1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/etherdevice.h>
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/pci.h>
13 #include <linux/platform_device.h>
14 #include <linux/if_vlan.h>
15 #include <linux/crash_dump.h>
16 #include <net/ipv6.h>
17 #include <net/rtnetlink.h>
18 #include "hclge_cmd.h"
19 #include "hclge_dcb.h"
20 #include "hclge_main.h"
21 #include "hclge_mbx.h"
22 #include "hclge_mdio.h"
23 #include "hclge_tm.h"
24 #include "hclge_err.h"
25 #include "hnae3.h"
26 #include "hclge_devlink.h"
27 #include "hclge_comm_cmd.h"
28 
29 #define HCLGE_NAME			"hclge"
30 
31 #define HCLGE_BUF_SIZE_UNIT	256U
32 #define HCLGE_BUF_MUL_BY	2
33 #define HCLGE_BUF_DIV_BY	2
34 #define NEED_RESERVE_TC_NUM	2
35 #define BUF_MAX_PERCENT		100
36 #define BUF_RESERVE_PERCENT	90
37 
38 #define HCLGE_RESET_MAX_FAIL_CNT	5
39 #define HCLGE_RESET_SYNC_TIME		100
40 #define HCLGE_PF_RESET_SYNC_TIME	20
41 #define HCLGE_PF_RESET_SYNC_CNT		1500
42 
43 /* Get DFX BD number offset */
44 #define HCLGE_DFX_BIOS_BD_OFFSET        1
45 #define HCLGE_DFX_SSU_0_BD_OFFSET       2
46 #define HCLGE_DFX_SSU_1_BD_OFFSET       3
47 #define HCLGE_DFX_IGU_BD_OFFSET         4
48 #define HCLGE_DFX_RPU_0_BD_OFFSET       5
49 #define HCLGE_DFX_RPU_1_BD_OFFSET       6
50 #define HCLGE_DFX_NCSI_BD_OFFSET        7
51 #define HCLGE_DFX_RTC_BD_OFFSET         8
52 #define HCLGE_DFX_PPP_BD_OFFSET         9
53 #define HCLGE_DFX_RCB_BD_OFFSET         10
54 #define HCLGE_DFX_TQP_BD_OFFSET         11
55 #define HCLGE_DFX_SSU_2_BD_OFFSET       12
56 
57 #define HCLGE_LINK_STATUS_MS	10
58 
59 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps);
60 static int hclge_init_vlan_config(struct hclge_dev *hdev);
61 static void hclge_sync_vlan_filter(struct hclge_dev *hdev);
62 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev);
63 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle);
64 static void hclge_rfs_filter_expire(struct hclge_dev *hdev);
65 static int hclge_clear_arfs_rules(struct hclge_dev *hdev);
66 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
67 						   unsigned long *addr);
68 static int hclge_set_default_loopback(struct hclge_dev *hdev);
69 
70 static void hclge_sync_mac_table(struct hclge_dev *hdev);
71 static void hclge_restore_hw_table(struct hclge_dev *hdev);
72 static void hclge_sync_promisc_mode(struct hclge_dev *hdev);
73 static void hclge_sync_fd_table(struct hclge_dev *hdev);
74 static void hclge_update_fec_stats(struct hclge_dev *hdev);
75 
76 static struct hnae3_ae_algo ae_algo;
77 
78 static struct workqueue_struct *hclge_wq;
79 
80 static const struct pci_device_id ae_algo_pci_tbl[] = {
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
85 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0},
89 	/* required last entry */
90 	{0, }
91 };
92 
93 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl);
94 
95 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
96 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
97 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
98 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
99 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
100 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
101 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
102 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
103 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
104 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
105 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
106 					 HCLGE_COMM_CMDQ_INTR_STS_REG,
107 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
108 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
109 
110 static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE,
111 					   HCLGE_PF_OTHER_INT_REG,
112 					   HCLGE_MISC_RESET_STS_REG,
113 					   HCLGE_MISC_VECTOR_INT_STS,
114 					   HCLGE_GLOBAL_RESET_REG,
115 					   HCLGE_FUN_RST_ING,
116 					   HCLGE_GRO_EN_REG};
117 
118 static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG,
119 					 HCLGE_RING_RX_ADDR_H_REG,
120 					 HCLGE_RING_RX_BD_NUM_REG,
121 					 HCLGE_RING_RX_BD_LENGTH_REG,
122 					 HCLGE_RING_RX_MERGE_EN_REG,
123 					 HCLGE_RING_RX_TAIL_REG,
124 					 HCLGE_RING_RX_HEAD_REG,
125 					 HCLGE_RING_RX_FBD_NUM_REG,
126 					 HCLGE_RING_RX_OFFSET_REG,
127 					 HCLGE_RING_RX_FBD_OFFSET_REG,
128 					 HCLGE_RING_RX_STASH_REG,
129 					 HCLGE_RING_RX_BD_ERR_REG,
130 					 HCLGE_RING_TX_ADDR_L_REG,
131 					 HCLGE_RING_TX_ADDR_H_REG,
132 					 HCLGE_RING_TX_BD_NUM_REG,
133 					 HCLGE_RING_TX_PRIORITY_REG,
134 					 HCLGE_RING_TX_TC_REG,
135 					 HCLGE_RING_TX_MERGE_EN_REG,
136 					 HCLGE_RING_TX_TAIL_REG,
137 					 HCLGE_RING_TX_HEAD_REG,
138 					 HCLGE_RING_TX_FBD_NUM_REG,
139 					 HCLGE_RING_TX_OFFSET_REG,
140 					 HCLGE_RING_TX_EBD_NUM_REG,
141 					 HCLGE_RING_TX_EBD_OFFSET_REG,
142 					 HCLGE_RING_TX_BD_ERR_REG,
143 					 HCLGE_RING_EN_REG};
144 
145 static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG,
146 					     HCLGE_TQP_INTR_GL0_REG,
147 					     HCLGE_TQP_INTR_GL1_REG,
148 					     HCLGE_TQP_INTR_GL2_REG,
149 					     HCLGE_TQP_INTR_RL_REG};
150 
151 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = {
152 	"External Loopback test",
153 	"App      Loopback test",
154 	"Serdes   serial Loopback test",
155 	"Serdes   parallel Loopback test",
156 	"Phy      Loopback test"
157 };
158 
159 static const struct hclge_comm_stats_str g_mac_stats_string[] = {
160 	{"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
161 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)},
162 	{"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
163 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)},
164 	{"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
165 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)},
166 	{"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
167 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)},
168 	{"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
169 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)},
170 	{"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
171 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)},
172 	{"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
173 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)},
174 	{"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
175 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)},
176 	{"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
177 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)},
178 	{"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
179 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)},
180 	{"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
181 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)},
182 	{"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
183 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)},
184 	{"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
185 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)},
186 	{"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
187 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)},
188 	{"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
189 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)},
190 	{"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
191 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)},
192 	{"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
193 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)},
194 	{"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
195 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)},
196 	{"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
197 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)},
198 	{"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
199 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)},
200 	{"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
201 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)},
202 	{"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
203 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)},
204 	{"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
205 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)},
206 	{"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
207 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)},
208 	{"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
209 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)},
210 	{"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
211 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)},
212 	{"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
213 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)},
214 	{"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
215 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)},
216 	{"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
217 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)},
218 	{"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
219 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)},
220 	{"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
221 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)},
222 	{"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
223 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)},
224 	{"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
225 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)},
226 	{"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
227 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)},
228 	{"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
229 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)},
230 	{"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
231 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)},
232 	{"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
233 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)},
234 	{"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
235 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)},
236 	{"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
237 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)},
238 	{"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
239 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)},
240 	{"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
241 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)},
242 	{"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
243 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)},
244 	{"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
245 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)},
246 	{"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
247 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)},
248 	{"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
249 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)},
250 	{"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
251 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)},
252 	{"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
253 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)},
254 	{"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
255 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)},
256 	{"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
257 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)},
258 	{"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
259 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)},
260 	{"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
261 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)},
262 	{"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
263 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)},
264 	{"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
265 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)},
266 	{"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
267 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)},
268 	{"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
269 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)},
270 	{"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
271 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)},
272 	{"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
273 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)},
274 	{"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
275 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)},
276 	{"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
277 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)},
278 	{"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
279 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)},
280 	{"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
281 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)},
282 	{"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
283 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)},
284 	{"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
285 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)},
286 	{"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
287 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)},
288 	{"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
289 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)},
290 	{"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
291 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)},
292 	{"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
293 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)},
294 	{"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
295 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)},
296 	{"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
297 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)},
298 	{"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
299 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)},
300 	{"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
301 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)},
302 	{"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
303 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)},
304 	{"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
305 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)},
306 	{"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
307 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)},
308 	{"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
309 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)},
310 	{"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
311 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)},
312 	{"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
313 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)},
314 	{"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
315 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)},
316 	{"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
317 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)},
318 	{"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
319 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)},
320 	{"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
321 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)},
322 	{"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
323 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)},
324 	{"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
325 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)},
326 	{"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
327 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)},
328 	{"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
329 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)},
330 	{"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
331 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)},
332 	{"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
333 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)},
334 	{"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
335 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)},
336 	{"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
337 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)},
338 	{"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
339 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)},
340 
341 	{"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
342 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)},
343 	{"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
344 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)},
345 	{"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
346 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)},
347 	{"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
348 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)},
349 	{"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
350 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)},
351 	{"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
352 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)},
353 	{"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
354 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)},
355 	{"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
356 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)},
357 	{"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
358 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)},
359 	{"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
360 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)},
361 	{"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
362 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)},
363 	{"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
364 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)}
365 };
366 
367 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = {
368 	{
369 		.flags = HCLGE_MAC_MGR_MASK_VLAN_B,
370 		.ethter_type = cpu_to_le16(ETH_P_LLDP),
371 		.mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e},
372 		.i_port_bitmap = 0x1,
373 	},
374 };
375 
376 static const u32 hclge_dfx_bd_offset_list[] = {
377 	HCLGE_DFX_BIOS_BD_OFFSET,
378 	HCLGE_DFX_SSU_0_BD_OFFSET,
379 	HCLGE_DFX_SSU_1_BD_OFFSET,
380 	HCLGE_DFX_IGU_BD_OFFSET,
381 	HCLGE_DFX_RPU_0_BD_OFFSET,
382 	HCLGE_DFX_RPU_1_BD_OFFSET,
383 	HCLGE_DFX_NCSI_BD_OFFSET,
384 	HCLGE_DFX_RTC_BD_OFFSET,
385 	HCLGE_DFX_PPP_BD_OFFSET,
386 	HCLGE_DFX_RCB_BD_OFFSET,
387 	HCLGE_DFX_TQP_BD_OFFSET,
388 	HCLGE_DFX_SSU_2_BD_OFFSET
389 };
390 
391 static const enum hclge_opcode_type hclge_dfx_reg_opcode_list[] = {
392 	HCLGE_OPC_DFX_BIOS_COMMON_REG,
393 	HCLGE_OPC_DFX_SSU_REG_0,
394 	HCLGE_OPC_DFX_SSU_REG_1,
395 	HCLGE_OPC_DFX_IGU_EGU_REG,
396 	HCLGE_OPC_DFX_RPU_REG_0,
397 	HCLGE_OPC_DFX_RPU_REG_1,
398 	HCLGE_OPC_DFX_NCSI_REG,
399 	HCLGE_OPC_DFX_RTC_REG,
400 	HCLGE_OPC_DFX_PPP_REG,
401 	HCLGE_OPC_DFX_RCB_REG,
402 	HCLGE_OPC_DFX_TQP_REG,
403 	HCLGE_OPC_DFX_SSU_REG_2
404 };
405 
406 static const struct key_info meta_data_key_info[] = {
407 	{ PACKET_TYPE_ID, 6 },
408 	{ IP_FRAGEMENT, 1 },
409 	{ ROCE_TYPE, 1 },
410 	{ NEXT_KEY, 5 },
411 	{ VLAN_NUMBER, 2 },
412 	{ SRC_VPORT, 12 },
413 	{ DST_VPORT, 12 },
414 	{ TUNNEL_PACKET, 1 },
415 };
416 
417 static const struct key_info tuple_key_info[] = {
418 	{ OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 },
419 	{ OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 },
420 	{ OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 },
421 	{ OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
422 	{ OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 },
423 	{ OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 },
424 	{ OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 },
425 	{ OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 },
426 	{ OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 },
427 	{ OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 },
428 	{ OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 },
429 	{ OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 },
430 	{ OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 },
431 	{ OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 },
432 	{ OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 },
433 	{ OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 },
434 	{ INNER_DST_MAC, 48, KEY_OPT_MAC,
435 	  offsetof(struct hclge_fd_rule, tuples.dst_mac),
436 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) },
437 	{ INNER_SRC_MAC, 48, KEY_OPT_MAC,
438 	  offsetof(struct hclge_fd_rule, tuples.src_mac),
439 	  offsetof(struct hclge_fd_rule, tuples_mask.src_mac) },
440 	{ INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16,
441 	  offsetof(struct hclge_fd_rule, tuples.vlan_tag1),
442 	  offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) },
443 	{ INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
444 	{ INNER_ETH_TYPE, 16, KEY_OPT_LE16,
445 	  offsetof(struct hclge_fd_rule, tuples.ether_proto),
446 	  offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) },
447 	{ INNER_L2_RSV, 16, KEY_OPT_LE16,
448 	  offsetof(struct hclge_fd_rule, tuples.l2_user_def),
449 	  offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) },
450 	{ INNER_IP_TOS, 8, KEY_OPT_U8,
451 	  offsetof(struct hclge_fd_rule, tuples.ip_tos),
452 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) },
453 	{ INNER_IP_PROTO, 8, KEY_OPT_U8,
454 	  offsetof(struct hclge_fd_rule, tuples.ip_proto),
455 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) },
456 	{ INNER_SRC_IP, 32, KEY_OPT_IP,
457 	  offsetof(struct hclge_fd_rule, tuples.src_ip),
458 	  offsetof(struct hclge_fd_rule, tuples_mask.src_ip) },
459 	{ INNER_DST_IP, 32, KEY_OPT_IP,
460 	  offsetof(struct hclge_fd_rule, tuples.dst_ip),
461 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) },
462 	{ INNER_L3_RSV, 16, KEY_OPT_LE16,
463 	  offsetof(struct hclge_fd_rule, tuples.l3_user_def),
464 	  offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) },
465 	{ INNER_SRC_PORT, 16, KEY_OPT_LE16,
466 	  offsetof(struct hclge_fd_rule, tuples.src_port),
467 	  offsetof(struct hclge_fd_rule, tuples_mask.src_port) },
468 	{ INNER_DST_PORT, 16, KEY_OPT_LE16,
469 	  offsetof(struct hclge_fd_rule, tuples.dst_port),
470 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_port) },
471 	{ INNER_L4_RSV, 32, KEY_OPT_LE32,
472 	  offsetof(struct hclge_fd_rule, tuples.l4_user_def),
473 	  offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) },
474 };
475 
476 /**
477  * hclge_cmd_send - send command to command queue
478  * @hw: pointer to the hw struct
479  * @desc: prefilled descriptor for describing the command
480  * @num : the number of descriptors to be sent
481  *
482  * This is the main send command for command queue, it
483  * sends the queue, cleans the queue, etc
484  **/
485 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num)
486 {
487 	return hclge_comm_cmd_send(&hw->hw, desc, num);
488 }
489 
490 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev)
491 {
492 #define HCLGE_MAC_CMD_NUM 21
493 
494 	u64 *data = (u64 *)(&hdev->mac_stats);
495 	struct hclge_desc desc[HCLGE_MAC_CMD_NUM];
496 	__le64 *desc_data;
497 	u32 data_size;
498 	int ret;
499 	u32 i;
500 
501 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true);
502 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM);
503 	if (ret) {
504 		dev_err(&hdev->pdev->dev,
505 			"Get MAC pkt stats fail, status = %d.\n", ret);
506 
507 		return ret;
508 	}
509 
510 	/* The first desc has a 64-bit header, so data size need to minus 1 */
511 	data_size = sizeof(desc) / (sizeof(u64)) - 1;
512 
513 	desc_data = (__le64 *)(&desc[0].data[0]);
514 	for (i = 0; i < data_size; i++) {
515 		/* data memory is continuous becase only the first desc has a
516 		 * header in this command
517 		 */
518 		*data += le64_to_cpu(*desc_data);
519 		data++;
520 		desc_data++;
521 	}
522 
523 	return 0;
524 }
525 
526 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev)
527 {
528 #define HCLGE_REG_NUM_PER_DESC		4
529 
530 	u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num;
531 	u64 *data = (u64 *)(&hdev->mac_stats);
532 	struct hclge_desc *desc;
533 	__le64 *desc_data;
534 	u32 data_size;
535 	u32 desc_num;
536 	int ret;
537 	u32 i;
538 
539 	/* The first desc has a 64-bit header, so need to consider it */
540 	desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1;
541 
542 	/* This may be called inside atomic sections,
543 	 * so GFP_ATOMIC is more suitalbe here
544 	 */
545 	desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC);
546 	if (!desc)
547 		return -ENOMEM;
548 
549 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true);
550 	ret = hclge_cmd_send(&hdev->hw, desc, desc_num);
551 	if (ret) {
552 		kfree(desc);
553 		return ret;
554 	}
555 
556 	data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num);
557 
558 	desc_data = (__le64 *)(&desc[0].data[0]);
559 	for (i = 0; i < data_size; i++) {
560 		/* data memory is continuous becase only the first desc has a
561 		 * header in this command
562 		 */
563 		*data += le64_to_cpu(*desc_data);
564 		data++;
565 		desc_data++;
566 	}
567 
568 	kfree(desc);
569 
570 	return 0;
571 }
572 
573 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num)
574 {
575 	struct hclge_desc desc;
576 	int ret;
577 
578 	/* Driver needs total register number of both valid registers and
579 	 * reserved registers, but the old firmware only returns number
580 	 * of valid registers in device V2. To be compatible with these
581 	 * devices, driver uses a fixed value.
582 	 */
583 	if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) {
584 		*reg_num = HCLGE_MAC_STATS_MAX_NUM_V1;
585 		return 0;
586 	}
587 
588 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true);
589 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
590 	if (ret) {
591 		dev_err(&hdev->pdev->dev,
592 			"failed to query mac statistic reg number, ret = %d\n",
593 			ret);
594 		return ret;
595 	}
596 
597 	*reg_num = le32_to_cpu(desc.data[0]);
598 	if (*reg_num == 0) {
599 		dev_err(&hdev->pdev->dev,
600 			"mac statistic reg number is invalid!\n");
601 		return -ENODATA;
602 	}
603 
604 	return 0;
605 }
606 
607 int hclge_mac_update_stats(struct hclge_dev *hdev)
608 {
609 	/* The firmware supports the new statistics acquisition method */
610 	if (hdev->ae_dev->dev_specs.mac_stats_num)
611 		return hclge_mac_update_stats_complete(hdev);
612 	else
613 		return hclge_mac_update_stats_defective(hdev);
614 }
615 
616 static int hclge_comm_get_count(struct hclge_dev *hdev,
617 				const struct hclge_comm_stats_str strs[],
618 				u32 size)
619 {
620 	int count = 0;
621 	u32 i;
622 
623 	for (i = 0; i < size; i++)
624 		if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num)
625 			count++;
626 
627 	return count;
628 }
629 
630 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev,
631 				 const struct hclge_comm_stats_str strs[],
632 				 int size, u64 *data)
633 {
634 	u64 *buf = data;
635 	u32 i;
636 
637 	for (i = 0; i < size; i++) {
638 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
639 			continue;
640 
641 		*buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset);
642 		buf++;
643 	}
644 
645 	return buf;
646 }
647 
648 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset,
649 				  const struct hclge_comm_stats_str strs[],
650 				  int size, u8 *data)
651 {
652 	char *buff = (char *)data;
653 	u32 i;
654 
655 	if (stringset != ETH_SS_STATS)
656 		return buff;
657 
658 	for (i = 0; i < size; i++) {
659 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
660 			continue;
661 
662 		snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc);
663 		buff = buff + ETH_GSTRING_LEN;
664 	}
665 
666 	return (u8 *)buff;
667 }
668 
669 static void hclge_update_stats_for_all(struct hclge_dev *hdev)
670 {
671 	struct hnae3_handle *handle;
672 	int status;
673 
674 	handle = &hdev->vport[0].nic;
675 	if (handle->client) {
676 		status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
677 		if (status) {
678 			dev_err(&hdev->pdev->dev,
679 				"Update TQPS stats fail, status = %d.\n",
680 				status);
681 		}
682 	}
683 
684 	hclge_update_fec_stats(hdev);
685 
686 	status = hclge_mac_update_stats(hdev);
687 	if (status)
688 		dev_err(&hdev->pdev->dev,
689 			"Update MAC stats fail, status = %d.\n", status);
690 }
691 
692 static void hclge_update_stats(struct hnae3_handle *handle,
693 			       struct net_device_stats *net_stats)
694 {
695 	struct hclge_vport *vport = hclge_get_vport(handle);
696 	struct hclge_dev *hdev = vport->back;
697 	int status;
698 
699 	if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state))
700 		return;
701 
702 	status = hclge_mac_update_stats(hdev);
703 	if (status)
704 		dev_err(&hdev->pdev->dev,
705 			"Update MAC stats fail, status = %d.\n",
706 			status);
707 
708 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
709 	if (status)
710 		dev_err(&hdev->pdev->dev,
711 			"Update TQPS stats fail, status = %d.\n",
712 			status);
713 
714 	clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state);
715 }
716 
717 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset)
718 {
719 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \
720 		HNAE3_SUPPORT_PHY_LOOPBACK | \
721 		HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \
722 		HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK | \
723 		HNAE3_SUPPORT_EXTERNAL_LOOPBACK)
724 
725 	struct hclge_vport *vport = hclge_get_vport(handle);
726 	struct hclge_dev *hdev = vport->back;
727 	int count = 0;
728 
729 	/* Loopback test support rules:
730 	 * mac: only GE mode support
731 	 * serdes: all mac mode will support include GE/XGE/LGE/CGE
732 	 * phy: only support when phy device exist on board
733 	 */
734 	if (stringset == ETH_SS_TEST) {
735 		/* clear loopback bit flags at first */
736 		handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS));
737 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 ||
738 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M ||
739 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M ||
740 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) {
741 			count += 1;
742 			handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK;
743 		}
744 
745 		count += 1;
746 		handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK;
747 		count += 1;
748 		handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK;
749 		count += 1;
750 		handle->flags |= HNAE3_SUPPORT_EXTERNAL_LOOPBACK;
751 
752 		if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv &&
753 		     hdev->hw.mac.phydev->drv->set_loopback) ||
754 		    hnae3_dev_phy_imp_supported(hdev)) {
755 			count += 1;
756 			handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK;
757 		}
758 	} else if (stringset == ETH_SS_STATS) {
759 		count = hclge_comm_get_count(hdev, g_mac_stats_string,
760 					     ARRAY_SIZE(g_mac_stats_string)) +
761 			hclge_comm_tqps_get_sset_count(handle);
762 	}
763 
764 	return count;
765 }
766 
767 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset,
768 			      u8 *data)
769 {
770 	struct hclge_vport *vport = hclge_get_vport(handle);
771 	struct hclge_dev *hdev = vport->back;
772 	u8 *p = (char *)data;
773 	int size;
774 
775 	if (stringset == ETH_SS_STATS) {
776 		size = ARRAY_SIZE(g_mac_stats_string);
777 		p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string,
778 					   size, p);
779 		p = hclge_comm_tqps_get_strings(handle, p);
780 	} else if (stringset == ETH_SS_TEST) {
781 		if (handle->flags & HNAE3_SUPPORT_EXTERNAL_LOOPBACK) {
782 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_EXTERNAL],
783 			       ETH_GSTRING_LEN);
784 			p += ETH_GSTRING_LEN;
785 		}
786 		if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) {
787 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP],
788 			       ETH_GSTRING_LEN);
789 			p += ETH_GSTRING_LEN;
790 		}
791 		if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) {
792 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES],
793 			       ETH_GSTRING_LEN);
794 			p += ETH_GSTRING_LEN;
795 		}
796 		if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) {
797 			memcpy(p,
798 			       hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES],
799 			       ETH_GSTRING_LEN);
800 			p += ETH_GSTRING_LEN;
801 		}
802 		if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) {
803 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY],
804 			       ETH_GSTRING_LEN);
805 			p += ETH_GSTRING_LEN;
806 		}
807 	}
808 }
809 
810 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data)
811 {
812 	struct hclge_vport *vport = hclge_get_vport(handle);
813 	struct hclge_dev *hdev = vport->back;
814 	u64 *p;
815 
816 	p = hclge_comm_get_stats(hdev, g_mac_stats_string,
817 				 ARRAY_SIZE(g_mac_stats_string), data);
818 	p = hclge_comm_tqps_get_stats(handle, p);
819 }
820 
821 static void hclge_get_mac_stat(struct hnae3_handle *handle,
822 			       struct hns3_mac_stats *mac_stats)
823 {
824 	struct hclge_vport *vport = hclge_get_vport(handle);
825 	struct hclge_dev *hdev = vport->back;
826 
827 	hclge_update_stats(handle, NULL);
828 
829 	mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num;
830 	mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num;
831 }
832 
833 static int hclge_parse_func_status(struct hclge_dev *hdev,
834 				   struct hclge_func_status_cmd *status)
835 {
836 #define HCLGE_MAC_ID_MASK	0xF
837 
838 	if (!(status->pf_state & HCLGE_PF_STATE_DONE))
839 		return -EINVAL;
840 
841 	/* Set the pf to main pf */
842 	if (status->pf_state & HCLGE_PF_STATE_MAIN)
843 		hdev->flag |= HCLGE_FLAG_MAIN;
844 	else
845 		hdev->flag &= ~HCLGE_FLAG_MAIN;
846 
847 	hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK;
848 	return 0;
849 }
850 
851 static int hclge_query_function_status(struct hclge_dev *hdev)
852 {
853 #define HCLGE_QUERY_MAX_CNT	5
854 
855 	struct hclge_func_status_cmd *req;
856 	struct hclge_desc desc;
857 	int timeout = 0;
858 	int ret;
859 
860 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true);
861 	req = (struct hclge_func_status_cmd *)desc.data;
862 
863 	do {
864 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
865 		if (ret) {
866 			dev_err(&hdev->pdev->dev,
867 				"query function status failed %d.\n", ret);
868 			return ret;
869 		}
870 
871 		/* Check pf reset is done */
872 		if (req->pf_state)
873 			break;
874 		usleep_range(1000, 2000);
875 	} while (timeout++ < HCLGE_QUERY_MAX_CNT);
876 
877 	return hclge_parse_func_status(hdev, req);
878 }
879 
880 static int hclge_query_pf_resource(struct hclge_dev *hdev)
881 {
882 	struct hclge_pf_res_cmd *req;
883 	struct hclge_desc desc;
884 	int ret;
885 
886 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true);
887 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
888 	if (ret) {
889 		dev_err(&hdev->pdev->dev,
890 			"query pf resource failed %d.\n", ret);
891 		return ret;
892 	}
893 
894 	req = (struct hclge_pf_res_cmd *)desc.data;
895 	hdev->num_tqps = le16_to_cpu(req->tqp_num) +
896 			 le16_to_cpu(req->ext_tqp_num);
897 	hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S;
898 
899 	if (req->tx_buf_size)
900 		hdev->tx_buf_size =
901 			le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S;
902 	else
903 		hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF;
904 
905 	hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT);
906 
907 	if (req->dv_buf_size)
908 		hdev->dv_buf_size =
909 			le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S;
910 	else
911 		hdev->dv_buf_size = HCLGE_DEFAULT_DV;
912 
913 	hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT);
914 
915 	hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic);
916 	if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) {
917 		dev_err(&hdev->pdev->dev,
918 			"only %u msi resources available, not enough for pf(min:2).\n",
919 			hdev->num_nic_msi);
920 		return -EINVAL;
921 	}
922 
923 	if (hnae3_dev_roce_supported(hdev)) {
924 		hdev->num_roce_msi =
925 			le16_to_cpu(req->pf_intr_vector_number_roce);
926 
927 		/* PF should have NIC vectors and Roce vectors,
928 		 * NIC vectors are queued before Roce vectors.
929 		 */
930 		hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi;
931 	} else {
932 		hdev->num_msi = hdev->num_nic_msi;
933 	}
934 
935 	return 0;
936 }
937 
938 static int hclge_parse_speed(u8 speed_cmd, u32 *speed)
939 {
940 	switch (speed_cmd) {
941 	case HCLGE_FW_MAC_SPEED_10M:
942 		*speed = HCLGE_MAC_SPEED_10M;
943 		break;
944 	case HCLGE_FW_MAC_SPEED_100M:
945 		*speed = HCLGE_MAC_SPEED_100M;
946 		break;
947 	case HCLGE_FW_MAC_SPEED_1G:
948 		*speed = HCLGE_MAC_SPEED_1G;
949 		break;
950 	case HCLGE_FW_MAC_SPEED_10G:
951 		*speed = HCLGE_MAC_SPEED_10G;
952 		break;
953 	case HCLGE_FW_MAC_SPEED_25G:
954 		*speed = HCLGE_MAC_SPEED_25G;
955 		break;
956 	case HCLGE_FW_MAC_SPEED_40G:
957 		*speed = HCLGE_MAC_SPEED_40G;
958 		break;
959 	case HCLGE_FW_MAC_SPEED_50G:
960 		*speed = HCLGE_MAC_SPEED_50G;
961 		break;
962 	case HCLGE_FW_MAC_SPEED_100G:
963 		*speed = HCLGE_MAC_SPEED_100G;
964 		break;
965 	case HCLGE_FW_MAC_SPEED_200G:
966 		*speed = HCLGE_MAC_SPEED_200G;
967 		break;
968 	default:
969 		return -EINVAL;
970 	}
971 
972 	return 0;
973 }
974 
975 static const struct hclge_speed_bit_map speed_bit_map[] = {
976 	{HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT},
977 	{HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT},
978 	{HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT},
979 	{HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT},
980 	{HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT},
981 	{HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT},
982 	{HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BIT},
983 	{HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BIT},
984 	{HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT},
985 };
986 
987 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit)
988 {
989 	u16 i;
990 
991 	for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) {
992 		if (speed == speed_bit_map[i].speed) {
993 			*speed_bit = speed_bit_map[i].speed_bit;
994 			return 0;
995 		}
996 	}
997 
998 	return -EINVAL;
999 }
1000 
1001 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed)
1002 {
1003 	struct hclge_vport *vport = hclge_get_vport(handle);
1004 	struct hclge_dev *hdev = vport->back;
1005 	u32 speed_ability = hdev->hw.mac.speed_ability;
1006 	u32 speed_bit = 0;
1007 	int ret;
1008 
1009 	ret = hclge_get_speed_bit(speed, &speed_bit);
1010 	if (ret)
1011 		return ret;
1012 
1013 	if (speed_bit & speed_ability)
1014 		return 0;
1015 
1016 	return -EINVAL;
1017 }
1018 
1019 static void hclge_update_fec_support(struct hclge_mac *mac)
1020 {
1021 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported);
1022 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
1023 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, mac->supported);
1024 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1025 
1026 	if (mac->fec_ability & BIT(HNAE3_FEC_BASER))
1027 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
1028 				 mac->supported);
1029 	if (mac->fec_ability & BIT(HNAE3_FEC_RS))
1030 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
1031 				 mac->supported);
1032 	if (mac->fec_ability & BIT(HNAE3_FEC_LLRS))
1033 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
1034 				 mac->supported);
1035 	if (mac->fec_ability & BIT(HNAE3_FEC_NONE))
1036 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
1037 				 mac->supported);
1038 }
1039 
1040 static void hclge_convert_setting_sr(u16 speed_ability,
1041 				     unsigned long *link_mode)
1042 {
1043 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1044 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
1045 				 link_mode);
1046 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1047 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
1048 				 link_mode);
1049 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1050 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
1051 				 link_mode);
1052 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1053 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
1054 				 link_mode);
1055 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1056 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
1057 				 link_mode);
1058 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1059 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
1060 				 link_mode);
1061 }
1062 
1063 static void hclge_convert_setting_lr(u16 speed_ability,
1064 				     unsigned long *link_mode)
1065 {
1066 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1067 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
1068 				 link_mode);
1069 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1070 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
1071 				 link_mode);
1072 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1073 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
1074 				 link_mode);
1075 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1076 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
1077 				 link_mode);
1078 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1079 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
1080 				 link_mode);
1081 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1082 		linkmode_set_bit(
1083 			ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
1084 			link_mode);
1085 }
1086 
1087 static void hclge_convert_setting_cr(u16 speed_ability,
1088 				     unsigned long *link_mode)
1089 {
1090 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1091 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
1092 				 link_mode);
1093 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1094 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
1095 				 link_mode);
1096 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1097 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
1098 				 link_mode);
1099 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1100 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
1101 				 link_mode);
1102 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1103 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
1104 				 link_mode);
1105 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1106 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
1107 				 link_mode);
1108 }
1109 
1110 static void hclge_convert_setting_kr(u16 speed_ability,
1111 				     unsigned long *link_mode)
1112 {
1113 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1114 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
1115 				 link_mode);
1116 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1117 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
1118 				 link_mode);
1119 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1120 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
1121 				 link_mode);
1122 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1123 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
1124 				 link_mode);
1125 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1126 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
1127 				 link_mode);
1128 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1129 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
1130 				 link_mode);
1131 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1132 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
1133 				 link_mode);
1134 }
1135 
1136 static void hclge_convert_setting_fec(struct hclge_mac *mac)
1137 {
1138 	/* If firmware has reported fec_ability, don't need to convert by speed */
1139 	if (mac->fec_ability)
1140 		goto out;
1141 
1142 	switch (mac->speed) {
1143 	case HCLGE_MAC_SPEED_10G:
1144 	case HCLGE_MAC_SPEED_40G:
1145 		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO) |
1146 				   BIT(HNAE3_FEC_NONE);
1147 		break;
1148 	case HCLGE_MAC_SPEED_25G:
1149 	case HCLGE_MAC_SPEED_50G:
1150 		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) |
1151 				   BIT(HNAE3_FEC_AUTO) | BIT(HNAE3_FEC_NONE);
1152 		break;
1153 	case HCLGE_MAC_SPEED_100G:
1154 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
1155 				   BIT(HNAE3_FEC_NONE);
1156 		break;
1157 	case HCLGE_MAC_SPEED_200G:
1158 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
1159 				   BIT(HNAE3_FEC_LLRS);
1160 		break;
1161 	default:
1162 		mac->fec_ability = 0;
1163 		break;
1164 	}
1165 
1166 out:
1167 	hclge_update_fec_support(mac);
1168 }
1169 
1170 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev,
1171 					u16 speed_ability)
1172 {
1173 	struct hclge_mac *mac = &hdev->hw.mac;
1174 
1175 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1176 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1177 				 mac->supported);
1178 
1179 	hclge_convert_setting_sr(speed_ability, mac->supported);
1180 	hclge_convert_setting_lr(speed_ability, mac->supported);
1181 	hclge_convert_setting_cr(speed_ability, mac->supported);
1182 	if (hnae3_dev_fec_supported(hdev))
1183 		hclge_convert_setting_fec(mac);
1184 
1185 	if (hnae3_dev_pause_supported(hdev))
1186 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1187 
1188 	linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported);
1189 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1190 }
1191 
1192 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev,
1193 					    u16 speed_ability)
1194 {
1195 	struct hclge_mac *mac = &hdev->hw.mac;
1196 
1197 	hclge_convert_setting_kr(speed_ability, mac->supported);
1198 	if (hnae3_dev_fec_supported(hdev))
1199 		hclge_convert_setting_fec(mac);
1200 
1201 	if (hnae3_dev_pause_supported(hdev))
1202 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1203 
1204 	linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported);
1205 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1206 }
1207 
1208 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev,
1209 					 u16 speed_ability)
1210 {
1211 	unsigned long *supported = hdev->hw.mac.supported;
1212 
1213 	/* default to support all speed for GE port */
1214 	if (!speed_ability)
1215 		speed_ability = HCLGE_SUPPORT_GE;
1216 
1217 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1218 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1219 				 supported);
1220 
1221 	if (speed_ability & HCLGE_SUPPORT_100M_BIT) {
1222 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
1223 				 supported);
1224 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
1225 				 supported);
1226 	}
1227 
1228 	if (speed_ability & HCLGE_SUPPORT_10M_BIT) {
1229 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported);
1230 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported);
1231 	}
1232 
1233 	if (hnae3_dev_pause_supported(hdev)) {
1234 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported);
1235 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported);
1236 	}
1237 
1238 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported);
1239 	linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported);
1240 }
1241 
1242 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability)
1243 {
1244 	u8 media_type = hdev->hw.mac.media_type;
1245 
1246 	if (media_type == HNAE3_MEDIA_TYPE_FIBER)
1247 		hclge_parse_fiber_link_mode(hdev, speed_ability);
1248 	else if (media_type == HNAE3_MEDIA_TYPE_COPPER)
1249 		hclge_parse_copper_link_mode(hdev, speed_ability);
1250 	else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE)
1251 		hclge_parse_backplane_link_mode(hdev, speed_ability);
1252 }
1253 
1254 static u32 hclge_get_max_speed(u16 speed_ability)
1255 {
1256 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1257 		return HCLGE_MAC_SPEED_200G;
1258 
1259 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1260 		return HCLGE_MAC_SPEED_100G;
1261 
1262 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1263 		return HCLGE_MAC_SPEED_50G;
1264 
1265 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1266 		return HCLGE_MAC_SPEED_40G;
1267 
1268 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1269 		return HCLGE_MAC_SPEED_25G;
1270 
1271 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1272 		return HCLGE_MAC_SPEED_10G;
1273 
1274 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1275 		return HCLGE_MAC_SPEED_1G;
1276 
1277 	if (speed_ability & HCLGE_SUPPORT_100M_BIT)
1278 		return HCLGE_MAC_SPEED_100M;
1279 
1280 	if (speed_ability & HCLGE_SUPPORT_10M_BIT)
1281 		return HCLGE_MAC_SPEED_10M;
1282 
1283 	return HCLGE_MAC_SPEED_1G;
1284 }
1285 
1286 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc)
1287 {
1288 #define HCLGE_TX_SPARE_SIZE_UNIT		4096
1289 #define SPEED_ABILITY_EXT_SHIFT			8
1290 
1291 	struct hclge_cfg_param_cmd *req;
1292 	u64 mac_addr_tmp_high;
1293 	u16 speed_ability_ext;
1294 	u64 mac_addr_tmp;
1295 	unsigned int i;
1296 
1297 	req = (struct hclge_cfg_param_cmd *)desc[0].data;
1298 
1299 	/* get the configuration */
1300 	cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1301 				      HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S);
1302 	cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1303 					    HCLGE_CFG_TQP_DESC_N_M,
1304 					    HCLGE_CFG_TQP_DESC_N_S);
1305 
1306 	cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]),
1307 					HCLGE_CFG_PHY_ADDR_M,
1308 					HCLGE_CFG_PHY_ADDR_S);
1309 	cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]),
1310 					  HCLGE_CFG_MEDIA_TP_M,
1311 					  HCLGE_CFG_MEDIA_TP_S);
1312 	cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]),
1313 					  HCLGE_CFG_RX_BUF_LEN_M,
1314 					  HCLGE_CFG_RX_BUF_LEN_S);
1315 	/* get mac_address */
1316 	mac_addr_tmp = __le32_to_cpu(req->param[2]);
1317 	mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]),
1318 					    HCLGE_CFG_MAC_ADDR_H_M,
1319 					    HCLGE_CFG_MAC_ADDR_H_S);
1320 
1321 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
1322 
1323 	cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]),
1324 					     HCLGE_CFG_DEFAULT_SPEED_M,
1325 					     HCLGE_CFG_DEFAULT_SPEED_S);
1326 	cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]),
1327 					       HCLGE_CFG_RSS_SIZE_M,
1328 					       HCLGE_CFG_RSS_SIZE_S);
1329 
1330 	for (i = 0; i < ETH_ALEN; i++)
1331 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
1332 
1333 	req = (struct hclge_cfg_param_cmd *)desc[1].data;
1334 	cfg->numa_node_map = __le32_to_cpu(req->param[0]);
1335 
1336 	cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]),
1337 					     HCLGE_CFG_SPEED_ABILITY_M,
1338 					     HCLGE_CFG_SPEED_ABILITY_S);
1339 	speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]),
1340 					    HCLGE_CFG_SPEED_ABILITY_EXT_M,
1341 					    HCLGE_CFG_SPEED_ABILITY_EXT_S);
1342 	cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT;
1343 
1344 	cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]),
1345 					       HCLGE_CFG_VLAN_FLTR_CAP_M,
1346 					       HCLGE_CFG_VLAN_FLTR_CAP_S);
1347 
1348 	cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]),
1349 					 HCLGE_CFG_UMV_TBL_SPACE_M,
1350 					 HCLGE_CFG_UMV_TBL_SPACE_S);
1351 
1352 	cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]),
1353 					       HCLGE_CFG_PF_RSS_SIZE_M,
1354 					       HCLGE_CFG_PF_RSS_SIZE_S);
1355 
1356 	/* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a
1357 	 * power of 2, instead of reading out directly. This would
1358 	 * be more flexible for future changes and expansions.
1359 	 * When VF max  rss size field is HCLGE_CFG_RSS_SIZE_S,
1360 	 * it does not make sense if PF's field is 0. In this case, PF and VF
1361 	 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S.
1362 	 */
1363 	cfg->pf_rss_size_max = cfg->pf_rss_size_max ?
1364 			       1U << cfg->pf_rss_size_max :
1365 			       cfg->vf_rss_size_max;
1366 
1367 	/* The unit of the tx spare buffer size queried from configuration
1368 	 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is
1369 	 * needed here.
1370 	 */
1371 	cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]),
1372 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_M,
1373 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_S);
1374 	cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT;
1375 }
1376 
1377 /* hclge_get_cfg: query the static parameter from flash
1378  * @hdev: pointer to struct hclge_dev
1379  * @hcfg: the config structure to be getted
1380  */
1381 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg)
1382 {
1383 	struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM];
1384 	struct hclge_cfg_param_cmd *req;
1385 	unsigned int i;
1386 	int ret;
1387 
1388 	for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) {
1389 		u32 offset = 0;
1390 
1391 		req = (struct hclge_cfg_param_cmd *)desc[i].data;
1392 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM,
1393 					   true);
1394 		hnae3_set_field(offset, HCLGE_CFG_OFFSET_M,
1395 				HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES);
1396 		/* Len should be united by 4 bytes when send to hardware */
1397 		hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S,
1398 				HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT);
1399 		req->offset = cpu_to_le32(offset);
1400 	}
1401 
1402 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM);
1403 	if (ret) {
1404 		dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret);
1405 		return ret;
1406 	}
1407 
1408 	hclge_parse_cfg(hcfg, desc);
1409 
1410 	return 0;
1411 }
1412 
1413 static void hclge_set_default_dev_specs(struct hclge_dev *hdev)
1414 {
1415 #define HCLGE_MAX_NON_TSO_BD_NUM			8U
1416 
1417 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1418 
1419 	ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1420 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1421 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1422 	ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE;
1423 	ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL;
1424 	ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME;
1425 	ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM;
1426 	ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1427 }
1428 
1429 static void hclge_parse_dev_specs(struct hclge_dev *hdev,
1430 				  struct hclge_desc *desc)
1431 {
1432 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1433 	struct hclge_dev_specs_0_cmd *req0;
1434 	struct hclge_dev_specs_1_cmd *req1;
1435 
1436 	req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data;
1437 	req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data;
1438 
1439 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
1440 	ae_dev->dev_specs.rss_ind_tbl_size =
1441 		le16_to_cpu(req0->rss_ind_tbl_size);
1442 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
1443 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
1444 	ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate);
1445 	ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num);
1446 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
1447 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
1448 	ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size);
1449 	ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size);
1450 }
1451 
1452 static void hclge_check_dev_specs(struct hclge_dev *hdev)
1453 {
1454 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
1455 
1456 	if (!dev_specs->max_non_tso_bd_num)
1457 		dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1458 	if (!dev_specs->rss_ind_tbl_size)
1459 		dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1460 	if (!dev_specs->rss_key_size)
1461 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1462 	if (!dev_specs->max_tm_rate)
1463 		dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE;
1464 	if (!dev_specs->max_qset_num)
1465 		dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM;
1466 	if (!dev_specs->max_int_gl)
1467 		dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL;
1468 	if (!dev_specs->max_frm_size)
1469 		dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME;
1470 	if (!dev_specs->umv_size)
1471 		dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1472 }
1473 
1474 static int hclge_query_mac_stats_num(struct hclge_dev *hdev)
1475 {
1476 	u32 reg_num = 0;
1477 	int ret;
1478 
1479 	ret = hclge_mac_query_reg_num(hdev, &reg_num);
1480 	if (ret && ret != -EOPNOTSUPP)
1481 		return ret;
1482 
1483 	hdev->ae_dev->dev_specs.mac_stats_num = reg_num;
1484 	return 0;
1485 }
1486 
1487 static int hclge_query_dev_specs(struct hclge_dev *hdev)
1488 {
1489 	struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM];
1490 	int ret;
1491 	int i;
1492 
1493 	ret = hclge_query_mac_stats_num(hdev);
1494 	if (ret)
1495 		return ret;
1496 
1497 	/* set default specifications as devices lower than version V3 do not
1498 	 * support querying specifications from firmware.
1499 	 */
1500 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
1501 		hclge_set_default_dev_specs(hdev);
1502 		return 0;
1503 	}
1504 
1505 	for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1506 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS,
1507 					   true);
1508 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1509 	}
1510 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
1511 
1512 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM);
1513 	if (ret)
1514 		return ret;
1515 
1516 	hclge_parse_dev_specs(hdev, desc);
1517 	hclge_check_dev_specs(hdev);
1518 
1519 	return 0;
1520 }
1521 
1522 static int hclge_get_cap(struct hclge_dev *hdev)
1523 {
1524 	int ret;
1525 
1526 	ret = hclge_query_function_status(hdev);
1527 	if (ret) {
1528 		dev_err(&hdev->pdev->dev,
1529 			"query function status error %d.\n", ret);
1530 		return ret;
1531 	}
1532 
1533 	/* get pf resource */
1534 	return hclge_query_pf_resource(hdev);
1535 }
1536 
1537 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev)
1538 {
1539 #define HCLGE_MIN_TX_DESC	64
1540 #define HCLGE_MIN_RX_DESC	64
1541 
1542 	if (!is_kdump_kernel())
1543 		return;
1544 
1545 	dev_info(&hdev->pdev->dev,
1546 		 "Running kdump kernel. Using minimal resources\n");
1547 
1548 	/* minimal queue pairs equals to the number of vports */
1549 	hdev->num_tqps = hdev->num_req_vfs + 1;
1550 	hdev->num_tx_desc = HCLGE_MIN_TX_DESC;
1551 	hdev->num_rx_desc = HCLGE_MIN_RX_DESC;
1552 }
1553 
1554 static void hclge_init_tc_config(struct hclge_dev *hdev)
1555 {
1556 	unsigned int i;
1557 
1558 	if (hdev->tc_max > HNAE3_MAX_TC ||
1559 	    hdev->tc_max < 1) {
1560 		dev_warn(&hdev->pdev->dev, "TC num = %u.\n",
1561 			 hdev->tc_max);
1562 		hdev->tc_max = 1;
1563 	}
1564 
1565 	/* Dev does not support DCB */
1566 	if (!hnae3_dev_dcb_supported(hdev)) {
1567 		hdev->tc_max = 1;
1568 		hdev->pfc_max = 0;
1569 	} else {
1570 		hdev->pfc_max = hdev->tc_max;
1571 	}
1572 
1573 	hdev->tm_info.num_tc = 1;
1574 
1575 	/* Currently not support uncontiuous tc */
1576 	for (i = 0; i < hdev->tm_info.num_tc; i++)
1577 		hnae3_set_bit(hdev->hw_tc_map, i, 1);
1578 
1579 	hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE;
1580 }
1581 
1582 static int hclge_configure(struct hclge_dev *hdev)
1583 {
1584 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1585 	struct hclge_cfg cfg;
1586 	int ret;
1587 
1588 	ret = hclge_get_cfg(hdev, &cfg);
1589 	if (ret)
1590 		return ret;
1591 
1592 	hdev->base_tqp_pid = 0;
1593 	hdev->vf_rss_size_max = cfg.vf_rss_size_max;
1594 	hdev->pf_rss_size_max = cfg.pf_rss_size_max;
1595 	hdev->rx_buf_len = cfg.rx_buf_len;
1596 	ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr);
1597 	hdev->hw.mac.media_type = cfg.media_type;
1598 	hdev->hw.mac.phy_addr = cfg.phy_addr;
1599 	hdev->num_tx_desc = cfg.tqp_desc_num;
1600 	hdev->num_rx_desc = cfg.tqp_desc_num;
1601 	hdev->tm_info.num_pg = 1;
1602 	hdev->tc_max = cfg.tc_num;
1603 	hdev->tm_info.hw_pfc_map = 0;
1604 	if (cfg.umv_space)
1605 		hdev->wanted_umv_size = cfg.umv_space;
1606 	else
1607 		hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size;
1608 	hdev->tx_spare_buf_size = cfg.tx_spare_buf_size;
1609 	hdev->gro_en = true;
1610 	if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF)
1611 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
1612 
1613 	if (hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
1614 		hdev->fd_en = true;
1615 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
1616 	}
1617 
1618 	ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed);
1619 	if (ret) {
1620 		dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n",
1621 			cfg.default_speed, ret);
1622 		return ret;
1623 	}
1624 
1625 	hclge_parse_link_mode(hdev, cfg.speed_ability);
1626 
1627 	hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability);
1628 
1629 	hclge_init_tc_config(hdev);
1630 	hclge_init_kdump_kernel_config(hdev);
1631 
1632 	return ret;
1633 }
1634 
1635 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min,
1636 			    u16 tso_mss_max)
1637 {
1638 	struct hclge_cfg_tso_status_cmd *req;
1639 	struct hclge_desc desc;
1640 
1641 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false);
1642 
1643 	req = (struct hclge_cfg_tso_status_cmd *)desc.data;
1644 	req->tso_mss_min = cpu_to_le16(tso_mss_min);
1645 	req->tso_mss_max = cpu_to_le16(tso_mss_max);
1646 
1647 	return hclge_cmd_send(&hdev->hw, &desc, 1);
1648 }
1649 
1650 static int hclge_config_gro(struct hclge_dev *hdev)
1651 {
1652 	struct hclge_cfg_gro_status_cmd *req;
1653 	struct hclge_desc desc;
1654 	int ret;
1655 
1656 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
1657 		return 0;
1658 
1659 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false);
1660 	req = (struct hclge_cfg_gro_status_cmd *)desc.data;
1661 
1662 	req->gro_en = hdev->gro_en ? 1 : 0;
1663 
1664 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1665 	if (ret)
1666 		dev_err(&hdev->pdev->dev,
1667 			"GRO hardware config cmd failed, ret = %d\n", ret);
1668 
1669 	return ret;
1670 }
1671 
1672 static int hclge_alloc_tqps(struct hclge_dev *hdev)
1673 {
1674 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1675 	struct hclge_comm_tqp *tqp;
1676 	int i;
1677 
1678 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
1679 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
1680 	if (!hdev->htqp)
1681 		return -ENOMEM;
1682 
1683 	tqp = hdev->htqp;
1684 
1685 	for (i = 0; i < hdev->num_tqps; i++) {
1686 		tqp->dev = &hdev->pdev->dev;
1687 		tqp->index = i;
1688 
1689 		tqp->q.ae_algo = &ae_algo;
1690 		tqp->q.buf_size = hdev->rx_buf_len;
1691 		tqp->q.tx_desc_num = hdev->num_tx_desc;
1692 		tqp->q.rx_desc_num = hdev->num_rx_desc;
1693 
1694 		/* need an extended offset to configure queues >=
1695 		 * HCLGE_TQP_MAX_SIZE_DEV_V2
1696 		 */
1697 		if (i < HCLGE_TQP_MAX_SIZE_DEV_V2)
1698 			tqp->q.io_base = hdev->hw.hw.io_base +
1699 					 HCLGE_TQP_REG_OFFSET +
1700 					 i * HCLGE_TQP_REG_SIZE;
1701 		else
1702 			tqp->q.io_base = hdev->hw.hw.io_base +
1703 					 HCLGE_TQP_REG_OFFSET +
1704 					 HCLGE_TQP_EXT_REG_OFFSET +
1705 					 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) *
1706 					 HCLGE_TQP_REG_SIZE;
1707 
1708 		/* when device supports tx push and has device memory,
1709 		 * the queue can execute push mode or doorbell mode on
1710 		 * device memory.
1711 		 */
1712 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
1713 			tqp->q.mem_base = hdev->hw.hw.mem_base +
1714 					  HCLGE_TQP_MEM_OFFSET(hdev, i);
1715 
1716 		tqp++;
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id,
1723 				  u16 tqp_pid, u16 tqp_vid, bool is_pf)
1724 {
1725 	struct hclge_tqp_map_cmd *req;
1726 	struct hclge_desc desc;
1727 	int ret;
1728 
1729 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false);
1730 
1731 	req = (struct hclge_tqp_map_cmd *)desc.data;
1732 	req->tqp_id = cpu_to_le16(tqp_pid);
1733 	req->tqp_vf = func_id;
1734 	req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B;
1735 	if (!is_pf)
1736 		req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B;
1737 	req->tqp_vid = cpu_to_le16(tqp_vid);
1738 
1739 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1740 	if (ret)
1741 		dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret);
1742 
1743 	return ret;
1744 }
1745 
1746 static int  hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps)
1747 {
1748 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
1749 	struct hclge_dev *hdev = vport->back;
1750 	int i, alloced;
1751 
1752 	for (i = 0, alloced = 0; i < hdev->num_tqps &&
1753 	     alloced < num_tqps; i++) {
1754 		if (!hdev->htqp[i].alloced) {
1755 			hdev->htqp[i].q.handle = &vport->nic;
1756 			hdev->htqp[i].q.tqp_index = alloced;
1757 			hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc;
1758 			hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc;
1759 			kinfo->tqp[alloced] = &hdev->htqp[i].q;
1760 			hdev->htqp[i].alloced = true;
1761 			alloced++;
1762 		}
1763 	}
1764 	vport->alloc_tqps = alloced;
1765 	kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max,
1766 				vport->alloc_tqps / hdev->tm_info.num_tc);
1767 
1768 	/* ensure one to one mapping between irq and queue at default */
1769 	kinfo->rss_size = min_t(u16, kinfo->rss_size,
1770 				(hdev->num_nic_msi - 1) / hdev->tm_info.num_tc);
1771 
1772 	return 0;
1773 }
1774 
1775 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps,
1776 			    u16 num_tx_desc, u16 num_rx_desc)
1777 
1778 {
1779 	struct hnae3_handle *nic = &vport->nic;
1780 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1781 	struct hclge_dev *hdev = vport->back;
1782 	int ret;
1783 
1784 	kinfo->num_tx_desc = num_tx_desc;
1785 	kinfo->num_rx_desc = num_rx_desc;
1786 
1787 	kinfo->rx_buf_len = hdev->rx_buf_len;
1788 	kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size;
1789 
1790 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps,
1791 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
1792 	if (!kinfo->tqp)
1793 		return -ENOMEM;
1794 
1795 	ret = hclge_assign_tqp(vport, num_tqps);
1796 	if (ret)
1797 		dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret);
1798 
1799 	return ret;
1800 }
1801 
1802 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev,
1803 				  struct hclge_vport *vport)
1804 {
1805 	struct hnae3_handle *nic = &vport->nic;
1806 	struct hnae3_knic_private_info *kinfo;
1807 	u16 i;
1808 
1809 	kinfo = &nic->kinfo;
1810 	for (i = 0; i < vport->alloc_tqps; i++) {
1811 		struct hclge_comm_tqp *q =
1812 			container_of(kinfo->tqp[i], struct hclge_comm_tqp, q);
1813 		bool is_pf;
1814 		int ret;
1815 
1816 		is_pf = !(vport->vport_id);
1817 		ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index,
1818 					     i, is_pf);
1819 		if (ret)
1820 			return ret;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 static int hclge_map_tqp(struct hclge_dev *hdev)
1827 {
1828 	struct hclge_vport *vport = hdev->vport;
1829 	u16 i, num_vport;
1830 
1831 	num_vport = hdev->num_req_vfs + 1;
1832 	for (i = 0; i < num_vport; i++) {
1833 		int ret;
1834 
1835 		ret = hclge_map_tqp_to_vport(hdev, vport);
1836 		if (ret)
1837 			return ret;
1838 
1839 		vport++;
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps)
1846 {
1847 	struct hnae3_handle *nic = &vport->nic;
1848 	struct hclge_dev *hdev = vport->back;
1849 	int ret;
1850 
1851 	nic->pdev = hdev->pdev;
1852 	nic->ae_algo = &ae_algo;
1853 	nic->numa_node_mask = hdev->numa_node_mask;
1854 	nic->kinfo.io_base = hdev->hw.hw.io_base;
1855 
1856 	ret = hclge_knic_setup(vport, num_tqps,
1857 			       hdev->num_tx_desc, hdev->num_rx_desc);
1858 	if (ret)
1859 		dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret);
1860 
1861 	return ret;
1862 }
1863 
1864 static int hclge_alloc_vport(struct hclge_dev *hdev)
1865 {
1866 	struct pci_dev *pdev = hdev->pdev;
1867 	struct hclge_vport *vport;
1868 	u32 tqp_main_vport;
1869 	u32 tqp_per_vport;
1870 	int num_vport, i;
1871 	int ret;
1872 
1873 	/* We need to alloc a vport for main NIC of PF */
1874 	num_vport = hdev->num_req_vfs + 1;
1875 
1876 	if (hdev->num_tqps < num_vport) {
1877 		dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)",
1878 			hdev->num_tqps, num_vport);
1879 		return -EINVAL;
1880 	}
1881 
1882 	/* Alloc the same number of TQPs for every vport */
1883 	tqp_per_vport = hdev->num_tqps / num_vport;
1884 	tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport;
1885 
1886 	vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport),
1887 			     GFP_KERNEL);
1888 	if (!vport)
1889 		return -ENOMEM;
1890 
1891 	hdev->vport = vport;
1892 	hdev->num_alloc_vport = num_vport;
1893 
1894 	if (IS_ENABLED(CONFIG_PCI_IOV))
1895 		hdev->num_alloc_vfs = hdev->num_req_vfs;
1896 
1897 	for (i = 0; i < num_vport; i++) {
1898 		vport->back = hdev;
1899 		vport->vport_id = i;
1900 		vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO;
1901 		vport->mps = HCLGE_MAC_DEFAULT_FRAME;
1902 		vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE;
1903 		vport->port_base_vlan_cfg.tbl_sta = true;
1904 		vport->rxvlan_cfg.rx_vlan_offload_en = true;
1905 		vport->req_vlan_fltr_en = true;
1906 		INIT_LIST_HEAD(&vport->vlan_list);
1907 		INIT_LIST_HEAD(&vport->uc_mac_list);
1908 		INIT_LIST_HEAD(&vport->mc_mac_list);
1909 		spin_lock_init(&vport->mac_list_lock);
1910 
1911 		if (i == 0)
1912 			ret = hclge_vport_setup(vport, tqp_main_vport);
1913 		else
1914 			ret = hclge_vport_setup(vport, tqp_per_vport);
1915 		if (ret) {
1916 			dev_err(&pdev->dev,
1917 				"vport setup failed for vport %d, %d\n",
1918 				i, ret);
1919 			return ret;
1920 		}
1921 
1922 		vport++;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static int  hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev,
1929 				    struct hclge_pkt_buf_alloc *buf_alloc)
1930 {
1931 /* TX buffer size is unit by 128 byte */
1932 #define HCLGE_BUF_SIZE_UNIT_SHIFT	7
1933 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
1934 	struct hclge_tx_buff_alloc_cmd *req;
1935 	struct hclge_desc desc;
1936 	int ret;
1937 	u8 i;
1938 
1939 	req = (struct hclge_tx_buff_alloc_cmd *)desc.data;
1940 
1941 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0);
1942 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1943 		u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
1944 
1945 		req->tx_pkt_buff[i] =
1946 			cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) |
1947 				     HCLGE_BUF_SIZE_UPDATE_EN_MSK);
1948 	}
1949 
1950 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1951 	if (ret)
1952 		dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n",
1953 			ret);
1954 
1955 	return ret;
1956 }
1957 
1958 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev,
1959 				 struct hclge_pkt_buf_alloc *buf_alloc)
1960 {
1961 	int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc);
1962 
1963 	if (ret)
1964 		dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret);
1965 
1966 	return ret;
1967 }
1968 
1969 static u32 hclge_get_tc_num(struct hclge_dev *hdev)
1970 {
1971 	unsigned int i;
1972 	u32 cnt = 0;
1973 
1974 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
1975 		if (hdev->hw_tc_map & BIT(i))
1976 			cnt++;
1977 	return cnt;
1978 }
1979 
1980 /* Get the number of pfc enabled TCs, which have private buffer */
1981 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev,
1982 				  struct hclge_pkt_buf_alloc *buf_alloc)
1983 {
1984 	struct hclge_priv_buf *priv;
1985 	unsigned int i;
1986 	int cnt = 0;
1987 
1988 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1989 		priv = &buf_alloc->priv_buf[i];
1990 		if ((hdev->tm_info.hw_pfc_map & BIT(i)) &&
1991 		    priv->enable)
1992 			cnt++;
1993 	}
1994 
1995 	return cnt;
1996 }
1997 
1998 /* Get the number of pfc disabled TCs, which have private buffer */
1999 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev,
2000 				     struct hclge_pkt_buf_alloc *buf_alloc)
2001 {
2002 	struct hclge_priv_buf *priv;
2003 	unsigned int i;
2004 	int cnt = 0;
2005 
2006 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2007 		priv = &buf_alloc->priv_buf[i];
2008 		if (hdev->hw_tc_map & BIT(i) &&
2009 		    !(hdev->tm_info.hw_pfc_map & BIT(i)) &&
2010 		    priv->enable)
2011 			cnt++;
2012 	}
2013 
2014 	return cnt;
2015 }
2016 
2017 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
2018 {
2019 	struct hclge_priv_buf *priv;
2020 	u32 rx_priv = 0;
2021 	int i;
2022 
2023 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2024 		priv = &buf_alloc->priv_buf[i];
2025 		if (priv->enable)
2026 			rx_priv += priv->buf_size;
2027 	}
2028 	return rx_priv;
2029 }
2030 
2031 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
2032 {
2033 	u32 i, total_tx_size = 0;
2034 
2035 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
2036 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
2037 
2038 	return total_tx_size;
2039 }
2040 
2041 static bool  hclge_is_rx_buf_ok(struct hclge_dev *hdev,
2042 				struct hclge_pkt_buf_alloc *buf_alloc,
2043 				u32 rx_all)
2044 {
2045 	u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
2046 	u32 tc_num = hclge_get_tc_num(hdev);
2047 	u32 shared_buf, aligned_mps;
2048 	u32 rx_priv;
2049 	int i;
2050 
2051 	aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2052 
2053 	if (hnae3_dev_dcb_supported(hdev))
2054 		shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps +
2055 					hdev->dv_buf_size;
2056 	else
2057 		shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF
2058 					+ hdev->dv_buf_size;
2059 
2060 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
2061 	shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc),
2062 			     HCLGE_BUF_SIZE_UNIT);
2063 
2064 	rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc);
2065 	if (rx_all < rx_priv + shared_std)
2066 		return false;
2067 
2068 	shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT);
2069 	buf_alloc->s_buf.buf_size = shared_buf;
2070 	if (hnae3_dev_dcb_supported(hdev)) {
2071 		buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size;
2072 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
2073 			- roundup(aligned_mps / HCLGE_BUF_DIV_BY,
2074 				  HCLGE_BUF_SIZE_UNIT);
2075 	} else {
2076 		buf_alloc->s_buf.self.high = aligned_mps +
2077 						HCLGE_NON_DCB_ADDITIONAL_BUF;
2078 		buf_alloc->s_buf.self.low = aligned_mps;
2079 	}
2080 
2081 	if (hnae3_dev_dcb_supported(hdev)) {
2082 		hi_thrd = shared_buf - hdev->dv_buf_size;
2083 
2084 		if (tc_num <= NEED_RESERVE_TC_NUM)
2085 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
2086 					/ BUF_MAX_PERCENT;
2087 
2088 		if (tc_num)
2089 			hi_thrd = hi_thrd / tc_num;
2090 
2091 		hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps);
2092 		hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT);
2093 		lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY;
2094 	} else {
2095 		hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF;
2096 		lo_thrd = aligned_mps;
2097 	}
2098 
2099 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2100 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2101 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2102 	}
2103 
2104 	return true;
2105 }
2106 
2107 static int hclge_tx_buffer_calc(struct hclge_dev *hdev,
2108 				struct hclge_pkt_buf_alloc *buf_alloc)
2109 {
2110 	u32 i, total_size;
2111 
2112 	total_size = hdev->pkt_buf_size;
2113 
2114 	/* alloc tx buffer for all enabled tc */
2115 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2116 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2117 
2118 		if (hdev->hw_tc_map & BIT(i)) {
2119 			if (total_size < hdev->tx_buf_size)
2120 				return -ENOMEM;
2121 
2122 			priv->tx_buf_size = hdev->tx_buf_size;
2123 		} else {
2124 			priv->tx_buf_size = 0;
2125 		}
2126 
2127 		total_size -= priv->tx_buf_size;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max,
2134 				  struct hclge_pkt_buf_alloc *buf_alloc)
2135 {
2136 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2137 	u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2138 	unsigned int i;
2139 
2140 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2141 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2142 
2143 		priv->enable = 0;
2144 		priv->wl.low = 0;
2145 		priv->wl.high = 0;
2146 		priv->buf_size = 0;
2147 
2148 		if (!(hdev->hw_tc_map & BIT(i)))
2149 			continue;
2150 
2151 		priv->enable = 1;
2152 
2153 		if (hdev->tm_info.hw_pfc_map & BIT(i)) {
2154 			priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT;
2155 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
2156 						HCLGE_BUF_SIZE_UNIT);
2157 		} else {
2158 			priv->wl.low = 0;
2159 			priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) :
2160 					aligned_mps;
2161 		}
2162 
2163 		priv->buf_size = priv->wl.high + hdev->dv_buf_size;
2164 	}
2165 
2166 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2167 }
2168 
2169 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev,
2170 					  struct hclge_pkt_buf_alloc *buf_alloc)
2171 {
2172 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2173 	int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc);
2174 	int i;
2175 
2176 	/* let the last to be cleared first */
2177 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2178 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2179 		unsigned int mask = BIT((unsigned int)i);
2180 
2181 		if (hdev->hw_tc_map & mask &&
2182 		    !(hdev->tm_info.hw_pfc_map & mask)) {
2183 			/* Clear the no pfc TC private buffer */
2184 			priv->wl.low = 0;
2185 			priv->wl.high = 0;
2186 			priv->buf_size = 0;
2187 			priv->enable = 0;
2188 			no_pfc_priv_num--;
2189 		}
2190 
2191 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2192 		    no_pfc_priv_num == 0)
2193 			break;
2194 	}
2195 
2196 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2197 }
2198 
2199 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev,
2200 					struct hclge_pkt_buf_alloc *buf_alloc)
2201 {
2202 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2203 	int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc);
2204 	int i;
2205 
2206 	/* let the last to be cleared first */
2207 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2208 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2209 		unsigned int mask = BIT((unsigned int)i);
2210 
2211 		if (hdev->hw_tc_map & mask &&
2212 		    hdev->tm_info.hw_pfc_map & mask) {
2213 			/* Reduce the number of pfc TC with private buffer */
2214 			priv->wl.low = 0;
2215 			priv->enable = 0;
2216 			priv->wl.high = 0;
2217 			priv->buf_size = 0;
2218 			pfc_priv_num--;
2219 		}
2220 
2221 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2222 		    pfc_priv_num == 0)
2223 			break;
2224 	}
2225 
2226 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2227 }
2228 
2229 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev,
2230 				      struct hclge_pkt_buf_alloc *buf_alloc)
2231 {
2232 #define COMPENSATE_BUFFER	0x3C00
2233 #define COMPENSATE_HALF_MPS_NUM	5
2234 #define PRIV_WL_GAP		0x1800
2235 
2236 	u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2237 	u32 tc_num = hclge_get_tc_num(hdev);
2238 	u32 half_mps = hdev->mps >> 1;
2239 	u32 min_rx_priv;
2240 	unsigned int i;
2241 
2242 	if (tc_num)
2243 		rx_priv = rx_priv / tc_num;
2244 
2245 	if (tc_num <= NEED_RESERVE_TC_NUM)
2246 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
2247 
2248 	min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER +
2249 			COMPENSATE_HALF_MPS_NUM * half_mps;
2250 	min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT);
2251 	rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT);
2252 	if (rx_priv < min_rx_priv)
2253 		return false;
2254 
2255 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2256 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2257 
2258 		priv->enable = 0;
2259 		priv->wl.low = 0;
2260 		priv->wl.high = 0;
2261 		priv->buf_size = 0;
2262 
2263 		if (!(hdev->hw_tc_map & BIT(i)))
2264 			continue;
2265 
2266 		priv->enable = 1;
2267 		priv->buf_size = rx_priv;
2268 		priv->wl.high = rx_priv - hdev->dv_buf_size;
2269 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
2270 	}
2271 
2272 	buf_alloc->s_buf.buf_size = 0;
2273 
2274 	return true;
2275 }
2276 
2277 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs
2278  * @hdev: pointer to struct hclge_dev
2279  * @buf_alloc: pointer to buffer calculation data
2280  * @return: 0: calculate successful, negative: fail
2281  */
2282 static int hclge_rx_buffer_calc(struct hclge_dev *hdev,
2283 				struct hclge_pkt_buf_alloc *buf_alloc)
2284 {
2285 	/* When DCB is not supported, rx private buffer is not allocated. */
2286 	if (!hnae3_dev_dcb_supported(hdev)) {
2287 		u32 rx_all = hdev->pkt_buf_size;
2288 
2289 		rx_all -= hclge_get_tx_buff_alloced(buf_alloc);
2290 		if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all))
2291 			return -ENOMEM;
2292 
2293 		return 0;
2294 	}
2295 
2296 	if (hclge_only_alloc_priv_buff(hdev, buf_alloc))
2297 		return 0;
2298 
2299 	if (hclge_rx_buf_calc_all(hdev, true, buf_alloc))
2300 		return 0;
2301 
2302 	/* try to decrease the buffer size */
2303 	if (hclge_rx_buf_calc_all(hdev, false, buf_alloc))
2304 		return 0;
2305 
2306 	if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc))
2307 		return 0;
2308 
2309 	if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc))
2310 		return 0;
2311 
2312 	return -ENOMEM;
2313 }
2314 
2315 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev,
2316 				   struct hclge_pkt_buf_alloc *buf_alloc)
2317 {
2318 	struct hclge_rx_priv_buff_cmd *req;
2319 	struct hclge_desc desc;
2320 	int ret;
2321 	int i;
2322 
2323 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false);
2324 	req = (struct hclge_rx_priv_buff_cmd *)desc.data;
2325 
2326 	/* Alloc private buffer TCs */
2327 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2328 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2329 
2330 		req->buf_num[i] =
2331 			cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S);
2332 		req->buf_num[i] |=
2333 			cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B);
2334 	}
2335 
2336 	req->shared_buf =
2337 		cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) |
2338 			    (1 << HCLGE_TC0_PRI_BUF_EN_B));
2339 
2340 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2341 	if (ret)
2342 		dev_err(&hdev->pdev->dev,
2343 			"rx private buffer alloc cmd failed %d\n", ret);
2344 
2345 	return ret;
2346 }
2347 
2348 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev,
2349 				   struct hclge_pkt_buf_alloc *buf_alloc)
2350 {
2351 	struct hclge_rx_priv_wl_buf *req;
2352 	struct hclge_priv_buf *priv;
2353 	struct hclge_desc desc[2];
2354 	int i, j;
2355 	int ret;
2356 
2357 	for (i = 0; i < 2; i++) {
2358 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC,
2359 					   false);
2360 		req = (struct hclge_rx_priv_wl_buf *)desc[i].data;
2361 
2362 		/* The first descriptor set the NEXT bit to 1 */
2363 		if (i == 0)
2364 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2365 		else
2366 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2367 
2368 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2369 			u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j;
2370 
2371 			priv = &buf_alloc->priv_buf[idx];
2372 			req->tc_wl[j].high =
2373 				cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S);
2374 			req->tc_wl[j].high |=
2375 				cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2376 			req->tc_wl[j].low =
2377 				cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S);
2378 			req->tc_wl[j].low |=
2379 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2380 		}
2381 	}
2382 
2383 	/* Send 2 descriptor at one time */
2384 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2385 	if (ret)
2386 		dev_err(&hdev->pdev->dev,
2387 			"rx private waterline config cmd failed %d\n",
2388 			ret);
2389 	return ret;
2390 }
2391 
2392 static int hclge_common_thrd_config(struct hclge_dev *hdev,
2393 				    struct hclge_pkt_buf_alloc *buf_alloc)
2394 {
2395 	struct hclge_shared_buf *s_buf = &buf_alloc->s_buf;
2396 	struct hclge_rx_com_thrd *req;
2397 	struct hclge_desc desc[2];
2398 	struct hclge_tc_thrd *tc;
2399 	int i, j;
2400 	int ret;
2401 
2402 	for (i = 0; i < 2; i++) {
2403 		hclge_cmd_setup_basic_desc(&desc[i],
2404 					   HCLGE_OPC_RX_COM_THRD_ALLOC, false);
2405 		req = (struct hclge_rx_com_thrd *)&desc[i].data;
2406 
2407 		/* The first descriptor set the NEXT bit to 1 */
2408 		if (i == 0)
2409 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2410 		else
2411 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2412 
2413 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2414 			tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j];
2415 
2416 			req->com_thrd[j].high =
2417 				cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S);
2418 			req->com_thrd[j].high |=
2419 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2420 			req->com_thrd[j].low =
2421 				cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S);
2422 			req->com_thrd[j].low |=
2423 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2424 		}
2425 	}
2426 
2427 	/* Send 2 descriptors at one time */
2428 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2429 	if (ret)
2430 		dev_err(&hdev->pdev->dev,
2431 			"common threshold config cmd failed %d\n", ret);
2432 	return ret;
2433 }
2434 
2435 static int hclge_common_wl_config(struct hclge_dev *hdev,
2436 				  struct hclge_pkt_buf_alloc *buf_alloc)
2437 {
2438 	struct hclge_shared_buf *buf = &buf_alloc->s_buf;
2439 	struct hclge_rx_com_wl *req;
2440 	struct hclge_desc desc;
2441 	int ret;
2442 
2443 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false);
2444 
2445 	req = (struct hclge_rx_com_wl *)desc.data;
2446 	req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S);
2447 	req->com_wl.high |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2448 
2449 	req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S);
2450 	req->com_wl.low |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2451 
2452 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2453 	if (ret)
2454 		dev_err(&hdev->pdev->dev,
2455 			"common waterline config cmd failed %d\n", ret);
2456 
2457 	return ret;
2458 }
2459 
2460 int hclge_buffer_alloc(struct hclge_dev *hdev)
2461 {
2462 	struct hclge_pkt_buf_alloc *pkt_buf;
2463 	int ret;
2464 
2465 	pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL);
2466 	if (!pkt_buf)
2467 		return -ENOMEM;
2468 
2469 	ret = hclge_tx_buffer_calc(hdev, pkt_buf);
2470 	if (ret) {
2471 		dev_err(&hdev->pdev->dev,
2472 			"could not calc tx buffer size for all TCs %d\n", ret);
2473 		goto out;
2474 	}
2475 
2476 	ret = hclge_tx_buffer_alloc(hdev, pkt_buf);
2477 	if (ret) {
2478 		dev_err(&hdev->pdev->dev,
2479 			"could not alloc tx buffers %d\n", ret);
2480 		goto out;
2481 	}
2482 
2483 	ret = hclge_rx_buffer_calc(hdev, pkt_buf);
2484 	if (ret) {
2485 		dev_err(&hdev->pdev->dev,
2486 			"could not calc rx priv buffer size for all TCs %d\n",
2487 			ret);
2488 		goto out;
2489 	}
2490 
2491 	ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf);
2492 	if (ret) {
2493 		dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n",
2494 			ret);
2495 		goto out;
2496 	}
2497 
2498 	if (hnae3_dev_dcb_supported(hdev)) {
2499 		ret = hclge_rx_priv_wl_config(hdev, pkt_buf);
2500 		if (ret) {
2501 			dev_err(&hdev->pdev->dev,
2502 				"could not configure rx private waterline %d\n",
2503 				ret);
2504 			goto out;
2505 		}
2506 
2507 		ret = hclge_common_thrd_config(hdev, pkt_buf);
2508 		if (ret) {
2509 			dev_err(&hdev->pdev->dev,
2510 				"could not configure common threshold %d\n",
2511 				ret);
2512 			goto out;
2513 		}
2514 	}
2515 
2516 	ret = hclge_common_wl_config(hdev, pkt_buf);
2517 	if (ret)
2518 		dev_err(&hdev->pdev->dev,
2519 			"could not configure common waterline %d\n", ret);
2520 
2521 out:
2522 	kfree(pkt_buf);
2523 	return ret;
2524 }
2525 
2526 static int hclge_init_roce_base_info(struct hclge_vport *vport)
2527 {
2528 	struct hnae3_handle *roce = &vport->roce;
2529 	struct hnae3_handle *nic = &vport->nic;
2530 	struct hclge_dev *hdev = vport->back;
2531 
2532 	roce->rinfo.num_vectors = vport->back->num_roce_msi;
2533 
2534 	if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi)
2535 		return -EINVAL;
2536 
2537 	roce->rinfo.base_vector = hdev->num_nic_msi;
2538 
2539 	roce->rinfo.netdev = nic->kinfo.netdev;
2540 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2541 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2542 
2543 	roce->pdev = nic->pdev;
2544 	roce->ae_algo = nic->ae_algo;
2545 	roce->numa_node_mask = nic->numa_node_mask;
2546 
2547 	return 0;
2548 }
2549 
2550 static int hclge_init_msi(struct hclge_dev *hdev)
2551 {
2552 	struct pci_dev *pdev = hdev->pdev;
2553 	int vectors;
2554 	int i;
2555 
2556 	vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2557 					hdev->num_msi,
2558 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
2559 	if (vectors < 0) {
2560 		dev_err(&pdev->dev,
2561 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2562 			vectors);
2563 		return vectors;
2564 	}
2565 	if (vectors < hdev->num_msi)
2566 		dev_warn(&hdev->pdev->dev,
2567 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2568 			 hdev->num_msi, vectors);
2569 
2570 	hdev->num_msi = vectors;
2571 	hdev->num_msi_left = vectors;
2572 
2573 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2574 					   sizeof(u16), GFP_KERNEL);
2575 	if (!hdev->vector_status) {
2576 		pci_free_irq_vectors(pdev);
2577 		return -ENOMEM;
2578 	}
2579 
2580 	for (i = 0; i < hdev->num_msi; i++)
2581 		hdev->vector_status[i] = HCLGE_INVALID_VPORT;
2582 
2583 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2584 					sizeof(int), GFP_KERNEL);
2585 	if (!hdev->vector_irq) {
2586 		pci_free_irq_vectors(pdev);
2587 		return -ENOMEM;
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 static u8 hclge_check_speed_dup(u8 duplex, int speed)
2594 {
2595 	if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M))
2596 		duplex = HCLGE_MAC_FULL;
2597 
2598 	return duplex;
2599 }
2600 
2601 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = {
2602 	{HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M},
2603 	{HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M},
2604 	{HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G},
2605 	{HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G},
2606 	{HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G},
2607 	{HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G},
2608 	{HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G},
2609 	{HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G},
2610 	{HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G},
2611 };
2612 
2613 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw)
2614 {
2615 	u16 i;
2616 
2617 	for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) {
2618 		if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) {
2619 			*speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw;
2620 			return 0;
2621 		}
2622 	}
2623 
2624 	return -EINVAL;
2625 }
2626 
2627 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed,
2628 				      u8 duplex, u8 lane_num)
2629 {
2630 	struct hclge_config_mac_speed_dup_cmd *req;
2631 	struct hclge_desc desc;
2632 	u32 speed_fw;
2633 	int ret;
2634 
2635 	req = (struct hclge_config_mac_speed_dup_cmd *)desc.data;
2636 
2637 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false);
2638 
2639 	if (duplex)
2640 		hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1);
2641 
2642 	ret = hclge_convert_to_fw_speed(speed, &speed_fw);
2643 	if (ret) {
2644 		dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed);
2645 		return ret;
2646 	}
2647 
2648 	hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S,
2649 			speed_fw);
2650 	hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B,
2651 		      1);
2652 	req->lane_num = lane_num;
2653 
2654 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2655 	if (ret) {
2656 		dev_err(&hdev->pdev->dev,
2657 			"mac speed/duplex config cmd failed %d.\n", ret);
2658 		return ret;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex, u8 lane_num)
2665 {
2666 	struct hclge_mac *mac = &hdev->hw.mac;
2667 	int ret;
2668 
2669 	duplex = hclge_check_speed_dup(duplex, speed);
2670 	if (!mac->support_autoneg && mac->speed == speed &&
2671 	    mac->duplex == duplex && (mac->lane_num == lane_num || lane_num == 0))
2672 		return 0;
2673 
2674 	ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex, lane_num);
2675 	if (ret)
2676 		return ret;
2677 
2678 	hdev->hw.mac.speed = speed;
2679 	hdev->hw.mac.duplex = duplex;
2680 	if (!lane_num)
2681 		hdev->hw.mac.lane_num = lane_num;
2682 
2683 	return 0;
2684 }
2685 
2686 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed,
2687 				     u8 duplex, u8 lane_num)
2688 {
2689 	struct hclge_vport *vport = hclge_get_vport(handle);
2690 	struct hclge_dev *hdev = vport->back;
2691 
2692 	return hclge_cfg_mac_speed_dup(hdev, speed, duplex, lane_num);
2693 }
2694 
2695 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable)
2696 {
2697 	struct hclge_config_auto_neg_cmd *req;
2698 	struct hclge_desc desc;
2699 	u32 flag = 0;
2700 	int ret;
2701 
2702 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false);
2703 
2704 	req = (struct hclge_config_auto_neg_cmd *)desc.data;
2705 	if (enable)
2706 		hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U);
2707 	req->cfg_an_cmd_flag = cpu_to_le32(flag);
2708 
2709 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2710 	if (ret)
2711 		dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n",
2712 			ret);
2713 
2714 	return ret;
2715 }
2716 
2717 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable)
2718 {
2719 	struct hclge_vport *vport = hclge_get_vport(handle);
2720 	struct hclge_dev *hdev = vport->back;
2721 
2722 	if (!hdev->hw.mac.support_autoneg) {
2723 		if (enable) {
2724 			dev_err(&hdev->pdev->dev,
2725 				"autoneg is not supported by current port\n");
2726 			return -EOPNOTSUPP;
2727 		} else {
2728 			return 0;
2729 		}
2730 	}
2731 
2732 	return hclge_set_autoneg_en(hdev, enable);
2733 }
2734 
2735 static int hclge_get_autoneg(struct hnae3_handle *handle)
2736 {
2737 	struct hclge_vport *vport = hclge_get_vport(handle);
2738 	struct hclge_dev *hdev = vport->back;
2739 	struct phy_device *phydev = hdev->hw.mac.phydev;
2740 
2741 	if (phydev)
2742 		return phydev->autoneg;
2743 
2744 	return hdev->hw.mac.autoneg;
2745 }
2746 
2747 static int hclge_restart_autoneg(struct hnae3_handle *handle)
2748 {
2749 	struct hclge_vport *vport = hclge_get_vport(handle);
2750 	struct hclge_dev *hdev = vport->back;
2751 	int ret;
2752 
2753 	dev_dbg(&hdev->pdev->dev, "restart autoneg\n");
2754 
2755 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
2756 	if (ret)
2757 		return ret;
2758 	return hclge_notify_client(hdev, HNAE3_UP_CLIENT);
2759 }
2760 
2761 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt)
2762 {
2763 	struct hclge_vport *vport = hclge_get_vport(handle);
2764 	struct hclge_dev *hdev = vport->back;
2765 
2766 	if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg)
2767 		return hclge_set_autoneg_en(hdev, !halt);
2768 
2769 	return 0;
2770 }
2771 
2772 static void hclge_parse_fec_stats_lanes(struct hclge_dev *hdev,
2773 					struct hclge_desc *desc, u32 desc_len)
2774 {
2775 	u32 lane_size = HCLGE_FEC_STATS_MAX_LANES * 2;
2776 	u32 desc_index = 0;
2777 	u32 data_index = 0;
2778 	u32 i;
2779 
2780 	for (i = 0; i < lane_size; i++) {
2781 		if (data_index >= HCLGE_DESC_DATA_LEN) {
2782 			desc_index++;
2783 			data_index = 0;
2784 		}
2785 
2786 		if (desc_index >= desc_len)
2787 			return;
2788 
2789 		hdev->fec_stats.per_lanes[i] +=
2790 			le32_to_cpu(desc[desc_index].data[data_index]);
2791 		data_index++;
2792 	}
2793 }
2794 
2795 static void hclge_parse_fec_stats(struct hclge_dev *hdev,
2796 				  struct hclge_desc *desc, u32 desc_len)
2797 {
2798 	struct hclge_query_fec_stats_cmd *req;
2799 
2800 	req = (struct hclge_query_fec_stats_cmd *)desc[0].data;
2801 
2802 	hdev->fec_stats.base_r_lane_num = req->base_r_lane_num;
2803 	hdev->fec_stats.rs_corr_blocks +=
2804 		le32_to_cpu(req->rs_fec_corr_blocks);
2805 	hdev->fec_stats.rs_uncorr_blocks +=
2806 		le32_to_cpu(req->rs_fec_uncorr_blocks);
2807 	hdev->fec_stats.rs_error_blocks +=
2808 		le32_to_cpu(req->rs_fec_error_blocks);
2809 	hdev->fec_stats.base_r_corr_blocks +=
2810 		le32_to_cpu(req->base_r_fec_corr_blocks);
2811 	hdev->fec_stats.base_r_uncorr_blocks +=
2812 		le32_to_cpu(req->base_r_fec_uncorr_blocks);
2813 
2814 	hclge_parse_fec_stats_lanes(hdev, &desc[1], desc_len - 1);
2815 }
2816 
2817 static int hclge_update_fec_stats_hw(struct hclge_dev *hdev)
2818 {
2819 	struct hclge_desc desc[HCLGE_FEC_STATS_CMD_NUM];
2820 	int ret;
2821 	u32 i;
2822 
2823 	for (i = 0; i < HCLGE_FEC_STATS_CMD_NUM; i++) {
2824 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_FEC_STATS,
2825 					   true);
2826 		if (i != (HCLGE_FEC_STATS_CMD_NUM - 1))
2827 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2828 	}
2829 
2830 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_FEC_STATS_CMD_NUM);
2831 	if (ret)
2832 		return ret;
2833 
2834 	hclge_parse_fec_stats(hdev, desc, HCLGE_FEC_STATS_CMD_NUM);
2835 
2836 	return 0;
2837 }
2838 
2839 static void hclge_update_fec_stats(struct hclge_dev *hdev)
2840 {
2841 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2842 	int ret;
2843 
2844 	if (!hnae3_ae_dev_fec_stats_supported(ae_dev) ||
2845 	    test_and_set_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state))
2846 		return;
2847 
2848 	ret = hclge_update_fec_stats_hw(hdev);
2849 	if (ret)
2850 		dev_err(&hdev->pdev->dev,
2851 			"failed to update fec stats, ret = %d\n", ret);
2852 
2853 	clear_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state);
2854 }
2855 
2856 static void hclge_get_fec_stats_total(struct hclge_dev *hdev,
2857 				      struct ethtool_fec_stats *fec_stats)
2858 {
2859 	fec_stats->corrected_blocks.total = hdev->fec_stats.rs_corr_blocks;
2860 	fec_stats->uncorrectable_blocks.total =
2861 		hdev->fec_stats.rs_uncorr_blocks;
2862 }
2863 
2864 static void hclge_get_fec_stats_lanes(struct hclge_dev *hdev,
2865 				      struct ethtool_fec_stats *fec_stats)
2866 {
2867 	u32 i;
2868 
2869 	if (hdev->fec_stats.base_r_lane_num == 0 ||
2870 	    hdev->fec_stats.base_r_lane_num > HCLGE_FEC_STATS_MAX_LANES) {
2871 		dev_err(&hdev->pdev->dev,
2872 			"fec stats lane number(%llu) is invalid\n",
2873 			hdev->fec_stats.base_r_lane_num);
2874 		return;
2875 	}
2876 
2877 	for (i = 0; i < hdev->fec_stats.base_r_lane_num; i++) {
2878 		fec_stats->corrected_blocks.lanes[i] =
2879 			hdev->fec_stats.base_r_corr_per_lanes[i];
2880 		fec_stats->uncorrectable_blocks.lanes[i] =
2881 			hdev->fec_stats.base_r_uncorr_per_lanes[i];
2882 	}
2883 }
2884 
2885 static void hclge_comm_get_fec_stats(struct hclge_dev *hdev,
2886 				     struct ethtool_fec_stats *fec_stats)
2887 {
2888 	u32 fec_mode = hdev->hw.mac.fec_mode;
2889 
2890 	switch (fec_mode) {
2891 	case BIT(HNAE3_FEC_RS):
2892 	case BIT(HNAE3_FEC_LLRS):
2893 		hclge_get_fec_stats_total(hdev, fec_stats);
2894 		break;
2895 	case BIT(HNAE3_FEC_BASER):
2896 		hclge_get_fec_stats_lanes(hdev, fec_stats);
2897 		break;
2898 	default:
2899 		dev_err(&hdev->pdev->dev,
2900 			"fec stats is not supported by current fec mode(0x%x)\n",
2901 			fec_mode);
2902 		break;
2903 	}
2904 }
2905 
2906 static void hclge_get_fec_stats(struct hnae3_handle *handle,
2907 				struct ethtool_fec_stats *fec_stats)
2908 {
2909 	struct hclge_vport *vport = hclge_get_vport(handle);
2910 	struct hclge_dev *hdev = vport->back;
2911 	u32 fec_mode = hdev->hw.mac.fec_mode;
2912 
2913 	if (fec_mode == BIT(HNAE3_FEC_NONE) ||
2914 	    fec_mode == BIT(HNAE3_FEC_AUTO) ||
2915 	    fec_mode == BIT(HNAE3_FEC_USER_DEF))
2916 		return;
2917 
2918 	hclge_update_fec_stats(hdev);
2919 
2920 	hclge_comm_get_fec_stats(hdev, fec_stats);
2921 }
2922 
2923 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode)
2924 {
2925 	struct hclge_config_fec_cmd *req;
2926 	struct hclge_desc desc;
2927 	int ret;
2928 
2929 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false);
2930 
2931 	req = (struct hclge_config_fec_cmd *)desc.data;
2932 	if (fec_mode & BIT(HNAE3_FEC_AUTO))
2933 		hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1);
2934 	if (fec_mode & BIT(HNAE3_FEC_RS))
2935 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2936 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS);
2937 	if (fec_mode & BIT(HNAE3_FEC_LLRS))
2938 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2939 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_LLRS);
2940 	if (fec_mode & BIT(HNAE3_FEC_BASER))
2941 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2942 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER);
2943 
2944 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2945 	if (ret)
2946 		dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret);
2947 
2948 	return ret;
2949 }
2950 
2951 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode)
2952 {
2953 	struct hclge_vport *vport = hclge_get_vport(handle);
2954 	struct hclge_dev *hdev = vport->back;
2955 	struct hclge_mac *mac = &hdev->hw.mac;
2956 	int ret;
2957 
2958 	if (fec_mode && !(mac->fec_ability & fec_mode)) {
2959 		dev_err(&hdev->pdev->dev, "unsupported fec mode\n");
2960 		return -EINVAL;
2961 	}
2962 
2963 	ret = hclge_set_fec_hw(hdev, fec_mode);
2964 	if (ret)
2965 		return ret;
2966 
2967 	mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF);
2968 	return 0;
2969 }
2970 
2971 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability,
2972 			  u8 *fec_mode)
2973 {
2974 	struct hclge_vport *vport = hclge_get_vport(handle);
2975 	struct hclge_dev *hdev = vport->back;
2976 	struct hclge_mac *mac = &hdev->hw.mac;
2977 
2978 	if (fec_ability)
2979 		*fec_ability = mac->fec_ability;
2980 	if (fec_mode)
2981 		*fec_mode = mac->fec_mode;
2982 }
2983 
2984 static int hclge_mac_init(struct hclge_dev *hdev)
2985 {
2986 	struct hclge_mac *mac = &hdev->hw.mac;
2987 	int ret;
2988 
2989 	hdev->support_sfp_query = true;
2990 	hdev->hw.mac.duplex = HCLGE_MAC_FULL;
2991 	ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed,
2992 					 hdev->hw.mac.duplex, hdev->hw.mac.lane_num);
2993 	if (ret)
2994 		return ret;
2995 
2996 	if (hdev->hw.mac.support_autoneg) {
2997 		ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg);
2998 		if (ret)
2999 			return ret;
3000 	}
3001 
3002 	mac->link = 0;
3003 
3004 	if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) {
3005 		ret = hclge_set_fec_hw(hdev, mac->user_fec_mode);
3006 		if (ret)
3007 			return ret;
3008 	}
3009 
3010 	ret = hclge_set_mac_mtu(hdev, hdev->mps);
3011 	if (ret) {
3012 		dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret);
3013 		return ret;
3014 	}
3015 
3016 	ret = hclge_set_default_loopback(hdev);
3017 	if (ret)
3018 		return ret;
3019 
3020 	ret = hclge_buffer_alloc(hdev);
3021 	if (ret)
3022 		dev_err(&hdev->pdev->dev,
3023 			"allocate buffer fail, ret=%d\n", ret);
3024 
3025 	return ret;
3026 }
3027 
3028 static void hclge_mbx_task_schedule(struct hclge_dev *hdev)
3029 {
3030 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3031 	    !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) {
3032 		hdev->last_mbx_scheduled = jiffies;
3033 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
3034 	}
3035 }
3036 
3037 static void hclge_reset_task_schedule(struct hclge_dev *hdev)
3038 {
3039 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3040 	    test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) &&
3041 	    !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) {
3042 		hdev->last_rst_scheduled = jiffies;
3043 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
3044 	}
3045 }
3046 
3047 static void hclge_errhand_task_schedule(struct hclge_dev *hdev)
3048 {
3049 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3050 	    !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
3051 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
3052 }
3053 
3054 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time)
3055 {
3056 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3057 	    !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
3058 		mod_delayed_work(hclge_wq, &hdev->service_task, delay_time);
3059 }
3060 
3061 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status)
3062 {
3063 	struct hclge_link_status_cmd *req;
3064 	struct hclge_desc desc;
3065 	int ret;
3066 
3067 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true);
3068 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3069 	if (ret) {
3070 		dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n",
3071 			ret);
3072 		return ret;
3073 	}
3074 
3075 	req = (struct hclge_link_status_cmd *)desc.data;
3076 	*link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ?
3077 		HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
3078 
3079 	return 0;
3080 }
3081 
3082 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status)
3083 {
3084 	struct phy_device *phydev = hdev->hw.mac.phydev;
3085 
3086 	*link_status = HCLGE_LINK_STATUS_DOWN;
3087 
3088 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state))
3089 		return 0;
3090 
3091 	if (phydev && (phydev->state != PHY_RUNNING || !phydev->link))
3092 		return 0;
3093 
3094 	return hclge_get_mac_link_status(hdev, link_status);
3095 }
3096 
3097 static void hclge_push_link_status(struct hclge_dev *hdev)
3098 {
3099 	struct hclge_vport *vport;
3100 	int ret;
3101 	u16 i;
3102 
3103 	for (i = 0; i < pci_num_vf(hdev->pdev); i++) {
3104 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
3105 
3106 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) ||
3107 		    vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO)
3108 			continue;
3109 
3110 		ret = hclge_push_vf_link_status(vport);
3111 		if (ret) {
3112 			dev_err(&hdev->pdev->dev,
3113 				"failed to push link status to vf%u, ret = %d\n",
3114 				i, ret);
3115 		}
3116 	}
3117 }
3118 
3119 static void hclge_update_link_status(struct hclge_dev *hdev)
3120 {
3121 	struct hnae3_handle *rhandle = &hdev->vport[0].roce;
3122 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3123 	struct hnae3_client *rclient = hdev->roce_client;
3124 	struct hnae3_client *client = hdev->nic_client;
3125 	int state;
3126 	int ret;
3127 
3128 	if (!client)
3129 		return;
3130 
3131 	if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state))
3132 		return;
3133 
3134 	ret = hclge_get_mac_phy_link(hdev, &state);
3135 	if (ret) {
3136 		clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
3137 		return;
3138 	}
3139 
3140 	if (state != hdev->hw.mac.link) {
3141 		hdev->hw.mac.link = state;
3142 		client->ops->link_status_change(handle, state);
3143 		hclge_config_mac_tnl_int(hdev, state);
3144 		if (rclient && rclient->ops->link_status_change)
3145 			rclient->ops->link_status_change(rhandle, state);
3146 
3147 		hclge_push_link_status(hdev);
3148 	}
3149 
3150 	clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
3151 }
3152 
3153 static void hclge_update_speed_advertising(struct hclge_mac *mac)
3154 {
3155 	u32 speed_ability;
3156 
3157 	if (hclge_get_speed_bit(mac->speed, &speed_ability))
3158 		return;
3159 
3160 	switch (mac->module_type) {
3161 	case HNAE3_MODULE_TYPE_FIBRE_LR:
3162 		hclge_convert_setting_lr(speed_ability, mac->advertising);
3163 		break;
3164 	case HNAE3_MODULE_TYPE_FIBRE_SR:
3165 	case HNAE3_MODULE_TYPE_AOC:
3166 		hclge_convert_setting_sr(speed_ability, mac->advertising);
3167 		break;
3168 	case HNAE3_MODULE_TYPE_CR:
3169 		hclge_convert_setting_cr(speed_ability, mac->advertising);
3170 		break;
3171 	case HNAE3_MODULE_TYPE_KR:
3172 		hclge_convert_setting_kr(speed_ability, mac->advertising);
3173 		break;
3174 	default:
3175 		break;
3176 	}
3177 }
3178 
3179 static void hclge_update_fec_advertising(struct hclge_mac *mac)
3180 {
3181 	if (mac->fec_mode & BIT(HNAE3_FEC_RS))
3182 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
3183 				 mac->advertising);
3184 	else if (mac->fec_mode & BIT(HNAE3_FEC_LLRS))
3185 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
3186 				 mac->advertising);
3187 	else if (mac->fec_mode & BIT(HNAE3_FEC_BASER))
3188 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
3189 				 mac->advertising);
3190 	else
3191 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
3192 				 mac->advertising);
3193 }
3194 
3195 static void hclge_update_pause_advertising(struct hclge_dev *hdev)
3196 {
3197 	struct hclge_mac *mac = &hdev->hw.mac;
3198 	bool rx_en, tx_en;
3199 
3200 	switch (hdev->fc_mode_last_time) {
3201 	case HCLGE_FC_RX_PAUSE:
3202 		rx_en = true;
3203 		tx_en = false;
3204 		break;
3205 	case HCLGE_FC_TX_PAUSE:
3206 		rx_en = false;
3207 		tx_en = true;
3208 		break;
3209 	case HCLGE_FC_FULL:
3210 		rx_en = true;
3211 		tx_en = true;
3212 		break;
3213 	default:
3214 		rx_en = false;
3215 		tx_en = false;
3216 		break;
3217 	}
3218 
3219 	linkmode_set_pause(mac->advertising, tx_en, rx_en);
3220 }
3221 
3222 static void hclge_update_advertising(struct hclge_dev *hdev)
3223 {
3224 	struct hclge_mac *mac = &hdev->hw.mac;
3225 
3226 	linkmode_zero(mac->advertising);
3227 	hclge_update_speed_advertising(mac);
3228 	hclge_update_fec_advertising(mac);
3229 	hclge_update_pause_advertising(hdev);
3230 }
3231 
3232 static void hclge_update_port_capability(struct hclge_dev *hdev,
3233 					 struct hclge_mac *mac)
3234 {
3235 	if (hnae3_dev_fec_supported(hdev))
3236 		hclge_convert_setting_fec(mac);
3237 
3238 	/* firmware can not identify back plane type, the media type
3239 	 * read from configuration can help deal it
3240 	 */
3241 	if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE &&
3242 	    mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN)
3243 		mac->module_type = HNAE3_MODULE_TYPE_KR;
3244 	else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3245 		mac->module_type = HNAE3_MODULE_TYPE_TP;
3246 
3247 	if (mac->support_autoneg) {
3248 		linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported);
3249 		linkmode_copy(mac->advertising, mac->supported);
3250 	} else {
3251 		linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3252 				   mac->supported);
3253 		hclge_update_advertising(hdev);
3254 	}
3255 }
3256 
3257 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed)
3258 {
3259 	struct hclge_sfp_info_cmd *resp;
3260 	struct hclge_desc desc;
3261 	int ret;
3262 
3263 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3264 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3265 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3266 	if (ret == -EOPNOTSUPP) {
3267 		dev_warn(&hdev->pdev->dev,
3268 			 "IMP do not support get SFP speed %d\n", ret);
3269 		return ret;
3270 	} else if (ret) {
3271 		dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret);
3272 		return ret;
3273 	}
3274 
3275 	*speed = le32_to_cpu(resp->speed);
3276 
3277 	return 0;
3278 }
3279 
3280 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac)
3281 {
3282 	struct hclge_sfp_info_cmd *resp;
3283 	struct hclge_desc desc;
3284 	int ret;
3285 
3286 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3287 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3288 
3289 	resp->query_type = QUERY_ACTIVE_SPEED;
3290 
3291 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3292 	if (ret == -EOPNOTSUPP) {
3293 		dev_warn(&hdev->pdev->dev,
3294 			 "IMP does not support get SFP info %d\n", ret);
3295 		return ret;
3296 	} else if (ret) {
3297 		dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret);
3298 		return ret;
3299 	}
3300 
3301 	/* In some case, mac speed get from IMP may be 0, it shouldn't be
3302 	 * set to mac->speed.
3303 	 */
3304 	if (!le32_to_cpu(resp->speed))
3305 		return 0;
3306 
3307 	mac->speed = le32_to_cpu(resp->speed);
3308 	/* if resp->speed_ability is 0, it means it's an old version
3309 	 * firmware, do not update these params
3310 	 */
3311 	if (resp->speed_ability) {
3312 		mac->module_type = le32_to_cpu(resp->module_type);
3313 		mac->speed_ability = le32_to_cpu(resp->speed_ability);
3314 		mac->autoneg = resp->autoneg;
3315 		mac->support_autoneg = resp->autoneg_ability;
3316 		mac->speed_type = QUERY_ACTIVE_SPEED;
3317 		mac->lane_num = resp->lane_num;
3318 		if (!resp->active_fec)
3319 			mac->fec_mode = 0;
3320 		else
3321 			mac->fec_mode = BIT(resp->active_fec);
3322 		mac->fec_ability = resp->fec_ability;
3323 	} else {
3324 		mac->speed_type = QUERY_SFP_SPEED;
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle,
3331 					struct ethtool_link_ksettings *cmd)
3332 {
3333 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3334 	struct hclge_vport *vport = hclge_get_vport(handle);
3335 	struct hclge_phy_link_ksetting_0_cmd *req0;
3336 	struct hclge_phy_link_ksetting_1_cmd *req1;
3337 	u32 supported, advertising, lp_advertising;
3338 	struct hclge_dev *hdev = vport->back;
3339 	int ret;
3340 
3341 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3342 				   true);
3343 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3344 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3345 				   true);
3346 
3347 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3348 	if (ret) {
3349 		dev_err(&hdev->pdev->dev,
3350 			"failed to get phy link ksetting, ret = %d.\n", ret);
3351 		return ret;
3352 	}
3353 
3354 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3355 	cmd->base.autoneg = req0->autoneg;
3356 	cmd->base.speed = le32_to_cpu(req0->speed);
3357 	cmd->base.duplex = req0->duplex;
3358 	cmd->base.port = req0->port;
3359 	cmd->base.transceiver = req0->transceiver;
3360 	cmd->base.phy_address = req0->phy_address;
3361 	cmd->base.eth_tp_mdix = req0->eth_tp_mdix;
3362 	cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl;
3363 	supported = le32_to_cpu(req0->supported);
3364 	advertising = le32_to_cpu(req0->advertising);
3365 	lp_advertising = le32_to_cpu(req0->lp_advertising);
3366 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3367 						supported);
3368 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3369 						advertising);
3370 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
3371 						lp_advertising);
3372 
3373 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3374 	cmd->base.master_slave_cfg = req1->master_slave_cfg;
3375 	cmd->base.master_slave_state = req1->master_slave_state;
3376 
3377 	return 0;
3378 }
3379 
3380 static int
3381 hclge_set_phy_link_ksettings(struct hnae3_handle *handle,
3382 			     const struct ethtool_link_ksettings *cmd)
3383 {
3384 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3385 	struct hclge_vport *vport = hclge_get_vport(handle);
3386 	struct hclge_phy_link_ksetting_0_cmd *req0;
3387 	struct hclge_phy_link_ksetting_1_cmd *req1;
3388 	struct hclge_dev *hdev = vport->back;
3389 	u32 advertising;
3390 	int ret;
3391 
3392 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
3393 	    ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) ||
3394 	     (cmd->base.duplex != DUPLEX_HALF &&
3395 	      cmd->base.duplex != DUPLEX_FULL)))
3396 		return -EINVAL;
3397 
3398 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3399 				   false);
3400 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3401 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3402 				   false);
3403 
3404 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3405 	req0->autoneg = cmd->base.autoneg;
3406 	req0->speed = cpu_to_le32(cmd->base.speed);
3407 	req0->duplex = cmd->base.duplex;
3408 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
3409 						cmd->link_modes.advertising);
3410 	req0->advertising = cpu_to_le32(advertising);
3411 	req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl;
3412 
3413 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3414 	req1->master_slave_cfg = cmd->base.master_slave_cfg;
3415 
3416 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3417 	if (ret) {
3418 		dev_err(&hdev->pdev->dev,
3419 			"failed to set phy link ksettings, ret = %d.\n", ret);
3420 		return ret;
3421 	}
3422 
3423 	hdev->hw.mac.autoneg = cmd->base.autoneg;
3424 	hdev->hw.mac.speed = cmd->base.speed;
3425 	hdev->hw.mac.duplex = cmd->base.duplex;
3426 	linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising);
3427 
3428 	return 0;
3429 }
3430 
3431 static int hclge_update_tp_port_info(struct hclge_dev *hdev)
3432 {
3433 	struct ethtool_link_ksettings cmd;
3434 	int ret;
3435 
3436 	if (!hnae3_dev_phy_imp_supported(hdev))
3437 		return 0;
3438 
3439 	ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd);
3440 	if (ret)
3441 		return ret;
3442 
3443 	hdev->hw.mac.autoneg = cmd.base.autoneg;
3444 	hdev->hw.mac.speed = cmd.base.speed;
3445 	hdev->hw.mac.duplex = cmd.base.duplex;
3446 	linkmode_copy(hdev->hw.mac.advertising, cmd.link_modes.advertising);
3447 
3448 	return 0;
3449 }
3450 
3451 static int hclge_tp_port_init(struct hclge_dev *hdev)
3452 {
3453 	struct ethtool_link_ksettings cmd;
3454 
3455 	if (!hnae3_dev_phy_imp_supported(hdev))
3456 		return 0;
3457 
3458 	cmd.base.autoneg = hdev->hw.mac.autoneg;
3459 	cmd.base.speed = hdev->hw.mac.speed;
3460 	cmd.base.duplex = hdev->hw.mac.duplex;
3461 	linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising);
3462 
3463 	return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd);
3464 }
3465 
3466 static int hclge_update_port_info(struct hclge_dev *hdev)
3467 {
3468 	struct hclge_mac *mac = &hdev->hw.mac;
3469 	int speed;
3470 	int ret;
3471 
3472 	/* get the port info from SFP cmd if not copper port */
3473 	if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3474 		return hclge_update_tp_port_info(hdev);
3475 
3476 	/* if IMP does not support get SFP/qSFP info, return directly */
3477 	if (!hdev->support_sfp_query)
3478 		return 0;
3479 
3480 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3481 		speed = mac->speed;
3482 		ret = hclge_get_sfp_info(hdev, mac);
3483 	} else {
3484 		speed = HCLGE_MAC_SPEED_UNKNOWN;
3485 		ret = hclge_get_sfp_speed(hdev, &speed);
3486 	}
3487 
3488 	if (ret == -EOPNOTSUPP) {
3489 		hdev->support_sfp_query = false;
3490 		return ret;
3491 	} else if (ret) {
3492 		return ret;
3493 	}
3494 
3495 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3496 		if (mac->speed_type == QUERY_ACTIVE_SPEED) {
3497 			hclge_update_port_capability(hdev, mac);
3498 			if (mac->speed != speed)
3499 				(void)hclge_tm_port_shaper_cfg(hdev);
3500 			return 0;
3501 		}
3502 		return hclge_cfg_mac_speed_dup(hdev, mac->speed,
3503 					       HCLGE_MAC_FULL, mac->lane_num);
3504 	} else {
3505 		if (speed == HCLGE_MAC_SPEED_UNKNOWN)
3506 			return 0; /* do nothing if no SFP */
3507 
3508 		/* must config full duplex for SFP */
3509 		return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL, 0);
3510 	}
3511 }
3512 
3513 static int hclge_get_status(struct hnae3_handle *handle)
3514 {
3515 	struct hclge_vport *vport = hclge_get_vport(handle);
3516 	struct hclge_dev *hdev = vport->back;
3517 
3518 	hclge_update_link_status(hdev);
3519 
3520 	return hdev->hw.mac.link;
3521 }
3522 
3523 static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf)
3524 {
3525 	if (!pci_num_vf(hdev->pdev)) {
3526 		dev_err(&hdev->pdev->dev,
3527 			"SRIOV is disabled, can not get vport(%d) info.\n", vf);
3528 		return NULL;
3529 	}
3530 
3531 	if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) {
3532 		dev_err(&hdev->pdev->dev,
3533 			"vf id(%d) is out of range(0 <= vfid < %d)\n",
3534 			vf, pci_num_vf(hdev->pdev));
3535 		return NULL;
3536 	}
3537 
3538 	/* VF start from 1 in vport */
3539 	vf += HCLGE_VF_VPORT_START_NUM;
3540 	return &hdev->vport[vf];
3541 }
3542 
3543 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf,
3544 			       struct ifla_vf_info *ivf)
3545 {
3546 	struct hclge_vport *vport = hclge_get_vport(handle);
3547 	struct hclge_dev *hdev = vport->back;
3548 
3549 	vport = hclge_get_vf_vport(hdev, vf);
3550 	if (!vport)
3551 		return -EINVAL;
3552 
3553 	ivf->vf = vf;
3554 	ivf->linkstate = vport->vf_info.link_state;
3555 	ivf->spoofchk = vport->vf_info.spoofchk;
3556 	ivf->trusted = vport->vf_info.trusted;
3557 	ivf->min_tx_rate = 0;
3558 	ivf->max_tx_rate = vport->vf_info.max_tx_rate;
3559 	ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
3560 	ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto);
3561 	ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos;
3562 	ether_addr_copy(ivf->mac, vport->vf_info.mac);
3563 
3564 	return 0;
3565 }
3566 
3567 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
3568 				   int link_state)
3569 {
3570 	struct hclge_vport *vport = hclge_get_vport(handle);
3571 	struct hclge_dev *hdev = vport->back;
3572 	int link_state_old;
3573 	int ret;
3574 
3575 	vport = hclge_get_vf_vport(hdev, vf);
3576 	if (!vport)
3577 		return -EINVAL;
3578 
3579 	link_state_old = vport->vf_info.link_state;
3580 	vport->vf_info.link_state = link_state;
3581 
3582 	/* return success directly if the VF is unalive, VF will
3583 	 * query link state itself when it starts work.
3584 	 */
3585 	if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
3586 		return 0;
3587 
3588 	ret = hclge_push_vf_link_status(vport);
3589 	if (ret) {
3590 		vport->vf_info.link_state = link_state_old;
3591 		dev_err(&hdev->pdev->dev,
3592 			"failed to push vf%d link status, ret = %d\n", vf, ret);
3593 	}
3594 
3595 	return ret;
3596 }
3597 
3598 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
3599 {
3600 	u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg;
3601 
3602 	/* fetch the events from their corresponding regs */
3603 	cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
3604 	msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
3605 	hw_err_src_reg = hclge_read_dev(&hdev->hw,
3606 					HCLGE_RAS_PF_OTHER_INT_STS_REG);
3607 
3608 	/* Assumption: If by any chance reset and mailbox events are reported
3609 	 * together then we will only process reset event in this go and will
3610 	 * defer the processing of the mailbox events. Since, we would have not
3611 	 * cleared RX CMDQ event this time we would receive again another
3612 	 * interrupt from H/W just for the mailbox.
3613 	 *
3614 	 * check for vector0 reset event sources
3615 	 */
3616 	if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) {
3617 		dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
3618 		set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
3619 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3620 		*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
3621 		hdev->rst_stats.imp_rst_cnt++;
3622 		return HCLGE_VECTOR0_EVENT_RST;
3623 	}
3624 
3625 	if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) {
3626 		dev_info(&hdev->pdev->dev, "global reset interrupt\n");
3627 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3628 		set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
3629 		*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
3630 		hdev->rst_stats.global_rst_cnt++;
3631 		return HCLGE_VECTOR0_EVENT_RST;
3632 	}
3633 
3634 	/* check for vector0 msix event and hardware error event source */
3635 	if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK ||
3636 	    hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK)
3637 		return HCLGE_VECTOR0_EVENT_ERR;
3638 
3639 	/* check for vector0 ptp event source */
3640 	if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) {
3641 		*clearval = msix_src_reg;
3642 		return HCLGE_VECTOR0_EVENT_PTP;
3643 	}
3644 
3645 	/* check for vector0 mailbox(=CMDQ RX) event source */
3646 	if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
3647 		cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
3648 		*clearval = cmdq_src_reg;
3649 		return HCLGE_VECTOR0_EVENT_MBX;
3650 	}
3651 
3652 	/* print other vector0 event source */
3653 	dev_info(&hdev->pdev->dev,
3654 		 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n",
3655 		 cmdq_src_reg, hw_err_src_reg, msix_src_reg);
3656 
3657 	return HCLGE_VECTOR0_EVENT_OTHER;
3658 }
3659 
3660 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type,
3661 				    u32 regclr)
3662 {
3663 	switch (event_type) {
3664 	case HCLGE_VECTOR0_EVENT_PTP:
3665 	case HCLGE_VECTOR0_EVENT_RST:
3666 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr);
3667 		break;
3668 	case HCLGE_VECTOR0_EVENT_MBX:
3669 		hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr);
3670 		break;
3671 	default:
3672 		break;
3673 	}
3674 }
3675 
3676 static void hclge_clear_all_event_cause(struct hclge_dev *hdev)
3677 {
3678 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST,
3679 				BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) |
3680 				BIT(HCLGE_VECTOR0_CORERESET_INT_B) |
3681 				BIT(HCLGE_VECTOR0_IMPRESET_INT_B));
3682 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0);
3683 }
3684 
3685 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable)
3686 {
3687 	writel(enable ? 1 : 0, vector->addr);
3688 }
3689 
3690 static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
3691 {
3692 	struct hclge_dev *hdev = data;
3693 	unsigned long flags;
3694 	u32 clearval = 0;
3695 	u32 event_cause;
3696 
3697 	hclge_enable_vector(&hdev->misc_vector, false);
3698 	event_cause = hclge_check_event_cause(hdev, &clearval);
3699 
3700 	/* vector 0 interrupt is shared with reset and mailbox source events. */
3701 	switch (event_cause) {
3702 	case HCLGE_VECTOR0_EVENT_ERR:
3703 		hclge_errhand_task_schedule(hdev);
3704 		break;
3705 	case HCLGE_VECTOR0_EVENT_RST:
3706 		hclge_reset_task_schedule(hdev);
3707 		break;
3708 	case HCLGE_VECTOR0_EVENT_PTP:
3709 		spin_lock_irqsave(&hdev->ptp->lock, flags);
3710 		hclge_ptp_clean_tx_hwts(hdev);
3711 		spin_unlock_irqrestore(&hdev->ptp->lock, flags);
3712 		break;
3713 	case HCLGE_VECTOR0_EVENT_MBX:
3714 		/* If we are here then,
3715 		 * 1. Either we are not handling any mbx task and we are not
3716 		 *    scheduled as well
3717 		 *                        OR
3718 		 * 2. We could be handling a mbx task but nothing more is
3719 		 *    scheduled.
3720 		 * In both cases, we should schedule mbx task as there are more
3721 		 * mbx messages reported by this interrupt.
3722 		 */
3723 		hclge_mbx_task_schedule(hdev);
3724 		break;
3725 	default:
3726 		dev_warn(&hdev->pdev->dev,
3727 			 "received unknown or unhandled event of vector0\n");
3728 		break;
3729 	}
3730 
3731 	hclge_clear_event_cause(hdev, event_cause, clearval);
3732 
3733 	/* Enable interrupt if it is not caused by reset event or error event */
3734 	if (event_cause == HCLGE_VECTOR0_EVENT_PTP ||
3735 	    event_cause == HCLGE_VECTOR0_EVENT_MBX ||
3736 	    event_cause == HCLGE_VECTOR0_EVENT_OTHER)
3737 		hclge_enable_vector(&hdev->misc_vector, true);
3738 
3739 	return IRQ_HANDLED;
3740 }
3741 
3742 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id)
3743 {
3744 	if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) {
3745 		dev_warn(&hdev->pdev->dev,
3746 			 "vector(vector_id %d) has been freed.\n", vector_id);
3747 		return;
3748 	}
3749 
3750 	hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT;
3751 	hdev->num_msi_left += 1;
3752 	hdev->num_msi_used -= 1;
3753 }
3754 
3755 static void hclge_get_misc_vector(struct hclge_dev *hdev)
3756 {
3757 	struct hclge_misc_vector *vector = &hdev->misc_vector;
3758 
3759 	vector->vector_irq = pci_irq_vector(hdev->pdev, 0);
3760 
3761 	vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE;
3762 	hdev->vector_status[0] = 0;
3763 
3764 	hdev->num_msi_left -= 1;
3765 	hdev->num_msi_used += 1;
3766 }
3767 
3768 static int hclge_misc_irq_init(struct hclge_dev *hdev)
3769 {
3770 	int ret;
3771 
3772 	hclge_get_misc_vector(hdev);
3773 
3774 	/* this would be explicitly freed in the end */
3775 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
3776 		 HCLGE_NAME, pci_name(hdev->pdev));
3777 	ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
3778 			  0, hdev->misc_vector.name, hdev);
3779 	if (ret) {
3780 		hclge_free_vector(hdev, 0);
3781 		dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
3782 			hdev->misc_vector.vector_irq);
3783 	}
3784 
3785 	return ret;
3786 }
3787 
3788 static void hclge_misc_irq_uninit(struct hclge_dev *hdev)
3789 {
3790 	free_irq(hdev->misc_vector.vector_irq, hdev);
3791 	hclge_free_vector(hdev, 0);
3792 }
3793 
3794 int hclge_notify_client(struct hclge_dev *hdev,
3795 			enum hnae3_reset_notify_type type)
3796 {
3797 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3798 	struct hnae3_client *client = hdev->nic_client;
3799 	int ret;
3800 
3801 	if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client)
3802 		return 0;
3803 
3804 	if (!client->ops->reset_notify)
3805 		return -EOPNOTSUPP;
3806 
3807 	ret = client->ops->reset_notify(handle, type);
3808 	if (ret)
3809 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
3810 			type, ret);
3811 
3812 	return ret;
3813 }
3814 
3815 static int hclge_notify_roce_client(struct hclge_dev *hdev,
3816 				    enum hnae3_reset_notify_type type)
3817 {
3818 	struct hnae3_handle *handle = &hdev->vport[0].roce;
3819 	struct hnae3_client *client = hdev->roce_client;
3820 	int ret;
3821 
3822 	if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client)
3823 		return 0;
3824 
3825 	if (!client->ops->reset_notify)
3826 		return -EOPNOTSUPP;
3827 
3828 	ret = client->ops->reset_notify(handle, type);
3829 	if (ret)
3830 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
3831 			type, ret);
3832 
3833 	return ret;
3834 }
3835 
3836 static int hclge_reset_wait(struct hclge_dev *hdev)
3837 {
3838 #define HCLGE_RESET_WATI_MS	100
3839 #define HCLGE_RESET_WAIT_CNT	350
3840 
3841 	u32 val, reg, reg_bit;
3842 	u32 cnt = 0;
3843 
3844 	switch (hdev->reset_type) {
3845 	case HNAE3_IMP_RESET:
3846 		reg = HCLGE_GLOBAL_RESET_REG;
3847 		reg_bit = HCLGE_IMP_RESET_BIT;
3848 		break;
3849 	case HNAE3_GLOBAL_RESET:
3850 		reg = HCLGE_GLOBAL_RESET_REG;
3851 		reg_bit = HCLGE_GLOBAL_RESET_BIT;
3852 		break;
3853 	case HNAE3_FUNC_RESET:
3854 		reg = HCLGE_FUN_RST_ING;
3855 		reg_bit = HCLGE_FUN_RST_ING_B;
3856 		break;
3857 	default:
3858 		dev_err(&hdev->pdev->dev,
3859 			"Wait for unsupported reset type: %d\n",
3860 			hdev->reset_type);
3861 		return -EINVAL;
3862 	}
3863 
3864 	val = hclge_read_dev(&hdev->hw, reg);
3865 	while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) {
3866 		msleep(HCLGE_RESET_WATI_MS);
3867 		val = hclge_read_dev(&hdev->hw, reg);
3868 		cnt++;
3869 	}
3870 
3871 	if (cnt >= HCLGE_RESET_WAIT_CNT) {
3872 		dev_warn(&hdev->pdev->dev,
3873 			 "Wait for reset timeout: %d\n", hdev->reset_type);
3874 		return -EBUSY;
3875 	}
3876 
3877 	return 0;
3878 }
3879 
3880 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset)
3881 {
3882 	struct hclge_vf_rst_cmd *req;
3883 	struct hclge_desc desc;
3884 
3885 	req = (struct hclge_vf_rst_cmd *)desc.data;
3886 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false);
3887 	req->dest_vfid = func_id;
3888 
3889 	if (reset)
3890 		req->vf_rst = 0x1;
3891 
3892 	return hclge_cmd_send(&hdev->hw, &desc, 1);
3893 }
3894 
3895 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset)
3896 {
3897 	int i;
3898 
3899 	for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) {
3900 		struct hclge_vport *vport = &hdev->vport[i];
3901 		int ret;
3902 
3903 		/* Send cmd to set/clear VF's FUNC_RST_ING */
3904 		ret = hclge_set_vf_rst(hdev, vport->vport_id, reset);
3905 		if (ret) {
3906 			dev_err(&hdev->pdev->dev,
3907 				"set vf(%u) rst failed %d!\n",
3908 				vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3909 				ret);
3910 			return ret;
3911 		}
3912 
3913 		if (!reset ||
3914 		    !test_bit(HCLGE_VPORT_STATE_INITED, &vport->state))
3915 			continue;
3916 
3917 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) &&
3918 		    hdev->reset_type == HNAE3_FUNC_RESET) {
3919 			set_bit(HCLGE_VPORT_NEED_NOTIFY_RESET,
3920 				&vport->need_notify);
3921 			continue;
3922 		}
3923 
3924 		/* Inform VF to process the reset.
3925 		 * hclge_inform_reset_assert_to_vf may fail if VF
3926 		 * driver is not loaded.
3927 		 */
3928 		ret = hclge_inform_reset_assert_to_vf(vport);
3929 		if (ret)
3930 			dev_warn(&hdev->pdev->dev,
3931 				 "inform reset to vf(%u) failed %d!\n",
3932 				 vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3933 				 ret);
3934 	}
3935 
3936 	return 0;
3937 }
3938 
3939 static void hclge_mailbox_service_task(struct hclge_dev *hdev)
3940 {
3941 	if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) ||
3942 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) ||
3943 	    test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state))
3944 		return;
3945 
3946 	if (time_is_before_jiffies(hdev->last_mbx_scheduled +
3947 				   HCLGE_MBX_SCHED_TIMEOUT))
3948 		dev_warn(&hdev->pdev->dev,
3949 			 "mbx service task is scheduled after %ums on cpu%u!\n",
3950 			 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled),
3951 			 smp_processor_id());
3952 
3953 	hclge_mbx_handler(hdev);
3954 
3955 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
3956 }
3957 
3958 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev)
3959 {
3960 	struct hclge_pf_rst_sync_cmd *req;
3961 	struct hclge_desc desc;
3962 	int cnt = 0;
3963 	int ret;
3964 
3965 	req = (struct hclge_pf_rst_sync_cmd *)desc.data;
3966 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true);
3967 
3968 	do {
3969 		/* vf need to down netdev by mbx during PF or FLR reset */
3970 		hclge_mailbox_service_task(hdev);
3971 
3972 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3973 		/* for compatible with old firmware, wait
3974 		 * 100 ms for VF to stop IO
3975 		 */
3976 		if (ret == -EOPNOTSUPP) {
3977 			msleep(HCLGE_RESET_SYNC_TIME);
3978 			return;
3979 		} else if (ret) {
3980 			dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n",
3981 				 ret);
3982 			return;
3983 		} else if (req->all_vf_ready) {
3984 			return;
3985 		}
3986 		msleep(HCLGE_PF_RESET_SYNC_TIME);
3987 		hclge_comm_cmd_reuse_desc(&desc, true);
3988 	} while (cnt++ < HCLGE_PF_RESET_SYNC_CNT);
3989 
3990 	dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n");
3991 }
3992 
3993 void hclge_report_hw_error(struct hclge_dev *hdev,
3994 			   enum hnae3_hw_error_type type)
3995 {
3996 	struct hnae3_client *client = hdev->nic_client;
3997 
3998 	if (!client || !client->ops->process_hw_error ||
3999 	    !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state))
4000 		return;
4001 
4002 	client->ops->process_hw_error(&hdev->vport[0].nic, type);
4003 }
4004 
4005 static void hclge_handle_imp_error(struct hclge_dev *hdev)
4006 {
4007 	u32 reg_val;
4008 
4009 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4010 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) {
4011 		hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR);
4012 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B);
4013 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
4014 	}
4015 
4016 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) {
4017 		hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR);
4018 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B);
4019 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
4020 	}
4021 }
4022 
4023 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id)
4024 {
4025 	struct hclge_desc desc;
4026 	struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data;
4027 	int ret;
4028 
4029 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
4030 	hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1);
4031 	req->fun_reset_vfid = func_id;
4032 
4033 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4034 	if (ret)
4035 		dev_err(&hdev->pdev->dev,
4036 			"send function reset cmd fail, status =%d\n", ret);
4037 
4038 	return ret;
4039 }
4040 
4041 static void hclge_do_reset(struct hclge_dev *hdev)
4042 {
4043 	struct hnae3_handle *handle = &hdev->vport[0].nic;
4044 	struct pci_dev *pdev = hdev->pdev;
4045 	u32 val;
4046 
4047 	if (hclge_get_hw_reset_stat(handle)) {
4048 		dev_info(&pdev->dev, "hardware reset not finish\n");
4049 		dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n",
4050 			 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING),
4051 			 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG));
4052 		return;
4053 	}
4054 
4055 	switch (hdev->reset_type) {
4056 	case HNAE3_IMP_RESET:
4057 		dev_info(&pdev->dev, "IMP reset requested\n");
4058 		val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4059 		hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1);
4060 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val);
4061 		break;
4062 	case HNAE3_GLOBAL_RESET:
4063 		dev_info(&pdev->dev, "global reset requested\n");
4064 		val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG);
4065 		hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1);
4066 		hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val);
4067 		break;
4068 	case HNAE3_FUNC_RESET:
4069 		dev_info(&pdev->dev, "PF reset requested\n");
4070 		/* schedule again to check later */
4071 		set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
4072 		hclge_reset_task_schedule(hdev);
4073 		break;
4074 	default:
4075 		dev_warn(&pdev->dev,
4076 			 "unsupported reset type: %d\n", hdev->reset_type);
4077 		break;
4078 	}
4079 }
4080 
4081 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
4082 						   unsigned long *addr)
4083 {
4084 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
4085 	struct hclge_dev *hdev = ae_dev->priv;
4086 
4087 	/* return the highest priority reset level amongst all */
4088 	if (test_bit(HNAE3_IMP_RESET, addr)) {
4089 		rst_level = HNAE3_IMP_RESET;
4090 		clear_bit(HNAE3_IMP_RESET, addr);
4091 		clear_bit(HNAE3_GLOBAL_RESET, addr);
4092 		clear_bit(HNAE3_FUNC_RESET, addr);
4093 	} else if (test_bit(HNAE3_GLOBAL_RESET, addr)) {
4094 		rst_level = HNAE3_GLOBAL_RESET;
4095 		clear_bit(HNAE3_GLOBAL_RESET, addr);
4096 		clear_bit(HNAE3_FUNC_RESET, addr);
4097 	} else if (test_bit(HNAE3_FUNC_RESET, addr)) {
4098 		rst_level = HNAE3_FUNC_RESET;
4099 		clear_bit(HNAE3_FUNC_RESET, addr);
4100 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
4101 		rst_level = HNAE3_FLR_RESET;
4102 		clear_bit(HNAE3_FLR_RESET, addr);
4103 	}
4104 
4105 	if (hdev->reset_type != HNAE3_NONE_RESET &&
4106 	    rst_level < hdev->reset_type)
4107 		return HNAE3_NONE_RESET;
4108 
4109 	return rst_level;
4110 }
4111 
4112 static void hclge_clear_reset_cause(struct hclge_dev *hdev)
4113 {
4114 	u32 clearval = 0;
4115 
4116 	switch (hdev->reset_type) {
4117 	case HNAE3_IMP_RESET:
4118 		clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
4119 		break;
4120 	case HNAE3_GLOBAL_RESET:
4121 		clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
4122 		break;
4123 	default:
4124 		break;
4125 	}
4126 
4127 	if (!clearval)
4128 		return;
4129 
4130 	/* For revision 0x20, the reset interrupt source
4131 	 * can only be cleared after hardware reset done
4132 	 */
4133 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
4134 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG,
4135 				clearval);
4136 
4137 	hclge_enable_vector(&hdev->misc_vector, true);
4138 }
4139 
4140 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable)
4141 {
4142 	u32 reg_val;
4143 
4144 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
4145 	if (enable)
4146 		reg_val |= HCLGE_COMM_NIC_SW_RST_RDY;
4147 	else
4148 		reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY;
4149 
4150 	hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val);
4151 }
4152 
4153 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev)
4154 {
4155 	int ret;
4156 
4157 	ret = hclge_set_all_vf_rst(hdev, true);
4158 	if (ret)
4159 		return ret;
4160 
4161 	hclge_func_reset_sync_vf(hdev);
4162 
4163 	return 0;
4164 }
4165 
4166 static int hclge_reset_prepare_wait(struct hclge_dev *hdev)
4167 {
4168 	u32 reg_val;
4169 	int ret = 0;
4170 
4171 	switch (hdev->reset_type) {
4172 	case HNAE3_FUNC_RESET:
4173 		ret = hclge_func_reset_notify_vf(hdev);
4174 		if (ret)
4175 			return ret;
4176 
4177 		ret = hclge_func_reset_cmd(hdev, 0);
4178 		if (ret) {
4179 			dev_err(&hdev->pdev->dev,
4180 				"asserting function reset fail %d!\n", ret);
4181 			return ret;
4182 		}
4183 
4184 		/* After performaning pf reset, it is not necessary to do the
4185 		 * mailbox handling or send any command to firmware, because
4186 		 * any mailbox handling or command to firmware is only valid
4187 		 * after hclge_comm_cmd_init is called.
4188 		 */
4189 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
4190 		hdev->rst_stats.pf_rst_cnt++;
4191 		break;
4192 	case HNAE3_FLR_RESET:
4193 		ret = hclge_func_reset_notify_vf(hdev);
4194 		if (ret)
4195 			return ret;
4196 		break;
4197 	case HNAE3_IMP_RESET:
4198 		hclge_handle_imp_error(hdev);
4199 		reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4200 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG,
4201 				BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val);
4202 		break;
4203 	default:
4204 		break;
4205 	}
4206 
4207 	/* inform hardware that preparatory work is done */
4208 	msleep(HCLGE_RESET_SYNC_TIME);
4209 	hclge_reset_handshake(hdev, true);
4210 	dev_info(&hdev->pdev->dev, "prepare wait ok\n");
4211 
4212 	return ret;
4213 }
4214 
4215 static void hclge_show_rst_info(struct hclge_dev *hdev)
4216 {
4217 	char *buf;
4218 
4219 	buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL);
4220 	if (!buf)
4221 		return;
4222 
4223 	hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN);
4224 
4225 	dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf);
4226 
4227 	kfree(buf);
4228 }
4229 
4230 static bool hclge_reset_err_handle(struct hclge_dev *hdev)
4231 {
4232 #define MAX_RESET_FAIL_CNT 5
4233 
4234 	if (hdev->reset_pending) {
4235 		dev_info(&hdev->pdev->dev, "Reset pending %lu\n",
4236 			 hdev->reset_pending);
4237 		return true;
4238 	} else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
4239 		   HCLGE_RESET_INT_M) {
4240 		dev_info(&hdev->pdev->dev,
4241 			 "reset failed because new reset interrupt\n");
4242 		hclge_clear_reset_cause(hdev);
4243 		return false;
4244 	} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
4245 		hdev->rst_stats.reset_fail_cnt++;
4246 		set_bit(hdev->reset_type, &hdev->reset_pending);
4247 		dev_info(&hdev->pdev->dev,
4248 			 "re-schedule reset task(%u)\n",
4249 			 hdev->rst_stats.reset_fail_cnt);
4250 		return true;
4251 	}
4252 
4253 	hclge_clear_reset_cause(hdev);
4254 
4255 	/* recover the handshake status when reset fail */
4256 	hclge_reset_handshake(hdev, true);
4257 
4258 	dev_err(&hdev->pdev->dev, "Reset fail!\n");
4259 
4260 	hclge_show_rst_info(hdev);
4261 
4262 	set_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4263 
4264 	return false;
4265 }
4266 
4267 static void hclge_update_reset_level(struct hclge_dev *hdev)
4268 {
4269 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4270 	enum hnae3_reset_type reset_level;
4271 
4272 	/* reset request will not be set during reset, so clear
4273 	 * pending reset request to avoid unnecessary reset
4274 	 * caused by the same reason.
4275 	 */
4276 	hclge_get_reset_level(ae_dev, &hdev->reset_request);
4277 
4278 	/* if default_reset_request has a higher level reset request,
4279 	 * it should be handled as soon as possible. since some errors
4280 	 * need this kind of reset to fix.
4281 	 */
4282 	reset_level = hclge_get_reset_level(ae_dev,
4283 					    &hdev->default_reset_request);
4284 	if (reset_level != HNAE3_NONE_RESET)
4285 		set_bit(reset_level, &hdev->reset_request);
4286 }
4287 
4288 static int hclge_set_rst_done(struct hclge_dev *hdev)
4289 {
4290 	struct hclge_pf_rst_done_cmd *req;
4291 	struct hclge_desc desc;
4292 	int ret;
4293 
4294 	req = (struct hclge_pf_rst_done_cmd *)desc.data;
4295 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false);
4296 	req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT;
4297 
4298 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4299 	/* To be compatible with the old firmware, which does not support
4300 	 * command HCLGE_OPC_PF_RST_DONE, just print a warning and
4301 	 * return success
4302 	 */
4303 	if (ret == -EOPNOTSUPP) {
4304 		dev_warn(&hdev->pdev->dev,
4305 			 "current firmware does not support command(0x%x)!\n",
4306 			 HCLGE_OPC_PF_RST_DONE);
4307 		return 0;
4308 	} else if (ret) {
4309 		dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n",
4310 			ret);
4311 	}
4312 
4313 	return ret;
4314 }
4315 
4316 static int hclge_reset_prepare_up(struct hclge_dev *hdev)
4317 {
4318 	int ret = 0;
4319 
4320 	switch (hdev->reset_type) {
4321 	case HNAE3_FUNC_RESET:
4322 	case HNAE3_FLR_RESET:
4323 		ret = hclge_set_all_vf_rst(hdev, false);
4324 		break;
4325 	case HNAE3_GLOBAL_RESET:
4326 	case HNAE3_IMP_RESET:
4327 		ret = hclge_set_rst_done(hdev);
4328 		break;
4329 	default:
4330 		break;
4331 	}
4332 
4333 	/* clear up the handshake status after re-initialize done */
4334 	hclge_reset_handshake(hdev, false);
4335 
4336 	return ret;
4337 }
4338 
4339 static int hclge_reset_stack(struct hclge_dev *hdev)
4340 {
4341 	int ret;
4342 
4343 	ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT);
4344 	if (ret)
4345 		return ret;
4346 
4347 	ret = hclge_reset_ae_dev(hdev->ae_dev);
4348 	if (ret)
4349 		return ret;
4350 
4351 	return hclge_notify_client(hdev, HNAE3_INIT_CLIENT);
4352 }
4353 
4354 static int hclge_reset_prepare(struct hclge_dev *hdev)
4355 {
4356 	int ret;
4357 
4358 	hdev->rst_stats.reset_cnt++;
4359 	/* perform reset of the stack & ae device for a client */
4360 	ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
4361 	if (ret)
4362 		return ret;
4363 
4364 	rtnl_lock();
4365 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
4366 	rtnl_unlock();
4367 	if (ret)
4368 		return ret;
4369 
4370 	return hclge_reset_prepare_wait(hdev);
4371 }
4372 
4373 static int hclge_reset_rebuild(struct hclge_dev *hdev)
4374 {
4375 	int ret;
4376 
4377 	hdev->rst_stats.hw_reset_done_cnt++;
4378 
4379 	ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
4380 	if (ret)
4381 		return ret;
4382 
4383 	rtnl_lock();
4384 	ret = hclge_reset_stack(hdev);
4385 	rtnl_unlock();
4386 	if (ret)
4387 		return ret;
4388 
4389 	hclge_clear_reset_cause(hdev);
4390 
4391 	ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
4392 	/* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1
4393 	 * times
4394 	 */
4395 	if (ret &&
4396 	    hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1)
4397 		return ret;
4398 
4399 	ret = hclge_reset_prepare_up(hdev);
4400 	if (ret)
4401 		return ret;
4402 
4403 	rtnl_lock();
4404 	ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT);
4405 	rtnl_unlock();
4406 	if (ret)
4407 		return ret;
4408 
4409 	ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT);
4410 	if (ret)
4411 		return ret;
4412 
4413 	hdev->last_reset_time = jiffies;
4414 	hdev->rst_stats.reset_fail_cnt = 0;
4415 	hdev->rst_stats.reset_done_cnt++;
4416 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4417 
4418 	hclge_update_reset_level(hdev);
4419 
4420 	return 0;
4421 }
4422 
4423 static void hclge_reset(struct hclge_dev *hdev)
4424 {
4425 	if (hclge_reset_prepare(hdev))
4426 		goto err_reset;
4427 
4428 	if (hclge_reset_wait(hdev))
4429 		goto err_reset;
4430 
4431 	if (hclge_reset_rebuild(hdev))
4432 		goto err_reset;
4433 
4434 	return;
4435 
4436 err_reset:
4437 	if (hclge_reset_err_handle(hdev))
4438 		hclge_reset_task_schedule(hdev);
4439 }
4440 
4441 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
4442 {
4443 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4444 	struct hclge_dev *hdev = ae_dev->priv;
4445 
4446 	/* We might end up getting called broadly because of 2 below cases:
4447 	 * 1. Recoverable error was conveyed through APEI and only way to bring
4448 	 *    normalcy is to reset.
4449 	 * 2. A new reset request from the stack due to timeout
4450 	 *
4451 	 * check if this is a new reset request and we are not here just because
4452 	 * last reset attempt did not succeed and watchdog hit us again. We will
4453 	 * know this if last reset request did not occur very recently (watchdog
4454 	 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz)
4455 	 * In case of new request we reset the "reset level" to PF reset.
4456 	 * And if it is a repeat reset request of the most recent one then we
4457 	 * want to make sure we throttle the reset request. Therefore, we will
4458 	 * not allow it again before 3*HZ times.
4459 	 */
4460 
4461 	if (time_before(jiffies, (hdev->last_reset_time +
4462 				  HCLGE_RESET_INTERVAL))) {
4463 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
4464 		return;
4465 	}
4466 
4467 	if (hdev->default_reset_request) {
4468 		hdev->reset_level =
4469 			hclge_get_reset_level(ae_dev,
4470 					      &hdev->default_reset_request);
4471 	} else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) {
4472 		hdev->reset_level = HNAE3_FUNC_RESET;
4473 	}
4474 
4475 	dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n",
4476 		 hdev->reset_level);
4477 
4478 	/* request reset & schedule reset task */
4479 	set_bit(hdev->reset_level, &hdev->reset_request);
4480 	hclge_reset_task_schedule(hdev);
4481 
4482 	if (hdev->reset_level < HNAE3_GLOBAL_RESET)
4483 		hdev->reset_level++;
4484 }
4485 
4486 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
4487 					enum hnae3_reset_type rst_type)
4488 {
4489 	struct hclge_dev *hdev = ae_dev->priv;
4490 
4491 	set_bit(rst_type, &hdev->default_reset_request);
4492 }
4493 
4494 static void hclge_reset_timer(struct timer_list *t)
4495 {
4496 	struct hclge_dev *hdev = from_timer(hdev, t, reset_timer);
4497 
4498 	/* if default_reset_request has no value, it means that this reset
4499 	 * request has already be handled, so just return here
4500 	 */
4501 	if (!hdev->default_reset_request)
4502 		return;
4503 
4504 	dev_info(&hdev->pdev->dev,
4505 		 "triggering reset in reset timer\n");
4506 	hclge_reset_event(hdev->pdev, NULL);
4507 }
4508 
4509 static void hclge_reset_subtask(struct hclge_dev *hdev)
4510 {
4511 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4512 
4513 	/* check if there is any ongoing reset in the hardware. This status can
4514 	 * be checked from reset_pending. If there is then, we need to wait for
4515 	 * hardware to complete reset.
4516 	 *    a. If we are able to figure out in reasonable time that hardware
4517 	 *       has fully resetted then, we can proceed with driver, client
4518 	 *       reset.
4519 	 *    b. else, we can come back later to check this status so re-sched
4520 	 *       now.
4521 	 */
4522 	hdev->last_reset_time = jiffies;
4523 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending);
4524 	if (hdev->reset_type != HNAE3_NONE_RESET)
4525 		hclge_reset(hdev);
4526 
4527 	/* check if we got any *new* reset requests to be honored */
4528 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request);
4529 	if (hdev->reset_type != HNAE3_NONE_RESET)
4530 		hclge_do_reset(hdev);
4531 
4532 	hdev->reset_type = HNAE3_NONE_RESET;
4533 }
4534 
4535 static void hclge_handle_err_reset_request(struct hclge_dev *hdev)
4536 {
4537 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4538 	enum hnae3_reset_type reset_type;
4539 
4540 	if (ae_dev->hw_err_reset_req) {
4541 		reset_type = hclge_get_reset_level(ae_dev,
4542 						   &ae_dev->hw_err_reset_req);
4543 		hclge_set_def_reset_request(ae_dev, reset_type);
4544 	}
4545 
4546 	if (hdev->default_reset_request && ae_dev->ops->reset_event)
4547 		ae_dev->ops->reset_event(hdev->pdev, NULL);
4548 
4549 	/* enable interrupt after error handling complete */
4550 	hclge_enable_vector(&hdev->misc_vector, true);
4551 }
4552 
4553 static void hclge_handle_err_recovery(struct hclge_dev *hdev)
4554 {
4555 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4556 
4557 	ae_dev->hw_err_reset_req = 0;
4558 
4559 	if (hclge_find_error_source(hdev)) {
4560 		hclge_handle_error_info_log(ae_dev);
4561 		hclge_handle_mac_tnl(hdev);
4562 	}
4563 
4564 	hclge_handle_err_reset_request(hdev);
4565 }
4566 
4567 static void hclge_misc_err_recovery(struct hclge_dev *hdev)
4568 {
4569 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4570 	struct device *dev = &hdev->pdev->dev;
4571 	u32 msix_sts_reg;
4572 
4573 	msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
4574 	if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) {
4575 		if (hclge_handle_hw_msix_error
4576 				(hdev, &hdev->default_reset_request))
4577 			dev_info(dev, "received msix interrupt 0x%x\n",
4578 				 msix_sts_reg);
4579 	}
4580 
4581 	hclge_handle_hw_ras_error(ae_dev);
4582 
4583 	hclge_handle_err_reset_request(hdev);
4584 }
4585 
4586 static void hclge_errhand_service_task(struct hclge_dev *hdev)
4587 {
4588 	if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
4589 		return;
4590 
4591 	if (hnae3_dev_ras_imp_supported(hdev))
4592 		hclge_handle_err_recovery(hdev);
4593 	else
4594 		hclge_misc_err_recovery(hdev);
4595 }
4596 
4597 static void hclge_reset_service_task(struct hclge_dev *hdev)
4598 {
4599 	if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state))
4600 		return;
4601 
4602 	if (time_is_before_jiffies(hdev->last_rst_scheduled +
4603 				   HCLGE_RESET_SCHED_TIMEOUT))
4604 		dev_warn(&hdev->pdev->dev,
4605 			 "reset service task is scheduled after %ums on cpu%u!\n",
4606 			 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled),
4607 			 smp_processor_id());
4608 
4609 	down(&hdev->reset_sem);
4610 	set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4611 
4612 	hclge_reset_subtask(hdev);
4613 
4614 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4615 	up(&hdev->reset_sem);
4616 }
4617 
4618 static void hclge_update_vport_alive(struct hclge_dev *hdev)
4619 {
4620 #define HCLGE_ALIVE_SECONDS_NORMAL		8
4621 
4622 	unsigned long alive_time = HCLGE_ALIVE_SECONDS_NORMAL * HZ;
4623 	int i;
4624 
4625 	/* start from vport 1 for PF is always alive */
4626 	for (i = 1; i < hdev->num_alloc_vport; i++) {
4627 		struct hclge_vport *vport = &hdev->vport[i];
4628 
4629 		if (!test_bit(HCLGE_VPORT_STATE_INITED, &vport->state) ||
4630 		    !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
4631 			continue;
4632 		if (time_after(jiffies, vport->last_active_jiffies +
4633 			       alive_time)) {
4634 			clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
4635 			dev_warn(&hdev->pdev->dev,
4636 				 "VF %u heartbeat timeout\n",
4637 				 i - HCLGE_VF_VPORT_START_NUM);
4638 		}
4639 	}
4640 }
4641 
4642 static void hclge_periodic_service_task(struct hclge_dev *hdev)
4643 {
4644 	unsigned long delta = round_jiffies_relative(HZ);
4645 
4646 	if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
4647 		return;
4648 
4649 	/* Always handle the link updating to make sure link state is
4650 	 * updated when it is triggered by mbx.
4651 	 */
4652 	hclge_update_link_status(hdev);
4653 	hclge_sync_mac_table(hdev);
4654 	hclge_sync_promisc_mode(hdev);
4655 	hclge_sync_fd_table(hdev);
4656 
4657 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
4658 		delta = jiffies - hdev->last_serv_processed;
4659 
4660 		if (delta < round_jiffies_relative(HZ)) {
4661 			delta = round_jiffies_relative(HZ) - delta;
4662 			goto out;
4663 		}
4664 	}
4665 
4666 	hdev->serv_processed_cnt++;
4667 	hclge_update_vport_alive(hdev);
4668 
4669 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) {
4670 		hdev->last_serv_processed = jiffies;
4671 		goto out;
4672 	}
4673 
4674 	if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL))
4675 		hclge_update_stats_for_all(hdev);
4676 
4677 	hclge_update_port_info(hdev);
4678 	hclge_sync_vlan_filter(hdev);
4679 
4680 	if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL))
4681 		hclge_rfs_filter_expire(hdev);
4682 
4683 	hdev->last_serv_processed = jiffies;
4684 
4685 out:
4686 	hclge_task_schedule(hdev, delta);
4687 }
4688 
4689 static void hclge_ptp_service_task(struct hclge_dev *hdev)
4690 {
4691 	unsigned long flags;
4692 
4693 	if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) ||
4694 	    !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) ||
4695 	    !time_is_before_jiffies(hdev->ptp->tx_start + HZ))
4696 		return;
4697 
4698 	/* to prevent concurrence with the irq handler */
4699 	spin_lock_irqsave(&hdev->ptp->lock, flags);
4700 
4701 	/* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq
4702 	 * handler may handle it just before spin_lock_irqsave().
4703 	 */
4704 	if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state))
4705 		hclge_ptp_clean_tx_hwts(hdev);
4706 
4707 	spin_unlock_irqrestore(&hdev->ptp->lock, flags);
4708 }
4709 
4710 static void hclge_service_task(struct work_struct *work)
4711 {
4712 	struct hclge_dev *hdev =
4713 		container_of(work, struct hclge_dev, service_task.work);
4714 
4715 	hclge_errhand_service_task(hdev);
4716 	hclge_reset_service_task(hdev);
4717 	hclge_ptp_service_task(hdev);
4718 	hclge_mailbox_service_task(hdev);
4719 	hclge_periodic_service_task(hdev);
4720 
4721 	/* Handle error recovery, reset and mbx again in case periodical task
4722 	 * delays the handling by calling hclge_task_schedule() in
4723 	 * hclge_periodic_service_task().
4724 	 */
4725 	hclge_errhand_service_task(hdev);
4726 	hclge_reset_service_task(hdev);
4727 	hclge_mailbox_service_task(hdev);
4728 }
4729 
4730 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle)
4731 {
4732 	/* VF handle has no client */
4733 	if (!handle->client)
4734 		return container_of(handle, struct hclge_vport, nic);
4735 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
4736 		return container_of(handle, struct hclge_vport, roce);
4737 	else
4738 		return container_of(handle, struct hclge_vport, nic);
4739 }
4740 
4741 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx,
4742 				  struct hnae3_vector_info *vector_info)
4743 {
4744 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2	64
4745 
4746 	vector_info->vector = pci_irq_vector(hdev->pdev, idx);
4747 
4748 	/* need an extend offset to config vector >= 64 */
4749 	if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2)
4750 		vector_info->io_addr = hdev->hw.hw.io_base +
4751 				HCLGE_VECTOR_REG_BASE +
4752 				(idx - 1) * HCLGE_VECTOR_REG_OFFSET;
4753 	else
4754 		vector_info->io_addr = hdev->hw.hw.io_base +
4755 				HCLGE_VECTOR_EXT_REG_BASE +
4756 				(idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4757 				HCLGE_VECTOR_REG_OFFSET_H +
4758 				(idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4759 				HCLGE_VECTOR_REG_OFFSET;
4760 
4761 	hdev->vector_status[idx] = hdev->vport[0].vport_id;
4762 	hdev->vector_irq[idx] = vector_info->vector;
4763 }
4764 
4765 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num,
4766 			    struct hnae3_vector_info *vector_info)
4767 {
4768 	struct hclge_vport *vport = hclge_get_vport(handle);
4769 	struct hnae3_vector_info *vector = vector_info;
4770 	struct hclge_dev *hdev = vport->back;
4771 	int alloc = 0;
4772 	u16 i = 0;
4773 	u16 j;
4774 
4775 	vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num);
4776 	vector_num = min(hdev->num_msi_left, vector_num);
4777 
4778 	for (j = 0; j < vector_num; j++) {
4779 		while (++i < hdev->num_nic_msi) {
4780 			if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) {
4781 				hclge_get_vector_info(hdev, i, vector);
4782 				vector++;
4783 				alloc++;
4784 
4785 				break;
4786 			}
4787 		}
4788 	}
4789 	hdev->num_msi_left -= alloc;
4790 	hdev->num_msi_used += alloc;
4791 
4792 	return alloc;
4793 }
4794 
4795 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector)
4796 {
4797 	int i;
4798 
4799 	for (i = 0; i < hdev->num_msi; i++)
4800 		if (vector == hdev->vector_irq[i])
4801 			return i;
4802 
4803 	return -EINVAL;
4804 }
4805 
4806 static int hclge_put_vector(struct hnae3_handle *handle, int vector)
4807 {
4808 	struct hclge_vport *vport = hclge_get_vport(handle);
4809 	struct hclge_dev *hdev = vport->back;
4810 	int vector_id;
4811 
4812 	vector_id = hclge_get_vector_index(hdev, vector);
4813 	if (vector_id < 0) {
4814 		dev_err(&hdev->pdev->dev,
4815 			"Get vector index fail. vector = %d\n", vector);
4816 		return vector_id;
4817 	}
4818 
4819 	hclge_free_vector(hdev, vector_id);
4820 
4821 	return 0;
4822 }
4823 
4824 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir,
4825 			 u8 *key, u8 *hfunc)
4826 {
4827 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4828 	struct hclge_vport *vport = hclge_get_vport(handle);
4829 	struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg;
4830 
4831 	hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
4832 
4833 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
4834 				     ae_dev->dev_specs.rss_ind_tbl_size);
4835 
4836 	return 0;
4837 }
4838 
4839 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir,
4840 			 const  u8 *key, const  u8 hfunc)
4841 {
4842 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4843 	struct hclge_vport *vport = hclge_get_vport(handle);
4844 	struct hclge_dev *hdev = vport->back;
4845 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
4846 	int ret, i;
4847 
4848 	ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc);
4849 	if (ret) {
4850 		dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc);
4851 		return ret;
4852 	}
4853 
4854 	/* Update the shadow RSS table with user specified qids */
4855 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
4856 		rss_cfg->rss_indirection_tbl[i] = indir[i];
4857 
4858 	/* Update the hardware */
4859 	return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw,
4860 					      rss_cfg->rss_indirection_tbl);
4861 }
4862 
4863 static int hclge_set_rss_tuple(struct hnae3_handle *handle,
4864 			       struct ethtool_rxnfc *nfc)
4865 {
4866 	struct hclge_vport *vport = hclge_get_vport(handle);
4867 	struct hclge_dev *hdev = vport->back;
4868 	int ret;
4869 
4870 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
4871 				       &hdev->rss_cfg, nfc);
4872 	if (ret) {
4873 		dev_err(&hdev->pdev->dev,
4874 			"failed to set rss tuple, ret = %d.\n", ret);
4875 		return ret;
4876 	}
4877 
4878 	return 0;
4879 }
4880 
4881 static int hclge_get_rss_tuple(struct hnae3_handle *handle,
4882 			       struct ethtool_rxnfc *nfc)
4883 {
4884 	struct hclge_vport *vport = hclge_get_vport(handle);
4885 	u8 tuple_sets;
4886 	int ret;
4887 
4888 	nfc->data = 0;
4889 
4890 	ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type,
4891 				       &tuple_sets);
4892 	if (ret || !tuple_sets)
4893 		return ret;
4894 
4895 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
4896 
4897 	return 0;
4898 }
4899 
4900 static int hclge_get_tc_size(struct hnae3_handle *handle)
4901 {
4902 	struct hclge_vport *vport = hclge_get_vport(handle);
4903 	struct hclge_dev *hdev = vport->back;
4904 
4905 	return hdev->pf_rss_size_max;
4906 }
4907 
4908 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev)
4909 {
4910 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
4911 	struct hclge_vport *vport = hdev->vport;
4912 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
4913 	u16 tc_valid[HCLGE_MAX_TC_NUM] = {0};
4914 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
4915 	struct hnae3_tc_info *tc_info;
4916 	u16 roundup_size;
4917 	u16 rss_size;
4918 	int i;
4919 
4920 	tc_info = &vport->nic.kinfo.tc_info;
4921 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
4922 		rss_size = tc_info->tqp_count[i];
4923 		tc_valid[i] = 0;
4924 
4925 		if (!(hdev->hw_tc_map & BIT(i)))
4926 			continue;
4927 
4928 		/* tc_size set to hardware is the log2 of roundup power of two
4929 		 * of rss_size, the acutal queue size is limited by indirection
4930 		 * table.
4931 		 */
4932 		if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size ||
4933 		    rss_size == 0) {
4934 			dev_err(&hdev->pdev->dev,
4935 				"Configure rss tc size failed, invalid TC_SIZE = %u\n",
4936 				rss_size);
4937 			return -EINVAL;
4938 		}
4939 
4940 		roundup_size = roundup_pow_of_two(rss_size);
4941 		roundup_size = ilog2(roundup_size);
4942 
4943 		tc_valid[i] = 1;
4944 		tc_size[i] = roundup_size;
4945 		tc_offset[i] = tc_info->tqp_offset[i];
4946 	}
4947 
4948 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
4949 					  tc_size);
4950 }
4951 
4952 int hclge_rss_init_hw(struct hclge_dev *hdev)
4953 {
4954 	u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl;
4955 	u8 *key = hdev->rss_cfg.rss_hash_key;
4956 	u8 hfunc = hdev->rss_cfg.rss_algo;
4957 	int ret;
4958 
4959 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
4960 					     rss_indir);
4961 	if (ret)
4962 		return ret;
4963 
4964 	ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key);
4965 	if (ret)
4966 		return ret;
4967 
4968 	ret = hclge_comm_set_rss_input_tuple(&hdev->vport[0].nic,
4969 					     &hdev->hw.hw, true,
4970 					     &hdev->rss_cfg);
4971 	if (ret)
4972 		return ret;
4973 
4974 	return hclge_init_rss_tc_mode(hdev);
4975 }
4976 
4977 int hclge_bind_ring_with_vector(struct hclge_vport *vport,
4978 				int vector_id, bool en,
4979 				struct hnae3_ring_chain_node *ring_chain)
4980 {
4981 	struct hclge_dev *hdev = vport->back;
4982 	struct hnae3_ring_chain_node *node;
4983 	struct hclge_desc desc;
4984 	struct hclge_ctrl_vector_chain_cmd *req =
4985 		(struct hclge_ctrl_vector_chain_cmd *)desc.data;
4986 	enum hclge_comm_cmd_status status;
4987 	enum hclge_opcode_type op;
4988 	u16 tqp_type_and_id;
4989 	int i;
4990 
4991 	op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR;
4992 	hclge_cmd_setup_basic_desc(&desc, op, false);
4993 	req->int_vector_id_l = hnae3_get_field(vector_id,
4994 					       HCLGE_VECTOR_ID_L_M,
4995 					       HCLGE_VECTOR_ID_L_S);
4996 	req->int_vector_id_h = hnae3_get_field(vector_id,
4997 					       HCLGE_VECTOR_ID_H_M,
4998 					       HCLGE_VECTOR_ID_H_S);
4999 
5000 	i = 0;
5001 	for (node = ring_chain; node; node = node->next) {
5002 		tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]);
5003 		hnae3_set_field(tqp_type_and_id,  HCLGE_INT_TYPE_M,
5004 				HCLGE_INT_TYPE_S,
5005 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B));
5006 		hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M,
5007 				HCLGE_TQP_ID_S, node->tqp_index);
5008 		hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M,
5009 				HCLGE_INT_GL_IDX_S,
5010 				hnae3_get_field(node->int_gl_idx,
5011 						HNAE3_RING_GL_IDX_M,
5012 						HNAE3_RING_GL_IDX_S));
5013 		req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id);
5014 		if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) {
5015 			req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD;
5016 			req->vfid = vport->vport_id;
5017 
5018 			status = hclge_cmd_send(&hdev->hw, &desc, 1);
5019 			if (status) {
5020 				dev_err(&hdev->pdev->dev,
5021 					"Map TQP fail, status is %d.\n",
5022 					status);
5023 				return -EIO;
5024 			}
5025 			i = 0;
5026 
5027 			hclge_cmd_setup_basic_desc(&desc,
5028 						   op,
5029 						   false);
5030 			req->int_vector_id_l =
5031 				hnae3_get_field(vector_id,
5032 						HCLGE_VECTOR_ID_L_M,
5033 						HCLGE_VECTOR_ID_L_S);
5034 			req->int_vector_id_h =
5035 				hnae3_get_field(vector_id,
5036 						HCLGE_VECTOR_ID_H_M,
5037 						HCLGE_VECTOR_ID_H_S);
5038 		}
5039 	}
5040 
5041 	if (i > 0) {
5042 		req->int_cause_num = i;
5043 		req->vfid = vport->vport_id;
5044 		status = hclge_cmd_send(&hdev->hw, &desc, 1);
5045 		if (status) {
5046 			dev_err(&hdev->pdev->dev,
5047 				"Map TQP fail, status is %d.\n", status);
5048 			return -EIO;
5049 		}
5050 	}
5051 
5052 	return 0;
5053 }
5054 
5055 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector,
5056 				    struct hnae3_ring_chain_node *ring_chain)
5057 {
5058 	struct hclge_vport *vport = hclge_get_vport(handle);
5059 	struct hclge_dev *hdev = vport->back;
5060 	int vector_id;
5061 
5062 	vector_id = hclge_get_vector_index(hdev, vector);
5063 	if (vector_id < 0) {
5064 		dev_err(&hdev->pdev->dev,
5065 			"failed to get vector index. vector=%d\n", vector);
5066 		return vector_id;
5067 	}
5068 
5069 	return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain);
5070 }
5071 
5072 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector,
5073 				       struct hnae3_ring_chain_node *ring_chain)
5074 {
5075 	struct hclge_vport *vport = hclge_get_vport(handle);
5076 	struct hclge_dev *hdev = vport->back;
5077 	int vector_id, ret;
5078 
5079 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
5080 		return 0;
5081 
5082 	vector_id = hclge_get_vector_index(hdev, vector);
5083 	if (vector_id < 0) {
5084 		dev_err(&handle->pdev->dev,
5085 			"Get vector index fail. ret =%d\n", vector_id);
5086 		return vector_id;
5087 	}
5088 
5089 	ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain);
5090 	if (ret)
5091 		dev_err(&handle->pdev->dev,
5092 			"Unmap ring from vector fail. vectorid=%d, ret =%d\n",
5093 			vector_id, ret);
5094 
5095 	return ret;
5096 }
5097 
5098 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id,
5099 				      bool en_uc, bool en_mc, bool en_bc)
5100 {
5101 	struct hclge_vport *vport = &hdev->vport[vf_id];
5102 	struct hnae3_handle *handle = &vport->nic;
5103 	struct hclge_promisc_cfg_cmd *req;
5104 	struct hclge_desc desc;
5105 	bool uc_tx_en = en_uc;
5106 	u8 promisc_cfg = 0;
5107 	int ret;
5108 
5109 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false);
5110 
5111 	req = (struct hclge_promisc_cfg_cmd *)desc.data;
5112 	req->vf_id = vf_id;
5113 
5114 	if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags))
5115 		uc_tx_en = false;
5116 
5117 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0);
5118 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0);
5119 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0);
5120 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0);
5121 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0);
5122 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0);
5123 	req->extend_promisc = promisc_cfg;
5124 
5125 	/* to be compatible with DEVICE_VERSION_V1/2 */
5126 	promisc_cfg = 0;
5127 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0);
5128 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0);
5129 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0);
5130 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1);
5131 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1);
5132 	req->promisc = promisc_cfg;
5133 
5134 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5135 	if (ret)
5136 		dev_err(&hdev->pdev->dev,
5137 			"failed to set vport %u promisc mode, ret = %d.\n",
5138 			vf_id, ret);
5139 
5140 	return ret;
5141 }
5142 
5143 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc,
5144 				 bool en_mc_pmc, bool en_bc_pmc)
5145 {
5146 	return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id,
5147 					  en_uc_pmc, en_mc_pmc, en_bc_pmc);
5148 }
5149 
5150 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
5151 				  bool en_mc_pmc)
5152 {
5153 	struct hclge_vport *vport = hclge_get_vport(handle);
5154 	struct hclge_dev *hdev = vport->back;
5155 	bool en_bc_pmc = true;
5156 
5157 	/* For device whose version below V2, if broadcast promisc enabled,
5158 	 * vlan filter is always bypassed. So broadcast promisc should be
5159 	 * disabled until user enable promisc mode
5160 	 */
5161 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
5162 		en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false;
5163 
5164 	return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc,
5165 					    en_bc_pmc);
5166 }
5167 
5168 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle)
5169 {
5170 	struct hclge_vport *vport = hclge_get_vport(handle);
5171 
5172 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
5173 }
5174 
5175 static void hclge_sync_fd_state(struct hclge_dev *hdev)
5176 {
5177 	if (hlist_empty(&hdev->fd_rule_list))
5178 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
5179 }
5180 
5181 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location)
5182 {
5183 	if (!test_bit(location, hdev->fd_bmap)) {
5184 		set_bit(location, hdev->fd_bmap);
5185 		hdev->hclge_fd_rule_num++;
5186 	}
5187 }
5188 
5189 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location)
5190 {
5191 	if (test_bit(location, hdev->fd_bmap)) {
5192 		clear_bit(location, hdev->fd_bmap);
5193 		hdev->hclge_fd_rule_num--;
5194 	}
5195 }
5196 
5197 static void hclge_fd_free_node(struct hclge_dev *hdev,
5198 			       struct hclge_fd_rule *rule)
5199 {
5200 	hlist_del(&rule->rule_node);
5201 	kfree(rule);
5202 	hclge_sync_fd_state(hdev);
5203 }
5204 
5205 static void hclge_update_fd_rule_node(struct hclge_dev *hdev,
5206 				      struct hclge_fd_rule *old_rule,
5207 				      struct hclge_fd_rule *new_rule,
5208 				      enum HCLGE_FD_NODE_STATE state)
5209 {
5210 	switch (state) {
5211 	case HCLGE_FD_TO_ADD:
5212 	case HCLGE_FD_ACTIVE:
5213 		/* 1) if the new state is TO_ADD, just replace the old rule
5214 		 * with the same location, no matter its state, because the
5215 		 * new rule will be configured to the hardware.
5216 		 * 2) if the new state is ACTIVE, it means the new rule
5217 		 * has been configured to the hardware, so just replace
5218 		 * the old rule node with the same location.
5219 		 * 3) for it doesn't add a new node to the list, so it's
5220 		 * unnecessary to update the rule number and fd_bmap.
5221 		 */
5222 		new_rule->rule_node.next = old_rule->rule_node.next;
5223 		new_rule->rule_node.pprev = old_rule->rule_node.pprev;
5224 		memcpy(old_rule, new_rule, sizeof(*old_rule));
5225 		kfree(new_rule);
5226 		break;
5227 	case HCLGE_FD_DELETED:
5228 		hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5229 		hclge_fd_free_node(hdev, old_rule);
5230 		break;
5231 	case HCLGE_FD_TO_DEL:
5232 		/* if new request is TO_DEL, and old rule is existent
5233 		 * 1) the state of old rule is TO_DEL, we need do nothing,
5234 		 * because we delete rule by location, other rule content
5235 		 * is unncessary.
5236 		 * 2) the state of old rule is ACTIVE, we need to change its
5237 		 * state to TO_DEL, so the rule will be deleted when periodic
5238 		 * task being scheduled.
5239 		 * 3) the state of old rule is TO_ADD, it means the rule hasn't
5240 		 * been added to hardware, so we just delete the rule node from
5241 		 * fd_rule_list directly.
5242 		 */
5243 		if (old_rule->state == HCLGE_FD_TO_ADD) {
5244 			hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5245 			hclge_fd_free_node(hdev, old_rule);
5246 			return;
5247 		}
5248 		old_rule->state = HCLGE_FD_TO_DEL;
5249 		break;
5250 	}
5251 }
5252 
5253 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist,
5254 						u16 location,
5255 						struct hclge_fd_rule **parent)
5256 {
5257 	struct hclge_fd_rule *rule;
5258 	struct hlist_node *node;
5259 
5260 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
5261 		if (rule->location == location)
5262 			return rule;
5263 		else if (rule->location > location)
5264 			return NULL;
5265 		/* record the parent node, use to keep the nodes in fd_rule_list
5266 		 * in ascend order.
5267 		 */
5268 		*parent = rule;
5269 	}
5270 
5271 	return NULL;
5272 }
5273 
5274 /* insert fd rule node in ascend order according to rule->location */
5275 static void hclge_fd_insert_rule_node(struct hlist_head *hlist,
5276 				      struct hclge_fd_rule *rule,
5277 				      struct hclge_fd_rule *parent)
5278 {
5279 	INIT_HLIST_NODE(&rule->rule_node);
5280 
5281 	if (parent)
5282 		hlist_add_behind(&rule->rule_node, &parent->rule_node);
5283 	else
5284 		hlist_add_head(&rule->rule_node, hlist);
5285 }
5286 
5287 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev,
5288 				     struct hclge_fd_user_def_cfg *cfg)
5289 {
5290 	struct hclge_fd_user_def_cfg_cmd *req;
5291 	struct hclge_desc desc;
5292 	u16 data = 0;
5293 	int ret;
5294 
5295 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false);
5296 
5297 	req = (struct hclge_fd_user_def_cfg_cmd *)desc.data;
5298 
5299 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0);
5300 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5301 			HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset);
5302 	req->ol2_cfg = cpu_to_le16(data);
5303 
5304 	data = 0;
5305 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0);
5306 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5307 			HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset);
5308 	req->ol3_cfg = cpu_to_le16(data);
5309 
5310 	data = 0;
5311 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0);
5312 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5313 			HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset);
5314 	req->ol4_cfg = cpu_to_le16(data);
5315 
5316 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5317 	if (ret)
5318 		dev_err(&hdev->pdev->dev,
5319 			"failed to set fd user def data, ret= %d\n", ret);
5320 	return ret;
5321 }
5322 
5323 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked)
5324 {
5325 	int ret;
5326 
5327 	if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state))
5328 		return;
5329 
5330 	if (!locked)
5331 		spin_lock_bh(&hdev->fd_rule_lock);
5332 
5333 	ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg);
5334 	if (ret)
5335 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5336 
5337 	if (!locked)
5338 		spin_unlock_bh(&hdev->fd_rule_lock);
5339 }
5340 
5341 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev,
5342 					  struct hclge_fd_rule *rule)
5343 {
5344 	struct hlist_head *hlist = &hdev->fd_rule_list;
5345 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5346 	struct hclge_fd_user_def_info *info, *old_info;
5347 	struct hclge_fd_user_def_cfg *cfg;
5348 
5349 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5350 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5351 		return 0;
5352 
5353 	/* for valid layer is start from 1, so need minus 1 to get the cfg */
5354 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5355 	info = &rule->ep.user_def;
5356 
5357 	if (!cfg->ref_cnt || cfg->offset == info->offset)
5358 		return 0;
5359 
5360 	if (cfg->ref_cnt > 1)
5361 		goto error;
5362 
5363 	fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent);
5364 	if (fd_rule) {
5365 		old_info = &fd_rule->ep.user_def;
5366 		if (info->layer == old_info->layer)
5367 			return 0;
5368 	}
5369 
5370 error:
5371 	dev_err(&hdev->pdev->dev,
5372 		"No available offset for layer%d fd rule, each layer only support one user def offset.\n",
5373 		info->layer + 1);
5374 	return -ENOSPC;
5375 }
5376 
5377 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev,
5378 					 struct hclge_fd_rule *rule)
5379 {
5380 	struct hclge_fd_user_def_cfg *cfg;
5381 
5382 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5383 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5384 		return;
5385 
5386 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5387 	if (!cfg->ref_cnt) {
5388 		cfg->offset = rule->ep.user_def.offset;
5389 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5390 	}
5391 	cfg->ref_cnt++;
5392 }
5393 
5394 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev,
5395 					 struct hclge_fd_rule *rule)
5396 {
5397 	struct hclge_fd_user_def_cfg *cfg;
5398 
5399 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5400 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5401 		return;
5402 
5403 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5404 	if (!cfg->ref_cnt)
5405 		return;
5406 
5407 	cfg->ref_cnt--;
5408 	if (!cfg->ref_cnt) {
5409 		cfg->offset = 0;
5410 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5411 	}
5412 }
5413 
5414 static void hclge_update_fd_list(struct hclge_dev *hdev,
5415 				 enum HCLGE_FD_NODE_STATE state, u16 location,
5416 				 struct hclge_fd_rule *new_rule)
5417 {
5418 	struct hlist_head *hlist = &hdev->fd_rule_list;
5419 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5420 
5421 	fd_rule = hclge_find_fd_rule(hlist, location, &parent);
5422 	if (fd_rule) {
5423 		hclge_fd_dec_user_def_refcnt(hdev, fd_rule);
5424 		if (state == HCLGE_FD_ACTIVE)
5425 			hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5426 		hclge_sync_fd_user_def_cfg(hdev, true);
5427 
5428 		hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state);
5429 		return;
5430 	}
5431 
5432 	/* it's unlikely to fail here, because we have checked the rule
5433 	 * exist before.
5434 	 */
5435 	if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) {
5436 		dev_warn(&hdev->pdev->dev,
5437 			 "failed to delete fd rule %u, it's inexistent\n",
5438 			 location);
5439 		return;
5440 	}
5441 
5442 	hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5443 	hclge_sync_fd_user_def_cfg(hdev, true);
5444 
5445 	hclge_fd_insert_rule_node(hlist, new_rule, parent);
5446 	hclge_fd_inc_rule_cnt(hdev, new_rule->location);
5447 
5448 	if (state == HCLGE_FD_TO_ADD) {
5449 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
5450 		hclge_task_schedule(hdev, 0);
5451 	}
5452 }
5453 
5454 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode)
5455 {
5456 	struct hclge_get_fd_mode_cmd *req;
5457 	struct hclge_desc desc;
5458 	int ret;
5459 
5460 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true);
5461 
5462 	req = (struct hclge_get_fd_mode_cmd *)desc.data;
5463 
5464 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5465 	if (ret) {
5466 		dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret);
5467 		return ret;
5468 	}
5469 
5470 	*fd_mode = req->mode;
5471 
5472 	return ret;
5473 }
5474 
5475 static int hclge_get_fd_allocation(struct hclge_dev *hdev,
5476 				   u32 *stage1_entry_num,
5477 				   u32 *stage2_entry_num,
5478 				   u16 *stage1_counter_num,
5479 				   u16 *stage2_counter_num)
5480 {
5481 	struct hclge_get_fd_allocation_cmd *req;
5482 	struct hclge_desc desc;
5483 	int ret;
5484 
5485 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true);
5486 
5487 	req = (struct hclge_get_fd_allocation_cmd *)desc.data;
5488 
5489 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5490 	if (ret) {
5491 		dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n",
5492 			ret);
5493 		return ret;
5494 	}
5495 
5496 	*stage1_entry_num = le32_to_cpu(req->stage1_entry_num);
5497 	*stage2_entry_num = le32_to_cpu(req->stage2_entry_num);
5498 	*stage1_counter_num = le16_to_cpu(req->stage1_counter_num);
5499 	*stage2_counter_num = le16_to_cpu(req->stage2_counter_num);
5500 
5501 	return ret;
5502 }
5503 
5504 static int hclge_set_fd_key_config(struct hclge_dev *hdev,
5505 				   enum HCLGE_FD_STAGE stage_num)
5506 {
5507 	struct hclge_set_fd_key_config_cmd *req;
5508 	struct hclge_fd_key_cfg *stage;
5509 	struct hclge_desc desc;
5510 	int ret;
5511 
5512 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false);
5513 
5514 	req = (struct hclge_set_fd_key_config_cmd *)desc.data;
5515 	stage = &hdev->fd_cfg.key_cfg[stage_num];
5516 	req->stage = stage_num;
5517 	req->key_select = stage->key_sel;
5518 	req->inner_sipv6_word_en = stage->inner_sipv6_word_en;
5519 	req->inner_dipv6_word_en = stage->inner_dipv6_word_en;
5520 	req->outer_sipv6_word_en = stage->outer_sipv6_word_en;
5521 	req->outer_dipv6_word_en = stage->outer_dipv6_word_en;
5522 	req->tuple_mask = cpu_to_le32(~stage->tuple_active);
5523 	req->meta_data_mask = cpu_to_le32(~stage->meta_data_active);
5524 
5525 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5526 	if (ret)
5527 		dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret);
5528 
5529 	return ret;
5530 }
5531 
5532 static void hclge_fd_disable_user_def(struct hclge_dev *hdev)
5533 {
5534 	struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg;
5535 
5536 	spin_lock_bh(&hdev->fd_rule_lock);
5537 	memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg));
5538 	spin_unlock_bh(&hdev->fd_rule_lock);
5539 
5540 	hclge_fd_set_user_def_cmd(hdev, cfg);
5541 }
5542 
5543 static int hclge_init_fd_config(struct hclge_dev *hdev)
5544 {
5545 #define LOW_2_WORDS		0x03
5546 	struct hclge_fd_key_cfg *key_cfg;
5547 	int ret;
5548 
5549 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
5550 		return 0;
5551 
5552 	ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode);
5553 	if (ret)
5554 		return ret;
5555 
5556 	switch (hdev->fd_cfg.fd_mode) {
5557 	case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
5558 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH;
5559 		break;
5560 	case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
5561 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2;
5562 		break;
5563 	default:
5564 		dev_err(&hdev->pdev->dev,
5565 			"Unsupported flow director mode %u\n",
5566 			hdev->fd_cfg.fd_mode);
5567 		return -EOPNOTSUPP;
5568 	}
5569 
5570 	key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1];
5571 	key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE;
5572 	key_cfg->inner_sipv6_word_en = LOW_2_WORDS;
5573 	key_cfg->inner_dipv6_word_en = LOW_2_WORDS;
5574 	key_cfg->outer_sipv6_word_en = 0;
5575 	key_cfg->outer_dipv6_word_en = 0;
5576 
5577 	key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) |
5578 				BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
5579 				BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
5580 				BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5581 
5582 	/* If use max 400bit key, we can support tuples for ether type */
5583 	if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
5584 		key_cfg->tuple_active |=
5585 				BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC);
5586 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5587 			key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
5588 	}
5589 
5590 	/* roce_type is used to filter roce frames
5591 	 * dst_vport is used to specify the rule
5592 	 */
5593 	key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT);
5594 
5595 	ret = hclge_get_fd_allocation(hdev,
5596 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1],
5597 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2],
5598 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1],
5599 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]);
5600 	if (ret)
5601 		return ret;
5602 
5603 	return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1);
5604 }
5605 
5606 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x,
5607 				int loc, u8 *key, bool is_add)
5608 {
5609 	struct hclge_fd_tcam_config_1_cmd *req1;
5610 	struct hclge_fd_tcam_config_2_cmd *req2;
5611 	struct hclge_fd_tcam_config_3_cmd *req3;
5612 	struct hclge_desc desc[3];
5613 	int ret;
5614 
5615 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false);
5616 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5617 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false);
5618 	desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5619 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false);
5620 
5621 	req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data;
5622 	req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data;
5623 	req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data;
5624 
5625 	req1->stage = stage;
5626 	req1->xy_sel = sel_x ? 1 : 0;
5627 	hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0);
5628 	req1->index = cpu_to_le32(loc);
5629 	req1->entry_vld = sel_x ? is_add : 0;
5630 
5631 	if (key) {
5632 		memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data));
5633 		memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)],
5634 		       sizeof(req2->tcam_data));
5635 		memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) +
5636 		       sizeof(req2->tcam_data)], sizeof(req3->tcam_data));
5637 	}
5638 
5639 	ret = hclge_cmd_send(&hdev->hw, desc, 3);
5640 	if (ret)
5641 		dev_err(&hdev->pdev->dev,
5642 			"config tcam key fail, ret=%d\n",
5643 			ret);
5644 
5645 	return ret;
5646 }
5647 
5648 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc,
5649 			      struct hclge_fd_ad_data *action)
5650 {
5651 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
5652 	struct hclge_fd_ad_config_cmd *req;
5653 	struct hclge_desc desc;
5654 	u64 ad_data = 0;
5655 	int ret;
5656 
5657 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false);
5658 
5659 	req = (struct hclge_fd_ad_config_cmd *)desc.data;
5660 	req->index = cpu_to_le32(loc);
5661 	req->stage = stage;
5662 
5663 	hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B,
5664 		      action->write_rule_id_to_bd);
5665 	hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S,
5666 			action->rule_id);
5667 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
5668 		hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B,
5669 			      action->override_tc);
5670 		hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M,
5671 				HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size);
5672 	}
5673 	ad_data <<= 32;
5674 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet);
5675 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B,
5676 		      action->forward_to_direct_queue);
5677 	hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S,
5678 			action->queue_id);
5679 	hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter);
5680 	hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M,
5681 			HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id);
5682 	hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage);
5683 	hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S,
5684 			action->counter_id);
5685 
5686 	req->ad_data = cpu_to_le64(ad_data);
5687 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5688 	if (ret)
5689 		dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret);
5690 
5691 	return ret;
5692 }
5693 
5694 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y,
5695 				   struct hclge_fd_rule *rule)
5696 {
5697 	int offset, moffset, ip_offset;
5698 	enum HCLGE_FD_KEY_OPT key_opt;
5699 	u16 tmp_x_s, tmp_y_s;
5700 	u32 tmp_x_l, tmp_y_l;
5701 	u8 *p = (u8 *)rule;
5702 	int i;
5703 
5704 	if (rule->unused_tuple & BIT(tuple_bit))
5705 		return true;
5706 
5707 	key_opt = tuple_key_info[tuple_bit].key_opt;
5708 	offset = tuple_key_info[tuple_bit].offset;
5709 	moffset = tuple_key_info[tuple_bit].moffset;
5710 
5711 	switch (key_opt) {
5712 	case KEY_OPT_U8:
5713 		calc_x(*key_x, p[offset], p[moffset]);
5714 		calc_y(*key_y, p[offset], p[moffset]);
5715 
5716 		return true;
5717 	case KEY_OPT_LE16:
5718 		calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5719 		calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5720 		*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
5721 		*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
5722 
5723 		return true;
5724 	case KEY_OPT_LE32:
5725 		calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5726 		calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5727 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5728 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5729 
5730 		return true;
5731 	case KEY_OPT_MAC:
5732 		for (i = 0; i < ETH_ALEN; i++) {
5733 			calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i],
5734 			       p[moffset + i]);
5735 			calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i],
5736 			       p[moffset + i]);
5737 		}
5738 
5739 		return true;
5740 	case KEY_OPT_IP:
5741 		ip_offset = IPV4_INDEX * sizeof(u32);
5742 		calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]),
5743 		       *(u32 *)(&p[moffset + ip_offset]));
5744 		calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]),
5745 		       *(u32 *)(&p[moffset + ip_offset]));
5746 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5747 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5748 
5749 		return true;
5750 	default:
5751 		return false;
5752 	}
5753 }
5754 
5755 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id,
5756 				 u8 vf_id, u8 network_port_id)
5757 {
5758 	u32 port_number = 0;
5759 
5760 	if (port_type == HOST_PORT) {
5761 		hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S,
5762 				pf_id);
5763 		hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S,
5764 				vf_id);
5765 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT);
5766 	} else {
5767 		hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M,
5768 				HCLGE_NETWORK_PORT_ID_S, network_port_id);
5769 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT);
5770 	}
5771 
5772 	return port_number;
5773 }
5774 
5775 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg,
5776 				       __le32 *key_x, __le32 *key_y,
5777 				       struct hclge_fd_rule *rule)
5778 {
5779 	u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number;
5780 	u8 cur_pos = 0, tuple_size, shift_bits;
5781 	unsigned int i;
5782 
5783 	for (i = 0; i < MAX_META_DATA; i++) {
5784 		tuple_size = meta_data_key_info[i].key_length;
5785 		tuple_bit = key_cfg->meta_data_active & BIT(i);
5786 
5787 		switch (tuple_bit) {
5788 		case BIT(ROCE_TYPE):
5789 			hnae3_set_bit(meta_data, cur_pos, NIC_PACKET);
5790 			cur_pos += tuple_size;
5791 			break;
5792 		case BIT(DST_VPORT):
5793 			port_number = hclge_get_port_number(HOST_PORT, 0,
5794 							    rule->vf_id, 0);
5795 			hnae3_set_field(meta_data,
5796 					GENMASK(cur_pos + tuple_size, cur_pos),
5797 					cur_pos, port_number);
5798 			cur_pos += tuple_size;
5799 			break;
5800 		default:
5801 			break;
5802 		}
5803 	}
5804 
5805 	calc_x(tmp_x, meta_data, 0xFFFFFFFF);
5806 	calc_y(tmp_y, meta_data, 0xFFFFFFFF);
5807 	shift_bits = sizeof(meta_data) * 8 - cur_pos;
5808 
5809 	*key_x = cpu_to_le32(tmp_x << shift_bits);
5810 	*key_y = cpu_to_le32(tmp_y << shift_bits);
5811 }
5812 
5813 /* A complete key is combined with meta data key and tuple key.
5814  * Meta data key is stored at the MSB region, and tuple key is stored at
5815  * the LSB region, unused bits will be filled 0.
5816  */
5817 static int hclge_config_key(struct hclge_dev *hdev, u8 stage,
5818 			    struct hclge_fd_rule *rule)
5819 {
5820 	struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage];
5821 	u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES];
5822 	u8 *cur_key_x, *cur_key_y;
5823 	u8 meta_data_region;
5824 	u8 tuple_size;
5825 	int ret;
5826 	u32 i;
5827 
5828 	memset(key_x, 0, sizeof(key_x));
5829 	memset(key_y, 0, sizeof(key_y));
5830 	cur_key_x = key_x;
5831 	cur_key_y = key_y;
5832 
5833 	for (i = 0; i < MAX_TUPLE; i++) {
5834 		bool tuple_valid;
5835 
5836 		tuple_size = tuple_key_info[i].key_length / 8;
5837 		if (!(key_cfg->tuple_active & BIT(i)))
5838 			continue;
5839 
5840 		tuple_valid = hclge_fd_convert_tuple(i, cur_key_x,
5841 						     cur_key_y, rule);
5842 		if (tuple_valid) {
5843 			cur_key_x += tuple_size;
5844 			cur_key_y += tuple_size;
5845 		}
5846 	}
5847 
5848 	meta_data_region = hdev->fd_cfg.max_key_length / 8 -
5849 			MAX_META_DATA_LENGTH / 8;
5850 
5851 	hclge_fd_convert_meta_data(key_cfg,
5852 				   (__le32 *)(key_x + meta_data_region),
5853 				   (__le32 *)(key_y + meta_data_region),
5854 				   rule);
5855 
5856 	ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y,
5857 				   true);
5858 	if (ret) {
5859 		dev_err(&hdev->pdev->dev,
5860 			"fd key_y config fail, loc=%u, ret=%d\n",
5861 			rule->queue_id, ret);
5862 		return ret;
5863 	}
5864 
5865 	ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x,
5866 				   true);
5867 	if (ret)
5868 		dev_err(&hdev->pdev->dev,
5869 			"fd key_x config fail, loc=%u, ret=%d\n",
5870 			rule->queue_id, ret);
5871 	return ret;
5872 }
5873 
5874 static int hclge_config_action(struct hclge_dev *hdev, u8 stage,
5875 			       struct hclge_fd_rule *rule)
5876 {
5877 	struct hclge_vport *vport = hdev->vport;
5878 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
5879 	struct hclge_fd_ad_data ad_data;
5880 
5881 	memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data));
5882 	ad_data.ad_id = rule->location;
5883 
5884 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
5885 		ad_data.drop_packet = true;
5886 	} else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) {
5887 		ad_data.override_tc = true;
5888 		ad_data.queue_id =
5889 			kinfo->tc_info.tqp_offset[rule->cls_flower.tc];
5890 		ad_data.tc_size =
5891 			ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]);
5892 	} else {
5893 		ad_data.forward_to_direct_queue = true;
5894 		ad_data.queue_id = rule->queue_id;
5895 	}
5896 
5897 	if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) {
5898 		ad_data.use_counter = true;
5899 		ad_data.counter_id = rule->vf_id %
5900 				     hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1];
5901 	} else {
5902 		ad_data.use_counter = false;
5903 		ad_data.counter_id = 0;
5904 	}
5905 
5906 	ad_data.use_next_stage = false;
5907 	ad_data.next_input_key = 0;
5908 
5909 	ad_data.write_rule_id_to_bd = true;
5910 	ad_data.rule_id = rule->location;
5911 
5912 	return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data);
5913 }
5914 
5915 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec,
5916 				       u32 *unused_tuple)
5917 {
5918 	if (!spec || !unused_tuple)
5919 		return -EINVAL;
5920 
5921 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5922 
5923 	if (!spec->ip4src)
5924 		*unused_tuple |= BIT(INNER_SRC_IP);
5925 
5926 	if (!spec->ip4dst)
5927 		*unused_tuple |= BIT(INNER_DST_IP);
5928 
5929 	if (!spec->psrc)
5930 		*unused_tuple |= BIT(INNER_SRC_PORT);
5931 
5932 	if (!spec->pdst)
5933 		*unused_tuple |= BIT(INNER_DST_PORT);
5934 
5935 	if (!spec->tos)
5936 		*unused_tuple |= BIT(INNER_IP_TOS);
5937 
5938 	return 0;
5939 }
5940 
5941 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec,
5942 				    u32 *unused_tuple)
5943 {
5944 	if (!spec || !unused_tuple)
5945 		return -EINVAL;
5946 
5947 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5948 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5949 
5950 	if (!spec->ip4src)
5951 		*unused_tuple |= BIT(INNER_SRC_IP);
5952 
5953 	if (!spec->ip4dst)
5954 		*unused_tuple |= BIT(INNER_DST_IP);
5955 
5956 	if (!spec->tos)
5957 		*unused_tuple |= BIT(INNER_IP_TOS);
5958 
5959 	if (!spec->proto)
5960 		*unused_tuple |= BIT(INNER_IP_PROTO);
5961 
5962 	if (spec->l4_4_bytes)
5963 		return -EOPNOTSUPP;
5964 
5965 	if (spec->ip_ver != ETH_RX_NFC_IP4)
5966 		return -EOPNOTSUPP;
5967 
5968 	return 0;
5969 }
5970 
5971 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec,
5972 				       u32 *unused_tuple)
5973 {
5974 	if (!spec || !unused_tuple)
5975 		return -EINVAL;
5976 
5977 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5978 
5979 	/* check whether src/dst ip address used */
5980 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5981 		*unused_tuple |= BIT(INNER_SRC_IP);
5982 
5983 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5984 		*unused_tuple |= BIT(INNER_DST_IP);
5985 
5986 	if (!spec->psrc)
5987 		*unused_tuple |= BIT(INNER_SRC_PORT);
5988 
5989 	if (!spec->pdst)
5990 		*unused_tuple |= BIT(INNER_DST_PORT);
5991 
5992 	if (!spec->tclass)
5993 		*unused_tuple |= BIT(INNER_IP_TOS);
5994 
5995 	return 0;
5996 }
5997 
5998 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec,
5999 				    u32 *unused_tuple)
6000 {
6001 	if (!spec || !unused_tuple)
6002 		return -EINVAL;
6003 
6004 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
6005 			BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
6006 
6007 	/* check whether src/dst ip address used */
6008 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
6009 		*unused_tuple |= BIT(INNER_SRC_IP);
6010 
6011 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
6012 		*unused_tuple |= BIT(INNER_DST_IP);
6013 
6014 	if (!spec->l4_proto)
6015 		*unused_tuple |= BIT(INNER_IP_PROTO);
6016 
6017 	if (!spec->tclass)
6018 		*unused_tuple |= BIT(INNER_IP_TOS);
6019 
6020 	if (spec->l4_4_bytes)
6021 		return -EOPNOTSUPP;
6022 
6023 	return 0;
6024 }
6025 
6026 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple)
6027 {
6028 	if (!spec || !unused_tuple)
6029 		return -EINVAL;
6030 
6031 	*unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
6032 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) |
6033 		BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO);
6034 
6035 	if (is_zero_ether_addr(spec->h_source))
6036 		*unused_tuple |= BIT(INNER_SRC_MAC);
6037 
6038 	if (is_zero_ether_addr(spec->h_dest))
6039 		*unused_tuple |= BIT(INNER_DST_MAC);
6040 
6041 	if (!spec->h_proto)
6042 		*unused_tuple |= BIT(INNER_ETH_TYPE);
6043 
6044 	return 0;
6045 }
6046 
6047 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev,
6048 				    struct ethtool_rx_flow_spec *fs,
6049 				    u32 *unused_tuple)
6050 {
6051 	if (fs->flow_type & FLOW_EXT) {
6052 		if (fs->h_ext.vlan_etype) {
6053 			dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n");
6054 			return -EOPNOTSUPP;
6055 		}
6056 
6057 		if (!fs->h_ext.vlan_tci)
6058 			*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
6059 
6060 		if (fs->m_ext.vlan_tci &&
6061 		    be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) {
6062 			dev_err(&hdev->pdev->dev,
6063 				"failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n",
6064 				ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1);
6065 			return -EINVAL;
6066 		}
6067 	} else {
6068 		*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
6069 	}
6070 
6071 	if (fs->flow_type & FLOW_MAC_EXT) {
6072 		if (hdev->fd_cfg.fd_mode !=
6073 		    HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
6074 			dev_err(&hdev->pdev->dev,
6075 				"FLOW_MAC_EXT is not supported in current fd mode!\n");
6076 			return -EOPNOTSUPP;
6077 		}
6078 
6079 		if (is_zero_ether_addr(fs->h_ext.h_dest))
6080 			*unused_tuple |= BIT(INNER_DST_MAC);
6081 		else
6082 			*unused_tuple &= ~BIT(INNER_DST_MAC);
6083 	}
6084 
6085 	return 0;
6086 }
6087 
6088 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple,
6089 				       struct hclge_fd_user_def_info *info)
6090 {
6091 	switch (flow_type) {
6092 	case ETHER_FLOW:
6093 		info->layer = HCLGE_FD_USER_DEF_L2;
6094 		*unused_tuple &= ~BIT(INNER_L2_RSV);
6095 		break;
6096 	case IP_USER_FLOW:
6097 	case IPV6_USER_FLOW:
6098 		info->layer = HCLGE_FD_USER_DEF_L3;
6099 		*unused_tuple &= ~BIT(INNER_L3_RSV);
6100 		break;
6101 	case TCP_V4_FLOW:
6102 	case UDP_V4_FLOW:
6103 	case TCP_V6_FLOW:
6104 	case UDP_V6_FLOW:
6105 		info->layer = HCLGE_FD_USER_DEF_L4;
6106 		*unused_tuple &= ~BIT(INNER_L4_RSV);
6107 		break;
6108 	default:
6109 		return -EOPNOTSUPP;
6110 	}
6111 
6112 	return 0;
6113 }
6114 
6115 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs)
6116 {
6117 	return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0;
6118 }
6119 
6120 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev,
6121 					 struct ethtool_rx_flow_spec *fs,
6122 					 u32 *unused_tuple,
6123 					 struct hclge_fd_user_def_info *info)
6124 {
6125 	u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active;
6126 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6127 	u16 data, offset, data_mask, offset_mask;
6128 	int ret;
6129 
6130 	info->layer = HCLGE_FD_USER_DEF_NONE;
6131 	*unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
6132 
6133 	if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs))
6134 		return 0;
6135 
6136 	/* user-def data from ethtool is 64 bit value, the bit0~15 is used
6137 	 * for data, and bit32~47 is used for offset.
6138 	 */
6139 	data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
6140 	data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
6141 	offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
6142 	offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
6143 
6144 	if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) {
6145 		dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n");
6146 		return -EOPNOTSUPP;
6147 	}
6148 
6149 	if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) {
6150 		dev_err(&hdev->pdev->dev,
6151 			"user-def offset[%u] should be no more than %u\n",
6152 			offset, HCLGE_FD_MAX_USER_DEF_OFFSET);
6153 		return -EINVAL;
6154 	}
6155 
6156 	if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) {
6157 		dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n");
6158 		return -EINVAL;
6159 	}
6160 
6161 	ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info);
6162 	if (ret) {
6163 		dev_err(&hdev->pdev->dev,
6164 			"unsupported flow type for user-def bytes, ret = %d\n",
6165 			ret);
6166 		return ret;
6167 	}
6168 
6169 	info->data = data;
6170 	info->data_mask = data_mask;
6171 	info->offset = offset;
6172 
6173 	return 0;
6174 }
6175 
6176 static int hclge_fd_check_spec(struct hclge_dev *hdev,
6177 			       struct ethtool_rx_flow_spec *fs,
6178 			       u32 *unused_tuple,
6179 			       struct hclge_fd_user_def_info *info)
6180 {
6181 	u32 flow_type;
6182 	int ret;
6183 
6184 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
6185 		dev_err(&hdev->pdev->dev,
6186 			"failed to config fd rules, invalid rule location: %u, max is %u\n.",
6187 			fs->location,
6188 			hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1);
6189 		return -EINVAL;
6190 	}
6191 
6192 	ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info);
6193 	if (ret)
6194 		return ret;
6195 
6196 	flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6197 	switch (flow_type) {
6198 	case SCTP_V4_FLOW:
6199 	case TCP_V4_FLOW:
6200 	case UDP_V4_FLOW:
6201 		ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec,
6202 						  unused_tuple);
6203 		break;
6204 	case IP_USER_FLOW:
6205 		ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec,
6206 					       unused_tuple);
6207 		break;
6208 	case SCTP_V6_FLOW:
6209 	case TCP_V6_FLOW:
6210 	case UDP_V6_FLOW:
6211 		ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec,
6212 						  unused_tuple);
6213 		break;
6214 	case IPV6_USER_FLOW:
6215 		ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec,
6216 					       unused_tuple);
6217 		break;
6218 	case ETHER_FLOW:
6219 		if (hdev->fd_cfg.fd_mode !=
6220 			HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
6221 			dev_err(&hdev->pdev->dev,
6222 				"ETHER_FLOW is not supported in current fd mode!\n");
6223 			return -EOPNOTSUPP;
6224 		}
6225 
6226 		ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec,
6227 						 unused_tuple);
6228 		break;
6229 	default:
6230 		dev_err(&hdev->pdev->dev,
6231 			"unsupported protocol type, protocol type = %#x\n",
6232 			flow_type);
6233 		return -EOPNOTSUPP;
6234 	}
6235 
6236 	if (ret) {
6237 		dev_err(&hdev->pdev->dev,
6238 			"failed to check flow union tuple, ret = %d\n",
6239 			ret);
6240 		return ret;
6241 	}
6242 
6243 	return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple);
6244 }
6245 
6246 static void hclge_fd_get_tcpip4_tuple(struct hclge_dev *hdev,
6247 				      struct ethtool_rx_flow_spec *fs,
6248 				      struct hclge_fd_rule *rule, u8 ip_proto)
6249 {
6250 	rule->tuples.src_ip[IPV4_INDEX] =
6251 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src);
6252 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6253 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src);
6254 
6255 	rule->tuples.dst_ip[IPV4_INDEX] =
6256 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst);
6257 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6258 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst);
6259 
6260 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc);
6261 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc);
6262 
6263 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst);
6264 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst);
6265 
6266 	rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos;
6267 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos;
6268 
6269 	rule->tuples.ether_proto = ETH_P_IP;
6270 	rule->tuples_mask.ether_proto = 0xFFFF;
6271 
6272 	rule->tuples.ip_proto = ip_proto;
6273 	rule->tuples_mask.ip_proto = 0xFF;
6274 }
6275 
6276 static void hclge_fd_get_ip4_tuple(struct hclge_dev *hdev,
6277 				   struct ethtool_rx_flow_spec *fs,
6278 				   struct hclge_fd_rule *rule)
6279 {
6280 	rule->tuples.src_ip[IPV4_INDEX] =
6281 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src);
6282 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6283 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src);
6284 
6285 	rule->tuples.dst_ip[IPV4_INDEX] =
6286 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst);
6287 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6288 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst);
6289 
6290 	rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos;
6291 	rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos;
6292 
6293 	rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto;
6294 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto;
6295 
6296 	rule->tuples.ether_proto = ETH_P_IP;
6297 	rule->tuples_mask.ether_proto = 0xFFFF;
6298 }
6299 
6300 static void hclge_fd_get_tcpip6_tuple(struct hclge_dev *hdev,
6301 				      struct ethtool_rx_flow_spec *fs,
6302 				      struct hclge_fd_rule *rule, u8 ip_proto)
6303 {
6304 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src,
6305 			  IPV6_SIZE);
6306 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src,
6307 			  IPV6_SIZE);
6308 
6309 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst,
6310 			  IPV6_SIZE);
6311 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst,
6312 			  IPV6_SIZE);
6313 
6314 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc);
6315 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc);
6316 
6317 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst);
6318 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst);
6319 
6320 	rule->tuples.ether_proto = ETH_P_IPV6;
6321 	rule->tuples_mask.ether_proto = 0xFFFF;
6322 
6323 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6324 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6325 
6326 	rule->tuples.ip_proto = ip_proto;
6327 	rule->tuples_mask.ip_proto = 0xFF;
6328 }
6329 
6330 static void hclge_fd_get_ip6_tuple(struct hclge_dev *hdev,
6331 				   struct ethtool_rx_flow_spec *fs,
6332 				   struct hclge_fd_rule *rule)
6333 {
6334 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src,
6335 			  IPV6_SIZE);
6336 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src,
6337 			  IPV6_SIZE);
6338 
6339 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst,
6340 			  IPV6_SIZE);
6341 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst,
6342 			  IPV6_SIZE);
6343 
6344 	rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto;
6345 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto;
6346 
6347 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6348 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6349 
6350 	rule->tuples.ether_proto = ETH_P_IPV6;
6351 	rule->tuples_mask.ether_proto = 0xFFFF;
6352 }
6353 
6354 static void hclge_fd_get_ether_tuple(struct hclge_dev *hdev,
6355 				     struct ethtool_rx_flow_spec *fs,
6356 				     struct hclge_fd_rule *rule)
6357 {
6358 	ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source);
6359 	ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source);
6360 
6361 	ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest);
6362 	ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest);
6363 
6364 	rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto);
6365 	rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto);
6366 }
6367 
6368 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info,
6369 					struct hclge_fd_rule *rule)
6370 {
6371 	switch (info->layer) {
6372 	case HCLGE_FD_USER_DEF_L2:
6373 		rule->tuples.l2_user_def = info->data;
6374 		rule->tuples_mask.l2_user_def = info->data_mask;
6375 		break;
6376 	case HCLGE_FD_USER_DEF_L3:
6377 		rule->tuples.l3_user_def = info->data;
6378 		rule->tuples_mask.l3_user_def = info->data_mask;
6379 		break;
6380 	case HCLGE_FD_USER_DEF_L4:
6381 		rule->tuples.l4_user_def = (u32)info->data << 16;
6382 		rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16;
6383 		break;
6384 	default:
6385 		break;
6386 	}
6387 
6388 	rule->ep.user_def = *info;
6389 }
6390 
6391 static int hclge_fd_get_tuple(struct hclge_dev *hdev,
6392 			      struct ethtool_rx_flow_spec *fs,
6393 			      struct hclge_fd_rule *rule,
6394 			      struct hclge_fd_user_def_info *info)
6395 {
6396 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6397 
6398 	switch (flow_type) {
6399 	case SCTP_V4_FLOW:
6400 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_SCTP);
6401 		break;
6402 	case TCP_V4_FLOW:
6403 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_TCP);
6404 		break;
6405 	case UDP_V4_FLOW:
6406 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_UDP);
6407 		break;
6408 	case IP_USER_FLOW:
6409 		hclge_fd_get_ip4_tuple(hdev, fs, rule);
6410 		break;
6411 	case SCTP_V6_FLOW:
6412 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_SCTP);
6413 		break;
6414 	case TCP_V6_FLOW:
6415 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_TCP);
6416 		break;
6417 	case UDP_V6_FLOW:
6418 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_UDP);
6419 		break;
6420 	case IPV6_USER_FLOW:
6421 		hclge_fd_get_ip6_tuple(hdev, fs, rule);
6422 		break;
6423 	case ETHER_FLOW:
6424 		hclge_fd_get_ether_tuple(hdev, fs, rule);
6425 		break;
6426 	default:
6427 		return -EOPNOTSUPP;
6428 	}
6429 
6430 	if (fs->flow_type & FLOW_EXT) {
6431 		rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci);
6432 		rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci);
6433 		hclge_fd_get_user_def_tuple(info, rule);
6434 	}
6435 
6436 	if (fs->flow_type & FLOW_MAC_EXT) {
6437 		ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest);
6438 		ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest);
6439 	}
6440 
6441 	return 0;
6442 }
6443 
6444 static int hclge_fd_config_rule(struct hclge_dev *hdev,
6445 				struct hclge_fd_rule *rule)
6446 {
6447 	int ret;
6448 
6449 	ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
6450 	if (ret)
6451 		return ret;
6452 
6453 	return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
6454 }
6455 
6456 static int hclge_add_fd_entry_common(struct hclge_dev *hdev,
6457 				     struct hclge_fd_rule *rule)
6458 {
6459 	int ret;
6460 
6461 	spin_lock_bh(&hdev->fd_rule_lock);
6462 
6463 	if (hdev->fd_active_type != rule->rule_type &&
6464 	    (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6465 	     hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) {
6466 		dev_err(&hdev->pdev->dev,
6467 			"mode conflict(new type %d, active type %d), please delete existent rules first\n",
6468 			rule->rule_type, hdev->fd_active_type);
6469 		spin_unlock_bh(&hdev->fd_rule_lock);
6470 		return -EINVAL;
6471 	}
6472 
6473 	ret = hclge_fd_check_user_def_refcnt(hdev, rule);
6474 	if (ret)
6475 		goto out;
6476 
6477 	ret = hclge_clear_arfs_rules(hdev);
6478 	if (ret)
6479 		goto out;
6480 
6481 	ret = hclge_fd_config_rule(hdev, rule);
6482 	if (ret)
6483 		goto out;
6484 
6485 	rule->state = HCLGE_FD_ACTIVE;
6486 	hdev->fd_active_type = rule->rule_type;
6487 	hclge_update_fd_list(hdev, rule->state, rule->location, rule);
6488 
6489 out:
6490 	spin_unlock_bh(&hdev->fd_rule_lock);
6491 	return ret;
6492 }
6493 
6494 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle)
6495 {
6496 	struct hclge_vport *vport = hclge_get_vport(handle);
6497 	struct hclge_dev *hdev = vport->back;
6498 
6499 	return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE;
6500 }
6501 
6502 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie,
6503 				      u16 *vport_id, u8 *action, u16 *queue_id)
6504 {
6505 	struct hclge_vport *vport = hdev->vport;
6506 
6507 	if (ring_cookie == RX_CLS_FLOW_DISC) {
6508 		*action = HCLGE_FD_ACTION_DROP_PACKET;
6509 	} else {
6510 		u32 ring = ethtool_get_flow_spec_ring(ring_cookie);
6511 		u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
6512 		u16 tqps;
6513 
6514 		/* To keep consistent with user's configuration, minus 1 when
6515 		 * printing 'vf', because vf id from ethtool is added 1 for vf.
6516 		 */
6517 		if (vf > hdev->num_req_vfs) {
6518 			dev_err(&hdev->pdev->dev,
6519 				"Error: vf id (%u) should be less than %u\n",
6520 				vf - 1U, hdev->num_req_vfs);
6521 			return -EINVAL;
6522 		}
6523 
6524 		*vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id;
6525 		tqps = hdev->vport[vf].nic.kinfo.num_tqps;
6526 
6527 		if (ring >= tqps) {
6528 			dev_err(&hdev->pdev->dev,
6529 				"Error: queue id (%u) > max tqp num (%u)\n",
6530 				ring, tqps - 1U);
6531 			return -EINVAL;
6532 		}
6533 
6534 		*action = HCLGE_FD_ACTION_SELECT_QUEUE;
6535 		*queue_id = ring;
6536 	}
6537 
6538 	return 0;
6539 }
6540 
6541 static int hclge_add_fd_entry(struct hnae3_handle *handle,
6542 			      struct ethtool_rxnfc *cmd)
6543 {
6544 	struct hclge_vport *vport = hclge_get_vport(handle);
6545 	struct hclge_dev *hdev = vport->back;
6546 	struct hclge_fd_user_def_info info;
6547 	u16 dst_vport_id = 0, q_index = 0;
6548 	struct ethtool_rx_flow_spec *fs;
6549 	struct hclge_fd_rule *rule;
6550 	u32 unused = 0;
6551 	u8 action;
6552 	int ret;
6553 
6554 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
6555 		dev_err(&hdev->pdev->dev,
6556 			"flow table director is not supported\n");
6557 		return -EOPNOTSUPP;
6558 	}
6559 
6560 	if (!hdev->fd_en) {
6561 		dev_err(&hdev->pdev->dev,
6562 			"please enable flow director first\n");
6563 		return -EOPNOTSUPP;
6564 	}
6565 
6566 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6567 
6568 	ret = hclge_fd_check_spec(hdev, fs, &unused, &info);
6569 	if (ret)
6570 		return ret;
6571 
6572 	ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id,
6573 					 &action, &q_index);
6574 	if (ret)
6575 		return ret;
6576 
6577 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
6578 	if (!rule)
6579 		return -ENOMEM;
6580 
6581 	ret = hclge_fd_get_tuple(hdev, fs, rule, &info);
6582 	if (ret) {
6583 		kfree(rule);
6584 		return ret;
6585 	}
6586 
6587 	rule->flow_type = fs->flow_type;
6588 	rule->location = fs->location;
6589 	rule->unused_tuple = unused;
6590 	rule->vf_id = dst_vport_id;
6591 	rule->queue_id = q_index;
6592 	rule->action = action;
6593 	rule->rule_type = HCLGE_FD_EP_ACTIVE;
6594 
6595 	ret = hclge_add_fd_entry_common(hdev, rule);
6596 	if (ret)
6597 		kfree(rule);
6598 
6599 	return ret;
6600 }
6601 
6602 static int hclge_del_fd_entry(struct hnae3_handle *handle,
6603 			      struct ethtool_rxnfc *cmd)
6604 {
6605 	struct hclge_vport *vport = hclge_get_vport(handle);
6606 	struct hclge_dev *hdev = vport->back;
6607 	struct ethtool_rx_flow_spec *fs;
6608 	int ret;
6609 
6610 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6611 		return -EOPNOTSUPP;
6612 
6613 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6614 
6615 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6616 		return -EINVAL;
6617 
6618 	spin_lock_bh(&hdev->fd_rule_lock);
6619 	if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6620 	    !test_bit(fs->location, hdev->fd_bmap)) {
6621 		dev_err(&hdev->pdev->dev,
6622 			"Delete fail, rule %u is inexistent\n", fs->location);
6623 		spin_unlock_bh(&hdev->fd_rule_lock);
6624 		return -ENOENT;
6625 	}
6626 
6627 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location,
6628 				   NULL, false);
6629 	if (ret)
6630 		goto out;
6631 
6632 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL);
6633 
6634 out:
6635 	spin_unlock_bh(&hdev->fd_rule_lock);
6636 	return ret;
6637 }
6638 
6639 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev,
6640 					 bool clear_list)
6641 {
6642 	struct hclge_fd_rule *rule;
6643 	struct hlist_node *node;
6644 	u16 location;
6645 
6646 	spin_lock_bh(&hdev->fd_rule_lock);
6647 
6648 	for_each_set_bit(location, hdev->fd_bmap,
6649 			 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6650 		hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location,
6651 				     NULL, false);
6652 
6653 	if (clear_list) {
6654 		hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list,
6655 					  rule_node) {
6656 			hlist_del(&rule->rule_node);
6657 			kfree(rule);
6658 		}
6659 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
6660 		hdev->hclge_fd_rule_num = 0;
6661 		bitmap_zero(hdev->fd_bmap,
6662 			    hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
6663 	}
6664 
6665 	spin_unlock_bh(&hdev->fd_rule_lock);
6666 }
6667 
6668 static void hclge_del_all_fd_entries(struct hclge_dev *hdev)
6669 {
6670 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6671 		return;
6672 
6673 	hclge_clear_fd_rules_in_list(hdev, true);
6674 	hclge_fd_disable_user_def(hdev);
6675 }
6676 
6677 static int hclge_restore_fd_entries(struct hnae3_handle *handle)
6678 {
6679 	struct hclge_vport *vport = hclge_get_vport(handle);
6680 	struct hclge_dev *hdev = vport->back;
6681 	struct hclge_fd_rule *rule;
6682 	struct hlist_node *node;
6683 
6684 	/* Return ok here, because reset error handling will check this
6685 	 * return value. If error is returned here, the reset process will
6686 	 * fail.
6687 	 */
6688 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6689 		return 0;
6690 
6691 	/* if fd is disabled, should not restore it when reset */
6692 	if (!hdev->fd_en)
6693 		return 0;
6694 
6695 	spin_lock_bh(&hdev->fd_rule_lock);
6696 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6697 		if (rule->state == HCLGE_FD_ACTIVE)
6698 			rule->state = HCLGE_FD_TO_ADD;
6699 	}
6700 	spin_unlock_bh(&hdev->fd_rule_lock);
6701 	set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
6702 
6703 	return 0;
6704 }
6705 
6706 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle,
6707 				 struct ethtool_rxnfc *cmd)
6708 {
6709 	struct hclge_vport *vport = hclge_get_vport(handle);
6710 	struct hclge_dev *hdev = vport->back;
6711 
6712 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev) || hclge_is_cls_flower_active(handle))
6713 		return -EOPNOTSUPP;
6714 
6715 	cmd->rule_cnt = hdev->hclge_fd_rule_num;
6716 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6717 
6718 	return 0;
6719 }
6720 
6721 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule,
6722 				     struct ethtool_tcpip4_spec *spec,
6723 				     struct ethtool_tcpip4_spec *spec_mask)
6724 {
6725 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6726 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6727 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6728 
6729 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6730 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6731 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6732 
6733 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6734 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6735 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6736 
6737 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6738 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6739 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6740 
6741 	spec->tos = rule->tuples.ip_tos;
6742 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6743 			0 : rule->tuples_mask.ip_tos;
6744 }
6745 
6746 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule,
6747 				  struct ethtool_usrip4_spec *spec,
6748 				  struct ethtool_usrip4_spec *spec_mask)
6749 {
6750 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6751 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6752 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6753 
6754 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6755 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6756 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6757 
6758 	spec->tos = rule->tuples.ip_tos;
6759 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6760 			0 : rule->tuples_mask.ip_tos;
6761 
6762 	spec->proto = rule->tuples.ip_proto;
6763 	spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6764 			0 : rule->tuples_mask.ip_proto;
6765 
6766 	spec->ip_ver = ETH_RX_NFC_IP4;
6767 }
6768 
6769 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule,
6770 				     struct ethtool_tcpip6_spec *spec,
6771 				     struct ethtool_tcpip6_spec *spec_mask)
6772 {
6773 	cpu_to_be32_array(spec->ip6src,
6774 			  rule->tuples.src_ip, IPV6_SIZE);
6775 	cpu_to_be32_array(spec->ip6dst,
6776 			  rule->tuples.dst_ip, IPV6_SIZE);
6777 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6778 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6779 	else
6780 		cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip,
6781 				  IPV6_SIZE);
6782 
6783 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6784 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6785 	else
6786 		cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip,
6787 				  IPV6_SIZE);
6788 
6789 	spec->tclass = rule->tuples.ip_tos;
6790 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6791 			0 : rule->tuples_mask.ip_tos;
6792 
6793 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6794 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6795 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6796 
6797 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6798 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6799 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6800 }
6801 
6802 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule,
6803 				  struct ethtool_usrip6_spec *spec,
6804 				  struct ethtool_usrip6_spec *spec_mask)
6805 {
6806 	cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE);
6807 	cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE);
6808 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6809 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6810 	else
6811 		cpu_to_be32_array(spec_mask->ip6src,
6812 				  rule->tuples_mask.src_ip, IPV6_SIZE);
6813 
6814 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6815 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6816 	else
6817 		cpu_to_be32_array(spec_mask->ip6dst,
6818 				  rule->tuples_mask.dst_ip, IPV6_SIZE);
6819 
6820 	spec->tclass = rule->tuples.ip_tos;
6821 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6822 			0 : rule->tuples_mask.ip_tos;
6823 
6824 	spec->l4_proto = rule->tuples.ip_proto;
6825 	spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6826 			0 : rule->tuples_mask.ip_proto;
6827 }
6828 
6829 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule,
6830 				    struct ethhdr *spec,
6831 				    struct ethhdr *spec_mask)
6832 {
6833 	ether_addr_copy(spec->h_source, rule->tuples.src_mac);
6834 	ether_addr_copy(spec->h_dest, rule->tuples.dst_mac);
6835 
6836 	if (rule->unused_tuple & BIT(INNER_SRC_MAC))
6837 		eth_zero_addr(spec_mask->h_source);
6838 	else
6839 		ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac);
6840 
6841 	if (rule->unused_tuple & BIT(INNER_DST_MAC))
6842 		eth_zero_addr(spec_mask->h_dest);
6843 	else
6844 		ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac);
6845 
6846 	spec->h_proto = cpu_to_be16(rule->tuples.ether_proto);
6847 	spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ?
6848 			0 : cpu_to_be16(rule->tuples_mask.ether_proto);
6849 }
6850 
6851 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs,
6852 				       struct hclge_fd_rule *rule)
6853 {
6854 	if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) ==
6855 	    HCLGE_FD_TUPLE_USER_DEF_TUPLES) {
6856 		fs->h_ext.data[0] = 0;
6857 		fs->h_ext.data[1] = 0;
6858 		fs->m_ext.data[0] = 0;
6859 		fs->m_ext.data[1] = 0;
6860 	} else {
6861 		fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset);
6862 		fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data);
6863 		fs->m_ext.data[0] =
6864 				cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK);
6865 		fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask);
6866 	}
6867 }
6868 
6869 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs,
6870 				  struct hclge_fd_rule *rule)
6871 {
6872 	if (fs->flow_type & FLOW_EXT) {
6873 		fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1);
6874 		fs->m_ext.vlan_tci =
6875 				rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ?
6876 				0 : cpu_to_be16(rule->tuples_mask.vlan_tag1);
6877 
6878 		hclge_fd_get_user_def_info(fs, rule);
6879 	}
6880 
6881 	if (fs->flow_type & FLOW_MAC_EXT) {
6882 		ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac);
6883 		if (rule->unused_tuple & BIT(INNER_DST_MAC))
6884 			eth_zero_addr(fs->m_u.ether_spec.h_dest);
6885 		else
6886 			ether_addr_copy(fs->m_u.ether_spec.h_dest,
6887 					rule->tuples_mask.dst_mac);
6888 	}
6889 }
6890 
6891 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev,
6892 					       u16 location)
6893 {
6894 	struct hclge_fd_rule *rule = NULL;
6895 	struct hlist_node *node2;
6896 
6897 	hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
6898 		if (rule->location == location)
6899 			return rule;
6900 		else if (rule->location > location)
6901 			return NULL;
6902 	}
6903 
6904 	return NULL;
6905 }
6906 
6907 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs,
6908 				     struct hclge_fd_rule *rule)
6909 {
6910 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
6911 		fs->ring_cookie = RX_CLS_FLOW_DISC;
6912 	} else {
6913 		u64 vf_id;
6914 
6915 		fs->ring_cookie = rule->queue_id;
6916 		vf_id = rule->vf_id;
6917 		vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
6918 		fs->ring_cookie |= vf_id;
6919 	}
6920 }
6921 
6922 static int hclge_get_fd_rule_info(struct hnae3_handle *handle,
6923 				  struct ethtool_rxnfc *cmd)
6924 {
6925 	struct hclge_vport *vport = hclge_get_vport(handle);
6926 	struct hclge_fd_rule *rule = NULL;
6927 	struct hclge_dev *hdev = vport->back;
6928 	struct ethtool_rx_flow_spec *fs;
6929 
6930 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6931 		return -EOPNOTSUPP;
6932 
6933 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6934 
6935 	spin_lock_bh(&hdev->fd_rule_lock);
6936 
6937 	rule = hclge_get_fd_rule(hdev, fs->location);
6938 	if (!rule) {
6939 		spin_unlock_bh(&hdev->fd_rule_lock);
6940 		return -ENOENT;
6941 	}
6942 
6943 	fs->flow_type = rule->flow_type;
6944 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
6945 	case SCTP_V4_FLOW:
6946 	case TCP_V4_FLOW:
6947 	case UDP_V4_FLOW:
6948 		hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec,
6949 					 &fs->m_u.tcp_ip4_spec);
6950 		break;
6951 	case IP_USER_FLOW:
6952 		hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec,
6953 				      &fs->m_u.usr_ip4_spec);
6954 		break;
6955 	case SCTP_V6_FLOW:
6956 	case TCP_V6_FLOW:
6957 	case UDP_V6_FLOW:
6958 		hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec,
6959 					 &fs->m_u.tcp_ip6_spec);
6960 		break;
6961 	case IPV6_USER_FLOW:
6962 		hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec,
6963 				      &fs->m_u.usr_ip6_spec);
6964 		break;
6965 	/* The flow type of fd rule has been checked before adding in to rule
6966 	 * list. As other flow types have been handled, it must be ETHER_FLOW
6967 	 * for the default case
6968 	 */
6969 	default:
6970 		hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec,
6971 					&fs->m_u.ether_spec);
6972 		break;
6973 	}
6974 
6975 	hclge_fd_get_ext_info(fs, rule);
6976 
6977 	hclge_fd_get_ring_cookie(fs, rule);
6978 
6979 	spin_unlock_bh(&hdev->fd_rule_lock);
6980 
6981 	return 0;
6982 }
6983 
6984 static int hclge_get_all_rules(struct hnae3_handle *handle,
6985 			       struct ethtool_rxnfc *cmd, u32 *rule_locs)
6986 {
6987 	struct hclge_vport *vport = hclge_get_vport(handle);
6988 	struct hclge_dev *hdev = vport->back;
6989 	struct hclge_fd_rule *rule;
6990 	struct hlist_node *node2;
6991 	int cnt = 0;
6992 
6993 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6994 		return -EOPNOTSUPP;
6995 
6996 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6997 
6998 	spin_lock_bh(&hdev->fd_rule_lock);
6999 	hlist_for_each_entry_safe(rule, node2,
7000 				  &hdev->fd_rule_list, rule_node) {
7001 		if (cnt == cmd->rule_cnt) {
7002 			spin_unlock_bh(&hdev->fd_rule_lock);
7003 			return -EMSGSIZE;
7004 		}
7005 
7006 		if (rule->state == HCLGE_FD_TO_DEL)
7007 			continue;
7008 
7009 		rule_locs[cnt] = rule->location;
7010 		cnt++;
7011 	}
7012 
7013 	spin_unlock_bh(&hdev->fd_rule_lock);
7014 
7015 	cmd->rule_cnt = cnt;
7016 
7017 	return 0;
7018 }
7019 
7020 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys,
7021 				     struct hclge_fd_rule_tuples *tuples)
7022 {
7023 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32
7024 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32
7025 
7026 	tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto);
7027 	tuples->ip_proto = fkeys->basic.ip_proto;
7028 	tuples->dst_port = be16_to_cpu(fkeys->ports.dst);
7029 
7030 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
7031 		tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src);
7032 		tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst);
7033 	} else {
7034 		int i;
7035 
7036 		for (i = 0; i < IPV6_SIZE; i++) {
7037 			tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]);
7038 			tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]);
7039 		}
7040 	}
7041 }
7042 
7043 /* traverse all rules, check whether an existed rule has the same tuples */
7044 static struct hclge_fd_rule *
7045 hclge_fd_search_flow_keys(struct hclge_dev *hdev,
7046 			  const struct hclge_fd_rule_tuples *tuples)
7047 {
7048 	struct hclge_fd_rule *rule = NULL;
7049 	struct hlist_node *node;
7050 
7051 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7052 		if (!memcmp(tuples, &rule->tuples, sizeof(*tuples)))
7053 			return rule;
7054 	}
7055 
7056 	return NULL;
7057 }
7058 
7059 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples,
7060 				     struct hclge_fd_rule *rule)
7061 {
7062 	rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
7063 			     BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) |
7064 			     BIT(INNER_SRC_PORT);
7065 	rule->action = 0;
7066 	rule->vf_id = 0;
7067 	rule->rule_type = HCLGE_FD_ARFS_ACTIVE;
7068 	rule->state = HCLGE_FD_TO_ADD;
7069 	if (tuples->ether_proto == ETH_P_IP) {
7070 		if (tuples->ip_proto == IPPROTO_TCP)
7071 			rule->flow_type = TCP_V4_FLOW;
7072 		else
7073 			rule->flow_type = UDP_V4_FLOW;
7074 	} else {
7075 		if (tuples->ip_proto == IPPROTO_TCP)
7076 			rule->flow_type = TCP_V6_FLOW;
7077 		else
7078 			rule->flow_type = UDP_V6_FLOW;
7079 	}
7080 	memcpy(&rule->tuples, tuples, sizeof(rule->tuples));
7081 	memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask));
7082 }
7083 
7084 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id,
7085 				      u16 flow_id, struct flow_keys *fkeys)
7086 {
7087 	struct hclge_vport *vport = hclge_get_vport(handle);
7088 	struct hclge_fd_rule_tuples new_tuples = {};
7089 	struct hclge_dev *hdev = vport->back;
7090 	struct hclge_fd_rule *rule;
7091 	u16 bit_id;
7092 
7093 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7094 		return -EOPNOTSUPP;
7095 
7096 	/* when there is already fd rule existed add by user,
7097 	 * arfs should not work
7098 	 */
7099 	spin_lock_bh(&hdev->fd_rule_lock);
7100 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE &&
7101 	    hdev->fd_active_type != HCLGE_FD_RULE_NONE) {
7102 		spin_unlock_bh(&hdev->fd_rule_lock);
7103 		return -EOPNOTSUPP;
7104 	}
7105 
7106 	hclge_fd_get_flow_tuples(fkeys, &new_tuples);
7107 
7108 	/* check is there flow director filter existed for this flow,
7109 	 * if not, create a new filter for it;
7110 	 * if filter exist with different queue id, modify the filter;
7111 	 * if filter exist with same queue id, do nothing
7112 	 */
7113 	rule = hclge_fd_search_flow_keys(hdev, &new_tuples);
7114 	if (!rule) {
7115 		bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM);
7116 		if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7117 			spin_unlock_bh(&hdev->fd_rule_lock);
7118 			return -ENOSPC;
7119 		}
7120 
7121 		rule = kzalloc(sizeof(*rule), GFP_ATOMIC);
7122 		if (!rule) {
7123 			spin_unlock_bh(&hdev->fd_rule_lock);
7124 			return -ENOMEM;
7125 		}
7126 
7127 		rule->location = bit_id;
7128 		rule->arfs.flow_id = flow_id;
7129 		rule->queue_id = queue_id;
7130 		hclge_fd_build_arfs_rule(&new_tuples, rule);
7131 		hclge_update_fd_list(hdev, rule->state, rule->location, rule);
7132 		hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE;
7133 	} else if (rule->queue_id != queue_id) {
7134 		rule->queue_id = queue_id;
7135 		rule->state = HCLGE_FD_TO_ADD;
7136 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7137 		hclge_task_schedule(hdev, 0);
7138 	}
7139 	spin_unlock_bh(&hdev->fd_rule_lock);
7140 	return rule->location;
7141 }
7142 
7143 static void hclge_rfs_filter_expire(struct hclge_dev *hdev)
7144 {
7145 #ifdef CONFIG_RFS_ACCEL
7146 	struct hnae3_handle *handle = &hdev->vport[0].nic;
7147 	struct hclge_fd_rule *rule;
7148 	struct hlist_node *node;
7149 
7150 	spin_lock_bh(&hdev->fd_rule_lock);
7151 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) {
7152 		spin_unlock_bh(&hdev->fd_rule_lock);
7153 		return;
7154 	}
7155 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7156 		if (rule->state != HCLGE_FD_ACTIVE)
7157 			continue;
7158 		if (rps_may_expire_flow(handle->netdev, rule->queue_id,
7159 					rule->arfs.flow_id, rule->location)) {
7160 			rule->state = HCLGE_FD_TO_DEL;
7161 			set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7162 		}
7163 	}
7164 	spin_unlock_bh(&hdev->fd_rule_lock);
7165 #endif
7166 }
7167 
7168 /* make sure being called after lock up with fd_rule_lock */
7169 static int hclge_clear_arfs_rules(struct hclge_dev *hdev)
7170 {
7171 #ifdef CONFIG_RFS_ACCEL
7172 	struct hclge_fd_rule *rule;
7173 	struct hlist_node *node;
7174 	int ret;
7175 
7176 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE)
7177 		return 0;
7178 
7179 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7180 		switch (rule->state) {
7181 		case HCLGE_FD_TO_DEL:
7182 		case HCLGE_FD_ACTIVE:
7183 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7184 						   rule->location, NULL, false);
7185 			if (ret)
7186 				return ret;
7187 			fallthrough;
7188 		case HCLGE_FD_TO_ADD:
7189 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7190 			hlist_del(&rule->rule_node);
7191 			kfree(rule);
7192 			break;
7193 		default:
7194 			break;
7195 		}
7196 	}
7197 	hclge_sync_fd_state(hdev);
7198 
7199 #endif
7200 	return 0;
7201 }
7202 
7203 static void hclge_get_cls_key_basic(const struct flow_rule *flow,
7204 				    struct hclge_fd_rule *rule)
7205 {
7206 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) {
7207 		struct flow_match_basic match;
7208 		u16 ethtype_key, ethtype_mask;
7209 
7210 		flow_rule_match_basic(flow, &match);
7211 		ethtype_key = ntohs(match.key->n_proto);
7212 		ethtype_mask = ntohs(match.mask->n_proto);
7213 
7214 		if (ethtype_key == ETH_P_ALL) {
7215 			ethtype_key = 0;
7216 			ethtype_mask = 0;
7217 		}
7218 		rule->tuples.ether_proto = ethtype_key;
7219 		rule->tuples_mask.ether_proto = ethtype_mask;
7220 		rule->tuples.ip_proto = match.key->ip_proto;
7221 		rule->tuples_mask.ip_proto = match.mask->ip_proto;
7222 	} else {
7223 		rule->unused_tuple |= BIT(INNER_IP_PROTO);
7224 		rule->unused_tuple |= BIT(INNER_ETH_TYPE);
7225 	}
7226 }
7227 
7228 static void hclge_get_cls_key_mac(const struct flow_rule *flow,
7229 				  struct hclge_fd_rule *rule)
7230 {
7231 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
7232 		struct flow_match_eth_addrs match;
7233 
7234 		flow_rule_match_eth_addrs(flow, &match);
7235 		ether_addr_copy(rule->tuples.dst_mac, match.key->dst);
7236 		ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst);
7237 		ether_addr_copy(rule->tuples.src_mac, match.key->src);
7238 		ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src);
7239 	} else {
7240 		rule->unused_tuple |= BIT(INNER_DST_MAC);
7241 		rule->unused_tuple |= BIT(INNER_SRC_MAC);
7242 	}
7243 }
7244 
7245 static void hclge_get_cls_key_vlan(const struct flow_rule *flow,
7246 				   struct hclge_fd_rule *rule)
7247 {
7248 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
7249 		struct flow_match_vlan match;
7250 
7251 		flow_rule_match_vlan(flow, &match);
7252 		rule->tuples.vlan_tag1 = match.key->vlan_id |
7253 				(match.key->vlan_priority << VLAN_PRIO_SHIFT);
7254 		rule->tuples_mask.vlan_tag1 = match.mask->vlan_id |
7255 				(match.mask->vlan_priority << VLAN_PRIO_SHIFT);
7256 	} else {
7257 		rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST);
7258 	}
7259 }
7260 
7261 static void hclge_get_cls_key_ip(const struct flow_rule *flow,
7262 				 struct hclge_fd_rule *rule)
7263 {
7264 	u16 addr_type = 0;
7265 
7266 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) {
7267 		struct flow_match_control match;
7268 
7269 		flow_rule_match_control(flow, &match);
7270 		addr_type = match.key->addr_type;
7271 	}
7272 
7273 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
7274 		struct flow_match_ipv4_addrs match;
7275 
7276 		flow_rule_match_ipv4_addrs(flow, &match);
7277 		rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src);
7278 		rule->tuples_mask.src_ip[IPV4_INDEX] =
7279 						be32_to_cpu(match.mask->src);
7280 		rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst);
7281 		rule->tuples_mask.dst_ip[IPV4_INDEX] =
7282 						be32_to_cpu(match.mask->dst);
7283 	} else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
7284 		struct flow_match_ipv6_addrs match;
7285 
7286 		flow_rule_match_ipv6_addrs(flow, &match);
7287 		be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32,
7288 				  IPV6_SIZE);
7289 		be32_to_cpu_array(rule->tuples_mask.src_ip,
7290 				  match.mask->src.s6_addr32, IPV6_SIZE);
7291 		be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32,
7292 				  IPV6_SIZE);
7293 		be32_to_cpu_array(rule->tuples_mask.dst_ip,
7294 				  match.mask->dst.s6_addr32, IPV6_SIZE);
7295 	} else {
7296 		rule->unused_tuple |= BIT(INNER_SRC_IP);
7297 		rule->unused_tuple |= BIT(INNER_DST_IP);
7298 	}
7299 }
7300 
7301 static void hclge_get_cls_key_port(const struct flow_rule *flow,
7302 				   struct hclge_fd_rule *rule)
7303 {
7304 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
7305 		struct flow_match_ports match;
7306 
7307 		flow_rule_match_ports(flow, &match);
7308 
7309 		rule->tuples.src_port = be16_to_cpu(match.key->src);
7310 		rule->tuples_mask.src_port = be16_to_cpu(match.mask->src);
7311 		rule->tuples.dst_port = be16_to_cpu(match.key->dst);
7312 		rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst);
7313 	} else {
7314 		rule->unused_tuple |= BIT(INNER_SRC_PORT);
7315 		rule->unused_tuple |= BIT(INNER_DST_PORT);
7316 	}
7317 }
7318 
7319 static int hclge_parse_cls_flower(struct hclge_dev *hdev,
7320 				  struct flow_cls_offload *cls_flower,
7321 				  struct hclge_fd_rule *rule)
7322 {
7323 	struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower);
7324 	struct flow_dissector *dissector = flow->match.dissector;
7325 
7326 	if (dissector->used_keys &
7327 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
7328 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
7329 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
7330 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
7331 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
7332 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
7333 	      BIT(FLOW_DISSECTOR_KEY_PORTS))) {
7334 		dev_err(&hdev->pdev->dev, "unsupported key set: %#x\n",
7335 			dissector->used_keys);
7336 		return -EOPNOTSUPP;
7337 	}
7338 
7339 	hclge_get_cls_key_basic(flow, rule);
7340 	hclge_get_cls_key_mac(flow, rule);
7341 	hclge_get_cls_key_vlan(flow, rule);
7342 	hclge_get_cls_key_ip(flow, rule);
7343 	hclge_get_cls_key_port(flow, rule);
7344 
7345 	return 0;
7346 }
7347 
7348 static int hclge_check_cls_flower(struct hclge_dev *hdev,
7349 				  struct flow_cls_offload *cls_flower, int tc)
7350 {
7351 	u32 prio = cls_flower->common.prio;
7352 
7353 	if (tc < 0 || tc > hdev->tc_max) {
7354 		dev_err(&hdev->pdev->dev, "invalid traffic class\n");
7355 		return -EINVAL;
7356 	}
7357 
7358 	if (prio == 0 ||
7359 	    prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7360 		dev_err(&hdev->pdev->dev,
7361 			"prio %u should be in range[1, %u]\n",
7362 			prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
7363 		return -EINVAL;
7364 	}
7365 
7366 	if (test_bit(prio - 1, hdev->fd_bmap)) {
7367 		dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio);
7368 		return -EINVAL;
7369 	}
7370 	return 0;
7371 }
7372 
7373 static int hclge_add_cls_flower(struct hnae3_handle *handle,
7374 				struct flow_cls_offload *cls_flower,
7375 				int tc)
7376 {
7377 	struct hclge_vport *vport = hclge_get_vport(handle);
7378 	struct hclge_dev *hdev = vport->back;
7379 	struct hclge_fd_rule *rule;
7380 	int ret;
7381 
7382 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
7383 		dev_err(&hdev->pdev->dev,
7384 			"cls flower is not supported\n");
7385 		return -EOPNOTSUPP;
7386 	}
7387 
7388 	ret = hclge_check_cls_flower(hdev, cls_flower, tc);
7389 	if (ret) {
7390 		dev_err(&hdev->pdev->dev,
7391 			"failed to check cls flower params, ret = %d\n", ret);
7392 		return ret;
7393 	}
7394 
7395 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
7396 	if (!rule)
7397 		return -ENOMEM;
7398 
7399 	ret = hclge_parse_cls_flower(hdev, cls_flower, rule);
7400 	if (ret) {
7401 		kfree(rule);
7402 		return ret;
7403 	}
7404 
7405 	rule->action = HCLGE_FD_ACTION_SELECT_TC;
7406 	rule->cls_flower.tc = tc;
7407 	rule->location = cls_flower->common.prio - 1;
7408 	rule->vf_id = 0;
7409 	rule->cls_flower.cookie = cls_flower->cookie;
7410 	rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE;
7411 
7412 	ret = hclge_add_fd_entry_common(hdev, rule);
7413 	if (ret)
7414 		kfree(rule);
7415 
7416 	return ret;
7417 }
7418 
7419 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev,
7420 						   unsigned long cookie)
7421 {
7422 	struct hclge_fd_rule *rule;
7423 	struct hlist_node *node;
7424 
7425 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7426 		if (rule->cls_flower.cookie == cookie)
7427 			return rule;
7428 	}
7429 
7430 	return NULL;
7431 }
7432 
7433 static int hclge_del_cls_flower(struct hnae3_handle *handle,
7434 				struct flow_cls_offload *cls_flower)
7435 {
7436 	struct hclge_vport *vport = hclge_get_vport(handle);
7437 	struct hclge_dev *hdev = vport->back;
7438 	struct hclge_fd_rule *rule;
7439 	int ret;
7440 
7441 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7442 		return -EOPNOTSUPP;
7443 
7444 	spin_lock_bh(&hdev->fd_rule_lock);
7445 
7446 	rule = hclge_find_cls_flower(hdev, cls_flower->cookie);
7447 	if (!rule) {
7448 		spin_unlock_bh(&hdev->fd_rule_lock);
7449 		return -EINVAL;
7450 	}
7451 
7452 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location,
7453 				   NULL, false);
7454 	if (ret) {
7455 		spin_unlock_bh(&hdev->fd_rule_lock);
7456 		return ret;
7457 	}
7458 
7459 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL);
7460 	spin_unlock_bh(&hdev->fd_rule_lock);
7461 
7462 	return 0;
7463 }
7464 
7465 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist)
7466 {
7467 	struct hclge_fd_rule *rule;
7468 	struct hlist_node *node;
7469 	int ret = 0;
7470 
7471 	if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state))
7472 		return;
7473 
7474 	spin_lock_bh(&hdev->fd_rule_lock);
7475 
7476 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
7477 		switch (rule->state) {
7478 		case HCLGE_FD_TO_ADD:
7479 			ret = hclge_fd_config_rule(hdev, rule);
7480 			if (ret)
7481 				goto out;
7482 			rule->state = HCLGE_FD_ACTIVE;
7483 			break;
7484 		case HCLGE_FD_TO_DEL:
7485 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7486 						   rule->location, NULL, false);
7487 			if (ret)
7488 				goto out;
7489 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7490 			hclge_fd_free_node(hdev, rule);
7491 			break;
7492 		default:
7493 			break;
7494 		}
7495 	}
7496 
7497 out:
7498 	if (ret)
7499 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7500 
7501 	spin_unlock_bh(&hdev->fd_rule_lock);
7502 }
7503 
7504 static void hclge_sync_fd_table(struct hclge_dev *hdev)
7505 {
7506 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7507 		return;
7508 
7509 	if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) {
7510 		bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE;
7511 
7512 		hclge_clear_fd_rules_in_list(hdev, clear_list);
7513 	}
7514 
7515 	hclge_sync_fd_user_def_cfg(hdev, false);
7516 
7517 	hclge_sync_fd_list(hdev, &hdev->fd_rule_list);
7518 }
7519 
7520 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle)
7521 {
7522 	struct hclge_vport *vport = hclge_get_vport(handle);
7523 	struct hclge_dev *hdev = vport->back;
7524 
7525 	return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) ||
7526 	       hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING);
7527 }
7528 
7529 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle)
7530 {
7531 	struct hclge_vport *vport = hclge_get_vport(handle);
7532 	struct hclge_dev *hdev = vport->back;
7533 
7534 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
7535 }
7536 
7537 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle)
7538 {
7539 	struct hclge_vport *vport = hclge_get_vport(handle);
7540 	struct hclge_dev *hdev = vport->back;
7541 
7542 	return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
7543 }
7544 
7545 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle)
7546 {
7547 	struct hclge_vport *vport = hclge_get_vport(handle);
7548 	struct hclge_dev *hdev = vport->back;
7549 
7550 	return hdev->rst_stats.hw_reset_done_cnt;
7551 }
7552 
7553 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable)
7554 {
7555 	struct hclge_vport *vport = hclge_get_vport(handle);
7556 	struct hclge_dev *hdev = vport->back;
7557 
7558 	hdev->fd_en = enable;
7559 
7560 	if (!enable)
7561 		set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state);
7562 	else
7563 		hclge_restore_fd_entries(handle);
7564 
7565 	hclge_task_schedule(hdev, 0);
7566 }
7567 
7568 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable)
7569 {
7570 	struct hclge_desc desc;
7571 	struct hclge_config_mac_mode_cmd *req =
7572 		(struct hclge_config_mac_mode_cmd *)desc.data;
7573 	u32 loop_en = 0;
7574 	int ret;
7575 
7576 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false);
7577 
7578 	if (enable) {
7579 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U);
7580 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U);
7581 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U);
7582 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U);
7583 		hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U);
7584 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U);
7585 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U);
7586 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U);
7587 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U);
7588 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U);
7589 	}
7590 
7591 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7592 
7593 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7594 	if (ret)
7595 		dev_err(&hdev->pdev->dev,
7596 			"mac enable fail, ret =%d.\n", ret);
7597 }
7598 
7599 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid,
7600 				     u8 switch_param, u8 param_mask)
7601 {
7602 	struct hclge_mac_vlan_switch_cmd *req;
7603 	struct hclge_desc desc;
7604 	u32 func_id;
7605 	int ret;
7606 
7607 	func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0);
7608 	req = (struct hclge_mac_vlan_switch_cmd *)desc.data;
7609 
7610 	/* read current config parameter */
7611 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM,
7612 				   true);
7613 	req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL;
7614 	req->func_id = cpu_to_le32(func_id);
7615 
7616 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7617 	if (ret) {
7618 		dev_err(&hdev->pdev->dev,
7619 			"read mac vlan switch parameter fail, ret = %d\n", ret);
7620 		return ret;
7621 	}
7622 
7623 	/* modify and write new config parameter */
7624 	hclge_comm_cmd_reuse_desc(&desc, false);
7625 	req->switch_param = (req->switch_param & param_mask) | switch_param;
7626 	req->param_mask = param_mask;
7627 
7628 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7629 	if (ret)
7630 		dev_err(&hdev->pdev->dev,
7631 			"set mac vlan switch parameter fail, ret = %d\n", ret);
7632 	return ret;
7633 }
7634 
7635 static void hclge_phy_link_status_wait(struct hclge_dev *hdev,
7636 				       int link_ret)
7637 {
7638 #define HCLGE_PHY_LINK_STATUS_NUM  200
7639 
7640 	struct phy_device *phydev = hdev->hw.mac.phydev;
7641 	int i = 0;
7642 	int ret;
7643 
7644 	do {
7645 		ret = phy_read_status(phydev);
7646 		if (ret) {
7647 			dev_err(&hdev->pdev->dev,
7648 				"phy update link status fail, ret = %d\n", ret);
7649 			return;
7650 		}
7651 
7652 		if (phydev->link == link_ret)
7653 			break;
7654 
7655 		msleep(HCLGE_LINK_STATUS_MS);
7656 	} while (++i < HCLGE_PHY_LINK_STATUS_NUM);
7657 }
7658 
7659 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret)
7660 {
7661 #define HCLGE_MAC_LINK_STATUS_NUM  100
7662 
7663 	int link_status;
7664 	int i = 0;
7665 	int ret;
7666 
7667 	do {
7668 		ret = hclge_get_mac_link_status(hdev, &link_status);
7669 		if (ret)
7670 			return ret;
7671 		if (link_status == link_ret)
7672 			return 0;
7673 
7674 		msleep(HCLGE_LINK_STATUS_MS);
7675 	} while (++i < HCLGE_MAC_LINK_STATUS_NUM);
7676 	return -EBUSY;
7677 }
7678 
7679 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en,
7680 					  bool is_phy)
7681 {
7682 	int link_ret;
7683 
7684 	link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
7685 
7686 	if (is_phy)
7687 		hclge_phy_link_status_wait(hdev, link_ret);
7688 
7689 	return hclge_mac_link_status_wait(hdev, link_ret);
7690 }
7691 
7692 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en)
7693 {
7694 	struct hclge_config_mac_mode_cmd *req;
7695 	struct hclge_desc desc;
7696 	u32 loop_en;
7697 	int ret;
7698 
7699 	req = (struct hclge_config_mac_mode_cmd *)&desc.data[0];
7700 	/* 1 Read out the MAC mode config at first */
7701 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true);
7702 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7703 	if (ret) {
7704 		dev_err(&hdev->pdev->dev,
7705 			"mac loopback get fail, ret =%d.\n", ret);
7706 		return ret;
7707 	}
7708 
7709 	/* 2 Then setup the loopback flag */
7710 	loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en);
7711 	hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0);
7712 
7713 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7714 
7715 	/* 3 Config mac work mode with loopback flag
7716 	 * and its original configure parameters
7717 	 */
7718 	hclge_comm_cmd_reuse_desc(&desc, false);
7719 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7720 	if (ret)
7721 		dev_err(&hdev->pdev->dev,
7722 			"mac loopback set fail, ret =%d.\n", ret);
7723 	return ret;
7724 }
7725 
7726 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en,
7727 					      enum hnae3_loop loop_mode)
7728 {
7729 	struct hclge_common_lb_cmd *req;
7730 	struct hclge_desc desc;
7731 	u8 loop_mode_b;
7732 	int ret;
7733 
7734 	req = (struct hclge_common_lb_cmd *)desc.data;
7735 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false);
7736 
7737 	switch (loop_mode) {
7738 	case HNAE3_LOOP_SERIAL_SERDES:
7739 		loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B;
7740 		break;
7741 	case HNAE3_LOOP_PARALLEL_SERDES:
7742 		loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B;
7743 		break;
7744 	case HNAE3_LOOP_PHY:
7745 		loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B;
7746 		break;
7747 	default:
7748 		dev_err(&hdev->pdev->dev,
7749 			"unsupported loopback mode %d\n", loop_mode);
7750 		return -ENOTSUPP;
7751 	}
7752 
7753 	req->mask = loop_mode_b;
7754 	if (en)
7755 		req->enable = loop_mode_b;
7756 
7757 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7758 	if (ret)
7759 		dev_err(&hdev->pdev->dev,
7760 			"failed to send loopback cmd, loop_mode = %d, ret = %d\n",
7761 			loop_mode, ret);
7762 
7763 	return ret;
7764 }
7765 
7766 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev)
7767 {
7768 #define HCLGE_COMMON_LB_RETRY_MS	10
7769 #define HCLGE_COMMON_LB_RETRY_NUM	100
7770 
7771 	struct hclge_common_lb_cmd *req;
7772 	struct hclge_desc desc;
7773 	u32 i = 0;
7774 	int ret;
7775 
7776 	req = (struct hclge_common_lb_cmd *)desc.data;
7777 
7778 	do {
7779 		msleep(HCLGE_COMMON_LB_RETRY_MS);
7780 		hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK,
7781 					   true);
7782 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7783 		if (ret) {
7784 			dev_err(&hdev->pdev->dev,
7785 				"failed to get loopback done status, ret = %d\n",
7786 				ret);
7787 			return ret;
7788 		}
7789 	} while (++i < HCLGE_COMMON_LB_RETRY_NUM &&
7790 		 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B));
7791 
7792 	if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) {
7793 		dev_err(&hdev->pdev->dev, "wait loopback timeout\n");
7794 		return -EBUSY;
7795 	} else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) {
7796 		dev_err(&hdev->pdev->dev, "failed to do loopback test\n");
7797 		return -EIO;
7798 	}
7799 
7800 	return 0;
7801 }
7802 
7803 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en,
7804 				     enum hnae3_loop loop_mode)
7805 {
7806 	int ret;
7807 
7808 	ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode);
7809 	if (ret)
7810 		return ret;
7811 
7812 	return hclge_cfg_common_loopback_wait(hdev);
7813 }
7814 
7815 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en,
7816 				     enum hnae3_loop loop_mode)
7817 {
7818 	int ret;
7819 
7820 	ret = hclge_cfg_common_loopback(hdev, en, loop_mode);
7821 	if (ret)
7822 		return ret;
7823 
7824 	hclge_cfg_mac_mode(hdev, en);
7825 
7826 	ret = hclge_mac_phy_link_status_wait(hdev, en, false);
7827 	if (ret)
7828 		dev_err(&hdev->pdev->dev,
7829 			"serdes loopback config mac mode timeout\n");
7830 
7831 	return ret;
7832 }
7833 
7834 static int hclge_enable_phy_loopback(struct hclge_dev *hdev,
7835 				     struct phy_device *phydev)
7836 {
7837 	int ret;
7838 
7839 	if (!phydev->suspended) {
7840 		ret = phy_suspend(phydev);
7841 		if (ret)
7842 			return ret;
7843 	}
7844 
7845 	ret = phy_resume(phydev);
7846 	if (ret)
7847 		return ret;
7848 
7849 	return phy_loopback(phydev, true);
7850 }
7851 
7852 static int hclge_disable_phy_loopback(struct hclge_dev *hdev,
7853 				      struct phy_device *phydev)
7854 {
7855 	int ret;
7856 
7857 	ret = phy_loopback(phydev, false);
7858 	if (ret)
7859 		return ret;
7860 
7861 	return phy_suspend(phydev);
7862 }
7863 
7864 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en)
7865 {
7866 	struct phy_device *phydev = hdev->hw.mac.phydev;
7867 	int ret;
7868 
7869 	if (!phydev) {
7870 		if (hnae3_dev_phy_imp_supported(hdev))
7871 			return hclge_set_common_loopback(hdev, en,
7872 							 HNAE3_LOOP_PHY);
7873 		return -ENOTSUPP;
7874 	}
7875 
7876 	if (en)
7877 		ret = hclge_enable_phy_loopback(hdev, phydev);
7878 	else
7879 		ret = hclge_disable_phy_loopback(hdev, phydev);
7880 	if (ret) {
7881 		dev_err(&hdev->pdev->dev,
7882 			"set phy loopback fail, ret = %d\n", ret);
7883 		return ret;
7884 	}
7885 
7886 	hclge_cfg_mac_mode(hdev, en);
7887 
7888 	ret = hclge_mac_phy_link_status_wait(hdev, en, true);
7889 	if (ret)
7890 		dev_err(&hdev->pdev->dev,
7891 			"phy loopback config mac mode timeout\n");
7892 
7893 	return ret;
7894 }
7895 
7896 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id,
7897 				     u16 stream_id, bool enable)
7898 {
7899 	struct hclge_desc desc;
7900 	struct hclge_cfg_com_tqp_queue_cmd *req =
7901 		(struct hclge_cfg_com_tqp_queue_cmd *)desc.data;
7902 
7903 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
7904 	req->tqp_id = cpu_to_le16(tqp_id);
7905 	req->stream_id = cpu_to_le16(stream_id);
7906 	if (enable)
7907 		req->enable |= 1U << HCLGE_TQP_ENABLE_B;
7908 
7909 	return hclge_cmd_send(&hdev->hw, &desc, 1);
7910 }
7911 
7912 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable)
7913 {
7914 	struct hclge_vport *vport = hclge_get_vport(handle);
7915 	struct hclge_dev *hdev = vport->back;
7916 	int ret;
7917 	u16 i;
7918 
7919 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
7920 		ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable);
7921 		if (ret)
7922 			return ret;
7923 	}
7924 	return 0;
7925 }
7926 
7927 static int hclge_set_loopback(struct hnae3_handle *handle,
7928 			      enum hnae3_loop loop_mode, bool en)
7929 {
7930 	struct hclge_vport *vport = hclge_get_vport(handle);
7931 	struct hclge_dev *hdev = vport->back;
7932 	int ret = 0;
7933 
7934 	/* Loopback can be enabled in three places: SSU, MAC, and serdes. By
7935 	 * default, SSU loopback is enabled, so if the SMAC and the DMAC are
7936 	 * the same, the packets are looped back in the SSU. If SSU loopback
7937 	 * is disabled, packets can reach MAC even if SMAC is the same as DMAC.
7938 	 */
7939 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
7940 		u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B);
7941 
7942 		ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param,
7943 						HCLGE_SWITCH_ALW_LPBK_MASK);
7944 		if (ret)
7945 			return ret;
7946 	}
7947 
7948 	switch (loop_mode) {
7949 	case HNAE3_LOOP_APP:
7950 		ret = hclge_set_app_loopback(hdev, en);
7951 		break;
7952 	case HNAE3_LOOP_SERIAL_SERDES:
7953 	case HNAE3_LOOP_PARALLEL_SERDES:
7954 		ret = hclge_set_common_loopback(hdev, en, loop_mode);
7955 		break;
7956 	case HNAE3_LOOP_PHY:
7957 		ret = hclge_set_phy_loopback(hdev, en);
7958 		break;
7959 	case HNAE3_LOOP_EXTERNAL:
7960 		break;
7961 	default:
7962 		ret = -ENOTSUPP;
7963 		dev_err(&hdev->pdev->dev,
7964 			"loop_mode %d is not supported\n", loop_mode);
7965 		break;
7966 	}
7967 
7968 	if (ret)
7969 		return ret;
7970 
7971 	ret = hclge_tqp_enable(handle, en);
7972 	if (ret)
7973 		dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n",
7974 			en ? "enable" : "disable", ret);
7975 
7976 	return ret;
7977 }
7978 
7979 static int hclge_set_default_loopback(struct hclge_dev *hdev)
7980 {
7981 	int ret;
7982 
7983 	ret = hclge_set_app_loopback(hdev, false);
7984 	if (ret)
7985 		return ret;
7986 
7987 	ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES);
7988 	if (ret)
7989 		return ret;
7990 
7991 	return hclge_cfg_common_loopback(hdev, false,
7992 					 HNAE3_LOOP_PARALLEL_SERDES);
7993 }
7994 
7995 static void hclge_flush_link_update(struct hclge_dev *hdev)
7996 {
7997 #define HCLGE_FLUSH_LINK_TIMEOUT	100000
7998 
7999 	unsigned long last = hdev->serv_processed_cnt;
8000 	int i = 0;
8001 
8002 	while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) &&
8003 	       i++ < HCLGE_FLUSH_LINK_TIMEOUT &&
8004 	       last == hdev->serv_processed_cnt)
8005 		usleep_range(1, 1);
8006 }
8007 
8008 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable)
8009 {
8010 	struct hclge_vport *vport = hclge_get_vport(handle);
8011 	struct hclge_dev *hdev = vport->back;
8012 
8013 	if (enable) {
8014 		hclge_task_schedule(hdev, 0);
8015 	} else {
8016 		/* Set the DOWN flag here to disable link updating */
8017 		set_bit(HCLGE_STATE_DOWN, &hdev->state);
8018 
8019 		/* flush memory to make sure DOWN is seen by service task */
8020 		smp_mb__before_atomic();
8021 		hclge_flush_link_update(hdev);
8022 	}
8023 }
8024 
8025 static int hclge_ae_start(struct hnae3_handle *handle)
8026 {
8027 	struct hclge_vport *vport = hclge_get_vport(handle);
8028 	struct hclge_dev *hdev = vport->back;
8029 
8030 	/* mac enable */
8031 	hclge_cfg_mac_mode(hdev, true);
8032 	clear_bit(HCLGE_STATE_DOWN, &hdev->state);
8033 	hdev->hw.mac.link = 0;
8034 
8035 	/* reset tqp stats */
8036 	hclge_comm_reset_tqp_stats(handle);
8037 
8038 	hclge_mac_start_phy(hdev);
8039 
8040 	return 0;
8041 }
8042 
8043 static void hclge_ae_stop(struct hnae3_handle *handle)
8044 {
8045 	struct hclge_vport *vport = hclge_get_vport(handle);
8046 	struct hclge_dev *hdev = vport->back;
8047 
8048 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
8049 	spin_lock_bh(&hdev->fd_rule_lock);
8050 	hclge_clear_arfs_rules(hdev);
8051 	spin_unlock_bh(&hdev->fd_rule_lock);
8052 
8053 	/* If it is not PF reset or FLR, the firmware will disable the MAC,
8054 	 * so it only need to stop phy here.
8055 	 */
8056 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) &&
8057 	    hdev->reset_type != HNAE3_FUNC_RESET &&
8058 	    hdev->reset_type != HNAE3_FLR_RESET) {
8059 		hclge_mac_stop_phy(hdev);
8060 		hclge_update_link_status(hdev);
8061 		return;
8062 	}
8063 
8064 	hclge_reset_tqp(handle);
8065 
8066 	hclge_config_mac_tnl_int(hdev, false);
8067 
8068 	/* Mac disable */
8069 	hclge_cfg_mac_mode(hdev, false);
8070 
8071 	hclge_mac_stop_phy(hdev);
8072 
8073 	/* reset tqp stats */
8074 	hclge_comm_reset_tqp_stats(handle);
8075 	hclge_update_link_status(hdev);
8076 }
8077 
8078 int hclge_vport_start(struct hclge_vport *vport)
8079 {
8080 	struct hclge_dev *hdev = vport->back;
8081 
8082 	set_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
8083 	set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
8084 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
8085 	vport->last_active_jiffies = jiffies;
8086 	vport->need_notify = 0;
8087 
8088 	if (test_bit(vport->vport_id, hdev->vport_config_block)) {
8089 		if (vport->vport_id) {
8090 			hclge_restore_mac_table_common(vport);
8091 			hclge_restore_vport_vlan_table(vport);
8092 		} else {
8093 			hclge_restore_hw_table(hdev);
8094 		}
8095 	}
8096 
8097 	clear_bit(vport->vport_id, hdev->vport_config_block);
8098 
8099 	return 0;
8100 }
8101 
8102 void hclge_vport_stop(struct hclge_vport *vport)
8103 {
8104 	clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
8105 	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
8106 	vport->need_notify = 0;
8107 }
8108 
8109 static int hclge_client_start(struct hnae3_handle *handle)
8110 {
8111 	struct hclge_vport *vport = hclge_get_vport(handle);
8112 
8113 	return hclge_vport_start(vport);
8114 }
8115 
8116 static void hclge_client_stop(struct hnae3_handle *handle)
8117 {
8118 	struct hclge_vport *vport = hclge_get_vport(handle);
8119 
8120 	hclge_vport_stop(vport);
8121 }
8122 
8123 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport,
8124 					 u16 cmdq_resp, u8  resp_code,
8125 					 enum hclge_mac_vlan_tbl_opcode op)
8126 {
8127 	struct hclge_dev *hdev = vport->back;
8128 
8129 	if (cmdq_resp) {
8130 		dev_err(&hdev->pdev->dev,
8131 			"cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n",
8132 			cmdq_resp);
8133 		return -EIO;
8134 	}
8135 
8136 	if (op == HCLGE_MAC_VLAN_ADD) {
8137 		if (!resp_code || resp_code == 1)
8138 			return 0;
8139 		else if (resp_code == HCLGE_ADD_UC_OVERFLOW ||
8140 			 resp_code == HCLGE_ADD_MC_OVERFLOW)
8141 			return -ENOSPC;
8142 
8143 		dev_err(&hdev->pdev->dev,
8144 			"add mac addr failed for undefined, code=%u.\n",
8145 			resp_code);
8146 		return -EIO;
8147 	} else if (op == HCLGE_MAC_VLAN_REMOVE) {
8148 		if (!resp_code) {
8149 			return 0;
8150 		} else if (resp_code == 1) {
8151 			dev_dbg(&hdev->pdev->dev,
8152 				"remove mac addr failed for miss.\n");
8153 			return -ENOENT;
8154 		}
8155 
8156 		dev_err(&hdev->pdev->dev,
8157 			"remove mac addr failed for undefined, code=%u.\n",
8158 			resp_code);
8159 		return -EIO;
8160 	} else if (op == HCLGE_MAC_VLAN_LKUP) {
8161 		if (!resp_code) {
8162 			return 0;
8163 		} else if (resp_code == 1) {
8164 			dev_dbg(&hdev->pdev->dev,
8165 				"lookup mac addr failed for miss.\n");
8166 			return -ENOENT;
8167 		}
8168 
8169 		dev_err(&hdev->pdev->dev,
8170 			"lookup mac addr failed for undefined, code=%u.\n",
8171 			resp_code);
8172 		return -EIO;
8173 	}
8174 
8175 	dev_err(&hdev->pdev->dev,
8176 		"unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op);
8177 
8178 	return -EINVAL;
8179 }
8180 
8181 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr)
8182 {
8183 #define HCLGE_VF_NUM_IN_FIRST_DESC 192
8184 
8185 	unsigned int word_num;
8186 	unsigned int bit_num;
8187 
8188 	if (vfid > 255 || vfid < 0)
8189 		return -EIO;
8190 
8191 	if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) {
8192 		word_num = vfid / 32;
8193 		bit_num  = vfid % 32;
8194 		if (clr)
8195 			desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num));
8196 		else
8197 			desc[1].data[word_num] |= cpu_to_le32(1 << bit_num);
8198 	} else {
8199 		word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32;
8200 		bit_num  = vfid % 32;
8201 		if (clr)
8202 			desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num));
8203 		else
8204 			desc[2].data[word_num] |= cpu_to_le32(1 << bit_num);
8205 	}
8206 
8207 	return 0;
8208 }
8209 
8210 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc)
8211 {
8212 #define HCLGE_DESC_NUMBER 3
8213 #define HCLGE_FUNC_NUMBER_PER_DESC 6
8214 	int i, j;
8215 
8216 	for (i = 1; i < HCLGE_DESC_NUMBER; i++)
8217 		for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++)
8218 			if (desc[i].data[j])
8219 				return false;
8220 
8221 	return true;
8222 }
8223 
8224 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req,
8225 				   const u8 *addr, bool is_mc)
8226 {
8227 	const unsigned char *mac_addr = addr;
8228 	u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) |
8229 		       (mac_addr[0]) | (mac_addr[1] << 8);
8230 	u32 low_val  = mac_addr[4] | (mac_addr[5] << 8);
8231 
8232 	hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8233 	if (is_mc) {
8234 		hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1);
8235 		hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8236 	}
8237 
8238 	new_req->mac_addr_hi32 = cpu_to_le32(high_val);
8239 	new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff);
8240 }
8241 
8242 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport,
8243 				     struct hclge_mac_vlan_tbl_entry_cmd *req)
8244 {
8245 	struct hclge_dev *hdev = vport->back;
8246 	struct hclge_desc desc;
8247 	u8 resp_code;
8248 	u16 retval;
8249 	int ret;
8250 
8251 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false);
8252 
8253 	memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8254 
8255 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8256 	if (ret) {
8257 		dev_err(&hdev->pdev->dev,
8258 			"del mac addr failed for cmd_send, ret =%d.\n",
8259 			ret);
8260 		return ret;
8261 	}
8262 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8263 	retval = le16_to_cpu(desc.retval);
8264 
8265 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8266 					     HCLGE_MAC_VLAN_REMOVE);
8267 }
8268 
8269 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport,
8270 				     struct hclge_mac_vlan_tbl_entry_cmd *req,
8271 				     struct hclge_desc *desc,
8272 				     bool is_mc)
8273 {
8274 	struct hclge_dev *hdev = vport->back;
8275 	u8 resp_code;
8276 	u16 retval;
8277 	int ret;
8278 
8279 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true);
8280 	if (is_mc) {
8281 		desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8282 		memcpy(desc[0].data,
8283 		       req,
8284 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8285 		hclge_cmd_setup_basic_desc(&desc[1],
8286 					   HCLGE_OPC_MAC_VLAN_ADD,
8287 					   true);
8288 		desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8289 		hclge_cmd_setup_basic_desc(&desc[2],
8290 					   HCLGE_OPC_MAC_VLAN_ADD,
8291 					   true);
8292 		ret = hclge_cmd_send(&hdev->hw, desc, 3);
8293 	} else {
8294 		memcpy(desc[0].data,
8295 		       req,
8296 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8297 		ret = hclge_cmd_send(&hdev->hw, desc, 1);
8298 	}
8299 	if (ret) {
8300 		dev_err(&hdev->pdev->dev,
8301 			"lookup mac addr failed for cmd_send, ret =%d.\n",
8302 			ret);
8303 		return ret;
8304 	}
8305 	resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff;
8306 	retval = le16_to_cpu(desc[0].retval);
8307 
8308 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8309 					     HCLGE_MAC_VLAN_LKUP);
8310 }
8311 
8312 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport,
8313 				  struct hclge_mac_vlan_tbl_entry_cmd *req,
8314 				  struct hclge_desc *mc_desc)
8315 {
8316 	struct hclge_dev *hdev = vport->back;
8317 	int cfg_status;
8318 	u8 resp_code;
8319 	u16 retval;
8320 	int ret;
8321 
8322 	if (!mc_desc) {
8323 		struct hclge_desc desc;
8324 
8325 		hclge_cmd_setup_basic_desc(&desc,
8326 					   HCLGE_OPC_MAC_VLAN_ADD,
8327 					   false);
8328 		memcpy(desc.data, req,
8329 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8330 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8331 		resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8332 		retval = le16_to_cpu(desc.retval);
8333 
8334 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8335 							   resp_code,
8336 							   HCLGE_MAC_VLAN_ADD);
8337 	} else {
8338 		hclge_comm_cmd_reuse_desc(&mc_desc[0], false);
8339 		mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8340 		hclge_comm_cmd_reuse_desc(&mc_desc[1], false);
8341 		mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8342 		hclge_comm_cmd_reuse_desc(&mc_desc[2], false);
8343 		mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT);
8344 		memcpy(mc_desc[0].data, req,
8345 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8346 		ret = hclge_cmd_send(&hdev->hw, mc_desc, 3);
8347 		resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff;
8348 		retval = le16_to_cpu(mc_desc[0].retval);
8349 
8350 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8351 							   resp_code,
8352 							   HCLGE_MAC_VLAN_ADD);
8353 	}
8354 
8355 	if (ret) {
8356 		dev_err(&hdev->pdev->dev,
8357 			"add mac addr failed for cmd_send, ret =%d.\n",
8358 			ret);
8359 		return ret;
8360 	}
8361 
8362 	return cfg_status;
8363 }
8364 
8365 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
8366 			       u16 *allocated_size)
8367 {
8368 	struct hclge_umv_spc_alc_cmd *req;
8369 	struct hclge_desc desc;
8370 	int ret;
8371 
8372 	req = (struct hclge_umv_spc_alc_cmd *)desc.data;
8373 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false);
8374 
8375 	req->space_size = cpu_to_le32(space_size);
8376 
8377 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8378 	if (ret) {
8379 		dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n",
8380 			ret);
8381 		return ret;
8382 	}
8383 
8384 	*allocated_size = le32_to_cpu(desc.data[1]);
8385 
8386 	return 0;
8387 }
8388 
8389 static int hclge_init_umv_space(struct hclge_dev *hdev)
8390 {
8391 	u16 allocated_size = 0;
8392 	int ret;
8393 
8394 	ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size);
8395 	if (ret)
8396 		return ret;
8397 
8398 	if (allocated_size < hdev->wanted_umv_size)
8399 		dev_warn(&hdev->pdev->dev,
8400 			 "failed to alloc umv space, want %u, get %u\n",
8401 			 hdev->wanted_umv_size, allocated_size);
8402 
8403 	hdev->max_umv_size = allocated_size;
8404 	hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1);
8405 	hdev->share_umv_size = hdev->priv_umv_size +
8406 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8407 
8408 	if (hdev->ae_dev->dev_specs.mc_mac_size)
8409 		set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps);
8410 
8411 	return 0;
8412 }
8413 
8414 static void hclge_reset_umv_space(struct hclge_dev *hdev)
8415 {
8416 	struct hclge_vport *vport;
8417 	int i;
8418 
8419 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8420 		vport = &hdev->vport[i];
8421 		vport->used_umv_num = 0;
8422 	}
8423 
8424 	mutex_lock(&hdev->vport_lock);
8425 	hdev->share_umv_size = hdev->priv_umv_size +
8426 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8427 	mutex_unlock(&hdev->vport_lock);
8428 
8429 	hdev->used_mc_mac_num = 0;
8430 }
8431 
8432 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock)
8433 {
8434 	struct hclge_dev *hdev = vport->back;
8435 	bool is_full;
8436 
8437 	if (need_lock)
8438 		mutex_lock(&hdev->vport_lock);
8439 
8440 	is_full = (vport->used_umv_num >= hdev->priv_umv_size &&
8441 		   hdev->share_umv_size == 0);
8442 
8443 	if (need_lock)
8444 		mutex_unlock(&hdev->vport_lock);
8445 
8446 	return is_full;
8447 }
8448 
8449 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free)
8450 {
8451 	struct hclge_dev *hdev = vport->back;
8452 
8453 	if (is_free) {
8454 		if (vport->used_umv_num > hdev->priv_umv_size)
8455 			hdev->share_umv_size++;
8456 
8457 		if (vport->used_umv_num > 0)
8458 			vport->used_umv_num--;
8459 	} else {
8460 		if (vport->used_umv_num >= hdev->priv_umv_size &&
8461 		    hdev->share_umv_size > 0)
8462 			hdev->share_umv_size--;
8463 		vport->used_umv_num++;
8464 	}
8465 }
8466 
8467 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list,
8468 						  const u8 *mac_addr)
8469 {
8470 	struct hclge_mac_node *mac_node, *tmp;
8471 
8472 	list_for_each_entry_safe(mac_node, tmp, list, node)
8473 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
8474 			return mac_node;
8475 
8476 	return NULL;
8477 }
8478 
8479 static void hclge_update_mac_node(struct hclge_mac_node *mac_node,
8480 				  enum HCLGE_MAC_NODE_STATE state)
8481 {
8482 	switch (state) {
8483 	/* from set_rx_mode or tmp_add_list */
8484 	case HCLGE_MAC_TO_ADD:
8485 		if (mac_node->state == HCLGE_MAC_TO_DEL)
8486 			mac_node->state = HCLGE_MAC_ACTIVE;
8487 		break;
8488 	/* only from set_rx_mode */
8489 	case HCLGE_MAC_TO_DEL:
8490 		if (mac_node->state == HCLGE_MAC_TO_ADD) {
8491 			list_del(&mac_node->node);
8492 			kfree(mac_node);
8493 		} else {
8494 			mac_node->state = HCLGE_MAC_TO_DEL;
8495 		}
8496 		break;
8497 	/* only from tmp_add_list, the mac_node->state won't be
8498 	 * ACTIVE.
8499 	 */
8500 	case HCLGE_MAC_ACTIVE:
8501 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8502 			mac_node->state = HCLGE_MAC_ACTIVE;
8503 
8504 		break;
8505 	}
8506 }
8507 
8508 int hclge_update_mac_list(struct hclge_vport *vport,
8509 			  enum HCLGE_MAC_NODE_STATE state,
8510 			  enum HCLGE_MAC_ADDR_TYPE mac_type,
8511 			  const unsigned char *addr)
8512 {
8513 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8514 	struct hclge_dev *hdev = vport->back;
8515 	struct hclge_mac_node *mac_node;
8516 	struct list_head *list;
8517 
8518 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8519 		&vport->uc_mac_list : &vport->mc_mac_list;
8520 
8521 	spin_lock_bh(&vport->mac_list_lock);
8522 
8523 	/* if the mac addr is already in the mac list, no need to add a new
8524 	 * one into it, just check the mac addr state, convert it to a new
8525 	 * state, or just remove it, or do nothing.
8526 	 */
8527 	mac_node = hclge_find_mac_node(list, addr);
8528 	if (mac_node) {
8529 		hclge_update_mac_node(mac_node, state);
8530 		spin_unlock_bh(&vport->mac_list_lock);
8531 		set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8532 		return 0;
8533 	}
8534 
8535 	/* if this address is never added, unnecessary to delete */
8536 	if (state == HCLGE_MAC_TO_DEL) {
8537 		spin_unlock_bh(&vport->mac_list_lock);
8538 		hnae3_format_mac_addr(format_mac_addr, addr);
8539 		dev_err(&hdev->pdev->dev,
8540 			"failed to delete address %s from mac list\n",
8541 			format_mac_addr);
8542 		return -ENOENT;
8543 	}
8544 
8545 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
8546 	if (!mac_node) {
8547 		spin_unlock_bh(&vport->mac_list_lock);
8548 		return -ENOMEM;
8549 	}
8550 
8551 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8552 
8553 	mac_node->state = state;
8554 	ether_addr_copy(mac_node->mac_addr, addr);
8555 	list_add_tail(&mac_node->node, list);
8556 
8557 	spin_unlock_bh(&vport->mac_list_lock);
8558 
8559 	return 0;
8560 }
8561 
8562 static int hclge_add_uc_addr(struct hnae3_handle *handle,
8563 			     const unsigned char *addr)
8564 {
8565 	struct hclge_vport *vport = hclge_get_vport(handle);
8566 
8567 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC,
8568 				     addr);
8569 }
8570 
8571 int hclge_add_uc_addr_common(struct hclge_vport *vport,
8572 			     const unsigned char *addr)
8573 {
8574 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8575 	struct hclge_dev *hdev = vport->back;
8576 	struct hclge_mac_vlan_tbl_entry_cmd req;
8577 	struct hclge_desc desc;
8578 	u16 egress_port = 0;
8579 	int ret;
8580 
8581 	/* mac addr check */
8582 	if (is_zero_ether_addr(addr) ||
8583 	    is_broadcast_ether_addr(addr) ||
8584 	    is_multicast_ether_addr(addr)) {
8585 		hnae3_format_mac_addr(format_mac_addr, addr);
8586 		dev_err(&hdev->pdev->dev,
8587 			"Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n",
8588 			 format_mac_addr, is_zero_ether_addr(addr),
8589 			 is_broadcast_ether_addr(addr),
8590 			 is_multicast_ether_addr(addr));
8591 		return -EINVAL;
8592 	}
8593 
8594 	memset(&req, 0, sizeof(req));
8595 
8596 	hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
8597 			HCLGE_MAC_EPORT_VFID_S, vport->vport_id);
8598 
8599 	req.egress_port = cpu_to_le16(egress_port);
8600 
8601 	hclge_prepare_mac_addr(&req, addr, false);
8602 
8603 	/* Lookup the mac address in the mac_vlan table, and add
8604 	 * it if the entry is inexistent. Repeated unicast entry
8605 	 * is not allowed in the mac vlan table.
8606 	 */
8607 	ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false);
8608 	if (ret == -ENOENT) {
8609 		mutex_lock(&hdev->vport_lock);
8610 		if (!hclge_is_umv_space_full(vport, false)) {
8611 			ret = hclge_add_mac_vlan_tbl(vport, &req, NULL);
8612 			if (!ret)
8613 				hclge_update_umv_space(vport, false);
8614 			mutex_unlock(&hdev->vport_lock);
8615 			return ret;
8616 		}
8617 		mutex_unlock(&hdev->vport_lock);
8618 
8619 		if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE))
8620 			dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n",
8621 				hdev->priv_umv_size);
8622 
8623 		return -ENOSPC;
8624 	}
8625 
8626 	/* check if we just hit the duplicate */
8627 	if (!ret)
8628 		return -EEXIST;
8629 
8630 	return ret;
8631 }
8632 
8633 static int hclge_rm_uc_addr(struct hnae3_handle *handle,
8634 			    const unsigned char *addr)
8635 {
8636 	struct hclge_vport *vport = hclge_get_vport(handle);
8637 
8638 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC,
8639 				     addr);
8640 }
8641 
8642 int hclge_rm_uc_addr_common(struct hclge_vport *vport,
8643 			    const unsigned char *addr)
8644 {
8645 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8646 	struct hclge_dev *hdev = vport->back;
8647 	struct hclge_mac_vlan_tbl_entry_cmd req;
8648 	int ret;
8649 
8650 	/* mac addr check */
8651 	if (is_zero_ether_addr(addr) ||
8652 	    is_broadcast_ether_addr(addr) ||
8653 	    is_multicast_ether_addr(addr)) {
8654 		hnae3_format_mac_addr(format_mac_addr, addr);
8655 		dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n",
8656 			format_mac_addr);
8657 		return -EINVAL;
8658 	}
8659 
8660 	memset(&req, 0, sizeof(req));
8661 	hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
8662 	hclge_prepare_mac_addr(&req, addr, false);
8663 	ret = hclge_remove_mac_vlan_tbl(vport, &req);
8664 	if (!ret || ret == -ENOENT) {
8665 		mutex_lock(&hdev->vport_lock);
8666 		hclge_update_umv_space(vport, true);
8667 		mutex_unlock(&hdev->vport_lock);
8668 		return 0;
8669 	}
8670 
8671 	return ret;
8672 }
8673 
8674 static int hclge_add_mc_addr(struct hnae3_handle *handle,
8675 			     const unsigned char *addr)
8676 {
8677 	struct hclge_vport *vport = hclge_get_vport(handle);
8678 
8679 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC,
8680 				     addr);
8681 }
8682 
8683 int hclge_add_mc_addr_common(struct hclge_vport *vport,
8684 			     const unsigned char *addr)
8685 {
8686 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8687 	struct hclge_dev *hdev = vport->back;
8688 	struct hclge_mac_vlan_tbl_entry_cmd req;
8689 	struct hclge_desc desc[3];
8690 	bool is_new_addr = false;
8691 	int status;
8692 
8693 	/* mac addr check */
8694 	if (!is_multicast_ether_addr(addr)) {
8695 		hnae3_format_mac_addr(format_mac_addr, addr);
8696 		dev_err(&hdev->pdev->dev,
8697 			"Add mc mac err! invalid mac:%s.\n",
8698 			 format_mac_addr);
8699 		return -EINVAL;
8700 	}
8701 	memset(&req, 0, sizeof(req));
8702 	hclge_prepare_mac_addr(&req, addr, true);
8703 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8704 	if (status) {
8705 		if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) &&
8706 		    hdev->used_mc_mac_num >=
8707 		    hdev->ae_dev->dev_specs.mc_mac_size)
8708 			goto err_no_space;
8709 
8710 		is_new_addr = true;
8711 
8712 		/* This mac addr do not exist, add new entry for it */
8713 		memset(desc[0].data, 0, sizeof(desc[0].data));
8714 		memset(desc[1].data, 0, sizeof(desc[0].data));
8715 		memset(desc[2].data, 0, sizeof(desc[0].data));
8716 	}
8717 	status = hclge_update_desc_vfid(desc, vport->vport_id, false);
8718 	if (status)
8719 		return status;
8720 	status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8721 	if (status == -ENOSPC)
8722 		goto err_no_space;
8723 	else if (!status && is_new_addr)
8724 		hdev->used_mc_mac_num++;
8725 
8726 	return status;
8727 
8728 err_no_space:
8729 	/* if already overflow, not to print each time */
8730 	if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) {
8731 		vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8732 		dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n");
8733 	}
8734 
8735 	return -ENOSPC;
8736 }
8737 
8738 static int hclge_rm_mc_addr(struct hnae3_handle *handle,
8739 			    const unsigned char *addr)
8740 {
8741 	struct hclge_vport *vport = hclge_get_vport(handle);
8742 
8743 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC,
8744 				     addr);
8745 }
8746 
8747 int hclge_rm_mc_addr_common(struct hclge_vport *vport,
8748 			    const unsigned char *addr)
8749 {
8750 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8751 	struct hclge_dev *hdev = vport->back;
8752 	struct hclge_mac_vlan_tbl_entry_cmd req;
8753 	enum hclge_comm_cmd_status status;
8754 	struct hclge_desc desc[3];
8755 
8756 	/* mac addr check */
8757 	if (!is_multicast_ether_addr(addr)) {
8758 		hnae3_format_mac_addr(format_mac_addr, addr);
8759 		dev_dbg(&hdev->pdev->dev,
8760 			"Remove mc mac err! invalid mac:%s.\n",
8761 			 format_mac_addr);
8762 		return -EINVAL;
8763 	}
8764 
8765 	memset(&req, 0, sizeof(req));
8766 	hclge_prepare_mac_addr(&req, addr, true);
8767 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8768 	if (!status) {
8769 		/* This mac addr exist, remove this handle's VFID for it */
8770 		status = hclge_update_desc_vfid(desc, vport->vport_id, true);
8771 		if (status)
8772 			return status;
8773 
8774 		if (hclge_is_all_function_id_zero(desc)) {
8775 			/* All the vfid is zero, so need to delete this entry */
8776 			status = hclge_remove_mac_vlan_tbl(vport, &req);
8777 			if (!status)
8778 				hdev->used_mc_mac_num--;
8779 		} else {
8780 			/* Not all the vfid is zero, update the vfid */
8781 			status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8782 		}
8783 	} else if (status == -ENOENT) {
8784 		status = 0;
8785 	}
8786 
8787 	return status;
8788 }
8789 
8790 static void hclge_sync_vport_mac_list(struct hclge_vport *vport,
8791 				      struct list_head *list,
8792 				      enum HCLGE_MAC_ADDR_TYPE mac_type)
8793 {
8794 	int (*sync)(struct hclge_vport *vport, const unsigned char *addr);
8795 	struct hclge_mac_node *mac_node, *tmp;
8796 	int ret;
8797 
8798 	if (mac_type == HCLGE_MAC_ADDR_UC)
8799 		sync = hclge_add_uc_addr_common;
8800 	else
8801 		sync = hclge_add_mc_addr_common;
8802 
8803 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8804 		ret = sync(vport, mac_node->mac_addr);
8805 		if (!ret) {
8806 			mac_node->state = HCLGE_MAC_ACTIVE;
8807 		} else {
8808 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8809 				&vport->state);
8810 
8811 			/* If one unicast mac address is existing in hardware,
8812 			 * we need to try whether other unicast mac addresses
8813 			 * are new addresses that can be added.
8814 			 * Multicast mac address can be reusable, even though
8815 			 * there is no space to add new multicast mac address,
8816 			 * we should check whether other mac addresses are
8817 			 * existing in hardware for reuse.
8818 			 */
8819 			if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) ||
8820 			    (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC))
8821 				break;
8822 		}
8823 	}
8824 }
8825 
8826 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport,
8827 					struct list_head *list,
8828 					enum HCLGE_MAC_ADDR_TYPE mac_type)
8829 {
8830 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
8831 	struct hclge_mac_node *mac_node, *tmp;
8832 	int ret;
8833 
8834 	if (mac_type == HCLGE_MAC_ADDR_UC)
8835 		unsync = hclge_rm_uc_addr_common;
8836 	else
8837 		unsync = hclge_rm_mc_addr_common;
8838 
8839 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8840 		ret = unsync(vport, mac_node->mac_addr);
8841 		if (!ret || ret == -ENOENT) {
8842 			list_del(&mac_node->node);
8843 			kfree(mac_node);
8844 		} else {
8845 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8846 				&vport->state);
8847 			break;
8848 		}
8849 	}
8850 }
8851 
8852 static bool hclge_sync_from_add_list(struct list_head *add_list,
8853 				     struct list_head *mac_list)
8854 {
8855 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8856 	bool all_added = true;
8857 
8858 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
8859 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8860 			all_added = false;
8861 
8862 		/* if the mac address from tmp_add_list is not in the
8863 		 * uc/mc_mac_list, it means have received a TO_DEL request
8864 		 * during the time window of adding the mac address into mac
8865 		 * table. if mac_node state is ACTIVE, then change it to TO_DEL,
8866 		 * then it will be removed at next time. else it must be TO_ADD,
8867 		 * this address hasn't been added into mac table,
8868 		 * so just remove the mac node.
8869 		 */
8870 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8871 		if (new_node) {
8872 			hclge_update_mac_node(new_node, mac_node->state);
8873 			list_del(&mac_node->node);
8874 			kfree(mac_node);
8875 		} else if (mac_node->state == HCLGE_MAC_ACTIVE) {
8876 			mac_node->state = HCLGE_MAC_TO_DEL;
8877 			list_move_tail(&mac_node->node, mac_list);
8878 		} else {
8879 			list_del(&mac_node->node);
8880 			kfree(mac_node);
8881 		}
8882 	}
8883 
8884 	return all_added;
8885 }
8886 
8887 static void hclge_sync_from_del_list(struct list_head *del_list,
8888 				     struct list_head *mac_list)
8889 {
8890 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8891 
8892 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
8893 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8894 		if (new_node) {
8895 			/* If the mac addr exists in the mac list, it means
8896 			 * received a new TO_ADD request during the time window
8897 			 * of configuring the mac address. For the mac node
8898 			 * state is TO_ADD, and the address is already in the
8899 			 * in the hardware(due to delete fail), so we just need
8900 			 * to change the mac node state to ACTIVE.
8901 			 */
8902 			new_node->state = HCLGE_MAC_ACTIVE;
8903 			list_del(&mac_node->node);
8904 			kfree(mac_node);
8905 		} else {
8906 			list_move_tail(&mac_node->node, mac_list);
8907 		}
8908 	}
8909 }
8910 
8911 static void hclge_update_overflow_flags(struct hclge_vport *vport,
8912 					enum HCLGE_MAC_ADDR_TYPE mac_type,
8913 					bool is_all_added)
8914 {
8915 	if (mac_type == HCLGE_MAC_ADDR_UC) {
8916 		if (is_all_added)
8917 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE;
8918 		else
8919 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE;
8920 	} else {
8921 		if (is_all_added)
8922 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE;
8923 		else
8924 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8925 	}
8926 }
8927 
8928 static void hclge_sync_vport_mac_table(struct hclge_vport *vport,
8929 				       enum HCLGE_MAC_ADDR_TYPE mac_type)
8930 {
8931 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8932 	struct list_head tmp_add_list, tmp_del_list;
8933 	struct list_head *list;
8934 	bool all_added;
8935 
8936 	INIT_LIST_HEAD(&tmp_add_list);
8937 	INIT_LIST_HEAD(&tmp_del_list);
8938 
8939 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
8940 	 * we can add/delete these mac addr outside the spin lock
8941 	 */
8942 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8943 		&vport->uc_mac_list : &vport->mc_mac_list;
8944 
8945 	spin_lock_bh(&vport->mac_list_lock);
8946 
8947 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8948 		switch (mac_node->state) {
8949 		case HCLGE_MAC_TO_DEL:
8950 			list_move_tail(&mac_node->node, &tmp_del_list);
8951 			break;
8952 		case HCLGE_MAC_TO_ADD:
8953 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
8954 			if (!new_node)
8955 				goto stop_traverse;
8956 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
8957 			new_node->state = mac_node->state;
8958 			list_add_tail(&new_node->node, &tmp_add_list);
8959 			break;
8960 		default:
8961 			break;
8962 		}
8963 	}
8964 
8965 stop_traverse:
8966 	spin_unlock_bh(&vport->mac_list_lock);
8967 
8968 	/* delete first, in order to get max mac table space for adding */
8969 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
8970 	hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type);
8971 
8972 	/* if some mac addresses were added/deleted fail, move back to the
8973 	 * mac_list, and retry at next time.
8974 	 */
8975 	spin_lock_bh(&vport->mac_list_lock);
8976 
8977 	hclge_sync_from_del_list(&tmp_del_list, list);
8978 	all_added = hclge_sync_from_add_list(&tmp_add_list, list);
8979 
8980 	spin_unlock_bh(&vport->mac_list_lock);
8981 
8982 	hclge_update_overflow_flags(vport, mac_type, all_added);
8983 }
8984 
8985 static bool hclge_need_sync_mac_table(struct hclge_vport *vport)
8986 {
8987 	struct hclge_dev *hdev = vport->back;
8988 
8989 	if (test_bit(vport->vport_id, hdev->vport_config_block))
8990 		return false;
8991 
8992 	if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state))
8993 		return true;
8994 
8995 	return false;
8996 }
8997 
8998 static void hclge_sync_mac_table(struct hclge_dev *hdev)
8999 {
9000 	int i;
9001 
9002 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9003 		struct hclge_vport *vport = &hdev->vport[i];
9004 
9005 		if (!hclge_need_sync_mac_table(vport))
9006 			continue;
9007 
9008 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC);
9009 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC);
9010 	}
9011 }
9012 
9013 static void hclge_build_del_list(struct list_head *list,
9014 				 bool is_del_list,
9015 				 struct list_head *tmp_del_list)
9016 {
9017 	struct hclge_mac_node *mac_cfg, *tmp;
9018 
9019 	list_for_each_entry_safe(mac_cfg, tmp, list, node) {
9020 		switch (mac_cfg->state) {
9021 		case HCLGE_MAC_TO_DEL:
9022 		case HCLGE_MAC_ACTIVE:
9023 			list_move_tail(&mac_cfg->node, tmp_del_list);
9024 			break;
9025 		case HCLGE_MAC_TO_ADD:
9026 			if (is_del_list) {
9027 				list_del(&mac_cfg->node);
9028 				kfree(mac_cfg);
9029 			}
9030 			break;
9031 		}
9032 	}
9033 }
9034 
9035 static void hclge_unsync_del_list(struct hclge_vport *vport,
9036 				  int (*unsync)(struct hclge_vport *vport,
9037 						const unsigned char *addr),
9038 				  bool is_del_list,
9039 				  struct list_head *tmp_del_list)
9040 {
9041 	struct hclge_mac_node *mac_cfg, *tmp;
9042 	int ret;
9043 
9044 	list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) {
9045 		ret = unsync(vport, mac_cfg->mac_addr);
9046 		if (!ret || ret == -ENOENT) {
9047 			/* clear all mac addr from hardware, but remain these
9048 			 * mac addr in the mac list, and restore them after
9049 			 * vf reset finished.
9050 			 */
9051 			if (!is_del_list &&
9052 			    mac_cfg->state == HCLGE_MAC_ACTIVE) {
9053 				mac_cfg->state = HCLGE_MAC_TO_ADD;
9054 			} else {
9055 				list_del(&mac_cfg->node);
9056 				kfree(mac_cfg);
9057 			}
9058 		} else if (is_del_list) {
9059 			mac_cfg->state = HCLGE_MAC_TO_DEL;
9060 		}
9061 	}
9062 }
9063 
9064 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list,
9065 				  enum HCLGE_MAC_ADDR_TYPE mac_type)
9066 {
9067 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
9068 	struct hclge_dev *hdev = vport->back;
9069 	struct list_head tmp_del_list, *list;
9070 
9071 	if (mac_type == HCLGE_MAC_ADDR_UC) {
9072 		list = &vport->uc_mac_list;
9073 		unsync = hclge_rm_uc_addr_common;
9074 	} else {
9075 		list = &vport->mc_mac_list;
9076 		unsync = hclge_rm_mc_addr_common;
9077 	}
9078 
9079 	INIT_LIST_HEAD(&tmp_del_list);
9080 
9081 	if (!is_del_list)
9082 		set_bit(vport->vport_id, hdev->vport_config_block);
9083 
9084 	spin_lock_bh(&vport->mac_list_lock);
9085 
9086 	hclge_build_del_list(list, is_del_list, &tmp_del_list);
9087 
9088 	spin_unlock_bh(&vport->mac_list_lock);
9089 
9090 	hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list);
9091 
9092 	spin_lock_bh(&vport->mac_list_lock);
9093 
9094 	hclge_sync_from_del_list(&tmp_del_list, list);
9095 
9096 	spin_unlock_bh(&vport->mac_list_lock);
9097 }
9098 
9099 /* remove all mac address when uninitailize */
9100 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport,
9101 					enum HCLGE_MAC_ADDR_TYPE mac_type)
9102 {
9103 	struct hclge_mac_node *mac_node, *tmp;
9104 	struct hclge_dev *hdev = vport->back;
9105 	struct list_head tmp_del_list, *list;
9106 
9107 	INIT_LIST_HEAD(&tmp_del_list);
9108 
9109 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
9110 		&vport->uc_mac_list : &vport->mc_mac_list;
9111 
9112 	spin_lock_bh(&vport->mac_list_lock);
9113 
9114 	list_for_each_entry_safe(mac_node, tmp, list, node) {
9115 		switch (mac_node->state) {
9116 		case HCLGE_MAC_TO_DEL:
9117 		case HCLGE_MAC_ACTIVE:
9118 			list_move_tail(&mac_node->node, &tmp_del_list);
9119 			break;
9120 		case HCLGE_MAC_TO_ADD:
9121 			list_del(&mac_node->node);
9122 			kfree(mac_node);
9123 			break;
9124 		}
9125 	}
9126 
9127 	spin_unlock_bh(&vport->mac_list_lock);
9128 
9129 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
9130 
9131 	if (!list_empty(&tmp_del_list))
9132 		dev_warn(&hdev->pdev->dev,
9133 			 "uninit %s mac list for vport %u not completely.\n",
9134 			 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc",
9135 			 vport->vport_id);
9136 
9137 	list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) {
9138 		list_del(&mac_node->node);
9139 		kfree(mac_node);
9140 	}
9141 }
9142 
9143 static void hclge_uninit_mac_table(struct hclge_dev *hdev)
9144 {
9145 	struct hclge_vport *vport;
9146 	int i;
9147 
9148 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9149 		vport = &hdev->vport[i];
9150 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC);
9151 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC);
9152 	}
9153 }
9154 
9155 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev,
9156 					      u16 cmdq_resp, u8 resp_code)
9157 {
9158 #define HCLGE_ETHERTYPE_SUCCESS_ADD		0
9159 #define HCLGE_ETHERTYPE_ALREADY_ADD		1
9160 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW	2
9161 #define HCLGE_ETHERTYPE_KEY_CONFLICT		3
9162 
9163 	int return_status;
9164 
9165 	if (cmdq_resp) {
9166 		dev_err(&hdev->pdev->dev,
9167 			"cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
9168 			cmdq_resp);
9169 		return -EIO;
9170 	}
9171 
9172 	switch (resp_code) {
9173 	case HCLGE_ETHERTYPE_SUCCESS_ADD:
9174 	case HCLGE_ETHERTYPE_ALREADY_ADD:
9175 		return_status = 0;
9176 		break;
9177 	case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW:
9178 		dev_err(&hdev->pdev->dev,
9179 			"add mac ethertype failed for manager table overflow.\n");
9180 		return_status = -EIO;
9181 		break;
9182 	case HCLGE_ETHERTYPE_KEY_CONFLICT:
9183 		dev_err(&hdev->pdev->dev,
9184 			"add mac ethertype failed for key conflict.\n");
9185 		return_status = -EIO;
9186 		break;
9187 	default:
9188 		dev_err(&hdev->pdev->dev,
9189 			"add mac ethertype failed for undefined, code=%u.\n",
9190 			resp_code);
9191 		return_status = -EIO;
9192 	}
9193 
9194 	return return_status;
9195 }
9196 
9197 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf,
9198 			    u8 *mac_addr)
9199 {
9200 	struct hclge_vport *vport = hclge_get_vport(handle);
9201 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9202 	struct hclge_dev *hdev = vport->back;
9203 
9204 	vport = hclge_get_vf_vport(hdev, vf);
9205 	if (!vport)
9206 		return -EINVAL;
9207 
9208 	hnae3_format_mac_addr(format_mac_addr, mac_addr);
9209 	if (ether_addr_equal(mac_addr, vport->vf_info.mac)) {
9210 		dev_info(&hdev->pdev->dev,
9211 			 "Specified MAC(=%s) is same as before, no change committed!\n",
9212 			 format_mac_addr);
9213 		return 0;
9214 	}
9215 
9216 	ether_addr_copy(vport->vf_info.mac, mac_addr);
9217 
9218 	/* there is a timewindow for PF to know VF unalive, it may
9219 	 * cause send mailbox fail, but it doesn't matter, VF will
9220 	 * query it when reinit.
9221 	 */
9222 	if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) {
9223 		dev_info(&hdev->pdev->dev,
9224 			 "MAC of VF %d has been set to %s, and it will be reinitialized!\n",
9225 			 vf, format_mac_addr);
9226 		(void)hclge_inform_reset_assert_to_vf(vport);
9227 		return 0;
9228 	}
9229 
9230 	dev_info(&hdev->pdev->dev,
9231 		 "MAC of VF %d has been set to %s, will be active after VF reset\n",
9232 		 vf, format_mac_addr);
9233 	return 0;
9234 }
9235 
9236 static int hclge_add_mgr_tbl(struct hclge_dev *hdev,
9237 			     const struct hclge_mac_mgr_tbl_entry_cmd *req)
9238 {
9239 	struct hclge_desc desc;
9240 	u8 resp_code;
9241 	u16 retval;
9242 	int ret;
9243 
9244 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false);
9245 	memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd));
9246 
9247 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9248 	if (ret) {
9249 		dev_err(&hdev->pdev->dev,
9250 			"add mac ethertype failed for cmd_send, ret =%d.\n",
9251 			ret);
9252 		return ret;
9253 	}
9254 
9255 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
9256 	retval = le16_to_cpu(desc.retval);
9257 
9258 	return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code);
9259 }
9260 
9261 static int init_mgr_tbl(struct hclge_dev *hdev)
9262 {
9263 	int ret;
9264 	int i;
9265 
9266 	for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) {
9267 		ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]);
9268 		if (ret) {
9269 			dev_err(&hdev->pdev->dev,
9270 				"add mac ethertype failed, ret =%d.\n",
9271 				ret);
9272 			return ret;
9273 		}
9274 	}
9275 
9276 	return 0;
9277 }
9278 
9279 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p)
9280 {
9281 	struct hclge_vport *vport = hclge_get_vport(handle);
9282 	struct hclge_dev *hdev = vport->back;
9283 
9284 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
9285 }
9286 
9287 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport,
9288 				       const u8 *old_addr, const u8 *new_addr)
9289 {
9290 	struct list_head *list = &vport->uc_mac_list;
9291 	struct hclge_mac_node *old_node, *new_node;
9292 
9293 	new_node = hclge_find_mac_node(list, new_addr);
9294 	if (!new_node) {
9295 		new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
9296 		if (!new_node)
9297 			return -ENOMEM;
9298 
9299 		new_node->state = HCLGE_MAC_TO_ADD;
9300 		ether_addr_copy(new_node->mac_addr, new_addr);
9301 		list_add(&new_node->node, list);
9302 	} else {
9303 		if (new_node->state == HCLGE_MAC_TO_DEL)
9304 			new_node->state = HCLGE_MAC_ACTIVE;
9305 
9306 		/* make sure the new addr is in the list head, avoid dev
9307 		 * addr may be not re-added into mac table for the umv space
9308 		 * limitation after global/imp reset which will clear mac
9309 		 * table by hardware.
9310 		 */
9311 		list_move(&new_node->node, list);
9312 	}
9313 
9314 	if (old_addr && !ether_addr_equal(old_addr, new_addr)) {
9315 		old_node = hclge_find_mac_node(list, old_addr);
9316 		if (old_node) {
9317 			if (old_node->state == HCLGE_MAC_TO_ADD) {
9318 				list_del(&old_node->node);
9319 				kfree(old_node);
9320 			} else {
9321 				old_node->state = HCLGE_MAC_TO_DEL;
9322 			}
9323 		}
9324 	}
9325 
9326 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
9327 
9328 	return 0;
9329 }
9330 
9331 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p,
9332 			      bool is_first)
9333 {
9334 	const unsigned char *new_addr = (const unsigned char *)p;
9335 	struct hclge_vport *vport = hclge_get_vport(handle);
9336 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9337 	struct hclge_dev *hdev = vport->back;
9338 	unsigned char *old_addr = NULL;
9339 	int ret;
9340 
9341 	/* mac addr check */
9342 	if (is_zero_ether_addr(new_addr) ||
9343 	    is_broadcast_ether_addr(new_addr) ||
9344 	    is_multicast_ether_addr(new_addr)) {
9345 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9346 		dev_err(&hdev->pdev->dev,
9347 			"change uc mac err! invalid mac: %s.\n",
9348 			 format_mac_addr);
9349 		return -EINVAL;
9350 	}
9351 
9352 	ret = hclge_pause_addr_cfg(hdev, new_addr);
9353 	if (ret) {
9354 		dev_err(&hdev->pdev->dev,
9355 			"failed to configure mac pause address, ret = %d\n",
9356 			ret);
9357 		return ret;
9358 	}
9359 
9360 	if (!is_first)
9361 		old_addr = hdev->hw.mac.mac_addr;
9362 
9363 	spin_lock_bh(&vport->mac_list_lock);
9364 	ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr);
9365 	if (ret) {
9366 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9367 		dev_err(&hdev->pdev->dev,
9368 			"failed to change the mac addr:%s, ret = %d\n",
9369 			format_mac_addr, ret);
9370 		spin_unlock_bh(&vport->mac_list_lock);
9371 
9372 		if (!is_first)
9373 			hclge_pause_addr_cfg(hdev, old_addr);
9374 
9375 		return ret;
9376 	}
9377 	/* we must update dev addr with spin lock protect, preventing dev addr
9378 	 * being removed by set_rx_mode path.
9379 	 */
9380 	ether_addr_copy(hdev->hw.mac.mac_addr, new_addr);
9381 	spin_unlock_bh(&vport->mac_list_lock);
9382 
9383 	hclge_task_schedule(hdev, 0);
9384 
9385 	return 0;
9386 }
9387 
9388 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd)
9389 {
9390 	struct mii_ioctl_data *data = if_mii(ifr);
9391 
9392 	if (!hnae3_dev_phy_imp_supported(hdev))
9393 		return -EOPNOTSUPP;
9394 
9395 	switch (cmd) {
9396 	case SIOCGMIIPHY:
9397 		data->phy_id = hdev->hw.mac.phy_addr;
9398 		/* this command reads phy id and register at the same time */
9399 		fallthrough;
9400 	case SIOCGMIIREG:
9401 		data->val_out = hclge_read_phy_reg(hdev, data->reg_num);
9402 		return 0;
9403 
9404 	case SIOCSMIIREG:
9405 		return hclge_write_phy_reg(hdev, data->reg_num, data->val_in);
9406 	default:
9407 		return -EOPNOTSUPP;
9408 	}
9409 }
9410 
9411 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr,
9412 			  int cmd)
9413 {
9414 	struct hclge_vport *vport = hclge_get_vport(handle);
9415 	struct hclge_dev *hdev = vport->back;
9416 
9417 	switch (cmd) {
9418 	case SIOCGHWTSTAMP:
9419 		return hclge_ptp_get_cfg(hdev, ifr);
9420 	case SIOCSHWTSTAMP:
9421 		return hclge_ptp_set_cfg(hdev, ifr);
9422 	default:
9423 		if (!hdev->hw.mac.phydev)
9424 			return hclge_mii_ioctl(hdev, ifr, cmd);
9425 	}
9426 
9427 	return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd);
9428 }
9429 
9430 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id,
9431 					     bool bypass_en)
9432 {
9433 	struct hclge_port_vlan_filter_bypass_cmd *req;
9434 	struct hclge_desc desc;
9435 	int ret;
9436 
9437 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false);
9438 	req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data;
9439 	req->vf_id = vf_id;
9440 	hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B,
9441 		      bypass_en ? 1 : 0);
9442 
9443 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9444 	if (ret)
9445 		dev_err(&hdev->pdev->dev,
9446 			"failed to set vport%u port vlan filter bypass state, ret = %d.\n",
9447 			vf_id, ret);
9448 
9449 	return ret;
9450 }
9451 
9452 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type,
9453 				      u8 fe_type, bool filter_en, u8 vf_id)
9454 {
9455 	struct hclge_vlan_filter_ctrl_cmd *req;
9456 	struct hclge_desc desc;
9457 	int ret;
9458 
9459 	/* read current vlan filter parameter */
9460 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true);
9461 	req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data;
9462 	req->vlan_type = vlan_type;
9463 	req->vf_id = vf_id;
9464 
9465 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9466 	if (ret) {
9467 		dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n",
9468 			vf_id, ret);
9469 		return ret;
9470 	}
9471 
9472 	/* modify and write new config parameter */
9473 	hclge_comm_cmd_reuse_desc(&desc, false);
9474 	req->vlan_fe = filter_en ?
9475 			(req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type);
9476 
9477 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9478 	if (ret)
9479 		dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n",
9480 			vf_id, ret);
9481 
9482 	return ret;
9483 }
9484 
9485 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable)
9486 {
9487 	struct hclge_dev *hdev = vport->back;
9488 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
9489 	int ret;
9490 
9491 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9492 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9493 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9494 						  enable, vport->vport_id);
9495 
9496 	ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9497 					 HCLGE_FILTER_FE_EGRESS, enable,
9498 					 vport->vport_id);
9499 	if (ret)
9500 		return ret;
9501 
9502 	if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) {
9503 		ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id,
9504 							!enable);
9505 	} else if (!vport->vport_id) {
9506 		if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
9507 			enable = false;
9508 
9509 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9510 						 HCLGE_FILTER_FE_INGRESS,
9511 						 enable, 0);
9512 	}
9513 
9514 	return ret;
9515 }
9516 
9517 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport)
9518 {
9519 	struct hnae3_handle *handle = &vport->nic;
9520 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9521 	struct hclge_dev *hdev = vport->back;
9522 
9523 	if (vport->vport_id) {
9524 		if (vport->port_base_vlan_cfg.state !=
9525 			HNAE3_PORT_BASE_VLAN_DISABLE)
9526 			return true;
9527 
9528 		if (vport->vf_info.trusted && vport->vf_info.request_uc_en)
9529 			return false;
9530 	} else if (handle->netdev_flags & HNAE3_USER_UPE) {
9531 		return false;
9532 	}
9533 
9534 	if (!vport->req_vlan_fltr_en)
9535 		return false;
9536 
9537 	/* compatible with former device, always enable vlan filter */
9538 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
9539 		return true;
9540 
9541 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node)
9542 		if (vlan->vlan_id != 0)
9543 			return true;
9544 
9545 	return false;
9546 }
9547 
9548 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en)
9549 {
9550 	struct hclge_dev *hdev = vport->back;
9551 	bool need_en;
9552 	int ret;
9553 
9554 	mutex_lock(&hdev->vport_lock);
9555 
9556 	vport->req_vlan_fltr_en = request_en;
9557 
9558 	need_en = hclge_need_enable_vport_vlan_filter(vport);
9559 	if (need_en == vport->cur_vlan_fltr_en) {
9560 		mutex_unlock(&hdev->vport_lock);
9561 		return 0;
9562 	}
9563 
9564 	ret = hclge_set_vport_vlan_filter(vport, need_en);
9565 	if (ret) {
9566 		mutex_unlock(&hdev->vport_lock);
9567 		return ret;
9568 	}
9569 
9570 	vport->cur_vlan_fltr_en = need_en;
9571 
9572 	mutex_unlock(&hdev->vport_lock);
9573 
9574 	return 0;
9575 }
9576 
9577 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
9578 {
9579 	struct hclge_vport *vport = hclge_get_vport(handle);
9580 
9581 	return hclge_enable_vport_vlan_filter(vport, enable);
9582 }
9583 
9584 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid,
9585 					bool is_kill, u16 vlan,
9586 					struct hclge_desc *desc)
9587 {
9588 	struct hclge_vlan_filter_vf_cfg_cmd *req0;
9589 	struct hclge_vlan_filter_vf_cfg_cmd *req1;
9590 	u8 vf_byte_val;
9591 	u8 vf_byte_off;
9592 	int ret;
9593 
9594 	hclge_cmd_setup_basic_desc(&desc[0],
9595 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9596 	hclge_cmd_setup_basic_desc(&desc[1],
9597 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9598 
9599 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
9600 
9601 	vf_byte_off = vfid / 8;
9602 	vf_byte_val = 1 << (vfid % 8);
9603 
9604 	req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9605 	req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data;
9606 
9607 	req0->vlan_id  = cpu_to_le16(vlan);
9608 	req0->vlan_cfg = is_kill;
9609 
9610 	if (vf_byte_off < HCLGE_MAX_VF_BYTES)
9611 		req0->vf_bitmap[vf_byte_off] = vf_byte_val;
9612 	else
9613 		req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val;
9614 
9615 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
9616 	if (ret) {
9617 		dev_err(&hdev->pdev->dev,
9618 			"Send vf vlan command fail, ret =%d.\n",
9619 			ret);
9620 		return ret;
9621 	}
9622 
9623 	return 0;
9624 }
9625 
9626 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid,
9627 					  bool is_kill, struct hclge_desc *desc)
9628 {
9629 	struct hclge_vlan_filter_vf_cfg_cmd *req;
9630 
9631 	req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9632 
9633 	if (!is_kill) {
9634 #define HCLGE_VF_VLAN_NO_ENTRY	2
9635 		if (!req->resp_code || req->resp_code == 1)
9636 			return 0;
9637 
9638 		if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) {
9639 			set_bit(vfid, hdev->vf_vlan_full);
9640 			dev_warn(&hdev->pdev->dev,
9641 				 "vf vlan table is full, vf vlan filter is disabled\n");
9642 			return 0;
9643 		}
9644 
9645 		dev_err(&hdev->pdev->dev,
9646 			"Add vf vlan filter fail, ret =%u.\n",
9647 			req->resp_code);
9648 	} else {
9649 #define HCLGE_VF_VLAN_DEL_NO_FOUND	1
9650 		if (!req->resp_code)
9651 			return 0;
9652 
9653 		/* vf vlan filter is disabled when vf vlan table is full,
9654 		 * then new vlan id will not be added into vf vlan table.
9655 		 * Just return 0 without warning, avoid massive verbose
9656 		 * print logs when unload.
9657 		 */
9658 		if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND)
9659 			return 0;
9660 
9661 		dev_err(&hdev->pdev->dev,
9662 			"Kill vf vlan filter fail, ret =%u.\n",
9663 			req->resp_code);
9664 	}
9665 
9666 	return -EIO;
9667 }
9668 
9669 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid,
9670 				    bool is_kill, u16 vlan)
9671 {
9672 	struct hclge_vport *vport = &hdev->vport[vfid];
9673 	struct hclge_desc desc[2];
9674 	int ret;
9675 
9676 	/* if vf vlan table is full, firmware will close vf vlan filter, it
9677 	 * is unable and unnecessary to add new vlan id to vf vlan filter.
9678 	 * If spoof check is enable, and vf vlan is full, it shouldn't add
9679 	 * new vlan, because tx packets with these vlan id will be dropped.
9680 	 */
9681 	if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) {
9682 		if (vport->vf_info.spoofchk && vlan) {
9683 			dev_err(&hdev->pdev->dev,
9684 				"Can't add vlan due to spoof check is on and vf vlan table is full\n");
9685 			return -EPERM;
9686 		}
9687 		return 0;
9688 	}
9689 
9690 	ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc);
9691 	if (ret)
9692 		return ret;
9693 
9694 	return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc);
9695 }
9696 
9697 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto,
9698 				      u16 vlan_id, bool is_kill)
9699 {
9700 	struct hclge_vlan_filter_pf_cfg_cmd *req;
9701 	struct hclge_desc desc;
9702 	u8 vlan_offset_byte_val;
9703 	u8 vlan_offset_byte;
9704 	u8 vlan_offset_160;
9705 	int ret;
9706 
9707 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false);
9708 
9709 	vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP;
9710 	vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) /
9711 			   HCLGE_VLAN_BYTE_SIZE;
9712 	vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE);
9713 
9714 	req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data;
9715 	req->vlan_offset = vlan_offset_160;
9716 	req->vlan_cfg = is_kill;
9717 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
9718 
9719 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9720 	if (ret)
9721 		dev_err(&hdev->pdev->dev,
9722 			"port vlan command, send fail, ret =%d.\n", ret);
9723 	return ret;
9724 }
9725 
9726 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id,
9727 					u16 vlan_id, bool is_kill)
9728 {
9729 	/* vlan 0 may be added twice when 8021q module is enabled */
9730 	if (!is_kill && !vlan_id &&
9731 	    test_bit(vport_id, hdev->vlan_table[vlan_id]))
9732 		return false;
9733 
9734 	if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) {
9735 		dev_warn(&hdev->pdev->dev,
9736 			 "Add port vlan failed, vport %u is already in vlan %u\n",
9737 			 vport_id, vlan_id);
9738 		return false;
9739 	}
9740 
9741 	if (is_kill &&
9742 	    !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) {
9743 		dev_warn(&hdev->pdev->dev,
9744 			 "Delete port vlan failed, vport %u is not in vlan %u\n",
9745 			 vport_id, vlan_id);
9746 		return false;
9747 	}
9748 
9749 	return true;
9750 }
9751 
9752 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto,
9753 				    u16 vport_id, u16 vlan_id,
9754 				    bool is_kill)
9755 {
9756 	u16 vport_idx, vport_num = 0;
9757 	int ret;
9758 
9759 	if (is_kill && !vlan_id)
9760 		return 0;
9761 
9762 	if (vlan_id >= VLAN_N_VID)
9763 		return -EINVAL;
9764 
9765 	ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id);
9766 	if (ret) {
9767 		dev_err(&hdev->pdev->dev,
9768 			"Set %u vport vlan filter config fail, ret =%d.\n",
9769 			vport_id, ret);
9770 		return ret;
9771 	}
9772 
9773 	if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill))
9774 		return 0;
9775 
9776 	for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM)
9777 		vport_num++;
9778 
9779 	if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1))
9780 		ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id,
9781 						 is_kill);
9782 
9783 	return ret;
9784 }
9785 
9786 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport)
9787 {
9788 	struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg;
9789 	struct hclge_vport_vtag_tx_cfg_cmd *req;
9790 	struct hclge_dev *hdev = vport->back;
9791 	struct hclge_desc desc;
9792 	u16 bmap_index;
9793 	int status;
9794 
9795 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false);
9796 
9797 	req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data;
9798 	req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1);
9799 	req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2);
9800 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B,
9801 		      vcfg->accept_tag1 ? 1 : 0);
9802 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B,
9803 		      vcfg->accept_untag1 ? 1 : 0);
9804 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B,
9805 		      vcfg->accept_tag2 ? 1 : 0);
9806 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B,
9807 		      vcfg->accept_untag2 ? 1 : 0);
9808 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B,
9809 		      vcfg->insert_tag1_en ? 1 : 0);
9810 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B,
9811 		      vcfg->insert_tag2_en ? 1 : 0);
9812 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B,
9813 		      vcfg->tag_shift_mode_en ? 1 : 0);
9814 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0);
9815 
9816 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9817 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9818 			HCLGE_VF_NUM_PER_BYTE;
9819 	req->vf_bitmap[bmap_index] =
9820 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9821 
9822 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9823 	if (status)
9824 		dev_err(&hdev->pdev->dev,
9825 			"Send port txvlan cfg command fail, ret =%d\n",
9826 			status);
9827 
9828 	return status;
9829 }
9830 
9831 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport)
9832 {
9833 	struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg;
9834 	struct hclge_vport_vtag_rx_cfg_cmd *req;
9835 	struct hclge_dev *hdev = vport->back;
9836 	struct hclge_desc desc;
9837 	u16 bmap_index;
9838 	int status;
9839 
9840 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false);
9841 
9842 	req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data;
9843 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B,
9844 		      vcfg->strip_tag1_en ? 1 : 0);
9845 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B,
9846 		      vcfg->strip_tag2_en ? 1 : 0);
9847 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B,
9848 		      vcfg->vlan1_vlan_prionly ? 1 : 0);
9849 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B,
9850 		      vcfg->vlan2_vlan_prionly ? 1 : 0);
9851 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B,
9852 		      vcfg->strip_tag1_discard_en ? 1 : 0);
9853 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B,
9854 		      vcfg->strip_tag2_discard_en ? 1 : 0);
9855 
9856 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9857 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9858 			HCLGE_VF_NUM_PER_BYTE;
9859 	req->vf_bitmap[bmap_index] =
9860 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9861 
9862 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9863 	if (status)
9864 		dev_err(&hdev->pdev->dev,
9865 			"Send port rxvlan cfg command fail, ret =%d\n",
9866 			status);
9867 
9868 	return status;
9869 }
9870 
9871 static int hclge_vlan_offload_cfg(struct hclge_vport *vport,
9872 				  u16 port_base_vlan_state,
9873 				  u16 vlan_tag, u8 qos)
9874 {
9875 	int ret;
9876 
9877 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9878 		vport->txvlan_cfg.accept_tag1 = true;
9879 		vport->txvlan_cfg.insert_tag1_en = false;
9880 		vport->txvlan_cfg.default_tag1 = 0;
9881 	} else {
9882 		struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev);
9883 
9884 		vport->txvlan_cfg.accept_tag1 =
9885 			ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3;
9886 		vport->txvlan_cfg.insert_tag1_en = true;
9887 		vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) |
9888 						 vlan_tag;
9889 	}
9890 
9891 	vport->txvlan_cfg.accept_untag1 = true;
9892 
9893 	/* accept_tag2 and accept_untag2 are not supported on
9894 	 * pdev revision(0x20), new revision support them,
9895 	 * this two fields can not be configured by user.
9896 	 */
9897 	vport->txvlan_cfg.accept_tag2 = true;
9898 	vport->txvlan_cfg.accept_untag2 = true;
9899 	vport->txvlan_cfg.insert_tag2_en = false;
9900 	vport->txvlan_cfg.default_tag2 = 0;
9901 	vport->txvlan_cfg.tag_shift_mode_en = true;
9902 
9903 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9904 		vport->rxvlan_cfg.strip_tag1_en = false;
9905 		vport->rxvlan_cfg.strip_tag2_en =
9906 				vport->rxvlan_cfg.rx_vlan_offload_en;
9907 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
9908 	} else {
9909 		vport->rxvlan_cfg.strip_tag1_en =
9910 				vport->rxvlan_cfg.rx_vlan_offload_en;
9911 		vport->rxvlan_cfg.strip_tag2_en = true;
9912 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
9913 	}
9914 
9915 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
9916 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
9917 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
9918 
9919 	ret = hclge_set_vlan_tx_offload_cfg(vport);
9920 	if (ret)
9921 		return ret;
9922 
9923 	return hclge_set_vlan_rx_offload_cfg(vport);
9924 }
9925 
9926 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev)
9927 {
9928 	struct hclge_rx_vlan_type_cfg_cmd *rx_req;
9929 	struct hclge_tx_vlan_type_cfg_cmd *tx_req;
9930 	struct hclge_desc desc;
9931 	int status;
9932 
9933 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false);
9934 	rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data;
9935 	rx_req->ot_fst_vlan_type =
9936 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type);
9937 	rx_req->ot_sec_vlan_type =
9938 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type);
9939 	rx_req->in_fst_vlan_type =
9940 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type);
9941 	rx_req->in_sec_vlan_type =
9942 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type);
9943 
9944 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9945 	if (status) {
9946 		dev_err(&hdev->pdev->dev,
9947 			"Send rxvlan protocol type command fail, ret =%d\n",
9948 			status);
9949 		return status;
9950 	}
9951 
9952 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false);
9953 
9954 	tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data;
9955 	tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type);
9956 	tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type);
9957 
9958 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9959 	if (status)
9960 		dev_err(&hdev->pdev->dev,
9961 			"Send txvlan protocol type command fail, ret =%d\n",
9962 			status);
9963 
9964 	return status;
9965 }
9966 
9967 static int hclge_init_vlan_filter(struct hclge_dev *hdev)
9968 {
9969 	struct hclge_vport *vport;
9970 	int ret;
9971 	int i;
9972 
9973 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9974 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9975 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9976 						  true, 0);
9977 
9978 	/* for revision 0x21, vf vlan filter is per function */
9979 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9980 		vport = &hdev->vport[i];
9981 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9982 						 HCLGE_FILTER_FE_EGRESS, true,
9983 						 vport->vport_id);
9984 		if (ret)
9985 			return ret;
9986 		vport->cur_vlan_fltr_en = true;
9987 	}
9988 
9989 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9990 					  HCLGE_FILTER_FE_INGRESS, true, 0);
9991 }
9992 
9993 static int hclge_init_vlan_type(struct hclge_dev *hdev)
9994 {
9995 	hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q;
9996 	hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q;
9997 	hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q;
9998 	hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q;
9999 	hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q;
10000 	hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q;
10001 
10002 	return hclge_set_vlan_protocol_type(hdev);
10003 }
10004 
10005 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev)
10006 {
10007 	struct hclge_port_base_vlan_config *cfg;
10008 	struct hclge_vport *vport;
10009 	int ret;
10010 	int i;
10011 
10012 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10013 		vport = &hdev->vport[i];
10014 		cfg = &vport->port_base_vlan_cfg;
10015 
10016 		ret = hclge_vlan_offload_cfg(vport, cfg->state,
10017 					     cfg->vlan_info.vlan_tag,
10018 					     cfg->vlan_info.qos);
10019 		if (ret)
10020 			return ret;
10021 	}
10022 	return 0;
10023 }
10024 
10025 static int hclge_init_vlan_config(struct hclge_dev *hdev)
10026 {
10027 	struct hnae3_handle *handle = &hdev->vport[0].nic;
10028 	int ret;
10029 
10030 	ret = hclge_init_vlan_filter(hdev);
10031 	if (ret)
10032 		return ret;
10033 
10034 	ret = hclge_init_vlan_type(hdev);
10035 	if (ret)
10036 		return ret;
10037 
10038 	ret = hclge_init_vport_vlan_offload(hdev);
10039 	if (ret)
10040 		return ret;
10041 
10042 	return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false);
10043 }
10044 
10045 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
10046 				       bool writen_to_tbl)
10047 {
10048 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10049 	struct hclge_dev *hdev = vport->back;
10050 
10051 	mutex_lock(&hdev->vport_lock);
10052 
10053 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10054 		if (vlan->vlan_id == vlan_id) {
10055 			mutex_unlock(&hdev->vport_lock);
10056 			return;
10057 		}
10058 	}
10059 
10060 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
10061 	if (!vlan) {
10062 		mutex_unlock(&hdev->vport_lock);
10063 		return;
10064 	}
10065 
10066 	vlan->hd_tbl_status = writen_to_tbl;
10067 	vlan->vlan_id = vlan_id;
10068 
10069 	list_add_tail(&vlan->node, &vport->vlan_list);
10070 	mutex_unlock(&hdev->vport_lock);
10071 }
10072 
10073 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport)
10074 {
10075 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10076 	struct hclge_dev *hdev = vport->back;
10077 	int ret;
10078 
10079 	mutex_lock(&hdev->vport_lock);
10080 
10081 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10082 		if (!vlan->hd_tbl_status) {
10083 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10084 						       vport->vport_id,
10085 						       vlan->vlan_id, false);
10086 			if (ret) {
10087 				dev_err(&hdev->pdev->dev,
10088 					"restore vport vlan list failed, ret=%d\n",
10089 					ret);
10090 
10091 				mutex_unlock(&hdev->vport_lock);
10092 				return ret;
10093 			}
10094 		}
10095 		vlan->hd_tbl_status = true;
10096 	}
10097 
10098 	mutex_unlock(&hdev->vport_lock);
10099 
10100 	return 0;
10101 }
10102 
10103 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
10104 				      bool is_write_tbl)
10105 {
10106 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10107 	struct hclge_dev *hdev = vport->back;
10108 
10109 	mutex_lock(&hdev->vport_lock);
10110 
10111 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10112 		if (vlan->vlan_id == vlan_id) {
10113 			if (is_write_tbl && vlan->hd_tbl_status)
10114 				hclge_set_vlan_filter_hw(hdev,
10115 							 htons(ETH_P_8021Q),
10116 							 vport->vport_id,
10117 							 vlan_id,
10118 							 true);
10119 
10120 			list_del(&vlan->node);
10121 			kfree(vlan);
10122 			break;
10123 		}
10124 	}
10125 
10126 	mutex_unlock(&hdev->vport_lock);
10127 }
10128 
10129 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list)
10130 {
10131 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10132 	struct hclge_dev *hdev = vport->back;
10133 
10134 	mutex_lock(&hdev->vport_lock);
10135 
10136 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10137 		if (vlan->hd_tbl_status)
10138 			hclge_set_vlan_filter_hw(hdev,
10139 						 htons(ETH_P_8021Q),
10140 						 vport->vport_id,
10141 						 vlan->vlan_id,
10142 						 true);
10143 
10144 		vlan->hd_tbl_status = false;
10145 		if (is_del_list) {
10146 			list_del(&vlan->node);
10147 			kfree(vlan);
10148 		}
10149 	}
10150 	clear_bit(vport->vport_id, hdev->vf_vlan_full);
10151 	mutex_unlock(&hdev->vport_lock);
10152 }
10153 
10154 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev)
10155 {
10156 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10157 	struct hclge_vport *vport;
10158 	int i;
10159 
10160 	mutex_lock(&hdev->vport_lock);
10161 
10162 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10163 		vport = &hdev->vport[i];
10164 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10165 			list_del(&vlan->node);
10166 			kfree(vlan);
10167 		}
10168 	}
10169 
10170 	mutex_unlock(&hdev->vport_lock);
10171 }
10172 
10173 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev)
10174 {
10175 	struct hclge_vlan_info *vlan_info;
10176 	struct hclge_vport *vport;
10177 	u16 vlan_proto;
10178 	u16 vlan_id;
10179 	u16 state;
10180 	int vf_id;
10181 	int ret;
10182 
10183 	/* PF should restore all vfs port base vlan */
10184 	for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) {
10185 		vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM];
10186 		vlan_info = vport->port_base_vlan_cfg.tbl_sta ?
10187 			    &vport->port_base_vlan_cfg.vlan_info :
10188 			    &vport->port_base_vlan_cfg.old_vlan_info;
10189 
10190 		vlan_id = vlan_info->vlan_tag;
10191 		vlan_proto = vlan_info->vlan_proto;
10192 		state = vport->port_base_vlan_cfg.state;
10193 
10194 		if (state != HNAE3_PORT_BASE_VLAN_DISABLE) {
10195 			clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]);
10196 			ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto),
10197 						       vport->vport_id,
10198 						       vlan_id, false);
10199 			vport->port_base_vlan_cfg.tbl_sta = ret == 0;
10200 		}
10201 	}
10202 }
10203 
10204 void hclge_restore_vport_vlan_table(struct hclge_vport *vport)
10205 {
10206 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10207 	struct hclge_dev *hdev = vport->back;
10208 	int ret;
10209 
10210 	mutex_lock(&hdev->vport_lock);
10211 
10212 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10213 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10214 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10215 						       vport->vport_id,
10216 						       vlan->vlan_id, false);
10217 			if (ret)
10218 				break;
10219 			vlan->hd_tbl_status = true;
10220 		}
10221 	}
10222 
10223 	mutex_unlock(&hdev->vport_lock);
10224 }
10225 
10226 /* For global reset and imp reset, hardware will clear the mac table,
10227  * so we change the mac address state from ACTIVE to TO_ADD, then they
10228  * can be restored in the service task after reset complete. Furtherly,
10229  * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to
10230  * be restored after reset, so just remove these mac nodes from mac_list.
10231  */
10232 static void hclge_mac_node_convert_for_reset(struct list_head *list)
10233 {
10234 	struct hclge_mac_node *mac_node, *tmp;
10235 
10236 	list_for_each_entry_safe(mac_node, tmp, list, node) {
10237 		if (mac_node->state == HCLGE_MAC_ACTIVE) {
10238 			mac_node->state = HCLGE_MAC_TO_ADD;
10239 		} else if (mac_node->state == HCLGE_MAC_TO_DEL) {
10240 			list_del(&mac_node->node);
10241 			kfree(mac_node);
10242 		}
10243 	}
10244 }
10245 
10246 void hclge_restore_mac_table_common(struct hclge_vport *vport)
10247 {
10248 	spin_lock_bh(&vport->mac_list_lock);
10249 
10250 	hclge_mac_node_convert_for_reset(&vport->uc_mac_list);
10251 	hclge_mac_node_convert_for_reset(&vport->mc_mac_list);
10252 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
10253 
10254 	spin_unlock_bh(&vport->mac_list_lock);
10255 }
10256 
10257 static void hclge_restore_hw_table(struct hclge_dev *hdev)
10258 {
10259 	struct hclge_vport *vport = &hdev->vport[0];
10260 	struct hnae3_handle *handle = &vport->nic;
10261 
10262 	hclge_restore_mac_table_common(vport);
10263 	hclge_restore_vport_port_base_vlan_config(hdev);
10264 	hclge_restore_vport_vlan_table(vport);
10265 	set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
10266 	hclge_restore_fd_entries(handle);
10267 }
10268 
10269 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
10270 {
10271 	struct hclge_vport *vport = hclge_get_vport(handle);
10272 
10273 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10274 		vport->rxvlan_cfg.strip_tag1_en = false;
10275 		vport->rxvlan_cfg.strip_tag2_en = enable;
10276 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
10277 	} else {
10278 		vport->rxvlan_cfg.strip_tag1_en = enable;
10279 		vport->rxvlan_cfg.strip_tag2_en = true;
10280 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
10281 	}
10282 
10283 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
10284 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
10285 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
10286 	vport->rxvlan_cfg.rx_vlan_offload_en = enable;
10287 
10288 	return hclge_set_vlan_rx_offload_cfg(vport);
10289 }
10290 
10291 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport)
10292 {
10293 	struct hclge_dev *hdev = vport->back;
10294 
10295 	if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
10296 		set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state);
10297 }
10298 
10299 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport,
10300 					    u16 port_base_vlan_state,
10301 					    struct hclge_vlan_info *new_info,
10302 					    struct hclge_vlan_info *old_info)
10303 {
10304 	struct hclge_dev *hdev = vport->back;
10305 	int ret;
10306 
10307 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) {
10308 		hclge_rm_vport_all_vlan_table(vport, false);
10309 		/* force clear VLAN 0 */
10310 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0);
10311 		if (ret)
10312 			return ret;
10313 		return hclge_set_vlan_filter_hw(hdev,
10314 						 htons(new_info->vlan_proto),
10315 						 vport->vport_id,
10316 						 new_info->vlan_tag,
10317 						 false);
10318 	}
10319 
10320 	vport->port_base_vlan_cfg.tbl_sta = false;
10321 
10322 	/* force add VLAN 0 */
10323 	ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0);
10324 	if (ret)
10325 		return ret;
10326 
10327 	ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto),
10328 				       vport->vport_id, old_info->vlan_tag,
10329 				       true);
10330 	if (ret)
10331 		return ret;
10332 
10333 	return hclge_add_vport_all_vlan_table(vport);
10334 }
10335 
10336 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg,
10337 					  const struct hclge_vlan_info *old_cfg)
10338 {
10339 	if (new_cfg->vlan_tag != old_cfg->vlan_tag)
10340 		return true;
10341 
10342 	if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0))
10343 		return true;
10344 
10345 	return false;
10346 }
10347 
10348 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport,
10349 					   struct hclge_vlan_info *new_info,
10350 					   struct hclge_vlan_info *old_info)
10351 {
10352 	struct hclge_dev *hdev = vport->back;
10353 	int ret;
10354 
10355 	/* add new VLAN tag */
10356 	ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto),
10357 				       vport->vport_id, new_info->vlan_tag,
10358 				       false);
10359 	if (ret)
10360 		return ret;
10361 
10362 	vport->port_base_vlan_cfg.tbl_sta = false;
10363 	/* remove old VLAN tag */
10364 	if (old_info->vlan_tag == 0)
10365 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id,
10366 					       true, 0);
10367 	else
10368 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10369 					       vport->vport_id,
10370 					       old_info->vlan_tag, true);
10371 	if (ret)
10372 		dev_err(&hdev->pdev->dev,
10373 			"failed to clear vport%u port base vlan %u, ret = %d.\n",
10374 			vport->vport_id, old_info->vlan_tag, ret);
10375 
10376 	return ret;
10377 }
10378 
10379 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state,
10380 				    struct hclge_vlan_info *vlan_info)
10381 {
10382 	struct hnae3_handle *nic = &vport->nic;
10383 	struct hclge_vlan_info *old_vlan_info;
10384 	int ret;
10385 
10386 	old_vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10387 
10388 	ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag,
10389 				     vlan_info->qos);
10390 	if (ret)
10391 		return ret;
10392 
10393 	if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info))
10394 		goto out;
10395 
10396 	if (state == HNAE3_PORT_BASE_VLAN_MODIFY)
10397 		ret = hclge_modify_port_base_vlan_tag(vport, vlan_info,
10398 						      old_vlan_info);
10399 	else
10400 		ret = hclge_update_vlan_filter_entries(vport, state, vlan_info,
10401 						       old_vlan_info);
10402 	if (ret)
10403 		return ret;
10404 
10405 out:
10406 	vport->port_base_vlan_cfg.state = state;
10407 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
10408 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
10409 	else
10410 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
10411 
10412 	vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info;
10413 	vport->port_base_vlan_cfg.vlan_info = *vlan_info;
10414 	vport->port_base_vlan_cfg.tbl_sta = true;
10415 	hclge_set_vport_vlan_fltr_change(vport);
10416 
10417 	return 0;
10418 }
10419 
10420 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport,
10421 					  enum hnae3_port_base_vlan_state state,
10422 					  u16 vlan, u8 qos)
10423 {
10424 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10425 		if (!vlan && !qos)
10426 			return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10427 
10428 		return HNAE3_PORT_BASE_VLAN_ENABLE;
10429 	}
10430 
10431 	if (!vlan && !qos)
10432 		return HNAE3_PORT_BASE_VLAN_DISABLE;
10433 
10434 	if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan &&
10435 	    vport->port_base_vlan_cfg.vlan_info.qos == qos)
10436 		return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10437 
10438 	return HNAE3_PORT_BASE_VLAN_MODIFY;
10439 }
10440 
10441 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid,
10442 				    u16 vlan, u8 qos, __be16 proto)
10443 {
10444 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
10445 	struct hclge_vport *vport = hclge_get_vport(handle);
10446 	struct hclge_dev *hdev = vport->back;
10447 	struct hclge_vlan_info vlan_info;
10448 	u16 state;
10449 	int ret;
10450 
10451 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
10452 		return -EOPNOTSUPP;
10453 
10454 	vport = hclge_get_vf_vport(hdev, vfid);
10455 	if (!vport)
10456 		return -EINVAL;
10457 
10458 	/* qos is a 3 bits value, so can not be bigger than 7 */
10459 	if (vlan > VLAN_N_VID - 1 || qos > 7)
10460 		return -EINVAL;
10461 	if (proto != htons(ETH_P_8021Q))
10462 		return -EPROTONOSUPPORT;
10463 
10464 	state = hclge_get_port_base_vlan_state(vport,
10465 					       vport->port_base_vlan_cfg.state,
10466 					       vlan, qos);
10467 	if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE)
10468 		return 0;
10469 
10470 	vlan_info.vlan_tag = vlan;
10471 	vlan_info.qos = qos;
10472 	vlan_info.vlan_proto = ntohs(proto);
10473 
10474 	ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info);
10475 	if (ret) {
10476 		dev_err(&hdev->pdev->dev,
10477 			"failed to update port base vlan for vf %d, ret = %d\n",
10478 			vfid, ret);
10479 		return ret;
10480 	}
10481 
10482 	/* there is a timewindow for PF to know VF unalive, it may
10483 	 * cause send mailbox fail, but it doesn't matter, VF will
10484 	 * query it when reinit.
10485 	 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based
10486 	 * VLAN state.
10487 	 */
10488 	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
10489 		if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
10490 			(void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0],
10491 								vport->vport_id,
10492 								state,
10493 								&vlan_info);
10494 		else
10495 			set_bit(HCLGE_VPORT_NEED_NOTIFY_VF_VLAN,
10496 				&vport->need_notify);
10497 	}
10498 	return 0;
10499 }
10500 
10501 static void hclge_clear_vf_vlan(struct hclge_dev *hdev)
10502 {
10503 	struct hclge_vlan_info *vlan_info;
10504 	struct hclge_vport *vport;
10505 	int ret;
10506 	int vf;
10507 
10508 	/* clear port base vlan for all vf */
10509 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
10510 		vport = &hdev->vport[vf];
10511 		vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10512 
10513 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10514 					       vport->vport_id,
10515 					       vlan_info->vlan_tag, true);
10516 		if (ret)
10517 			dev_err(&hdev->pdev->dev,
10518 				"failed to clear vf vlan for vf%d, ret = %d\n",
10519 				vf - HCLGE_VF_VPORT_START_NUM, ret);
10520 	}
10521 }
10522 
10523 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto,
10524 			  u16 vlan_id, bool is_kill)
10525 {
10526 	struct hclge_vport *vport = hclge_get_vport(handle);
10527 	struct hclge_dev *hdev = vport->back;
10528 	bool writen_to_tbl = false;
10529 	int ret = 0;
10530 
10531 	/* When device is resetting or reset failed, firmware is unable to
10532 	 * handle mailbox. Just record the vlan id, and remove it after
10533 	 * reset finished.
10534 	 */
10535 	if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
10536 	     test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) {
10537 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10538 		return -EBUSY;
10539 	}
10540 
10541 	/* when port base vlan enabled, we use port base vlan as the vlan
10542 	 * filter entry. In this case, we don't update vlan filter table
10543 	 * when user add new vlan or remove exist vlan, just update the vport
10544 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
10545 	 * table until port base vlan disabled
10546 	 */
10547 	if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10548 		ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id,
10549 					       vlan_id, is_kill);
10550 		writen_to_tbl = true;
10551 	}
10552 
10553 	if (!ret) {
10554 		if (!is_kill)
10555 			hclge_add_vport_vlan_table(vport, vlan_id,
10556 						   writen_to_tbl);
10557 		else if (is_kill && vlan_id != 0)
10558 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10559 	} else if (is_kill) {
10560 		/* when remove hw vlan filter failed, record the vlan id,
10561 		 * and try to remove it from hw later, to be consistence
10562 		 * with stack
10563 		 */
10564 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10565 	}
10566 
10567 	hclge_set_vport_vlan_fltr_change(vport);
10568 
10569 	return ret;
10570 }
10571 
10572 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev)
10573 {
10574 	struct hclge_vport *vport;
10575 	int ret;
10576 	u16 i;
10577 
10578 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10579 		vport = &hdev->vport[i];
10580 		if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10581 					&vport->state))
10582 			continue;
10583 
10584 		ret = hclge_enable_vport_vlan_filter(vport,
10585 						     vport->req_vlan_fltr_en);
10586 		if (ret) {
10587 			dev_err(&hdev->pdev->dev,
10588 				"failed to sync vlan filter state for vport%u, ret = %d\n",
10589 				vport->vport_id, ret);
10590 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10591 				&vport->state);
10592 			return;
10593 		}
10594 	}
10595 }
10596 
10597 static void hclge_sync_vlan_filter(struct hclge_dev *hdev)
10598 {
10599 #define HCLGE_MAX_SYNC_COUNT	60
10600 
10601 	int i, ret, sync_cnt = 0;
10602 	u16 vlan_id;
10603 
10604 	/* start from vport 1 for PF is always alive */
10605 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10606 		struct hclge_vport *vport = &hdev->vport[i];
10607 
10608 		vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10609 					 VLAN_N_VID);
10610 		while (vlan_id != VLAN_N_VID) {
10611 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10612 						       vport->vport_id, vlan_id,
10613 						       true);
10614 			if (ret && ret != -EINVAL)
10615 				return;
10616 
10617 			clear_bit(vlan_id, vport->vlan_del_fail_bmap);
10618 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10619 			hclge_set_vport_vlan_fltr_change(vport);
10620 
10621 			sync_cnt++;
10622 			if (sync_cnt >= HCLGE_MAX_SYNC_COUNT)
10623 				return;
10624 
10625 			vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10626 						 VLAN_N_VID);
10627 		}
10628 	}
10629 
10630 	hclge_sync_vlan_fltr_state(hdev);
10631 }
10632 
10633 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps)
10634 {
10635 	struct hclge_config_max_frm_size_cmd *req;
10636 	struct hclge_desc desc;
10637 
10638 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false);
10639 
10640 	req = (struct hclge_config_max_frm_size_cmd *)desc.data;
10641 	req->max_frm_size = cpu_to_le16(new_mps);
10642 	req->min_frm_size = HCLGE_MAC_MIN_FRAME;
10643 
10644 	return hclge_cmd_send(&hdev->hw, &desc, 1);
10645 }
10646 
10647 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu)
10648 {
10649 	struct hclge_vport *vport = hclge_get_vport(handle);
10650 
10651 	return hclge_set_vport_mtu(vport, new_mtu);
10652 }
10653 
10654 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu)
10655 {
10656 	struct hclge_dev *hdev = vport->back;
10657 	int i, max_frm_size, ret;
10658 
10659 	/* HW supprt 2 layer vlan */
10660 	max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
10661 	if (max_frm_size < HCLGE_MAC_MIN_FRAME ||
10662 	    max_frm_size > hdev->ae_dev->dev_specs.max_frm_size)
10663 		return -EINVAL;
10664 
10665 	max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME);
10666 	mutex_lock(&hdev->vport_lock);
10667 	/* VF's mps must fit within hdev->mps */
10668 	if (vport->vport_id && max_frm_size > hdev->mps) {
10669 		mutex_unlock(&hdev->vport_lock);
10670 		return -EINVAL;
10671 	} else if (vport->vport_id) {
10672 		vport->mps = max_frm_size;
10673 		mutex_unlock(&hdev->vport_lock);
10674 		return 0;
10675 	}
10676 
10677 	/* PF's mps must be greater then VF's mps */
10678 	for (i = 1; i < hdev->num_alloc_vport; i++)
10679 		if (max_frm_size < hdev->vport[i].mps) {
10680 			dev_err(&hdev->pdev->dev,
10681 				"failed to set pf mtu for less than vport %d, mps = %u.\n",
10682 				i, hdev->vport[i].mps);
10683 			mutex_unlock(&hdev->vport_lock);
10684 			return -EINVAL;
10685 		}
10686 
10687 	hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
10688 
10689 	ret = hclge_set_mac_mtu(hdev, max_frm_size);
10690 	if (ret) {
10691 		dev_err(&hdev->pdev->dev,
10692 			"Change mtu fail, ret =%d\n", ret);
10693 		goto out;
10694 	}
10695 
10696 	hdev->mps = max_frm_size;
10697 	vport->mps = max_frm_size;
10698 
10699 	ret = hclge_buffer_alloc(hdev);
10700 	if (ret)
10701 		dev_err(&hdev->pdev->dev,
10702 			"Allocate buffer fail, ret =%d\n", ret);
10703 
10704 out:
10705 	hclge_notify_client(hdev, HNAE3_UP_CLIENT);
10706 	mutex_unlock(&hdev->vport_lock);
10707 	return ret;
10708 }
10709 
10710 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id,
10711 				    bool enable)
10712 {
10713 	struct hclge_reset_tqp_queue_cmd *req;
10714 	struct hclge_desc desc;
10715 	int ret;
10716 
10717 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false);
10718 
10719 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10720 	req->tqp_id = cpu_to_le16(queue_id);
10721 	if (enable)
10722 		hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U);
10723 
10724 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10725 	if (ret) {
10726 		dev_err(&hdev->pdev->dev,
10727 			"Send tqp reset cmd error, status =%d\n", ret);
10728 		return ret;
10729 	}
10730 
10731 	return 0;
10732 }
10733 
10734 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id,
10735 				  u8 *reset_status)
10736 {
10737 	struct hclge_reset_tqp_queue_cmd *req;
10738 	struct hclge_desc desc;
10739 	int ret;
10740 
10741 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true);
10742 
10743 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10744 	req->tqp_id = cpu_to_le16(queue_id);
10745 
10746 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10747 	if (ret) {
10748 		dev_err(&hdev->pdev->dev,
10749 			"Get reset status error, status =%d\n", ret);
10750 		return ret;
10751 	}
10752 
10753 	*reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B);
10754 
10755 	return 0;
10756 }
10757 
10758 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id)
10759 {
10760 	struct hclge_comm_tqp *tqp;
10761 	struct hnae3_queue *queue;
10762 
10763 	queue = handle->kinfo.tqp[queue_id];
10764 	tqp = container_of(queue, struct hclge_comm_tqp, q);
10765 
10766 	return tqp->index;
10767 }
10768 
10769 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle)
10770 {
10771 	struct hclge_vport *vport = hclge_get_vport(handle);
10772 	struct hclge_dev *hdev = vport->back;
10773 	u16 reset_try_times = 0;
10774 	u8 reset_status;
10775 	u16 queue_gid;
10776 	int ret;
10777 	u16 i;
10778 
10779 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
10780 		queue_gid = hclge_covert_handle_qid_global(handle, i);
10781 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true);
10782 		if (ret) {
10783 			dev_err(&hdev->pdev->dev,
10784 				"failed to send reset tqp cmd, ret = %d\n",
10785 				ret);
10786 			return ret;
10787 		}
10788 
10789 		while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
10790 			ret = hclge_get_reset_status(hdev, queue_gid,
10791 						     &reset_status);
10792 			if (ret)
10793 				return ret;
10794 
10795 			if (reset_status)
10796 				break;
10797 
10798 			/* Wait for tqp hw reset */
10799 			usleep_range(1000, 1200);
10800 		}
10801 
10802 		if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
10803 			dev_err(&hdev->pdev->dev,
10804 				"wait for tqp hw reset timeout\n");
10805 			return -ETIME;
10806 		}
10807 
10808 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false);
10809 		if (ret) {
10810 			dev_err(&hdev->pdev->dev,
10811 				"failed to deassert soft reset, ret = %d\n",
10812 				ret);
10813 			return ret;
10814 		}
10815 		reset_try_times = 0;
10816 	}
10817 	return 0;
10818 }
10819 
10820 static int hclge_reset_rcb(struct hnae3_handle *handle)
10821 {
10822 #define HCLGE_RESET_RCB_NOT_SUPPORT	0U
10823 #define HCLGE_RESET_RCB_SUCCESS		1U
10824 
10825 	struct hclge_vport *vport = hclge_get_vport(handle);
10826 	struct hclge_dev *hdev = vport->back;
10827 	struct hclge_reset_cmd *req;
10828 	struct hclge_desc desc;
10829 	u8 return_status;
10830 	u16 queue_gid;
10831 	int ret;
10832 
10833 	queue_gid = hclge_covert_handle_qid_global(handle, 0);
10834 
10835 	req = (struct hclge_reset_cmd *)desc.data;
10836 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
10837 	hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1);
10838 	req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid);
10839 	req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps);
10840 
10841 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10842 	if (ret) {
10843 		dev_err(&hdev->pdev->dev,
10844 			"failed to send rcb reset cmd, ret = %d\n", ret);
10845 		return ret;
10846 	}
10847 
10848 	return_status = req->fun_reset_rcb_return_status;
10849 	if (return_status == HCLGE_RESET_RCB_SUCCESS)
10850 		return 0;
10851 
10852 	if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) {
10853 		dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n",
10854 			return_status);
10855 		return -EIO;
10856 	}
10857 
10858 	/* if reset rcb cmd is unsupported, we need to send reset tqp cmd
10859 	 * again to reset all tqps
10860 	 */
10861 	return hclge_reset_tqp_cmd(handle);
10862 }
10863 
10864 int hclge_reset_tqp(struct hnae3_handle *handle)
10865 {
10866 	struct hclge_vport *vport = hclge_get_vport(handle);
10867 	struct hclge_dev *hdev = vport->back;
10868 	int ret;
10869 
10870 	/* only need to disable PF's tqp */
10871 	if (!vport->vport_id) {
10872 		ret = hclge_tqp_enable(handle, false);
10873 		if (ret) {
10874 			dev_err(&hdev->pdev->dev,
10875 				"failed to disable tqp, ret = %d\n", ret);
10876 			return ret;
10877 		}
10878 	}
10879 
10880 	return hclge_reset_rcb(handle);
10881 }
10882 
10883 static u32 hclge_get_fw_version(struct hnae3_handle *handle)
10884 {
10885 	struct hclge_vport *vport = hclge_get_vport(handle);
10886 	struct hclge_dev *hdev = vport->back;
10887 
10888 	return hdev->fw_version;
10889 }
10890 
10891 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10892 {
10893 	struct phy_device *phydev = hdev->hw.mac.phydev;
10894 
10895 	if (!phydev)
10896 		return;
10897 
10898 	phy_set_asym_pause(phydev, rx_en, tx_en);
10899 }
10900 
10901 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10902 {
10903 	int ret;
10904 
10905 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC)
10906 		return 0;
10907 
10908 	ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en);
10909 	if (ret)
10910 		dev_err(&hdev->pdev->dev,
10911 			"configure pauseparam error, ret = %d.\n", ret);
10912 
10913 	return ret;
10914 }
10915 
10916 int hclge_cfg_flowctrl(struct hclge_dev *hdev)
10917 {
10918 	struct phy_device *phydev = hdev->hw.mac.phydev;
10919 	u16 remote_advertising = 0;
10920 	u16 local_advertising;
10921 	u32 rx_pause, tx_pause;
10922 	u8 flowctl;
10923 
10924 	if (!phydev->link || !phydev->autoneg)
10925 		return 0;
10926 
10927 	local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising);
10928 
10929 	if (phydev->pause)
10930 		remote_advertising = LPA_PAUSE_CAP;
10931 
10932 	if (phydev->asym_pause)
10933 		remote_advertising |= LPA_PAUSE_ASYM;
10934 
10935 	flowctl = mii_resolve_flowctrl_fdx(local_advertising,
10936 					   remote_advertising);
10937 	tx_pause = flowctl & FLOW_CTRL_TX;
10938 	rx_pause = flowctl & FLOW_CTRL_RX;
10939 
10940 	if (phydev->duplex == HCLGE_MAC_HALF) {
10941 		tx_pause = 0;
10942 		rx_pause = 0;
10943 	}
10944 
10945 	return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause);
10946 }
10947 
10948 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg,
10949 				 u32 *rx_en, u32 *tx_en)
10950 {
10951 	struct hclge_vport *vport = hclge_get_vport(handle);
10952 	struct hclge_dev *hdev = vport->back;
10953 	u8 media_type = hdev->hw.mac.media_type;
10954 
10955 	*auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ?
10956 		    hclge_get_autoneg(handle) : 0;
10957 
10958 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10959 		*rx_en = 0;
10960 		*tx_en = 0;
10961 		return;
10962 	}
10963 
10964 	if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) {
10965 		*rx_en = 1;
10966 		*tx_en = 0;
10967 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) {
10968 		*tx_en = 1;
10969 		*rx_en = 0;
10970 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) {
10971 		*rx_en = 1;
10972 		*tx_en = 1;
10973 	} else {
10974 		*rx_en = 0;
10975 		*tx_en = 0;
10976 	}
10977 }
10978 
10979 static void hclge_record_user_pauseparam(struct hclge_dev *hdev,
10980 					 u32 rx_en, u32 tx_en)
10981 {
10982 	if (rx_en && tx_en)
10983 		hdev->fc_mode_last_time = HCLGE_FC_FULL;
10984 	else if (rx_en && !tx_en)
10985 		hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE;
10986 	else if (!rx_en && tx_en)
10987 		hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE;
10988 	else
10989 		hdev->fc_mode_last_time = HCLGE_FC_NONE;
10990 
10991 	hdev->tm_info.fc_mode = hdev->fc_mode_last_time;
10992 }
10993 
10994 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg,
10995 				u32 rx_en, u32 tx_en)
10996 {
10997 	struct hclge_vport *vport = hclge_get_vport(handle);
10998 	struct hclge_dev *hdev = vport->back;
10999 	struct phy_device *phydev = hdev->hw.mac.phydev;
11000 	u32 fc_autoneg;
11001 
11002 	if (phydev || hnae3_dev_phy_imp_supported(hdev)) {
11003 		fc_autoneg = hclge_get_autoneg(handle);
11004 		if (auto_neg != fc_autoneg) {
11005 			dev_info(&hdev->pdev->dev,
11006 				 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
11007 			return -EOPNOTSUPP;
11008 		}
11009 	}
11010 
11011 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
11012 		dev_info(&hdev->pdev->dev,
11013 			 "Priority flow control enabled. Cannot set link flow control.\n");
11014 		return -EOPNOTSUPP;
11015 	}
11016 
11017 	hclge_set_flowctrl_adv(hdev, rx_en, tx_en);
11018 
11019 	hclge_record_user_pauseparam(hdev, rx_en, tx_en);
11020 
11021 	if (!auto_neg || hnae3_dev_phy_imp_supported(hdev))
11022 		return hclge_cfg_pauseparam(hdev, rx_en, tx_en);
11023 
11024 	if (phydev)
11025 		return phy_start_aneg(phydev);
11026 
11027 	return -EOPNOTSUPP;
11028 }
11029 
11030 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle,
11031 					  u8 *auto_neg, u32 *speed, u8 *duplex, u32 *lane_num)
11032 {
11033 	struct hclge_vport *vport = hclge_get_vport(handle);
11034 	struct hclge_dev *hdev = vport->back;
11035 
11036 	if (speed)
11037 		*speed = hdev->hw.mac.speed;
11038 	if (duplex)
11039 		*duplex = hdev->hw.mac.duplex;
11040 	if (auto_neg)
11041 		*auto_neg = hdev->hw.mac.autoneg;
11042 	if (lane_num)
11043 		*lane_num = hdev->hw.mac.lane_num;
11044 }
11045 
11046 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type,
11047 				 u8 *module_type)
11048 {
11049 	struct hclge_vport *vport = hclge_get_vport(handle);
11050 	struct hclge_dev *hdev = vport->back;
11051 
11052 	/* When nic is down, the service task is not running, doesn't update
11053 	 * the port information per second. Query the port information before
11054 	 * return the media type, ensure getting the correct media information.
11055 	 */
11056 	hclge_update_port_info(hdev);
11057 
11058 	if (media_type)
11059 		*media_type = hdev->hw.mac.media_type;
11060 
11061 	if (module_type)
11062 		*module_type = hdev->hw.mac.module_type;
11063 }
11064 
11065 static void hclge_get_mdix_mode(struct hnae3_handle *handle,
11066 				u8 *tp_mdix_ctrl, u8 *tp_mdix)
11067 {
11068 	struct hclge_vport *vport = hclge_get_vport(handle);
11069 	struct hclge_dev *hdev = vport->back;
11070 	struct phy_device *phydev = hdev->hw.mac.phydev;
11071 	int mdix_ctrl, mdix, is_resolved;
11072 	unsigned int retval;
11073 
11074 	if (!phydev) {
11075 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
11076 		*tp_mdix = ETH_TP_MDI_INVALID;
11077 		return;
11078 	}
11079 
11080 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX);
11081 
11082 	retval = phy_read(phydev, HCLGE_PHY_CSC_REG);
11083 	mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M,
11084 				    HCLGE_PHY_MDIX_CTRL_S);
11085 
11086 	retval = phy_read(phydev, HCLGE_PHY_CSS_REG);
11087 	mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B);
11088 	is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B);
11089 
11090 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER);
11091 
11092 	switch (mdix_ctrl) {
11093 	case 0x0:
11094 		*tp_mdix_ctrl = ETH_TP_MDI;
11095 		break;
11096 	case 0x1:
11097 		*tp_mdix_ctrl = ETH_TP_MDI_X;
11098 		break;
11099 	case 0x3:
11100 		*tp_mdix_ctrl = ETH_TP_MDI_AUTO;
11101 		break;
11102 	default:
11103 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
11104 		break;
11105 	}
11106 
11107 	if (!is_resolved)
11108 		*tp_mdix = ETH_TP_MDI_INVALID;
11109 	else if (mdix)
11110 		*tp_mdix = ETH_TP_MDI_X;
11111 	else
11112 		*tp_mdix = ETH_TP_MDI;
11113 }
11114 
11115 static void hclge_info_show(struct hclge_dev *hdev)
11116 {
11117 	struct device *dev = &hdev->pdev->dev;
11118 
11119 	dev_info(dev, "PF info begin:\n");
11120 
11121 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
11122 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
11123 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
11124 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
11125 	dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs);
11126 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
11127 	dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size);
11128 	dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size);
11129 	dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size);
11130 	dev_info(dev, "This is %s PF\n",
11131 		 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main");
11132 	dev_info(dev, "DCB %s\n",
11133 		 hdev->flag & HCLGE_FLAG_DCB_ENABLE ? "enable" : "disable");
11134 	dev_info(dev, "MQPRIO %s\n",
11135 		 hdev->flag & HCLGE_FLAG_MQPRIO_ENABLE ? "enable" : "disable");
11136 	dev_info(dev, "Default tx spare buffer size: %u\n",
11137 		 hdev->tx_spare_buf_size);
11138 
11139 	dev_info(dev, "PF info end.\n");
11140 }
11141 
11142 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
11143 					  struct hclge_vport *vport)
11144 {
11145 	struct hnae3_client *client = vport->nic.client;
11146 	struct hclge_dev *hdev = ae_dev->priv;
11147 	int rst_cnt = hdev->rst_stats.reset_cnt;
11148 	int ret;
11149 
11150 	ret = client->ops->init_instance(&vport->nic);
11151 	if (ret)
11152 		return ret;
11153 
11154 	set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11155 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
11156 	    rst_cnt != hdev->rst_stats.reset_cnt) {
11157 		ret = -EBUSY;
11158 		goto init_nic_err;
11159 	}
11160 
11161 	/* Enable nic hw error interrupts */
11162 	ret = hclge_config_nic_hw_error(hdev, true);
11163 	if (ret) {
11164 		dev_err(&ae_dev->pdev->dev,
11165 			"fail(%d) to enable hw error interrupts\n", ret);
11166 		goto init_nic_err;
11167 	}
11168 
11169 	hnae3_set_client_init_flag(client, ae_dev, 1);
11170 
11171 	if (netif_msg_drv(&hdev->vport->nic))
11172 		hclge_info_show(hdev);
11173 
11174 	return ret;
11175 
11176 init_nic_err:
11177 	clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11178 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11179 		msleep(HCLGE_WAIT_RESET_DONE);
11180 
11181 	client->ops->uninit_instance(&vport->nic, 0);
11182 
11183 	return ret;
11184 }
11185 
11186 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
11187 					   struct hclge_vport *vport)
11188 {
11189 	struct hclge_dev *hdev = ae_dev->priv;
11190 	struct hnae3_client *client;
11191 	int rst_cnt;
11192 	int ret;
11193 
11194 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
11195 	    !hdev->nic_client)
11196 		return 0;
11197 
11198 	client = hdev->roce_client;
11199 	ret = hclge_init_roce_base_info(vport);
11200 	if (ret)
11201 		return ret;
11202 
11203 	rst_cnt = hdev->rst_stats.reset_cnt;
11204 	ret = client->ops->init_instance(&vport->roce);
11205 	if (ret)
11206 		return ret;
11207 
11208 	set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11209 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
11210 	    rst_cnt != hdev->rst_stats.reset_cnt) {
11211 		ret = -EBUSY;
11212 		goto init_roce_err;
11213 	}
11214 
11215 	/* Enable roce ras interrupts */
11216 	ret = hclge_config_rocee_ras_interrupt(hdev, true);
11217 	if (ret) {
11218 		dev_err(&ae_dev->pdev->dev,
11219 			"fail(%d) to enable roce ras interrupts\n", ret);
11220 		goto init_roce_err;
11221 	}
11222 
11223 	hnae3_set_client_init_flag(client, ae_dev, 1);
11224 
11225 	return 0;
11226 
11227 init_roce_err:
11228 	clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11229 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11230 		msleep(HCLGE_WAIT_RESET_DONE);
11231 
11232 	hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11233 
11234 	return ret;
11235 }
11236 
11237 static int hclge_init_client_instance(struct hnae3_client *client,
11238 				      struct hnae3_ae_dev *ae_dev)
11239 {
11240 	struct hclge_dev *hdev = ae_dev->priv;
11241 	struct hclge_vport *vport = &hdev->vport[0];
11242 	int ret;
11243 
11244 	switch (client->type) {
11245 	case HNAE3_CLIENT_KNIC:
11246 		hdev->nic_client = client;
11247 		vport->nic.client = client;
11248 		ret = hclge_init_nic_client_instance(ae_dev, vport);
11249 		if (ret)
11250 			goto clear_nic;
11251 
11252 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11253 		if (ret)
11254 			goto clear_roce;
11255 
11256 		break;
11257 	case HNAE3_CLIENT_ROCE:
11258 		if (hnae3_dev_roce_supported(hdev)) {
11259 			hdev->roce_client = client;
11260 			vport->roce.client = client;
11261 		}
11262 
11263 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11264 		if (ret)
11265 			goto clear_roce;
11266 
11267 		break;
11268 	default:
11269 		return -EINVAL;
11270 	}
11271 
11272 	return 0;
11273 
11274 clear_nic:
11275 	hdev->nic_client = NULL;
11276 	vport->nic.client = NULL;
11277 	return ret;
11278 clear_roce:
11279 	hdev->roce_client = NULL;
11280 	vport->roce.client = NULL;
11281 	return ret;
11282 }
11283 
11284 static void hclge_uninit_client_instance(struct hnae3_client *client,
11285 					 struct hnae3_ae_dev *ae_dev)
11286 {
11287 	struct hclge_dev *hdev = ae_dev->priv;
11288 	struct hclge_vport *vport = &hdev->vport[0];
11289 
11290 	if (hdev->roce_client) {
11291 		clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11292 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11293 			msleep(HCLGE_WAIT_RESET_DONE);
11294 
11295 		hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11296 		hdev->roce_client = NULL;
11297 		vport->roce.client = NULL;
11298 	}
11299 	if (client->type == HNAE3_CLIENT_ROCE)
11300 		return;
11301 	if (hdev->nic_client && client->ops->uninit_instance) {
11302 		clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11303 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11304 			msleep(HCLGE_WAIT_RESET_DONE);
11305 
11306 		client->ops->uninit_instance(&vport->nic, 0);
11307 		hdev->nic_client = NULL;
11308 		vport->nic.client = NULL;
11309 	}
11310 }
11311 
11312 static int hclge_dev_mem_map(struct hclge_dev *hdev)
11313 {
11314 	struct pci_dev *pdev = hdev->pdev;
11315 	struct hclge_hw *hw = &hdev->hw;
11316 
11317 	/* for device does not have device memory, return directly */
11318 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR)))
11319 		return 0;
11320 
11321 	hw->hw.mem_base =
11322 		devm_ioremap_wc(&pdev->dev,
11323 				pci_resource_start(pdev, HCLGE_MEM_BAR),
11324 				pci_resource_len(pdev, HCLGE_MEM_BAR));
11325 	if (!hw->hw.mem_base) {
11326 		dev_err(&pdev->dev, "failed to map device memory\n");
11327 		return -EFAULT;
11328 	}
11329 
11330 	return 0;
11331 }
11332 
11333 static int hclge_pci_init(struct hclge_dev *hdev)
11334 {
11335 	struct pci_dev *pdev = hdev->pdev;
11336 	struct hclge_hw *hw;
11337 	int ret;
11338 
11339 	ret = pci_enable_device(pdev);
11340 	if (ret) {
11341 		dev_err(&pdev->dev, "failed to enable PCI device\n");
11342 		return ret;
11343 	}
11344 
11345 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11346 	if (ret) {
11347 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11348 		if (ret) {
11349 			dev_err(&pdev->dev,
11350 				"can't set consistent PCI DMA");
11351 			goto err_disable_device;
11352 		}
11353 		dev_warn(&pdev->dev, "set DMA mask to 32 bits\n");
11354 	}
11355 
11356 	ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME);
11357 	if (ret) {
11358 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
11359 		goto err_disable_device;
11360 	}
11361 
11362 	pci_set_master(pdev);
11363 	hw = &hdev->hw;
11364 	hw->hw.io_base = pcim_iomap(pdev, 2, 0);
11365 	if (!hw->hw.io_base) {
11366 		dev_err(&pdev->dev, "Can't map configuration register space\n");
11367 		ret = -ENOMEM;
11368 		goto err_clr_master;
11369 	}
11370 
11371 	ret = hclge_dev_mem_map(hdev);
11372 	if (ret)
11373 		goto err_unmap_io_base;
11374 
11375 	hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev);
11376 
11377 	return 0;
11378 
11379 err_unmap_io_base:
11380 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11381 err_clr_master:
11382 	pci_clear_master(pdev);
11383 	pci_release_regions(pdev);
11384 err_disable_device:
11385 	pci_disable_device(pdev);
11386 
11387 	return ret;
11388 }
11389 
11390 static void hclge_pci_uninit(struct hclge_dev *hdev)
11391 {
11392 	struct pci_dev *pdev = hdev->pdev;
11393 
11394 	if (hdev->hw.hw.mem_base)
11395 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
11396 
11397 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11398 	pci_free_irq_vectors(pdev);
11399 	pci_clear_master(pdev);
11400 	pci_release_mem_regions(pdev);
11401 	pci_disable_device(pdev);
11402 }
11403 
11404 static void hclge_state_init(struct hclge_dev *hdev)
11405 {
11406 	set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state);
11407 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11408 	clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
11409 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11410 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
11411 	clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
11412 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
11413 }
11414 
11415 static void hclge_state_uninit(struct hclge_dev *hdev)
11416 {
11417 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11418 	set_bit(HCLGE_STATE_REMOVING, &hdev->state);
11419 
11420 	if (hdev->reset_timer.function)
11421 		del_timer_sync(&hdev->reset_timer);
11422 	if (hdev->service_task.work.func)
11423 		cancel_delayed_work_sync(&hdev->service_task);
11424 }
11425 
11426 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
11427 					enum hnae3_reset_type rst_type)
11428 {
11429 #define HCLGE_RESET_RETRY_WAIT_MS	500
11430 #define HCLGE_RESET_RETRY_CNT	5
11431 
11432 	struct hclge_dev *hdev = ae_dev->priv;
11433 	int retry_cnt = 0;
11434 	int ret;
11435 
11436 	while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) {
11437 		down(&hdev->reset_sem);
11438 		set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11439 		hdev->reset_type = rst_type;
11440 		ret = hclge_reset_prepare(hdev);
11441 		if (!ret && !hdev->reset_pending)
11442 			break;
11443 
11444 		dev_err(&hdev->pdev->dev,
11445 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
11446 			ret, hdev->reset_pending, retry_cnt);
11447 		clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11448 		up(&hdev->reset_sem);
11449 		msleep(HCLGE_RESET_RETRY_WAIT_MS);
11450 	}
11451 
11452 	/* disable misc vector before reset done */
11453 	hclge_enable_vector(&hdev->misc_vector, false);
11454 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
11455 
11456 	if (hdev->reset_type == HNAE3_FLR_RESET)
11457 		hdev->rst_stats.flr_rst_cnt++;
11458 }
11459 
11460 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev)
11461 {
11462 	struct hclge_dev *hdev = ae_dev->priv;
11463 	int ret;
11464 
11465 	hclge_enable_vector(&hdev->misc_vector, true);
11466 
11467 	ret = hclge_reset_rebuild(hdev);
11468 	if (ret)
11469 		dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret);
11470 
11471 	hdev->reset_type = HNAE3_NONE_RESET;
11472 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11473 	up(&hdev->reset_sem);
11474 }
11475 
11476 static void hclge_clear_resetting_state(struct hclge_dev *hdev)
11477 {
11478 	u16 i;
11479 
11480 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11481 		struct hclge_vport *vport = &hdev->vport[i];
11482 		int ret;
11483 
11484 		 /* Send cmd to clear vport's FUNC_RST_ING */
11485 		ret = hclge_set_vf_rst(hdev, vport->vport_id, false);
11486 		if (ret)
11487 			dev_warn(&hdev->pdev->dev,
11488 				 "clear vport(%u) rst failed %d!\n",
11489 				 vport->vport_id, ret);
11490 	}
11491 }
11492 
11493 static int hclge_clear_hw_resource(struct hclge_dev *hdev)
11494 {
11495 	struct hclge_desc desc;
11496 	int ret;
11497 
11498 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false);
11499 
11500 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
11501 	/* This new command is only supported by new firmware, it will
11502 	 * fail with older firmware. Error value -EOPNOSUPP can only be
11503 	 * returned by older firmware running this command, to keep code
11504 	 * backward compatible we will override this value and return
11505 	 * success.
11506 	 */
11507 	if (ret && ret != -EOPNOTSUPP) {
11508 		dev_err(&hdev->pdev->dev,
11509 			"failed to clear hw resource, ret = %d\n", ret);
11510 		return ret;
11511 	}
11512 	return 0;
11513 }
11514 
11515 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev)
11516 {
11517 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11518 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1);
11519 }
11520 
11521 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev)
11522 {
11523 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11524 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0);
11525 }
11526 
11527 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
11528 {
11529 	struct pci_dev *pdev = ae_dev->pdev;
11530 	struct hclge_dev *hdev;
11531 	int ret;
11532 
11533 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
11534 	if (!hdev)
11535 		return -ENOMEM;
11536 
11537 	hdev->pdev = pdev;
11538 	hdev->ae_dev = ae_dev;
11539 	hdev->reset_type = HNAE3_NONE_RESET;
11540 	hdev->reset_level = HNAE3_FUNC_RESET;
11541 	ae_dev->priv = hdev;
11542 
11543 	/* HW supprt 2 layer vlan */
11544 	hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
11545 
11546 	mutex_init(&hdev->vport_lock);
11547 	spin_lock_init(&hdev->fd_rule_lock);
11548 	sema_init(&hdev->reset_sem, 1);
11549 
11550 	ret = hclge_pci_init(hdev);
11551 	if (ret)
11552 		goto out;
11553 
11554 	ret = hclge_devlink_init(hdev);
11555 	if (ret)
11556 		goto err_pci_uninit;
11557 
11558 	/* Firmware command queue initialize */
11559 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
11560 	if (ret)
11561 		goto err_devlink_uninit;
11562 
11563 	/* Firmware command initialize */
11564 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11565 				  true, hdev->reset_pending);
11566 	if (ret)
11567 		goto err_cmd_uninit;
11568 
11569 	ret  = hclge_clear_hw_resource(hdev);
11570 	if (ret)
11571 		goto err_cmd_uninit;
11572 
11573 	ret = hclge_get_cap(hdev);
11574 	if (ret)
11575 		goto err_cmd_uninit;
11576 
11577 	ret = hclge_query_dev_specs(hdev);
11578 	if (ret) {
11579 		dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n",
11580 			ret);
11581 		goto err_cmd_uninit;
11582 	}
11583 
11584 	ret = hclge_configure(hdev);
11585 	if (ret) {
11586 		dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret);
11587 		goto err_cmd_uninit;
11588 	}
11589 
11590 	ret = hclge_init_msi(hdev);
11591 	if (ret) {
11592 		dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret);
11593 		goto err_cmd_uninit;
11594 	}
11595 
11596 	ret = hclge_misc_irq_init(hdev);
11597 	if (ret)
11598 		goto err_msi_uninit;
11599 
11600 	ret = hclge_alloc_tqps(hdev);
11601 	if (ret) {
11602 		dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret);
11603 		goto err_msi_irq_uninit;
11604 	}
11605 
11606 	ret = hclge_alloc_vport(hdev);
11607 	if (ret)
11608 		goto err_msi_irq_uninit;
11609 
11610 	ret = hclge_map_tqp(hdev);
11611 	if (ret)
11612 		goto err_msi_irq_uninit;
11613 
11614 	if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) {
11615 		if (hnae3_dev_phy_imp_supported(hdev))
11616 			ret = hclge_update_tp_port_info(hdev);
11617 		else
11618 			ret = hclge_mac_mdio_config(hdev);
11619 
11620 		if (ret)
11621 			goto err_msi_irq_uninit;
11622 	}
11623 
11624 	ret = hclge_init_umv_space(hdev);
11625 	if (ret)
11626 		goto err_mdiobus_unreg;
11627 
11628 	ret = hclge_mac_init(hdev);
11629 	if (ret) {
11630 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
11631 		goto err_mdiobus_unreg;
11632 	}
11633 
11634 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
11635 	if (ret) {
11636 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
11637 		goto err_mdiobus_unreg;
11638 	}
11639 
11640 	ret = hclge_config_gro(hdev);
11641 	if (ret)
11642 		goto err_mdiobus_unreg;
11643 
11644 	ret = hclge_init_vlan_config(hdev);
11645 	if (ret) {
11646 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
11647 		goto err_mdiobus_unreg;
11648 	}
11649 
11650 	ret = hclge_tm_schd_init(hdev);
11651 	if (ret) {
11652 		dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret);
11653 		goto err_mdiobus_unreg;
11654 	}
11655 
11656 	ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev,
11657 				      &hdev->rss_cfg);
11658 	if (ret) {
11659 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
11660 		goto err_mdiobus_unreg;
11661 	}
11662 
11663 	ret = hclge_rss_init_hw(hdev);
11664 	if (ret) {
11665 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
11666 		goto err_mdiobus_unreg;
11667 	}
11668 
11669 	ret = init_mgr_tbl(hdev);
11670 	if (ret) {
11671 		dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret);
11672 		goto err_mdiobus_unreg;
11673 	}
11674 
11675 	ret = hclge_init_fd_config(hdev);
11676 	if (ret) {
11677 		dev_err(&pdev->dev,
11678 			"fd table init fail, ret=%d\n", ret);
11679 		goto err_mdiobus_unreg;
11680 	}
11681 
11682 	ret = hclge_ptp_init(hdev);
11683 	if (ret)
11684 		goto err_mdiobus_unreg;
11685 
11686 	ret = hclge_update_port_info(hdev);
11687 	if (ret)
11688 		goto err_mdiobus_unreg;
11689 
11690 	INIT_KFIFO(hdev->mac_tnl_log);
11691 
11692 	hclge_dcb_ops_set(hdev);
11693 
11694 	timer_setup(&hdev->reset_timer, hclge_reset_timer, 0);
11695 	INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task);
11696 
11697 	hclge_clear_all_event_cause(hdev);
11698 	hclge_clear_resetting_state(hdev);
11699 
11700 	/* Log and clear the hw errors those already occurred */
11701 	if (hnae3_dev_ras_imp_supported(hdev))
11702 		hclge_handle_occurred_error(hdev);
11703 	else
11704 		hclge_handle_all_hns_hw_errors(ae_dev);
11705 
11706 	/* request delayed reset for the error recovery because an immediate
11707 	 * global reset on a PF affecting pending initialization of other PFs
11708 	 */
11709 	if (ae_dev->hw_err_reset_req) {
11710 		enum hnae3_reset_type reset_level;
11711 
11712 		reset_level = hclge_get_reset_level(ae_dev,
11713 						    &ae_dev->hw_err_reset_req);
11714 		hclge_set_def_reset_request(ae_dev, reset_level);
11715 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
11716 	}
11717 
11718 	hclge_init_rxd_adv_layout(hdev);
11719 
11720 	/* Enable MISC vector(vector0) */
11721 	hclge_enable_vector(&hdev->misc_vector, true);
11722 
11723 	hclge_state_init(hdev);
11724 	hdev->last_reset_time = jiffies;
11725 
11726 	dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
11727 		 HCLGE_DRIVER_NAME);
11728 
11729 	hclge_task_schedule(hdev, round_jiffies_relative(HZ));
11730 
11731 	return 0;
11732 
11733 err_mdiobus_unreg:
11734 	if (hdev->hw.mac.phydev)
11735 		mdiobus_unregister(hdev->hw.mac.mdio_bus);
11736 err_msi_irq_uninit:
11737 	hclge_misc_irq_uninit(hdev);
11738 err_msi_uninit:
11739 	pci_free_irq_vectors(pdev);
11740 err_cmd_uninit:
11741 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
11742 err_devlink_uninit:
11743 	hclge_devlink_uninit(hdev);
11744 err_pci_uninit:
11745 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11746 	pci_clear_master(pdev);
11747 	pci_release_regions(pdev);
11748 	pci_disable_device(pdev);
11749 out:
11750 	mutex_destroy(&hdev->vport_lock);
11751 	return ret;
11752 }
11753 
11754 static void hclge_stats_clear(struct hclge_dev *hdev)
11755 {
11756 	memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats));
11757 	memset(&hdev->fec_stats, 0, sizeof(hdev->fec_stats));
11758 }
11759 
11760 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11761 {
11762 	return hclge_config_switch_param(hdev, vf, enable,
11763 					 HCLGE_SWITCH_ANTI_SPOOF_MASK);
11764 }
11765 
11766 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11767 {
11768 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
11769 					  HCLGE_FILTER_FE_NIC_INGRESS_B,
11770 					  enable, vf);
11771 }
11772 
11773 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable)
11774 {
11775 	int ret;
11776 
11777 	ret = hclge_set_mac_spoofchk(hdev, vf, enable);
11778 	if (ret) {
11779 		dev_err(&hdev->pdev->dev,
11780 			"Set vf %d mac spoof check %s failed, ret=%d\n",
11781 			vf, enable ? "on" : "off", ret);
11782 		return ret;
11783 	}
11784 
11785 	ret = hclge_set_vlan_spoofchk(hdev, vf, enable);
11786 	if (ret)
11787 		dev_err(&hdev->pdev->dev,
11788 			"Set vf %d vlan spoof check %s failed, ret=%d\n",
11789 			vf, enable ? "on" : "off", ret);
11790 
11791 	return ret;
11792 }
11793 
11794 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf,
11795 				 bool enable)
11796 {
11797 	struct hclge_vport *vport = hclge_get_vport(handle);
11798 	struct hclge_dev *hdev = vport->back;
11799 	u32 new_spoofchk = enable ? 1 : 0;
11800 	int ret;
11801 
11802 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11803 		return -EOPNOTSUPP;
11804 
11805 	vport = hclge_get_vf_vport(hdev, vf);
11806 	if (!vport)
11807 		return -EINVAL;
11808 
11809 	if (vport->vf_info.spoofchk == new_spoofchk)
11810 		return 0;
11811 
11812 	if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full))
11813 		dev_warn(&hdev->pdev->dev,
11814 			 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n",
11815 			 vf);
11816 	else if (enable && hclge_is_umv_space_full(vport, true))
11817 		dev_warn(&hdev->pdev->dev,
11818 			 "vf %d mac table is full, enable spoof check may cause its packet send fail\n",
11819 			 vf);
11820 
11821 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable);
11822 	if (ret)
11823 		return ret;
11824 
11825 	vport->vf_info.spoofchk = new_spoofchk;
11826 	return 0;
11827 }
11828 
11829 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev)
11830 {
11831 	struct hclge_vport *vport = hdev->vport;
11832 	int ret;
11833 	int i;
11834 
11835 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11836 		return 0;
11837 
11838 	/* resume the vf spoof check state after reset */
11839 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11840 		ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id,
11841 					       vport->vf_info.spoofchk);
11842 		if (ret)
11843 			return ret;
11844 
11845 		vport++;
11846 	}
11847 
11848 	return 0;
11849 }
11850 
11851 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable)
11852 {
11853 	struct hclge_vport *vport = hclge_get_vport(handle);
11854 	struct hclge_dev *hdev = vport->back;
11855 	u32 new_trusted = enable ? 1 : 0;
11856 
11857 	vport = hclge_get_vf_vport(hdev, vf);
11858 	if (!vport)
11859 		return -EINVAL;
11860 
11861 	if (vport->vf_info.trusted == new_trusted)
11862 		return 0;
11863 
11864 	vport->vf_info.trusted = new_trusted;
11865 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
11866 	hclge_task_schedule(hdev, 0);
11867 
11868 	return 0;
11869 }
11870 
11871 static void hclge_reset_vf_rate(struct hclge_dev *hdev)
11872 {
11873 	int ret;
11874 	int vf;
11875 
11876 	/* reset vf rate to default value */
11877 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
11878 		struct hclge_vport *vport = &hdev->vport[vf];
11879 
11880 		vport->vf_info.max_tx_rate = 0;
11881 		ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate);
11882 		if (ret)
11883 			dev_err(&hdev->pdev->dev,
11884 				"vf%d failed to reset to default, ret=%d\n",
11885 				vf - HCLGE_VF_VPORT_START_NUM, ret);
11886 	}
11887 }
11888 
11889 static int hclge_vf_rate_param_check(struct hclge_dev *hdev,
11890 				     int min_tx_rate, int max_tx_rate)
11891 {
11892 	if (min_tx_rate != 0 ||
11893 	    max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) {
11894 		dev_err(&hdev->pdev->dev,
11895 			"min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n",
11896 			min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed);
11897 		return -EINVAL;
11898 	}
11899 
11900 	return 0;
11901 }
11902 
11903 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf,
11904 			     int min_tx_rate, int max_tx_rate, bool force)
11905 {
11906 	struct hclge_vport *vport = hclge_get_vport(handle);
11907 	struct hclge_dev *hdev = vport->back;
11908 	int ret;
11909 
11910 	ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate);
11911 	if (ret)
11912 		return ret;
11913 
11914 	vport = hclge_get_vf_vport(hdev, vf);
11915 	if (!vport)
11916 		return -EINVAL;
11917 
11918 	if (!force && max_tx_rate == vport->vf_info.max_tx_rate)
11919 		return 0;
11920 
11921 	ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate);
11922 	if (ret)
11923 		return ret;
11924 
11925 	vport->vf_info.max_tx_rate = max_tx_rate;
11926 
11927 	return 0;
11928 }
11929 
11930 static int hclge_resume_vf_rate(struct hclge_dev *hdev)
11931 {
11932 	struct hnae3_handle *handle = &hdev->vport->nic;
11933 	struct hclge_vport *vport;
11934 	int ret;
11935 	int vf;
11936 
11937 	/* resume the vf max_tx_rate after reset */
11938 	for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) {
11939 		vport = hclge_get_vf_vport(hdev, vf);
11940 		if (!vport)
11941 			return -EINVAL;
11942 
11943 		/* zero means max rate, after reset, firmware already set it to
11944 		 * max rate, so just continue.
11945 		 */
11946 		if (!vport->vf_info.max_tx_rate)
11947 			continue;
11948 
11949 		ret = hclge_set_vf_rate(handle, vf, 0,
11950 					vport->vf_info.max_tx_rate, true);
11951 		if (ret) {
11952 			dev_err(&hdev->pdev->dev,
11953 				"vf%d failed to resume tx_rate:%u, ret=%d\n",
11954 				vf, vport->vf_info.max_tx_rate, ret);
11955 			return ret;
11956 		}
11957 	}
11958 
11959 	return 0;
11960 }
11961 
11962 static void hclge_reset_vport_state(struct hclge_dev *hdev)
11963 {
11964 	struct hclge_vport *vport = hdev->vport;
11965 	int i;
11966 
11967 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11968 		clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
11969 		vport++;
11970 	}
11971 }
11972 
11973 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
11974 {
11975 	struct hclge_dev *hdev = ae_dev->priv;
11976 	struct pci_dev *pdev = ae_dev->pdev;
11977 	int ret;
11978 
11979 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11980 
11981 	hclge_stats_clear(hdev);
11982 	/* NOTE: pf reset needn't to clear or restore pf and vf table entry.
11983 	 * so here should not clean table in memory.
11984 	 */
11985 	if (hdev->reset_type == HNAE3_IMP_RESET ||
11986 	    hdev->reset_type == HNAE3_GLOBAL_RESET) {
11987 		memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table));
11988 		memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full));
11989 		bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport);
11990 		hclge_reset_umv_space(hdev);
11991 	}
11992 
11993 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11994 				  true, hdev->reset_pending);
11995 	if (ret) {
11996 		dev_err(&pdev->dev, "Cmd queue init failed\n");
11997 		return ret;
11998 	}
11999 
12000 	ret = hclge_map_tqp(hdev);
12001 	if (ret) {
12002 		dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
12003 		return ret;
12004 	}
12005 
12006 	ret = hclge_mac_init(hdev);
12007 	if (ret) {
12008 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
12009 		return ret;
12010 	}
12011 
12012 	ret = hclge_tp_port_init(hdev);
12013 	if (ret) {
12014 		dev_err(&pdev->dev, "failed to init tp port, ret = %d\n",
12015 			ret);
12016 		return ret;
12017 	}
12018 
12019 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
12020 	if (ret) {
12021 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
12022 		return ret;
12023 	}
12024 
12025 	ret = hclge_config_gro(hdev);
12026 	if (ret)
12027 		return ret;
12028 
12029 	ret = hclge_init_vlan_config(hdev);
12030 	if (ret) {
12031 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
12032 		return ret;
12033 	}
12034 
12035 	ret = hclge_tm_init_hw(hdev, true);
12036 	if (ret) {
12037 		dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret);
12038 		return ret;
12039 	}
12040 
12041 	ret = hclge_rss_init_hw(hdev);
12042 	if (ret) {
12043 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
12044 		return ret;
12045 	}
12046 
12047 	ret = init_mgr_tbl(hdev);
12048 	if (ret) {
12049 		dev_err(&pdev->dev,
12050 			"failed to reinit manager table, ret = %d\n", ret);
12051 		return ret;
12052 	}
12053 
12054 	ret = hclge_init_fd_config(hdev);
12055 	if (ret) {
12056 		dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret);
12057 		return ret;
12058 	}
12059 
12060 	ret = hclge_ptp_init(hdev);
12061 	if (ret)
12062 		return ret;
12063 
12064 	/* Log and clear the hw errors those already occurred */
12065 	if (hnae3_dev_ras_imp_supported(hdev))
12066 		hclge_handle_occurred_error(hdev);
12067 	else
12068 		hclge_handle_all_hns_hw_errors(ae_dev);
12069 
12070 	/* Re-enable the hw error interrupts because
12071 	 * the interrupts get disabled on global reset.
12072 	 */
12073 	ret = hclge_config_nic_hw_error(hdev, true);
12074 	if (ret) {
12075 		dev_err(&pdev->dev,
12076 			"fail(%d) to re-enable NIC hw error interrupts\n",
12077 			ret);
12078 		return ret;
12079 	}
12080 
12081 	if (hdev->roce_client) {
12082 		ret = hclge_config_rocee_ras_interrupt(hdev, true);
12083 		if (ret) {
12084 			dev_err(&pdev->dev,
12085 				"fail(%d) to re-enable roce ras interrupts\n",
12086 				ret);
12087 			return ret;
12088 		}
12089 	}
12090 
12091 	hclge_reset_vport_state(hdev);
12092 	ret = hclge_reset_vport_spoofchk(hdev);
12093 	if (ret)
12094 		return ret;
12095 
12096 	ret = hclge_resume_vf_rate(hdev);
12097 	if (ret)
12098 		return ret;
12099 
12100 	hclge_init_rxd_adv_layout(hdev);
12101 
12102 	dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n",
12103 		 HCLGE_DRIVER_NAME);
12104 
12105 	return 0;
12106 }
12107 
12108 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
12109 {
12110 	struct hclge_dev *hdev = ae_dev->priv;
12111 	struct hclge_mac *mac = &hdev->hw.mac;
12112 
12113 	hclge_reset_vf_rate(hdev);
12114 	hclge_clear_vf_vlan(hdev);
12115 	hclge_state_uninit(hdev);
12116 	hclge_ptp_uninit(hdev);
12117 	hclge_uninit_rxd_adv_layout(hdev);
12118 	hclge_uninit_mac_table(hdev);
12119 	hclge_del_all_fd_entries(hdev);
12120 
12121 	if (mac->phydev)
12122 		mdiobus_unregister(mac->mdio_bus);
12123 
12124 	/* Disable MISC vector(vector0) */
12125 	hclge_enable_vector(&hdev->misc_vector, false);
12126 	synchronize_irq(hdev->misc_vector.vector_irq);
12127 
12128 	/* Disable all hw interrupts */
12129 	hclge_config_mac_tnl_int(hdev, false);
12130 	hclge_config_nic_hw_error(hdev, false);
12131 	hclge_config_rocee_ras_interrupt(hdev, false);
12132 
12133 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
12134 	hclge_misc_irq_uninit(hdev);
12135 	hclge_devlink_uninit(hdev);
12136 	hclge_pci_uninit(hdev);
12137 	hclge_uninit_vport_vlan_table(hdev);
12138 	mutex_destroy(&hdev->vport_lock);
12139 	ae_dev->priv = NULL;
12140 }
12141 
12142 static u32 hclge_get_max_channels(struct hnae3_handle *handle)
12143 {
12144 	struct hclge_vport *vport = hclge_get_vport(handle);
12145 	struct hclge_dev *hdev = vport->back;
12146 
12147 	return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps);
12148 }
12149 
12150 static void hclge_get_channels(struct hnae3_handle *handle,
12151 			       struct ethtool_channels *ch)
12152 {
12153 	ch->max_combined = hclge_get_max_channels(handle);
12154 	ch->other_count = 1;
12155 	ch->max_other = 1;
12156 	ch->combined_count = handle->kinfo.rss_size;
12157 }
12158 
12159 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle,
12160 					u16 *alloc_tqps, u16 *max_rss_size)
12161 {
12162 	struct hclge_vport *vport = hclge_get_vport(handle);
12163 	struct hclge_dev *hdev = vport->back;
12164 
12165 	*alloc_tqps = vport->alloc_tqps;
12166 	*max_rss_size = hdev->pf_rss_size_max;
12167 }
12168 
12169 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle)
12170 {
12171 	struct hclge_vport *vport = hclge_get_vport(handle);
12172 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
12173 	struct hclge_dev *hdev = vport->back;
12174 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
12175 	u16 tc_valid[HCLGE_MAX_TC_NUM];
12176 	u16 roundup_size;
12177 	unsigned int i;
12178 
12179 	roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size);
12180 	roundup_size = ilog2(roundup_size);
12181 	/* Set the RSS TC mode according to the new RSS size */
12182 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
12183 		tc_valid[i] = 0;
12184 
12185 		if (!(hdev->hw_tc_map & BIT(i)))
12186 			continue;
12187 
12188 		tc_valid[i] = 1;
12189 		tc_size[i] = roundup_size;
12190 		tc_offset[i] = vport->nic.kinfo.rss_size * i;
12191 	}
12192 
12193 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
12194 					  tc_size);
12195 }
12196 
12197 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
12198 			      bool rxfh_configured)
12199 {
12200 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
12201 	struct hclge_vport *vport = hclge_get_vport(handle);
12202 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
12203 	struct hclge_dev *hdev = vport->back;
12204 	u16 cur_rss_size = kinfo->rss_size;
12205 	u16 cur_tqps = kinfo->num_tqps;
12206 	u32 *rss_indir;
12207 	unsigned int i;
12208 	int ret;
12209 
12210 	kinfo->req_rss_size = new_tqps_num;
12211 
12212 	ret = hclge_tm_vport_map_update(hdev);
12213 	if (ret) {
12214 		dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret);
12215 		return ret;
12216 	}
12217 
12218 	ret = hclge_set_rss_tc_mode_cfg(handle);
12219 	if (ret)
12220 		return ret;
12221 
12222 	/* RSS indirection table has been configured by user */
12223 	if (rxfh_configured)
12224 		goto out;
12225 
12226 	/* Reinitializes the rss indirect table according to the new RSS size */
12227 	rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32),
12228 			    GFP_KERNEL);
12229 	if (!rss_indir)
12230 		return -ENOMEM;
12231 
12232 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
12233 		rss_indir[i] = i % kinfo->rss_size;
12234 
12235 	ret = hclge_set_rss(handle, rss_indir, NULL, 0);
12236 	if (ret)
12237 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
12238 			ret);
12239 
12240 	kfree(rss_indir);
12241 
12242 out:
12243 	if (!ret)
12244 		dev_info(&hdev->pdev->dev,
12245 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
12246 			 cur_rss_size, kinfo->rss_size,
12247 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
12248 
12249 	return ret;
12250 }
12251 
12252 static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit,
12253 			      u32 *regs_num_64_bit)
12254 {
12255 	struct hclge_desc desc;
12256 	u32 total_num;
12257 	int ret;
12258 
12259 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true);
12260 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12261 	if (ret) {
12262 		dev_err(&hdev->pdev->dev,
12263 			"Query register number cmd failed, ret = %d.\n", ret);
12264 		return ret;
12265 	}
12266 
12267 	*regs_num_32_bit = le32_to_cpu(desc.data[0]);
12268 	*regs_num_64_bit = le32_to_cpu(desc.data[1]);
12269 
12270 	total_num = *regs_num_32_bit + *regs_num_64_bit;
12271 	if (!total_num)
12272 		return -EINVAL;
12273 
12274 	return 0;
12275 }
12276 
12277 static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num,
12278 				 void *data)
12279 {
12280 #define HCLGE_32_BIT_REG_RTN_DATANUM 8
12281 #define HCLGE_32_BIT_DESC_NODATA_LEN 2
12282 
12283 	struct hclge_desc *desc;
12284 	u32 *reg_val = data;
12285 	__le32 *desc_data;
12286 	int nodata_num;
12287 	int cmd_num;
12288 	int i, k, n;
12289 	int ret;
12290 
12291 	if (regs_num == 0)
12292 		return 0;
12293 
12294 	nodata_num = HCLGE_32_BIT_DESC_NODATA_LEN;
12295 	cmd_num = DIV_ROUND_UP(regs_num + nodata_num,
12296 			       HCLGE_32_BIT_REG_RTN_DATANUM);
12297 	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
12298 	if (!desc)
12299 		return -ENOMEM;
12300 
12301 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true);
12302 	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
12303 	if (ret) {
12304 		dev_err(&hdev->pdev->dev,
12305 			"Query 32 bit register cmd failed, ret = %d.\n", ret);
12306 		kfree(desc);
12307 		return ret;
12308 	}
12309 
12310 	for (i = 0; i < cmd_num; i++) {
12311 		if (i == 0) {
12312 			desc_data = (__le32 *)(&desc[i].data[0]);
12313 			n = HCLGE_32_BIT_REG_RTN_DATANUM - nodata_num;
12314 		} else {
12315 			desc_data = (__le32 *)(&desc[i]);
12316 			n = HCLGE_32_BIT_REG_RTN_DATANUM;
12317 		}
12318 		for (k = 0; k < n; k++) {
12319 			*reg_val++ = le32_to_cpu(*desc_data++);
12320 
12321 			regs_num--;
12322 			if (!regs_num)
12323 				break;
12324 		}
12325 	}
12326 
12327 	kfree(desc);
12328 	return 0;
12329 }
12330 
12331 static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num,
12332 				 void *data)
12333 {
12334 #define HCLGE_64_BIT_REG_RTN_DATANUM 4
12335 #define HCLGE_64_BIT_DESC_NODATA_LEN 1
12336 
12337 	struct hclge_desc *desc;
12338 	u64 *reg_val = data;
12339 	__le64 *desc_data;
12340 	int nodata_len;
12341 	int cmd_num;
12342 	int i, k, n;
12343 	int ret;
12344 
12345 	if (regs_num == 0)
12346 		return 0;
12347 
12348 	nodata_len = HCLGE_64_BIT_DESC_NODATA_LEN;
12349 	cmd_num = DIV_ROUND_UP(regs_num + nodata_len,
12350 			       HCLGE_64_BIT_REG_RTN_DATANUM);
12351 	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
12352 	if (!desc)
12353 		return -ENOMEM;
12354 
12355 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true);
12356 	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
12357 	if (ret) {
12358 		dev_err(&hdev->pdev->dev,
12359 			"Query 64 bit register cmd failed, ret = %d.\n", ret);
12360 		kfree(desc);
12361 		return ret;
12362 	}
12363 
12364 	for (i = 0; i < cmd_num; i++) {
12365 		if (i == 0) {
12366 			desc_data = (__le64 *)(&desc[i].data[0]);
12367 			n = HCLGE_64_BIT_REG_RTN_DATANUM - nodata_len;
12368 		} else {
12369 			desc_data = (__le64 *)(&desc[i]);
12370 			n = HCLGE_64_BIT_REG_RTN_DATANUM;
12371 		}
12372 		for (k = 0; k < n; k++) {
12373 			*reg_val++ = le64_to_cpu(*desc_data++);
12374 
12375 			regs_num--;
12376 			if (!regs_num)
12377 				break;
12378 		}
12379 	}
12380 
12381 	kfree(desc);
12382 	return 0;
12383 }
12384 
12385 #define MAX_SEPARATE_NUM	4
12386 #define SEPARATOR_VALUE		0xFDFCFBFA
12387 #define REG_NUM_PER_LINE	4
12388 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
12389 #define REG_SEPARATOR_LINE	1
12390 #define REG_NUM_REMAIN_MASK	3
12391 
12392 int hclge_query_bd_num_cmd_send(struct hclge_dev *hdev, struct hclge_desc *desc)
12393 {
12394 	int i;
12395 
12396 	/* initialize command BD except the last one */
12397 	for (i = 0; i < HCLGE_GET_DFX_REG_TYPE_CNT - 1; i++) {
12398 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM,
12399 					   true);
12400 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12401 	}
12402 
12403 	/* initialize the last command BD */
12404 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM, true);
12405 
12406 	return hclge_cmd_send(&hdev->hw, desc, HCLGE_GET_DFX_REG_TYPE_CNT);
12407 }
12408 
12409 static int hclge_get_dfx_reg_bd_num(struct hclge_dev *hdev,
12410 				    int *bd_num_list,
12411 				    u32 type_num)
12412 {
12413 	u32 entries_per_desc, desc_index, index, offset, i;
12414 	struct hclge_desc desc[HCLGE_GET_DFX_REG_TYPE_CNT];
12415 	int ret;
12416 
12417 	ret = hclge_query_bd_num_cmd_send(hdev, desc);
12418 	if (ret) {
12419 		dev_err(&hdev->pdev->dev,
12420 			"Get dfx bd num fail, status is %d.\n", ret);
12421 		return ret;
12422 	}
12423 
12424 	entries_per_desc = ARRAY_SIZE(desc[0].data);
12425 	for (i = 0; i < type_num; i++) {
12426 		offset = hclge_dfx_bd_offset_list[i];
12427 		index = offset % entries_per_desc;
12428 		desc_index = offset / entries_per_desc;
12429 		bd_num_list[i] = le32_to_cpu(desc[desc_index].data[index]);
12430 	}
12431 
12432 	return ret;
12433 }
12434 
12435 static int hclge_dfx_reg_cmd_send(struct hclge_dev *hdev,
12436 				  struct hclge_desc *desc_src, int bd_num,
12437 				  enum hclge_opcode_type cmd)
12438 {
12439 	struct hclge_desc *desc = desc_src;
12440 	int i, ret;
12441 
12442 	hclge_cmd_setup_basic_desc(desc, cmd, true);
12443 	for (i = 0; i < bd_num - 1; i++) {
12444 		desc->flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12445 		desc++;
12446 		hclge_cmd_setup_basic_desc(desc, cmd, true);
12447 	}
12448 
12449 	desc = desc_src;
12450 	ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
12451 	if (ret)
12452 		dev_err(&hdev->pdev->dev,
12453 			"Query dfx reg cmd(0x%x) send fail, status is %d.\n",
12454 			cmd, ret);
12455 
12456 	return ret;
12457 }
12458 
12459 static int hclge_dfx_reg_fetch_data(struct hclge_desc *desc_src, int bd_num,
12460 				    void *data)
12461 {
12462 	int entries_per_desc, reg_num, separator_num, desc_index, index, i;
12463 	struct hclge_desc *desc = desc_src;
12464 	u32 *reg = data;
12465 
12466 	entries_per_desc = ARRAY_SIZE(desc->data);
12467 	reg_num = entries_per_desc * bd_num;
12468 	separator_num = REG_NUM_PER_LINE - (reg_num & REG_NUM_REMAIN_MASK);
12469 	for (i = 0; i < reg_num; i++) {
12470 		index = i % entries_per_desc;
12471 		desc_index = i / entries_per_desc;
12472 		*reg++ = le32_to_cpu(desc[desc_index].data[index]);
12473 	}
12474 	for (i = 0; i < separator_num; i++)
12475 		*reg++ = SEPARATOR_VALUE;
12476 
12477 	return reg_num + separator_num;
12478 }
12479 
12480 static int hclge_get_dfx_reg_len(struct hclge_dev *hdev, int *len)
12481 {
12482 	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
12483 	int data_len_per_desc, bd_num, i;
12484 	int *bd_num_list;
12485 	u32 data_len;
12486 	int ret;
12487 
12488 	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
12489 	if (!bd_num_list)
12490 		return -ENOMEM;
12491 
12492 	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
12493 	if (ret) {
12494 		dev_err(&hdev->pdev->dev,
12495 			"Get dfx reg bd num fail, status is %d.\n", ret);
12496 		goto out;
12497 	}
12498 
12499 	data_len_per_desc = sizeof_field(struct hclge_desc, data);
12500 	*len = 0;
12501 	for (i = 0; i < dfx_reg_type_num; i++) {
12502 		bd_num = bd_num_list[i];
12503 		data_len = data_len_per_desc * bd_num;
12504 		*len += (data_len / REG_LEN_PER_LINE + 1) * REG_LEN_PER_LINE;
12505 	}
12506 
12507 out:
12508 	kfree(bd_num_list);
12509 	return ret;
12510 }
12511 
12512 static int hclge_get_dfx_reg(struct hclge_dev *hdev, void *data)
12513 {
12514 	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
12515 	int bd_num, bd_num_max, buf_len, i;
12516 	struct hclge_desc *desc_src;
12517 	int *bd_num_list;
12518 	u32 *reg = data;
12519 	int ret;
12520 
12521 	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
12522 	if (!bd_num_list)
12523 		return -ENOMEM;
12524 
12525 	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
12526 	if (ret) {
12527 		dev_err(&hdev->pdev->dev,
12528 			"Get dfx reg bd num fail, status is %d.\n", ret);
12529 		goto out;
12530 	}
12531 
12532 	bd_num_max = bd_num_list[0];
12533 	for (i = 1; i < dfx_reg_type_num; i++)
12534 		bd_num_max = max_t(int, bd_num_max, bd_num_list[i]);
12535 
12536 	buf_len = sizeof(*desc_src) * bd_num_max;
12537 	desc_src = kzalloc(buf_len, GFP_KERNEL);
12538 	if (!desc_src) {
12539 		ret = -ENOMEM;
12540 		goto out;
12541 	}
12542 
12543 	for (i = 0; i < dfx_reg_type_num; i++) {
12544 		bd_num = bd_num_list[i];
12545 		ret = hclge_dfx_reg_cmd_send(hdev, desc_src, bd_num,
12546 					     hclge_dfx_reg_opcode_list[i]);
12547 		if (ret) {
12548 			dev_err(&hdev->pdev->dev,
12549 				"Get dfx reg fail, status is %d.\n", ret);
12550 			break;
12551 		}
12552 
12553 		reg += hclge_dfx_reg_fetch_data(desc_src, bd_num, reg);
12554 	}
12555 
12556 	kfree(desc_src);
12557 out:
12558 	kfree(bd_num_list);
12559 	return ret;
12560 }
12561 
12562 static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
12563 			      struct hnae3_knic_private_info *kinfo)
12564 {
12565 #define HCLGE_RING_REG_OFFSET		0x200
12566 #define HCLGE_RING_INT_REG_OFFSET	0x4
12567 
12568 	int i, j, reg_num, separator_num;
12569 	int data_num_sum;
12570 	u32 *reg = data;
12571 
12572 	/* fetching per-PF registers valus from PF PCIe register space */
12573 	reg_num = ARRAY_SIZE(cmdq_reg_addr_list);
12574 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12575 	for (i = 0; i < reg_num; i++)
12576 		*reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
12577 	for (i = 0; i < separator_num; i++)
12578 		*reg++ = SEPARATOR_VALUE;
12579 	data_num_sum = reg_num + separator_num;
12580 
12581 	reg_num = ARRAY_SIZE(common_reg_addr_list);
12582 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12583 	for (i = 0; i < reg_num; i++)
12584 		*reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]);
12585 	for (i = 0; i < separator_num; i++)
12586 		*reg++ = SEPARATOR_VALUE;
12587 	data_num_sum += reg_num + separator_num;
12588 
12589 	reg_num = ARRAY_SIZE(ring_reg_addr_list);
12590 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12591 	for (j = 0; j < kinfo->num_tqps; j++) {
12592 		for (i = 0; i < reg_num; i++)
12593 			*reg++ = hclge_read_dev(&hdev->hw,
12594 						ring_reg_addr_list[i] +
12595 						HCLGE_RING_REG_OFFSET * j);
12596 		for (i = 0; i < separator_num; i++)
12597 			*reg++ = SEPARATOR_VALUE;
12598 	}
12599 	data_num_sum += (reg_num + separator_num) * kinfo->num_tqps;
12600 
12601 	reg_num = ARRAY_SIZE(tqp_intr_reg_addr_list);
12602 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12603 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
12604 		for (i = 0; i < reg_num; i++)
12605 			*reg++ = hclge_read_dev(&hdev->hw,
12606 						tqp_intr_reg_addr_list[i] +
12607 						HCLGE_RING_INT_REG_OFFSET * j);
12608 		for (i = 0; i < separator_num; i++)
12609 			*reg++ = SEPARATOR_VALUE;
12610 	}
12611 	data_num_sum += (reg_num + separator_num) * (hdev->num_msi_used - 1);
12612 
12613 	return data_num_sum;
12614 }
12615 
12616 static int hclge_get_regs_len(struct hnae3_handle *handle)
12617 {
12618 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
12619 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
12620 	struct hclge_vport *vport = hclge_get_vport(handle);
12621 	struct hclge_dev *hdev = vport->back;
12622 	int regs_num_32_bit, regs_num_64_bit, dfx_regs_len;
12623 	int regs_lines_32_bit, regs_lines_64_bit;
12624 	int ret;
12625 
12626 	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
12627 	if (ret) {
12628 		dev_err(&hdev->pdev->dev,
12629 			"Get register number failed, ret = %d.\n", ret);
12630 		return ret;
12631 	}
12632 
12633 	ret = hclge_get_dfx_reg_len(hdev, &dfx_regs_len);
12634 	if (ret) {
12635 		dev_err(&hdev->pdev->dev,
12636 			"Get dfx reg len failed, ret = %d.\n", ret);
12637 		return ret;
12638 	}
12639 
12640 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE +
12641 		REG_SEPARATOR_LINE;
12642 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE +
12643 		REG_SEPARATOR_LINE;
12644 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE +
12645 		REG_SEPARATOR_LINE;
12646 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE +
12647 		REG_SEPARATOR_LINE;
12648 	regs_lines_32_bit = regs_num_32_bit * sizeof(u32) / REG_LEN_PER_LINE +
12649 		REG_SEPARATOR_LINE;
12650 	regs_lines_64_bit = regs_num_64_bit * sizeof(u64) / REG_LEN_PER_LINE +
12651 		REG_SEPARATOR_LINE;
12652 
12653 	return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps +
12654 		tqp_intr_lines * (hdev->num_msi_used - 1) + regs_lines_32_bit +
12655 		regs_lines_64_bit) * REG_LEN_PER_LINE + dfx_regs_len;
12656 }
12657 
12658 static void hclge_get_regs(struct hnae3_handle *handle, u32 *version,
12659 			   void *data)
12660 {
12661 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
12662 	struct hclge_vport *vport = hclge_get_vport(handle);
12663 	struct hclge_dev *hdev = vport->back;
12664 	u32 regs_num_32_bit, regs_num_64_bit;
12665 	int i, reg_num, separator_num, ret;
12666 	u32 *reg = data;
12667 
12668 	*version = hdev->fw_version;
12669 
12670 	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
12671 	if (ret) {
12672 		dev_err(&hdev->pdev->dev,
12673 			"Get register number failed, ret = %d.\n", ret);
12674 		return;
12675 	}
12676 
12677 	reg += hclge_fetch_pf_reg(hdev, reg, kinfo);
12678 
12679 	ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg);
12680 	if (ret) {
12681 		dev_err(&hdev->pdev->dev,
12682 			"Get 32 bit register failed, ret = %d.\n", ret);
12683 		return;
12684 	}
12685 	reg_num = regs_num_32_bit;
12686 	reg += reg_num;
12687 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12688 	for (i = 0; i < separator_num; i++)
12689 		*reg++ = SEPARATOR_VALUE;
12690 
12691 	ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg);
12692 	if (ret) {
12693 		dev_err(&hdev->pdev->dev,
12694 			"Get 64 bit register failed, ret = %d.\n", ret);
12695 		return;
12696 	}
12697 	reg_num = regs_num_64_bit * 2;
12698 	reg += reg_num;
12699 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12700 	for (i = 0; i < separator_num; i++)
12701 		*reg++ = SEPARATOR_VALUE;
12702 
12703 	ret = hclge_get_dfx_reg(hdev, reg);
12704 	if (ret)
12705 		dev_err(&hdev->pdev->dev,
12706 			"Get dfx register failed, ret = %d.\n", ret);
12707 }
12708 
12709 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status)
12710 {
12711 	struct hclge_set_led_state_cmd *req;
12712 	struct hclge_desc desc;
12713 	int ret;
12714 
12715 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false);
12716 
12717 	req = (struct hclge_set_led_state_cmd *)desc.data;
12718 	hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M,
12719 			HCLGE_LED_LOCATE_STATE_S, locate_led_status);
12720 
12721 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12722 	if (ret)
12723 		dev_err(&hdev->pdev->dev,
12724 			"Send set led state cmd error, ret =%d\n", ret);
12725 
12726 	return ret;
12727 }
12728 
12729 enum hclge_led_status {
12730 	HCLGE_LED_OFF,
12731 	HCLGE_LED_ON,
12732 	HCLGE_LED_NO_CHANGE = 0xFF,
12733 };
12734 
12735 static int hclge_set_led_id(struct hnae3_handle *handle,
12736 			    enum ethtool_phys_id_state status)
12737 {
12738 	struct hclge_vport *vport = hclge_get_vport(handle);
12739 	struct hclge_dev *hdev = vport->back;
12740 
12741 	switch (status) {
12742 	case ETHTOOL_ID_ACTIVE:
12743 		return hclge_set_led_status(hdev, HCLGE_LED_ON);
12744 	case ETHTOOL_ID_INACTIVE:
12745 		return hclge_set_led_status(hdev, HCLGE_LED_OFF);
12746 	default:
12747 		return -EINVAL;
12748 	}
12749 }
12750 
12751 static void hclge_get_link_mode(struct hnae3_handle *handle,
12752 				unsigned long *supported,
12753 				unsigned long *advertising)
12754 {
12755 	unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS);
12756 	struct hclge_vport *vport = hclge_get_vport(handle);
12757 	struct hclge_dev *hdev = vport->back;
12758 	unsigned int idx = 0;
12759 
12760 	for (; idx < size; idx++) {
12761 		supported[idx] = hdev->hw.mac.supported[idx];
12762 		advertising[idx] = hdev->hw.mac.advertising[idx];
12763 	}
12764 }
12765 
12766 static int hclge_gro_en(struct hnae3_handle *handle, bool enable)
12767 {
12768 	struct hclge_vport *vport = hclge_get_vport(handle);
12769 	struct hclge_dev *hdev = vport->back;
12770 	bool gro_en_old = hdev->gro_en;
12771 	int ret;
12772 
12773 	hdev->gro_en = enable;
12774 	ret = hclge_config_gro(hdev);
12775 	if (ret)
12776 		hdev->gro_en = gro_en_old;
12777 
12778 	return ret;
12779 }
12780 
12781 static int hclge_sync_vport_promisc_mode(struct hclge_vport *vport)
12782 {
12783 	struct hnae3_handle *handle = &vport->nic;
12784 	struct hclge_dev *hdev = vport->back;
12785 	bool uc_en = false;
12786 	bool mc_en = false;
12787 	u8 tmp_flags;
12788 	bool bc_en;
12789 	int ret;
12790 
12791 	if (vport->last_promisc_flags != vport->overflow_promisc_flags) {
12792 		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
12793 		vport->last_promisc_flags = vport->overflow_promisc_flags;
12794 	}
12795 
12796 	if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12797 				&vport->state))
12798 		return 0;
12799 
12800 	/* for PF */
12801 	if (!vport->vport_id) {
12802 		tmp_flags = handle->netdev_flags | vport->last_promisc_flags;
12803 		ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE,
12804 					     tmp_flags & HNAE3_MPE);
12805 		if (!ret)
12806 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
12807 				&vport->state);
12808 		else
12809 			set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12810 				&vport->state);
12811 		return ret;
12812 	}
12813 
12814 	/* for VF */
12815 	if (vport->vf_info.trusted) {
12816 		uc_en = vport->vf_info.request_uc_en > 0 ||
12817 			vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE;
12818 		mc_en = vport->vf_info.request_mc_en > 0 ||
12819 			vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE;
12820 	}
12821 	bc_en = vport->vf_info.request_bc_en > 0;
12822 
12823 	ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en,
12824 					 mc_en, bc_en);
12825 	if (ret) {
12826 		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
12827 		return ret;
12828 	}
12829 	hclge_set_vport_vlan_fltr_change(vport);
12830 
12831 	return 0;
12832 }
12833 
12834 static void hclge_sync_promisc_mode(struct hclge_dev *hdev)
12835 {
12836 	struct hclge_vport *vport;
12837 	int ret;
12838 	u16 i;
12839 
12840 	for (i = 0; i < hdev->num_alloc_vport; i++) {
12841 		vport = &hdev->vport[i];
12842 
12843 		ret = hclge_sync_vport_promisc_mode(vport);
12844 		if (ret)
12845 			return;
12846 	}
12847 }
12848 
12849 static bool hclge_module_existed(struct hclge_dev *hdev)
12850 {
12851 	struct hclge_desc desc;
12852 	u32 existed;
12853 	int ret;
12854 
12855 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true);
12856 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12857 	if (ret) {
12858 		dev_err(&hdev->pdev->dev,
12859 			"failed to get SFP exist state, ret = %d\n", ret);
12860 		return false;
12861 	}
12862 
12863 	existed = le32_to_cpu(desc.data[0]);
12864 
12865 	return existed != 0;
12866 }
12867 
12868 /* need 6 bds(total 140 bytes) in one reading
12869  * return the number of bytes actually read, 0 means read failed.
12870  */
12871 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset,
12872 				     u32 len, u8 *data)
12873 {
12874 	struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM];
12875 	struct hclge_sfp_info_bd0_cmd *sfp_info_bd0;
12876 	u16 read_len;
12877 	u16 copy_len;
12878 	int ret;
12879 	int i;
12880 
12881 	/* setup all 6 bds to read module eeprom info. */
12882 	for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12883 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM,
12884 					   true);
12885 
12886 		/* bd0~bd4 need next flag */
12887 		if (i < HCLGE_SFP_INFO_CMD_NUM - 1)
12888 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12889 	}
12890 
12891 	/* setup bd0, this bd contains offset and read length. */
12892 	sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data;
12893 	sfp_info_bd0->offset = cpu_to_le16((u16)offset);
12894 	read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN);
12895 	sfp_info_bd0->read_len = cpu_to_le16(read_len);
12896 
12897 	ret = hclge_cmd_send(&hdev->hw, desc, i);
12898 	if (ret) {
12899 		dev_err(&hdev->pdev->dev,
12900 			"failed to get SFP eeprom info, ret = %d\n", ret);
12901 		return 0;
12902 	}
12903 
12904 	/* copy sfp info from bd0 to out buffer. */
12905 	copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN);
12906 	memcpy(data, sfp_info_bd0->data, copy_len);
12907 	read_len = copy_len;
12908 
12909 	/* copy sfp info from bd1~bd5 to out buffer if needed. */
12910 	for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12911 		if (read_len >= len)
12912 			return read_len;
12913 
12914 		copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN);
12915 		memcpy(data + read_len, desc[i].data, copy_len);
12916 		read_len += copy_len;
12917 	}
12918 
12919 	return read_len;
12920 }
12921 
12922 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset,
12923 				   u32 len, u8 *data)
12924 {
12925 	struct hclge_vport *vport = hclge_get_vport(handle);
12926 	struct hclge_dev *hdev = vport->back;
12927 	u32 read_len = 0;
12928 	u16 data_len;
12929 
12930 	if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER)
12931 		return -EOPNOTSUPP;
12932 
12933 	if (!hclge_module_existed(hdev))
12934 		return -ENXIO;
12935 
12936 	while (read_len < len) {
12937 		data_len = hclge_get_sfp_eeprom_info(hdev,
12938 						     offset + read_len,
12939 						     len - read_len,
12940 						     data + read_len);
12941 		if (!data_len)
12942 			return -EIO;
12943 
12944 		read_len += data_len;
12945 	}
12946 
12947 	return 0;
12948 }
12949 
12950 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle,
12951 					 u32 *status_code)
12952 {
12953 	struct hclge_vport *vport = hclge_get_vport(handle);
12954 	struct hclge_dev *hdev = vport->back;
12955 	struct hclge_desc desc;
12956 	int ret;
12957 
12958 	if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2)
12959 		return -EOPNOTSUPP;
12960 
12961 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true);
12962 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12963 	if (ret) {
12964 		dev_err(&hdev->pdev->dev,
12965 			"failed to query link diagnosis info, ret = %d\n", ret);
12966 		return ret;
12967 	}
12968 
12969 	*status_code = le32_to_cpu(desc.data[0]);
12970 	return 0;
12971 }
12972 
12973 /* After disable sriov, VF still has some config and info need clean,
12974  * which configed by PF.
12975  */
12976 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid)
12977 {
12978 	struct hclge_dev *hdev = vport->back;
12979 	struct hclge_vlan_info vlan_info;
12980 	int ret;
12981 
12982 	clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
12983 	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
12984 	vport->need_notify = 0;
12985 	vport->mps = 0;
12986 
12987 	/* after disable sriov, clean VF rate configured by PF */
12988 	ret = hclge_tm_qs_shaper_cfg(vport, 0);
12989 	if (ret)
12990 		dev_err(&hdev->pdev->dev,
12991 			"failed to clean vf%d rate config, ret = %d\n",
12992 			vfid, ret);
12993 
12994 	vlan_info.vlan_tag = 0;
12995 	vlan_info.qos = 0;
12996 	vlan_info.vlan_proto = ETH_P_8021Q;
12997 	ret = hclge_update_port_base_vlan_cfg(vport,
12998 					      HNAE3_PORT_BASE_VLAN_DISABLE,
12999 					      &vlan_info);
13000 	if (ret)
13001 		dev_err(&hdev->pdev->dev,
13002 			"failed to clean vf%d port base vlan, ret = %d\n",
13003 			vfid, ret);
13004 
13005 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false);
13006 	if (ret)
13007 		dev_err(&hdev->pdev->dev,
13008 			"failed to clean vf%d spoof config, ret = %d\n",
13009 			vfid, ret);
13010 
13011 	memset(&vport->vf_info, 0, sizeof(vport->vf_info));
13012 }
13013 
13014 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs)
13015 {
13016 	struct hclge_dev *hdev = ae_dev->priv;
13017 	struct hclge_vport *vport;
13018 	int i;
13019 
13020 	for (i = 0; i < num_vfs; i++) {
13021 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
13022 
13023 		hclge_clear_vport_vf_info(vport, i);
13024 	}
13025 }
13026 
13027 static int hclge_get_dscp_prio(struct hnae3_handle *h, u8 dscp, u8 *tc_mode,
13028 			       u8 *priority)
13029 {
13030 	struct hclge_vport *vport = hclge_get_vport(h);
13031 
13032 	if (dscp >= HNAE3_MAX_DSCP)
13033 		return -EINVAL;
13034 
13035 	if (tc_mode)
13036 		*tc_mode = vport->nic.kinfo.tc_map_mode;
13037 	if (priority)
13038 		*priority = vport->nic.kinfo.dscp_prio[dscp] == HNAE3_PRIO_ID_INVALID ? 0 :
13039 			    vport->nic.kinfo.dscp_prio[dscp];
13040 
13041 	return 0;
13042 }
13043 
13044 static const struct hnae3_ae_ops hclge_ops = {
13045 	.init_ae_dev = hclge_init_ae_dev,
13046 	.uninit_ae_dev = hclge_uninit_ae_dev,
13047 	.reset_prepare = hclge_reset_prepare_general,
13048 	.reset_done = hclge_reset_done,
13049 	.init_client_instance = hclge_init_client_instance,
13050 	.uninit_client_instance = hclge_uninit_client_instance,
13051 	.map_ring_to_vector = hclge_map_ring_to_vector,
13052 	.unmap_ring_from_vector = hclge_unmap_ring_frm_vector,
13053 	.get_vector = hclge_get_vector,
13054 	.put_vector = hclge_put_vector,
13055 	.set_promisc_mode = hclge_set_promisc_mode,
13056 	.request_update_promisc_mode = hclge_request_update_promisc_mode,
13057 	.set_loopback = hclge_set_loopback,
13058 	.start = hclge_ae_start,
13059 	.stop = hclge_ae_stop,
13060 	.client_start = hclge_client_start,
13061 	.client_stop = hclge_client_stop,
13062 	.get_status = hclge_get_status,
13063 	.get_ksettings_an_result = hclge_get_ksettings_an_result,
13064 	.cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h,
13065 	.get_media_type = hclge_get_media_type,
13066 	.check_port_speed = hclge_check_port_speed,
13067 	.get_fec_stats = hclge_get_fec_stats,
13068 	.get_fec = hclge_get_fec,
13069 	.set_fec = hclge_set_fec,
13070 	.get_rss_key_size = hclge_comm_get_rss_key_size,
13071 	.get_rss = hclge_get_rss,
13072 	.set_rss = hclge_set_rss,
13073 	.set_rss_tuple = hclge_set_rss_tuple,
13074 	.get_rss_tuple = hclge_get_rss_tuple,
13075 	.get_tc_size = hclge_get_tc_size,
13076 	.get_mac_addr = hclge_get_mac_addr,
13077 	.set_mac_addr = hclge_set_mac_addr,
13078 	.do_ioctl = hclge_do_ioctl,
13079 	.add_uc_addr = hclge_add_uc_addr,
13080 	.rm_uc_addr = hclge_rm_uc_addr,
13081 	.add_mc_addr = hclge_add_mc_addr,
13082 	.rm_mc_addr = hclge_rm_mc_addr,
13083 	.set_autoneg = hclge_set_autoneg,
13084 	.get_autoneg = hclge_get_autoneg,
13085 	.restart_autoneg = hclge_restart_autoneg,
13086 	.halt_autoneg = hclge_halt_autoneg,
13087 	.get_pauseparam = hclge_get_pauseparam,
13088 	.set_pauseparam = hclge_set_pauseparam,
13089 	.set_mtu = hclge_set_mtu,
13090 	.reset_queue = hclge_reset_tqp,
13091 	.get_stats = hclge_get_stats,
13092 	.get_mac_stats = hclge_get_mac_stat,
13093 	.update_stats = hclge_update_stats,
13094 	.get_strings = hclge_get_strings,
13095 	.get_sset_count = hclge_get_sset_count,
13096 	.get_fw_version = hclge_get_fw_version,
13097 	.get_mdix_mode = hclge_get_mdix_mode,
13098 	.enable_vlan_filter = hclge_enable_vlan_filter,
13099 	.set_vlan_filter = hclge_set_vlan_filter,
13100 	.set_vf_vlan_filter = hclge_set_vf_vlan_filter,
13101 	.enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag,
13102 	.reset_event = hclge_reset_event,
13103 	.get_reset_level = hclge_get_reset_level,
13104 	.set_default_reset_request = hclge_set_def_reset_request,
13105 	.get_tqps_and_rss_info = hclge_get_tqps_and_rss_info,
13106 	.set_channels = hclge_set_channels,
13107 	.get_channels = hclge_get_channels,
13108 	.get_regs_len = hclge_get_regs_len,
13109 	.get_regs = hclge_get_regs,
13110 	.set_led_id = hclge_set_led_id,
13111 	.get_link_mode = hclge_get_link_mode,
13112 	.add_fd_entry = hclge_add_fd_entry,
13113 	.del_fd_entry = hclge_del_fd_entry,
13114 	.get_fd_rule_cnt = hclge_get_fd_rule_cnt,
13115 	.get_fd_rule_info = hclge_get_fd_rule_info,
13116 	.get_fd_all_rules = hclge_get_all_rules,
13117 	.enable_fd = hclge_enable_fd,
13118 	.add_arfs_entry = hclge_add_fd_entry_by_arfs,
13119 	.dbg_read_cmd = hclge_dbg_read_cmd,
13120 	.handle_hw_ras_error = hclge_handle_hw_ras_error,
13121 	.get_hw_reset_stat = hclge_get_hw_reset_stat,
13122 	.ae_dev_resetting = hclge_ae_dev_resetting,
13123 	.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
13124 	.set_gro_en = hclge_gro_en,
13125 	.get_global_queue_id = hclge_covert_handle_qid_global,
13126 	.set_timer_task = hclge_set_timer_task,
13127 	.mac_connect_phy = hclge_mac_connect_phy,
13128 	.mac_disconnect_phy = hclge_mac_disconnect_phy,
13129 	.get_vf_config = hclge_get_vf_config,
13130 	.set_vf_link_state = hclge_set_vf_link_state,
13131 	.set_vf_spoofchk = hclge_set_vf_spoofchk,
13132 	.set_vf_trust = hclge_set_vf_trust,
13133 	.set_vf_rate = hclge_set_vf_rate,
13134 	.set_vf_mac = hclge_set_vf_mac,
13135 	.get_module_eeprom = hclge_get_module_eeprom,
13136 	.get_cmdq_stat = hclge_get_cmdq_stat,
13137 	.add_cls_flower = hclge_add_cls_flower,
13138 	.del_cls_flower = hclge_del_cls_flower,
13139 	.cls_flower_active = hclge_is_cls_flower_active,
13140 	.get_phy_link_ksettings = hclge_get_phy_link_ksettings,
13141 	.set_phy_link_ksettings = hclge_set_phy_link_ksettings,
13142 	.set_tx_hwts_info = hclge_ptp_set_tx_info,
13143 	.get_rx_hwts = hclge_ptp_get_rx_hwts,
13144 	.get_ts_info = hclge_ptp_get_ts_info,
13145 	.get_link_diagnosis_info = hclge_get_link_diagnosis_info,
13146 	.clean_vf_config = hclge_clean_vport_config,
13147 	.get_dscp_prio = hclge_get_dscp_prio,
13148 };
13149 
13150 static struct hnae3_ae_algo ae_algo = {
13151 	.ops = &hclge_ops,
13152 	.pdev_id_table = ae_algo_pci_tbl,
13153 };
13154 
13155 static int __init hclge_init(void)
13156 {
13157 	pr_info("%s is initializing\n", HCLGE_NAME);
13158 
13159 	hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME);
13160 	if (!hclge_wq) {
13161 		pr_err("%s: failed to create workqueue\n", HCLGE_NAME);
13162 		return -ENOMEM;
13163 	}
13164 
13165 	hnae3_register_ae_algo(&ae_algo);
13166 
13167 	return 0;
13168 }
13169 
13170 static void __exit hclge_exit(void)
13171 {
13172 	hnae3_unregister_ae_algo_prepare(&ae_algo);
13173 	hnae3_unregister_ae_algo(&ae_algo);
13174 	destroy_workqueue(hclge_wq);
13175 }
13176 module_init(hclge_init);
13177 module_exit(hclge_exit);
13178 
13179 MODULE_LICENSE("GPL");
13180 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
13181 MODULE_DESCRIPTION("HCLGE Driver");
13182 MODULE_VERSION(HCLGE_MOD_VERSION);
13183