdev, fdev->dev);
1764 	netdev->netdev_ops = &fun_netdev_ops;
1765 
1766 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM;
1767 	if (fp->port_caps & FUN_PORT_CAP_OFFLOADS)
1768 		netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS;
1769 	if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS)
1770 		netdev->hw_features |= GSO_ENCAP_FLAGS;
1771 
1772 	netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA;
1773 	netdev->vlan_features = netdev->features & VLAN_FEAT;
1774 	netdev->mpls_features = netdev->vlan_features;
1775 	netdev->hw_enc_features = netdev->hw_features;
1776 
1777 	netdev->min_mtu = ETH_MIN_MTU;
1778 	netdev->max_mtu = FUN_MAX_MTU;
1779 
1780 	fun_set_ethtool_ops(netdev);
1781 
1782 	/* configurable parameters */
1783 	fp->sq_depth = min(SQ_DEPTH, fdev->q_depth);
1784 	fp->cq_depth = min(CQ_DEPTH, fdev->q_depth);
1785 	fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth);
1786 	fp->rx_coal_usec  = CQ_INTCOAL_USEC;
1787 	fp->rx_coal_count = CQ_INTCOAL_NPKT;
1788 	fp->tx_coal_usec  = SQ_INTCOAL_USEC;
1789 	fp->tx_coal_count = SQ_INTCOAL_NPKT;
1790 	fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count);
1791 
1792 	rc = fun_dl_port_register(netdev);
1793 	if (rc)
1794 		goto free_stats;
1795 
1796 	fp->ktls_id = FUN_HCI_ID_INVALID;
1797 	fun_ktls_init(netdev);            /* optional, failure OK */
1798 
1799 	netif_carrier_off(netdev);
1800 	ed->netdevs[portid] = netdev;
1801 	rc = register_netdev(netdev);
1802 	if (rc)
1803 		goto unreg_devlink;
1804 
1805 	if (fp->dl_port.devlink)
1806 		devlink_port_type_eth_set(&fp->dl_port, netdev);
1807 
1808 	return 0;
1809 
1810 unreg_devlink:
1811 	ed->netdevs[portid] = NULL;
1812 	fun_ktls_cleanup(fp);
1813 	if (fp->dl_port.devlink)
1814 		devlink_port_unregister(&fp->dl_port);
1815 free_stats:
1816 	fun_free_stats_area(fp);
1817 free_rss:
1818 	fun_free_rss(fp);
1819 destroy_port:
1820 	fun_port_destroy(netdev);
1821 free_netdev:
1822 	free_netdev(netdev);
1823 done:
1824 	dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc);
1825 	return rc;
1826 }
1827 
1828 static void fun_destroy_netdev(struct net_device *netdev)
1829 {
1830 	struct funeth_priv *fp;
1831 
1832 	fp = netdev_priv(netdev);
1833 	if (fp->dl_port.devlink) {
1834 		devlink_port_type_clear(&fp->dl_port);
1835 		devlink_port_unregister(&fp->dl_port);
1836 	}
1837 	unregister_netdev(netdev);
1838 	fun_ktls_cleanup(fp);
1839 	fun_free_stats_area(fp);
1840 	fun_free_rss(fp);
1841 	fun_port_destroy(netdev);
1842 	free_netdev(netdev);
1843 }
1844 
1845 static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports)
1846 {
1847 	struct fun_dev *fd = &ed->fdev;
1848 	int i, rc;
1849 
1850 	/* The admin queue takes 1 IRQ and 2 SQs. */
1851 	ed->nsqs_per_port = min(fd->num_irqs - 1,
1852 				fd->kern_end_qid - 2) / nports;
1853 	if (ed->nsqs_per_port < 2) {
1854 		dev_err(fd->dev, "Too few SQs for %u ports", nports);
1855 		return -EINVAL;
1856 	}
1857 
1858 	ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL);
1859 	if (!ed->netdevs)
1860 		return -ENOMEM;
1861 
1862 	ed->num_ports = nports;
1863 	for (i = 0; i < nports; i++) {
1864 		rc = fun_create_netdev(ed, i);
1865 		if (rc)
1866 			goto free_netdevs;
1867 	}
1868 
1869 	return 0;
1870 
1871 free_netdevs:
1872 	while (i)
1873 		fun_destroy_netdev(ed->netdevs[--i]);
1874 	kfree(ed->netdevs);
1875 	ed->netdevs = NULL;
1876 	ed->num_ports = 0;
1877 	return rc;
1878 }
1879 
1880 static void fun_destroy_ports(struct fun_ethdev *ed)
1881 {
1882 	unsigned int i;
1883 
1884 	for (i = 0; i < ed->num_ports; i++)
1885 		fun_destroy_netdev(ed->netdevs[i]);
1886 
1887 	kfree(ed->netdevs);
1888 	ed->netdevs = NULL;
1889 	ed->num_ports = 0;
1890 }
1891 
1892 static void fun_update_link_state(const struct fun_ethdev *ed,
1893 				  const struct fun_admin_port_notif *notif)
1894 {
1895 	unsigned int port_idx = be16_to_cpu(notif->id);
1896 	struct net_device *netdev;
1897 	struct funeth_priv *fp;
1898 
1899 	if (port_idx >= ed->num_ports)
1900 		return;
1901 
1902 	netdev = ed->netdevs[port_idx];
1903 	fp = netdev_priv(netdev);
1904 
1905 	write_seqcount_begin(&fp->link_seq);
1906 	fp->link_speed = be32_to_cpu(notif->speed) * 10;  /* 10 Mbps->Mbps */
1907 	fp->active_fc = notif->flow_ctrl;
1908 	fp->active_fec = notif->fec;
1909 	fp->xcvr_type = notif->xcvr_type;
1910 	fp->link_down_reason = notif->link_down_reason;
1911 	fp->lp_advertising = be64_to_cpu(notif->lp_advertising);
1912 
1913 	if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN)
1914 		netif_carrier_off(netdev);
1915 	if (notif->link_state & FUN_PORT_FLAG_MAC_UP)
1916 		netif_carrier_on(netdev);
1917 
1918 	write_seqcount_end(&fp->link_seq);
1919 	fun_report_link(netdev);
1920 }
1921 
1922 /* handler for async events delivered through the admin CQ */
1923 static void fun_event_cb(struct fun_dev *fdev, void *entry)
1924 {
1925 	u8 op = ((struct fun_admin_rsp_common *)entry)->op;
1926 
1927 	if (op == FUN_ADMIN_OP_PORT) {
1928 		const struct fun_admin_port_notif *rsp = entry;
1929 
1930 		if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) {
1931 			fun_update_link_state(to_fun_ethdev(fdev), rsp);
1932 		} else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) {
1933 			const struct fun_admin_res_count_rsp *r = entry;
1934 
1935 			if (r->count.data)
1936 				set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags);
1937 			else
1938 				set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags);
1939 			fun_serv_sched(fdev);
1940 		} else {
1941 			dev_info(fdev->dev, "adminq event unexpected op %u subop %u",
1942 				 op, rsp->subop);
1943 		}
1944 	} else {
1945 		dev_info(fdev->dev, "adminq event unexpected op %u", op);
1946 	}
1947 }
1948 
1949 /* handler for pending work managed by the service task */
1950 static void fun_service_cb(struct fun_dev *fdev)
1951 {
1952 	struct fun_ethdev *ed = to_fun_ethdev(fdev);
1953 	int rc;
1954 
1955 	if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags))
1956 		fun_destroy_ports(ed);
1957 
1958 	if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags))
1959 		return;
1960 
1961 	rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT);
1962 	if (rc < 0 || rc == ed->num_ports)
1963 		return;
1964 
1965 	if (ed->num_ports)
1966 		fun_destroy_ports(ed);
1967 	if (rc)
1968 		fun_create_ports(ed, rc);
1969 }
1970 
1971 static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs)
1972 {
1973 	struct fun_dev *fdev = pci_get_drvdata(pdev);
1974 	struct fun_ethdev *ed = to_fun_ethdev(fdev);
1975 	int rc;
1976 
1977 	if (nvfs == 0) {
1978 		if (pci_vfs_assigned(pdev)) {
1979 			dev_warn(&pdev->dev,
1980 				 "Cannot disable SR-IOV while VFs are assigned\n");
1981 			return -EPERM;
1982 		}
1983 
1984 		mutex_lock(&ed->state_mutex);
1985 		fun_free_vports(ed);
1986 		mutex_unlock(&ed->state_mutex);
1987 		pci_disable_sriov(pdev);
1988 		return 0;
1989 	}
1990 
1991 	rc = pci_enable_sriov(pdev, nvfs);
1992 	if (rc)
1993 		return rc;
1994 
1995 	mutex_lock(&ed->state_mutex);
1996 	rc = fun_init_vports(ed, nvfs);
1997 	mutex_unlock(&ed->state_mutex);
1998 	if (rc) {
1999 		pci_disable_sriov(pdev);
2000 		return rc;
2001 	}
2002 
2003 	return nvfs;
2004 }
2005 
2006 static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2007 {
2008 	struct fun_dev_params aqreq = {
2009 		.cqe_size_log2 = ilog2(ADMIN_CQE_SIZE),
2010 		.sqe_size_log2 = ilog2(ADMIN_SQE_SIZE),
2011 		.cq_depth      = ADMIN_CQ_DEPTH,
2012 		.sq_depth      = ADMIN_SQ_DEPTH,
2013 		.rq_depth      = ADMIN_RQ_DEPTH,
2014 		.min_msix      = 2,              /* 1 Rx + 1 Tx */
2015 		.event_cb      = fun_event_cb,
2016 		.serv_cb       = fun_service_cb,
2017 	};
2018 	struct devlink *devlink;
2019 	struct fun_ethdev *ed;
2020 	struct fun_dev *fdev;
2021 	int rc;
2022 
2023 	devlink = fun_devlink_alloc(&pdev->dev);
2024 	if (!devlink) {
2025 		dev_err(&pdev->dev, "devlink alloc failed\n");
2026 		return -ENOMEM;
2027 	}
2028 
2029 	ed = devlink_priv(devlink);
2030 	mutex_init(&ed->state_mutex);
2031 
2032 	fdev = &ed->fdev;
2033 	rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME);
2034 	if (rc)
2035 		goto free_devlink;
2036 
2037 	rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT);
2038 	if (rc > 0)
2039 		rc = fun_create_ports(ed, rc);
2040 	if (rc < 0)
2041 		goto disable_dev;
2042 
2043 	fun_serv_restart(fdev);
2044 	fun_devlink_register(devlink);
2045 	return 0;
2046 
2047 disable_dev:
2048 	fun_dev_disable(fdev);
2049 free_devlink:
2050 	mutex_destroy(&ed->state_mutex);
2051 	fun_devlink_free(devlink);
2052 	return rc;
2053 }
2054 
2055 static void funeth_remove(struct pci_dev *pdev)
2056 {
2057 	struct fun_dev *fdev = pci_get_drvdata(pdev);
2058 	struct devlink *devlink;
2059 	struct fun_ethdev *ed;
2060 
2061 	ed = to_fun_ethdev(fdev);
2062 	devlink = priv_to_devlink(ed);
2063 	fun_devlink_unregister(devlink);
2064 
2065 #ifdef CONFIG_PCI_IOV
2066 	funeth_sriov_configure(pdev, 0);
2067 #endif
2068 
2069 	fun_serv_stop(fdev);
2070 	fun_destroy_ports(ed);
2071 	fun_dev_disable(fdev);
2072 	mutex_destroy(&ed->state_mutex);
2073 
2074 	fun_devlink_free(devlink);
2075 }
2076 
2077 static struct pci_driver funeth_driver = {
2078 	.name		 = KBUILD_MODNAME,
2079 	.id_table	 = funeth_id_table,
2080 	.probe		 = funeth_probe,
2081 	.remove		 = funeth_remove,
2082 	.shutdown	 = funeth_remove,
2083 	.sriov_configure = funeth_sriov_configure,
2084 };
2085 
2086 module_pci_driver(funeth_driver);
2087 
2088 MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>");
2089 MODULE_DESCRIPTION("Fungible Ethernet Network Driver");
2090 MODULE_LICENSE("Dual BSD/GPL");
2091 MODULE_DEVICE_TABLE(pci, funeth_id_table);
2092