1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 	return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100 
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104 
105 	spin_lock(&cmdq->crq.lock);
106 	/* initialize the pointers of async rx queue of mailbox */
107 	hdev->arq.hdev = hdev;
108 	hdev->arq.head = 0;
109 	hdev->arq.tail = 0;
110 	atomic_set(&hdev->arq.count, 0);
111 	spin_unlock(&cmdq->crq.lock);
112 }
113 
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 	if (!handle->client)
117 		return container_of(handle, struct hclgevf_dev, nic);
118 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 		return container_of(handle, struct hclgevf_dev, roce);
120 	else
121 		return container_of(handle, struct hclgevf_dev, nic);
122 }
123 
124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 				 struct net_device_stats *net_stats)
126 {
127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 	int status;
129 
130 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 	if (status)
132 		dev_err(&hdev->pdev->dev,
133 			"VF update of TQPS stats fail, status = %d.\n",
134 			status);
135 }
136 
137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 	if (strset == ETH_SS_TEST)
140 		return -EOPNOTSUPP;
141 	else if (strset == ETH_SS_STATS)
142 		return hclge_comm_tqps_get_sset_count(handle);
143 
144 	return 0;
145 }
146 
147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 				u8 *data)
149 {
150 	u8 *p = (char *)data;
151 
152 	if (strset == ETH_SS_STATS)
153 		p = hclge_comm_tqps_get_strings(handle, p);
154 }
155 
156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 	hclge_comm_tqps_get_stats(handle, data);
159 }
160 
161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 				   u8 subcode)
163 {
164 	if (msg) {
165 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 		msg->code = code;
167 		msg->subcode = subcode;
168 	}
169 }
170 
171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 	struct hclge_basic_info *basic_info;
176 	struct hclge_vf_to_pf_msg send_msg;
177 	unsigned long caps;
178 	int status;
179 
180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 				      sizeof(resp_msg));
183 	if (status) {
184 		dev_err(&hdev->pdev->dev,
185 			"failed to get basic info from pf, ret = %d", status);
186 		return status;
187 	}
188 
189 	basic_info = (struct hclge_basic_info *)resp_msg;
190 
191 	hdev->hw_tc_map = basic_info->hw_tc_map;
192 	hdev->mbx_api_version = basic_info->mbx_api_version;
193 	caps = basic_info->pf_caps;
194 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196 
197 	return 0;
198 }
199 
200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 	struct hnae3_handle *nic = &hdev->nic;
203 	struct hclge_vf_to_pf_msg send_msg;
204 	u8 resp_msg;
205 	int ret;
206 
207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 				   sizeof(u8));
211 	if (ret) {
212 		dev_err(&hdev->pdev->dev,
213 			"VF request to get port based vlan state failed %d",
214 			ret);
215 		return ret;
216 	}
217 
218 	nic->port_base_vlan_state = resp_msg;
219 
220 	return 0;
221 }
222 
223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
226 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
227 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
228 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
229 
230 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
231 	struct hclge_vf_to_pf_msg send_msg;
232 	int status;
233 
234 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
235 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
236 				      HCLGEVF_TQPS_RSS_INFO_LEN);
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get tqp info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
245 	       sizeof(u16));
246 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
247 	       sizeof(u16));
248 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
249 	       sizeof(u16));
250 
251 	return 0;
252 }
253 
254 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
255 {
256 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
257 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
258 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
259 
260 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
261 	struct hclge_vf_to_pf_msg send_msg;
262 	int ret;
263 
264 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
265 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
266 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
267 	if (ret) {
268 		dev_err(&hdev->pdev->dev,
269 			"VF request to get tqp depth info from PF failed %d",
270 			ret);
271 		return ret;
272 	}
273 
274 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
275 	       sizeof(u16));
276 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
277 	       sizeof(u16));
278 
279 	return 0;
280 }
281 
282 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
283 {
284 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
285 	struct hclge_vf_to_pf_msg send_msg;
286 	u16 qid_in_pf = 0;
287 	u8 resp_data[2];
288 	int ret;
289 
290 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
291 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
292 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
293 				   sizeof(resp_data));
294 	if (!ret)
295 		qid_in_pf = *(u16 *)resp_data;
296 
297 	return qid_in_pf;
298 }
299 
300 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
301 {
302 	struct hclge_vf_to_pf_msg send_msg;
303 	u8 resp_msg[2];
304 	int ret;
305 
306 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
307 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
308 				   sizeof(resp_msg));
309 	if (ret) {
310 		dev_err(&hdev->pdev->dev,
311 			"VF request to get the pf port media type failed %d",
312 			ret);
313 		return ret;
314 	}
315 
316 	hdev->hw.mac.media_type = resp_msg[0];
317 	hdev->hw.mac.module_type = resp_msg[1];
318 
319 	return 0;
320 }
321 
322 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
323 {
324 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
325 	struct hclge_comm_tqp *tqp;
326 	int i;
327 
328 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
329 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
330 	if (!hdev->htqp)
331 		return -ENOMEM;
332 
333 	tqp = hdev->htqp;
334 
335 	for (i = 0; i < hdev->num_tqps; i++) {
336 		tqp->dev = &hdev->pdev->dev;
337 		tqp->index = i;
338 
339 		tqp->q.ae_algo = &ae_algovf;
340 		tqp->q.buf_size = hdev->rx_buf_len;
341 		tqp->q.tx_desc_num = hdev->num_tx_desc;
342 		tqp->q.rx_desc_num = hdev->num_rx_desc;
343 
344 		/* need an extended offset to configure queues >=
345 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
346 		 */
347 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
348 			tqp->q.io_base = hdev->hw.hw.io_base +
349 					 HCLGEVF_TQP_REG_OFFSET +
350 					 i * HCLGEVF_TQP_REG_SIZE;
351 		else
352 			tqp->q.io_base = hdev->hw.hw.io_base +
353 					 HCLGEVF_TQP_REG_OFFSET +
354 					 HCLGEVF_TQP_EXT_REG_OFFSET +
355 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
356 					 HCLGEVF_TQP_REG_SIZE;
357 
358 		/* when device supports tx push and has device memory,
359 		 * the queue can execute push mode or doorbell mode on
360 		 * device memory.
361 		 */
362 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
363 			tqp->q.mem_base = hdev->hw.hw.mem_base +
364 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
365 
366 		tqp++;
367 	}
368 
369 	return 0;
370 }
371 
372 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
373 {
374 	struct hnae3_handle *nic = &hdev->nic;
375 	struct hnae3_knic_private_info *kinfo;
376 	u16 new_tqps = hdev->num_tqps;
377 	unsigned int i;
378 	u8 num_tc = 0;
379 
380 	kinfo = &nic->kinfo;
381 	kinfo->num_tx_desc = hdev->num_tx_desc;
382 	kinfo->num_rx_desc = hdev->num_rx_desc;
383 	kinfo->rx_buf_len = hdev->rx_buf_len;
384 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
385 		if (hdev->hw_tc_map & BIT(i))
386 			num_tc++;
387 
388 	num_tc = num_tc ? num_tc : 1;
389 	kinfo->tc_info.num_tc = num_tc;
390 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
391 	new_tqps = kinfo->rss_size * num_tc;
392 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
393 
394 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
395 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
396 	if (!kinfo->tqp)
397 		return -ENOMEM;
398 
399 	for (i = 0; i < kinfo->num_tqps; i++) {
400 		hdev->htqp[i].q.handle = &hdev->nic;
401 		hdev->htqp[i].q.tqp_index = i;
402 		kinfo->tqp[i] = &hdev->htqp[i].q;
403 	}
404 
405 	/* after init the max rss_size and tqps, adjust the default tqp numbers
406 	 * and rss size with the actual vector numbers
407 	 */
408 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
409 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
410 				kinfo->rss_size);
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	struct hclge_vf_to_pf_msg send_msg;
418 	int status;
419 
420 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
421 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
435 		return;
436 
437 	client = handle->client;
438 	rclient = hdev->roce_client;
439 
440 	link_state =
441 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
442 	if (link_state != hdev->hw.mac.link) {
443 		hdev->hw.mac.link = link_state;
444 		client->ops->link_status_change(handle, !!link_state);
445 		if (rclient && rclient->ops->link_status_change)
446 			rclient->ops->link_status_change(rhandle, !!link_state);
447 	}
448 
449 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
450 }
451 
452 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
453 {
454 #define HCLGEVF_ADVERTISING	0
455 #define HCLGEVF_SUPPORTED	1
456 
457 	struct hclge_vf_to_pf_msg send_msg;
458 
459 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
460 	send_msg.data[0] = HCLGEVF_ADVERTISING;
461 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
462 	send_msg.data[0] = HCLGEVF_SUPPORTED;
463 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
464 }
465 
466 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
467 {
468 	struct hnae3_handle *nic = &hdev->nic;
469 	int ret;
470 
471 	nic->ae_algo = &ae_algovf;
472 	nic->pdev = hdev->pdev;
473 	nic->numa_node_mask = hdev->numa_node_mask;
474 	nic->flags |= HNAE3_SUPPORT_VF;
475 	nic->kinfo.io_base = hdev->hw.hw.io_base;
476 
477 	ret = hclgevf_knic_setup(hdev);
478 	if (ret)
479 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480 			ret);
481 	return ret;
482 }
483 
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487 		dev_warn(&hdev->pdev->dev,
488 			 "vector(vector_id %d) has been freed.\n", vector_id);
489 		return;
490 	}
491 
492 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493 	hdev->num_msi_left += 1;
494 	hdev->num_msi_used -= 1;
495 }
496 
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498 			      struct hnae3_vector_info *vector_info)
499 {
500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501 	struct hnae3_vector_info *vector = vector_info;
502 	int alloc = 0;
503 	int i, j;
504 
505 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
506 	vector_num = min(hdev->num_msi_left, vector_num);
507 
508 	for (j = 0; j < vector_num; j++) {
509 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
510 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
511 				vector->vector = pci_irq_vector(hdev->pdev, i);
512 				vector->io_addr = hdev->hw.hw.io_base +
513 					HCLGEVF_VECTOR_REG_BASE +
514 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
515 				hdev->vector_status[i] = 0;
516 				hdev->vector_irq[i] = vector->vector;
517 
518 				vector++;
519 				alloc++;
520 
521 				break;
522 			}
523 		}
524 	}
525 	hdev->num_msi_left -= alloc;
526 	hdev->num_msi_used += alloc;
527 
528 	return alloc;
529 }
530 
531 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
532 {
533 	int i;
534 
535 	for (i = 0; i < hdev->num_msi; i++)
536 		if (vector == hdev->vector_irq[i])
537 			return i;
538 
539 	return -EINVAL;
540 }
541 
542 /* for revision 0x20, vf shared the same rss config with pf */
543 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
544 {
545 #define HCLGEVF_RSS_MBX_RESP_LEN	8
546 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
547 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
548 	struct hclge_vf_to_pf_msg send_msg;
549 	u16 msg_num, hash_key_index;
550 	u8 index;
551 	int ret;
552 
553 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
554 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
555 			HCLGEVF_RSS_MBX_RESP_LEN;
556 	for (index = 0; index < msg_num; index++) {
557 		send_msg.data[0] = index;
558 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
559 					   HCLGEVF_RSS_MBX_RESP_LEN);
560 		if (ret) {
561 			dev_err(&hdev->pdev->dev,
562 				"VF get rss hash key from PF failed, ret=%d",
563 				ret);
564 			return ret;
565 		}
566 
567 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
568 		if (index == msg_num - 1)
569 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
570 			       &resp_msg[0],
571 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
572 		else
573 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
574 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
575 	}
576 
577 	return 0;
578 }
579 
580 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
581 			   u8 *hfunc)
582 {
583 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
584 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
585 	int ret;
586 
587 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
588 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
589 	} else {
590 		if (hfunc)
591 			*hfunc = ETH_RSS_HASH_TOP;
592 		if (key) {
593 			ret = hclgevf_get_rss_hash_key(hdev);
594 			if (ret)
595 				return ret;
596 			memcpy(key, rss_cfg->rss_hash_key,
597 			       HCLGE_COMM_RSS_KEY_SIZE);
598 		}
599 	}
600 
601 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
602 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
603 
604 	return 0;
605 }
606 
607 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
608 			   const u8 *key, const u8 hfunc)
609 {
610 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
611 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
612 	int ret, i;
613 
614 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
615 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
616 						  hfunc);
617 		if (ret)
618 			return ret;
619 	}
620 
621 	/* update the shadow RSS table with user specified qids */
622 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
623 		rss_cfg->rss_indirection_tbl[i] = indir[i];
624 
625 	/* update the hardware */
626 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
627 					      rss_cfg->rss_indirection_tbl);
628 }
629 
630 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
631 				 struct ethtool_rxnfc *nfc)
632 {
633 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
634 	int ret;
635 
636 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
637 		return -EOPNOTSUPP;
638 
639 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
640 				       &hdev->rss_cfg, nfc);
641 	if (ret)
642 		dev_err(&hdev->pdev->dev,
643 		"failed to set rss tuple, ret = %d.\n", ret);
644 
645 	return ret;
646 }
647 
648 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
649 				 struct ethtool_rxnfc *nfc)
650 {
651 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
652 	u8 tuple_sets;
653 	int ret;
654 
655 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
656 		return -EOPNOTSUPP;
657 
658 	nfc->data = 0;
659 
660 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
661 				       &tuple_sets);
662 	if (ret || !tuple_sets)
663 		return ret;
664 
665 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
666 
667 	return 0;
668 }
669 
670 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
671 {
672 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
673 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
674 
675 	return rss_cfg->rss_size;
676 }
677 
678 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
679 				       int vector_id,
680 				       struct hnae3_ring_chain_node *ring_chain)
681 {
682 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
683 	struct hclge_vf_to_pf_msg send_msg;
684 	struct hnae3_ring_chain_node *node;
685 	int status;
686 	int i = 0;
687 
688 	memset(&send_msg, 0, sizeof(send_msg));
689 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
690 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
691 	send_msg.vector_id = vector_id;
692 
693 	for (node = ring_chain; node; node = node->next) {
694 		send_msg.param[i].ring_type =
695 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
696 
697 		send_msg.param[i].tqp_index = node->tqp_index;
698 		send_msg.param[i].int_gl_index =
699 					hnae3_get_field(node->int_gl_idx,
700 							HNAE3_RING_GL_IDX_M,
701 							HNAE3_RING_GL_IDX_S);
702 
703 		i++;
704 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
705 			send_msg.ring_num = i;
706 
707 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
708 						      NULL, 0);
709 			if (status) {
710 				dev_err(&hdev->pdev->dev,
711 					"Map TQP fail, status is %d.\n",
712 					status);
713 				return status;
714 			}
715 			i = 0;
716 		}
717 	}
718 
719 	return 0;
720 }
721 
722 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
723 				      struct hnae3_ring_chain_node *ring_chain)
724 {
725 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
726 	int vector_id;
727 
728 	vector_id = hclgevf_get_vector_index(hdev, vector);
729 	if (vector_id < 0) {
730 		dev_err(&handle->pdev->dev,
731 			"Get vector index fail. ret =%d\n", vector_id);
732 		return vector_id;
733 	}
734 
735 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
736 }
737 
738 static int hclgevf_unmap_ring_from_vector(
739 				struct hnae3_handle *handle,
740 				int vector,
741 				struct hnae3_ring_chain_node *ring_chain)
742 {
743 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
744 	int ret, vector_id;
745 
746 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
747 		return 0;
748 
749 	vector_id = hclgevf_get_vector_index(hdev, vector);
750 	if (vector_id < 0) {
751 		dev_err(&handle->pdev->dev,
752 			"Get vector index fail. ret =%d\n", vector_id);
753 		return vector_id;
754 	}
755 
756 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
757 	if (ret)
758 		dev_err(&handle->pdev->dev,
759 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
760 			vector_id,
761 			ret);
762 
763 	return ret;
764 }
765 
766 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
767 {
768 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
769 	int vector_id;
770 
771 	vector_id = hclgevf_get_vector_index(hdev, vector);
772 	if (vector_id < 0) {
773 		dev_err(&handle->pdev->dev,
774 			"hclgevf_put_vector get vector index fail. ret =%d\n",
775 			vector_id);
776 		return vector_id;
777 	}
778 
779 	hclgevf_free_vector(hdev, vector_id);
780 
781 	return 0;
782 }
783 
784 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
785 					bool en_uc_pmc, bool en_mc_pmc,
786 					bool en_bc_pmc)
787 {
788 	struct hnae3_handle *handle = &hdev->nic;
789 	struct hclge_vf_to_pf_msg send_msg;
790 	int ret;
791 
792 	memset(&send_msg, 0, sizeof(send_msg));
793 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
794 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
795 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
796 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
797 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
798 					     &handle->priv_flags) ? 1 : 0;
799 
800 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
801 	if (ret)
802 		dev_err(&hdev->pdev->dev,
803 			"Set promisc mode fail, status is %d.\n", ret);
804 
805 	return ret;
806 }
807 
808 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
809 				    bool en_mc_pmc)
810 {
811 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
812 	bool en_bc_pmc;
813 
814 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
815 
816 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
817 					    en_bc_pmc);
818 }
819 
820 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
821 {
822 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
823 
824 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
825 	hclgevf_task_schedule(hdev, 0);
826 }
827 
828 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
829 {
830 	struct hnae3_handle *handle = &hdev->nic;
831 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
832 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
833 	int ret;
834 
835 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
836 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
837 		if (!ret)
838 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
839 	}
840 }
841 
842 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
843 				       u16 stream_id, bool enable)
844 {
845 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
846 	struct hclge_desc desc;
847 
848 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
849 
850 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
851 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
852 	req->stream_id = cpu_to_le16(stream_id);
853 	if (enable)
854 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
855 
856 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
857 }
858 
859 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
860 {
861 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
862 	int ret;
863 	u16 i;
864 
865 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
866 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	return 0;
872 }
873 
874 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
875 {
876 	struct hclge_vf_to_pf_msg send_msg;
877 	u8 host_mac[ETH_ALEN];
878 	int status;
879 
880 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
881 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
882 				      ETH_ALEN);
883 	if (status) {
884 		dev_err(&hdev->pdev->dev,
885 			"fail to get VF MAC from host %d", status);
886 		return status;
887 	}
888 
889 	ether_addr_copy(p, host_mac);
890 
891 	return 0;
892 }
893 
894 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
895 {
896 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
897 	u8 host_mac_addr[ETH_ALEN];
898 
899 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
900 		return;
901 
902 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
903 	if (hdev->has_pf_mac)
904 		ether_addr_copy(p, host_mac_addr);
905 	else
906 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
907 }
908 
909 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
910 				bool is_first)
911 {
912 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
913 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
914 	struct hclge_vf_to_pf_msg send_msg;
915 	u8 *new_mac_addr = (u8 *)p;
916 	int status;
917 
918 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
919 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
920 	ether_addr_copy(send_msg.data, new_mac_addr);
921 	if (is_first && !hdev->has_pf_mac)
922 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
923 	else
924 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
925 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
926 	if (!status)
927 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
928 
929 	return status;
930 }
931 
932 static struct hclgevf_mac_addr_node *
933 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
934 {
935 	struct hclgevf_mac_addr_node *mac_node, *tmp;
936 
937 	list_for_each_entry_safe(mac_node, tmp, list, node)
938 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
939 			return mac_node;
940 
941 	return NULL;
942 }
943 
944 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
945 				    enum HCLGEVF_MAC_NODE_STATE state)
946 {
947 	switch (state) {
948 	/* from set_rx_mode or tmp_add_list */
949 	case HCLGEVF_MAC_TO_ADD:
950 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
951 			mac_node->state = HCLGEVF_MAC_ACTIVE;
952 		break;
953 	/* only from set_rx_mode */
954 	case HCLGEVF_MAC_TO_DEL:
955 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
956 			list_del(&mac_node->node);
957 			kfree(mac_node);
958 		} else {
959 			mac_node->state = HCLGEVF_MAC_TO_DEL;
960 		}
961 		break;
962 	/* only from tmp_add_list, the mac_node->state won't be
963 	 * HCLGEVF_MAC_ACTIVE
964 	 */
965 	case HCLGEVF_MAC_ACTIVE:
966 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
967 			mac_node->state = HCLGEVF_MAC_ACTIVE;
968 		break;
969 	}
970 }
971 
972 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
973 				   enum HCLGEVF_MAC_NODE_STATE state,
974 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
975 				   const unsigned char *addr)
976 {
977 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
978 	struct hclgevf_mac_addr_node *mac_node;
979 	struct list_head *list;
980 
981 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
982 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
983 
984 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
985 
986 	/* if the mac addr is already in the mac list, no need to add a new
987 	 * one into it, just check the mac addr state, convert it to a new
988 	 * new state, or just remove it, or do nothing.
989 	 */
990 	mac_node = hclgevf_find_mac_node(list, addr);
991 	if (mac_node) {
992 		hclgevf_update_mac_node(mac_node, state);
993 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
994 		return 0;
995 	}
996 	/* if this address is never added, unnecessary to delete */
997 	if (state == HCLGEVF_MAC_TO_DEL) {
998 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
999 		return -ENOENT;
1000 	}
1001 
1002 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1003 	if (!mac_node) {
1004 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1005 		return -ENOMEM;
1006 	}
1007 
1008 	mac_node->state = state;
1009 	ether_addr_copy(mac_node->mac_addr, addr);
1010 	list_add_tail(&mac_node->node, list);
1011 
1012 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1013 	return 0;
1014 }
1015 
1016 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1017 			       const unsigned char *addr)
1018 {
1019 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1020 				       HCLGEVF_MAC_ADDR_UC, addr);
1021 }
1022 
1023 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1024 			      const unsigned char *addr)
1025 {
1026 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1027 				       HCLGEVF_MAC_ADDR_UC, addr);
1028 }
1029 
1030 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1031 			       const unsigned char *addr)
1032 {
1033 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1034 				       HCLGEVF_MAC_ADDR_MC, addr);
1035 }
1036 
1037 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1038 			      const unsigned char *addr)
1039 {
1040 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1041 				       HCLGEVF_MAC_ADDR_MC, addr);
1042 }
1043 
1044 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1045 				    struct hclgevf_mac_addr_node *mac_node,
1046 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1047 {
1048 	struct hclge_vf_to_pf_msg send_msg;
1049 	u8 code, subcode;
1050 
1051 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1052 		code = HCLGE_MBX_SET_UNICAST;
1053 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1054 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1055 		else
1056 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1057 	} else {
1058 		code = HCLGE_MBX_SET_MULTICAST;
1059 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1060 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1061 		else
1062 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1063 	}
1064 
1065 	hclgevf_build_send_msg(&send_msg, code, subcode);
1066 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1067 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1068 }
1069 
1070 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1071 				    struct list_head *list,
1072 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1073 {
1074 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1075 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1076 	int ret;
1077 
1078 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1079 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1080 		if  (ret) {
1081 			hnae3_format_mac_addr(format_mac_addr,
1082 					      mac_node->mac_addr);
1083 			dev_err(&hdev->pdev->dev,
1084 				"failed to configure mac %s, state = %d, ret = %d\n",
1085 				format_mac_addr, mac_node->state, ret);
1086 			return;
1087 		}
1088 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1089 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1090 		} else {
1091 			list_del(&mac_node->node);
1092 			kfree(mac_node);
1093 		}
1094 	}
1095 }
1096 
1097 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1098 				       struct list_head *mac_list)
1099 {
1100 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1101 
1102 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1103 		/* if the mac address from tmp_add_list is not in the
1104 		 * uc/mc_mac_list, it means have received a TO_DEL request
1105 		 * during the time window of sending mac config request to PF
1106 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1107 		 * then it will be removed at next time. If is TO_ADD, it means
1108 		 * send TO_ADD request failed, so just remove the mac node.
1109 		 */
1110 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1111 		if (new_node) {
1112 			hclgevf_update_mac_node(new_node, mac_node->state);
1113 			list_del(&mac_node->node);
1114 			kfree(mac_node);
1115 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1116 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1117 			list_move_tail(&mac_node->node, mac_list);
1118 		} else {
1119 			list_del(&mac_node->node);
1120 			kfree(mac_node);
1121 		}
1122 	}
1123 }
1124 
1125 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1126 				       struct list_head *mac_list)
1127 {
1128 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1129 
1130 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1131 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1132 		if (new_node) {
1133 			/* If the mac addr is exist in the mac list, it means
1134 			 * received a new request TO_ADD during the time window
1135 			 * of sending mac addr configurrequest to PF, so just
1136 			 * change the mac state to ACTIVE.
1137 			 */
1138 			new_node->state = HCLGEVF_MAC_ACTIVE;
1139 			list_del(&mac_node->node);
1140 			kfree(mac_node);
1141 		} else {
1142 			list_move_tail(&mac_node->node, mac_list);
1143 		}
1144 	}
1145 }
1146 
1147 static void hclgevf_clear_list(struct list_head *list)
1148 {
1149 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1150 
1151 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1152 		list_del(&mac_node->node);
1153 		kfree(mac_node);
1154 	}
1155 }
1156 
1157 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1158 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1159 {
1160 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1161 	struct list_head tmp_add_list, tmp_del_list;
1162 	struct list_head *list;
1163 
1164 	INIT_LIST_HEAD(&tmp_add_list);
1165 	INIT_LIST_HEAD(&tmp_del_list);
1166 
1167 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1168 	 * we can add/delete these mac addr outside the spin lock
1169 	 */
1170 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1171 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1172 
1173 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1174 
1175 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1176 		switch (mac_node->state) {
1177 		case HCLGEVF_MAC_TO_DEL:
1178 			list_move_tail(&mac_node->node, &tmp_del_list);
1179 			break;
1180 		case HCLGEVF_MAC_TO_ADD:
1181 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1182 			if (!new_node)
1183 				goto stop_traverse;
1184 
1185 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1186 			new_node->state = mac_node->state;
1187 			list_add_tail(&new_node->node, &tmp_add_list);
1188 			break;
1189 		default:
1190 			break;
1191 		}
1192 	}
1193 
1194 stop_traverse:
1195 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1196 
1197 	/* delete first, in order to get max mac table space for adding */
1198 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1199 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1200 
1201 	/* if some mac addresses were added/deleted fail, move back to the
1202 	 * mac_list, and retry at next time.
1203 	 */
1204 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1205 
1206 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1207 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1208 
1209 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1210 }
1211 
1212 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1213 {
1214 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1215 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1216 }
1217 
1218 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1219 {
1220 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1221 
1222 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1223 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1224 
1225 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1226 }
1227 
1228 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1229 {
1230 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1231 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1232 	struct hclge_vf_to_pf_msg send_msg;
1233 
1234 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1235 		return -EOPNOTSUPP;
1236 
1237 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1238 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1239 	send_msg.data[0] = enable ? 1 : 0;
1240 
1241 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1242 }
1243 
1244 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1245 				   __be16 proto, u16 vlan_id,
1246 				   bool is_kill)
1247 {
1248 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1249 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1250 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1251 
1252 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1253 	struct hclge_vf_to_pf_msg send_msg;
1254 	int ret;
1255 
1256 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1257 		return -EINVAL;
1258 
1259 	if (proto != htons(ETH_P_8021Q))
1260 		return -EPROTONOSUPPORT;
1261 
1262 	/* When device is resetting or reset failed, firmware is unable to
1263 	 * handle mailbox. Just record the vlan id, and remove it after
1264 	 * reset finished.
1265 	 */
1266 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1267 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1268 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1269 		return -EBUSY;
1270 	}
1271 
1272 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1273 			       HCLGE_MBX_VLAN_FILTER);
1274 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1275 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1276 	       sizeof(vlan_id));
1277 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1278 	       sizeof(proto));
1279 	/* when remove hw vlan filter failed, record the vlan id,
1280 	 * and try to remove it from hw later, to be consistence
1281 	 * with stack.
1282 	 */
1283 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1284 	if (is_kill && ret)
1285 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1286 
1287 	return ret;
1288 }
1289 
1290 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1291 {
1292 #define HCLGEVF_MAX_SYNC_COUNT	60
1293 	struct hnae3_handle *handle = &hdev->nic;
1294 	int ret, sync_cnt = 0;
1295 	u16 vlan_id;
1296 
1297 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1298 	while (vlan_id != VLAN_N_VID) {
1299 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1300 					      vlan_id, true);
1301 		if (ret)
1302 			return;
1303 
1304 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1305 		sync_cnt++;
1306 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1307 			return;
1308 
1309 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1310 	}
1311 }
1312 
1313 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1314 {
1315 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1316 	struct hclge_vf_to_pf_msg send_msg;
1317 
1318 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1319 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1320 	send_msg.data[0] = enable ? 1 : 0;
1321 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1322 }
1323 
1324 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1325 {
1326 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1327 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1328 	struct hclge_vf_to_pf_msg send_msg;
1329 	u8 return_status = 0;
1330 	int ret;
1331 	u16 i;
1332 
1333 	/* disable vf queue before send queue reset msg to PF */
1334 	ret = hclgevf_tqp_enable(handle, false);
1335 	if (ret) {
1336 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1337 			ret);
1338 		return ret;
1339 	}
1340 
1341 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1342 
1343 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1344 				   sizeof(return_status));
1345 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1346 		return ret;
1347 
1348 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1349 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1350 		memcpy(send_msg.data, &i, sizeof(i));
1351 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1352 		if (ret)
1353 			return ret;
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1360 {
1361 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1362 	struct hclge_vf_to_pf_msg send_msg;
1363 
1364 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1365 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1366 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1367 }
1368 
1369 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1370 				 enum hnae3_reset_notify_type type)
1371 {
1372 	struct hnae3_client *client = hdev->nic_client;
1373 	struct hnae3_handle *handle = &hdev->nic;
1374 	int ret;
1375 
1376 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1377 	    !client)
1378 		return 0;
1379 
1380 	if (!client->ops->reset_notify)
1381 		return -EOPNOTSUPP;
1382 
1383 	ret = client->ops->reset_notify(handle, type);
1384 	if (ret)
1385 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1386 			type, ret);
1387 
1388 	return ret;
1389 }
1390 
1391 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1392 				      enum hnae3_reset_notify_type type)
1393 {
1394 	struct hnae3_client *client = hdev->roce_client;
1395 	struct hnae3_handle *handle = &hdev->roce;
1396 	int ret;
1397 
1398 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1399 		return 0;
1400 
1401 	if (!client->ops->reset_notify)
1402 		return -EOPNOTSUPP;
1403 
1404 	ret = client->ops->reset_notify(handle, type);
1405 	if (ret)
1406 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1407 			type, ret);
1408 	return ret;
1409 }
1410 
1411 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1412 {
1413 #define HCLGEVF_RESET_WAIT_US	20000
1414 #define HCLGEVF_RESET_WAIT_CNT	2000
1415 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1416 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1417 
1418 	u32 val;
1419 	int ret;
1420 
1421 	if (hdev->reset_type == HNAE3_VF_RESET)
1422 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1423 					 HCLGEVF_VF_RST_ING, val,
1424 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1425 					 HCLGEVF_RESET_WAIT_US,
1426 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1427 	else
1428 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1429 					 HCLGEVF_RST_ING, val,
1430 					 !(val & HCLGEVF_RST_ING_BITS),
1431 					 HCLGEVF_RESET_WAIT_US,
1432 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1433 
1434 	/* hardware completion status should be available by this time */
1435 	if (ret) {
1436 		dev_err(&hdev->pdev->dev,
1437 			"couldn't get reset done status from h/w, timeout!\n");
1438 		return ret;
1439 	}
1440 
1441 	/* we will wait a bit more to let reset of the stack to complete. This
1442 	 * might happen in case reset assertion was made by PF. Yes, this also
1443 	 * means we might end up waiting bit more even for VF reset.
1444 	 */
1445 	msleep(5000);
1446 
1447 	return 0;
1448 }
1449 
1450 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1451 {
1452 	u32 reg_val;
1453 
1454 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1455 	if (enable)
1456 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1457 	else
1458 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1459 
1460 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1461 			  reg_val);
1462 }
1463 
1464 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1465 {
1466 	int ret;
1467 
1468 	/* uninitialize the nic client */
1469 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1470 	if (ret)
1471 		return ret;
1472 
1473 	/* re-initialize the hclge device */
1474 	ret = hclgevf_reset_hdev(hdev);
1475 	if (ret) {
1476 		dev_err(&hdev->pdev->dev,
1477 			"hclge device re-init failed, VF is disabled!\n");
1478 		return ret;
1479 	}
1480 
1481 	/* bring up the nic client again */
1482 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1483 	if (ret)
1484 		return ret;
1485 
1486 	/* clear handshake status with IMP */
1487 	hclgevf_reset_handshake(hdev, false);
1488 
1489 	/* bring up the nic to enable TX/RX again */
1490 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1491 }
1492 
1493 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1494 {
1495 #define HCLGEVF_RESET_SYNC_TIME 100
1496 
1497 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1498 		struct hclge_vf_to_pf_msg send_msg;
1499 		int ret;
1500 
1501 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1502 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1503 		if (ret) {
1504 			dev_err(&hdev->pdev->dev,
1505 				"failed to assert VF reset, ret = %d\n", ret);
1506 			return ret;
1507 		}
1508 		hdev->rst_stats.vf_func_rst_cnt++;
1509 	}
1510 
1511 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1512 	/* inform hardware that preparatory work is done */
1513 	msleep(HCLGEVF_RESET_SYNC_TIME);
1514 	hclgevf_reset_handshake(hdev, true);
1515 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1516 		 hdev->reset_type);
1517 
1518 	return 0;
1519 }
1520 
1521 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1522 {
1523 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1524 		 hdev->rst_stats.vf_func_rst_cnt);
1525 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1526 		 hdev->rst_stats.flr_rst_cnt);
1527 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1528 		 hdev->rst_stats.vf_rst_cnt);
1529 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1530 		 hdev->rst_stats.rst_done_cnt);
1531 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1532 		 hdev->rst_stats.hw_rst_done_cnt);
1533 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1534 		 hdev->rst_stats.rst_cnt);
1535 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1536 		 hdev->rst_stats.rst_fail_cnt);
1537 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1538 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1539 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1540 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1541 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1542 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1543 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1544 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1545 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1546 }
1547 
1548 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1549 {
1550 	/* recover handshake status with IMP when reset fail */
1551 	hclgevf_reset_handshake(hdev, true);
1552 	hdev->rst_stats.rst_fail_cnt++;
1553 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1554 		hdev->rst_stats.rst_fail_cnt);
1555 
1556 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1557 		set_bit(hdev->reset_type, &hdev->reset_pending);
1558 
1559 	if (hclgevf_is_reset_pending(hdev)) {
1560 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1561 		hclgevf_reset_task_schedule(hdev);
1562 	} else {
1563 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1564 		hclgevf_dump_rst_info(hdev);
1565 	}
1566 }
1567 
1568 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1569 {
1570 	int ret;
1571 
1572 	hdev->rst_stats.rst_cnt++;
1573 
1574 	/* perform reset of the stack & ae device for a client */
1575 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1576 	if (ret)
1577 		return ret;
1578 
1579 	rtnl_lock();
1580 	/* bring down the nic to stop any ongoing TX/RX */
1581 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1582 	rtnl_unlock();
1583 	if (ret)
1584 		return ret;
1585 
1586 	return hclgevf_reset_prepare_wait(hdev);
1587 }
1588 
1589 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1590 {
1591 	int ret;
1592 
1593 	hdev->rst_stats.hw_rst_done_cnt++;
1594 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1595 	if (ret)
1596 		return ret;
1597 
1598 	rtnl_lock();
1599 	/* now, re-initialize the nic client and ae device */
1600 	ret = hclgevf_reset_stack(hdev);
1601 	rtnl_unlock();
1602 	if (ret) {
1603 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1604 		return ret;
1605 	}
1606 
1607 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1608 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1609 	 * times
1610 	 */
1611 	if (ret &&
1612 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1613 		return ret;
1614 
1615 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1616 	if (ret)
1617 		return ret;
1618 
1619 	hdev->last_reset_time = jiffies;
1620 	hdev->rst_stats.rst_done_cnt++;
1621 	hdev->rst_stats.rst_fail_cnt = 0;
1622 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1623 
1624 	return 0;
1625 }
1626 
1627 static void hclgevf_reset(struct hclgevf_dev *hdev)
1628 {
1629 	if (hclgevf_reset_prepare(hdev))
1630 		goto err_reset;
1631 
1632 	/* check if VF could successfully fetch the hardware reset completion
1633 	 * status from the hardware
1634 	 */
1635 	if (hclgevf_reset_wait(hdev)) {
1636 		/* can't do much in this situation, will disable VF */
1637 		dev_err(&hdev->pdev->dev,
1638 			"failed to fetch H/W reset completion status\n");
1639 		goto err_reset;
1640 	}
1641 
1642 	if (hclgevf_reset_rebuild(hdev))
1643 		goto err_reset;
1644 
1645 	return;
1646 
1647 err_reset:
1648 	hclgevf_reset_err_handle(hdev);
1649 }
1650 
1651 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1652 						     unsigned long *addr)
1653 {
1654 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1655 
1656 	/* return the highest priority reset level amongst all */
1657 	if (test_bit(HNAE3_VF_RESET, addr)) {
1658 		rst_level = HNAE3_VF_RESET;
1659 		clear_bit(HNAE3_VF_RESET, addr);
1660 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1661 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1662 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1663 		rst_level = HNAE3_VF_FULL_RESET;
1664 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1665 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1666 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1667 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1668 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1669 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1670 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1671 		rst_level = HNAE3_VF_FUNC_RESET;
1672 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1673 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1674 		rst_level = HNAE3_FLR_RESET;
1675 		clear_bit(HNAE3_FLR_RESET, addr);
1676 	}
1677 
1678 	return rst_level;
1679 }
1680 
1681 static void hclgevf_reset_event(struct pci_dev *pdev,
1682 				struct hnae3_handle *handle)
1683 {
1684 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1685 	struct hclgevf_dev *hdev = ae_dev->priv;
1686 
1687 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1688 
1689 	if (hdev->default_reset_request)
1690 		hdev->reset_level =
1691 			hclgevf_get_reset_level(hdev,
1692 						&hdev->default_reset_request);
1693 	else
1694 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1695 
1696 	/* reset of this VF requested */
1697 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1698 	hclgevf_reset_task_schedule(hdev);
1699 
1700 	hdev->last_reset_time = jiffies;
1701 }
1702 
1703 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1704 					  enum hnae3_reset_type rst_type)
1705 {
1706 	struct hclgevf_dev *hdev = ae_dev->priv;
1707 
1708 	set_bit(rst_type, &hdev->default_reset_request);
1709 }
1710 
1711 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1712 {
1713 	writel(en ? 1 : 0, vector->addr);
1714 }
1715 
1716 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1717 					  enum hnae3_reset_type rst_type)
1718 {
1719 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1720 #define HCLGEVF_RESET_RETRY_CNT		5
1721 
1722 	struct hclgevf_dev *hdev = ae_dev->priv;
1723 	int retry_cnt = 0;
1724 	int ret;
1725 
1726 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1727 		down(&hdev->reset_sem);
1728 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1729 		hdev->reset_type = rst_type;
1730 		ret = hclgevf_reset_prepare(hdev);
1731 		if (!ret && !hdev->reset_pending)
1732 			break;
1733 
1734 		dev_err(&hdev->pdev->dev,
1735 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1736 			ret, hdev->reset_pending, retry_cnt);
1737 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1738 		up(&hdev->reset_sem);
1739 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1740 	}
1741 
1742 	/* disable misc vector before reset done */
1743 	hclgevf_enable_vector(&hdev->misc_vector, false);
1744 
1745 	if (hdev->reset_type == HNAE3_FLR_RESET)
1746 		hdev->rst_stats.flr_rst_cnt++;
1747 }
1748 
1749 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1750 {
1751 	struct hclgevf_dev *hdev = ae_dev->priv;
1752 	int ret;
1753 
1754 	hclgevf_enable_vector(&hdev->misc_vector, true);
1755 
1756 	ret = hclgevf_reset_rebuild(hdev);
1757 	if (ret)
1758 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1759 			 ret);
1760 
1761 	hdev->reset_type = HNAE3_NONE_RESET;
1762 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1763 	up(&hdev->reset_sem);
1764 }
1765 
1766 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1767 {
1768 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1769 
1770 	return hdev->fw_version;
1771 }
1772 
1773 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1774 {
1775 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1776 
1777 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1778 					    HCLGEVF_MISC_VECTOR_NUM);
1779 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1780 	/* vector status always valid for Vector 0 */
1781 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1782 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1783 
1784 	hdev->num_msi_left -= 1;
1785 	hdev->num_msi_used += 1;
1786 }
1787 
1788 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1789 {
1790 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1791 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1792 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1793 			      &hdev->state))
1794 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1795 }
1796 
1797 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1798 {
1799 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1800 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1801 			      &hdev->state))
1802 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1803 }
1804 
1805 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1806 				  unsigned long delay)
1807 {
1808 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1809 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1810 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1811 }
1812 
1813 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1814 {
1815 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1816 
1817 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1818 		return;
1819 
1820 	down(&hdev->reset_sem);
1821 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1822 
1823 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1824 			       &hdev->reset_state)) {
1825 		/* PF has intimated that it is about to reset the hardware.
1826 		 * We now have to poll & check if hardware has actually
1827 		 * completed the reset sequence. On hardware reset completion,
1828 		 * VF needs to reset the client and ae device.
1829 		 */
1830 		hdev->reset_attempts = 0;
1831 
1832 		hdev->last_reset_time = jiffies;
1833 		hdev->reset_type =
1834 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1835 		if (hdev->reset_type != HNAE3_NONE_RESET)
1836 			hclgevf_reset(hdev);
1837 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1838 				      &hdev->reset_state)) {
1839 		/* we could be here when either of below happens:
1840 		 * 1. reset was initiated due to watchdog timeout caused by
1841 		 *    a. IMP was earlier reset and our TX got choked down and
1842 		 *       which resulted in watchdog reacting and inducing VF
1843 		 *       reset. This also means our cmdq would be unreliable.
1844 		 *    b. problem in TX due to other lower layer(example link
1845 		 *       layer not functioning properly etc.)
1846 		 * 2. VF reset might have been initiated due to some config
1847 		 *    change.
1848 		 *
1849 		 * NOTE: Theres no clear way to detect above cases than to react
1850 		 * to the response of PF for this reset request. PF will ack the
1851 		 * 1b and 2. cases but we will not get any intimation about 1a
1852 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1853 		 * communication between PF and VF would be broken.
1854 		 *
1855 		 * if we are never geting into pending state it means either:
1856 		 * 1. PF is not receiving our request which could be due to IMP
1857 		 *    reset
1858 		 * 2. PF is screwed
1859 		 * We cannot do much for 2. but to check first we can try reset
1860 		 * our PCIe + stack and see if it alleviates the problem.
1861 		 */
1862 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1863 			/* prepare for full reset of stack + pcie interface */
1864 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1865 
1866 			/* "defer" schedule the reset task again */
1867 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1868 		} else {
1869 			hdev->reset_attempts++;
1870 
1871 			set_bit(hdev->reset_level, &hdev->reset_pending);
1872 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1873 		}
1874 		hclgevf_reset_task_schedule(hdev);
1875 	}
1876 
1877 	hdev->reset_type = HNAE3_NONE_RESET;
1878 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1879 	up(&hdev->reset_sem);
1880 }
1881 
1882 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1883 {
1884 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1885 		return;
1886 
1887 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1888 		return;
1889 
1890 	hclgevf_mbx_async_handler(hdev);
1891 
1892 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1893 }
1894 
1895 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1896 {
1897 	struct hclge_vf_to_pf_msg send_msg;
1898 	int ret;
1899 
1900 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1901 		return;
1902 
1903 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1904 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1905 	if (ret)
1906 		dev_err(&hdev->pdev->dev,
1907 			"VF sends keep alive cmd failed(=%d)\n", ret);
1908 }
1909 
1910 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1911 {
1912 	unsigned long delta = round_jiffies_relative(HZ);
1913 	struct hnae3_handle *handle = &hdev->nic;
1914 
1915 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1916 		return;
1917 
1918 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1919 		delta = jiffies - hdev->last_serv_processed;
1920 
1921 		if (delta < round_jiffies_relative(HZ)) {
1922 			delta = round_jiffies_relative(HZ) - delta;
1923 			goto out;
1924 		}
1925 	}
1926 
1927 	hdev->serv_processed_cnt++;
1928 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1929 		hclgevf_keep_alive(hdev);
1930 
1931 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1932 		hdev->last_serv_processed = jiffies;
1933 		goto out;
1934 	}
1935 
1936 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1937 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1938 
1939 	/* VF does not need to request link status when this bit is set, because
1940 	 * PF will push its link status to VFs when link status changed.
1941 	 */
1942 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1943 		hclgevf_request_link_info(hdev);
1944 
1945 	hclgevf_update_link_mode(hdev);
1946 
1947 	hclgevf_sync_vlan_filter(hdev);
1948 
1949 	hclgevf_sync_mac_table(hdev);
1950 
1951 	hclgevf_sync_promisc_mode(hdev);
1952 
1953 	hdev->last_serv_processed = jiffies;
1954 
1955 out:
1956 	hclgevf_task_schedule(hdev, delta);
1957 }
1958 
1959 static void hclgevf_service_task(struct work_struct *work)
1960 {
1961 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1962 						service_task.work);
1963 
1964 	hclgevf_reset_service_task(hdev);
1965 	hclgevf_mailbox_service_task(hdev);
1966 	hclgevf_periodic_service_task(hdev);
1967 
1968 	/* Handle reset and mbx again in case periodical task delays the
1969 	 * handling by calling hclgevf_task_schedule() in
1970 	 * hclgevf_periodic_service_task()
1971 	 */
1972 	hclgevf_reset_service_task(hdev);
1973 	hclgevf_mailbox_service_task(hdev);
1974 }
1975 
1976 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1977 {
1978 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1979 }
1980 
1981 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1982 						      u32 *clearval)
1983 {
1984 	u32 val, cmdq_stat_reg, rst_ing_reg;
1985 
1986 	/* fetch the events from their corresponding regs */
1987 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1988 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1989 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1990 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1991 		dev_info(&hdev->pdev->dev,
1992 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1993 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1994 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1995 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1996 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1997 		hdev->rst_stats.vf_rst_cnt++;
1998 		/* set up VF hardware reset status, its PF will clear
1999 		 * this status when PF has initialized done.
2000 		 */
2001 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2002 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2003 				  val | HCLGEVF_VF_RST_ING_BIT);
2004 		return HCLGEVF_VECTOR0_EVENT_RST;
2005 	}
2006 
2007 	/* check for vector0 mailbox(=CMDQ RX) event source */
2008 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2009 		/* for revision 0x21, clearing interrupt is writing bit 0
2010 		 * to the clear register, writing bit 1 means to keep the
2011 		 * old value.
2012 		 * for revision 0x20, the clear register is a read & write
2013 		 * register, so we should just write 0 to the bit we are
2014 		 * handling, and keep other bits as cmdq_stat_reg.
2015 		 */
2016 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2017 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2018 		else
2019 			*clearval = cmdq_stat_reg &
2020 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2021 
2022 		return HCLGEVF_VECTOR0_EVENT_MBX;
2023 	}
2024 
2025 	/* print other vector0 event source */
2026 	dev_info(&hdev->pdev->dev,
2027 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2028 		 cmdq_stat_reg);
2029 
2030 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2031 }
2032 
2033 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2034 {
2035 	enum hclgevf_evt_cause event_cause;
2036 	struct hclgevf_dev *hdev = data;
2037 	u32 clearval;
2038 
2039 	hclgevf_enable_vector(&hdev->misc_vector, false);
2040 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2041 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2042 		hclgevf_clear_event_cause(hdev, clearval);
2043 
2044 	switch (event_cause) {
2045 	case HCLGEVF_VECTOR0_EVENT_RST:
2046 		hclgevf_reset_task_schedule(hdev);
2047 		break;
2048 	case HCLGEVF_VECTOR0_EVENT_MBX:
2049 		hclgevf_mbx_handler(hdev);
2050 		break;
2051 	default:
2052 		break;
2053 	}
2054 
2055 	hclgevf_enable_vector(&hdev->misc_vector, true);
2056 
2057 	return IRQ_HANDLED;
2058 }
2059 
2060 static int hclgevf_configure(struct hclgevf_dev *hdev)
2061 {
2062 	int ret;
2063 
2064 	hdev->gro_en = true;
2065 
2066 	ret = hclgevf_get_basic_info(hdev);
2067 	if (ret)
2068 		return ret;
2069 
2070 	/* get current port based vlan state from PF */
2071 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2072 	if (ret)
2073 		return ret;
2074 
2075 	/* get queue configuration from PF */
2076 	ret = hclgevf_get_queue_info(hdev);
2077 	if (ret)
2078 		return ret;
2079 
2080 	/* get queue depth info from PF */
2081 	ret = hclgevf_get_queue_depth(hdev);
2082 	if (ret)
2083 		return ret;
2084 
2085 	return hclgevf_get_pf_media_type(hdev);
2086 }
2087 
2088 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2089 {
2090 	struct pci_dev *pdev = ae_dev->pdev;
2091 	struct hclgevf_dev *hdev;
2092 
2093 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2094 	if (!hdev)
2095 		return -ENOMEM;
2096 
2097 	hdev->pdev = pdev;
2098 	hdev->ae_dev = ae_dev;
2099 	ae_dev->priv = hdev;
2100 
2101 	return 0;
2102 }
2103 
2104 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2105 {
2106 	struct hnae3_handle *roce = &hdev->roce;
2107 	struct hnae3_handle *nic = &hdev->nic;
2108 
2109 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2110 
2111 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2112 	    hdev->num_msi_left == 0)
2113 		return -EINVAL;
2114 
2115 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2116 
2117 	roce->rinfo.netdev = nic->kinfo.netdev;
2118 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2119 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2120 
2121 	roce->pdev = nic->pdev;
2122 	roce->ae_algo = nic->ae_algo;
2123 	roce->numa_node_mask = nic->numa_node_mask;
2124 
2125 	return 0;
2126 }
2127 
2128 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2129 {
2130 	struct hclgevf_cfg_gro_status_cmd *req;
2131 	struct hclge_desc desc;
2132 	int ret;
2133 
2134 	if (!hnae3_dev_gro_supported(hdev))
2135 		return 0;
2136 
2137 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2138 				     false);
2139 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2140 
2141 	req->gro_en = hdev->gro_en ? 1 : 0;
2142 
2143 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2144 	if (ret)
2145 		dev_err(&hdev->pdev->dev,
2146 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2147 
2148 	return ret;
2149 }
2150 
2151 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2152 {
2153 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2154 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2155 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2156 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2157 	int ret;
2158 
2159 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2160 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2161 						  rss_cfg->rss_algo,
2162 						  rss_cfg->rss_hash_key);
2163 		if (ret)
2164 			return ret;
2165 
2166 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2167 						     false, rss_cfg);
2168 		if (ret)
2169 			return ret;
2170 	}
2171 
2172 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2173 					     rss_cfg->rss_indirection_tbl);
2174 	if (ret)
2175 		return ret;
2176 
2177 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2178 				   tc_offset, tc_valid, tc_size);
2179 
2180 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2181 					  tc_valid, tc_size);
2182 }
2183 
2184 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2185 {
2186 	struct hnae3_handle *nic = &hdev->nic;
2187 	int ret;
2188 
2189 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2190 	if (ret) {
2191 		dev_err(&hdev->pdev->dev,
2192 			"failed to enable rx vlan offload, ret = %d\n", ret);
2193 		return ret;
2194 	}
2195 
2196 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2197 				       false);
2198 }
2199 
2200 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2201 {
2202 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2203 
2204 	unsigned long last = hdev->serv_processed_cnt;
2205 	int i = 0;
2206 
2207 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2208 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2209 	       last == hdev->serv_processed_cnt)
2210 		usleep_range(1, 1);
2211 }
2212 
2213 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2214 {
2215 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2216 
2217 	if (enable) {
2218 		hclgevf_task_schedule(hdev, 0);
2219 	} else {
2220 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2221 
2222 		/* flush memory to make sure DOWN is seen by service task */
2223 		smp_mb__before_atomic();
2224 		hclgevf_flush_link_update(hdev);
2225 	}
2226 }
2227 
2228 static int hclgevf_ae_start(struct hnae3_handle *handle)
2229 {
2230 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2231 
2232 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2233 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2234 
2235 	hclge_comm_reset_tqp_stats(handle);
2236 
2237 	hclgevf_request_link_info(hdev);
2238 
2239 	hclgevf_update_link_mode(hdev);
2240 
2241 	return 0;
2242 }
2243 
2244 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2245 {
2246 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2247 
2248 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2249 
2250 	if (hdev->reset_type != HNAE3_VF_RESET)
2251 		hclgevf_reset_tqp(handle);
2252 
2253 	hclge_comm_reset_tqp_stats(handle);
2254 	hclgevf_update_link_status(hdev, 0);
2255 }
2256 
2257 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2258 {
2259 #define HCLGEVF_STATE_ALIVE	1
2260 #define HCLGEVF_STATE_NOT_ALIVE	0
2261 
2262 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2263 	struct hclge_vf_to_pf_msg send_msg;
2264 
2265 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2266 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2267 				HCLGEVF_STATE_NOT_ALIVE;
2268 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2269 }
2270 
2271 static int hclgevf_client_start(struct hnae3_handle *handle)
2272 {
2273 	return hclgevf_set_alive(handle, true);
2274 }
2275 
2276 static void hclgevf_client_stop(struct hnae3_handle *handle)
2277 {
2278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2279 	int ret;
2280 
2281 	ret = hclgevf_set_alive(handle, false);
2282 	if (ret)
2283 		dev_warn(&hdev->pdev->dev,
2284 			 "%s failed %d\n", __func__, ret);
2285 }
2286 
2287 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2288 {
2289 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2290 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2291 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2292 
2293 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2294 
2295 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2296 	sema_init(&hdev->reset_sem, 1);
2297 
2298 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2299 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2300 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2301 
2302 	/* bring the device down */
2303 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2304 }
2305 
2306 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2307 {
2308 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2309 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2310 
2311 	if (hdev->service_task.work.func)
2312 		cancel_delayed_work_sync(&hdev->service_task);
2313 
2314 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2315 }
2316 
2317 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2318 {
2319 	struct pci_dev *pdev = hdev->pdev;
2320 	int vectors;
2321 	int i;
2322 
2323 	if (hnae3_dev_roce_supported(hdev))
2324 		vectors = pci_alloc_irq_vectors(pdev,
2325 						hdev->roce_base_msix_offset + 1,
2326 						hdev->num_msi,
2327 						PCI_IRQ_MSIX);
2328 	else
2329 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2330 						hdev->num_msi,
2331 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2332 
2333 	if (vectors < 0) {
2334 		dev_err(&pdev->dev,
2335 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2336 			vectors);
2337 		return vectors;
2338 	}
2339 	if (vectors < hdev->num_msi)
2340 		dev_warn(&hdev->pdev->dev,
2341 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2342 			 hdev->num_msi, vectors);
2343 
2344 	hdev->num_msi = vectors;
2345 	hdev->num_msi_left = vectors;
2346 
2347 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2348 					   sizeof(u16), GFP_KERNEL);
2349 	if (!hdev->vector_status) {
2350 		pci_free_irq_vectors(pdev);
2351 		return -ENOMEM;
2352 	}
2353 
2354 	for (i = 0; i < hdev->num_msi; i++)
2355 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2356 
2357 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2358 					sizeof(int), GFP_KERNEL);
2359 	if (!hdev->vector_irq) {
2360 		devm_kfree(&pdev->dev, hdev->vector_status);
2361 		pci_free_irq_vectors(pdev);
2362 		return -ENOMEM;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2369 {
2370 	struct pci_dev *pdev = hdev->pdev;
2371 
2372 	devm_kfree(&pdev->dev, hdev->vector_status);
2373 	devm_kfree(&pdev->dev, hdev->vector_irq);
2374 	pci_free_irq_vectors(pdev);
2375 }
2376 
2377 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2378 {
2379 	int ret;
2380 
2381 	hclgevf_get_misc_vector(hdev);
2382 
2383 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2384 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2385 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2386 			  0, hdev->misc_vector.name, hdev);
2387 	if (ret) {
2388 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2389 			hdev->misc_vector.vector_irq);
2390 		return ret;
2391 	}
2392 
2393 	hclgevf_clear_event_cause(hdev, 0);
2394 
2395 	/* enable misc. vector(vector 0) */
2396 	hclgevf_enable_vector(&hdev->misc_vector, true);
2397 
2398 	return ret;
2399 }
2400 
2401 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2402 {
2403 	/* disable misc vector(vector 0) */
2404 	hclgevf_enable_vector(&hdev->misc_vector, false);
2405 	synchronize_irq(hdev->misc_vector.vector_irq);
2406 	free_irq(hdev->misc_vector.vector_irq, hdev);
2407 	hclgevf_free_vector(hdev, 0);
2408 }
2409 
2410 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2411 {
2412 	struct device *dev = &hdev->pdev->dev;
2413 
2414 	dev_info(dev, "VF info begin:\n");
2415 
2416 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2417 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2418 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2419 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2420 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2421 	dev_info(dev, "PF media type of this VF: %u\n",
2422 		 hdev->hw.mac.media_type);
2423 
2424 	dev_info(dev, "VF info end.\n");
2425 }
2426 
2427 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2428 					    struct hnae3_client *client)
2429 {
2430 	struct hclgevf_dev *hdev = ae_dev->priv;
2431 	int rst_cnt = hdev->rst_stats.rst_cnt;
2432 	int ret;
2433 
2434 	ret = client->ops->init_instance(&hdev->nic);
2435 	if (ret)
2436 		return ret;
2437 
2438 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2439 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2440 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2441 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2442 
2443 		client->ops->uninit_instance(&hdev->nic, 0);
2444 		return -EBUSY;
2445 	}
2446 
2447 	hnae3_set_client_init_flag(client, ae_dev, 1);
2448 
2449 	if (netif_msg_drv(&hdev->nic))
2450 		hclgevf_info_show(hdev);
2451 
2452 	return 0;
2453 }
2454 
2455 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2456 					     struct hnae3_client *client)
2457 {
2458 	struct hclgevf_dev *hdev = ae_dev->priv;
2459 	int ret;
2460 
2461 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2462 	    !hdev->nic_client)
2463 		return 0;
2464 
2465 	ret = hclgevf_init_roce_base_info(hdev);
2466 	if (ret)
2467 		return ret;
2468 
2469 	ret = client->ops->init_instance(&hdev->roce);
2470 	if (ret)
2471 		return ret;
2472 
2473 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2474 	hnae3_set_client_init_flag(client, ae_dev, 1);
2475 
2476 	return 0;
2477 }
2478 
2479 static int hclgevf_init_client_instance(struct hnae3_client *client,
2480 					struct hnae3_ae_dev *ae_dev)
2481 {
2482 	struct hclgevf_dev *hdev = ae_dev->priv;
2483 	int ret;
2484 
2485 	switch (client->type) {
2486 	case HNAE3_CLIENT_KNIC:
2487 		hdev->nic_client = client;
2488 		hdev->nic.client = client;
2489 
2490 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2491 		if (ret)
2492 			goto clear_nic;
2493 
2494 		ret = hclgevf_init_roce_client_instance(ae_dev,
2495 							hdev->roce_client);
2496 		if (ret)
2497 			goto clear_roce;
2498 
2499 		break;
2500 	case HNAE3_CLIENT_ROCE:
2501 		if (hnae3_dev_roce_supported(hdev)) {
2502 			hdev->roce_client = client;
2503 			hdev->roce.client = client;
2504 		}
2505 
2506 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2507 		if (ret)
2508 			goto clear_roce;
2509 
2510 		break;
2511 	default:
2512 		return -EINVAL;
2513 	}
2514 
2515 	return 0;
2516 
2517 clear_nic:
2518 	hdev->nic_client = NULL;
2519 	hdev->nic.client = NULL;
2520 	return ret;
2521 clear_roce:
2522 	hdev->roce_client = NULL;
2523 	hdev->roce.client = NULL;
2524 	return ret;
2525 }
2526 
2527 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2528 					   struct hnae3_ae_dev *ae_dev)
2529 {
2530 	struct hclgevf_dev *hdev = ae_dev->priv;
2531 
2532 	/* un-init roce, if it exists */
2533 	if (hdev->roce_client) {
2534 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2535 			msleep(HCLGEVF_WAIT_RESET_DONE);
2536 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2537 
2538 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2539 		hdev->roce_client = NULL;
2540 		hdev->roce.client = NULL;
2541 	}
2542 
2543 	/* un-init nic/unic, if this was not called by roce client */
2544 	if (client->ops->uninit_instance && hdev->nic_client &&
2545 	    client->type != HNAE3_CLIENT_ROCE) {
2546 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2547 			msleep(HCLGEVF_WAIT_RESET_DONE);
2548 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2549 
2550 		client->ops->uninit_instance(&hdev->nic, 0);
2551 		hdev->nic_client = NULL;
2552 		hdev->nic.client = NULL;
2553 	}
2554 }
2555 
2556 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2557 {
2558 	struct pci_dev *pdev = hdev->pdev;
2559 	struct hclgevf_hw *hw = &hdev->hw;
2560 
2561 	/* for device does not have device memory, return directly */
2562 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2563 		return 0;
2564 
2565 	hw->hw.mem_base =
2566 		devm_ioremap_wc(&pdev->dev,
2567 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2568 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2569 	if (!hw->hw.mem_base) {
2570 		dev_err(&pdev->dev, "failed to map device memory\n");
2571 		return -EFAULT;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2578 {
2579 	struct pci_dev *pdev = hdev->pdev;
2580 	struct hclgevf_hw *hw;
2581 	int ret;
2582 
2583 	ret = pci_enable_device(pdev);
2584 	if (ret) {
2585 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2586 		return ret;
2587 	}
2588 
2589 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2590 	if (ret) {
2591 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2592 		goto err_disable_device;
2593 	}
2594 
2595 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2596 	if (ret) {
2597 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2598 		goto err_disable_device;
2599 	}
2600 
2601 	pci_set_master(pdev);
2602 	hw = &hdev->hw;
2603 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2604 	if (!hw->hw.io_base) {
2605 		dev_err(&pdev->dev, "can't map configuration register space\n");
2606 		ret = -ENOMEM;
2607 		goto err_clr_master;
2608 	}
2609 
2610 	ret = hclgevf_dev_mem_map(hdev);
2611 	if (ret)
2612 		goto err_unmap_io_base;
2613 
2614 	return 0;
2615 
2616 err_unmap_io_base:
2617 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2618 err_clr_master:
2619 	pci_clear_master(pdev);
2620 	pci_release_regions(pdev);
2621 err_disable_device:
2622 	pci_disable_device(pdev);
2623 
2624 	return ret;
2625 }
2626 
2627 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2628 {
2629 	struct pci_dev *pdev = hdev->pdev;
2630 
2631 	if (hdev->hw.hw.mem_base)
2632 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2633 
2634 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2635 	pci_clear_master(pdev);
2636 	pci_release_regions(pdev);
2637 	pci_disable_device(pdev);
2638 }
2639 
2640 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2641 {
2642 	struct hclgevf_query_res_cmd *req;
2643 	struct hclge_desc desc;
2644 	int ret;
2645 
2646 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2647 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2648 	if (ret) {
2649 		dev_err(&hdev->pdev->dev,
2650 			"query vf resource failed, ret = %d.\n", ret);
2651 		return ret;
2652 	}
2653 
2654 	req = (struct hclgevf_query_res_cmd *)desc.data;
2655 
2656 	if (hnae3_dev_roce_supported(hdev)) {
2657 		hdev->roce_base_msix_offset =
2658 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2659 				HCLGEVF_MSIX_OFT_ROCEE_M,
2660 				HCLGEVF_MSIX_OFT_ROCEE_S);
2661 		hdev->num_roce_msix =
2662 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2663 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2664 
2665 		/* nic's msix numbers is always equals to the roce's. */
2666 		hdev->num_nic_msix = hdev->num_roce_msix;
2667 
2668 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2669 		 * are queued before Roce vectors. The offset is fixed to 64.
2670 		 */
2671 		hdev->num_msi = hdev->num_roce_msix +
2672 				hdev->roce_base_msix_offset;
2673 	} else {
2674 		hdev->num_msi =
2675 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2676 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2677 
2678 		hdev->num_nic_msix = hdev->num_msi;
2679 	}
2680 
2681 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2682 		dev_err(&hdev->pdev->dev,
2683 			"Just %u msi resources, not enough for vf(min:2).\n",
2684 			hdev->num_nic_msix);
2685 		return -EINVAL;
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2692 {
2693 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2694 
2695 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2696 
2697 	ae_dev->dev_specs.max_non_tso_bd_num =
2698 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2699 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2700 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2701 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2702 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2703 }
2704 
2705 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2706 				    struct hclge_desc *desc)
2707 {
2708 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2709 	struct hclgevf_dev_specs_0_cmd *req0;
2710 	struct hclgevf_dev_specs_1_cmd *req1;
2711 
2712 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2713 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2714 
2715 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2716 	ae_dev->dev_specs.rss_ind_tbl_size =
2717 					le16_to_cpu(req0->rss_ind_tbl_size);
2718 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2719 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2720 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2721 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2722 }
2723 
2724 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2725 {
2726 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2727 
2728 	if (!dev_specs->max_non_tso_bd_num)
2729 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2730 	if (!dev_specs->rss_ind_tbl_size)
2731 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2732 	if (!dev_specs->rss_key_size)
2733 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2734 	if (!dev_specs->max_int_gl)
2735 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2736 	if (!dev_specs->max_frm_size)
2737 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2738 }
2739 
2740 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2741 {
2742 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2743 	int ret;
2744 	int i;
2745 
2746 	/* set default specifications as devices lower than version V3 do not
2747 	 * support querying specifications from firmware.
2748 	 */
2749 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2750 		hclgevf_set_default_dev_specs(hdev);
2751 		return 0;
2752 	}
2753 
2754 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2755 		hclgevf_cmd_setup_basic_desc(&desc[i],
2756 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2757 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2758 	}
2759 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2760 
2761 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2762 	if (ret)
2763 		return ret;
2764 
2765 	hclgevf_parse_dev_specs(hdev, desc);
2766 	hclgevf_check_dev_specs(hdev);
2767 
2768 	return 0;
2769 }
2770 
2771 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2772 {
2773 	struct pci_dev *pdev = hdev->pdev;
2774 	int ret = 0;
2775 
2776 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2777 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2778 		hclgevf_misc_irq_uninit(hdev);
2779 		hclgevf_uninit_msi(hdev);
2780 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2781 	}
2782 
2783 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2784 		pci_set_master(pdev);
2785 		ret = hclgevf_init_msi(hdev);
2786 		if (ret) {
2787 			dev_err(&pdev->dev,
2788 				"failed(%d) to init MSI/MSI-X\n", ret);
2789 			return ret;
2790 		}
2791 
2792 		ret = hclgevf_misc_irq_init(hdev);
2793 		if (ret) {
2794 			hclgevf_uninit_msi(hdev);
2795 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2796 				ret);
2797 			return ret;
2798 		}
2799 
2800 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2801 	}
2802 
2803 	return ret;
2804 }
2805 
2806 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2807 {
2808 	struct hclge_vf_to_pf_msg send_msg;
2809 
2810 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2811 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2812 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2813 }
2814 
2815 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2816 {
2817 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2818 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2819 }
2820 
2821 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2822 {
2823 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2824 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2825 }
2826 
2827 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2828 {
2829 	struct pci_dev *pdev = hdev->pdev;
2830 	int ret;
2831 
2832 	ret = hclgevf_pci_reset(hdev);
2833 	if (ret) {
2834 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2835 		return ret;
2836 	}
2837 
2838 	hclgevf_arq_init(hdev);
2839 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2840 				  &hdev->fw_version, false,
2841 				  hdev->reset_pending);
2842 	if (ret) {
2843 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2844 		return ret;
2845 	}
2846 
2847 	ret = hclgevf_rss_init_hw(hdev);
2848 	if (ret) {
2849 		dev_err(&hdev->pdev->dev,
2850 			"failed(%d) to initialize RSS\n", ret);
2851 		return ret;
2852 	}
2853 
2854 	ret = hclgevf_config_gro(hdev);
2855 	if (ret)
2856 		return ret;
2857 
2858 	ret = hclgevf_init_vlan_config(hdev);
2859 	if (ret) {
2860 		dev_err(&hdev->pdev->dev,
2861 			"failed(%d) to initialize VLAN config\n", ret);
2862 		return ret;
2863 	}
2864 
2865 	/* get current port based vlan state from PF */
2866 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2867 	if (ret)
2868 		return ret;
2869 
2870 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2871 
2872 	hclgevf_init_rxd_adv_layout(hdev);
2873 
2874 	dev_info(&hdev->pdev->dev, "Reset done\n");
2875 
2876 	return 0;
2877 }
2878 
2879 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2880 {
2881 	struct pci_dev *pdev = hdev->pdev;
2882 	int ret;
2883 
2884 	ret = hclgevf_pci_init(hdev);
2885 	if (ret)
2886 		return ret;
2887 
2888 	ret = hclgevf_devlink_init(hdev);
2889 	if (ret)
2890 		goto err_devlink_init;
2891 
2892 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2893 	if (ret)
2894 		goto err_cmd_queue_init;
2895 
2896 	hclgevf_arq_init(hdev);
2897 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2898 				  &hdev->fw_version, false,
2899 				  hdev->reset_pending);
2900 	if (ret)
2901 		goto err_cmd_init;
2902 
2903 	/* Get vf resource */
2904 	ret = hclgevf_query_vf_resource(hdev);
2905 	if (ret)
2906 		goto err_cmd_init;
2907 
2908 	ret = hclgevf_query_dev_specs(hdev);
2909 	if (ret) {
2910 		dev_err(&pdev->dev,
2911 			"failed to query dev specifications, ret = %d\n", ret);
2912 		goto err_cmd_init;
2913 	}
2914 
2915 	ret = hclgevf_init_msi(hdev);
2916 	if (ret) {
2917 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2918 		goto err_cmd_init;
2919 	}
2920 
2921 	hclgevf_state_init(hdev);
2922 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2923 	hdev->reset_type = HNAE3_NONE_RESET;
2924 
2925 	ret = hclgevf_misc_irq_init(hdev);
2926 	if (ret)
2927 		goto err_misc_irq_init;
2928 
2929 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2930 
2931 	ret = hclgevf_configure(hdev);
2932 	if (ret) {
2933 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2934 		goto err_config;
2935 	}
2936 
2937 	ret = hclgevf_alloc_tqps(hdev);
2938 	if (ret) {
2939 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2940 		goto err_config;
2941 	}
2942 
2943 	ret = hclgevf_set_handle_info(hdev);
2944 	if (ret)
2945 		goto err_config;
2946 
2947 	ret = hclgevf_config_gro(hdev);
2948 	if (ret)
2949 		goto err_config;
2950 
2951 	/* Initialize RSS for this VF */
2952 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2953 				      &hdev->rss_cfg);
2954 	if (ret) {
2955 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2956 		goto err_config;
2957 	}
2958 
2959 	ret = hclgevf_rss_init_hw(hdev);
2960 	if (ret) {
2961 		dev_err(&hdev->pdev->dev,
2962 			"failed(%d) to initialize RSS\n", ret);
2963 		goto err_config;
2964 	}
2965 
2966 	/* ensure vf tbl list as empty before init*/
2967 	ret = hclgevf_clear_vport_list(hdev);
2968 	if (ret) {
2969 		dev_err(&pdev->dev,
2970 			"failed to clear tbl list configuration, ret = %d.\n",
2971 			ret);
2972 		goto err_config;
2973 	}
2974 
2975 	ret = hclgevf_init_vlan_config(hdev);
2976 	if (ret) {
2977 		dev_err(&hdev->pdev->dev,
2978 			"failed(%d) to initialize VLAN config\n", ret);
2979 		goto err_config;
2980 	}
2981 
2982 	hclgevf_init_rxd_adv_layout(hdev);
2983 
2984 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2985 
2986 	hdev->last_reset_time = jiffies;
2987 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2988 		 HCLGEVF_DRIVER_NAME);
2989 
2990 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2991 
2992 	return 0;
2993 
2994 err_config:
2995 	hclgevf_misc_irq_uninit(hdev);
2996 err_misc_irq_init:
2997 	hclgevf_state_uninit(hdev);
2998 	hclgevf_uninit_msi(hdev);
2999 err_cmd_init:
3000 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3001 err_cmd_queue_init:
3002 	hclgevf_devlink_uninit(hdev);
3003 err_devlink_init:
3004 	hclgevf_pci_uninit(hdev);
3005 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3006 	return ret;
3007 }
3008 
3009 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3010 {
3011 	struct hclge_vf_to_pf_msg send_msg;
3012 
3013 	hclgevf_state_uninit(hdev);
3014 	hclgevf_uninit_rxd_adv_layout(hdev);
3015 
3016 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3017 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3018 
3019 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3020 		hclgevf_misc_irq_uninit(hdev);
3021 		hclgevf_uninit_msi(hdev);
3022 	}
3023 
3024 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3025 	hclgevf_devlink_uninit(hdev);
3026 	hclgevf_pci_uninit(hdev);
3027 	hclgevf_uninit_mac_list(hdev);
3028 }
3029 
3030 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3031 {
3032 	struct pci_dev *pdev = ae_dev->pdev;
3033 	int ret;
3034 
3035 	ret = hclgevf_alloc_hdev(ae_dev);
3036 	if (ret) {
3037 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3038 		return ret;
3039 	}
3040 
3041 	ret = hclgevf_init_hdev(ae_dev->priv);
3042 	if (ret) {
3043 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3044 		return ret;
3045 	}
3046 
3047 	return 0;
3048 }
3049 
3050 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3051 {
3052 	struct hclgevf_dev *hdev = ae_dev->priv;
3053 
3054 	hclgevf_uninit_hdev(hdev);
3055 	ae_dev->priv = NULL;
3056 }
3057 
3058 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3059 {
3060 	struct hnae3_handle *nic = &hdev->nic;
3061 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3062 
3063 	return min_t(u32, hdev->rss_size_max,
3064 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3065 }
3066 
3067 /**
3068  * hclgevf_get_channels - Get the current channels enabled and max supported.
3069  * @handle: hardware information for network interface
3070  * @ch: ethtool channels structure
3071  *
3072  * We don't support separate tx and rx queues as channels. The other count
3073  * represents how many queues are being used for control. max_combined counts
3074  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3075  * q_vectors since we support a lot more queue pairs than q_vectors.
3076  **/
3077 static void hclgevf_get_channels(struct hnae3_handle *handle,
3078 				 struct ethtool_channels *ch)
3079 {
3080 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3081 
3082 	ch->max_combined = hclgevf_get_max_channels(hdev);
3083 	ch->other_count = 0;
3084 	ch->max_other = 0;
3085 	ch->combined_count = handle->kinfo.rss_size;
3086 }
3087 
3088 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3089 					  u16 *alloc_tqps, u16 *max_rss_size)
3090 {
3091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3092 
3093 	*alloc_tqps = hdev->num_tqps;
3094 	*max_rss_size = hdev->rss_size_max;
3095 }
3096 
3097 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3098 				    u32 new_tqps_num)
3099 {
3100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3102 	u16 max_rss_size;
3103 
3104 	kinfo->req_rss_size = new_tqps_num;
3105 
3106 	max_rss_size = min_t(u16, hdev->rss_size_max,
3107 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3108 
3109 	/* Use the user's configuration when it is not larger than
3110 	 * max_rss_size, otherwise, use the maximum specification value.
3111 	 */
3112 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3113 	    kinfo->req_rss_size <= max_rss_size)
3114 		kinfo->rss_size = kinfo->req_rss_size;
3115 	else if (kinfo->rss_size > max_rss_size ||
3116 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3117 		kinfo->rss_size = max_rss_size;
3118 
3119 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3120 }
3121 
3122 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3123 				bool rxfh_configured)
3124 {
3125 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3126 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3127 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3128 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3129 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3130 	u16 cur_rss_size = kinfo->rss_size;
3131 	u16 cur_tqps = kinfo->num_tqps;
3132 	u32 *rss_indir;
3133 	unsigned int i;
3134 	int ret;
3135 
3136 	hclgevf_update_rss_size(handle, new_tqps_num);
3137 
3138 	hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3139 				   tc_offset, tc_valid, tc_size);
3140 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3141 					 tc_valid, tc_size);
3142 	if (ret)
3143 		return ret;
3144 
3145 	/* RSS indirection table has been configured by user */
3146 	if (rxfh_configured)
3147 		goto out;
3148 
3149 	/* Reinitializes the rss indirect table according to the new RSS size */
3150 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3151 			    sizeof(u32), GFP_KERNEL);
3152 	if (!rss_indir)
3153 		return -ENOMEM;
3154 
3155 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3156 		rss_indir[i] = i % kinfo->rss_size;
3157 
3158 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3159 
3160 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3161 	if (ret)
3162 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3163 			ret);
3164 
3165 	kfree(rss_indir);
3166 
3167 out:
3168 	if (!ret)
3169 		dev_info(&hdev->pdev->dev,
3170 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3171 			 cur_rss_size, kinfo->rss_size,
3172 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3173 
3174 	return ret;
3175 }
3176 
3177 static int hclgevf_get_status(struct hnae3_handle *handle)
3178 {
3179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3180 
3181 	return hdev->hw.mac.link;
3182 }
3183 
3184 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3185 					    u8 *auto_neg, u32 *speed,
3186 					    u8 *duplex)
3187 {
3188 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3189 
3190 	if (speed)
3191 		*speed = hdev->hw.mac.speed;
3192 	if (duplex)
3193 		*duplex = hdev->hw.mac.duplex;
3194 	if (auto_neg)
3195 		*auto_neg = AUTONEG_DISABLE;
3196 }
3197 
3198 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3199 				 u8 duplex)
3200 {
3201 	hdev->hw.mac.speed = speed;
3202 	hdev->hw.mac.duplex = duplex;
3203 }
3204 
3205 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3206 {
3207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3208 	bool gro_en_old = hdev->gro_en;
3209 	int ret;
3210 
3211 	hdev->gro_en = enable;
3212 	ret = hclgevf_config_gro(hdev);
3213 	if (ret)
3214 		hdev->gro_en = gro_en_old;
3215 
3216 	return ret;
3217 }
3218 
3219 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3220 				   u8 *module_type)
3221 {
3222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3223 
3224 	if (media_type)
3225 		*media_type = hdev->hw.mac.media_type;
3226 
3227 	if (module_type)
3228 		*module_type = hdev->hw.mac.module_type;
3229 }
3230 
3231 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3232 {
3233 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3234 
3235 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3236 }
3237 
3238 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3239 {
3240 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3241 
3242 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3243 }
3244 
3245 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3246 {
3247 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3248 
3249 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3250 }
3251 
3252 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3253 {
3254 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3255 
3256 	return hdev->rst_stats.hw_rst_done_cnt;
3257 }
3258 
3259 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3260 				  unsigned long *supported,
3261 				  unsigned long *advertising)
3262 {
3263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3264 
3265 	*supported = hdev->hw.mac.supported;
3266 	*advertising = hdev->hw.mac.advertising;
3267 }
3268 
3269 #define MAX_SEPARATE_NUM	4
3270 #define SEPARATOR_VALUE		0xFDFCFBFA
3271 #define REG_NUM_PER_LINE	4
3272 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3273 
3274 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3275 {
3276 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3277 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3278 
3279 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3280 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3281 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3282 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3283 
3284 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3285 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3286 }
3287 
3288 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3289 			     void *data)
3290 {
3291 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3292 	int i, j, reg_um, separator_num;
3293 	u32 *reg = data;
3294 
3295 	*version = hdev->fw_version;
3296 
3297 	/* fetching per-VF registers values from VF PCIe register space */
3298 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3299 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3300 	for (i = 0; i < reg_um; i++)
3301 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3302 	for (i = 0; i < separator_num; i++)
3303 		*reg++ = SEPARATOR_VALUE;
3304 
3305 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3306 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3307 	for (i = 0; i < reg_um; i++)
3308 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3309 	for (i = 0; i < separator_num; i++)
3310 		*reg++ = SEPARATOR_VALUE;
3311 
3312 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3313 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3314 	for (j = 0; j < hdev->num_tqps; j++) {
3315 		for (i = 0; i < reg_um; i++)
3316 			*reg++ = hclgevf_read_dev(&hdev->hw,
3317 						  ring_reg_addr_list[i] +
3318 						  0x200 * j);
3319 		for (i = 0; i < separator_num; i++)
3320 			*reg++ = SEPARATOR_VALUE;
3321 	}
3322 
3323 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3324 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3325 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3326 		for (i = 0; i < reg_um; i++)
3327 			*reg++ = hclgevf_read_dev(&hdev->hw,
3328 						  tqp_intr_reg_addr_list[i] +
3329 						  4 * j);
3330 		for (i = 0; i < separator_num; i++)
3331 			*reg++ = SEPARATOR_VALUE;
3332 	}
3333 }
3334 
3335 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3336 					u8 *port_base_vlan_info, u8 data_size)
3337 {
3338 	struct hnae3_handle *nic = &hdev->nic;
3339 	struct hclge_vf_to_pf_msg send_msg;
3340 	int ret;
3341 
3342 	rtnl_lock();
3343 
3344 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3345 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3346 		dev_warn(&hdev->pdev->dev,
3347 			 "is resetting when updating port based vlan info\n");
3348 		rtnl_unlock();
3349 		return;
3350 	}
3351 
3352 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3353 	if (ret) {
3354 		rtnl_unlock();
3355 		return;
3356 	}
3357 
3358 	/* send msg to PF and wait update port based vlan info */
3359 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3360 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3361 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3362 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3363 	if (!ret) {
3364 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3365 			nic->port_base_vlan_state = state;
3366 		else
3367 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3368 	}
3369 
3370 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3371 	rtnl_unlock();
3372 }
3373 
3374 static const struct hnae3_ae_ops hclgevf_ops = {
3375 	.init_ae_dev = hclgevf_init_ae_dev,
3376 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3377 	.reset_prepare = hclgevf_reset_prepare_general,
3378 	.reset_done = hclgevf_reset_done,
3379 	.init_client_instance = hclgevf_init_client_instance,
3380 	.uninit_client_instance = hclgevf_uninit_client_instance,
3381 	.start = hclgevf_ae_start,
3382 	.stop = hclgevf_ae_stop,
3383 	.client_start = hclgevf_client_start,
3384 	.client_stop = hclgevf_client_stop,
3385 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3386 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3387 	.get_vector = hclgevf_get_vector,
3388 	.put_vector = hclgevf_put_vector,
3389 	.reset_queue = hclgevf_reset_tqp,
3390 	.get_mac_addr = hclgevf_get_mac_addr,
3391 	.set_mac_addr = hclgevf_set_mac_addr,
3392 	.add_uc_addr = hclgevf_add_uc_addr,
3393 	.rm_uc_addr = hclgevf_rm_uc_addr,
3394 	.add_mc_addr = hclgevf_add_mc_addr,
3395 	.rm_mc_addr = hclgevf_rm_mc_addr,
3396 	.get_stats = hclgevf_get_stats,
3397 	.update_stats = hclgevf_update_stats,
3398 	.get_strings = hclgevf_get_strings,
3399 	.get_sset_count = hclgevf_get_sset_count,
3400 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3401 	.get_rss = hclgevf_get_rss,
3402 	.set_rss = hclgevf_set_rss,
3403 	.get_rss_tuple = hclgevf_get_rss_tuple,
3404 	.set_rss_tuple = hclgevf_set_rss_tuple,
3405 	.get_tc_size = hclgevf_get_tc_size,
3406 	.get_fw_version = hclgevf_get_fw_version,
3407 	.set_vlan_filter = hclgevf_set_vlan_filter,
3408 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3409 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3410 	.reset_event = hclgevf_reset_event,
3411 	.set_default_reset_request = hclgevf_set_def_reset_request,
3412 	.set_channels = hclgevf_set_channels,
3413 	.get_channels = hclgevf_get_channels,
3414 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3415 	.get_regs_len = hclgevf_get_regs_len,
3416 	.get_regs = hclgevf_get_regs,
3417 	.get_status = hclgevf_get_status,
3418 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3419 	.get_media_type = hclgevf_get_media_type,
3420 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3421 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3422 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3423 	.set_gro_en = hclgevf_gro_en,
3424 	.set_mtu = hclgevf_set_mtu,
3425 	.get_global_queue_id = hclgevf_get_qid_global,
3426 	.set_timer_task = hclgevf_set_timer_task,
3427 	.get_link_mode = hclgevf_get_link_mode,
3428 	.set_promisc_mode = hclgevf_set_promisc_mode,
3429 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3430 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3431 };
3432 
3433 static struct hnae3_ae_algo ae_algovf = {
3434 	.ops = &hclgevf_ops,
3435 	.pdev_id_table = ae_algovf_pci_tbl,
3436 };
3437 
3438 static int hclgevf_init(void)
3439 {
3440 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3441 
3442 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3443 	if (!hclgevf_wq) {
3444 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3445 		return -ENOMEM;
3446 	}
3447 
3448 	hnae3_register_ae_algo(&ae_algovf);
3449 
3450 	return 0;
3451 }
3452 
3453 static void hclgevf_exit(void)
3454 {
3455 	hnae3_unregister_ae_algo(&ae_algovf);
3456 	destroy_workqueue(hclgevf_wq);
3457 }
3458 module_init(hclgevf_init);
3459 module_exit(hclgevf_exit);
3460 
3461 MODULE_LICENSE("GPL");
3462 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3463 MODULE_DESCRIPTION("HCLGEVF Driver");
3464 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3465