1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	/* after init the max rss_size and tqps, adjust the default tqp numbers
415 	 * and rss size with the actual vector numbers
416 	 */
417 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
418 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
419 				kinfo->rss_size);
420 
421 	return 0;
422 }
423 
424 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
425 {
426 	int status;
427 	u8 resp_msg;
428 
429 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
430 				      0, false, &resp_msg, sizeof(resp_msg));
431 	if (status)
432 		dev_err(&hdev->pdev->dev,
433 			"VF failed to fetch link status(%d) from PF", status);
434 }
435 
436 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
437 {
438 	struct hnae3_handle *rhandle = &hdev->roce;
439 	struct hnae3_handle *handle = &hdev->nic;
440 	struct hnae3_client *rclient;
441 	struct hnae3_client *client;
442 
443 	client = handle->client;
444 	rclient = hdev->roce_client;
445 
446 	link_state =
447 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
448 
449 	if (link_state != hdev->hw.mac.link) {
450 		client->ops->link_status_change(handle, !!link_state);
451 		if (rclient && rclient->ops->link_status_change)
452 			rclient->ops->link_status_change(rhandle, !!link_state);
453 		hdev->hw.mac.link = link_state;
454 	}
455 }
456 
457 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
458 {
459 #define HCLGEVF_ADVERTISING 0
460 #define HCLGEVF_SUPPORTED   1
461 	u8 send_msg;
462 	u8 resp_msg;
463 
464 	send_msg = HCLGEVF_ADVERTISING;
465 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
466 			     &send_msg, sizeof(send_msg), false,
467 			     &resp_msg, sizeof(resp_msg));
468 	send_msg = HCLGEVF_SUPPORTED;
469 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
470 			     &send_msg, sizeof(send_msg), false,
471 			     &resp_msg, sizeof(resp_msg));
472 }
473 
474 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
475 {
476 	struct hnae3_handle *nic = &hdev->nic;
477 	int ret;
478 
479 	nic->ae_algo = &ae_algovf;
480 	nic->pdev = hdev->pdev;
481 	nic->numa_node_mask = hdev->numa_node_mask;
482 	nic->flags |= HNAE3_SUPPORT_VF;
483 
484 	ret = hclgevf_knic_setup(hdev);
485 	if (ret)
486 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
487 			ret);
488 	return ret;
489 }
490 
491 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
492 {
493 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
494 		dev_warn(&hdev->pdev->dev,
495 			 "vector(vector_id %d) has been freed.\n", vector_id);
496 		return;
497 	}
498 
499 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
500 	hdev->num_msi_left += 1;
501 	hdev->num_msi_used -= 1;
502 }
503 
504 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
505 			      struct hnae3_vector_info *vector_info)
506 {
507 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
508 	struct hnae3_vector_info *vector = vector_info;
509 	int alloc = 0;
510 	int i, j;
511 
512 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
513 	vector_num = min(hdev->num_msi_left, vector_num);
514 
515 	for (j = 0; j < vector_num; j++) {
516 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
517 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
518 				vector->vector = pci_irq_vector(hdev->pdev, i);
519 				vector->io_addr = hdev->hw.io_base +
520 					HCLGEVF_VECTOR_REG_BASE +
521 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
522 				hdev->vector_status[i] = 0;
523 				hdev->vector_irq[i] = vector->vector;
524 
525 				vector++;
526 				alloc++;
527 
528 				break;
529 			}
530 		}
531 	}
532 	hdev->num_msi_left -= alloc;
533 	hdev->num_msi_used += alloc;
534 
535 	return alloc;
536 }
537 
538 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
539 {
540 	int i;
541 
542 	for (i = 0; i < hdev->num_msi; i++)
543 		if (vector == hdev->vector_irq[i])
544 			return i;
545 
546 	return -EINVAL;
547 }
548 
549 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
550 				    const u8 hfunc, const u8 *key)
551 {
552 	struct hclgevf_rss_config_cmd *req;
553 	unsigned int key_offset = 0;
554 	struct hclgevf_desc desc;
555 	int key_counts;
556 	int key_size;
557 	int ret;
558 
559 	key_counts = HCLGEVF_RSS_KEY_SIZE;
560 	req = (struct hclgevf_rss_config_cmd *)desc.data;
561 
562 	while (key_counts) {
563 		hclgevf_cmd_setup_basic_desc(&desc,
564 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
565 					     false);
566 
567 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
568 		req->hash_config |=
569 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
570 
571 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
572 		memcpy(req->hash_key,
573 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
574 
575 		key_counts -= key_size;
576 		key_offset++;
577 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
578 		if (ret) {
579 			dev_err(&hdev->pdev->dev,
580 				"Configure RSS config fail, status = %d\n",
581 				ret);
582 			return ret;
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
590 {
591 	return HCLGEVF_RSS_KEY_SIZE;
592 }
593 
594 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
595 {
596 	return HCLGEVF_RSS_IND_TBL_SIZE;
597 }
598 
599 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
600 {
601 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
602 	struct hclgevf_rss_indirection_table_cmd *req;
603 	struct hclgevf_desc desc;
604 	int status;
605 	int i, j;
606 
607 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
608 
609 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
610 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
611 					     false);
612 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
613 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
614 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
615 			req->rss_result[j] =
616 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
617 
618 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
619 		if (status) {
620 			dev_err(&hdev->pdev->dev,
621 				"VF failed(=%d) to set RSS indirection table\n",
622 				status);
623 			return status;
624 		}
625 	}
626 
627 	return 0;
628 }
629 
630 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
631 {
632 	struct hclgevf_rss_tc_mode_cmd *req;
633 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
634 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
635 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
636 	struct hclgevf_desc desc;
637 	u16 roundup_size;
638 	int status;
639 	unsigned int i;
640 
641 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
642 
643 	roundup_size = roundup_pow_of_two(rss_size);
644 	roundup_size = ilog2(roundup_size);
645 
646 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
647 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
648 		tc_size[i] = roundup_size;
649 		tc_offset[i] = rss_size * i;
650 	}
651 
652 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
653 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
654 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
655 			      (tc_valid[i] & 0x1));
656 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
657 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
658 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
659 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
660 	}
661 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
662 	if (status)
663 		dev_err(&hdev->pdev->dev,
664 			"VF failed(=%d) to set rss tc mode\n", status);
665 
666 	return status;
667 }
668 
669 /* for revision 0x20, vf shared the same rss config with pf */
670 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
671 {
672 #define HCLGEVF_RSS_MBX_RESP_LEN	8
673 
674 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
675 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
676 	u16 msg_num, hash_key_index;
677 	u8 index;
678 	int ret;
679 
680 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
681 			HCLGEVF_RSS_MBX_RESP_LEN;
682 	for (index = 0; index < msg_num; index++) {
683 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
684 					   &index, sizeof(index),
685 					   true, resp_msg,
686 					   HCLGEVF_RSS_MBX_RESP_LEN);
687 		if (ret) {
688 			dev_err(&hdev->pdev->dev,
689 				"VF get rss hash key from PF failed, ret=%d",
690 				ret);
691 			return ret;
692 		}
693 
694 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
695 		if (index == msg_num - 1)
696 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
697 			       &resp_msg[0],
698 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
699 		else
700 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
701 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
702 	}
703 
704 	return 0;
705 }
706 
707 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
708 			   u8 *hfunc)
709 {
710 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
711 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
712 	int i, ret;
713 
714 	if (handle->pdev->revision >= 0x21) {
715 		/* Get hash algorithm */
716 		if (hfunc) {
717 			switch (rss_cfg->hash_algo) {
718 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
719 				*hfunc = ETH_RSS_HASH_TOP;
720 				break;
721 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
722 				*hfunc = ETH_RSS_HASH_XOR;
723 				break;
724 			default:
725 				*hfunc = ETH_RSS_HASH_UNKNOWN;
726 				break;
727 			}
728 		}
729 
730 		/* Get the RSS Key required by the user */
731 		if (key)
732 			memcpy(key, rss_cfg->rss_hash_key,
733 			       HCLGEVF_RSS_KEY_SIZE);
734 	} else {
735 		if (hfunc)
736 			*hfunc = ETH_RSS_HASH_TOP;
737 		if (key) {
738 			ret = hclgevf_get_rss_hash_key(hdev);
739 			if (ret)
740 				return ret;
741 			memcpy(key, rss_cfg->rss_hash_key,
742 			       HCLGEVF_RSS_KEY_SIZE);
743 		}
744 	}
745 
746 	if (indir)
747 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
748 			indir[i] = rss_cfg->rss_indirection_tbl[i];
749 
750 	return 0;
751 }
752 
753 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
754 			   const u8 *key, const u8 hfunc)
755 {
756 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
757 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
758 	int ret, i;
759 
760 	if (handle->pdev->revision >= 0x21) {
761 		/* Set the RSS Hash Key if specififed by the user */
762 		if (key) {
763 			switch (hfunc) {
764 			case ETH_RSS_HASH_TOP:
765 				rss_cfg->hash_algo =
766 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
767 				break;
768 			case ETH_RSS_HASH_XOR:
769 				rss_cfg->hash_algo =
770 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
771 				break;
772 			case ETH_RSS_HASH_NO_CHANGE:
773 				break;
774 			default:
775 				return -EINVAL;
776 			}
777 
778 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
779 						       key);
780 			if (ret)
781 				return ret;
782 
783 			/* Update the shadow RSS key with user specified qids */
784 			memcpy(rss_cfg->rss_hash_key, key,
785 			       HCLGEVF_RSS_KEY_SIZE);
786 		}
787 	}
788 
789 	/* update the shadow RSS table with user specified qids */
790 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
791 		rss_cfg->rss_indirection_tbl[i] = indir[i];
792 
793 	/* update the hardware */
794 	return hclgevf_set_rss_indir_table(hdev);
795 }
796 
797 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
798 {
799 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
800 
801 	if (nfc->data & RXH_L4_B_2_3)
802 		hash_sets |= HCLGEVF_D_PORT_BIT;
803 	else
804 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
805 
806 	if (nfc->data & RXH_IP_SRC)
807 		hash_sets |= HCLGEVF_S_IP_BIT;
808 	else
809 		hash_sets &= ~HCLGEVF_S_IP_BIT;
810 
811 	if (nfc->data & RXH_IP_DST)
812 		hash_sets |= HCLGEVF_D_IP_BIT;
813 	else
814 		hash_sets &= ~HCLGEVF_D_IP_BIT;
815 
816 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
817 		hash_sets |= HCLGEVF_V_TAG_BIT;
818 
819 	return hash_sets;
820 }
821 
822 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
823 				 struct ethtool_rxnfc *nfc)
824 {
825 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
826 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
827 	struct hclgevf_rss_input_tuple_cmd *req;
828 	struct hclgevf_desc desc;
829 	u8 tuple_sets;
830 	int ret;
831 
832 	if (handle->pdev->revision == 0x20)
833 		return -EOPNOTSUPP;
834 
835 	if (nfc->data &
836 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
837 		return -EINVAL;
838 
839 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
840 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
841 
842 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
843 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
844 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
845 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
846 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
847 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
848 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
849 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
850 
851 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
852 	switch (nfc->flow_type) {
853 	case TCP_V4_FLOW:
854 		req->ipv4_tcp_en = tuple_sets;
855 		break;
856 	case TCP_V6_FLOW:
857 		req->ipv6_tcp_en = tuple_sets;
858 		break;
859 	case UDP_V4_FLOW:
860 		req->ipv4_udp_en = tuple_sets;
861 		break;
862 	case UDP_V6_FLOW:
863 		req->ipv6_udp_en = tuple_sets;
864 		break;
865 	case SCTP_V4_FLOW:
866 		req->ipv4_sctp_en = tuple_sets;
867 		break;
868 	case SCTP_V6_FLOW:
869 		if ((nfc->data & RXH_L4_B_0_1) ||
870 		    (nfc->data & RXH_L4_B_2_3))
871 			return -EINVAL;
872 
873 		req->ipv6_sctp_en = tuple_sets;
874 		break;
875 	case IPV4_FLOW:
876 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
877 		break;
878 	case IPV6_FLOW:
879 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
880 		break;
881 	default:
882 		return -EINVAL;
883 	}
884 
885 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
886 	if (ret) {
887 		dev_err(&hdev->pdev->dev,
888 			"Set rss tuple fail, status = %d\n", ret);
889 		return ret;
890 	}
891 
892 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
893 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
894 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
895 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
896 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
897 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
898 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
899 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
900 	return 0;
901 }
902 
903 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
904 				 struct ethtool_rxnfc *nfc)
905 {
906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
908 	u8 tuple_sets;
909 
910 	if (handle->pdev->revision == 0x20)
911 		return -EOPNOTSUPP;
912 
913 	nfc->data = 0;
914 
915 	switch (nfc->flow_type) {
916 	case TCP_V4_FLOW:
917 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
918 		break;
919 	case UDP_V4_FLOW:
920 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
921 		break;
922 	case TCP_V6_FLOW:
923 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
924 		break;
925 	case UDP_V6_FLOW:
926 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
927 		break;
928 	case SCTP_V4_FLOW:
929 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
930 		break;
931 	case SCTP_V6_FLOW:
932 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
933 		break;
934 	case IPV4_FLOW:
935 	case IPV6_FLOW:
936 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
937 		break;
938 	default:
939 		return -EINVAL;
940 	}
941 
942 	if (!tuple_sets)
943 		return 0;
944 
945 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
946 		nfc->data |= RXH_L4_B_2_3;
947 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
948 		nfc->data |= RXH_L4_B_0_1;
949 	if (tuple_sets & HCLGEVF_D_IP_BIT)
950 		nfc->data |= RXH_IP_DST;
951 	if (tuple_sets & HCLGEVF_S_IP_BIT)
952 		nfc->data |= RXH_IP_SRC;
953 
954 	return 0;
955 }
956 
957 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
958 				       struct hclgevf_rss_cfg *rss_cfg)
959 {
960 	struct hclgevf_rss_input_tuple_cmd *req;
961 	struct hclgevf_desc desc;
962 	int ret;
963 
964 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
965 
966 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
967 
968 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
969 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
970 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
971 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
972 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
973 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
974 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
975 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
976 
977 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
978 	if (ret)
979 		dev_err(&hdev->pdev->dev,
980 			"Configure rss input fail, status = %d\n", ret);
981 	return ret;
982 }
983 
984 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
985 {
986 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
987 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
988 
989 	return rss_cfg->rss_size;
990 }
991 
992 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
993 				       int vector_id,
994 				       struct hnae3_ring_chain_node *ring_chain)
995 {
996 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
997 	struct hnae3_ring_chain_node *node;
998 	struct hclge_mbx_vf_to_pf_cmd *req;
999 	struct hclgevf_desc desc;
1000 	int i = 0;
1001 	int status;
1002 	u8 type;
1003 
1004 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1005 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1006 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1007 
1008 	for (node = ring_chain; node; node = node->next) {
1009 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1010 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1011 
1012 		if (i == 0) {
1013 			hclgevf_cmd_setup_basic_desc(&desc,
1014 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1015 						     false);
1016 			req->msg[0] = type;
1017 			req->msg[1] = vector_id;
1018 		}
1019 
1020 		req->msg[idx_offset] =
1021 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1022 		req->msg[idx_offset + 1] = node->tqp_index;
1023 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1024 							   HNAE3_RING_GL_IDX_M,
1025 							   HNAE3_RING_GL_IDX_S);
1026 
1027 		i++;
1028 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1029 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1030 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1031 		    !node->next) {
1032 			req->msg[2] = i;
1033 
1034 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1035 			if (status) {
1036 				dev_err(&hdev->pdev->dev,
1037 					"Map TQP fail, status is %d.\n",
1038 					status);
1039 				return status;
1040 			}
1041 			i = 0;
1042 			hclgevf_cmd_setup_basic_desc(&desc,
1043 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1044 						     false);
1045 			req->msg[0] = type;
1046 			req->msg[1] = vector_id;
1047 		}
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1054 				      struct hnae3_ring_chain_node *ring_chain)
1055 {
1056 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1057 	int vector_id;
1058 
1059 	vector_id = hclgevf_get_vector_index(hdev, vector);
1060 	if (vector_id < 0) {
1061 		dev_err(&handle->pdev->dev,
1062 			"Get vector index fail. ret =%d\n", vector_id);
1063 		return vector_id;
1064 	}
1065 
1066 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1067 }
1068 
1069 static int hclgevf_unmap_ring_from_vector(
1070 				struct hnae3_handle *handle,
1071 				int vector,
1072 				struct hnae3_ring_chain_node *ring_chain)
1073 {
1074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1075 	int ret, vector_id;
1076 
1077 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1078 		return 0;
1079 
1080 	vector_id = hclgevf_get_vector_index(hdev, vector);
1081 	if (vector_id < 0) {
1082 		dev_err(&handle->pdev->dev,
1083 			"Get vector index fail. ret =%d\n", vector_id);
1084 		return vector_id;
1085 	}
1086 
1087 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1088 	if (ret)
1089 		dev_err(&handle->pdev->dev,
1090 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1091 			vector_id,
1092 			ret);
1093 
1094 	return ret;
1095 }
1096 
1097 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1098 {
1099 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1100 	int vector_id;
1101 
1102 	vector_id = hclgevf_get_vector_index(hdev, vector);
1103 	if (vector_id < 0) {
1104 		dev_err(&handle->pdev->dev,
1105 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1106 			vector_id);
1107 		return vector_id;
1108 	}
1109 
1110 	hclgevf_free_vector(hdev, vector_id);
1111 
1112 	return 0;
1113 }
1114 
1115 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1116 					bool en_uc_pmc, bool en_mc_pmc,
1117 					bool en_bc_pmc)
1118 {
1119 	struct hclge_mbx_vf_to_pf_cmd *req;
1120 	struct hclgevf_desc desc;
1121 	int ret;
1122 
1123 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1124 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1125 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1126 	req->msg[1] = en_bc_pmc ? 1 : 0;
1127 	req->msg[2] = en_uc_pmc ? 1 : 0;
1128 	req->msg[3] = en_mc_pmc ? 1 : 0;
1129 
1130 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1131 	if (ret)
1132 		dev_err(&hdev->pdev->dev,
1133 			"Set promisc mode fail, status is %d.\n", ret);
1134 
1135 	return ret;
1136 }
1137 
1138 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1139 				    bool en_mc_pmc)
1140 {
1141 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1142 	struct pci_dev *pdev = hdev->pdev;
1143 	bool en_bc_pmc;
1144 
1145 	en_bc_pmc = pdev->revision != 0x20;
1146 
1147 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1148 					    en_bc_pmc);
1149 }
1150 
1151 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1152 			      int stream_id, bool enable)
1153 {
1154 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1155 	struct hclgevf_desc desc;
1156 	int status;
1157 
1158 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1159 
1160 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1161 				     false);
1162 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1163 	req->stream_id = cpu_to_le16(stream_id);
1164 	if (enable)
1165 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1166 
1167 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1168 	if (status)
1169 		dev_err(&hdev->pdev->dev,
1170 			"TQP enable fail, status =%d.\n", status);
1171 
1172 	return status;
1173 }
1174 
1175 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1176 {
1177 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1178 	struct hclgevf_tqp *tqp;
1179 	int i;
1180 
1181 	for (i = 0; i < kinfo->num_tqps; i++) {
1182 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1183 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1184 	}
1185 }
1186 
1187 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1188 {
1189 	u8 host_mac[ETH_ALEN];
1190 	int status;
1191 
1192 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MAC_ADDR, 0, NULL, 0,
1193 				      true, host_mac, ETH_ALEN);
1194 	if (status) {
1195 		dev_err(&hdev->pdev->dev,
1196 			"fail to get VF MAC from host %d", status);
1197 		return status;
1198 	}
1199 
1200 	ether_addr_copy(p, host_mac);
1201 
1202 	return 0;
1203 }
1204 
1205 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1206 {
1207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1208 	u8 host_mac_addr[ETH_ALEN];
1209 
1210 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1211 		return;
1212 
1213 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1214 	if (hdev->has_pf_mac)
1215 		ether_addr_copy(p, host_mac_addr);
1216 	else
1217 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1218 }
1219 
1220 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1221 				bool is_first)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1225 	u8 *new_mac_addr = (u8 *)p;
1226 	u8 msg_data[ETH_ALEN * 2];
1227 	u16 subcode;
1228 	int status;
1229 
1230 	ether_addr_copy(msg_data, new_mac_addr);
1231 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1232 
1233 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1234 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1235 
1236 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1237 				      subcode, msg_data, sizeof(msg_data),
1238 				      true, NULL, 0);
1239 	if (!status)
1240 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1241 
1242 	return status;
1243 }
1244 
1245 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1246 			       const unsigned char *addr)
1247 {
1248 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1249 
1250 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1251 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1252 				    addr, ETH_ALEN, false, NULL, 0);
1253 }
1254 
1255 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1256 			      const unsigned char *addr)
1257 {
1258 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1259 
1260 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1261 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1262 				    addr, ETH_ALEN, false, NULL, 0);
1263 }
1264 
1265 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1266 			       const unsigned char *addr)
1267 {
1268 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1269 
1270 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1271 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1272 				    addr, ETH_ALEN, false, NULL, 0);
1273 }
1274 
1275 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1276 			      const unsigned char *addr)
1277 {
1278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1279 
1280 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1281 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1282 				    addr, ETH_ALEN, false, NULL, 0);
1283 }
1284 
1285 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1286 				   __be16 proto, u16 vlan_id,
1287 				   bool is_kill)
1288 {
1289 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1290 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1291 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1292 	int ret;
1293 
1294 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1295 		return -EINVAL;
1296 
1297 	if (proto != htons(ETH_P_8021Q))
1298 		return -EPROTONOSUPPORT;
1299 
1300 	/* When device is resetting, firmware is unable to handle
1301 	 * mailbox. Just record the vlan id, and remove it after
1302 	 * reset finished.
1303 	 */
1304 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1305 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1306 		return -EBUSY;
1307 	}
1308 
1309 	msg_data[0] = is_kill;
1310 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1311 	memcpy(&msg_data[3], &proto, sizeof(proto));
1312 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1313 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1314 				   HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1315 
1316 	/* when remove hw vlan filter failed, record the vlan id,
1317 	 * and try to remove it from hw later, to be consistence
1318 	 * with stack.
1319 	 */
1320 	if (is_kill && ret)
1321 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1322 
1323 	return ret;
1324 }
1325 
1326 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1327 {
1328 #define HCLGEVF_MAX_SYNC_COUNT	60
1329 	struct hnae3_handle *handle = &hdev->nic;
1330 	int ret, sync_cnt = 0;
1331 	u16 vlan_id;
1332 
1333 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1334 	while (vlan_id != VLAN_N_VID) {
1335 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1336 					      vlan_id, true);
1337 		if (ret)
1338 			return;
1339 
1340 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1341 		sync_cnt++;
1342 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1343 			return;
1344 
1345 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1346 	}
1347 }
1348 
1349 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1350 {
1351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1352 	u8 msg_data;
1353 
1354 	msg_data = enable ? 1 : 0;
1355 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1356 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1357 				    1, false, NULL, 0);
1358 }
1359 
1360 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1361 {
1362 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1363 	u8 msg_data[2];
1364 	int ret;
1365 
1366 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1367 
1368 	/* disable vf queue before send queue reset msg to PF */
1369 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1370 	if (ret)
1371 		return ret;
1372 
1373 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1374 				    sizeof(msg_data), true, NULL, 0);
1375 }
1376 
1377 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1378 {
1379 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1380 
1381 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1382 				    sizeof(new_mtu), true, NULL, 0);
1383 }
1384 
1385 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1386 				 enum hnae3_reset_notify_type type)
1387 {
1388 	struct hnae3_client *client = hdev->nic_client;
1389 	struct hnae3_handle *handle = &hdev->nic;
1390 	int ret;
1391 
1392 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1393 	    !client)
1394 		return 0;
1395 
1396 	if (!client->ops->reset_notify)
1397 		return -EOPNOTSUPP;
1398 
1399 	ret = client->ops->reset_notify(handle, type);
1400 	if (ret)
1401 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1402 			type, ret);
1403 
1404 	return ret;
1405 }
1406 
1407 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1408 {
1409 	struct hclgevf_dev *hdev = ae_dev->priv;
1410 
1411 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1412 }
1413 
1414 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1415 				    unsigned long delay_us,
1416 				    unsigned long wait_cnt)
1417 {
1418 	unsigned long cnt = 0;
1419 
1420 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1421 	       cnt++ < wait_cnt)
1422 		usleep_range(delay_us, delay_us * 2);
1423 
1424 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1425 		dev_err(&hdev->pdev->dev,
1426 			"flr wait timeout\n");
1427 		return -ETIMEDOUT;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1434 {
1435 #define HCLGEVF_RESET_WAIT_US	20000
1436 #define HCLGEVF_RESET_WAIT_CNT	2000
1437 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1438 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1439 
1440 	u32 val;
1441 	int ret;
1442 
1443 	if (hdev->reset_type == HNAE3_FLR_RESET)
1444 		return hclgevf_flr_poll_timeout(hdev,
1445 						HCLGEVF_RESET_WAIT_US,
1446 						HCLGEVF_RESET_WAIT_CNT);
1447 	else if (hdev->reset_type == HNAE3_VF_RESET)
1448 		ret = readl_poll_timeout(hdev->hw.io_base +
1449 					 HCLGEVF_VF_RST_ING, val,
1450 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1451 					 HCLGEVF_RESET_WAIT_US,
1452 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1453 	else
1454 		ret = readl_poll_timeout(hdev->hw.io_base +
1455 					 HCLGEVF_RST_ING, val,
1456 					 !(val & HCLGEVF_RST_ING_BITS),
1457 					 HCLGEVF_RESET_WAIT_US,
1458 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1459 
1460 	/* hardware completion status should be available by this time */
1461 	if (ret) {
1462 		dev_err(&hdev->pdev->dev,
1463 			"could'nt get reset done status from h/w, timeout!\n");
1464 		return ret;
1465 	}
1466 
1467 	/* we will wait a bit more to let reset of the stack to complete. This
1468 	 * might happen in case reset assertion was made by PF. Yes, this also
1469 	 * means we might end up waiting bit more even for VF reset.
1470 	 */
1471 	msleep(5000);
1472 
1473 	return 0;
1474 }
1475 
1476 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1477 {
1478 	u32 reg_val;
1479 
1480 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1481 	if (enable)
1482 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1483 	else
1484 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1485 
1486 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1487 			  reg_val);
1488 }
1489 
1490 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1491 {
1492 	int ret;
1493 
1494 	/* uninitialize the nic client */
1495 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1496 	if (ret)
1497 		return ret;
1498 
1499 	/* re-initialize the hclge device */
1500 	ret = hclgevf_reset_hdev(hdev);
1501 	if (ret) {
1502 		dev_err(&hdev->pdev->dev,
1503 			"hclge device re-init failed, VF is disabled!\n");
1504 		return ret;
1505 	}
1506 
1507 	/* bring up the nic client again */
1508 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1509 	if (ret)
1510 		return ret;
1511 
1512 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1513 	if (ret)
1514 		return ret;
1515 
1516 	/* clear handshake status with IMP */
1517 	hclgevf_reset_handshake(hdev, false);
1518 
1519 	return 0;
1520 }
1521 
1522 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1523 {
1524 #define HCLGEVF_RESET_SYNC_TIME 100
1525 
1526 	int ret = 0;
1527 
1528 	switch (hdev->reset_type) {
1529 	case HNAE3_VF_FUNC_RESET:
1530 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1531 					   0, true, NULL, sizeof(u8));
1532 		hdev->rst_stats.vf_func_rst_cnt++;
1533 		break;
1534 	case HNAE3_FLR_RESET:
1535 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1536 		hdev->rst_stats.flr_rst_cnt++;
1537 		break;
1538 	default:
1539 		break;
1540 	}
1541 
1542 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1543 	/* inform hardware that preparatory work is done */
1544 	msleep(HCLGEVF_RESET_SYNC_TIME);
1545 	hclgevf_reset_handshake(hdev, true);
1546 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1547 		 hdev->reset_type, ret);
1548 
1549 	return ret;
1550 }
1551 
1552 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1553 {
1554 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1555 		 hdev->rst_stats.vf_func_rst_cnt);
1556 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1557 		 hdev->rst_stats.flr_rst_cnt);
1558 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1559 		 hdev->rst_stats.vf_rst_cnt);
1560 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1561 		 hdev->rst_stats.rst_done_cnt);
1562 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1563 		 hdev->rst_stats.hw_rst_done_cnt);
1564 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1565 		 hdev->rst_stats.rst_cnt);
1566 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1567 		 hdev->rst_stats.rst_fail_cnt);
1568 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1569 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1570 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1571 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1572 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1573 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1574 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1575 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1576 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1577 }
1578 
1579 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1580 {
1581 	/* recover handshake status with IMP when reset fail */
1582 	hclgevf_reset_handshake(hdev, true);
1583 	hdev->rst_stats.rst_fail_cnt++;
1584 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1585 		hdev->rst_stats.rst_fail_cnt);
1586 
1587 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1588 		set_bit(hdev->reset_type, &hdev->reset_pending);
1589 
1590 	if (hclgevf_is_reset_pending(hdev)) {
1591 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1592 		hclgevf_reset_task_schedule(hdev);
1593 	} else {
1594 		hclgevf_dump_rst_info(hdev);
1595 	}
1596 }
1597 
1598 static int hclgevf_reset(struct hclgevf_dev *hdev)
1599 {
1600 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1601 	int ret;
1602 
1603 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1604 	 * know if device is undergoing reset
1605 	 */
1606 	ae_dev->reset_type = hdev->reset_type;
1607 	hdev->rst_stats.rst_cnt++;
1608 	rtnl_lock();
1609 
1610 	/* bring down the nic to stop any ongoing TX/RX */
1611 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1612 	if (ret)
1613 		goto err_reset_lock;
1614 
1615 	rtnl_unlock();
1616 
1617 	ret = hclgevf_reset_prepare_wait(hdev);
1618 	if (ret)
1619 		goto err_reset;
1620 
1621 	/* check if VF could successfully fetch the hardware reset completion
1622 	 * status from the hardware
1623 	 */
1624 	ret = hclgevf_reset_wait(hdev);
1625 	if (ret) {
1626 		/* can't do much in this situation, will disable VF */
1627 		dev_err(&hdev->pdev->dev,
1628 			"VF failed(=%d) to fetch H/W reset completion status\n",
1629 			ret);
1630 		goto err_reset;
1631 	}
1632 
1633 	hdev->rst_stats.hw_rst_done_cnt++;
1634 
1635 	rtnl_lock();
1636 
1637 	/* now, re-initialize the nic client and ae device */
1638 	ret = hclgevf_reset_stack(hdev);
1639 	if (ret) {
1640 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1641 		goto err_reset_lock;
1642 	}
1643 
1644 	/* bring up the nic to enable TX/RX again */
1645 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1646 	if (ret)
1647 		goto err_reset_lock;
1648 
1649 	rtnl_unlock();
1650 
1651 	hdev->last_reset_time = jiffies;
1652 	ae_dev->reset_type = HNAE3_NONE_RESET;
1653 	hdev->rst_stats.rst_done_cnt++;
1654 	hdev->rst_stats.rst_fail_cnt = 0;
1655 
1656 	return ret;
1657 err_reset_lock:
1658 	rtnl_unlock();
1659 err_reset:
1660 	hclgevf_reset_err_handle(hdev);
1661 
1662 	return ret;
1663 }
1664 
1665 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1666 						     unsigned long *addr)
1667 {
1668 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1669 
1670 	/* return the highest priority reset level amongst all */
1671 	if (test_bit(HNAE3_VF_RESET, addr)) {
1672 		rst_level = HNAE3_VF_RESET;
1673 		clear_bit(HNAE3_VF_RESET, addr);
1674 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1675 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1676 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1677 		rst_level = HNAE3_VF_FULL_RESET;
1678 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1679 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1680 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1681 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1682 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1683 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1684 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1685 		rst_level = HNAE3_VF_FUNC_RESET;
1686 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1687 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1688 		rst_level = HNAE3_FLR_RESET;
1689 		clear_bit(HNAE3_FLR_RESET, addr);
1690 	}
1691 
1692 	return rst_level;
1693 }
1694 
1695 static void hclgevf_reset_event(struct pci_dev *pdev,
1696 				struct hnae3_handle *handle)
1697 {
1698 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1699 	struct hclgevf_dev *hdev = ae_dev->priv;
1700 
1701 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1702 
1703 	if (hdev->default_reset_request)
1704 		hdev->reset_level =
1705 			hclgevf_get_reset_level(hdev,
1706 						&hdev->default_reset_request);
1707 	else
1708 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1709 
1710 	/* reset of this VF requested */
1711 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1712 	hclgevf_reset_task_schedule(hdev);
1713 
1714 	hdev->last_reset_time = jiffies;
1715 }
1716 
1717 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1718 					  enum hnae3_reset_type rst_type)
1719 {
1720 	struct hclgevf_dev *hdev = ae_dev->priv;
1721 
1722 	set_bit(rst_type, &hdev->default_reset_request);
1723 }
1724 
1725 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1726 {
1727 #define HCLGEVF_FLR_WAIT_MS	100
1728 #define HCLGEVF_FLR_WAIT_CNT	50
1729 	struct hclgevf_dev *hdev = ae_dev->priv;
1730 	int cnt = 0;
1731 
1732 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1733 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1734 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1735 	hclgevf_reset_event(hdev->pdev, NULL);
1736 
1737 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1738 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1739 		msleep(HCLGEVF_FLR_WAIT_MS);
1740 
1741 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1742 		dev_err(&hdev->pdev->dev,
1743 			"flr wait down timeout: %d\n", cnt);
1744 }
1745 
1746 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1747 {
1748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1749 
1750 	return hdev->fw_version;
1751 }
1752 
1753 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1754 {
1755 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1756 
1757 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1758 					    HCLGEVF_MISC_VECTOR_NUM);
1759 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1760 	/* vector status always valid for Vector 0 */
1761 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1762 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1763 
1764 	hdev->num_msi_left -= 1;
1765 	hdev->num_msi_used += 1;
1766 }
1767 
1768 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1769 {
1770 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1771 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1772 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1773 		schedule_work(&hdev->rst_service_task);
1774 	}
1775 }
1776 
1777 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1778 {
1779 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1780 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1781 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1782 		schedule_work(&hdev->mbx_service_task);
1783 	}
1784 }
1785 
1786 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1787 {
1788 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1789 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1790 		schedule_work(&hdev->service_task);
1791 }
1792 
1793 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1794 {
1795 	/* if we have any pending mailbox event then schedule the mbx task */
1796 	if (hdev->mbx_event_pending)
1797 		hclgevf_mbx_task_schedule(hdev);
1798 
1799 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1800 		hclgevf_reset_task_schedule(hdev);
1801 }
1802 
1803 static void hclgevf_service_timer(struct timer_list *t)
1804 {
1805 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1806 
1807 	mod_timer(&hdev->service_timer, jiffies +
1808 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1809 
1810 	hdev->stats_timer++;
1811 	hclgevf_task_schedule(hdev);
1812 }
1813 
1814 static void hclgevf_reset_service_task(struct work_struct *work)
1815 {
1816 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1817 
1818 	struct hclgevf_dev *hdev =
1819 		container_of(work, struct hclgevf_dev, rst_service_task);
1820 	int ret;
1821 
1822 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1823 		return;
1824 
1825 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1826 
1827 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1828 			       &hdev->reset_state)) {
1829 		/* PF has initmated that it is about to reset the hardware.
1830 		 * We now have to poll & check if hardware has actually
1831 		 * completed the reset sequence. On hardware reset completion,
1832 		 * VF needs to reset the client and ae device.
1833 		 */
1834 		hdev->reset_attempts = 0;
1835 
1836 		hdev->last_reset_time = jiffies;
1837 		while ((hdev->reset_type =
1838 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1839 		       != HNAE3_NONE_RESET) {
1840 			ret = hclgevf_reset(hdev);
1841 			if (ret)
1842 				dev_err(&hdev->pdev->dev,
1843 					"VF stack reset failed %d.\n", ret);
1844 		}
1845 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1846 				      &hdev->reset_state)) {
1847 		/* we could be here when either of below happens:
1848 		 * 1. reset was initiated due to watchdog timeout caused by
1849 		 *    a. IMP was earlier reset and our TX got choked down and
1850 		 *       which resulted in watchdog reacting and inducing VF
1851 		 *       reset. This also means our cmdq would be unreliable.
1852 		 *    b. problem in TX due to other lower layer(example link
1853 		 *       layer not functioning properly etc.)
1854 		 * 2. VF reset might have been initiated due to some config
1855 		 *    change.
1856 		 *
1857 		 * NOTE: Theres no clear way to detect above cases than to react
1858 		 * to the response of PF for this reset request. PF will ack the
1859 		 * 1b and 2. cases but we will not get any intimation about 1a
1860 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1861 		 * communication between PF and VF would be broken.
1862 		 *
1863 		 * if we are never geting into pending state it means either:
1864 		 * 1. PF is not receiving our request which could be due to IMP
1865 		 *    reset
1866 		 * 2. PF is screwed
1867 		 * We cannot do much for 2. but to check first we can try reset
1868 		 * our PCIe + stack and see if it alleviates the problem.
1869 		 */
1870 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1871 			/* prepare for full reset of stack + pcie interface */
1872 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1873 
1874 			/* "defer" schedule the reset task again */
1875 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1876 		} else {
1877 			hdev->reset_attempts++;
1878 
1879 			set_bit(hdev->reset_level, &hdev->reset_pending);
1880 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1881 		}
1882 		hclgevf_reset_task_schedule(hdev);
1883 	}
1884 
1885 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1886 }
1887 
1888 static void hclgevf_mailbox_service_task(struct work_struct *work)
1889 {
1890 	struct hclgevf_dev *hdev;
1891 
1892 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1893 
1894 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1895 		return;
1896 
1897 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1898 
1899 	hclgevf_mbx_async_handler(hdev);
1900 
1901 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1902 }
1903 
1904 static void hclgevf_keep_alive_timer(struct timer_list *t)
1905 {
1906 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1907 
1908 	schedule_work(&hdev->keep_alive_task);
1909 	mod_timer(&hdev->keep_alive_timer, jiffies +
1910 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1911 }
1912 
1913 static void hclgevf_keep_alive_task(struct work_struct *work)
1914 {
1915 	struct hclgevf_dev *hdev;
1916 	u8 respmsg;
1917 	int ret;
1918 
1919 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1920 
1921 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1922 		return;
1923 
1924 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1925 				   0, false, &respmsg, sizeof(respmsg));
1926 	if (ret)
1927 		dev_err(&hdev->pdev->dev,
1928 			"VF sends keep alive cmd failed(=%d)\n", ret);
1929 }
1930 
1931 static void hclgevf_service_task(struct work_struct *work)
1932 {
1933 	struct hnae3_handle *handle;
1934 	struct hclgevf_dev *hdev;
1935 
1936 	hdev = container_of(work, struct hclgevf_dev, service_task);
1937 	handle = &hdev->nic;
1938 
1939 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1940 		hclgevf_tqps_update_stats(handle);
1941 		hdev->stats_timer = 0;
1942 	}
1943 
1944 	/* request the link status from the PF. PF would be able to tell VF
1945 	 * about such updates in future so we might remove this later
1946 	 */
1947 	hclgevf_request_link_info(hdev);
1948 
1949 	hclgevf_update_link_mode(hdev);
1950 
1951 	hclgevf_sync_vlan_filter(hdev);
1952 
1953 	hclgevf_deferred_task_schedule(hdev);
1954 
1955 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1956 }
1957 
1958 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1959 {
1960 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1961 }
1962 
1963 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1964 						      u32 *clearval)
1965 {
1966 	u32 val, cmdq_stat_reg, rst_ing_reg;
1967 
1968 	/* fetch the events from their corresponding regs */
1969 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1970 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1971 
1972 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1973 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1974 		dev_info(&hdev->pdev->dev,
1975 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1976 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1977 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1978 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1979 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1980 		hdev->rst_stats.vf_rst_cnt++;
1981 		/* set up VF hardware reset status, its PF will clear
1982 		 * this status when PF has initialized done.
1983 		 */
1984 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1985 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1986 				  val | HCLGEVF_VF_RST_ING_BIT);
1987 		return HCLGEVF_VECTOR0_EVENT_RST;
1988 	}
1989 
1990 	/* check for vector0 mailbox(=CMDQ RX) event source */
1991 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1992 		/* for revision 0x21, clearing interrupt is writing bit 0
1993 		 * to the clear register, writing bit 1 means to keep the
1994 		 * old value.
1995 		 * for revision 0x20, the clear register is a read & write
1996 		 * register, so we should just write 0 to the bit we are
1997 		 * handling, and keep other bits as cmdq_stat_reg.
1998 		 */
1999 		if (hdev->pdev->revision >= 0x21)
2000 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2001 		else
2002 			*clearval = cmdq_stat_reg &
2003 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2004 
2005 		return HCLGEVF_VECTOR0_EVENT_MBX;
2006 	}
2007 
2008 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
2009 
2010 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2011 }
2012 
2013 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2014 {
2015 	writel(en ? 1 : 0, vector->addr);
2016 }
2017 
2018 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2019 {
2020 	enum hclgevf_evt_cause event_cause;
2021 	struct hclgevf_dev *hdev = data;
2022 	u32 clearval;
2023 
2024 	hclgevf_enable_vector(&hdev->misc_vector, false);
2025 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2026 
2027 	switch (event_cause) {
2028 	case HCLGEVF_VECTOR0_EVENT_RST:
2029 		hclgevf_reset_task_schedule(hdev);
2030 		break;
2031 	case HCLGEVF_VECTOR0_EVENT_MBX:
2032 		hclgevf_mbx_handler(hdev);
2033 		break;
2034 	default:
2035 		break;
2036 	}
2037 
2038 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2039 		hclgevf_clear_event_cause(hdev, clearval);
2040 		hclgevf_enable_vector(&hdev->misc_vector, true);
2041 	}
2042 
2043 	return IRQ_HANDLED;
2044 }
2045 
2046 static int hclgevf_configure(struct hclgevf_dev *hdev)
2047 {
2048 	int ret;
2049 
2050 	/* get current port based vlan state from PF */
2051 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2052 	if (ret)
2053 		return ret;
2054 
2055 	/* get queue configuration from PF */
2056 	ret = hclgevf_get_queue_info(hdev);
2057 	if (ret)
2058 		return ret;
2059 
2060 	/* get queue depth info from PF */
2061 	ret = hclgevf_get_queue_depth(hdev);
2062 	if (ret)
2063 		return ret;
2064 
2065 	ret = hclgevf_get_pf_media_type(hdev);
2066 	if (ret)
2067 		return ret;
2068 
2069 	/* get tc configuration from PF */
2070 	return hclgevf_get_tc_info(hdev);
2071 }
2072 
2073 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2074 {
2075 	struct pci_dev *pdev = ae_dev->pdev;
2076 	struct hclgevf_dev *hdev;
2077 
2078 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2079 	if (!hdev)
2080 		return -ENOMEM;
2081 
2082 	hdev->pdev = pdev;
2083 	hdev->ae_dev = ae_dev;
2084 	ae_dev->priv = hdev;
2085 
2086 	return 0;
2087 }
2088 
2089 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2090 {
2091 	struct hnae3_handle *roce = &hdev->roce;
2092 	struct hnae3_handle *nic = &hdev->nic;
2093 
2094 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2095 
2096 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2097 	    hdev->num_msi_left == 0)
2098 		return -EINVAL;
2099 
2100 	roce->rinfo.base_vector = hdev->roce_base_vector;
2101 
2102 	roce->rinfo.netdev = nic->kinfo.netdev;
2103 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2104 
2105 	roce->pdev = nic->pdev;
2106 	roce->ae_algo = nic->ae_algo;
2107 	roce->numa_node_mask = nic->numa_node_mask;
2108 
2109 	return 0;
2110 }
2111 
2112 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2113 {
2114 	struct hclgevf_cfg_gro_status_cmd *req;
2115 	struct hclgevf_desc desc;
2116 	int ret;
2117 
2118 	if (!hnae3_dev_gro_supported(hdev))
2119 		return 0;
2120 
2121 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2122 				     false);
2123 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2124 
2125 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2126 
2127 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2128 	if (ret)
2129 		dev_err(&hdev->pdev->dev,
2130 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2131 
2132 	return ret;
2133 }
2134 
2135 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2136 {
2137 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2138 	int ret;
2139 	u32 i;
2140 
2141 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2142 
2143 	if (hdev->pdev->revision >= 0x21) {
2144 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2145 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2146 		       HCLGEVF_RSS_KEY_SIZE);
2147 
2148 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2149 					       rss_cfg->rss_hash_key);
2150 		if (ret)
2151 			return ret;
2152 
2153 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2154 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2155 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2156 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2157 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2158 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2159 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2160 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2161 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2162 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2163 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2164 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2165 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2166 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2167 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2168 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2169 
2170 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2171 		if (ret)
2172 			return ret;
2173 	}
2174 
2175 	/* Initialize RSS indirect table */
2176 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2177 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2178 
2179 	ret = hclgevf_set_rss_indir_table(hdev);
2180 	if (ret)
2181 		return ret;
2182 
2183 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2184 }
2185 
2186 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2187 {
2188 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2189 				       false);
2190 }
2191 
2192 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2193 {
2194 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2195 
2196 	if (enable) {
2197 		mod_timer(&hdev->service_timer, jiffies + HZ);
2198 	} else {
2199 		del_timer_sync(&hdev->service_timer);
2200 		cancel_work_sync(&hdev->service_task);
2201 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2202 	}
2203 }
2204 
2205 static int hclgevf_ae_start(struct hnae3_handle *handle)
2206 {
2207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2208 
2209 	hclgevf_reset_tqp_stats(handle);
2210 
2211 	hclgevf_request_link_info(hdev);
2212 
2213 	hclgevf_update_link_mode(hdev);
2214 
2215 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2216 
2217 	return 0;
2218 }
2219 
2220 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2221 {
2222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2223 	int i;
2224 
2225 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2226 
2227 	if (hdev->reset_type != HNAE3_VF_RESET)
2228 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2229 			if (hclgevf_reset_tqp(handle, i))
2230 				break;
2231 
2232 	hclgevf_reset_tqp_stats(handle);
2233 	hclgevf_update_link_status(hdev, 0);
2234 }
2235 
2236 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2237 {
2238 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2239 	u8 msg_data;
2240 
2241 	msg_data = alive ? 1 : 0;
2242 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2243 				    0, &msg_data, 1, false, NULL, 0);
2244 }
2245 
2246 static int hclgevf_client_start(struct hnae3_handle *handle)
2247 {
2248 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2249 	int ret;
2250 
2251 	ret = hclgevf_set_alive(handle, true);
2252 	if (ret)
2253 		return ret;
2254 
2255 	mod_timer(&hdev->keep_alive_timer, jiffies +
2256 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2257 
2258 	return 0;
2259 }
2260 
2261 static void hclgevf_client_stop(struct hnae3_handle *handle)
2262 {
2263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2264 	int ret;
2265 
2266 	ret = hclgevf_set_alive(handle, false);
2267 	if (ret)
2268 		dev_warn(&hdev->pdev->dev,
2269 			 "%s failed %d\n", __func__, ret);
2270 
2271 	del_timer_sync(&hdev->keep_alive_timer);
2272 	cancel_work_sync(&hdev->keep_alive_task);
2273 }
2274 
2275 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2276 {
2277 	/* setup tasks for the MBX */
2278 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2279 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2280 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2281 
2282 	/* setup tasks for service timer */
2283 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2284 
2285 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2286 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2287 
2288 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2289 
2290 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2291 
2292 	/* bring the device down */
2293 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2294 }
2295 
2296 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2297 {
2298 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2299 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2300 
2301 	if (hdev->keep_alive_timer.function)
2302 		del_timer_sync(&hdev->keep_alive_timer);
2303 	if (hdev->keep_alive_task.func)
2304 		cancel_work_sync(&hdev->keep_alive_task);
2305 	if (hdev->service_timer.function)
2306 		del_timer_sync(&hdev->service_timer);
2307 	if (hdev->service_task.func)
2308 		cancel_work_sync(&hdev->service_task);
2309 	if (hdev->mbx_service_task.func)
2310 		cancel_work_sync(&hdev->mbx_service_task);
2311 	if (hdev->rst_service_task.func)
2312 		cancel_work_sync(&hdev->rst_service_task);
2313 
2314 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2315 }
2316 
2317 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2318 {
2319 	struct pci_dev *pdev = hdev->pdev;
2320 	int vectors;
2321 	int i;
2322 
2323 	if (hnae3_dev_roce_supported(hdev))
2324 		vectors = pci_alloc_irq_vectors(pdev,
2325 						hdev->roce_base_msix_offset + 1,
2326 						hdev->num_msi,
2327 						PCI_IRQ_MSIX);
2328 	else
2329 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2330 						hdev->num_msi,
2331 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2332 
2333 	if (vectors < 0) {
2334 		dev_err(&pdev->dev,
2335 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2336 			vectors);
2337 		return vectors;
2338 	}
2339 	if (vectors < hdev->num_msi)
2340 		dev_warn(&hdev->pdev->dev,
2341 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2342 			 hdev->num_msi, vectors);
2343 
2344 	hdev->num_msi = vectors;
2345 	hdev->num_msi_left = vectors;
2346 
2347 	hdev->base_msi_vector = pdev->irq;
2348 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2349 
2350 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2351 					   sizeof(u16), GFP_KERNEL);
2352 	if (!hdev->vector_status) {
2353 		pci_free_irq_vectors(pdev);
2354 		return -ENOMEM;
2355 	}
2356 
2357 	for (i = 0; i < hdev->num_msi; i++)
2358 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2359 
2360 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2361 					sizeof(int), GFP_KERNEL);
2362 	if (!hdev->vector_irq) {
2363 		devm_kfree(&pdev->dev, hdev->vector_status);
2364 		pci_free_irq_vectors(pdev);
2365 		return -ENOMEM;
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2372 {
2373 	struct pci_dev *pdev = hdev->pdev;
2374 
2375 	devm_kfree(&pdev->dev, hdev->vector_status);
2376 	devm_kfree(&pdev->dev, hdev->vector_irq);
2377 	pci_free_irq_vectors(pdev);
2378 }
2379 
2380 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2381 {
2382 	int ret;
2383 
2384 	hclgevf_get_misc_vector(hdev);
2385 
2386 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2387 			  0, "hclgevf_cmd", hdev);
2388 	if (ret) {
2389 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2390 			hdev->misc_vector.vector_irq);
2391 		return ret;
2392 	}
2393 
2394 	hclgevf_clear_event_cause(hdev, 0);
2395 
2396 	/* enable misc. vector(vector 0) */
2397 	hclgevf_enable_vector(&hdev->misc_vector, true);
2398 
2399 	return ret;
2400 }
2401 
2402 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2403 {
2404 	/* disable misc vector(vector 0) */
2405 	hclgevf_enable_vector(&hdev->misc_vector, false);
2406 	synchronize_irq(hdev->misc_vector.vector_irq);
2407 	free_irq(hdev->misc_vector.vector_irq, hdev);
2408 	hclgevf_free_vector(hdev, 0);
2409 }
2410 
2411 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2412 {
2413 	struct device *dev = &hdev->pdev->dev;
2414 
2415 	dev_info(dev, "VF info begin:\n");
2416 
2417 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2418 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2419 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2420 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2421 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2422 	dev_info(dev, "PF media type of this VF: %u\n",
2423 		 hdev->hw.mac.media_type);
2424 
2425 	dev_info(dev, "VF info end.\n");
2426 }
2427 
2428 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2429 					    struct hnae3_client *client)
2430 {
2431 	struct hclgevf_dev *hdev = ae_dev->priv;
2432 	int ret;
2433 
2434 	ret = client->ops->init_instance(&hdev->nic);
2435 	if (ret)
2436 		return ret;
2437 
2438 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2439 	hnae3_set_client_init_flag(client, ae_dev, 1);
2440 
2441 	if (netif_msg_drv(&hdev->nic))
2442 		hclgevf_info_show(hdev);
2443 
2444 	return 0;
2445 }
2446 
2447 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2448 					     struct hnae3_client *client)
2449 {
2450 	struct hclgevf_dev *hdev = ae_dev->priv;
2451 	int ret;
2452 
2453 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2454 	    !hdev->nic_client)
2455 		return 0;
2456 
2457 	ret = hclgevf_init_roce_base_info(hdev);
2458 	if (ret)
2459 		return ret;
2460 
2461 	ret = client->ops->init_instance(&hdev->roce);
2462 	if (ret)
2463 		return ret;
2464 
2465 	hnae3_set_client_init_flag(client, ae_dev, 1);
2466 
2467 	return 0;
2468 }
2469 
2470 static int hclgevf_init_client_instance(struct hnae3_client *client,
2471 					struct hnae3_ae_dev *ae_dev)
2472 {
2473 	struct hclgevf_dev *hdev = ae_dev->priv;
2474 	int ret;
2475 
2476 	switch (client->type) {
2477 	case HNAE3_CLIENT_KNIC:
2478 		hdev->nic_client = client;
2479 		hdev->nic.client = client;
2480 
2481 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2482 		if (ret)
2483 			goto clear_nic;
2484 
2485 		ret = hclgevf_init_roce_client_instance(ae_dev,
2486 							hdev->roce_client);
2487 		if (ret)
2488 			goto clear_roce;
2489 
2490 		break;
2491 	case HNAE3_CLIENT_ROCE:
2492 		if (hnae3_dev_roce_supported(hdev)) {
2493 			hdev->roce_client = client;
2494 			hdev->roce.client = client;
2495 		}
2496 
2497 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2498 		if (ret)
2499 			goto clear_roce;
2500 
2501 		break;
2502 	default:
2503 		return -EINVAL;
2504 	}
2505 
2506 	return 0;
2507 
2508 clear_nic:
2509 	hdev->nic_client = NULL;
2510 	hdev->nic.client = NULL;
2511 	return ret;
2512 clear_roce:
2513 	hdev->roce_client = NULL;
2514 	hdev->roce.client = NULL;
2515 	return ret;
2516 }
2517 
2518 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2519 					   struct hnae3_ae_dev *ae_dev)
2520 {
2521 	struct hclgevf_dev *hdev = ae_dev->priv;
2522 
2523 	/* un-init roce, if it exists */
2524 	if (hdev->roce_client) {
2525 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2526 		hdev->roce_client = NULL;
2527 		hdev->roce.client = NULL;
2528 	}
2529 
2530 	/* un-init nic/unic, if this was not called by roce client */
2531 	if (client->ops->uninit_instance && hdev->nic_client &&
2532 	    client->type != HNAE3_CLIENT_ROCE) {
2533 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2534 
2535 		client->ops->uninit_instance(&hdev->nic, 0);
2536 		hdev->nic_client = NULL;
2537 		hdev->nic.client = NULL;
2538 	}
2539 }
2540 
2541 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2542 {
2543 	struct pci_dev *pdev = hdev->pdev;
2544 	struct hclgevf_hw *hw;
2545 	int ret;
2546 
2547 	ret = pci_enable_device(pdev);
2548 	if (ret) {
2549 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2550 		return ret;
2551 	}
2552 
2553 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2554 	if (ret) {
2555 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2556 		goto err_disable_device;
2557 	}
2558 
2559 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2560 	if (ret) {
2561 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2562 		goto err_disable_device;
2563 	}
2564 
2565 	pci_set_master(pdev);
2566 	hw = &hdev->hw;
2567 	hw->hdev = hdev;
2568 	hw->io_base = pci_iomap(pdev, 2, 0);
2569 	if (!hw->io_base) {
2570 		dev_err(&pdev->dev, "can't map configuration register space\n");
2571 		ret = -ENOMEM;
2572 		goto err_clr_master;
2573 	}
2574 
2575 	return 0;
2576 
2577 err_clr_master:
2578 	pci_clear_master(pdev);
2579 	pci_release_regions(pdev);
2580 err_disable_device:
2581 	pci_disable_device(pdev);
2582 
2583 	return ret;
2584 }
2585 
2586 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2587 {
2588 	struct pci_dev *pdev = hdev->pdev;
2589 
2590 	pci_iounmap(pdev, hdev->hw.io_base);
2591 	pci_clear_master(pdev);
2592 	pci_release_regions(pdev);
2593 	pci_disable_device(pdev);
2594 }
2595 
2596 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2597 {
2598 	struct hclgevf_query_res_cmd *req;
2599 	struct hclgevf_desc desc;
2600 	int ret;
2601 
2602 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2603 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2604 	if (ret) {
2605 		dev_err(&hdev->pdev->dev,
2606 			"query vf resource failed, ret = %d.\n", ret);
2607 		return ret;
2608 	}
2609 
2610 	req = (struct hclgevf_query_res_cmd *)desc.data;
2611 
2612 	if (hnae3_dev_roce_supported(hdev)) {
2613 		hdev->roce_base_msix_offset =
2614 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2615 				HCLGEVF_MSIX_OFT_ROCEE_M,
2616 				HCLGEVF_MSIX_OFT_ROCEE_S);
2617 		hdev->num_roce_msix =
2618 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2619 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2620 
2621 		/* nic's msix numbers is always equals to the roce's. */
2622 		hdev->num_nic_msix = hdev->num_roce_msix;
2623 
2624 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2625 		 * are queued before Roce vectors. The offset is fixed to 64.
2626 		 */
2627 		hdev->num_msi = hdev->num_roce_msix +
2628 				hdev->roce_base_msix_offset;
2629 	} else {
2630 		hdev->num_msi =
2631 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2632 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2633 
2634 		hdev->num_nic_msix = hdev->num_msi;
2635 	}
2636 
2637 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2638 		dev_err(&hdev->pdev->dev,
2639 			"Just %u msi resources, not enough for vf(min:2).\n",
2640 			hdev->num_nic_msix);
2641 		return -EINVAL;
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2648 {
2649 	struct pci_dev *pdev = hdev->pdev;
2650 	int ret = 0;
2651 
2652 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2653 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2654 		hclgevf_misc_irq_uninit(hdev);
2655 		hclgevf_uninit_msi(hdev);
2656 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2657 	}
2658 
2659 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2660 		pci_set_master(pdev);
2661 		ret = hclgevf_init_msi(hdev);
2662 		if (ret) {
2663 			dev_err(&pdev->dev,
2664 				"failed(%d) to init MSI/MSI-X\n", ret);
2665 			return ret;
2666 		}
2667 
2668 		ret = hclgevf_misc_irq_init(hdev);
2669 		if (ret) {
2670 			hclgevf_uninit_msi(hdev);
2671 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2672 				ret);
2673 			return ret;
2674 		}
2675 
2676 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2683 {
2684 	struct pci_dev *pdev = hdev->pdev;
2685 	int ret;
2686 
2687 	ret = hclgevf_pci_reset(hdev);
2688 	if (ret) {
2689 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2690 		return ret;
2691 	}
2692 
2693 	ret = hclgevf_cmd_init(hdev);
2694 	if (ret) {
2695 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2696 		return ret;
2697 	}
2698 
2699 	ret = hclgevf_rss_init_hw(hdev);
2700 	if (ret) {
2701 		dev_err(&hdev->pdev->dev,
2702 			"failed(%d) to initialize RSS\n", ret);
2703 		return ret;
2704 	}
2705 
2706 	ret = hclgevf_config_gro(hdev, true);
2707 	if (ret)
2708 		return ret;
2709 
2710 	ret = hclgevf_init_vlan_config(hdev);
2711 	if (ret) {
2712 		dev_err(&hdev->pdev->dev,
2713 			"failed(%d) to initialize VLAN config\n", ret);
2714 		return ret;
2715 	}
2716 
2717 	dev_info(&hdev->pdev->dev, "Reset done\n");
2718 
2719 	return 0;
2720 }
2721 
2722 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2723 {
2724 	struct pci_dev *pdev = hdev->pdev;
2725 	int ret;
2726 
2727 	ret = hclgevf_pci_init(hdev);
2728 	if (ret) {
2729 		dev_err(&pdev->dev, "PCI initialization failed\n");
2730 		return ret;
2731 	}
2732 
2733 	ret = hclgevf_cmd_queue_init(hdev);
2734 	if (ret) {
2735 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2736 		goto err_cmd_queue_init;
2737 	}
2738 
2739 	ret = hclgevf_cmd_init(hdev);
2740 	if (ret)
2741 		goto err_cmd_init;
2742 
2743 	/* Get vf resource */
2744 	ret = hclgevf_query_vf_resource(hdev);
2745 	if (ret) {
2746 		dev_err(&hdev->pdev->dev,
2747 			"Query vf status error, ret = %d.\n", ret);
2748 		goto err_cmd_init;
2749 	}
2750 
2751 	ret = hclgevf_init_msi(hdev);
2752 	if (ret) {
2753 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2754 		goto err_cmd_init;
2755 	}
2756 
2757 	hclgevf_state_init(hdev);
2758 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2759 
2760 	ret = hclgevf_misc_irq_init(hdev);
2761 	if (ret) {
2762 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2763 			ret);
2764 		goto err_misc_irq_init;
2765 	}
2766 
2767 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2768 
2769 	ret = hclgevf_configure(hdev);
2770 	if (ret) {
2771 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2772 		goto err_config;
2773 	}
2774 
2775 	ret = hclgevf_alloc_tqps(hdev);
2776 	if (ret) {
2777 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2778 		goto err_config;
2779 	}
2780 
2781 	ret = hclgevf_set_handle_info(hdev);
2782 	if (ret) {
2783 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2784 		goto err_config;
2785 	}
2786 
2787 	ret = hclgevf_config_gro(hdev, true);
2788 	if (ret)
2789 		goto err_config;
2790 
2791 	/* Initialize RSS for this VF */
2792 	ret = hclgevf_rss_init_hw(hdev);
2793 	if (ret) {
2794 		dev_err(&hdev->pdev->dev,
2795 			"failed(%d) to initialize RSS\n", ret);
2796 		goto err_config;
2797 	}
2798 
2799 	ret = hclgevf_init_vlan_config(hdev);
2800 	if (ret) {
2801 		dev_err(&hdev->pdev->dev,
2802 			"failed(%d) to initialize VLAN config\n", ret);
2803 		goto err_config;
2804 	}
2805 
2806 	hdev->last_reset_time = jiffies;
2807 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2808 		 HCLGEVF_DRIVER_NAME);
2809 
2810 	return 0;
2811 
2812 err_config:
2813 	hclgevf_misc_irq_uninit(hdev);
2814 err_misc_irq_init:
2815 	hclgevf_state_uninit(hdev);
2816 	hclgevf_uninit_msi(hdev);
2817 err_cmd_init:
2818 	hclgevf_cmd_uninit(hdev);
2819 err_cmd_queue_init:
2820 	hclgevf_pci_uninit(hdev);
2821 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2822 	return ret;
2823 }
2824 
2825 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2826 {
2827 	hclgevf_state_uninit(hdev);
2828 
2829 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2830 		hclgevf_misc_irq_uninit(hdev);
2831 		hclgevf_uninit_msi(hdev);
2832 	}
2833 
2834 	hclgevf_pci_uninit(hdev);
2835 	hclgevf_cmd_uninit(hdev);
2836 }
2837 
2838 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2839 {
2840 	struct pci_dev *pdev = ae_dev->pdev;
2841 	struct hclgevf_dev *hdev;
2842 	int ret;
2843 
2844 	ret = hclgevf_alloc_hdev(ae_dev);
2845 	if (ret) {
2846 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2847 		return ret;
2848 	}
2849 
2850 	ret = hclgevf_init_hdev(ae_dev->priv);
2851 	if (ret) {
2852 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2853 		return ret;
2854 	}
2855 
2856 	hdev = ae_dev->priv;
2857 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2858 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2859 
2860 	return 0;
2861 }
2862 
2863 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2864 {
2865 	struct hclgevf_dev *hdev = ae_dev->priv;
2866 
2867 	hclgevf_uninit_hdev(hdev);
2868 	ae_dev->priv = NULL;
2869 }
2870 
2871 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2872 {
2873 	struct hnae3_handle *nic = &hdev->nic;
2874 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2875 
2876 	return min_t(u32, hdev->rss_size_max,
2877 		     hdev->num_tqps / kinfo->num_tc);
2878 }
2879 
2880 /**
2881  * hclgevf_get_channels - Get the current channels enabled and max supported.
2882  * @handle: hardware information for network interface
2883  * @ch: ethtool channels structure
2884  *
2885  * We don't support separate tx and rx queues as channels. The other count
2886  * represents how many queues are being used for control. max_combined counts
2887  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2888  * q_vectors since we support a lot more queue pairs than q_vectors.
2889  **/
2890 static void hclgevf_get_channels(struct hnae3_handle *handle,
2891 				 struct ethtool_channels *ch)
2892 {
2893 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2894 
2895 	ch->max_combined = hclgevf_get_max_channels(hdev);
2896 	ch->other_count = 0;
2897 	ch->max_other = 0;
2898 	ch->combined_count = handle->kinfo.rss_size;
2899 }
2900 
2901 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2902 					  u16 *alloc_tqps, u16 *max_rss_size)
2903 {
2904 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2905 
2906 	*alloc_tqps = hdev->num_tqps;
2907 	*max_rss_size = hdev->rss_size_max;
2908 }
2909 
2910 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2911 				    u32 new_tqps_num)
2912 {
2913 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2914 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2915 	u16 max_rss_size;
2916 
2917 	kinfo->req_rss_size = new_tqps_num;
2918 
2919 	max_rss_size = min_t(u16, hdev->rss_size_max,
2920 			     hdev->num_tqps / kinfo->num_tc);
2921 
2922 	/* Use the user's configuration when it is not larger than
2923 	 * max_rss_size, otherwise, use the maximum specification value.
2924 	 */
2925 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2926 	    kinfo->req_rss_size <= max_rss_size)
2927 		kinfo->rss_size = kinfo->req_rss_size;
2928 	else if (kinfo->rss_size > max_rss_size ||
2929 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2930 		kinfo->rss_size = max_rss_size;
2931 
2932 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2933 }
2934 
2935 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2936 				bool rxfh_configured)
2937 {
2938 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2939 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2940 	u16 cur_rss_size = kinfo->rss_size;
2941 	u16 cur_tqps = kinfo->num_tqps;
2942 	u32 *rss_indir;
2943 	unsigned int i;
2944 	int ret;
2945 
2946 	hclgevf_update_rss_size(handle, new_tqps_num);
2947 
2948 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2949 	if (ret)
2950 		return ret;
2951 
2952 	/* RSS indirection table has been configuared by user */
2953 	if (rxfh_configured)
2954 		goto out;
2955 
2956 	/* Reinitializes the rss indirect table according to the new RSS size */
2957 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2958 	if (!rss_indir)
2959 		return -ENOMEM;
2960 
2961 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2962 		rss_indir[i] = i % kinfo->rss_size;
2963 
2964 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2965 	if (ret)
2966 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2967 			ret);
2968 
2969 	kfree(rss_indir);
2970 
2971 out:
2972 	if (!ret)
2973 		dev_info(&hdev->pdev->dev,
2974 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2975 			 cur_rss_size, kinfo->rss_size,
2976 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2977 
2978 	return ret;
2979 }
2980 
2981 static int hclgevf_get_status(struct hnae3_handle *handle)
2982 {
2983 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2984 
2985 	return hdev->hw.mac.link;
2986 }
2987 
2988 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2989 					    u8 *auto_neg, u32 *speed,
2990 					    u8 *duplex)
2991 {
2992 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2993 
2994 	if (speed)
2995 		*speed = hdev->hw.mac.speed;
2996 	if (duplex)
2997 		*duplex = hdev->hw.mac.duplex;
2998 	if (auto_neg)
2999 		*auto_neg = AUTONEG_DISABLE;
3000 }
3001 
3002 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3003 				 u8 duplex)
3004 {
3005 	hdev->hw.mac.speed = speed;
3006 	hdev->hw.mac.duplex = duplex;
3007 }
3008 
3009 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3010 {
3011 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3012 
3013 	return hclgevf_config_gro(hdev, enable);
3014 }
3015 
3016 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3017 				   u8 *module_type)
3018 {
3019 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3020 
3021 	if (media_type)
3022 		*media_type = hdev->hw.mac.media_type;
3023 
3024 	if (module_type)
3025 		*module_type = hdev->hw.mac.module_type;
3026 }
3027 
3028 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3029 {
3030 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3031 
3032 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3033 }
3034 
3035 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3036 {
3037 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3038 
3039 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3040 }
3041 
3042 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3043 {
3044 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3045 
3046 	return hdev->rst_stats.hw_rst_done_cnt;
3047 }
3048 
3049 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3050 				  unsigned long *supported,
3051 				  unsigned long *advertising)
3052 {
3053 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3054 
3055 	*supported = hdev->hw.mac.supported;
3056 	*advertising = hdev->hw.mac.advertising;
3057 }
3058 
3059 #define MAX_SEPARATE_NUM	4
3060 #define SEPARATOR_VALUE		0xFFFFFFFF
3061 #define REG_NUM_PER_LINE	4
3062 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3063 
3064 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3065 {
3066 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3067 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3068 
3069 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3070 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3071 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3072 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3073 
3074 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3075 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3076 }
3077 
3078 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3079 			     void *data)
3080 {
3081 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3082 	int i, j, reg_um, separator_num;
3083 	u32 *reg = data;
3084 
3085 	*version = hdev->fw_version;
3086 
3087 	/* fetching per-VF registers values from VF PCIe register space */
3088 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3089 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3090 	for (i = 0; i < reg_um; i++)
3091 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3092 	for (i = 0; i < separator_num; i++)
3093 		*reg++ = SEPARATOR_VALUE;
3094 
3095 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3096 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3097 	for (i = 0; i < reg_um; i++)
3098 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3099 	for (i = 0; i < separator_num; i++)
3100 		*reg++ = SEPARATOR_VALUE;
3101 
3102 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3103 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3104 	for (j = 0; j < hdev->num_tqps; j++) {
3105 		for (i = 0; i < reg_um; i++)
3106 			*reg++ = hclgevf_read_dev(&hdev->hw,
3107 						  ring_reg_addr_list[i] +
3108 						  0x200 * j);
3109 		for (i = 0; i < separator_num; i++)
3110 			*reg++ = SEPARATOR_VALUE;
3111 	}
3112 
3113 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3114 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3115 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3116 		for (i = 0; i < reg_um; i++)
3117 			*reg++ = hclgevf_read_dev(&hdev->hw,
3118 						  tqp_intr_reg_addr_list[i] +
3119 						  4 * j);
3120 		for (i = 0; i < separator_num; i++)
3121 			*reg++ = SEPARATOR_VALUE;
3122 	}
3123 }
3124 
3125 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3126 					u8 *port_base_vlan_info, u8 data_size)
3127 {
3128 	struct hnae3_handle *nic = &hdev->nic;
3129 
3130 	rtnl_lock();
3131 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3132 	rtnl_unlock();
3133 
3134 	/* send msg to PF and wait update port based vlan info */
3135 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3136 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
3137 			     port_base_vlan_info, data_size,
3138 			     false, NULL, 0);
3139 
3140 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3141 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3142 	else
3143 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3144 
3145 	rtnl_lock();
3146 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3147 	rtnl_unlock();
3148 }
3149 
3150 static const struct hnae3_ae_ops hclgevf_ops = {
3151 	.init_ae_dev = hclgevf_init_ae_dev,
3152 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3153 	.flr_prepare = hclgevf_flr_prepare,
3154 	.flr_done = hclgevf_flr_done,
3155 	.init_client_instance = hclgevf_init_client_instance,
3156 	.uninit_client_instance = hclgevf_uninit_client_instance,
3157 	.start = hclgevf_ae_start,
3158 	.stop = hclgevf_ae_stop,
3159 	.client_start = hclgevf_client_start,
3160 	.client_stop = hclgevf_client_stop,
3161 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3162 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3163 	.get_vector = hclgevf_get_vector,
3164 	.put_vector = hclgevf_put_vector,
3165 	.reset_queue = hclgevf_reset_tqp,
3166 	.get_mac_addr = hclgevf_get_mac_addr,
3167 	.set_mac_addr = hclgevf_set_mac_addr,
3168 	.add_uc_addr = hclgevf_add_uc_addr,
3169 	.rm_uc_addr = hclgevf_rm_uc_addr,
3170 	.add_mc_addr = hclgevf_add_mc_addr,
3171 	.rm_mc_addr = hclgevf_rm_mc_addr,
3172 	.get_stats = hclgevf_get_stats,
3173 	.update_stats = hclgevf_update_stats,
3174 	.get_strings = hclgevf_get_strings,
3175 	.get_sset_count = hclgevf_get_sset_count,
3176 	.get_rss_key_size = hclgevf_get_rss_key_size,
3177 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3178 	.get_rss = hclgevf_get_rss,
3179 	.set_rss = hclgevf_set_rss,
3180 	.get_rss_tuple = hclgevf_get_rss_tuple,
3181 	.set_rss_tuple = hclgevf_set_rss_tuple,
3182 	.get_tc_size = hclgevf_get_tc_size,
3183 	.get_fw_version = hclgevf_get_fw_version,
3184 	.set_vlan_filter = hclgevf_set_vlan_filter,
3185 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3186 	.reset_event = hclgevf_reset_event,
3187 	.set_default_reset_request = hclgevf_set_def_reset_request,
3188 	.set_channels = hclgevf_set_channels,
3189 	.get_channels = hclgevf_get_channels,
3190 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3191 	.get_regs_len = hclgevf_get_regs_len,
3192 	.get_regs = hclgevf_get_regs,
3193 	.get_status = hclgevf_get_status,
3194 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3195 	.get_media_type = hclgevf_get_media_type,
3196 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3197 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3198 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3199 	.set_gro_en = hclgevf_gro_en,
3200 	.set_mtu = hclgevf_set_mtu,
3201 	.get_global_queue_id = hclgevf_get_qid_global,
3202 	.set_timer_task = hclgevf_set_timer_task,
3203 	.get_link_mode = hclgevf_get_link_mode,
3204 	.set_promisc_mode = hclgevf_set_promisc_mode,
3205 };
3206 
3207 static struct hnae3_ae_algo ae_algovf = {
3208 	.ops = &hclgevf_ops,
3209 	.pdev_id_table = ae_algovf_pci_tbl,
3210 };
3211 
3212 static int hclgevf_init(void)
3213 {
3214 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3215 
3216 	hnae3_register_ae_algo(&ae_algovf);
3217 
3218 	return 0;
3219 }
3220 
3221 static void hclgevf_exit(void)
3222 {
3223 	hnae3_unregister_ae_algo(&ae_algovf);
3224 }
3225 module_init(hclgevf_init);
3226 module_exit(hclgevf_exit);
3227 
3228 MODULE_LICENSE("GPL");
3229 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3230 MODULE_DESCRIPTION("HCLGEVF Driver");
3231 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3232