1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	/* after init the max rss_size and tqps, adjust the default tqp numbers
415 	 * and rss size with the actual vector numbers
416 	 */
417 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
418 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
419 				kinfo->rss_size);
420 
421 	return 0;
422 }
423 
424 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
425 {
426 	int status;
427 	u8 resp_msg;
428 
429 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
430 				      0, false, &resp_msg, sizeof(resp_msg));
431 	if (status)
432 		dev_err(&hdev->pdev->dev,
433 			"VF failed to fetch link status(%d) from PF", status);
434 }
435 
436 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
437 {
438 	struct hnae3_handle *rhandle = &hdev->roce;
439 	struct hnae3_handle *handle = &hdev->nic;
440 	struct hnae3_client *rclient;
441 	struct hnae3_client *client;
442 
443 	client = handle->client;
444 	rclient = hdev->roce_client;
445 
446 	link_state =
447 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
448 
449 	if (link_state != hdev->hw.mac.link) {
450 		client->ops->link_status_change(handle, !!link_state);
451 		if (rclient && rclient->ops->link_status_change)
452 			rclient->ops->link_status_change(rhandle, !!link_state);
453 		hdev->hw.mac.link = link_state;
454 	}
455 }
456 
457 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
458 {
459 #define HCLGEVF_ADVERTISING 0
460 #define HCLGEVF_SUPPORTED   1
461 	u8 send_msg;
462 	u8 resp_msg;
463 
464 	send_msg = HCLGEVF_ADVERTISING;
465 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
466 			     &send_msg, sizeof(send_msg), false,
467 			     &resp_msg, sizeof(resp_msg));
468 	send_msg = HCLGEVF_SUPPORTED;
469 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
470 			     &send_msg, sizeof(send_msg), false,
471 			     &resp_msg, sizeof(resp_msg));
472 }
473 
474 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
475 {
476 	struct hnae3_handle *nic = &hdev->nic;
477 	int ret;
478 
479 	nic->ae_algo = &ae_algovf;
480 	nic->pdev = hdev->pdev;
481 	nic->numa_node_mask = hdev->numa_node_mask;
482 	nic->flags |= HNAE3_SUPPORT_VF;
483 
484 	ret = hclgevf_knic_setup(hdev);
485 	if (ret)
486 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
487 			ret);
488 	return ret;
489 }
490 
491 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
492 {
493 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
494 		dev_warn(&hdev->pdev->dev,
495 			 "vector(vector_id %d) has been freed.\n", vector_id);
496 		return;
497 	}
498 
499 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
500 	hdev->num_msi_left += 1;
501 	hdev->num_msi_used -= 1;
502 }
503 
504 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
505 			      struct hnae3_vector_info *vector_info)
506 {
507 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
508 	struct hnae3_vector_info *vector = vector_info;
509 	int alloc = 0;
510 	int i, j;
511 
512 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
513 	vector_num = min(hdev->num_msi_left, vector_num);
514 
515 	for (j = 0; j < vector_num; j++) {
516 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
517 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
518 				vector->vector = pci_irq_vector(hdev->pdev, i);
519 				vector->io_addr = hdev->hw.io_base +
520 					HCLGEVF_VECTOR_REG_BASE +
521 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
522 				hdev->vector_status[i] = 0;
523 				hdev->vector_irq[i] = vector->vector;
524 
525 				vector++;
526 				alloc++;
527 
528 				break;
529 			}
530 		}
531 	}
532 	hdev->num_msi_left -= alloc;
533 	hdev->num_msi_used += alloc;
534 
535 	return alloc;
536 }
537 
538 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
539 {
540 	int i;
541 
542 	for (i = 0; i < hdev->num_msi; i++)
543 		if (vector == hdev->vector_irq[i])
544 			return i;
545 
546 	return -EINVAL;
547 }
548 
549 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
550 				    const u8 hfunc, const u8 *key)
551 {
552 	struct hclgevf_rss_config_cmd *req;
553 	unsigned int key_offset = 0;
554 	struct hclgevf_desc desc;
555 	int key_counts;
556 	int key_size;
557 	int ret;
558 
559 	key_counts = HCLGEVF_RSS_KEY_SIZE;
560 	req = (struct hclgevf_rss_config_cmd *)desc.data;
561 
562 	while (key_counts) {
563 		hclgevf_cmd_setup_basic_desc(&desc,
564 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
565 					     false);
566 
567 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
568 		req->hash_config |=
569 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
570 
571 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
572 		memcpy(req->hash_key,
573 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
574 
575 		key_counts -= key_size;
576 		key_offset++;
577 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
578 		if (ret) {
579 			dev_err(&hdev->pdev->dev,
580 				"Configure RSS config fail, status = %d\n",
581 				ret);
582 			return ret;
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
590 {
591 	return HCLGEVF_RSS_KEY_SIZE;
592 }
593 
594 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
595 {
596 	return HCLGEVF_RSS_IND_TBL_SIZE;
597 }
598 
599 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
600 {
601 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
602 	struct hclgevf_rss_indirection_table_cmd *req;
603 	struct hclgevf_desc desc;
604 	int status;
605 	int i, j;
606 
607 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
608 
609 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
610 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
611 					     false);
612 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
613 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
614 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
615 			req->rss_result[j] =
616 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
617 
618 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
619 		if (status) {
620 			dev_err(&hdev->pdev->dev,
621 				"VF failed(=%d) to set RSS indirection table\n",
622 				status);
623 			return status;
624 		}
625 	}
626 
627 	return 0;
628 }
629 
630 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
631 {
632 	struct hclgevf_rss_tc_mode_cmd *req;
633 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
634 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
635 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
636 	struct hclgevf_desc desc;
637 	u16 roundup_size;
638 	int status;
639 	unsigned int i;
640 
641 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
642 
643 	roundup_size = roundup_pow_of_two(rss_size);
644 	roundup_size = ilog2(roundup_size);
645 
646 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
647 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
648 		tc_size[i] = roundup_size;
649 		tc_offset[i] = rss_size * i;
650 	}
651 
652 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
653 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
654 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
655 			      (tc_valid[i] & 0x1));
656 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
657 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
658 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
659 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
660 	}
661 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
662 	if (status)
663 		dev_err(&hdev->pdev->dev,
664 			"VF failed(=%d) to set rss tc mode\n", status);
665 
666 	return status;
667 }
668 
669 /* for revision 0x20, vf shared the same rss config with pf */
670 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
671 {
672 #define HCLGEVF_RSS_MBX_RESP_LEN	8
673 
674 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
675 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
676 	u16 msg_num, hash_key_index;
677 	u8 index;
678 	int ret;
679 
680 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
681 			HCLGEVF_RSS_MBX_RESP_LEN;
682 	for (index = 0; index < msg_num; index++) {
683 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
684 					   &index, sizeof(index),
685 					   true, resp_msg,
686 					   HCLGEVF_RSS_MBX_RESP_LEN);
687 		if (ret) {
688 			dev_err(&hdev->pdev->dev,
689 				"VF get rss hash key from PF failed, ret=%d",
690 				ret);
691 			return ret;
692 		}
693 
694 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
695 		if (index == msg_num - 1)
696 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
697 			       &resp_msg[0],
698 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
699 		else
700 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
701 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
702 	}
703 
704 	return 0;
705 }
706 
707 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
708 			   u8 *hfunc)
709 {
710 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
711 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
712 	int i, ret;
713 
714 	if (handle->pdev->revision >= 0x21) {
715 		/* Get hash algorithm */
716 		if (hfunc) {
717 			switch (rss_cfg->hash_algo) {
718 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
719 				*hfunc = ETH_RSS_HASH_TOP;
720 				break;
721 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
722 				*hfunc = ETH_RSS_HASH_XOR;
723 				break;
724 			default:
725 				*hfunc = ETH_RSS_HASH_UNKNOWN;
726 				break;
727 			}
728 		}
729 
730 		/* Get the RSS Key required by the user */
731 		if (key)
732 			memcpy(key, rss_cfg->rss_hash_key,
733 			       HCLGEVF_RSS_KEY_SIZE);
734 	} else {
735 		if (hfunc)
736 			*hfunc = ETH_RSS_HASH_TOP;
737 		if (key) {
738 			ret = hclgevf_get_rss_hash_key(hdev);
739 			if (ret)
740 				return ret;
741 			memcpy(key, rss_cfg->rss_hash_key,
742 			       HCLGEVF_RSS_KEY_SIZE);
743 		}
744 	}
745 
746 	if (indir)
747 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
748 			indir[i] = rss_cfg->rss_indirection_tbl[i];
749 
750 	return 0;
751 }
752 
753 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
754 			   const u8 *key, const u8 hfunc)
755 {
756 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
757 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
758 	int ret, i;
759 
760 	if (handle->pdev->revision >= 0x21) {
761 		/* Set the RSS Hash Key if specififed by the user */
762 		if (key) {
763 			switch (hfunc) {
764 			case ETH_RSS_HASH_TOP:
765 				rss_cfg->hash_algo =
766 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
767 				break;
768 			case ETH_RSS_HASH_XOR:
769 				rss_cfg->hash_algo =
770 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
771 				break;
772 			case ETH_RSS_HASH_NO_CHANGE:
773 				break;
774 			default:
775 				return -EINVAL;
776 			}
777 
778 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
779 						       key);
780 			if (ret)
781 				return ret;
782 
783 			/* Update the shadow RSS key with user specified qids */
784 			memcpy(rss_cfg->rss_hash_key, key,
785 			       HCLGEVF_RSS_KEY_SIZE);
786 		}
787 	}
788 
789 	/* update the shadow RSS table with user specified qids */
790 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
791 		rss_cfg->rss_indirection_tbl[i] = indir[i];
792 
793 	/* update the hardware */
794 	return hclgevf_set_rss_indir_table(hdev);
795 }
796 
797 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
798 {
799 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
800 
801 	if (nfc->data & RXH_L4_B_2_3)
802 		hash_sets |= HCLGEVF_D_PORT_BIT;
803 	else
804 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
805 
806 	if (nfc->data & RXH_IP_SRC)
807 		hash_sets |= HCLGEVF_S_IP_BIT;
808 	else
809 		hash_sets &= ~HCLGEVF_S_IP_BIT;
810 
811 	if (nfc->data & RXH_IP_DST)
812 		hash_sets |= HCLGEVF_D_IP_BIT;
813 	else
814 		hash_sets &= ~HCLGEVF_D_IP_BIT;
815 
816 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
817 		hash_sets |= HCLGEVF_V_TAG_BIT;
818 
819 	return hash_sets;
820 }
821 
822 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
823 				 struct ethtool_rxnfc *nfc)
824 {
825 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
826 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
827 	struct hclgevf_rss_input_tuple_cmd *req;
828 	struct hclgevf_desc desc;
829 	u8 tuple_sets;
830 	int ret;
831 
832 	if (handle->pdev->revision == 0x20)
833 		return -EOPNOTSUPP;
834 
835 	if (nfc->data &
836 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
837 		return -EINVAL;
838 
839 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
840 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
841 
842 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
843 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
844 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
845 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
846 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
847 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
848 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
849 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
850 
851 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
852 	switch (nfc->flow_type) {
853 	case TCP_V4_FLOW:
854 		req->ipv4_tcp_en = tuple_sets;
855 		break;
856 	case TCP_V6_FLOW:
857 		req->ipv6_tcp_en = tuple_sets;
858 		break;
859 	case UDP_V4_FLOW:
860 		req->ipv4_udp_en = tuple_sets;
861 		break;
862 	case UDP_V6_FLOW:
863 		req->ipv6_udp_en = tuple_sets;
864 		break;
865 	case SCTP_V4_FLOW:
866 		req->ipv4_sctp_en = tuple_sets;
867 		break;
868 	case SCTP_V6_FLOW:
869 		if ((nfc->data & RXH_L4_B_0_1) ||
870 		    (nfc->data & RXH_L4_B_2_3))
871 			return -EINVAL;
872 
873 		req->ipv6_sctp_en = tuple_sets;
874 		break;
875 	case IPV4_FLOW:
876 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
877 		break;
878 	case IPV6_FLOW:
879 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
880 		break;
881 	default:
882 		return -EINVAL;
883 	}
884 
885 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
886 	if (ret) {
887 		dev_err(&hdev->pdev->dev,
888 			"Set rss tuple fail, status = %d\n", ret);
889 		return ret;
890 	}
891 
892 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
893 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
894 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
895 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
896 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
897 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
898 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
899 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
900 	return 0;
901 }
902 
903 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
904 				 struct ethtool_rxnfc *nfc)
905 {
906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
908 	u8 tuple_sets;
909 
910 	if (handle->pdev->revision == 0x20)
911 		return -EOPNOTSUPP;
912 
913 	nfc->data = 0;
914 
915 	switch (nfc->flow_type) {
916 	case TCP_V4_FLOW:
917 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
918 		break;
919 	case UDP_V4_FLOW:
920 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
921 		break;
922 	case TCP_V6_FLOW:
923 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
924 		break;
925 	case UDP_V6_FLOW:
926 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
927 		break;
928 	case SCTP_V4_FLOW:
929 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
930 		break;
931 	case SCTP_V6_FLOW:
932 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
933 		break;
934 	case IPV4_FLOW:
935 	case IPV6_FLOW:
936 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
937 		break;
938 	default:
939 		return -EINVAL;
940 	}
941 
942 	if (!tuple_sets)
943 		return 0;
944 
945 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
946 		nfc->data |= RXH_L4_B_2_3;
947 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
948 		nfc->data |= RXH_L4_B_0_1;
949 	if (tuple_sets & HCLGEVF_D_IP_BIT)
950 		nfc->data |= RXH_IP_DST;
951 	if (tuple_sets & HCLGEVF_S_IP_BIT)
952 		nfc->data |= RXH_IP_SRC;
953 
954 	return 0;
955 }
956 
957 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
958 				       struct hclgevf_rss_cfg *rss_cfg)
959 {
960 	struct hclgevf_rss_input_tuple_cmd *req;
961 	struct hclgevf_desc desc;
962 	int ret;
963 
964 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
965 
966 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
967 
968 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
969 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
970 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
971 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
972 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
973 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
974 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
975 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
976 
977 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
978 	if (ret)
979 		dev_err(&hdev->pdev->dev,
980 			"Configure rss input fail, status = %d\n", ret);
981 	return ret;
982 }
983 
984 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
985 {
986 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
987 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
988 
989 	return rss_cfg->rss_size;
990 }
991 
992 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
993 				       int vector_id,
994 				       struct hnae3_ring_chain_node *ring_chain)
995 {
996 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
997 	struct hnae3_ring_chain_node *node;
998 	struct hclge_mbx_vf_to_pf_cmd *req;
999 	struct hclgevf_desc desc;
1000 	int i = 0;
1001 	int status;
1002 	u8 type;
1003 
1004 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1005 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1006 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1007 
1008 	for (node = ring_chain; node; node = node->next) {
1009 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1010 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1011 
1012 		if (i == 0) {
1013 			hclgevf_cmd_setup_basic_desc(&desc,
1014 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1015 						     false);
1016 			req->msg[0] = type;
1017 			req->msg[1] = vector_id;
1018 		}
1019 
1020 		req->msg[idx_offset] =
1021 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1022 		req->msg[idx_offset + 1] = node->tqp_index;
1023 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1024 							   HNAE3_RING_GL_IDX_M,
1025 							   HNAE3_RING_GL_IDX_S);
1026 
1027 		i++;
1028 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1029 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1030 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1031 		    !node->next) {
1032 			req->msg[2] = i;
1033 
1034 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1035 			if (status) {
1036 				dev_err(&hdev->pdev->dev,
1037 					"Map TQP fail, status is %d.\n",
1038 					status);
1039 				return status;
1040 			}
1041 			i = 0;
1042 			hclgevf_cmd_setup_basic_desc(&desc,
1043 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1044 						     false);
1045 			req->msg[0] = type;
1046 			req->msg[1] = vector_id;
1047 		}
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1054 				      struct hnae3_ring_chain_node *ring_chain)
1055 {
1056 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1057 	int vector_id;
1058 
1059 	vector_id = hclgevf_get_vector_index(hdev, vector);
1060 	if (vector_id < 0) {
1061 		dev_err(&handle->pdev->dev,
1062 			"Get vector index fail. ret =%d\n", vector_id);
1063 		return vector_id;
1064 	}
1065 
1066 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1067 }
1068 
1069 static int hclgevf_unmap_ring_from_vector(
1070 				struct hnae3_handle *handle,
1071 				int vector,
1072 				struct hnae3_ring_chain_node *ring_chain)
1073 {
1074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1075 	int ret, vector_id;
1076 
1077 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1078 		return 0;
1079 
1080 	vector_id = hclgevf_get_vector_index(hdev, vector);
1081 	if (vector_id < 0) {
1082 		dev_err(&handle->pdev->dev,
1083 			"Get vector index fail. ret =%d\n", vector_id);
1084 		return vector_id;
1085 	}
1086 
1087 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1088 	if (ret)
1089 		dev_err(&handle->pdev->dev,
1090 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1091 			vector_id,
1092 			ret);
1093 
1094 	return ret;
1095 }
1096 
1097 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1098 {
1099 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1100 	int vector_id;
1101 
1102 	vector_id = hclgevf_get_vector_index(hdev, vector);
1103 	if (vector_id < 0) {
1104 		dev_err(&handle->pdev->dev,
1105 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1106 			vector_id);
1107 		return vector_id;
1108 	}
1109 
1110 	hclgevf_free_vector(hdev, vector_id);
1111 
1112 	return 0;
1113 }
1114 
1115 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1116 					bool en_bc_pmc)
1117 {
1118 	struct hclge_mbx_vf_to_pf_cmd *req;
1119 	struct hclgevf_desc desc;
1120 	int ret;
1121 
1122 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1123 
1124 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1125 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1126 	req->msg[1] = en_bc_pmc ? 1 : 0;
1127 
1128 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1129 	if (ret)
1130 		dev_err(&hdev->pdev->dev,
1131 			"Set promisc mode fail, status is %d.\n", ret);
1132 
1133 	return ret;
1134 }
1135 
1136 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1137 {
1138 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1139 }
1140 
1141 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1142 			      int stream_id, bool enable)
1143 {
1144 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1145 	struct hclgevf_desc desc;
1146 	int status;
1147 
1148 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1149 
1150 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1151 				     false);
1152 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1153 	req->stream_id = cpu_to_le16(stream_id);
1154 	if (enable)
1155 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1156 
1157 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1158 	if (status)
1159 		dev_err(&hdev->pdev->dev,
1160 			"TQP enable fail, status =%d.\n", status);
1161 
1162 	return status;
1163 }
1164 
1165 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1166 {
1167 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1168 	struct hclgevf_tqp *tqp;
1169 	int i;
1170 
1171 	for (i = 0; i < kinfo->num_tqps; i++) {
1172 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1173 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1174 	}
1175 }
1176 
1177 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1178 {
1179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180 
1181 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1182 }
1183 
1184 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1185 				bool is_first)
1186 {
1187 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1188 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1189 	u8 *new_mac_addr = (u8 *)p;
1190 	u8 msg_data[ETH_ALEN * 2];
1191 	u16 subcode;
1192 	int status;
1193 
1194 	ether_addr_copy(msg_data, new_mac_addr);
1195 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1196 
1197 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1198 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1199 
1200 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1201 				      subcode, msg_data, sizeof(msg_data),
1202 				      true, NULL, 0);
1203 	if (!status)
1204 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1205 
1206 	return status;
1207 }
1208 
1209 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1210 			       const unsigned char *addr)
1211 {
1212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1213 
1214 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1215 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1216 				    addr, ETH_ALEN, false, NULL, 0);
1217 }
1218 
1219 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1220 			      const unsigned char *addr)
1221 {
1222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1223 
1224 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1225 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1226 				    addr, ETH_ALEN, false, NULL, 0);
1227 }
1228 
1229 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1230 			       const unsigned char *addr)
1231 {
1232 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1233 
1234 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1235 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1236 				    addr, ETH_ALEN, false, NULL, 0);
1237 }
1238 
1239 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1240 			      const unsigned char *addr)
1241 {
1242 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1243 
1244 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1245 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1246 				    addr, ETH_ALEN, false, NULL, 0);
1247 }
1248 
1249 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1250 				   __be16 proto, u16 vlan_id,
1251 				   bool is_kill)
1252 {
1253 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1254 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1255 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1256 	int ret;
1257 
1258 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1259 		return -EINVAL;
1260 
1261 	if (proto != htons(ETH_P_8021Q))
1262 		return -EPROTONOSUPPORT;
1263 
1264 	/* When device is resetting, firmware is unable to handle
1265 	 * mailbox. Just record the vlan id, and remove it after
1266 	 * reset finished.
1267 	 */
1268 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1269 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1270 		return -EBUSY;
1271 	}
1272 
1273 	msg_data[0] = is_kill;
1274 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1275 	memcpy(&msg_data[3], &proto, sizeof(proto));
1276 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1277 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1278 				   HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1279 
1280 	/* when remove hw vlan filter failed, record the vlan id,
1281 	 * and try to remove it from hw later, to be consistence
1282 	 * with stack.
1283 	 */
1284 	if (is_kill && ret)
1285 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1286 
1287 	return ret;
1288 }
1289 
1290 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1291 {
1292 #define HCLGEVF_MAX_SYNC_COUNT	60
1293 	struct hnae3_handle *handle = &hdev->nic;
1294 	int ret, sync_cnt = 0;
1295 	u16 vlan_id;
1296 
1297 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1298 	while (vlan_id != VLAN_N_VID) {
1299 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1300 					      vlan_id, true);
1301 		if (ret)
1302 			return;
1303 
1304 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1305 		sync_cnt++;
1306 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1307 			return;
1308 
1309 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1310 	}
1311 }
1312 
1313 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1314 {
1315 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1316 	u8 msg_data;
1317 
1318 	msg_data = enable ? 1 : 0;
1319 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1320 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1321 				    1, false, NULL, 0);
1322 }
1323 
1324 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1325 {
1326 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1327 	u8 msg_data[2];
1328 	int ret;
1329 
1330 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1331 
1332 	/* disable vf queue before send queue reset msg to PF */
1333 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1334 	if (ret)
1335 		return ret;
1336 
1337 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1338 				    sizeof(msg_data), true, NULL, 0);
1339 }
1340 
1341 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1342 {
1343 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1344 
1345 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1346 				    sizeof(new_mtu), true, NULL, 0);
1347 }
1348 
1349 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1350 				 enum hnae3_reset_notify_type type)
1351 {
1352 	struct hnae3_client *client = hdev->nic_client;
1353 	struct hnae3_handle *handle = &hdev->nic;
1354 	int ret;
1355 
1356 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1357 	    !client)
1358 		return 0;
1359 
1360 	if (!client->ops->reset_notify)
1361 		return -EOPNOTSUPP;
1362 
1363 	ret = client->ops->reset_notify(handle, type);
1364 	if (ret)
1365 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1366 			type, ret);
1367 
1368 	return ret;
1369 }
1370 
1371 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1372 {
1373 	struct hclgevf_dev *hdev = ae_dev->priv;
1374 
1375 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1376 }
1377 
1378 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1379 				    unsigned long delay_us,
1380 				    unsigned long wait_cnt)
1381 {
1382 	unsigned long cnt = 0;
1383 
1384 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1385 	       cnt++ < wait_cnt)
1386 		usleep_range(delay_us, delay_us * 2);
1387 
1388 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1389 		dev_err(&hdev->pdev->dev,
1390 			"flr wait timeout\n");
1391 		return -ETIMEDOUT;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1398 {
1399 #define HCLGEVF_RESET_WAIT_US	20000
1400 #define HCLGEVF_RESET_WAIT_CNT	2000
1401 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1402 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1403 
1404 	u32 val;
1405 	int ret;
1406 
1407 	if (hdev->reset_type == HNAE3_FLR_RESET)
1408 		return hclgevf_flr_poll_timeout(hdev,
1409 						HCLGEVF_RESET_WAIT_US,
1410 						HCLGEVF_RESET_WAIT_CNT);
1411 	else if (hdev->reset_type == HNAE3_VF_RESET)
1412 		ret = readl_poll_timeout(hdev->hw.io_base +
1413 					 HCLGEVF_VF_RST_ING, val,
1414 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1415 					 HCLGEVF_RESET_WAIT_US,
1416 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1417 	else
1418 		ret = readl_poll_timeout(hdev->hw.io_base +
1419 					 HCLGEVF_RST_ING, val,
1420 					 !(val & HCLGEVF_RST_ING_BITS),
1421 					 HCLGEVF_RESET_WAIT_US,
1422 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1423 
1424 	/* hardware completion status should be available by this time */
1425 	if (ret) {
1426 		dev_err(&hdev->pdev->dev,
1427 			"could'nt get reset done status from h/w, timeout!\n");
1428 		return ret;
1429 	}
1430 
1431 	/* we will wait a bit more to let reset of the stack to complete. This
1432 	 * might happen in case reset assertion was made by PF. Yes, this also
1433 	 * means we might end up waiting bit more even for VF reset.
1434 	 */
1435 	msleep(5000);
1436 
1437 	return 0;
1438 }
1439 
1440 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1441 {
1442 	u32 reg_val;
1443 
1444 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1445 	if (enable)
1446 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1447 	else
1448 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1449 
1450 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1451 			  reg_val);
1452 }
1453 
1454 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1455 {
1456 	int ret;
1457 
1458 	/* uninitialize the nic client */
1459 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1460 	if (ret)
1461 		return ret;
1462 
1463 	/* re-initialize the hclge device */
1464 	ret = hclgevf_reset_hdev(hdev);
1465 	if (ret) {
1466 		dev_err(&hdev->pdev->dev,
1467 			"hclge device re-init failed, VF is disabled!\n");
1468 		return ret;
1469 	}
1470 
1471 	/* bring up the nic client again */
1472 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1473 	if (ret)
1474 		return ret;
1475 
1476 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1477 	if (ret)
1478 		return ret;
1479 
1480 	/* clear handshake status with IMP */
1481 	hclgevf_reset_handshake(hdev, false);
1482 
1483 	return 0;
1484 }
1485 
1486 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1487 {
1488 #define HCLGEVF_RESET_SYNC_TIME 100
1489 
1490 	int ret = 0;
1491 
1492 	switch (hdev->reset_type) {
1493 	case HNAE3_VF_FUNC_RESET:
1494 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1495 					   0, true, NULL, sizeof(u8));
1496 		hdev->rst_stats.vf_func_rst_cnt++;
1497 		break;
1498 	case HNAE3_FLR_RESET:
1499 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1500 		hdev->rst_stats.flr_rst_cnt++;
1501 		break;
1502 	default:
1503 		break;
1504 	}
1505 
1506 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1507 	/* inform hardware that preparatory work is done */
1508 	msleep(HCLGEVF_RESET_SYNC_TIME);
1509 	hclgevf_reset_handshake(hdev, true);
1510 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1511 		 hdev->reset_type, ret);
1512 
1513 	return ret;
1514 }
1515 
1516 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1517 {
1518 	/* recover handshake status with IMP when reset fail */
1519 	hclgevf_reset_handshake(hdev, true);
1520 	hdev->rst_stats.rst_fail_cnt++;
1521 	dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1522 		hdev->rst_stats.rst_fail_cnt);
1523 
1524 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1525 		set_bit(hdev->reset_type, &hdev->reset_pending);
1526 
1527 	if (hclgevf_is_reset_pending(hdev)) {
1528 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1529 		hclgevf_reset_task_schedule(hdev);
1530 	}
1531 }
1532 
1533 static int hclgevf_reset(struct hclgevf_dev *hdev)
1534 {
1535 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1536 	int ret;
1537 
1538 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1539 	 * know if device is undergoing reset
1540 	 */
1541 	ae_dev->reset_type = hdev->reset_type;
1542 	hdev->rst_stats.rst_cnt++;
1543 	rtnl_lock();
1544 
1545 	/* bring down the nic to stop any ongoing TX/RX */
1546 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1547 	if (ret)
1548 		goto err_reset_lock;
1549 
1550 	rtnl_unlock();
1551 
1552 	ret = hclgevf_reset_prepare_wait(hdev);
1553 	if (ret)
1554 		goto err_reset;
1555 
1556 	/* check if VF could successfully fetch the hardware reset completion
1557 	 * status from the hardware
1558 	 */
1559 	ret = hclgevf_reset_wait(hdev);
1560 	if (ret) {
1561 		/* can't do much in this situation, will disable VF */
1562 		dev_err(&hdev->pdev->dev,
1563 			"VF failed(=%d) to fetch H/W reset completion status\n",
1564 			ret);
1565 		goto err_reset;
1566 	}
1567 
1568 	hdev->rst_stats.hw_rst_done_cnt++;
1569 
1570 	rtnl_lock();
1571 
1572 	/* now, re-initialize the nic client and ae device */
1573 	ret = hclgevf_reset_stack(hdev);
1574 	if (ret) {
1575 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1576 		goto err_reset_lock;
1577 	}
1578 
1579 	/* bring up the nic to enable TX/RX again */
1580 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1581 	if (ret)
1582 		goto err_reset_lock;
1583 
1584 	rtnl_unlock();
1585 
1586 	hdev->last_reset_time = jiffies;
1587 	ae_dev->reset_type = HNAE3_NONE_RESET;
1588 	hdev->rst_stats.rst_done_cnt++;
1589 	hdev->rst_stats.rst_fail_cnt = 0;
1590 
1591 	return ret;
1592 err_reset_lock:
1593 	rtnl_unlock();
1594 err_reset:
1595 	hclgevf_reset_err_handle(hdev);
1596 
1597 	return ret;
1598 }
1599 
1600 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1601 						     unsigned long *addr)
1602 {
1603 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1604 
1605 	/* return the highest priority reset level amongst all */
1606 	if (test_bit(HNAE3_VF_RESET, addr)) {
1607 		rst_level = HNAE3_VF_RESET;
1608 		clear_bit(HNAE3_VF_RESET, addr);
1609 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1610 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1611 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1612 		rst_level = HNAE3_VF_FULL_RESET;
1613 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1614 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1615 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1616 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1617 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1618 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1619 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1620 		rst_level = HNAE3_VF_FUNC_RESET;
1621 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1622 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1623 		rst_level = HNAE3_FLR_RESET;
1624 		clear_bit(HNAE3_FLR_RESET, addr);
1625 	}
1626 
1627 	return rst_level;
1628 }
1629 
1630 static void hclgevf_reset_event(struct pci_dev *pdev,
1631 				struct hnae3_handle *handle)
1632 {
1633 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1634 	struct hclgevf_dev *hdev = ae_dev->priv;
1635 
1636 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1637 
1638 	if (hdev->default_reset_request)
1639 		hdev->reset_level =
1640 			hclgevf_get_reset_level(hdev,
1641 						&hdev->default_reset_request);
1642 	else
1643 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1644 
1645 	/* reset of this VF requested */
1646 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1647 	hclgevf_reset_task_schedule(hdev);
1648 
1649 	hdev->last_reset_time = jiffies;
1650 }
1651 
1652 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1653 					  enum hnae3_reset_type rst_type)
1654 {
1655 	struct hclgevf_dev *hdev = ae_dev->priv;
1656 
1657 	set_bit(rst_type, &hdev->default_reset_request);
1658 }
1659 
1660 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1661 {
1662 #define HCLGEVF_FLR_WAIT_MS	100
1663 #define HCLGEVF_FLR_WAIT_CNT	50
1664 	struct hclgevf_dev *hdev = ae_dev->priv;
1665 	int cnt = 0;
1666 
1667 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1668 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1669 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1670 	hclgevf_reset_event(hdev->pdev, NULL);
1671 
1672 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1673 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1674 		msleep(HCLGEVF_FLR_WAIT_MS);
1675 
1676 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1677 		dev_err(&hdev->pdev->dev,
1678 			"flr wait down timeout: %d\n", cnt);
1679 }
1680 
1681 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1682 {
1683 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1684 
1685 	return hdev->fw_version;
1686 }
1687 
1688 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1689 {
1690 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1691 
1692 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1693 					    HCLGEVF_MISC_VECTOR_NUM);
1694 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1695 	/* vector status always valid for Vector 0 */
1696 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1697 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1698 
1699 	hdev->num_msi_left -= 1;
1700 	hdev->num_msi_used += 1;
1701 }
1702 
1703 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1704 {
1705 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1706 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1707 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1708 		schedule_work(&hdev->rst_service_task);
1709 	}
1710 }
1711 
1712 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1713 {
1714 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1715 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1716 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1717 		schedule_work(&hdev->mbx_service_task);
1718 	}
1719 }
1720 
1721 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1722 {
1723 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1724 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1725 		schedule_work(&hdev->service_task);
1726 }
1727 
1728 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1729 {
1730 	/* if we have any pending mailbox event then schedule the mbx task */
1731 	if (hdev->mbx_event_pending)
1732 		hclgevf_mbx_task_schedule(hdev);
1733 
1734 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1735 		hclgevf_reset_task_schedule(hdev);
1736 }
1737 
1738 static void hclgevf_service_timer(struct timer_list *t)
1739 {
1740 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1741 
1742 	mod_timer(&hdev->service_timer, jiffies +
1743 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1744 
1745 	hdev->stats_timer++;
1746 	hclgevf_task_schedule(hdev);
1747 }
1748 
1749 static void hclgevf_reset_service_task(struct work_struct *work)
1750 {
1751 	struct hclgevf_dev *hdev =
1752 		container_of(work, struct hclgevf_dev, rst_service_task);
1753 	int ret;
1754 
1755 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1756 		return;
1757 
1758 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1759 
1760 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1761 			       &hdev->reset_state)) {
1762 		/* PF has initmated that it is about to reset the hardware.
1763 		 * We now have to poll & check if hardware has actually
1764 		 * completed the reset sequence. On hardware reset completion,
1765 		 * VF needs to reset the client and ae device.
1766 		 */
1767 		hdev->reset_attempts = 0;
1768 
1769 		hdev->last_reset_time = jiffies;
1770 		while ((hdev->reset_type =
1771 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1772 		       != HNAE3_NONE_RESET) {
1773 			ret = hclgevf_reset(hdev);
1774 			if (ret)
1775 				dev_err(&hdev->pdev->dev,
1776 					"VF stack reset failed %d.\n", ret);
1777 		}
1778 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1779 				      &hdev->reset_state)) {
1780 		/* we could be here when either of below happens:
1781 		 * 1. reset was initiated due to watchdog timeout caused by
1782 		 *    a. IMP was earlier reset and our TX got choked down and
1783 		 *       which resulted in watchdog reacting and inducing VF
1784 		 *       reset. This also means our cmdq would be unreliable.
1785 		 *    b. problem in TX due to other lower layer(example link
1786 		 *       layer not functioning properly etc.)
1787 		 * 2. VF reset might have been initiated due to some config
1788 		 *    change.
1789 		 *
1790 		 * NOTE: Theres no clear way to detect above cases than to react
1791 		 * to the response of PF for this reset request. PF will ack the
1792 		 * 1b and 2. cases but we will not get any intimation about 1a
1793 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1794 		 * communication between PF and VF would be broken.
1795 		 *
1796 		 * if we are never geting into pending state it means either:
1797 		 * 1. PF is not receiving our request which could be due to IMP
1798 		 *    reset
1799 		 * 2. PF is screwed
1800 		 * We cannot do much for 2. but to check first we can try reset
1801 		 * our PCIe + stack and see if it alleviates the problem.
1802 		 */
1803 		if (hdev->reset_attempts > 3) {
1804 			/* prepare for full reset of stack + pcie interface */
1805 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1806 
1807 			/* "defer" schedule the reset task again */
1808 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1809 		} else {
1810 			hdev->reset_attempts++;
1811 
1812 			set_bit(hdev->reset_level, &hdev->reset_pending);
1813 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1814 		}
1815 		hclgevf_reset_task_schedule(hdev);
1816 	}
1817 
1818 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1819 }
1820 
1821 static void hclgevf_mailbox_service_task(struct work_struct *work)
1822 {
1823 	struct hclgevf_dev *hdev;
1824 
1825 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1826 
1827 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1828 		return;
1829 
1830 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1831 
1832 	hclgevf_mbx_async_handler(hdev);
1833 
1834 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1835 }
1836 
1837 static void hclgevf_keep_alive_timer(struct timer_list *t)
1838 {
1839 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1840 
1841 	schedule_work(&hdev->keep_alive_task);
1842 	mod_timer(&hdev->keep_alive_timer, jiffies +
1843 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1844 }
1845 
1846 static void hclgevf_keep_alive_task(struct work_struct *work)
1847 {
1848 	struct hclgevf_dev *hdev;
1849 	u8 respmsg;
1850 	int ret;
1851 
1852 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1853 
1854 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1855 		return;
1856 
1857 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1858 				   0, false, &respmsg, sizeof(respmsg));
1859 	if (ret)
1860 		dev_err(&hdev->pdev->dev,
1861 			"VF sends keep alive cmd failed(=%d)\n", ret);
1862 }
1863 
1864 static void hclgevf_service_task(struct work_struct *work)
1865 {
1866 	struct hnae3_handle *handle;
1867 	struct hclgevf_dev *hdev;
1868 
1869 	hdev = container_of(work, struct hclgevf_dev, service_task);
1870 	handle = &hdev->nic;
1871 
1872 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1873 		hclgevf_tqps_update_stats(handle);
1874 		hdev->stats_timer = 0;
1875 	}
1876 
1877 	/* request the link status from the PF. PF would be able to tell VF
1878 	 * about such updates in future so we might remove this later
1879 	 */
1880 	hclgevf_request_link_info(hdev);
1881 
1882 	hclgevf_update_link_mode(hdev);
1883 
1884 	hclgevf_sync_vlan_filter(hdev);
1885 
1886 	hclgevf_deferred_task_schedule(hdev);
1887 
1888 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1889 }
1890 
1891 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1892 {
1893 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1894 }
1895 
1896 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1897 						      u32 *clearval)
1898 {
1899 	u32 val, cmdq_stat_reg, rst_ing_reg;
1900 
1901 	/* fetch the events from their corresponding regs */
1902 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1903 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1904 
1905 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1906 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1907 		dev_info(&hdev->pdev->dev,
1908 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1909 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1910 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1911 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1912 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1913 		hdev->rst_stats.vf_rst_cnt++;
1914 		/* set up VF hardware reset status, its PF will clear
1915 		 * this status when PF has initialized done.
1916 		 */
1917 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1918 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1919 				  val | HCLGEVF_VF_RST_ING_BIT);
1920 		return HCLGEVF_VECTOR0_EVENT_RST;
1921 	}
1922 
1923 	/* check for vector0 mailbox(=CMDQ RX) event source */
1924 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1925 		/* for revision 0x21, clearing interrupt is writing bit 0
1926 		 * to the clear register, writing bit 1 means to keep the
1927 		 * old value.
1928 		 * for revision 0x20, the clear register is a read & write
1929 		 * register, so we should just write 0 to the bit we are
1930 		 * handling, and keep other bits as cmdq_stat_reg.
1931 		 */
1932 		if (hdev->pdev->revision >= 0x21)
1933 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1934 		else
1935 			*clearval = cmdq_stat_reg &
1936 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1937 
1938 		return HCLGEVF_VECTOR0_EVENT_MBX;
1939 	}
1940 
1941 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1942 
1943 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1944 }
1945 
1946 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1947 {
1948 	writel(en ? 1 : 0, vector->addr);
1949 }
1950 
1951 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1952 {
1953 	enum hclgevf_evt_cause event_cause;
1954 	struct hclgevf_dev *hdev = data;
1955 	u32 clearval;
1956 
1957 	hclgevf_enable_vector(&hdev->misc_vector, false);
1958 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1959 
1960 	switch (event_cause) {
1961 	case HCLGEVF_VECTOR0_EVENT_RST:
1962 		hclgevf_reset_task_schedule(hdev);
1963 		break;
1964 	case HCLGEVF_VECTOR0_EVENT_MBX:
1965 		hclgevf_mbx_handler(hdev);
1966 		break;
1967 	default:
1968 		break;
1969 	}
1970 
1971 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1972 		hclgevf_clear_event_cause(hdev, clearval);
1973 		hclgevf_enable_vector(&hdev->misc_vector, true);
1974 	}
1975 
1976 	return IRQ_HANDLED;
1977 }
1978 
1979 static int hclgevf_configure(struct hclgevf_dev *hdev)
1980 {
1981 	int ret;
1982 
1983 	/* get current port based vlan state from PF */
1984 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1985 	if (ret)
1986 		return ret;
1987 
1988 	/* get queue configuration from PF */
1989 	ret = hclgevf_get_queue_info(hdev);
1990 	if (ret)
1991 		return ret;
1992 
1993 	/* get queue depth info from PF */
1994 	ret = hclgevf_get_queue_depth(hdev);
1995 	if (ret)
1996 		return ret;
1997 
1998 	ret = hclgevf_get_pf_media_type(hdev);
1999 	if (ret)
2000 		return ret;
2001 
2002 	/* get tc configuration from PF */
2003 	return hclgevf_get_tc_info(hdev);
2004 }
2005 
2006 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2007 {
2008 	struct pci_dev *pdev = ae_dev->pdev;
2009 	struct hclgevf_dev *hdev;
2010 
2011 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2012 	if (!hdev)
2013 		return -ENOMEM;
2014 
2015 	hdev->pdev = pdev;
2016 	hdev->ae_dev = ae_dev;
2017 	ae_dev->priv = hdev;
2018 
2019 	return 0;
2020 }
2021 
2022 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2023 {
2024 	struct hnae3_handle *roce = &hdev->roce;
2025 	struct hnae3_handle *nic = &hdev->nic;
2026 
2027 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2028 
2029 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2030 	    hdev->num_msi_left == 0)
2031 		return -EINVAL;
2032 
2033 	roce->rinfo.base_vector = hdev->roce_base_vector;
2034 
2035 	roce->rinfo.netdev = nic->kinfo.netdev;
2036 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2037 
2038 	roce->pdev = nic->pdev;
2039 	roce->ae_algo = nic->ae_algo;
2040 	roce->numa_node_mask = nic->numa_node_mask;
2041 
2042 	return 0;
2043 }
2044 
2045 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2046 {
2047 	struct hclgevf_cfg_gro_status_cmd *req;
2048 	struct hclgevf_desc desc;
2049 	int ret;
2050 
2051 	if (!hnae3_dev_gro_supported(hdev))
2052 		return 0;
2053 
2054 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2055 				     false);
2056 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2057 
2058 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2059 
2060 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2061 	if (ret)
2062 		dev_err(&hdev->pdev->dev,
2063 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2064 
2065 	return ret;
2066 }
2067 
2068 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2069 {
2070 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2071 	int ret;
2072 	u32 i;
2073 
2074 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2075 
2076 	if (hdev->pdev->revision >= 0x21) {
2077 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2078 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2079 		       HCLGEVF_RSS_KEY_SIZE);
2080 
2081 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2082 					       rss_cfg->rss_hash_key);
2083 		if (ret)
2084 			return ret;
2085 
2086 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2087 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2088 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2089 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2090 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2091 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2092 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2093 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2094 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2095 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2096 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2097 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2098 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2099 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2100 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2101 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2102 
2103 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2104 		if (ret)
2105 			return ret;
2106 
2107 	}
2108 
2109 	/* Initialize RSS indirect table */
2110 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2111 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2112 
2113 	ret = hclgevf_set_rss_indir_table(hdev);
2114 	if (ret)
2115 		return ret;
2116 
2117 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2118 }
2119 
2120 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2121 {
2122 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2123 				       false);
2124 }
2125 
2126 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2127 {
2128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2129 
2130 	if (enable) {
2131 		mod_timer(&hdev->service_timer, jiffies + HZ);
2132 	} else {
2133 		del_timer_sync(&hdev->service_timer);
2134 		cancel_work_sync(&hdev->service_task);
2135 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2136 	}
2137 }
2138 
2139 static int hclgevf_ae_start(struct hnae3_handle *handle)
2140 {
2141 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2142 
2143 	hclgevf_reset_tqp_stats(handle);
2144 
2145 	hclgevf_request_link_info(hdev);
2146 
2147 	hclgevf_update_link_mode(hdev);
2148 
2149 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2150 
2151 	return 0;
2152 }
2153 
2154 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2155 {
2156 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2157 	int i;
2158 
2159 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2160 
2161 	if (hdev->reset_type != HNAE3_VF_RESET)
2162 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2163 			if (hclgevf_reset_tqp(handle, i))
2164 				break;
2165 
2166 	hclgevf_reset_tqp_stats(handle);
2167 	hclgevf_update_link_status(hdev, 0);
2168 }
2169 
2170 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2171 {
2172 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2173 	u8 msg_data;
2174 
2175 	msg_data = alive ? 1 : 0;
2176 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2177 				    0, &msg_data, 1, false, NULL, 0);
2178 }
2179 
2180 static int hclgevf_client_start(struct hnae3_handle *handle)
2181 {
2182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2183 	int ret;
2184 
2185 	ret = hclgevf_set_alive(handle, true);
2186 	if (ret)
2187 		return ret;
2188 
2189 	mod_timer(&hdev->keep_alive_timer, jiffies +
2190 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2191 
2192 	return 0;
2193 }
2194 
2195 static void hclgevf_client_stop(struct hnae3_handle *handle)
2196 {
2197 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2198 	int ret;
2199 
2200 	ret = hclgevf_set_alive(handle, false);
2201 	if (ret)
2202 		dev_warn(&hdev->pdev->dev,
2203 			 "%s failed %d\n", __func__, ret);
2204 
2205 	del_timer_sync(&hdev->keep_alive_timer);
2206 	cancel_work_sync(&hdev->keep_alive_task);
2207 }
2208 
2209 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2210 {
2211 	/* setup tasks for the MBX */
2212 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2213 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2214 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2215 
2216 	/* setup tasks for service timer */
2217 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2218 
2219 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2220 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2221 
2222 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2223 
2224 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2225 
2226 	/* bring the device down */
2227 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2228 }
2229 
2230 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2231 {
2232 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2233 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2234 
2235 	if (hdev->keep_alive_timer.function)
2236 		del_timer_sync(&hdev->keep_alive_timer);
2237 	if (hdev->keep_alive_task.func)
2238 		cancel_work_sync(&hdev->keep_alive_task);
2239 	if (hdev->service_timer.function)
2240 		del_timer_sync(&hdev->service_timer);
2241 	if (hdev->service_task.func)
2242 		cancel_work_sync(&hdev->service_task);
2243 	if (hdev->mbx_service_task.func)
2244 		cancel_work_sync(&hdev->mbx_service_task);
2245 	if (hdev->rst_service_task.func)
2246 		cancel_work_sync(&hdev->rst_service_task);
2247 
2248 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2249 }
2250 
2251 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2252 {
2253 	struct pci_dev *pdev = hdev->pdev;
2254 	int vectors;
2255 	int i;
2256 
2257 	if (hnae3_dev_roce_supported(hdev))
2258 		vectors = pci_alloc_irq_vectors(pdev,
2259 						hdev->roce_base_msix_offset + 1,
2260 						hdev->num_msi,
2261 						PCI_IRQ_MSIX);
2262 	else
2263 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2264 						hdev->num_msi,
2265 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2266 
2267 	if (vectors < 0) {
2268 		dev_err(&pdev->dev,
2269 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2270 			vectors);
2271 		return vectors;
2272 	}
2273 	if (vectors < hdev->num_msi)
2274 		dev_warn(&hdev->pdev->dev,
2275 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2276 			 hdev->num_msi, vectors);
2277 
2278 	hdev->num_msi = vectors;
2279 	hdev->num_msi_left = vectors;
2280 
2281 	hdev->base_msi_vector = pdev->irq;
2282 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2283 
2284 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2285 					   sizeof(u16), GFP_KERNEL);
2286 	if (!hdev->vector_status) {
2287 		pci_free_irq_vectors(pdev);
2288 		return -ENOMEM;
2289 	}
2290 
2291 	for (i = 0; i < hdev->num_msi; i++)
2292 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2293 
2294 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2295 					sizeof(int), GFP_KERNEL);
2296 	if (!hdev->vector_irq) {
2297 		devm_kfree(&pdev->dev, hdev->vector_status);
2298 		pci_free_irq_vectors(pdev);
2299 		return -ENOMEM;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2306 {
2307 	struct pci_dev *pdev = hdev->pdev;
2308 
2309 	devm_kfree(&pdev->dev, hdev->vector_status);
2310 	devm_kfree(&pdev->dev, hdev->vector_irq);
2311 	pci_free_irq_vectors(pdev);
2312 }
2313 
2314 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2315 {
2316 	int ret;
2317 
2318 	hclgevf_get_misc_vector(hdev);
2319 
2320 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2321 			  0, "hclgevf_cmd", hdev);
2322 	if (ret) {
2323 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2324 			hdev->misc_vector.vector_irq);
2325 		return ret;
2326 	}
2327 
2328 	hclgevf_clear_event_cause(hdev, 0);
2329 
2330 	/* enable misc. vector(vector 0) */
2331 	hclgevf_enable_vector(&hdev->misc_vector, true);
2332 
2333 	return ret;
2334 }
2335 
2336 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2337 {
2338 	/* disable misc vector(vector 0) */
2339 	hclgevf_enable_vector(&hdev->misc_vector, false);
2340 	synchronize_irq(hdev->misc_vector.vector_irq);
2341 	free_irq(hdev->misc_vector.vector_irq, hdev);
2342 	hclgevf_free_vector(hdev, 0);
2343 }
2344 
2345 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2346 {
2347 	struct device *dev = &hdev->pdev->dev;
2348 
2349 	dev_info(dev, "VF info begin:\n");
2350 
2351 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2352 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2353 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2354 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2355 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2356 	dev_info(dev, "PF media type of this VF: %d\n",
2357 		 hdev->hw.mac.media_type);
2358 
2359 	dev_info(dev, "VF info end.\n");
2360 }
2361 
2362 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2363 					    struct hnae3_client *client)
2364 {
2365 	struct hclgevf_dev *hdev = ae_dev->priv;
2366 	int ret;
2367 
2368 	ret = client->ops->init_instance(&hdev->nic);
2369 	if (ret)
2370 		return ret;
2371 
2372 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2373 	hnae3_set_client_init_flag(client, ae_dev, 1);
2374 
2375 	if (netif_msg_drv(&hdev->nic))
2376 		hclgevf_info_show(hdev);
2377 
2378 	return 0;
2379 }
2380 
2381 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2382 					     struct hnae3_client *client)
2383 {
2384 	struct hclgevf_dev *hdev = ae_dev->priv;
2385 	int ret;
2386 
2387 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2388 	    !hdev->nic_client)
2389 		return 0;
2390 
2391 	ret = hclgevf_init_roce_base_info(hdev);
2392 	if (ret)
2393 		return ret;
2394 
2395 	ret = client->ops->init_instance(&hdev->roce);
2396 	if (ret)
2397 		return ret;
2398 
2399 	hnae3_set_client_init_flag(client, ae_dev, 1);
2400 
2401 	return 0;
2402 }
2403 
2404 static int hclgevf_init_client_instance(struct hnae3_client *client,
2405 					struct hnae3_ae_dev *ae_dev)
2406 {
2407 	struct hclgevf_dev *hdev = ae_dev->priv;
2408 	int ret;
2409 
2410 	switch (client->type) {
2411 	case HNAE3_CLIENT_KNIC:
2412 		hdev->nic_client = client;
2413 		hdev->nic.client = client;
2414 
2415 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2416 		if (ret)
2417 			goto clear_nic;
2418 
2419 		ret = hclgevf_init_roce_client_instance(ae_dev,
2420 							hdev->roce_client);
2421 		if (ret)
2422 			goto clear_roce;
2423 
2424 		break;
2425 	case HNAE3_CLIENT_ROCE:
2426 		if (hnae3_dev_roce_supported(hdev)) {
2427 			hdev->roce_client = client;
2428 			hdev->roce.client = client;
2429 		}
2430 
2431 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2432 		if (ret)
2433 			goto clear_roce;
2434 
2435 		break;
2436 	default:
2437 		return -EINVAL;
2438 	}
2439 
2440 	return 0;
2441 
2442 clear_nic:
2443 	hdev->nic_client = NULL;
2444 	hdev->nic.client = NULL;
2445 	return ret;
2446 clear_roce:
2447 	hdev->roce_client = NULL;
2448 	hdev->roce.client = NULL;
2449 	return ret;
2450 }
2451 
2452 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2453 					   struct hnae3_ae_dev *ae_dev)
2454 {
2455 	struct hclgevf_dev *hdev = ae_dev->priv;
2456 
2457 	/* un-init roce, if it exists */
2458 	if (hdev->roce_client) {
2459 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2460 		hdev->roce_client = NULL;
2461 		hdev->roce.client = NULL;
2462 	}
2463 
2464 	/* un-init nic/unic, if this was not called by roce client */
2465 	if (client->ops->uninit_instance && hdev->nic_client &&
2466 	    client->type != HNAE3_CLIENT_ROCE) {
2467 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2468 
2469 		client->ops->uninit_instance(&hdev->nic, 0);
2470 		hdev->nic_client = NULL;
2471 		hdev->nic.client = NULL;
2472 	}
2473 }
2474 
2475 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2476 {
2477 	struct pci_dev *pdev = hdev->pdev;
2478 	struct hclgevf_hw *hw;
2479 	int ret;
2480 
2481 	ret = pci_enable_device(pdev);
2482 	if (ret) {
2483 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2484 		return ret;
2485 	}
2486 
2487 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2488 	if (ret) {
2489 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2490 		goto err_disable_device;
2491 	}
2492 
2493 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2494 	if (ret) {
2495 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2496 		goto err_disable_device;
2497 	}
2498 
2499 	pci_set_master(pdev);
2500 	hw = &hdev->hw;
2501 	hw->hdev = hdev;
2502 	hw->io_base = pci_iomap(pdev, 2, 0);
2503 	if (!hw->io_base) {
2504 		dev_err(&pdev->dev, "can't map configuration register space\n");
2505 		ret = -ENOMEM;
2506 		goto err_clr_master;
2507 	}
2508 
2509 	return 0;
2510 
2511 err_clr_master:
2512 	pci_clear_master(pdev);
2513 	pci_release_regions(pdev);
2514 err_disable_device:
2515 	pci_disable_device(pdev);
2516 
2517 	return ret;
2518 }
2519 
2520 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2521 {
2522 	struct pci_dev *pdev = hdev->pdev;
2523 
2524 	pci_iounmap(pdev, hdev->hw.io_base);
2525 	pci_clear_master(pdev);
2526 	pci_release_regions(pdev);
2527 	pci_disable_device(pdev);
2528 }
2529 
2530 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2531 {
2532 	struct hclgevf_query_res_cmd *req;
2533 	struct hclgevf_desc desc;
2534 	int ret;
2535 
2536 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2537 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2538 	if (ret) {
2539 		dev_err(&hdev->pdev->dev,
2540 			"query vf resource failed, ret = %d.\n", ret);
2541 		return ret;
2542 	}
2543 
2544 	req = (struct hclgevf_query_res_cmd *)desc.data;
2545 
2546 	if (hnae3_dev_roce_supported(hdev)) {
2547 		hdev->roce_base_msix_offset =
2548 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2549 				HCLGEVF_MSIX_OFT_ROCEE_M,
2550 				HCLGEVF_MSIX_OFT_ROCEE_S);
2551 		hdev->num_roce_msix =
2552 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2553 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2554 
2555 		/* nic's msix numbers is always equals to the roce's. */
2556 		hdev->num_nic_msix = hdev->num_roce_msix;
2557 
2558 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2559 		 * are queued before Roce vectors. The offset is fixed to 64.
2560 		 */
2561 		hdev->num_msi = hdev->num_roce_msix +
2562 				hdev->roce_base_msix_offset;
2563 	} else {
2564 		hdev->num_msi =
2565 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2566 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2567 
2568 		hdev->num_nic_msix = hdev->num_msi;
2569 	}
2570 
2571 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2572 		dev_err(&hdev->pdev->dev,
2573 			"Just %u msi resources, not enough for vf(min:2).\n",
2574 			hdev->num_nic_msix);
2575 		return -EINVAL;
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2582 {
2583 	struct pci_dev *pdev = hdev->pdev;
2584 	int ret = 0;
2585 
2586 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2587 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2588 		hclgevf_misc_irq_uninit(hdev);
2589 		hclgevf_uninit_msi(hdev);
2590 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2591 	}
2592 
2593 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2594 		pci_set_master(pdev);
2595 		ret = hclgevf_init_msi(hdev);
2596 		if (ret) {
2597 			dev_err(&pdev->dev,
2598 				"failed(%d) to init MSI/MSI-X\n", ret);
2599 			return ret;
2600 		}
2601 
2602 		ret = hclgevf_misc_irq_init(hdev);
2603 		if (ret) {
2604 			hclgevf_uninit_msi(hdev);
2605 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2606 				ret);
2607 			return ret;
2608 		}
2609 
2610 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2611 	}
2612 
2613 	return ret;
2614 }
2615 
2616 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2617 {
2618 	struct pci_dev *pdev = hdev->pdev;
2619 	int ret;
2620 
2621 	ret = hclgevf_pci_reset(hdev);
2622 	if (ret) {
2623 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2624 		return ret;
2625 	}
2626 
2627 	ret = hclgevf_cmd_init(hdev);
2628 	if (ret) {
2629 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2630 		return ret;
2631 	}
2632 
2633 	ret = hclgevf_rss_init_hw(hdev);
2634 	if (ret) {
2635 		dev_err(&hdev->pdev->dev,
2636 			"failed(%d) to initialize RSS\n", ret);
2637 		return ret;
2638 	}
2639 
2640 	ret = hclgevf_config_gro(hdev, true);
2641 	if (ret)
2642 		return ret;
2643 
2644 	ret = hclgevf_init_vlan_config(hdev);
2645 	if (ret) {
2646 		dev_err(&hdev->pdev->dev,
2647 			"failed(%d) to initialize VLAN config\n", ret);
2648 		return ret;
2649 	}
2650 
2651 	if (pdev->revision >= 0x21) {
2652 		ret = hclgevf_set_promisc_mode(hdev, true);
2653 		if (ret)
2654 			return ret;
2655 	}
2656 
2657 	dev_info(&hdev->pdev->dev, "Reset done\n");
2658 
2659 	return 0;
2660 }
2661 
2662 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2663 {
2664 	struct pci_dev *pdev = hdev->pdev;
2665 	int ret;
2666 
2667 	ret = hclgevf_pci_init(hdev);
2668 	if (ret) {
2669 		dev_err(&pdev->dev, "PCI initialization failed\n");
2670 		return ret;
2671 	}
2672 
2673 	ret = hclgevf_cmd_queue_init(hdev);
2674 	if (ret) {
2675 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2676 		goto err_cmd_queue_init;
2677 	}
2678 
2679 	ret = hclgevf_cmd_init(hdev);
2680 	if (ret)
2681 		goto err_cmd_init;
2682 
2683 	/* Get vf resource */
2684 	ret = hclgevf_query_vf_resource(hdev);
2685 	if (ret) {
2686 		dev_err(&hdev->pdev->dev,
2687 			"Query vf status error, ret = %d.\n", ret);
2688 		goto err_cmd_init;
2689 	}
2690 
2691 	ret = hclgevf_init_msi(hdev);
2692 	if (ret) {
2693 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2694 		goto err_cmd_init;
2695 	}
2696 
2697 	hclgevf_state_init(hdev);
2698 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2699 
2700 	ret = hclgevf_misc_irq_init(hdev);
2701 	if (ret) {
2702 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2703 			ret);
2704 		goto err_misc_irq_init;
2705 	}
2706 
2707 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2708 
2709 	ret = hclgevf_configure(hdev);
2710 	if (ret) {
2711 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2712 		goto err_config;
2713 	}
2714 
2715 	ret = hclgevf_alloc_tqps(hdev);
2716 	if (ret) {
2717 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2718 		goto err_config;
2719 	}
2720 
2721 	ret = hclgevf_set_handle_info(hdev);
2722 	if (ret) {
2723 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2724 		goto err_config;
2725 	}
2726 
2727 	ret = hclgevf_config_gro(hdev, true);
2728 	if (ret)
2729 		goto err_config;
2730 
2731 	/* vf is not allowed to enable unicast/multicast promisc mode.
2732 	 * For revision 0x20, default to disable broadcast promisc mode,
2733 	 * firmware makes sure broadcast packets can be accepted.
2734 	 * For revision 0x21, default to enable broadcast promisc mode.
2735 	 */
2736 	if (pdev->revision >= 0x21) {
2737 		ret = hclgevf_set_promisc_mode(hdev, true);
2738 		if (ret)
2739 			goto err_config;
2740 	}
2741 
2742 	/* Initialize RSS for this VF */
2743 	ret = hclgevf_rss_init_hw(hdev);
2744 	if (ret) {
2745 		dev_err(&hdev->pdev->dev,
2746 			"failed(%d) to initialize RSS\n", ret);
2747 		goto err_config;
2748 	}
2749 
2750 	ret = hclgevf_init_vlan_config(hdev);
2751 	if (ret) {
2752 		dev_err(&hdev->pdev->dev,
2753 			"failed(%d) to initialize VLAN config\n", ret);
2754 		goto err_config;
2755 	}
2756 
2757 	hdev->last_reset_time = jiffies;
2758 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2759 		 HCLGEVF_DRIVER_NAME);
2760 
2761 	return 0;
2762 
2763 err_config:
2764 	hclgevf_misc_irq_uninit(hdev);
2765 err_misc_irq_init:
2766 	hclgevf_state_uninit(hdev);
2767 	hclgevf_uninit_msi(hdev);
2768 err_cmd_init:
2769 	hclgevf_cmd_uninit(hdev);
2770 err_cmd_queue_init:
2771 	hclgevf_pci_uninit(hdev);
2772 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2773 	return ret;
2774 }
2775 
2776 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2777 {
2778 	hclgevf_state_uninit(hdev);
2779 
2780 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2781 		hclgevf_misc_irq_uninit(hdev);
2782 		hclgevf_uninit_msi(hdev);
2783 	}
2784 
2785 	hclgevf_pci_uninit(hdev);
2786 	hclgevf_cmd_uninit(hdev);
2787 }
2788 
2789 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2790 {
2791 	struct pci_dev *pdev = ae_dev->pdev;
2792 	struct hclgevf_dev *hdev;
2793 	int ret;
2794 
2795 	ret = hclgevf_alloc_hdev(ae_dev);
2796 	if (ret) {
2797 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2798 		return ret;
2799 	}
2800 
2801 	ret = hclgevf_init_hdev(ae_dev->priv);
2802 	if (ret) {
2803 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2804 		return ret;
2805 	}
2806 
2807 	hdev = ae_dev->priv;
2808 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2809 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2810 
2811 	return 0;
2812 }
2813 
2814 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2815 {
2816 	struct hclgevf_dev *hdev = ae_dev->priv;
2817 
2818 	hclgevf_uninit_hdev(hdev);
2819 	ae_dev->priv = NULL;
2820 }
2821 
2822 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2823 {
2824 	struct hnae3_handle *nic = &hdev->nic;
2825 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2826 
2827 	return min_t(u32, hdev->rss_size_max,
2828 		     hdev->num_tqps / kinfo->num_tc);
2829 }
2830 
2831 /**
2832  * hclgevf_get_channels - Get the current channels enabled and max supported.
2833  * @handle: hardware information for network interface
2834  * @ch: ethtool channels structure
2835  *
2836  * We don't support separate tx and rx queues as channels. The other count
2837  * represents how many queues are being used for control. max_combined counts
2838  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2839  * q_vectors since we support a lot more queue pairs than q_vectors.
2840  **/
2841 static void hclgevf_get_channels(struct hnae3_handle *handle,
2842 				 struct ethtool_channels *ch)
2843 {
2844 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2845 
2846 	ch->max_combined = hclgevf_get_max_channels(hdev);
2847 	ch->other_count = 0;
2848 	ch->max_other = 0;
2849 	ch->combined_count = handle->kinfo.rss_size;
2850 }
2851 
2852 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2853 					  u16 *alloc_tqps, u16 *max_rss_size)
2854 {
2855 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2856 
2857 	*alloc_tqps = hdev->num_tqps;
2858 	*max_rss_size = hdev->rss_size_max;
2859 }
2860 
2861 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2862 				    u32 new_tqps_num)
2863 {
2864 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2865 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2866 	u16 max_rss_size;
2867 
2868 	kinfo->req_rss_size = new_tqps_num;
2869 
2870 	max_rss_size = min_t(u16, hdev->rss_size_max,
2871 			     hdev->num_tqps / kinfo->num_tc);
2872 
2873 	/* Use the user's configuration when it is not larger than
2874 	 * max_rss_size, otherwise, use the maximum specification value.
2875 	 */
2876 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2877 	    kinfo->req_rss_size <= max_rss_size)
2878 		kinfo->rss_size = kinfo->req_rss_size;
2879 	else if (kinfo->rss_size > max_rss_size ||
2880 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2881 		kinfo->rss_size = max_rss_size;
2882 
2883 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2884 }
2885 
2886 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2887 				bool rxfh_configured)
2888 {
2889 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2890 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2891 	u16 cur_rss_size = kinfo->rss_size;
2892 	u16 cur_tqps = kinfo->num_tqps;
2893 	u32 *rss_indir;
2894 	unsigned int i;
2895 	int ret;
2896 
2897 	hclgevf_update_rss_size(handle, new_tqps_num);
2898 
2899 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2900 	if (ret)
2901 		return ret;
2902 
2903 	/* RSS indirection table has been configuared by user */
2904 	if (rxfh_configured)
2905 		goto out;
2906 
2907 	/* Reinitializes the rss indirect table according to the new RSS size */
2908 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2909 	if (!rss_indir)
2910 		return -ENOMEM;
2911 
2912 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2913 		rss_indir[i] = i % kinfo->rss_size;
2914 
2915 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2916 	if (ret)
2917 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2918 			ret);
2919 
2920 	kfree(rss_indir);
2921 
2922 out:
2923 	if (!ret)
2924 		dev_info(&hdev->pdev->dev,
2925 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2926 			 cur_rss_size, kinfo->rss_size,
2927 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2928 
2929 	return ret;
2930 }
2931 
2932 static int hclgevf_get_status(struct hnae3_handle *handle)
2933 {
2934 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2935 
2936 	return hdev->hw.mac.link;
2937 }
2938 
2939 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2940 					    u8 *auto_neg, u32 *speed,
2941 					    u8 *duplex)
2942 {
2943 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2944 
2945 	if (speed)
2946 		*speed = hdev->hw.mac.speed;
2947 	if (duplex)
2948 		*duplex = hdev->hw.mac.duplex;
2949 	if (auto_neg)
2950 		*auto_neg = AUTONEG_DISABLE;
2951 }
2952 
2953 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2954 				 u8 duplex)
2955 {
2956 	hdev->hw.mac.speed = speed;
2957 	hdev->hw.mac.duplex = duplex;
2958 }
2959 
2960 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2961 {
2962 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2963 
2964 	return hclgevf_config_gro(hdev, enable);
2965 }
2966 
2967 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2968 				   u8 *module_type)
2969 {
2970 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2971 
2972 	if (media_type)
2973 		*media_type = hdev->hw.mac.media_type;
2974 
2975 	if (module_type)
2976 		*module_type = hdev->hw.mac.module_type;
2977 }
2978 
2979 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2980 {
2981 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2982 
2983 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2984 }
2985 
2986 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2987 {
2988 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2989 
2990 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2991 }
2992 
2993 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2994 {
2995 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2996 
2997 	return hdev->rst_stats.hw_rst_done_cnt;
2998 }
2999 
3000 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3001 				  unsigned long *supported,
3002 				  unsigned long *advertising)
3003 {
3004 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3005 
3006 	*supported = hdev->hw.mac.supported;
3007 	*advertising = hdev->hw.mac.advertising;
3008 }
3009 
3010 #define MAX_SEPARATE_NUM	4
3011 #define SEPARATOR_VALUE		0xFFFFFFFF
3012 #define REG_NUM_PER_LINE	4
3013 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3014 
3015 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3016 {
3017 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3018 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3019 
3020 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3021 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3022 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3023 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3024 
3025 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3026 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3027 }
3028 
3029 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3030 			     void *data)
3031 {
3032 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3033 	int i, j, reg_um, separator_num;
3034 	u32 *reg = data;
3035 
3036 	*version = hdev->fw_version;
3037 
3038 	/* fetching per-VF registers values from VF PCIe register space */
3039 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3040 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3041 	for (i = 0; i < reg_um; i++)
3042 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3043 	for (i = 0; i < separator_num; i++)
3044 		*reg++ = SEPARATOR_VALUE;
3045 
3046 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3047 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3048 	for (i = 0; i < reg_um; i++)
3049 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3050 	for (i = 0; i < separator_num; i++)
3051 		*reg++ = SEPARATOR_VALUE;
3052 
3053 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3054 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3055 	for (j = 0; j < hdev->num_tqps; j++) {
3056 		for (i = 0; i < reg_um; i++)
3057 			*reg++ = hclgevf_read_dev(&hdev->hw,
3058 						  ring_reg_addr_list[i] +
3059 						  0x200 * j);
3060 		for (i = 0; i < separator_num; i++)
3061 			*reg++ = SEPARATOR_VALUE;
3062 	}
3063 
3064 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3065 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3066 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3067 		for (i = 0; i < reg_um; i++)
3068 			*reg++ = hclgevf_read_dev(&hdev->hw,
3069 						  tqp_intr_reg_addr_list[i] +
3070 						  4 * j);
3071 		for (i = 0; i < separator_num; i++)
3072 			*reg++ = SEPARATOR_VALUE;
3073 	}
3074 }
3075 
3076 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3077 					u8 *port_base_vlan_info, u8 data_size)
3078 {
3079 	struct hnae3_handle *nic = &hdev->nic;
3080 
3081 	rtnl_lock();
3082 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3083 	rtnl_unlock();
3084 
3085 	/* send msg to PF and wait update port based vlan info */
3086 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3087 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
3088 			     port_base_vlan_info, data_size,
3089 			     false, NULL, 0);
3090 
3091 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3092 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3093 	else
3094 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3095 
3096 	rtnl_lock();
3097 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3098 	rtnl_unlock();
3099 }
3100 
3101 static const struct hnae3_ae_ops hclgevf_ops = {
3102 	.init_ae_dev = hclgevf_init_ae_dev,
3103 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3104 	.flr_prepare = hclgevf_flr_prepare,
3105 	.flr_done = hclgevf_flr_done,
3106 	.init_client_instance = hclgevf_init_client_instance,
3107 	.uninit_client_instance = hclgevf_uninit_client_instance,
3108 	.start = hclgevf_ae_start,
3109 	.stop = hclgevf_ae_stop,
3110 	.client_start = hclgevf_client_start,
3111 	.client_stop = hclgevf_client_stop,
3112 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3113 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3114 	.get_vector = hclgevf_get_vector,
3115 	.put_vector = hclgevf_put_vector,
3116 	.reset_queue = hclgevf_reset_tqp,
3117 	.get_mac_addr = hclgevf_get_mac_addr,
3118 	.set_mac_addr = hclgevf_set_mac_addr,
3119 	.add_uc_addr = hclgevf_add_uc_addr,
3120 	.rm_uc_addr = hclgevf_rm_uc_addr,
3121 	.add_mc_addr = hclgevf_add_mc_addr,
3122 	.rm_mc_addr = hclgevf_rm_mc_addr,
3123 	.get_stats = hclgevf_get_stats,
3124 	.update_stats = hclgevf_update_stats,
3125 	.get_strings = hclgevf_get_strings,
3126 	.get_sset_count = hclgevf_get_sset_count,
3127 	.get_rss_key_size = hclgevf_get_rss_key_size,
3128 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3129 	.get_rss = hclgevf_get_rss,
3130 	.set_rss = hclgevf_set_rss,
3131 	.get_rss_tuple = hclgevf_get_rss_tuple,
3132 	.set_rss_tuple = hclgevf_set_rss_tuple,
3133 	.get_tc_size = hclgevf_get_tc_size,
3134 	.get_fw_version = hclgevf_get_fw_version,
3135 	.set_vlan_filter = hclgevf_set_vlan_filter,
3136 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3137 	.reset_event = hclgevf_reset_event,
3138 	.set_default_reset_request = hclgevf_set_def_reset_request,
3139 	.set_channels = hclgevf_set_channels,
3140 	.get_channels = hclgevf_get_channels,
3141 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3142 	.get_regs_len = hclgevf_get_regs_len,
3143 	.get_regs = hclgevf_get_regs,
3144 	.get_status = hclgevf_get_status,
3145 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3146 	.get_media_type = hclgevf_get_media_type,
3147 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3148 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3149 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3150 	.set_gro_en = hclgevf_gro_en,
3151 	.set_mtu = hclgevf_set_mtu,
3152 	.get_global_queue_id = hclgevf_get_qid_global,
3153 	.set_timer_task = hclgevf_set_timer_task,
3154 	.get_link_mode = hclgevf_get_link_mode,
3155 };
3156 
3157 static struct hnae3_ae_algo ae_algovf = {
3158 	.ops = &hclgevf_ops,
3159 	.pdev_id_table = ae_algovf_pci_tbl,
3160 };
3161 
3162 static int hclgevf_init(void)
3163 {
3164 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3165 
3166 	hnae3_register_ae_algo(&ae_algovf);
3167 
3168 	return 0;
3169 }
3170 
3171 static void hclgevf_exit(void)
3172 {
3173 	hnae3_unregister_ae_algo(&ae_algovf);
3174 }
3175 module_init(hclgevf_init);
3176 module_exit(hclgevf_exit);
3177 
3178 MODULE_LICENSE("GPL");
3179 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3180 MODULE_DESCRIPTION("HCLGEVF Driver");
3181 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3182